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ABSTRACT 

 

Humans and animals time intervals from seconds-to-minutes with high accuracy but limited 

precision. Consequently, time-based decisions are inevitably subject to our endogenous 

timing uncertainty and thus require temporal risk assessment. Study 1 tested the temporal risk 

assessment ability of humans when participants had to withhold each subsequent response for 

a minimum duration to earn reward and each response reset the trial time. Premature 

responses were not penalized in the first group but were penalized (reward/2) in the second 

group. Participants tried to maximize reward within a fixed session time (over 8 sessions) by 

pressing a key. No instructions were provided regarding the task rules/parameters. 

Participants nearly tracked the optimal target inter-response times (IRTs) that changed as a 

function of the level of timing uncertainty and maximized the reward rate in both experiments. 

Acquisition of optimal target IRT was rapid and abrupt without any further improvement or 

worsening.  In Study 2 the same behavioral paradigm is used except the penalty was equated 

to reward, and the minimum withhold duration was halved in the 4th session to measure the 

adaptation to a new schedule after reaching the steady state. Participants were given trait 

anxiety scale, Barratt impulsivity scale, behavioral inhibition and behavioral activation scale, 

and Padua inventory for obsessive compulsive disorder to evaluate the relation between the 

personality and task performance. Most of the participants were able to adapt to the change in 

the fourth session. Participants with high behavioral inhibition and high Padua scores are 

shown to be closer to optimality. These results support the use of non-instructed differential 

reinforcement of low rates of responding (DRL) as a valuable tool in temporal decision-

making literature. 

Keywords: decision-making, interval timing, optimality, reward maximization, risk assessment, 

timing uncertainty 
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ÖZET 

İnsanlar ve hayvanlar saniyelerden dakikalara kadar olan zaman aralıklarında yüksek 

doğruluğa ancak düşük kesinliğe sahiplerdir. Bundan dolayı zamana bağlı bütün kararlar 

kaçınılmaz olarak içsel zaman belirsizliğine sahip olmakta ve zamansal risk analizi 

gerektirmektedir. Birinci çalışmada insanlar ödül alabilmek için bir önceki tepkilerinden 

sonra bir başka tepki vermeden en az asgari bir sure beklemeleri gereken zamansal risk 

analizi deneyi ile test edilmişlerdir. İlk grupta asgari süreden önceki tepkiler 

cezalandırılmamış ancak ikinci grupta bu tepkiler katılımcıların toplam kazançlarının 

azalmasına neden olmuştur (birim ödül/2). Katılımcılar sekiz seans boyunca sabit oturum 

süresi içinde ödüllerini azamileştirmeye çalışmışlardır. Deneyin başlangıcında ve devamında 

katılımcılara yönerge verilmemiş veya deneyin parametreleri hakkında bilgilendirme 

yapılmamıştır. İki gruptaki katılımcılar da kazanabilecekleri azami ödüle yaklaşmış ve 

optimal sürelere çok yakın beklemiştirler. Deney kurallarının öğrenimi hızlı ve ani olmuştur, 

ilk öğrenmeden sonra iyileşme veya kötüleşme olmamıştır. İkinci çalışmada ise aynı deney 

paradigması kullanılmış ancak erken tepkilere verilen ceza kazanılan ödül miktarına 

eşitlenmiş ve adaptasyon süreçlerinin incelenebilmesi için dördüncü deneyde asgari bekleme 

süresi ilk üç oturumun yarısına indirilmiştir. Katılımcılara durumsal kaygı ölçeği, davranışsal 

inhibisyon ve davranışsal aktivasyon ölçeği, barratt dürtüsellik ölçeği ve Padua obsesif 

kompülsif bozukluk envanteri verilmiş, skorların deney performansı ile olan ilişkisine 

bakılmıştır. İkinci deney sonucunda çoğu katılımcının dördüncü oturumdaki azami süre 

değişikliğine uyum sağlayabildiği gösterilmiştir. Yüksek davranışsal inhibisyon ve yüksek 

Padua envanteri skorlarına sahip katılımcıların optimale daha yakın olduğu gözlenmiştir. Bu 

iki çalışmanın sonuçları yönergesiz DRL deneyinin zamansal karar verme literatürü için 

önemli bir araç olduğunu göstermiştir. 
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INTRODUCTION 

Time is an indispensible component of many daily decisions we face throughout our 

lives. These common, time-related decisions we make while boiling an egg or catching a bus 

may seem simple, but the optimal solutions for them require complex statistical analysis of 

temporal information. Solution to the optimality problem in these seemingly simple tasks 

requires information about the decision maker’s endogenous timing uncertainty and payoff 

matrix of the task. Both humans and mice were shown to be nearly optimal in temporal 

decisions in the context of differential reinforcement of low rates of responding (DRL) task  

(Balcı et al., 2011). But human participants of this experiment were provided with 

instructions regarding task rules and given the opportunity to experience the minimum wait-

time explicitly prior to testing, which limits the generalizability of the task to other animals. 

The purpose of the first study was to evaluate human participants on the DRL task without 

providing any instructions or prior experience with the minimum wait-time to constitute a 

better analogue to animal experiments and introduce penalty parameter to the optimality 

problem. The purpose of the second study was to investigate the effect of lowering the 

schedule (that required adaptation of decision strategies) on the optimality of the participants 

and test the relationship between the task performance and trait anxiety, risk taking, 

behavioral inhibition and behavioral activation, and obsessive compulsive disorder-related 

traits.   

Humans and other animals are accurate in their timing but they are not precise; their 

responses are distributed around the timed duration but vary between trials. This variance 

follows scalar property, which dictates the variability in timed responses (i.e., their standard 

deviation) should be proportional to the timed duration (Gibbon, 1977). Thus, to optimize 

performance even in simple daily tasks such as waiting for a bus, humans need to be able to 
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calculate their timing uncertainty. Furthermore they should be able to use it to figure out their 

expected gain by taking reward contingencies into account based on rather complex 

mathematical calculations. Decision making tasks that are contingent on timing uncertainty 

show that both healthy humans and non-human animals are able to optimize decisions 

according to the variance of their time based responses.(Balcı, Freestone, & Gallistel, 2009; 

Balcı et al., 2011; Jazayeri & Shadlen, 2010; Kheifets & Gallistel, 2012; Simen, Balcı, Cohen, 

& Holmes, 2011). 

In the DRL task, only the responses emitted after a fixed amount of time has passed 

are rewarded. Giving a response terminates the trial, resetting the trial timer. Participants’ 

inter-response times forms an inverse-Gaussian shaped density function. This density 

function results in non-linear increase in reward probability with increasing time because 

only the portion of the density that has higher values than the DRL schedule is rewarded (and 

task can be parameterized such that responses earlier than schedule are penalized) whereas 

the time cost increases linearly with IRT. Maximization of reward rate in this task 

(�(������) 	��
(��
)⁄  requires optimal tradeoff between the reward probability and inter-

response time (IRT). More importantly, this optimal tradeoff depends on the participants’ 

level of timing uncertainty (ω̂ ). The tradeoff between the time cost and the reward 

probability gives DRL task the ability to characterize speed-accuracy tradeoff (SAT) in the 

temporal decision-making domain. Reward rate in this task can be quantified as shown in the 

Equation 1 where R is reward magnitude, T denotes the DRL schedule, t̂  is mean IRT, ≥λ̂  

0 is the Wald shape parameter which is 
2ˆ

ˆˆ
ω

λ
t

=  . 

RR t̂( ) = t
−1

R × 1− waldcdf T, t̂, λ̂( )( ) + waldcdf T, t̂ , λ̂( ) × P( )  [Equation 1] 
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Closed form solution to the optimality problem under timing uncertainty is shown in 

Equation 2. 

( ) ( ) ( )( ) 0ˆ,ˆ,ˆ,ˆ, =×+×+− λλ tTwaldpdfTtTwaldcdfPRR
 [Equation 2]

 

The first major addition of Study 2 was unannounced halving of the minimum 

withhold duration in the fourth session of the DRL task. This manipulation allowed the 

measuring of adaptation to the new schedule after the initial steady state DRL performance 

was reached. This design also made comparisons of steady state performance with different 

mean wait durations on the same subject possible.  

The second major addition of Study 2 was the use of personality questionnaires and 

Padua Inventory. There has been a surge in the literature that investigates the connections 

between behavioral task performance, personality traits, cognitive disorders, and genetic 

factors (Blum, Oscar-Berman, Barh, Giordano, & Gold, 2013; Gizer, Ficks, & Waldman, 

2009; Karg, Burmeister, Shedden, & Sen, 2011). While there have been serious endeavors in 

improving the genetic and clinical sides of these studies, behavioral tasks used are less than 

perfect in disassociating the theoretical concepts. Non-instructed DRL is a good candidate for 

classifying the decision-making differences in these disorders and personality groups. 

