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ABSTRACT

The spectrum scarcity challenge is a natural consequence of increasing demand for wireless

communication. This situation has triggered the use of opportunistic spectrum access schemes in

wireless communications. The key technology addressing this challenge and enabling opportunis-

tic spectrum access is cognitive radio. Wireless sensor network (WSN) suffers from the spectrum

scarcity problem due to the fixed frequency assignment policy. Cognitive radio stands as a promis-

ing solution to this problem in WSNs. Wireless sensor nodes with cognitive radio capability can

access different spectrum bands dynamically. This defines a new sensor networking paradigm,

i.e., Cognitive Radio Sensor Networks (CRSN). The unique characteristics of CRSN necessitates

energy-efficient and spectrum-aware solutions. In this thesis, we first propose a spectrum-aware

clustering protocol for CRSN. We form non-isolated clusters between event and sink in accordance

with event-driven communication nature. Simulation results show that our protocol is more energy-

efficient than other protocols in literature. Next, we investigate the effect of network coding in

CRSN. Network Coding is a novel technique enabling encoding operation instead of store-and-

forward approach. The advantages and disadvantages of using network coding are presented. Fi-

nally, we consider wireless networked control system consisting of separate cognitive radio sensor

subnetworks. The system state is estimated using Kalman filter. We find critical packet arrival prob-

ability for bounded expected state estimation covariance and obtain the maximum total coverage

area of CRSN with maximum cost-efficiency.
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ÖZETÇE

Tayf kıtlığı sorunu kablosuz haberleşme için artan talebin doğal sonucudur. Bu durum kablosuz

haberleşmede fırsatçı tayf erişim kullanımını tetiklemiştir. Bu zorluğun üstesinden gelen ve fırsatçı

tayf erişimine olanak sağlayan anahtar teknoloji bilişsel radyodur. Kablosuz algılayıcı ağlar (WSN)

da sabit tayf atama prensibi nedeniyle tayf kıtlığı probleminden zarar görmektedir. Bilişsel radyo ka-

biliyetli kablosuz algılayıcı düğümleri değişik tayf bantlarına dinamik olarak erişir. Bu, ismi bilişsel

radyo algılayıcı ağlar (CRSN) olan, yeni bir ağ paradigmasını tanımlar. Bilişsel radyo algılayıcı

ağların benzersiz özellikleri enerji-verimli ve tayf-bilinçli çözümleri gerektirmiştir. Bu tezde ilk

olarak tayf-bilinçli kümeleme protokolü önerilmiştir. Bilişsel radyo algılayıcı ağların (CRSN) olay-

güdümlü haberleşme doğasına uygun olarak olay ile alıcı düğümü arasında birbirinden izole ol-

mayan kümeler oluşturulmuştur. Benzetim sonuçları yöntemimizin bu alandaki diğer yöntemlerden

enerji açısından daha verimli olduğunu göstermiştir. Sonrasında, bilişsel radyo algılayıcı ağlarında

ağ kodlamasının etkileri incelenmiştir. Depola-ve-yolla yaklaşımı yerine kodlama işlemine olanak

sağlayan ağ kodlaması özgün bir tekniktir. Ağ kodlamasının faydaları ve zararları sunulmuştur. Son

olarak ayrık bilişsel radyo algılayıcı sensor alt ağlarından oluşan kablosuz ağlı kontrol sistemlerine

bakılmıştır. Sistem durumu Kalman süzgeci aracılığıyla tahmin edilmektedir. Beklenen durum tah-

mininin ortak değişintisinin sınırlı olması için gereken kritik paket geliş olasılığı ve azami maliyet

uygunluğu ile azami toplam kapsama alanı bulunmuştur.

v



ACKNOWLEDGMENTS

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Özgür B. Akan in all
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Chapter 1

INTRODUCTION

The proliferation of wireless communication devices causes congestion in electromagnetic spec-

trum [1]. The spectrum resource is scarce, and it is underutilized by the fixed frequency assignment

policies. Cognitive radio has become a promising solution to the inefficient utilization and the

scarcity of spectrum resource [2]. Cognitive cycle operations enable opportunistic spectrum access

which increases communication quality and improves channel utilization [3]. These unique features

of cognitive radio overcome the challenges posed by fixed spectrum assignment policies. Cogni-

tive radio sensor networks (CRSN) is a solution for spectrum scarcity problem in wireless sensor

networks (WSN) [4]. CRSN nodes detect available channels by spectrum sensing, and determine

communication channel by spectrum decision, and change their operation frequencies by spectrum

hand-off if primary users appear on the communication channel. CRSN is an event-based system

such that events trigger the communication. Event readings of the sensors collaboratively conveyed

in multi-hop manner from event to sink. Despite improvements in spectrum utilization by DSA

capability, energy-efficient solutions for CRSN are required due to resource-constrained nature of

CRSN inherited from WSN.

1.1 Cognitive Radio Sensor Networks

Fixed frequency assignment approach of WSN suffers from the spectrum scarcity problem. Cog-

nitive radio technology is enabled in wireless sensor nodes to eliminate this problem. This fact

reveals a new sensor network paradigm, i.e., cognitive radio sensor networks [4]. CRSN nodes is

provided with dynamic spectrum access (DSA) capability to utilize different spectrum bands. They

use cognitive cycle operations for opportunistic spectrum access (OSA).

A typical topology formed by CRSN nodes is shown in Fig. 1.1. Primary and secondary net-
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Figure 1.1: A typical CRSN topology.

work coexist in this topology. Primary network users are legacy user that they operate on the licensed

channels without any permission. Secondary network users are CRSN nodes which perform sens-

ing on the environments. They communicate with each other on licensed bands opportunistically

without any interference to the primary network.

In this thesis, we study the challenges posed by cognitive radio sensor networks. We first propose

an event-driven spectrum-aware clustering protocol for CRSN. The formed clusters are non-isolated.

The clusters are between event and sink in accordance with event-driven communication nature.

Next, we investigate the effect of network coding in CRSN. Network Coding is being used as a novel

technique in centralized and distributed wireless networks. It enables encoding operation instead

of store-and-forward approach. The advantages and disadvantages of using network coding are

presented. Finally, we consider wireless networked control system consisting of separate cognitive
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radio sensor subnetworks. The system state is estimated using Kalman filter. We find critical packet

arrival probability for bounded expected state estimation covariance and obtain the maximum total

coverage area of CRSN with maximum cost-efficiency.

1.2 Spectrum-aware Clustering in Cognitive Radio Sensor Networks

Inefficient spectrum utilization of traditional fixed spectrum assignment approach has triggered

the use of dynamic spectrum access (DSA) schemes in wireless communications. Communication

technology enabling DSA is cognitive radio (CR) [3]. Cognitive radios have the capability to sense

spectrum bands in order to detect empty spectrum portions. With this capability, CRs can utilize

spectrum vacancies opportunistically by changing their operating parameters [2]. Hence, the oppor-

tunistic spectrum access (OSA) capability overcomes the spectrum scarcity challenge and increases

spectrum utilization efficiency.

Wireless sensor nodes equipped with cognitive radio has revealed a new network paradigm

which is called cognitive radio sensor networks (CRSN) [4]. Sensor nodes can benefit from the

advantages of DSA so that they can communicate intermittently over the licensed bands which is

owned by primary users. A CRSN node determines available channels by spectrum sensing and

the communication channel by spectrum decision and changes its operation frequency by spectrum

hand-off if a primary user appears on that channel. By these functionalities, cognitive radios col-

laborate with neighbors in order to deliver event samples from event region to the sink in multi-hop

manner in opportunistic radio environment.

In addition to addressing spectrum management challenges by CR capabilities, CRSN imposes

energy and hardware limitation challenges inherited from WSN. The solutions for WSN do not

consider CR functionalities and hence do not address CR challenges. On the other hand, the existing

solutions for cognitive radio network do not take into account energy and hardware challenges. Even

though there are extensive studies on WSN and CRN, CRSN has been receiving interest from the

community lately. The recent existing works focus on channel management scheme [6], packet size

optimization [8], and reliability and congestion control [7].

Clustering is one of the most important research issues of CRSN that is not investigated thor-

oughly. Clustering is a structured way to manage topology effectively and to facilitate spatial reuse
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of resources to increase the system capacity [17]. There are several studies on clustering for wireless

sensor networks and wireless ad-hoc networks [11, 12, 13, 14, 15, 16]. In these approaches, cluster-

ing divides ad-hoc network into self organized structures each managed by cluster-heads. Those act

as a central entity in their corresponding cluster for the efficient and reliable data transmission. Clus-

ters handle the communication in an organized manner by arranging inter-cluster and intra-cluster

communication. In WSNs, cluster-heads are selected according to the node ID [19], residual energy

[20] and weight of nodes [21]. These clustering studies do not address the dynamic spectrum access

challenges hence they are not applicable in CRSN regime.

Clustering for cognitive radio networks requires additional constraint which is the condition

of grouping nodes according to similar vacant bands in spatial neighborhood. This situation in

clustering is termed as spectrum-aware clustering. Clustering in opportunistic spectrum access en-

vironment requires to take into account local variations of the licensed user activities [22, 23, 26,

27, 28, 29]. Clusters are valid if the nodes forming the cluster have at least one common chan-

nel. Dynamic spectrum access environment requires frequent re-clustering due to the variations of

spectrum availabilities.

1.3 Network Coding in Cognitive Radio Sensor Networks

Network coding is a new technique pioneered by Alswede et al. [41]. It discards store-and-

forward method in networks and enables the network nodes to make in-network processing. By this

method, the nodes can make encoding operations and the messages generated by the source nodes

can be encoded at the intermediate nodes and destination nodes can decode the source messages

if enough number of encoded messages are received by the destination nodes. Li et al. [43] has

showed that linear encoding operations are sufficient for achieving capacity of networks. Koetter

and Medard [42] have revealed the algebraic approach for network coding in multicast networks. In

[44], randomized network coding is investigated for multicast networks. Chou et al. have suggested

network coding for practical networks by applying random network coding [57]. Furthermore,

Koetter and Medard [42] have showed how to find the coefficients for linear encoding operation and

the decodability at the destination nodes. By network coding, information packets do not flow as

commodities, however, they can be mixed such that receivers can have coded packets to reconstruct
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original messages.

Network coding makes it possible to achieve max-flow min-cut capacity for the multicast net-

works. This paradigm increases the network throughput. Nodes making encoding operations wait

for the incoming links and take linear combinations of them for their output links. In the classical

store-and-forward method,the incoming packets are destined to outgoing links immediately. There-

fore, the channel is used every time if packets come. On the other hand, nodes listen for N packets

and transmit one encoded packet instead. Intermediate nodes show less transmission efforts since

they transmit only the encoded packets out of incoming packets. Less transmission effort is less en-

ergy consumption. This property is important for networks consisting of energy-constrained nodes.

Furthermore, network coding is beneficial for avoiding adversary effects. The intruders do not in-

terfere with the nodes easily since they should collect sufficient information to decode the necessary

information. Due to these benefits, network coding can be used to overcome the challenges posed

by different type of communication networks.

1.4 Coverage Maximization in Cognitive Radio Enabled Wireless Networked Controlled

Systems

Cognitive radio sensor networks can be used in many applications. One of the most impor-

tant application areas is wireless networked control system. The combination of communication

and control systems is enabled by the developments on sensor systems. This integration revealed

networked control systems (NCSs) where the communication system enables the sensor observa-

tion delivery [59, 60]. The control system components such as sensors, actuators and plants with

wireless communication capabilities constitute a wireless networked control system (WNCS). The

observations of the sensors deployed over a wide area are fed to the WNCS through a wireless net-

work. The WNCSs have a wide application area such as smart grid, automatic management and

navigation systems [61]. One fundamental problem in WNCSs is to have a wide coverage area.

The WNCS consists of cognitive radio sensor subnetwork. The output sensor measurements are

transmitted over separate multi-hop cognitive radio sensor subnetworks. In these type of systems

the observation process is divided into N parts and the system state is estimated using the Kalman

filter. Furthermore, there is a critical arrival probability for a sensor measurement packet such that if
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the packet arrival probability is larger than the critical value, it is guaranteed that the expected state

estimation error covariance is bounded, and hence the WNCS is stable.

1.5 Research Objectives and Solutions

The objectives of our research and the solution approaches are explained in this section.

1.5.1 Event-to-Sink Coordination in Cognitive Radio Sensor Networks

Event delivery from event to sink requires coordination for communication between sensor

nodes. Nodes can only communicate with each other if they are within transmission range and

have at least a common channel. Vacant spectrum bands are locally and temporally correlated. In

this thesis, our goal is to exploit this property by designating local coordinators in CRSN, and to

offer spectrum coordination scheme by clustering. Clustering in such a highly dynamic radio envi-

ronment requires frequent re-clustering and maintenance overheads. The gain by clustering can be

mitigated by energy-consumption due to re-clustering and maintenance overheads. In this thesis, we

present an event-driven spectrum-aware clustering protocol for CRSN. Overheads can be decreased

by exploiting event-driven nature of CRSN. This decrease is achieved by forming clusters in the

corridor between event region and sink after the detection of the event. We also form connected

clusters in order to avoid isolated logical entities. We perform mathematical study to find average

re-clustering probability of a cluster according to our network setup.