Through task performance, it is possible to characterize the acquisition of task representation 

based on response-outcome contingencies, calculate optimal performance of the participants 

and measure their sensitivity to the penalty/errors. The DRL performance is also sensitive to 

biological manipulations and differences. The effect of basal ganglia and limbic system 

manipulations on DRL performance in animals is well documented (Balcı, Meck, Moore, & 

Brunner, 2009; Bannerman et al., 1999; Cho & Jeantet, 2010; Costa, Bueno, & Xavier, 2005; 

MacDonald, Lepage, Eden, & Eichenbaum, 2011; Meck, 1988; Meck, Church, & Olton, 1984; 

Pellegrino & Clapp, 1971; Yin & Troger, 2011; Young & McNaughton, 2000). 
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Anxiety is considered as one of the key emotional systems that influences decision-

making processes (Bechara & Damasio, 2005; Eysenck, Derakshan, Santos, & Calvo, 2007; 

Gray & McNaughton, 2003). Individuals with higher anxiety is known to react more to the 

presence of negative stimuli (Savitsky, Medvec, Charlton, & Gilovich, 1998) and they are 

more pessimistic in their judgments and predictions of future outcomes (Lerner & Keltner, 

2000; Shepperd, Grace, Cole, & Klein, 2005). Dispositional Anxiety is found to be related to 

risk-aversive decision making (Maner et al., 2007; Maner & Schmidt, 2006) but the exact 

role of anxiety on behavioral performance is not clear. Studies show that students that have 

met generalized anxiety disorder (GAD) criteria learned the task contingency in IGT faster 

compared to control group (Mueller, Nguyen, Ray, & Borkovec, 2010) , and individuals with 

high trait anxiety perform better  (Werner, Duschek, & Schandry, 2009) in some studies 

while they perform worse in others (Miu, Heilman, & Houser, 2008; Pajkossy, Dezső, & 

Zoltay Paprika, 2009). These contradictory findings might be caused by the performance 

measures of IGT, where high score indicates preference for decks that have low immediate 

gain but high long term gain to the decks that have high immediate gain but low long term 

gain. Non-instructed DRL task would be a new and possibly a better candidate as a 

behavioral task to quantify the punishment sensitivity because it is possible for participants to 

actively avoid penalty by simply waiting longer before responding. Based on the 

operationalized definition of anxiety in the literature, a positive correlation between the trait 

anxiety and average IRT is expected. Increased IRT will move the participants away from 

their optimal target duration, reducing their reward rate. 

Behavioral Inhibition System (BIS) and Behavioral Activation System (BAS) scales 

are created by Carver and colleagues to measure the biopsychological personality dimensions 

with the same names proposed by Gray (Carver & White, 1994; Gray, 1981, 1982). 

According to the original theory, BIS is highly related to the punishment sensitivity and 
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dispositional anxiety, measured by Trait Anxiety. On the other hand, the revised version of 

Gray’s Reinforcement Sensitivity Theory (RST) postulates that BIS is related to resolving 

goal conflict (between approach and avoidance) and anxiety is a byproduct of this process 

(Corr, 2004; Gray & McNaughton, 2003; McNaughton, 2006). Theoretical assumptions of 

RST are also supported by behavioral task performance and EEG studies. Behavioral 

inhibition scores were positively correlated with ERN/Ne amplitudes in flanker task, 

reflecting enhanced punishment related activity in participants with high BIS scores (Boksem, 

Tops, Wester, Meijman, & Lorist, 2006). Similar results were found in the Go/No-Go task 

where participants scoring high on BIS scale showed higher FRN during monetary loss 

compared to monetary gain (De Pascalis, Varriale, & D’Antuono, 2010). Positive correlations 

between BIS score and average IRT in steady state is expected based on these findings and 

similarities between the trait anxiety and BIS definition. On the other hand, it is also possible 

for participants with high BIS scores to be closer to the optimality if the new conflict 

resolution conceptualization of BIS is considered as true.   

 Both Behavioral Activation System (BAS) scale and Barratt Impulsiveness Scale 

(BIS-11) is widely used to measure impulsivity in clinical and non-clinical groups (Carver & 

White, 1994; Stanford et al., 2009). BAS scale measures the activity of behavioral approach 

system proposed by Gray, and it is highly related to impulsivity and reward sensitivity 

(Carver & White, 1994; Gray, 1981). BIS-11 on the other hand is able to differentiate 

between three types of impulsivity, namely attentional, motor, and non-planning impulsivity 

in both clinical and sub-clinical populations (Patton, Stanford, & Barratt, 1995; Stanford et al., 

2009). High BAS score is positively associated with increased brain activity in reward 

regions of ventral-striatum (VS) and orbito-frontal cortex (OFC) for appetizing food (Beaver 

et al., 2006); nucleus accumbens (NAcc), ventral tegmental area (VTA) and OFC during the 

processing of reward cues and positive stimuli (Camara, Rodriguez-Fornells, & Münte, 2010; 
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Carter, MacInnes, Huettel, & Adcock, 2009; Hahn et al., 2009). EEG studies corroborate on 

these findings, showing higher N1 amplitudes (<150ms) that are related to attention in 

appetitive stimuli but not in neutral stimuli in participants with high BAS scores (Gable & 

Harmon-Jones, 2013). This reactivity toward reward might translate into overestimation of 

the value of positive stimuli in calculations of decision-making circuit. This, based on reward 

calculations of DRL mentioned above, would shorten the mean IRT. In addition to the 

increased activity during processing of rewards, higher scores from BAS subscales except fun 

seeking increase P300 amplitude in oddball task, implying an increased ability to detect 

irregularity (Nijs, Franken, & Smulders, 2007). This result implies that subjects with higher 

BAS scores would be better at detecting the schedule change in the fourth session compared 

to low BAS participants.  

Obsessive Compulsive Disorder (OCD) is characterized with major symptoms of 

obsessive thoughts and persistent repetitive behaviors called compulsions. Compulsive 

behaviors shows similarities to the habitual behaviors and imply a deficiency between the 

competition of goal-directed and habitual systems (Evans, Lewis, & Iobst, 2004; Gillan et al., 

2011). Cognitive deficits are most visible in reversal learning tasks where OCD patients 

cannot adapt well to the rule change compared to the controls which seems to be caused by 

the abnormal action in orbito-striatal loop (Gillan et al., 2011; Remijnse et al., 2006). This 

deficiency in cognitive flexibility might be manifested as slow or incomplete adjustment to 

the new schedule in the fourth session. In addition to the over reliance to the stimulus-

response based habitual responding, OCD patients are more harm avoidant compared to 

controls (Bejerot, Schlette, Ekselius, Adolfsson, & Knorring, 1998; Kusunoki et al., 2000; 

Lyoo, Lee, Kim, Kong, & Kwon, 2001; Pfohl, Black, Noyes Jr, Kelley, & Blum, 1990; 

Richter, Summerfeldt, Joffe, & Swinson, 1996) and more sensitive to punishment (Fullana et 

al., 2004). They were also found to be better at learning in avoiding negative stimuli than 
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approaching positive stimuli in feedback based learning task (Endrass, Kloft, Kaufmann, & 

Kathmann, 2011) and showed higher error related negativity during the errors compared to 

correct responses in EEG (Gehring, Himle, & Nisenson, 2000). This evidence implies that 

OCD symptoms can be differentiated by punishment sensitivity parameters in our task and 

participants with higher OCD symptom scores might have impaired acquisition in the fourth 

session because of their stronger habitual responding tendencies. 

The literature that uses dopamine and serotonin-related gene polymorphisms to 

investigate decision-making and reinforcement learning is rapidly increasing (Frank & 

Hutchison, 2009; Holmes, Bogdan, & Pizzagalli, 2010). Research with polymorphisms has an 

advantage of exploring the biological mechanism of human behavior at much lower costs 

than the alternatives. Depending on the results of these experiments, DRL could be a useful 

task to differentiate behavioral endotypes for these polymorphisms. This is particularly 

important because these polymorphisms are also risk markers for many psychological 

disorders such as depression, addiction and ADHD (Blum et al., 2013; Gizer et al., 2009; 

Karg et al., 2011). Despite these numerous advantages, relation between 

dopaminergic/serotonergic gene polymorphisms and temporal decision making in humans is 

not well-studied. Use of DRL in particular would be useful for classifying persistent patterns 

of risky genotypes through quantitative methods, and for comparing different alleles in 

dimensions of optimality and task acquisition. 
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STUDY 1: 

1. Materials and methods 

a. Subjects 

Twenty-four adult participants were tested; Group 1 (5 males and 7 females with 

mean age of 20.50 years, SD= 1.7) and Group 2 (3 males and 9 females with mean age of 

19.16 years, SD= 2.1). Participants were recruited through a publically available newsletter 

published on the Koç University website. The experiment was comprised of eight 50-minute 

(fixed test duration) daily DRL sessions and one 20-minute working memory task given after 

DRL testing. Participants received monetary reward based on their performance in each DRL 

session and fixed monetary compensation for the working memory task. The experiment was 

approved by the Institutional Review Board at Koç University and all participants provided 

written consent prior to testing. 

b. Stimuli and apparatus 

The visual stimulus consisted of a white square on black background. The square 

briefly changed its color to red or green to provide feedback after premature responses (errors) 

and responses emitted after the minimum wait time (correct responses), respectively. The 

display was generated in MATLAB on a Macintosh computer, using the Psychophysics 

Toolbox extension (Brainard, 1997; Pelli, 1997). Responses were collected with a standard 

computer keyboard. 

c. Procedure 

The DRL Task: Each participant was tested with either a 5 or a 10 second DRL schedule over 

eight sessions. In Group 1, participants earned a reward when they hit the space key after the 
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minimum wait time. There was no penalty for responding earlier than this minimum time. In 

Group 2, participants earned a reward upon hitting the space key after the DRL schedule; 

however they were penalized for half of the reward amount if they responded prematurely. 