1.5.2 On the Effects of Network Coding in Cognitive Radio Sensor Networks

In this thesis, we investigate the response of CRSN in terms of energy and reliability while

using network coding. Network coding is a well investigated technique for communication networks

[41, 42, 43, 44]. It has been suggested to achieve max-flow capacity for multicast communication

[41]. The network coding studies can be divided into theoretical [43, 44], simulation-based [53, 54]

and implementation based [46] classes. None of these works studies the applicability of network

coding in CRSN taking into account the challenges posed by cognitive radio capability and the

resource-constraint of sensor network. Our approach relies on simulation-based study scrutinizing
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the positive and negative effects of network coding and investigating the applicability of this novel

technique in CRSN.

1.5.3 On the Maximum Coverage Area of Cognitive Radio Enabled Wireless Networked

Control Systems with Maximum Cost-Efficiency under Stability Constraint

The integration of wireless communication and control systems revealed wireless networked

control systems (WNCSs). One fundamental problem in WNCSs is to have a wide coverage area.

For the first time in the literature, we address this problem and we obtain the maximum coverage

area by solving an optimization problem. In this thesis, we consider a WNCS where the output

sensor measurements are transmitted over separate multi-hop cognitive radio sensor subnetworks.

We employ both homogeneous and cognitive radio multi-hop wireless sensor network models. The

observation process is divided into N parts and the system state is estimated using the Kalman

filter and we present the critical arrival probability for a sensor measurement packet such that if

the packet arrival probability is larger than the critical value, it is guaranteed that the expected state

estimation error covariance is bounded, and hence the WNCS is stable. We find the optimum hop-

diameter of a multi-hop wireless ad-hoc subnetwork having maximum cost-efficiency under the

constraint of the stability of the WNCS. Furthermore, under this constraint, we derive the maximum

total coverage area of both the homogeneous and cognitive radio sensor wireless subnetworks with

maximum cost-efficiency. The numerical analyses show that the maximum total coverage area can

be increased by appropriately adjusting the number of sensors, the successful packet transmission

probability between relay nodes, the transmission range of network nodes, and the eigenvalues of

the system matrix.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 presents our event-driven spectrum-aware cluster-

ing (ESAC) protocol. Next, we investigate our protocol in terms of energy-consumption, delay and

connectivity. In Chapter 3, we investigate the effects of network coding in cognitive radio sensor

networks. Simulation study is conducted to see the response of the network for different environ-

ments. In Chapter 5, we study the coverage maximization of wireless networked control systems
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which consist of separate cognitive radio sensor subnetworks or wireless sensor subnetworks. The

maximum coverage is found under the stability constraint with maximum cost-efficiency. Chapter

6 presents the research results with the discussion of the future issues.



Chapter 2: Event-to-Sink Coordination in Cognitive Radio Sensor Networks 9

Chapter 2

EVENT-TO-SINK COORDINATION IN COGNITIVE RADIO SENSOR

NETWORKS

Cognitive radio capability and reconfigurability are solutions for spectrum scarcity problem in

wireless sensor networks (WSN). CRSN is an event-based system such that events trigger the com-

munication. Event readings of the sensors collaboratively conveyed in multi-hop manner from event

to sink. The event detection causes bursty traffic in sensor networks. Hence, the communication af-

ter event detection requires coordination in opportunistic spectrum access (OSA) environment. In

this chapter, we propose a spectrum-aware clustering protocol for event-to-sink coordination. It

consists of two phases since the clusters are constructed from scratch upon the detection of an event.

The first phase is the determination of nodes joining clustering, and the second one is to form clus-

ters according to the spectrum availabilities among those nodes. Clusters are not preserved after

the end of events. Furthermore, we obtained the probability of re-clustering for a cluster and stud-

ied how our approach decreases this probability. Performance evaluation shows that by means of

event-to-sink approach only nodes between the event and the sink form cluster and consume energy

for coordination. Our approach provides less energy consumption than whole network clustering

approach. Furthermore, we investigate the extra delay occurs due to the spontaneous cluster forma-

tion.

2.1 Introduction

Fixed frequency allocation policies reveals the inefficient utilization of the electromagnetic spec-

trum. As wireless devices are becoming ubiquitous, the demand for spectrum use rises which causes

spectrum scarcity problem. Despite this increase, spectrum is also inefficiently utilized both tempo-

rally and spatially according to FCC [1]. This problem has triggered the use of dynamic spectrum

access (DSA) schemes in wireless communications. Wireless devices having DSA ability, called
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cognitive radios (CRs), can perform cognitive cycle operations [3]. Hence, they can detect vacant

spectrum bands and change their operating frequencies accordingly to enable opportunistic spec-

trum access [2]. This technology overcomes the spectrum scarcity challenge and increases spectrum

utilization efficiency.

A new wireless network paradigm, namely cognitive radio sensor networks (CRSN), has been

revealed by enabling opportunistic spectrum access (OSA) scheme on sensor nodes in wireless

networks [4]. Apart from fixed frequency allocation approach in wireless sensor networks (WSN),

sensor nodes opportunistically utilize licensed spectrum bands in CRSN. Cognitive radio sensor

nodes sense spectrum to determine vacant bands, choose their operating frequencies by spectrum

decision, and change the frequency by spectrum hand-off according to the licensed user activities.

CRSN is a distributed network. Packets generated by event detecting nodes are transmitted in multi-

hop manner from event region to sink in opportunistic spectrum environment without any central

controller.

CRSN enhances the spectrum utilization of traditional sensor networks by its unique features.

However, its realization imposes significant challenges due to the specific properties of cognitive

radio and sensor networks, and the challenges are amplified by their unique union. Resource con-

straint is inherited from sensor networks. On the other hand, spectrum management is a result of

cognitive radio capability of sensor nodes. The limited power capability requires energy-efficient

and low cost solutions. Furthermore, dynamic radio environment due to the cognitive radio capabil-

ity necessitates spectrum-awareness. However, WSN solutions are not spectrum-aware since they

do not consider CR functionalities. On the other hand, cognitive radio network solutions discard

hardware and energy limitations. There is a growing number of studies on CRSN to satisfy the

requirements of cognitive radio and sensor network. Some of recent works focus on channel assign-

ment according to residual energy [5], energy-efficient channel management scheme [6], packet size

optimization [8], power and rate adaptation for maximization of information theoretical capacity [9]

and performance analysis in terms of delay [10].

Clustering for ad hoc and sensor networks is well studied topic by research community [11, 12,

14, 16]. In [17], network is divided into logical structures according to some metrics in order to

satisfy desired system requirements. Clustering is also proposed as an effective tool for resource
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management and scalability in sensor networks [18]. This technique groups randomly deployed

sensor nodes into clusters. Each one has a cluster-head which organizes inter-cluster and intra-

cluster communication. Distributed wireless networks benefit from clustering to manage topologies

with lifetime improvement, fault tolerance and load balancing.

Clustering has been applied to cognitive radio networks (CRN) recently [22, 23]. Clustering

approaches in CRN differs from ones in WSN due to the spectrum heterogeneity. Clustering is

considered as a tool for managing spectrum heterogeneity. In addition to spatial neighborhood for

grouping, nodes are also clustered according to vacant spectrum bands. Each valid cluster has at

least one common channel among its members. CRN nodes consider temporal and spatial variations

of spectrum opportunities for the validity of clusters. Hence, this type of clustering approach termed

as spectrum-aware clustering.