The only explicit instruction was to press the designated key for the opportunity to earn a 

reward and to try to maximize reward earned. In Group 1, participants were told that it was 

possible for them not to receive a reward upon a key press. In Group 2, participants were told 

that it was possible to earn reward or suffer penalty upon a key press. Participants were not 

provided any other instructions regarding the DRL task rules and parameters. On the contrary 

in the earlier work (Balcı et al., 2011) participants were provided with these critical 

instructions regarding the DRL task rules and parameters. For instance, participants were told 

that they would earn reward for their each response emitted following the minimum wait 

duration since their previous response and that this response would reset the trial clock. They 

were also told that any response prior to the minimum wait duration would reset the trial 

clock without the reward delivery. Participants were also provided with prior experience with 

the critical task parameter prior to DRL testing, namely the minimum withhold duration. 

Specifically, participants were presented with the time interval that was equal to the DRL 

schedule. They were allowed to reproduce this interval for 50 times and received parametric 

feedback regarding the accuracy of each reproduction. This provided prior experience with 

the DRL schedule in the earlier study, which was absent in the current study.  

 As in the earlier work (Balcı et al., 2011) participants were asked not to count. A 

secondary task was used to suppress chronometric counting during the DRL tests. At the 

beginning of each block, participants were presented with a four-digit number and at the end 

of that block a single digit number. Participants were asked whether the four digit number 

presented at the beginning of the block contained the single digit number presented at the end 

of the block. The total reward earned from the DRL task-related responses was multiplied by 
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the proportion correct from the secondary task. Participants were told that the reward earned 

from the primary task was going to be multiplied with the proportion correct in the secondary 

task. Working memory task was the automated version of the operational span task as 

described in (Unsworth, Heitz, Schrock, & Engle, 2005).  

d. Data Analysis: 

Cumulative Weibull distribution functions (with an extra scaling parameter) were fit 

to the inter-response times (IRTs) ordered according to their actual order of occurrence. The 

onset of steady state responding was defined in terms of the response that corresponded to the 

mean value plus three times the standard deviation estimated from the best-fit cumulative 

Weibull distribution. In order to quantify the abruptness of acquisition, the time it took to 

reach from 25% to 75% of the best-fit scaling parameter was calculated. Acquisition of 

steady-state performance by one participant in Group 1 (ID:19) and three participants in 

Group 2 (ID:27, ID:29 and ID:39) exhibited atypical patterns. Specifically, these participants 

tended to respond after the DRL schedule similar to other participants, but they initially 

waited much longer than the optimal IRT and then slowly converged on the optimal value 

gradually by speeding up their responses. Thus, these participants were excluded from the 

acquisition analysis (for these participants the last three sessions were treated as the steady 

state data for the other analyses). Note that participants were excluded only from the 

acquisition analysis and not from the optimality analysis that is described next. 

Steady state IRTs were fit with an exponential inverse-Gaussian mixture function that 

has been previously shown to account for inter-response times in the DRL task (Balcı et al., 

2011). There were atypical response patterns of several participants at the session-level 

during the steady state. Individual sessions with such atypical responses were excluded from 

the analysis for four participants in Group 1 and two participants in Group 2 (participants 
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were not excluded from the analysis). In order to insure that results gathered were not due to 

the exclusion of participants from the acquisition analysis and sessions from the optimality 

analysis we estimated the parameters once more without any exclusions. All of the 

parameters (Speed and Abruptness of acquisition indices, optimal and empirical IRTs, CVs 

(coefficient of variance) and maximum possible expected reward rates) were not significantly 

different from the values obtained without any omissions in either experiments (at alpha 

level .05, not reported).  

 Best-fit mean and shape parameter of the inverse-Gaussian portion of the mixture 

distribution were used to calculate the optimal strategy for the corresponding participant. 

Mann–Whitney U tests were used for the comparison of the acquisition indices (i.e. rapidness 

and abruptness), IRTs, and CVs between experiments and schedules within each experiment. 

Wilcoxon signed ranks test was used for all other analysis. Results based on t-test 

comparisons revealed the same results (not reported). Alpha level of .05 was used as the 

significance level in all analyses. 

2. Results 

e. Acquisition 

Acquisition of the DRL responding was characterized first, which was particularly 

relevant given the lack of instructions and multiple session testing in the experiment. To that 

end, two different measures of acquisition; rapidness and abruptness of the acquisition of 

optimal/steady state IRTs was calculated. 

(i) Rapidness (speed) of acquisition: 

 Average onset of steady state occurred around the 19th (SEM=5.87, median 18.90, 

IQR=33.00) minute of Group 1 (with no penalty for errors) and 6th (SEM=2.86, median 0.60, 
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IQR=14.30) minute of Group 2 (with penalty for errors) and this difference was statistically 

significant, (Z=2.17, p<.05). Rapidness of acquisition did not differ between the DRL 

schedules (5 and 10 seconds) in either Group 1(Z=1.28, p=.25) or Group 2 (Z=.98, p=.41). 

There was a significant negative correlation between working memory span and onset of 

steady state in Group 1, r(9)=-.59, p<.05. Although, in the same direction this relation was 

not significant in Group 2, r(7)=-.11, p=.38. 

(ii) Abruptness of acquisition 

 The mean abruptness index normalized by the schedule was 14.28 (SEM=6.39, 

median 4.54, IQR=13.70) in Group 1 while it was 8.32 (SEM=3.99, median=2.21, 

IQR=15.11) in Group 2. This difference between two groups was not significant (Z=.65, 

p=.52). There was no significant correlation between working memory span and abruptness 

in either Group 1, r(11)=-.33, p<.16  or Group 2, r(9)=.05, p=.45.  

f. Steady State Responding: 

IRTs after acquisition (Mean+3×SD) were evaluated for possible trend towards 

slowing or speeding. In both Group 1 and Group 2, the group average slope of the linear 

regression fits to post-acquisition data points were 0.00 (SEM=0.00, median 0.00, IQR=0.00) 

suggesting that IRTs remained very steady after the acquisition took place. An exponential-

inverse Gaussian mixture distribution function was fit to steady state IRTs in Group 1 (mean 

omega squared =.91, SEM=.03, median=.95, IQR=.09) and in Group 2 (mean omega squared 

=.91, SEM=.02, median=.94, IQR=.08). When an exponential-Gaussian mixture distribution 

function was fit to the same dataset, the omega squared values decreased to (mean=.88, 

SEM=.03, median=.93, IQR=.11) and (mean=.85, SEM=.03, median=.88, IQR=.09) for 

Group 1 and Group 2, respectively. Wilcoxon signed ranks test showed that this difference 

was significant for Group 1 Z= 2.90, p<.01 and Group 2 Z=3.06, p<.01. 
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g. Optimality Analysis: 

The optimality analysis of steady state responding in both experiments showed that 

participants aimed for the optimal IRT that was parameterized by the payoff structure and 

participants’ timing uncertainty level. Figure 2A and 2B depict the performance of each 

participant tested with 5 or 10 second schedules in Group 1 and Group 2, respectively. These 

figures show the heat map of the expected reward rates (for normalized DRL schedules) 

expressed over a parameter space composed of target IRT and the level of timing uncertainty 

(CV). Ridges of these two “surfaces” are indicated by the black curves, namely the optimal 

performance curves for the DRL task with two different payoff structures. Optimal 

performance curves indicate how long participants should aim to wait for (normalized by 

DRL schedule) before responding again given their level of timing uncertainty and payoff 

structure.  

Participants earnings compared to how much they could maximally earn given these 

endogenous and exogenous parameters was calculated. In Group 1, participants achieved 99.1% 

(SEM=.41%, median=99.8%, IQR=1.26%) of the maximum possible expected reward rate 

for their level of timing uncertainty. In Group 2, this value was 98.6% (SEM=.62%, 

median=99.7%, IQR=1.95%). An analysis adopting a more conservative approach was also 

conducted. This analysis consisted of dividing the difference between the empirical expected 

reward rate and the expected reward rate if targeting the schedule (ER( t̂ )-ER(T)) by the 

difference between the maximum possible reward rate  and empirical expected reward rate if 

targeting the schedule (ER( t̂o
)-ER(T), where t̂o

 is the optimal IRT). The average of this 

conservative estimate of proportion of the maximum possible reward rate was 97.9% 

(SEM=.95%, median= 99.5%, IQR=3.62%) in Group 1 and 98.0% (SEM=.86%, 

median=99.6%, IQR=2.74%) in Group 2. The proportions of maximum expected reward 

rates gathered without excluding the sessions with atypical response patterns were nearly 
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identical to the values reported above (means ranging between 97.8%-99.1% and medians 

ranging between 99.2%-99.7%). Briefly, participants nearly maximized their rewards in both 

experiments. Participant’s reward rates were significantly higher than the reward rates they 

would attain if their mean IRT was equal to the DRL schedule (if they were targeting the 

DRL schedule) in Group 1 (Z =3.06, p<0.01) and in Group 2 (Z=3.06, p<.01). There was no 

significant difference between the two schedules in terms of the percentage of maximum 

expected reward rate attained in either Group 1 or 2; (Z=.80, p=.48) and (Z=1.44, p=.18), 

respectively. Note that this comparison was conducted after normalization by the 

corresponding DRL schedule.  



Figure 1. Heat map of expected reward rates for Group 1 (A) 
DRL schedule. Curves denote the ridge of these surfaces indicating the optimal normalized 
target IRTs for different levels of timing uncertainty for no penalty (A) and penalty (B) 
conditions separately. Each data point corres
corresponds to a different schedule. Note that empirical IRTs were normalized by the 
corresponding DRL schedule. Short Schedule: 5s; Long Schedule: 10s.