Clustering has not been investigated thoroughly for CRSN despite some efforts on cognitive

radio networks (CRN). In our prior work [24], we propose a spectrum-aware clustering protocol

for CRSN considering the event-driven communication nature. In this chapter, we investigate the

effect of our proposed clustering approach in the reduction of re-clustering probability. We also

propose our clustering scheme as an coordination tool between event-to-sink communication and

obtain re-clustering probability according to our network model.

In a typical CRSN, event detecting nodes generate packets and they are transmitted collabo-

ratively in multi-hop manner over available spectrum bands in CRSN. This requires coordination

among nodes in such dynamic radio environment. Clustering is used as an energy-efficient spec-

trum coordination technique in order to deliver the event readings from event region to sink [24].

The communication pattern of CRSN needs event-to-sink coordination scheme. Furthermore,

there are two constraints for the communication of two nodes in CRSN which are having at least one

common channel and being within the transmission range. We exploit the spatially correlated spec-

trum bands for designating local coordinators in CRSN and offering spectrum coordination scheme

by clustering. Clustering in such a highly dynamic radio environment requires frequent re-clustering

and maintenance overhead. The gain by clustering can be mitigated by energy-consumption due to

re-clustering and maintenance overheads. In this chapter, we present an event-driven spectrum-

aware clustering protocol for CRSN. Overheads can be decreased by exploiting event-driven nature
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of CRSN. This decrease is achieved by forming clusters in the corridor between event region and

sink after detection of an event. We also aim to form connected clusters in order to avoid isolated

entities. We perform mathematical study to find average re-clustering probability of a cluster in our

network setup.

The remainder of this chapter is organized as follows. Section 2.2 presents the related work,

and Section 2.3 explains network model. In Section 2.4, we describe our protocol by explaining

determination of eligible nodes, clustering algorithm and control overheads of the protocol. In

Section 2.5, impact on re-clustering is explained by event-driven nature of our approach. We present

performance evaluation in Section 2.6.

2.2 Related Work

In this section, we describe related work in the literature on clustering for CRN and WSN. The

authors in [22] propose a distributed coordination architecture to overcome spectrum heterogene-

ity challenge and scalability issues. The proposed scheme groups nodes according to the selection

of coordination channels adaptively. It tries to maintain the groups during the network operation.

Users are clustered in the same group if they have at least one common channel and two nodes

in the same cluster can communicate via multiple hops. The aim is to minimize the number of

clusters in the network. However, it decreases the number of common channels in clusters. Conse-

quently, this feature of this protocol increases re-clustering probability since it causes less common

channels among the cluster members. In [23], the network is partitioned into clusters by group-

ing neighbor nodes sharing local common channels. The network is formed by interconnecting the

clusters gradually. Furthermore, it proposes a hybrid MAC protocol where the channel access time

is divided into superframes which have intervals for inter-cluster and intra-cluster communication.

Furthermore, it provides mechanisms for neighbor discovery, cluster formation, network formation,

and network topology management. [26] uses graph theory for spectrum opportunistic clustering

(SOC) and assigns control channel to each cluster so that each node in a cluster can communicate

within the cluster by local common channels. The recent work [27] presents network topology and

spectrum availability as bipartite graphs. Every node constructs bipartite graphs with its one-hop

neighbors and available channels. Biclique graphs are obtained from these bipartite ones accord-
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ing to metrics such as maximum edge, maximum node and maximum edge one sided cardinality.

These approaches do not use common channel over the entire network, however, control channel is

assigned to each cluster in the network by the clustering technique. Through the assigned control

channel intra-cluster communication is performed. The authors in [28] construct minimal number

of clusters in cognitive radio networks using affinity propagation (AP) message-passing technique.

ROSS-DGA and ROSS-DFA are distributed clustering approaches offered in [5]. They form robust

clusters by providing inter- and intra-cluster connectivity using game theory.

The recent work in [30] suggests a spectrum-aware clustering protocol to enable energy-efficient

communication in CRSN by intra-cluster aggregation and inter-cluster relaying. It also finds the

optimal number of nodes in a cluster.

Despite vast amount of clustering approaches in WSN, the idea of clustering between event and

sink is first proposed in [31], namely Event-to-Sink Directed Clustering (ESDC). It suggests forming

clusters in corridor between the event and the sink in WSN. However, this clustering scheme is not

applicable to CRSN since WSN nodes are not aware of CR functionalities and it does not address

spectrum heterogeneity.

Although there exists significant amount of clustering approaches on cognitive radio networks,

they do not address the challenge of limited energy resource and hardware capacity of sensor nodes.

Thus, energy-efficient clustering solution is required to address the limited energy resource chal-

lenge as well as opportunistic spectrum access challenges.

2.3 Network Model

2.3.1 Cognitive Radio Model

Sensors with cognitive radio capability and primary users coexist in CRSN. Cognitive radios

(CRs) are secondary users (SU) which can opportunistically access licensed channels if there is no

primary user activity [2].

There are C non-overlapping orthogonal channels having unique ID. CR nodes can detect va-

cant spectrum bands by spectrum sensing. Spectrum readings provide perfect results and vacant

spectrum bands do not change during clustering process. The clustering is performed according to
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Figure 2.1: Typical CRSN topology with event and sink.

the snapshot of the network and vacant spectrum bands. Sensing results of SUs are correlated for

the same neighborhood, however it may change due to the temporal activities of PUs.

Traffic in CRSN is event-driven. Sensor nodes within event radius detect event. Many-to-one

traffic pattern toward one sink node is generated as illustrated in Fig 2.1. There are 3 primary users

(PUs) and the coverage of them are designated by dashed circles and their operating channel is

shown in Fig 2.1. Inside these circles, secondary users (SUs) can not use those channels. Event

detecting nodes are the nodes within the event radius. These nodes generate packets to delivered to

the sink. Arrows indicate the data flow from the event to the sink.

Clustering needs the exchange of control messages. This message exchange is provided via

common control channel. It is available for SUs at any time [32]. SU can access the channels
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by a CSMA/CA-based medium access protocol. Overlay spectrum sharing is used as interference

avoidance model, i.e., SUs use portions of the spectrum not used by the PU [2]. Furthermore, SU

nodes know their location by utilizing localization algorithms.

Neighbor discovery is provided by the common control channel signaling periodically. By this

signaling, all nodes know one-hop and two-hop neighbors and their vacant channels. In this chapter,

we are interested in CRSN in which nodes are stationary, therefore, one-hop and two-hop neighbors

do not change unless they deplete resources. Hence, only their available spectrum bands change.