 Empirical normalized IRTs of the participants were compared with the corresponding 

optimal normalized IRTs using Wilcoxon signed rank test; there were no significant 

differences between empirical and optimal values in either Group 1 (

15 

Heat map of expected reward rates for Group 1 (A) and Group 2 (B) for normalized 
DRL schedule. Curves denote the ridge of these surfaces indicating the optimal normalized 
target IRTs for different levels of timing uncertainty for no penalty (A) and penalty (B) 
conditions separately. Each data point corresponds to a participant and each symbol 
corresponds to a different schedule. Note that empirical IRTs were normalized by the 
corresponding DRL schedule. Short Schedule: 5s; Long Schedule: 10s. 

mpirical normalized IRTs of the participants were compared with the corresponding 

optimal normalized IRTs using Wilcoxon signed rank test; there were no significant 

differences between empirical and optimal values in either Group 1 (Z=.86, p=.39) or Group 

 

and Group 2 (B) for normalized 
DRL schedule. Curves denote the ridge of these surfaces indicating the optimal normalized 
target IRTs for different levels of timing uncertainty for no penalty (A) and penalty (B) 

ponds to a participant and each symbol 
corresponds to a different schedule. Note that empirical IRTs were normalized by the 

mpirical normalized IRTs of the participants were compared with the corresponding 

optimal normalized IRTs using Wilcoxon signed rank test; there were no significant 

=.39) or Group 



16 
 

2 (Z=.71, p=.48). Normalized empirical IRTs in Group 2 were significantly longer than the 

normalized IRTs in Group 1 (Z=2.80, p<.005). Coefficient of variations obtained in Group 2 

were significantly higher than the CVs obtained in Group 1 (Z=2.28, p<.05).  

Deming regression fits revealed a significant relation between the optimal and 

empirical IRTs for both Group 1 (Figure 3A) and Group 2 (Figure 3B): F(1,10)= 188.4, 

p<.001, Slope =1.34 in Group 1 and F(1,10)=61.46, p<.001, Slope=1.77 in Group 2. When 

we excluded the participant that had empirical IRT longer than two standard deviations from 

the mean in Group 2, the slope decreased to 1.38, F(9)=75.74, p<.001. Note that best-fit 

regression lines crossed over the identity line in both Groups. This observation suggests that 

participants had a tendency to respond earlier than the optimal when the optimal IRT was 

closer to the DRL schedule and later than the optimal when the optimal IRT was farther from 

the DRL schedule. This pattern suggests an over-adjustment of IRTs in relation to the level of 

timing uncertainty. These small biases however resulted in only negligible costs in terms of 

the reward rate attained. 

 

 



 

Figure 2. Deming regression fits to empirical and optimal IRTs in Group 1 (A) and Group 2 
(B). Data from Group 2 were fit twice: 1
based on mean -/+ two standard deviation exclusion rule

3. Discussion 

This study aimed to expand the scope of temporal decision

addressing novel questions to bridge the gap between interval timing and decision

fields. To that end, temporal risk assessment performance of human participants in the DRL 

task with two different schedules (5 and 10 seconds) and payoff structures (i.e., penalty vs. no 

penalty for premature responses)

optimality based on the statistical decision theory. 

The results indicated that 

account of their endogenous timing uncertainty even when instructions regarding the task 

rules were absent, when the exact minimum wait time itself was never experienced, and when 

premature responses were explicitly penalized.  Observed performance was comparable, if 

not closer to optimality when compared with earlier single
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Deming regression fits to empirical and optimal IRTs in Group 1 (A) and Group 2 
(B). Data from Group 2 were fit twice: 1- full data set and 2- after removing one participant 

/+ two standard deviation exclusion rule. 

med to expand the scope of temporal decision-making research by 

addressing novel questions to bridge the gap between interval timing and decision

fields. To that end, temporal risk assessment performance of human participants in the DRL 

o different schedules (5 and 10 seconds) and payoff structures (i.e., penalty vs. no 

penalty for premature responses) was investigated and evaluated it within the framework of 

optimality based on the statistical decision theory.  

 humans can maximize reward rate by taking normative 

account of their endogenous timing uncertainty even when instructions regarding the task 

rules were absent, when the exact minimum wait time itself was never experienced, and when 

e explicitly penalized.  Observed performance was comparable, if 

not closer to optimality when compared with earlier single-session DRL experiments with 

 

Deming regression fits to empirical and optimal IRTs in Group 1 (A) and Group 2 
after removing one participant 

making research by 

addressing novel questions to bridge the gap between interval timing and decision-making 

fields. To that end, temporal risk assessment performance of human participants in the DRL 

o different schedules (5 and 10 seconds) and payoff structures (i.e., penalty vs. no 

and evaluated it within the framework of 

humans can maximize reward rate by taking normative 

account of their endogenous timing uncertainty even when instructions regarding the task 

rules were absent, when the exact minimum wait time itself was never experienced, and when 

e explicitly penalized.  Observed performance was comparable, if 

session DRL experiments with 
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instructions, prior experience of the minimum wait-time, and no penalty for errors (Balcı et 

al., 2011). Overall, the findings corroborated optimal (reward maximizing) performance of 

human and/or non-human animals in other timing tasks where time was an explicit 

component of the decisions; switch task (Balcı, Freestone, et al., 2009; Kheifets & Gallistel, 

2012), temporal bisection task (Çoşkun, Sayali Ungerer, Emine, & Balci, In press 2014), 

beat-the-clock task (Simen et al., 2011), temporal reproduction (Jazayeri & Shadlen, 2010), 

and motor timing (Landy, Trommershäuser, & Daw, 2012). Different from these discrete-trial 

tasks however, the experiment demonstrated the optimality of temporal decisions when the 

task rules imposed a trade-off between the “speed” (i.e., response time) and accuracy (i.e., 

probability of reward) of temporal decisions, a relation that has been shown to adaptively 

guide decisions in other free-response non-temporal tasks (e.g., (Balcı et al., 2011)). Thus, 

findings also expanded the scope of optimal speed-accuracy tradeoffs to the domain of 

interval timing and temporal decision-making. 

Acquisition of the optimal DRL responding in the absence of instructions occurred 

early during training (mostly within the first session) in an abrupt fashion. This constituted 

one of the fundamental differences from the DRL acquisition pattern of rats, which is 

typically gradual. After the acquisition took place (as captured by cumulative Weibull fits), 

the performance was very steady and nearly optimal given the DRL schedule, payoffs, and 

level of participants’ timing uncertainty. These findings support a model-based guidance of 

human timed behavior in the DRL task and constitute a challenge for gradual reinforcement 

learning-based accounts of performance (see also (Simen et al., 2011)).  

Earlier acquisition of timed responding when participants suffered monetary penalty 

(penalty>0) for premature responding was expected as this penalty would locally/transiently 

or globally motivate longer wait-times, which would presumably facilitate the acquisition of 

the DRL task. This is exactly what was observed; participants learned the optimal wait-time 
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earlier in the second experiment (penalty>0) compared to the first experiment (penalty=0). It 

is of interest to examine if similar manipulations (e.g., in the form of time-out period for 

premature responses) would lead to same findings in non-human animals. There were no 

differences between schedules in terms of the rapidness of the acquisition of DRL responding, 

which does not corroborate the view that acquisition scales with the degree of temporal 

uncertainty (for review see (Gallistel & Gibbon, 2000)). This discrepancy can be attributed to 

the peculiar features of the DRL task such as the acquisition of response inhibition and the 

absence of discrete timing cues. 

Since the acquisition of task representation depended on experienced response-

outcome contingencies, higher working memory capacity was expected to facilitate the 

acquisition of optimal/steady state responding. This expectation was confirmed by Group 1; 

participants with higher working memory span acquired time response inhibition earlier. 

However, this relation did not hold for Group 2. It is possible that differences in the effect of 

penalty on acquisition (e.g., due to differential penalty processing) masked the effect of 

working memory span on the same measure in Group 2. It is also possible that the sample 

size was adequate for the timing study but not for the working memory task. Future studies 

can use larger sample sizes to investigate this relation. 

Different from steady state performance in non-human animals, human participants 

exhibited lower proportion of untimed responses despite the purely experiential nature of the 

current experiments. These responses are typically emitted very shortly after the previous 

response. Balcı et al (Balcı et al., 2011) argued that non-timed responses might help agents 

detect beneficial alterations in environmental statistics (e.g., shift to a shorter DRL schedule). 

This would constitute a long-term adaptive strategy in unstable environments particularly 

given the minimal time cost exerted by these responses (Wearden & Culpin, 1998). The 

difference between rats and humans in terms of the frequency of non-timed responses might 
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be related to their different expectations regarding the stability of the environmental 

conditions. Humans might be less willing to explore possible changes in the schedule based 

on their prior belief that task parameter values remain stable throughout the experiment. On 

the other hand, environmental statistics are less stable in nature, and for non-human animals 

and smaller organisms. Alternatively, these results can be explained by the superior inhibitory 

control of humans compared to the rats. These issues can be addressed empirically with 

experiments in which the DRL schedule (minimum wait-time for reward) unpredictably 

shortens and lengthens without signaling.  