Let N1
i denote one-hop neighbor list of node i and N2

i two-hop neighbor of it. Ci represents the

vacant channels of the node i. Table 2.1 shows the notations and their explanations which are useful

for explaining the clustering protocol.

2.3.2 Primary Channel Usage Model

As in [33, 34, 35], the traffic of primary channel c is modeled as semi-Markov ON-OFF process

where channel c’s state changes with arrival rate λc and departure rate µc as shown in Fig. 2.2. OFF

state of channel c is considered spectrum opportunity for secondary users in the system. Secondary

users can exploit by utilizing this channel for communication or cluster formation. ON and OFF

periods for channel c follows exponential distribution and they are independent.

The steady state busy probability of the channel c is given by

pcbusy =
λc

λc + µc
. (2.1)

In multi-channel radio environment, clusters are formed according to vacant spectrum band.

They are valid until at least one common channel is present among cluster members. Re-clustering

is required if the cluster-head loses its communication with its members through common cluster

channels. The channel usage pattern is assumed to follow i.i.d. ON/OFF random process. According

to this, the probability that no channel is idle in the system

Pr[No idle channel] =
∏
i∈C

pibusy. (2.2)
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Table 2.1: Notations For Clustering Protocol

Notation Explanation

N Number of secondary nodes in the network

S Set of secondary nodes in the network

C Set of channels in the network

Nk
i k hop neighbor list of node i

Ci Available channel list of node i

di,j Euclidean distance between nodes i and j

dei Eligible node degree of node i

Pi Weight for cluster-head selection , |Ci| x di + 10 / di,sink

CNi[k] Cluster nodes whose cluster-head is node i at cluster formation iteration k

CCi[k] Common channels for the cluster constructed by the cluster-head i at

cluster formation iteration k

CDi[k] Max. eligible two-hop neighbors accessible through a channel ∈ CCi[k]

and CNi[k] at cluster formation iteration k

N(i) Cluster member nodes whose cluster-head i

C(i) Cluster channels whose cluster-head i

R Event radius in meters

Des Distance between event and sink in meters

r Cognitive radio transmission range in meters

Tcls Time in msec to form cluster by eligible nodes after detection of an event

Cognitive radios in the cluster have the capability to fully observe the N channels. Therefore,

no states are hidden to the cluster-head which is responsible for spectrum coordination.
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Figure 2.2: Semi-Markov model for channel c.

2.4 Event-driven Spectrum-Aware Clustering (ESAC)

In this section, we explain our coordination scheme which is in fact event-driven spectrum-

aware clustering protocol for CRSN. In cognitive radio sensor networks, packets are generated by

the event-detecting nodes. Afterwards, the packets are routed to the sink. Hence, coordination

scheme is needed between event and sink. The coordination is provided by our clustering protocol

for CRSN. In order to establish this coordination between event and sink, we propose two phase

protocol. The first phase is for the determination of the intermediate eligible nodes between event

and sink, i.e., eligibility corridor. In the second phase, the nodes in this corridor form the spectrum-

aware cluster with their one-hop neighbors. Clusters are maintained until the end of the event. These

phases are explained individually in the following subsections.

2.4.1 Determination of Eligible Nodes For Clustering

Traffic in CRSN occurs when an event exists. Therefore, resources are used in the network for

event occurrences. The communication need triggers our protocol. In the first step of our protocol is

to determine the corridor between event and sink. We specify this corridor in distributed manner in

the decentralized cognitive radio sensor network. We establish this corridor by changing the status
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Figure 2.3: Illustration of an eligibility scenario.

of the nodes in this region. In this distributed approach, the first step of determining the eligible

nodes is the event detection. The event detecting nodes become eligible for clustering directly.

Afterwards, Eligibility For Clustering REQuest (EFC REQ) messages are sent by these nodes to

their one-hop neighbor through common control channel. Nodes receiving this message determine

to be an eligible node according to the condition to be located closer to the sink and farther to the

event location than the EFC REQ sender. The new eligible nodes send EFC REQ to their non-

eligible one-hop neighbors and the process continues until EFC REQ reaches the sink. Non-eligible

nodes do not send EFC REQ message, hence, the corridor can not be expanded further by these

nodes. Algorithm 1 outlines the eligibility process for clustering. ESAC determines eligible nodes

in a distributed manner by Algorithm 1.
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Algorithm 1 Determination of the Eligible Nodes for Clustering
1: Consider node i ∈ S where S is set of nodes in the network

2: if Node i detects event then

3: It is eligible for clustering

4: State(i) = “Eligible Ordinary Node”

5: Start sending EFC REQ to one-hop neighbors other than event detecting neighbors

6: else

7: if It receives EFC REQ from its neighbor then

8: Compare the distance

9: if di,sink ≤ dEFC REQ−sender,sink ∧ di,event ≥ dEFC REQ−sender,event then

10: Node i is eligible for clustering

11: State(i) = “Eligible Ordinary Node”

12: Send EFC REQ to one-hop neighbors

13: else

14: Not eligible

15: end if

16: else

17: Node i is not eligible

18: end if

19: end if
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An eligibility scenario is illustrated in Fig. 2.3. A number of CRSN nodes randomly deployed

in this network and event region is shown by a circle. Eligibility region is determined according

to Algorithm 1. In this scheme, the event detecting nodes become eligible instantly. These nodes

are located inside the event circle. The nodes in the event detecting region start sending EFC REQ

immediately to their non-eligible one-hop neighbors. This request is disseminated through eligible

nodes to the sink.

Only eligible nodes send EFC REQ to their one-hop neighbors. After the detection of the event,

the nodes in the event region sent first EFC REQ messages to its neighbors as shown in Fig. 2.3.

Node 1 sends EFC REQ to its neighbors 2, 3, and 4. However, nodes 2, 3, and 4 cannot join the

clustering since they are not closer to the sink than the node 1. Node 6 sends EFC REQ to nodes

7 and 8. The node 7 cannot join clustering by the request from node 6 since node 7 is farther to

the sink. However, node 7 joins the clustering due to the EFC REQ from the node 5. The state

of the eligible nodes is determined to be “Eligible Ordinary Node”. These request messages flow

through eligible nodes until they reach to the sink. In the end of this process, red-colored nodes

are the corridor nodes joining communication. Other nodes are not eligible, and hence they do not

consume energy for clustering.

A node knows its neighbors, their locations and available channels. This information is period-

ically updated by neighbor discovery process. If a node receives an EFC REQ message by one of

its neighbors, the sender already knows if the request receiver is eligible. However, the nodes that

are eligible or non-eligible for clustering inform their neighborhood by Eligibility For Clustering

REPly (EFC REP) message upon receiving an EFC REQ message.