The current study has a number of methodological advantages over the previous 

studies with instructions and prior experience of the DRL schedule. Acquiring the task 

relevant parameters purely based on experienced response-outcome contingencies with no 

instructions or experience of task parameters minimizes the likelihood of adopting task-

related top-down auxiliary processes (at least early in training). Investigations of optimal 

temporal decision-making often consider steady state performance. Our methodological 

approach on the other hand also allowed the characterization of acquisition of timed response 

inhibition in relation to optimality. Finally, lack of instructions minimized the gap between 

the human and non-human animal versions of the task, increasing the interspecies 

generalizability of the conclusions and emphasizing the translational nature of temporal risk-

assessment. 

Optimal performance under uncertainty appears to be a common feature of human and 

animal time-based decision-making (Balcı et al., 2011). This is not surprising as time is a 

determinant of the amount of reward earned in many biologically critical situations humans 

and non-human animals have faced in their evolutionary history. Given that interval timing is 

a primitive and fundamental function observed in many different species with similar 

psychophysical properties, its noise characteristics might have indeed been well-integrated 
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into decision-making mechanisms over the course of evolution. In other words, the nervous 

system of many vertebrates might be pre-wired to parametrically convert the endogenous 

timing noise into an adaptive bias signal during decision-making when reward maximization 

requires it.  

DRL task’s usefulness in psychopharmacology and its ability to characterize 

impulsive behavior have attracted the attention of behavioral neuroscientists. The most 

prominent neuroanatomical target of these studies had been the limbic system, which has 

been also shown to be important region for timing (Balcı, Meck, et al., 2009; Bannerman et 

al., 1999; Cho & Jeantet, 2010; Costa et al., 2005; MacDonald et al., 2011; Meck, 1988; 

Meck et al., 1984; Pellegrino & Clapp, 1971; Yin & Troger, 2011; Young & McNaughton, 

2000). For instance, hippocampus (Bannerman et al., 1999; Cho & Jeantet, 2010; Costa et al., 

2005; Pellegrino & Clapp, 1971; Young & McNaughton, 2000) and amygdala (Pellegrino & 

Clapp, 1971) lesions have been shown to result in clear impairments of DRL performance in 

the form of increased responses per reinforcer. Unfortunately, many of these reports did not 

present the complete response curves, which does not enable the characterization of observed 

deficiencies differentially as being due to an increase in frequency of non-timed responses 

(Exponential portion of our mixture model) or due to a leftward shift of the timed response 

curve (Inverse-Gaussian portion of our mixture model) or both.  

Few studies that presented the response curves revealed that lesions of dentrate gyrus, 

a subregion of hippocampal formation (Costa et al., 2005) resulted in a leftward shift in the 

timed portion of the response curve. Bilateral hippocampus lesions showed similar effects but 

they also increased the frequency non-timed responding (see Figure 3 in (Cho & Jeantet, 

2010)). The leftward shift in IRT curves is consistent with the assumed role of hippocampus 

in timing accuracy (Balcı, Meck, et al., 2009; Meck et al., 1984; Yin & Troger, 2011). For 

instance, hippocampal lesions have been observed to result in leftward shifts in bisection 



22 
 

curves (Meck et al., 1984) and peak response curves (Balcı, Meck, et al., 2009; Meck, 1988; 

Meck et al., 1984). Single cell recordings in DRL (Young & McNaughton, 2000) and other 

tasks with time gaps (MacDonald et al., 2011) also revealed time-dependent activity of 

hippocampal cells. For instance, a subgroup of hippocampal cells gradually decreased their 

firing rate over the course of the trial until the emission of the response and went back to 

basal levels after responding in the DRL task (Young & McNaughton, 2000).  

On the other hand, the effect of hippocampal lesions on DRL performance might not 

be due to its effects on timing processes itself but primarily due to its disruption of inhibitory 

control over timed anticipatory responding. To that end hippocampus might affect DRL 

responding by modulating nucleus accumbens (NAc) activity via gating its cortical inputs 

(O'Donell, Greene, Pabello, Lewis, & Grace, 1999). Based on previous studies, NAc core and 

its target structures indeed appear as possibly crucial structures in timed response inhibition. 

For instance, lesions of NAc core but not NAc shell cause a leftward shift in DRL response 

curve, which become more apparent with longer DRL schedules (Pothuizen, Jongen‐Rêlo, 

Feldon, & Yee, 2005). Biological and pharmacological manipulations of downstream regions 

of NAc core, such as blocking the NAc core-ventral pallidum (VP) GABAergic pathway 

(Wheeler, 2009) and lesions of subthalamic nucleus (STN) (Uslaner & Robinson, 2006) also 

impair DRL performance. The effect of other downstream regions on DRL performance is 

not well investigated but entopeduncular nucleus’ (or GPi in humans) inhibitory role on 

action (and increase in premature responses with its inactivation) has been shown using 

lesions and inactivation methods (Baunez & Gubellini, 2010).  

Excitatory and inhibitory connections between these basal ganglia structures and their 

effect on thalamus activity suggest that NAc core might modulate the output/manifestation of 

dorsal striatal temporal processing at multiple levels (Buhusi & Meck, 2005; Meck, 2005) 

(GPi/SNr and STN). Prefrontal inputs (e.g., anterior cingulate cortex, dorsal agranular insular 
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areas, prelimbic cortex) to Nac core (Dalley, Cardinal, & Robbins, 2004; Pennartz, Ito, 

Verschure, Battaglia, & Robbins, 2011) are on the other hand potential candidates as the 

source of adaptive bias signal and its parameterization by timing uncertainty. Future 

neuroimaging studies can provide clues regarding the precise role of this network in adaptive 

timed response inhibition. 

In summary, the results provided strong evidence for optimal temporal risk 

assessment performance of humans in a task that imposed a trade-off between the “speed” 

and “accuracy” of timed responses. This work further extended the scope of optimal temporal 

risk assessment performance to those conditions in which errors (i.e., premature responses) 

were penalized. These findings overall pointed at the robustness of reward maximization in 

the context of temporal decision-making. Importantly, optimal performance was observed in 

the absence of instructions and pre-training with task parameters, and purely based on 

experienced response-outcome contingencies constituting a better analogue of animal studies. 

Acquisition of optimal performance was rapid and abrupt; speed of acquisition was further 

facilitated by penalizing errors and higher working memory span. Future studies can 

investigate the neural correlates of timed response inhibition and its interaction with timing 

uncertainty focusing on the afferent and efferent projections of ventral striatum.  
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STUDY 2: 

1. Materials and methods 

a. Subjects 

Eighty-seven adult participants were tested and 75 of these participants had lowered 

schedule on their fourth session. Participants were recruited through a publically available 

newsletter published on the Koç University website. The experiment was comprised of four 

50-minute (fixed test duration) daily DRL sessions. Participants received monetary reward 

based on their performance in each DRL. The experiment was approved by the Institutional 

Review Board at Koç University and all participants provided written consent prior to testing. 

b. Measures 

The following questionnaires were completed by participants. 

i. State-Trait Anxiety Inventory-Trait Form (STAI-T), an anxiety questionnaire that 

measures the dispositional anxiety independent from the transient daily conditions 

(Spielberger, Gorsuch, & Lushene, 1970). Item structure of the questionnaire was 

maintained in the Turkish version (Öner & Le Compte, 1985). 

ii. BIS/BAS Scale, a questionnaire that measures the behavioral inhibition system, 

and behavioral approach system that underlies avoidance and approach behaviors 

(Carver & White, 1994; Gray, 1981, 1982). The factor structure of the scale and 

the drive, reward and fun seeking subscales of BAS was preserved in the Turkish 

version (Şişman, 2012). 

iii. Barratt Impulsiveness Scale-11 (BIS-11), a widely used impulsiveness scale that 

is validated in many different clinical populations (Patton et al., 1995; Stanford et 

al., 2009). The factor structure of attentional impulsivity, motor impulsivity, and 
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non-planning impulsivity was preserved in the Turkish version (Güleç et al., 

2008). 

iv. Padua-R Inventory (PI-R), an OCD symptom questionnaire that was initially 

created with 60 items (Sanavio, 1988) but later revised to a shorter, 41-item, form 

(Oppen, Heokstra, & Emmelkamp, 1995). Turkish version uses the shorter form 

with impulses, washing, checking, rumination, and precision subscales, albeit with 

few item differences (Beşiroğlu et al., 2005). 

c. Stimuli and apparatus 

The visual stimulus consisted of a white square on black background. The square 

briefly changed its color to red or green to provide feedback after premature responses (errors) 

and responses emitted after the minimum wait time (correct responses), respectively. The 

display was generated in MATLAB on a Macintosh computer, using the Psychophysics 

Toolbox extension (Brainard, 1997; Pelli, 1997). Responses were collected with a standard 

computer keyboard. 

d. Procedure 

The DRL Task: Participants were tested with 11.2 second DRL schedule over three sessions 

and 5.6 second schedule for the final fourth session. Participants earned a reward upon hitting 

the space key after the DRL schedule; however they were penalized for the reward amount if 

they responded prematurely. There were no further changes from the procedure of the first 

study. 
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e. Data Analysis: 

%3.5 of the data from the personality questionnaires was missing. These missing values 

were replaced by the values obtained by using regularized expected maximization imputation 

method (Schneider, 2001). 