2.4.2 Clustering Algorithm

Our approach brings a new perspective for clustering by forming clusters incident to events in

CRSN. The motivation of clustering in sensor network is to create organizational structures and

to manage distributed network in a structured way. In this chapter, we group the nodes according

to their spectrum availabilities while maintaining communication between intra-cluster and inter-

cluster nodes. Only the nodes that are appointed as eligible form clusters. In our approach, clusters

are not maintained in the network if event detecting nodes do not further sample the event.
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If an eligible node knows the eligibility condition of its neighbors, it initiates clustering process

which is explained in Algorithm 2. The clustering algorithm is inspired by [26]. Our clustering pro-

tocol is cluster-head first protocol, and there is an additional constraint that cluster-heads maximize

the number of two-hop members that they can reach by its one-hop members through the cluster

channels. We decrease control overhead for constructing the clusters by means of cluster-head first

algorithm since there are not extra control message exchanges for selecting cluster-heads. Further-

more, we form non-isolated clusters by considering two-hop eligible members. This feature provide

clusters to communicate with each other by their one-hop neighbors. Eligibility for clustering and

spectrum-aware clustering processes work sequentially such that eligible nodes immediately start

forming clusters after having full knowledge about the eligibility of its one-hop members.

In dynamic radio environment, the clusters are formed according to the spectrum band availabil-

ities. The nodes which have similar vacant spectrum band are grouped in the same cluster in the

same spatial neighborhood. In our clustering scheme, every eligible node is assigned to a weight

which is calculated as Pi = |Ci| x dei + 10 / di,sink. In this weighting structure, we regard the node

degree, available channel, and the distance to the sink. The node i with the highest weight Pi in

its one-hop neighborhood is chosen as cluster-head. A node which has the highest weight in any

of its one-hop neighbor list can also become a cluster-head. By this weighting method, we select

the nodes which have higher eligible node degree and available channel, and which are closer to the

sink in its neighborhood.

Cluster-heads form clusters by selecting appropriate vacant channels and one-hop neighbors.

Our protocol maximizes the number of two-hop neighbors that can be reached by cluster-heads

through cluster members over cluster channels. If a node i becomes a cluster-head, it tries to maxi-

mize the product of three terms for the constructed cluster, which is |CNi| × |CCi| × |CDi|.

In the clustering procedure, cluster-head node i firstly determines the weight of every channel

Ci. The weight of a channel of node i is the number of one-hop neighbors that node i can reach

through that channel. Node i firstly adds the channel which has the highest weight to CCi[1]. The

index number shows the iteration of the algorithm. Hence, in the first iteration the index number is

[1]. If two or more channels have the same weight, we break tie by choosing the channel having the

least channel ID.
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Algorithm 2 Spectrum-Aware Clustering Algorithm in CRSN
1: if State(i)==“Cluster-head” then

2: k = 0 and CCi[k] = ∅ and CNi[k] = N1
i ;

3: for j ∈ Ci do

4: Find the channel j having highest overlap with N1
i in Ci − CCi[k]

5: k ← k + 1

6: CCi[k] = CCi[k − 1] ∪ {j}

7: if |CCi[k − 1]| = 0 ∧ CNi[k − 1] = ∅ then

8: break;

9: else

10: Find the nodes that have the vacant bands of CCi[k];

11: CNi[k] = { One-hop neighbor CRs having CCi[k] in their vacant bands }

12: Find the two-hop neighbors CDi[k] such that i reaches through the CCi[k] and CNi[k]

13: CDi[k] = { One-hop neighbor other than CNi[k] having CCi[k] in their vacant bands }

14: end if

15: wi[k] = |CNi[k]| × |CCi[k]| × |CDi[k]|

16: end for

17: Find maximum weight wi[k] ;

18: if there are more than one iteration having the maximum weight then

19: Select the one with highest number of cluster member CNi

20: end if

21: Return N(i) = CNi[k] and C(i) = CCi[k];

22: Send C REQ to the nodes in CNi[k]

23: Wait for C REP messages from CNi[k] to finalize cluster membership

24: else

25: if State(i)==“Eligible Ordinary Node” then

26: Wait for C REQ

27: Join the cluster which has the maximum weight among C REQs

28: end if

29: end if
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Figure 2.4: One-hop and two-hop neighbors of cluster-head node 1 and its constructed tree.

The channel that has the highest weight is added to CCi[1] and the nodes having this channel

in their available channel list are added to CNi[1]. We find the number of two-hop neighbors that

the node i can reach via nodes in CNi[1] over channel CCi[1]. These two-hop neighbor nodes are

added to CDi[1]. The weight of first iteration is wi[1] which is the product of |CNi[1]|, |CCi[1]|

and |CDi[1]|. In the second iteration, CCi[2] becomes CCi[1] ∪ {j} where j is the second highest

weighted channel. CNi[2] contains the one-hop neighbor nodes having vacant channels which

are the elements of CCi[2]. CDi[2] is found by determining accessible two-hop neighbors by the

nodes in CNi[2] over channels in CCi[2]. The weight of this iteration is found as in the previous

weight calculation. This process continues until kth step which results in CNi[k − 1] = ∅ or

|CCi[k−1]| = ∅. In the end, cluster-head i chooses the iteration having the highest weight. Finally,

N(i) is set of cluster nodes constructed by node i and C(i) is the channels common for the nodes

in N(i). The steps can be seen in Algorithm 2.

Fig. 2.4 shows a tree constructed by cluster-head node 1 in order to determine cluster members

and cluster channels. In the first level, two branches denote the vacant spectrum bands of cluster-

head node 1. Available channels of cluster-head node 1 are A and B. The second level shows the

one-hop eligible nodes having channels A and B. Node 1 has the neighbor nodes 2 and 3 which
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Table 2.2: Iterations for Cluster-head node 1 in Fig. 2.4

Iteration CC1[k] CN1[k] CD1[k] w1[k]

k = 1 {B} {2, 3, 4} {5, 6, 8} 9

k = 2 {B,A} {2, 3} {5, 6, 7, 8} 16

have channel A. The one-hop neighbor nodes 2, 3 and 4 have channel B. The third level shows the

eligible two-hop neighbor nodes. For example, the one-hop neighbor 2 has one-hop neighbor nodes

of 5, 6 and 7 having available channel of A. Since node 1 has two available channels, there are at

most two iterations shown in Table 2.2. The first iteration is on the channel B since the number

of one-hop neighbors having channel B is greater than that of channel A. Afterwards, channel A

is added to cluster channel. According to Algorithm 2, iterations for clusters are calculated and

tabulated in Table 2.2. The cluster member nodes and cluster channels of cluster-head node 1 are

N(1) = {2, 3} and C(1) = {B,A} since the second iteration has the highest weight.

Firstly, the node 1 is selected as cluster-head since it has highest weight in its one-hop neigh-

borhood. According to Algorithm 2, it determines the cluster structure and sends Cluster REQuest

message (C REQ) to the nodes inN(1). The nodes receiving this request acknowledge cluster-head

that they are now members of cluster constructed by node 1 if cluster weight of node 1 is greater

than the other received cluster weight. The nodes that are not member of any cluster can become

a cluster-head itself. If a node receives more than one C REQs, it accepts the request that has the

highest weight. Cluster formation by cluster-head is completed if it knows the condition of eligible

one-hop members via Cluster REPly (C REP) messages.

In this algorithm, we maximize the product of number of nodes and channels in the cluster, and

the number of two-hop neighbors that cluster-head can directly communicate by cluster members

through cluster channels. By this way, we compromise between common channels, cluster size and

inter-cluster connectivity.
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2.4.3 Control overheads of ESAC

In literature, the clustering schemes in cognitive radio maintain the organizational structures in

the entire network disregarding event occurrences. Hence, nodes are organized for data transmission

at the cost of energy. In our scheme, clusters are formed from scratch upon detection of an event.

This requires exchange of control information in order to generate clusters in the corridor between

event and sink. These overheads are itemized as follows:

• EFC REQ is sent by eligible nodes to further determine the eligible nodes closer to the sink

starting from event detecting nodes.

• Nodes send EFC REP to inform one-hop neighbors whether if they are eligible for clustering.

• Cluster-head nodes send C REQ messages to the cluster members according to Algorithm 2.

• Members validate their membership by sending C REP message to their cluster-heads.

In order to form clusters, an eligible node except event detecting one sends EFC REQ, EFC REP

and C REP or C REQ according to the node’s weight in its neighborhood. Event detecting nodes

do not send EFC REP message since they are directly eligible.

2.5 On the Re-clustering Probability of a Cluster

In our approach, we form clusters according to spectrum availabilities of a cluster-head and its

one-hop neighbors considering the two hop neighbors’ channels for connectivity between clusters.

Due to the dynamic change caused by PU activities in the spectrum availabilities, re-clustering is

necessary if no common channel remains among cluster members.

Re-clustering condition for any cluster is to have no common available PU channels among

the cluster members. In the below analysis, we calculate the average re-clustering probability of a

cluster.

Cluster-head forms clusters with some of its one-hop members. Hence, cluster coverage region

is the region covered by the cluster-head plus the extra coverage regions coming from the possible

one-hop neighbors. Applying the procedure in [36], the coverage area of the cluster can be found.
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The cluster-head coverage area is πr2 as an ordinary node, and the maximum total area of cluster

is π(2r)2 since all the one hop neighbors can be located at a distance r to the cluster-head and the

total radius becomes 2r.

In this work, the sensor network is stationary. As in [36], locations of the sensor nodes are dis-

tributed according to two dimensional Poisson point process. Density of this process is determined

to be as

ζ =
N

A
(2.3)

where A is the total area of the sensor network.

Let E[CA1] denote the expected coverage area of any randomly chosen cluster-head in the

network where CA1 denotes the coverage area of chosen cluster-head as first node in this process.

As the cluster-head gathers more members, the expected coverage area increases. For example, after

the (k− 1)th node is accepted as a member, the total covered area becomes CAk = CAk−1 +EAk

where CAk is the covered area by the cluster-head and its k − 1 member and EAk is the extra

coverage area contributed by the kth node in the cluster. The expected covered area is obtained by

taking expectation of both sides

E[CAk] = E[CAk−1] + E[EAk]. (2.4)

Let FRk is the fraction of the contribution of the kth node in the cluster and is given as

FRk =
TA− E[CAk−1]

TA
(2.5)

where TA is the total maximum area that a cluster can cover, 4πr2. The contribution area of the

node k is EAk = FRk × CA1.

The equation (2.4) becomes as follows

E[CAk] = E[CAk−1] + E[1− E[CAk−1]

TA
]E[CA1]. (2.6)

If we continue this procedure from cluster-head to the nth node, the expected coverage area becomes

E[CAk|k = n] = [1− (1− E[CA1]

TA
)n]E[CA1]. (2.7)

k is the number of possible cluster members which has to be located within the transmission range

of the cluster-head. Since the distribution of nodes are Poisson, the probability that there are n nodes
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in πr2 is

Pr(k = n) =
e−ζπr

2
(ζπr2)n

n!
. (2.8)

The expected cluster coverage area E[CCA] can be given as

E[CCA] =

N∑
n=0

E[CAn|k = n]Pr(k = n). (2.9)

Let Ω be E[CCA] and Zi is defined as the area in Ω which is covered by PU using channel i. Zi

can be given as

Zi =

∫
Ω
ξ(x)dx (2.10)

where

ξ(x) =

 1 if point x is covered by PU using channel i

0 otherwise
(2.11)

The expected Zi is given by

E[Zi] =

∫
Ω
E[ξ(x)]dx. (2.12)

E[ξ(x)] = Pr(PU using channel i cover point x)

= 1− Pr(No PU using channel i cover point x)

= 1− e−ψiπΓ2
(2.13)

where Γ is the transmission range of a PU and ψi is the mean of the Poisson point process of

primary users utilizing channel i.

Finally, the expected area covered by PUs using channel i on Ω becomes as

E[Zi] =

∫
Ω
E[ξ(x)]dx = (1− e−ψiπΓ2

)Ω. (2.14)

The average probability that channel i is used in the cluster area Ω is

γiΩ =
E[Zi]

A
=

(1− e−ψiπΓ2
)Ω

A
. (2.15)

For re-clustering of the cluster, all channels must be occupied in the region Ω. Hence, the overall

average probability that all channels are occupied in the cluster area is given as

γΩ =
C∏
i=1

[(1− e−ψiπΓ2
)]Ω

A
. (2.16)
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Since all channels are independent, the overall probability is found by multiplying probabilities

that the area Ω is under the coverage of PUs using each channel. The average probability that

cluster-head region is covered by PUs is obtained spatially. The activities of these primary user also

changes temporally which is independent of the spatial distribution. In Network Model section, PU

channel usage is modeled as semi-Markov ON-OFF process and usage statistics of the channels are

independent. Hence, overall average re-clustering probability is given as no idle channel in area of

Ω

Pr[Re− clustering] = γΩ · Pr[No idle channel]. (2.17)

In the network operation, formed clusters expose spectrum availability changes and this situation

causes maintenance and re-clustering overhead. In order to reduce them, we propose an algorithm

that decreases clustered network operation duration and number of clusters by event-to-sink ap-

proach. CRSN is an event-driven network such that data transmission begins with events, therefore,

we exploit this nature by forming and utilizing clusters only in the event occurrences. This strategy

reduces energy consumption without formation and maintenance of clusters in whole network. In

our approach, clusters formations are related with events in the network. Hence, the re-clustering

probability is decreased by event occurrence probability. The new re-clustering probability for our

scheme is found as

Pr[Event− driven re− clustering] =

Pr[Event Occurrence] · γΩ

·Pr[No idle channel].

(2.18)

2.6 Performance Evaluation

The performance of our protocol is evaluated in terms of eligible nodes ratio, and delay, total en-

ergy consumption, energy efficiency and connectivity. We perform simulations by using MATLAB.