Cumulative Weibull distribution functions (with an extra scaling parameter) were fit to 

the inter-response times (IRTs) ordered according to their actual order of occurrence similarly 

to the Study 1. But unlike the Study 1; steady state responding was defined as the start of the 

second session to minimize the effect of the atypical patterns in the first session. Nevertheless, 

the acquisition parameters were calculated using Cumulative Weibull fits. Dynamic range is 

calculated as the points between 10% and 90% of the best-fit scaling parameter. Abruptness 

is quantified as the dynamic range (Gallistel, Fairhurst, & Balsam, 2004). This measure of 

abruptness was normalized with the schedule (11.20) to be able to compare it with the 

abruptness in the acquisition of the fourth session. Onset of acquisition is calculated as the 

total duration between the beginning of the session and the start of dynamic range, while 

rapidness of acquisition is calculated as the total duration passed to reach end of the dynamic 

range. Figure 3A depicts an exemplar acquisition pattern, with significant variables shown. 

Acquisition of steady-state performance by one participant in Group 1 (ID:118) exhibited 

atypical patterns, this participant was removed from the acquisition analysis. 

Change point algorithm was used to characterize acquisition of the task contingency in 

the fourth session (Gallistel et al., 2004). The data from the first three sessions and the data 

from the fourth session was pooled and fed into the change point algorithm. First change 

point in the fourth session with the rate smaller than the mean rate of the steady state was set 

as the onset of learning. The average rate following the onset of learning was considered as 

the asymptote. For the calculations of abruptness, asymptote was first subtracted from the 

mean of steady state in the first step (referred to as the Difference). In the second step, the  
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Figure 3: Acquisition (A) and Steady State (B) of an exemplar participant in the first three 
sessions obtained by fitting cumulative Weibull function. Red curves denote the best fitting 

cumulative Weibull function (A) and best fitting exponential inverse-Gaussian mixture 
distribution (B). 

 

A
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first change point smaller than steady state mean- %10*Difference was set as the start of the 

Dynamic range and the first change point smaller than the steady state mean-

 %90*Difference was set as the end of the dynamic range. Abruptness was calculated as the 

duration of the dynamic range and it was normalized by dividing it to the schedule of the 

fourth session (5.6). Trials following the end of the dynamic range were set as the fourth 

session steady state performance. Total duration from the start of the fourth session to the 

start of the dynamic range is set as the onset of acquisition and the duration to reach end of 

dynamic range is set as the rapidness of acquisition. Figure 4A depicts an exemplar 

acquisition pattern with the parameters mentioned above. Six participants were removed from 

the acquisition and steady state analysis of fourth session, because they were not able to learn 

task contingency (ID: 48, 59, 89, 95, 100, 121). One participant (ID:101) was removed from 

all analysis based on his/her highly atypical response patterns that can be only explained by 

counting.  

Steady state IRTs were fit with an exponential inverse-Gaussian mixture function that 

has been previously shown to account for inter-response times in the DRL task (Balcı et al., 

2011). Best-fit mean and shape parameter of the inverse-Gaussian portion of the mixture 

distribution were used to calculate the optimal strategy for the corresponding participant. 

Figures 3B and 4B depict the representative steady state histograms with the best fitting 

exponential inverse-Gaussian mixture function. Difference from optimal IRT measure was 

created by subtracting participants average IRTs in the steady state from their optimal IRTs. 

Values farther away from zero signified that participants were moving away from optimality; 

negative values pointing speed bias while positive values pointing an accuracy bias. Finally 

perceived penalty measure was created by finding the penalty/reward ratio that would make 

the participants’ steady state IRTs equal to the optimal IRT with their current timing 

uncertainty. 
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Robust regression with iteratively reweighted least squares with a bisquare weighting 

function was used for the analysis of the relationship between personality traits and task  

 

Figure 4: Acquisition (A) and Steady State (B) of an exemplar participant in the first three 
sessions obtained with change point algorithm. Red lines denote the average rates calculated 

between the change points in Figure 4A. Red curve in figure 4B denotes the best fitting 
exponential inverse-Gaussian mixture distribution. 

A
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parameters. The main motivation behind using robust regression was sensitivity of least 

square derivation methods to outliers and heteroscedasticity. Robust regression analysis for 

the percentage of maximum expected reward rate were also done by grouping participants 

according to bias type (speed or accuracy) to reveal any hidden associations.  

2. Results 

a. Questionnaires 

Personality questionnaires were found to be highly correlated with each other. 

Correlations between the questionnaires and their subscales can be found in Table 1. 

b. Acquisition 

Acquisition of the DRL responding was characterized for both first three sessions and 

fourth session. Rapidness and abruptness of the acquisition of optimal/steady state IRTs were 

calculated. 

(i) Rapidness (speed) of acquisition: 

 Average onset of steady state occurred around the 8th (SEM=1.18, median 3.66, 

IQR=8.15) minute in the first three sessions and 8th minute (SEM=1.19, median 4.28, 

IQR=12.30) in the fourth session. This difference was not statistically significant; t(67)=-.91, 

p=.36. There was no significant association between the personality trait scores and rapidness 

of acquisition in the first three sessions. In the fourth session, participants with higher scores 

in reward subscale of BAS had earlier onset of acquisition while participants with higher 

precision (counting) scores had later onset. Rapidness of acquisition on the fourth session was 
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Table 1. Correlation matrix for personality variables 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Trait Anxiety 
                

2 Behavioral Inhibition .610** 
               

3 Drive (BAS) .054 .132 
              

4 Fun Seeking (BAS) .238* .278** .452** 
             

5 Reward (BAS) .246* .451** .497** .621** 
            

6 BAS Total .217* .347** .792** .831** .855** 
           

7 Barratt .570** .466** .126 .490** .346** .387** 
          

8 Attentional (Barratt) .474** .345** .166 .570** .314** .421** .832** 
         

9 Motor (Barratt) .332** .197 .306** .537** .428** .513** .728** .639** 
        

10 Non-planning (Barratt) .569** .494** -.034 .338** .224* .211 .858** .632** .461** 
       

11 Padua .478** 0.20246 -.079 0.10911 -.029 .000 0.17673 0.18182 .041 .074 
      

12 Rumination (PI) .667** .335** -.258* 0.15749 -.055 -.078 .378** .334** .107 .363** .814** 
     

13 Washing (PI) 0.20945 .072 .007 .092 .071 0.07365 -.027 -.022 -.037 -.142 .765** .425** 
    

14 Checking (PI) .381** .134 -.031 .065 -.007 .012 .081 .113 .002 -.016 .890** .683** .591** 
   

15 Impulses (PI) .282** .142 .001 .102 -.113 .006 .154 .232* .033 .058 .648** .468** .430** .434** 
  

16 Precision Counting (PI) -0.0109 -.140 .107 -.014 -.050 .030 .067 .088 0.20955 -.139 .470** .194 .255* .419** .435** 
 

17 Precision Repeating (PI) 0.15701 .028 .102 -.041 -.044 .018 -.035 -.072 -.047 -.062 .649** .350** .441** .592** .331** .448** 

Note:n = 87, * p < .05, **p < .01 
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negatively associated with both total BAS score and reward subscale of BAS, while it was 

positively associated with the impulses subscale of PI (Table 2).  

Table 2. Simple robust linear regression analysis for the fourth session 

Dependent Variable Predictor 
Unstandardized 
Coefficents (B) 

Std. 
Error 

t p r^2 

Difference from Optimal 
IRT 

Padua Total Score 0.0022 0.0011 2.0422 0.0451 0.0883 

CV 
Behavioral 
Inhibition 

0.0061 0.0026 2.3334 0.0227 0.0876 

Onset of Acquisition Reward -0.4704 0.2264 
-

2.0781 
0.0416 0.0934 

Onset of Acquisition 
Precision 

(Counting) 
0.4058 0.1962 2.0686 0.0425 0.0982 

Rapidness of Acquisition 
Behavioral 
Activation 

-0.5781 0.2058 
-

2.8095 
0.0065 0.1476 

Rapidness of Acquisition Reward -1.3515 0.5261 
-

2.5689 
0.0125 0.1236 

Rapidness of Acquisition Impulses 0.7812 0.2014 3.8793 0.0002 0.2407 

 

(ii) Abruptness of acquisition 

 The mean normalized abruptness index calculated was 0.42 (SEM=0.07, median 0.22, 

IQR=.40) in the first three sessions while it was 0.77 (SEM=0.15, median 0.06, IQR=1.08) in 

fourth session. Normalized abruptness index was significantly lower in the first three sessions 

compared to the fourth session; t(67)=2.09, p=.04. There was a negative association between 

fun seeking subscale of BAS scale and normalized abruptness index in the first three sessions 

(Table 3). There was no significant predictor of abruptness in the fourth session. 

c. Steady State Responding: 

Trend for slowing or speeding in the steady state IRTs was evaluated. Average slope 

of the linear regression fits to post-acquisition data points were 0.00 (SEM=0.00, median 0.00, 

IQR=0.01) in both first three sessions and fourth session suggesting that IRTs remained  
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Table 3. Simple robust linear regression analysis for the first three sessions 

Dependent Variable Predictor 
Unstandardized 
Coefficents (B) 

Std. Error t p r^2 

PMERR Behavioral Inhibition 0.0026 0.0011 2.3452 0.0214 0.0699 

PMERR Padua Total Score 0.0005 0.0002 2.5664 0.0120 0.0806 

PMERR Rumination 0.0012 0.0006 2.1715 0.0327 0.0591 

PMERR Impulses 0.0033 0.0010 3.2196 0.0018 0.1305 

Expected Reward Rate Checking 0.0004 0.0001 2.9805 0.0038 0.0956 

Perceived Penalty Behavioral Inhibition 0.0579 0.0254 2.2746 0.0255 0.0629 

Perceived Penalty Barratt 0.0143 0.0065 2.1950 0.0310 0.0587 

Perceived Penalty Non-planning 0.0315 0.0141 2.2233 0.0289 0.0610 

Perceived Penalty Padua Total Score 0.0096 0.0043 2.2208 0.0291 0.0606 

Perceived Penalty Impulses 0.0728 0.0287 2.5402 0.0129 0.0899 

Perceived Penalty Trait Anxiety 0.0258 0.0126 2.0540 0.0431 0.0521 

Perceived Penalty Rumination 0.0272 0.0123 2.2129 0.0296 0.0601 

Perceived Penalty Washing 0.0304 0.0148 2.0548 0.0430 0.0524 

Difference from Optimal IRT Trait Anxiety 0.0043 0.0019 2.3013 0.0239 0.0608 

Difference from Optimal IRT Padua Total Score 0.0017 0.0006 2.6547 0.0095 0.0792 

Difference from Optimal IRT Rumination 0.0046 0.0018 2.5285 0.0133 0.0726 

Difference from Optimal IRT Impulses 0.0106 0.0040 2.6542 0.0095 0.0790 

Difference from Optimal IRT Washing 0.0058 0.0022 2.5871 0.0114 0.0751 

Abruptness Index Fun Seeking -0.0333 0.0125 -2.6678 0.0092 0.1080 

CV Behavioral Inhibition 0.0056 0.0027 2.0793 0.0406 0.0490 

CV Non-planning 0.0029 0.0015 2.0058 0.0481 0.0457 

Empirical IRT Behavioral Inhibition 0.0175 0.0071 2.4676 0.0156 0.0678 

Empirical IRT Impulses 0.0214 0.0075 2.8666 0.0052 0.0894 

 

steady after the acquisition took place. An exponential-inverse Gaussian mixture distribution 

function was fit to steady state IRTs of the first three sessions and the fourth session. 

Bayesian Information Criteria (BIS) was calculated to assess goodness of fit. Average BIS 

value for the exponential-inverse Gaussian mixture distributions in the first three sessions 

was 2053 (SEM=22.50) while it was 1170 (SEM=43.80) for the fourth session. When an 

exponential-Gaussian mixture distribution function was fit to the same dataset instead, the 

average BIS values increased to 2152 (SEM=24.43) in the first three sessions and to 1224 

(SEM=46.14) in the fourth session. Exponential-inverse Gaussian mixture distribution was 

preferred in both cases because of the lower BIS values. 
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d. Optimality Analysis: 

The optimality analysis of steady state responding in both experiments showed that 

participants aimed for the optimal IRT that was parameterized by the payoff structure and 

participants’ timing uncertainty. Figure 5A and 5B depict the performance of each participant 

tested in first three sessions and the fourth session, respectively. These figures show the heat 

map of the expected reward rates (for normalized DRL schedules) expressed over a 

parameter space composed of target IRT and the level of timing uncertainty (CV). Ridges of 

these two “surfaces” are indicated by the black curves, namely the optimal performance 

curves for the DRL task with two different payoff structures. Optimal performance curves 

indicate how long participants should aim to wait for (normalized by DRL schedule) before 

responding again given their level of timing uncertainty and payoff structure. 

We calculated how much participants earned compared to how much they could 

maximally earn given these endogenous and exogenous parameters. In the first three sessions, 

participants achieved 95.2% (SEM=.8%, median=98.1%, IQR=6.3%) of the maximum 

possible expected reward rate for their level of timing uncertainty. In fourth session, this 

value was 93.6% (SEM=1.1%, median=96.1%, IQR=8.4%). Conservative approach used in 

the Study 1 was not applicable for this study because the high penalty ensured that 

responding at the schedule would mean negative reward rates. Briefly, participants nearly 

maximized their rewards in both conditions and there was no difference between the 

percentage of maximum possible expected reward rate; t(67)=1.30, p=0.20. In the first three 

sessions, there was a significant positive association between the checking subscale of the PI 

and expected reward rate (Table 3). BIS score, total PI score, impulses and rumination 

subscales of PI had positive association with the percentage of maximum possible expected 

reward rate (PMERR) (Table 3, Figure 6). None of the personality scores were associated 

with the optimality related parameters in the fourth session. When the participants were  
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Figure 5: Heat map of expected reward rates for the first three sessions (A) and the fourth 
session (B) for normalized DRL schedule. Curves denote the ridge of these surfaces 

indicating the optimal normalized target IRTs for different levels of timing uncertainty. Each 
data point corresponds to a participant. 

 

A

B
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grouped according to their bias type, only the participants with speed bias showed significant 

associations between questionnaire scores and PMERR. Increases in trait anxiety, total PI 

score, washing, impulses, precision (repeating) subscales of PI produced increases in PMERR 

in the speed bias group (Table 4, Figure 7). 

 

Figure 6: Graphs of significant simple linear robust regression analysis between different 
personality traits and percentage of maximum expected reward rate (PMERR) in the first 
three sessions. PMERR is calculated for each participant by finding their expected reward 
rates using the parameters obtained from their exponential inverse-Gaussian mixture 
distribution of steady state IRTs and dividing it to the maximum possible expected reward 
rate at the level of that participants timing uncertainty (CV). 
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Figure 7: Graphs of significant simple linear robust regression analysis between different 
personality traits and percentage of maximum expected reward rate (PMERR) grouped by 
participants’ bias type in the first three sessions. Speed bias is defined as having lower 
average steady state IRT than the optimal IRT, while accuracy bias is defined as having 
higher average steady state IRT than the optimal IRT. Only the relationships of the speed bias 
group are significant. 

 

Difference from optimal IRT variable was positively associated with trait anxiety, 

total PI score and rumination, washing and impulses subscales of PI in the first three sessions 

(Table 3, Figure 8). While only total PI score was positively associated with the difference 

metric in the fourth session (Table 2, Figure 9). Perceived penalty was positively associated 

with BIS, BIS-11, non-planning subscale of BIS-11, total PI score, PI subscales of impulses, 

rumination washing and trait anxiety in the first three sessions (Table 3, Figure 10). There 

were no significant associations of perceived penalty with questionnaires in the fourth session. 
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Figure 8: Graphs of significant simple linear robust regression analysis between the 
personality traits and difference from optimal IRT variable in the first three sessions. 
Difference variable is calculated by subtracting the normalized IRT from the normalized 
average steady state IRT. It provides a measure of temporal distance from the optimal IRT, 
positive values indicating waiting longer than the optimal while negative values indicate 
waiting shorter from the optimal IRT. Red horizontal line signifies the zero, the value which 
would make participants optimal. 
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Figure 9: Graphs of significant simple linear robust regression analysis between the 
personality traits and various task parameters in the fourth session. Onset of acquisition 
signifies the duration between the start of the session and the start of dynamic range. 
Rapidness of acquisition on the other hand signifies the duration between the start of the 
session and end of the dynamic range. Red horizontal line signifies the zero, the value which 
would make participants optimal. 

  



40 
 

 

Figure 10: Graphs of significant simple linear robust regression analysis between personality 
traits and perceived penalty in the first three sessions. Perceived penalty is calculated by 
finding the penalty/reward ratio that would make participants steady state IRT equal to the 
optimal IRT of their timing uncertainty (CV) level. Red horizontal line signifies 1, the point 
where perceived penalty is equal to reward. 

 

The empirical normalized IRTs of the participants in the first three sessions and the 

fourth session was compared. Normalized empirical IRTs in the fourth session were 

significantly longer than the normalized IRTs in the first three sessions; t(67)=2.09, p=0.04. 

There was also a positive association between the behavioral inhibition, impulses subscale of 

the PI and normalized IRTs for the first three sessions (Table 3). There was no significant 

predictor of IRTs in the fourth session. 

 Coefficient of variations obtained in the first three sessions were significantly higher 

than the CVs obtained in the fourth session; t(67)=2.46, p=0.02. CV’s calculated from the 
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first three sessions had positive association with BIS and non-planning subscale of BIS-11 

(Table 3). But for the fourth session CV’s, only the positive association with behavioral 

inhibition was significant (Table 3). The relationship between these variables and CV was 

mirrored by the optimal IRTs, and maximum possible expected reward rate, given that 

Optimal IRTs and maximum possible expected reward rate depend on CV. 

3. Discussion 

The second study revealed that most of the participants were able to adapt to 

unarticulated lowering of the schedule in the fourth session, and after the acquisition, they 

were close to optimality in their steady state. Nevertheless, six participants were not able to 

adapt to the new schedule and continued to respond similar to the first three sessions. The 

second major finding of the second study was the connection between personality traits and 

parameters of the DRL task. Personality traits predicted the acquisition and steady state 

performance both in the first three sessions and the fourth session. Predictors of acquisition 

parameters were mostly distinct from predictors of steady state performance in both first 

three sessions and the fourth session. BAS and its subscales’ scores were predictive only of 

acquisition parameters while BIS, BIS-11 and trait anxiety scores were only predictive of 

steady state performance. Padua and its subscales were predictive of both acquisition and the 

steady state performance. 

The acquisition and steady state performance in the fourth session appears to be 

consistent with the expectations. Participants were able to reduce their average IRTs to 

maximize their reward rates based on the new schedule. Evidence of adaptation to the new 

schedule indicates that participants had exploratory responses, since only way for them to 

discover the schedule change was to respond below the original schedule. Manipulation in the 

fourth session can be considered as a alternative form of exploration/exploitation trade-off 
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tasks (Cohen, McClure, & Yu, 2007) in the domain of temporal decision-making. Different 

from these tasks (such as n-armed bandit task), in DRL, participants have a continuous range 

of durations that they can target to earn reward rather than a fixed amount of options (n). 

Within these options, every payoff environment has single target duration that is optimal for 

that participant given their timing uncertainty; therefore the exploration of the target duration 

space has great importance. Participants who stick to their previous IRTs after the halving of 

the schedule would be exploiting the environment and earn reward rates similar to the 

previous sessions. But the participants who shorten their IRTs (within a certain range) would 

be exploring the changing environment which would increase their reward rate. These 

findings supplement the task acquisition findings of the Study 1, showing that the acquisition 

of the task contingency can occur in steady state, and expand the time-based decision making 

literature. Future studies can build upon this finding by introducing the halving of the 

schedule randomly, similar to the manipulation done in the beat-the-clock task (Simen et al., 

2011). 

The steady state performance parameters of timing uncertainty (CV) and empirical 

IRT were differentially modulated by personality questionnaires in both first three and the 

fourth session (Table 2 and 3). Complex non-linear relation between the optimality and these 

parameters make interpretations based solely on these two parameters abstruse. To ease this 

problem in translation, relations between task parameters and personality questionnaires will 

be explained through difference from optimal IRT, perceived penalty and percentage of 

maximum expected reward rate (PMERR). 

Difference from optimality parameter is calculated by subtracting normalized 

empirical IRT from the normalized optimal IRT. By subtracting the optimal IRT that is 

calculated by using timing uncertainty (CV), the new parameter becomes sensitive to possible 

interactions between the CV and empirical IRT. Positive values in the parameter indicate that 
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the participant is waiting longer then they should to be optimal, while negative values 

indicate they are waiting shorter than they should. As expected, trait anxiety, total PI scores, 

and PI subscales of rumination, impulses, washing were positively associated with the 

difference parameter in the first three sessions. Only the total PI score had a positive 

association with the difference parameter in the fourth session. These associations are most 

likely to be caused by the punishment/harm avoidance tendencies that increase with anxiety 

and OCD symptoms. These sensitivities to negative stimuli would push participants wait 

longer to avoid penalty that occurs when they have responses earlier then the schedule. 

While the difference metric is an important tool to distinguish the average wait 

durations with respect to optimal IRT, it doesn’t necessarily reflect the optimality. There is a 

non-linear relation between temporal distance to optimal duration and proximity to optimality 

in terms of reward rates..This effect caused by the shape of the exponential inverse Gaussian 

distribution and the schedule of the DRL can be clearly seen in the optimality surface (5A 

and 5B). Participants with higher scores on BIS, total PI, and rumination and impulses 

subscale of PI were found to be closer to optimal compared to participants who scored lower 

in the first three sessions. Behavioral inhibition system that is measured by the BIS scale is 

theorized to underlay sensitivity to punishment and it is activated when conflicting concurrent 

goals occur (Gray & McNaughton, 2003). Optimal solution in the DRL task relies on the 

balancing two conflicting goals, waiting longer to avoid penalty and decreasing wait time to 

increase reward rate. Based on theoretical definition of BIS, better performance in the DRL 

task by high BIS participants is not surprising. On the other hand, it is harder to track the role 

of PI and its subscales on optimal performance. Rumination was shown to be related to 

anxiety and neuroticism when it was measured by another scale (Muris, Roelofs, Rassin, 

Franken, & Mayer, 2005) and PI (Oppen et al., 1995). Anxiety and neuroticism in turn are 

closely related to the BIS both conceptually and statistically (Gray & McNaughton, 2003; 
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Jorm et al., 1998). The findings of Study 2 also corroborate these findings, showing that 

rumination subscale has the strongest correlation with trait anxiety and BIS compared the 

other PI subscales (Table 1). The effect of BIS and rumination scores on PMERR is most 

likely caused by the same mechanism. Unfortunately it is not possible to use stepwise 

methods with robust regression to investigate this relationship more rigorously. Unlike the 

rumination subscale, impulses subscale neither share the same theoretical underpinnings with 

BIS nor correlated with it (Table 1). The items of this subscale measure obsessional impulses 

to harm oneself and others (Oppen et al., 1995) which at face value, shouldn’t be related to 

DRL performance. Alternatively, the effect of this subscale can be explained by net increase 

in OCD symptoms rather than the specifics of the symptoms itself. 

The separation of the optimality analysis based on bias type provided a more detailed 

look into the effects of personality scores. When the robust regression analysis is done 

separately for the speed and accuracy bias groups, the effect of BIS and rumination on the 

optimal performance disappeared in both. Most likely cause for this was the decrease in the 

degrees of freedom. Effect of PI and Impulses scores remained significant for the speed bias 

group despite the loss of degrees of freedom but disappeared for the accuracy bias group 

(Table 4). Based on this interaction, it can be postulated that the increases in optimality with 

these personality trait scores is caused by the increases in the difference parameter (Table 3). 

When the difference parameter increases, participants with negative scores (speed bias) move 

closer to 0 (optimality) while participants with positive difference scores (accuracy bias) 

move away from it. Trait anxiety and washing were also positively associated with PMERR 

in the speed bias group, again caused by their tendency to increase the average IRT with 

respect to optimal IRTs of that participant. 

Perceived penalty metric is an alternative way to measure relative sensitivity to 

punishment compared to reward. It is calculated by finding the ratio of penalty to reward that 
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would make the average IRT of the participant equal to the optimal solution. Increases in trait 

anxiety, BIS, BIS-11 ,non-planning subscale of BIS-11 , total PI, rumination, washing, 

impulses subscales of PI predicted the increases in perceived penalty measure. BIS score’s 

relationship with the perceived penalty is in line with the theoretical background of the scale 

(Corr, 2004; Gray & McNaughton, 2003) as a punishment sensitivity measure. Participants 

with both high BIS (Boksem et al., 2006; De Pascalis et al., 2010) and high trait anxiety 

(Lerner & Keltner, 2000) were shown to be more responsive to negative stimuli, supporting 

the findings of this study  While the relation of perceived penalty with Padua scale and its 

subscales has theoretical backing (Fullana et al., 2004); same can’t be said for BIS-11 and its 

non-planning subscale. BIS-11 and its subscale’s effect on perceived penalty might be caused 

by their high correlation with trait anxiety, BIS and rumination scores in this study (Table 1). 

In addition to the optimality in the first three sessions; personality questionnaire 

scores predicted the acquisition performance in both first three sessions and the fourth session. 

For acquisition of the first three sessions, strongest predictor of abruptness index was fun 

seeking subscale of the BAS scale while the onset or rapidness of acquisition was not 

affected. Increases in fun seeking decreased the abruptness index, which meant less time 

spent to reach steady state after the learning has started. In the fourth session increases in 

BAS score and reward subscale decreased the time spent to reach steady state while increase 

in impulses subscale increased the duration. Onset of acquisition was negatively associated 

with reward subscale while it was positively associated with the precision (counting) subscale 

of the PI. Apparent distinction between first three and the fourth sessions in acquisition 

patterns might be caused by the distinct teaching signals. Initial acquisition depends on 

decreasing the number of negative feedback and increasing the number of positive feedback. 

But the acquisition of fourth session requires abandoning the established responding pattern 

to establish a more rewarding one. Learning in the fourth session does not depend on 
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decreasing the negative stimuli, but only increasing the reward rate (within a certain range of 

IRTs). Participants that could not adapt to the schedule change continue to earn reward at the 

same rate of their previous sessions. Therefore differentiation between the reward subscale of 

the BAS that measures reward sensitivity and the acquisition in the fourth session is expected. 

This finding is also in line with the literature; compared to the other subscales of BAS, fun 

seeking subscale has stronger correlation to the novelty seeking measure while reward 

subscale has stronger correlation with reward dependence measure of the Tridimensional 

Personality Questionnaire (Carver & White, 1994). The positive association between the 

impulses and precision (counting) subscales of PI and acquisition is expected. OCD patients 

are shown to be more prone to habitual behavior, less adaptive to the rule changes in the tasks 

and more harm avoidant (Evans et al., 2004; Gillan et al., 2011; Remijnse et al., 2006). While 

these findings should translate into longer or impaired acquisition in fourth session, there 

isn’t any evidence that specifically points to these subscales. 

CONCLUSION 

In conclusion, Study 1 established that humans are capable of close to optimal 

performance in non-instructed temporal decision task, when their premature responses are 

penalized. Response-outcome contingencies of the task were enough for participants to reach 

close to the optimal performance, experience with the duration and instructions were not 

necessary. These findings support the idea that non-instructed DRL can be used with humans, 

providing healthier comparison of human and animal performance by eliminating the 

confounding factors created by instructions and prior experience with the schedule duration. 

Study 2 replicates the findings of the first study with a much larger sample and shows that 

most of the participants are capable of adjusting to the unannounced lowering of the target 

duration in the fourth session in order to maximize their reward rate. In addition to that, 
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findings of the second study indicate that the personality traits measured by Trait anxiety 

scale, BIS/BAS Scale, Barratt Impulsiveness Scale and Padua Inventory is capable of 

predicting the parameters of acquisition and steady state performance in DRL. These two 

studies together emphasize the importance of DRL’s efficacy in characterizing the relevant 

decision-making concepts with its parameters and its generalizability to animal studies. 
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