2.6.1 Ratio of eligible nodes in the network

The most important advantage of our protocol is that clustering does not take place in the entire

network yet occurs in the event region in addition to the corridor between event and sink. By
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changing the network parameters, the fraction of the eligible nodes in the network is examined.

Throughout the simulations, sink is placed at X = 0 m and Y = 50 m in 100 m x 100 m network

field. In the simulations, the results are averaged over 50 different topologies. In the first simulation

setup, by increasing the distance between event and sink, we investigate the ratio of the eligible

nodes with different event radius. Event is generated on the Y = 50 m line, 200 CR nodes are

distributed uniformly and transmission range of nodes is set to 20 m. Fig. 2.5 shows that only under

30% of the nodes in the network join the clustering when the event to sink distance is 20 m for an

event radius 30 m. If event radius is 10, the fraction is below 10%. The fraction goes over 90% if

event radius is 30 and the distance between event and sink is above 60. For this case, due to large

event radius substantial number of nodes whose distances to sink are above 60 become eligible, and

those nodes and their neighbors increase the fraction of eligible nodes. On the other hand, for events

with radius of 10, even if distance between the event and the sink is 60, fraction of eligible nodes is

55%. As seen in Fig. 2.5, a considerable number of nodes do not join clustering for small event to

sink distances, hence these nodes do not consume energy due to clustering.

In the second simulation setup, in a 100 m x 100 m network field, different number of CRs are

deployed uniformly while event radius is 30 m and transmission range of CR is 20 m. For this setup,
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Figure 2.5: Fraction of eligible nodes in the network vs. Des for different R (m) when r = 20 m and
N = 200.



Chapter 2: Event-to-Sink Coordination in Cognitive Radio Sensor Networks 30

20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
es

 (m)

F
ra

ct
io

n 
of

 e
lig

ib
le

 n
od

es

 

 

N = 100
N = 200
N = 300
N = 400
N = 500

Figure 2.6: Fraction of eligible nodes in the network vs. Des for different N when r = 20 m and R =
30 m.

the fraction of eligible nodes does not change significantly since CR transmission range which is 20

m does not change the region between event and sink for different number of nodes. Fig. 2.6 shows

this effect such that fractions of eligible nodes are almost the same for different number of nodes

and for CR transmission range 20 m. As the distance between event and sink increases, fraction of

eligible node increases.

In the third simulation setup, the variation in transmission range of nodes is investigated with

respect to the ratio of the eligible nodes. 200 CR nodes are distributed uniformly and event radius

is fixed to be 20 m. As shown in Fig. 2.7, the rise in the transmission range of CR increases the

number of eligible nodes. An eligible node makes more of its neighbor nodes eligible since its node

degree increases due to the rise in transmission range. More eligible nodes mean higher of fraction

of eligible nodes in the network.

In the simulations, we observe that the increase in CR transmission range and event radius causes

raise in the fraction of eligible nodes in the network. On the other hand, the increase in network

density does not change the fraction since transmission range of CR is enough to determine the same

region between event and sink. Since the nodes are uniformly distributed and the area of the eligible

nodes does not change, the fractions for different network densities are the same.
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Figure 2.7: Fraction of eligible nodes in the network vs. Des for different r (m) when R = 20 m and
N = 200

2.6.2 Delay, Energy and Connectivity

In this section, we investigate our protocol performance in terms of delay to form clusters, energy

consumed due to control signaling between eligible nodes and the connectivity between cluster-head

and its two-hop neighbors. For this simulation setup, control channel’s bandwidth is assumed to be

512 kbps [37] and the length of the control packet is 200 bits. The environment is collision free

in order to realize the effect of control signaling only. There are 10 orthogonal non-overlapping

channels. 200 nodes and 20 primary users are distributed uniformly over an area 100 m x 100 m.

Transmission range of a PU is 30 m.

The cumulative delay for different scenarios due to cluster formation is investigated. In this

process, the causes of the cumulative delay, i.e., clustering time (Tcls), are determining eligible

nodes and forming clusters. If an eligible node i knows the eligibility condition of its one-hop

neighbors by EFC REP messages, it determines whether it is a cluster-head according to its weight

Pi. If it is cluster-head, it computes its clustering set according to Algorithm 2. It asks the nodes

in clustering set to join its cluster. The nodes accepting to be a member of that cluster notify the

cluster-head and its neighborhood.
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Figure 2.8: Tcls (msec) vs. Des (m) for different R (m) when r = 20 m and N = 200.
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Figure 2.9: Tcls (msec) vs. Des (m) for different N when R = 30 m and r = 20 m.

As the event radius increases, time required to form clusters do not differ considerably for dif-

ferent event to sink distance as shown in Fig. 2.8. Event radius is not important for the delay since

the nodes in the event region are immediately start to form cluster due to becoming eligible after

the detection of the event. In this case, as the distance between event and sink increases, the time



Chapter 2: Event-to-Sink Coordination in Cognitive Radio Sensor Networks 33

20 40 60 80 100

0.5

1

1.5

2

2.5

D
es

 (m)

T
cl

s (
m

se
c)

 

 

r = 15
r = 20
r = 25
r = 30

Figure 2.10: Tcls (msec) vs. Des (m) for different r (m) when R = 20 m and N = 200.

required to form clusters rises since number of hops between event and sink increases.

In Fig. 2.9, the rise in node density increases the number of eligible nodes, and this raises the

clustering time since more nodes are required to exchange control signals to form clusters. Unlike

fraction of eligible nodes, clustering time rises for increasing node density.
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Figure 2.11: Ec (mJ) vs. Des (m) for different R (m) when r = 20 m and N = 100.
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Figure 2.12: Ec (mJ) vs. Des (m) for different N when R = 20 m and r = 20 m.

In Fig. 2.10, for different CR transmission range, delay changes. The increase in number of

neighbors with increasing transmission range results in more nodes to be clustered. Therefore,

clustering time for r = 15 m is smallest among the others and the clustering time for r = 30 m

is generally higher than the others. Fig. 2.8, 2.9, and 2.10 show that clustering time increases

significantly with respect to number of nodes (N) and distance between event and sink (Des).

In our scheme, we try to establish a coordination among the nodes between event and sink for

each event occurrences. This requires energy consumption for this coordination. In our simulations,

free space path loss model is adopted such that εfs = 10pJ/bit/m2 andEelec = 50nJ/bit [38]. We

investigate total energy consumption for coordination by changing event to sink distance and other

network parameters. In energy consumption scenario, 200 nodes are deployed randomly in network

field.

Fig. 2.11 shows slight increase in Ec. It is the natural result of the Fig. 2.8 since more nodes are

performing clustering operations due to increase in event radius.

As shown in Fig 2.12, control signal transmissions increase since more nodes join clustering as

network density rises. If we raise the CR transmission range, more nodes become eligible and try

to form cluster. Hence, there is slight increase in total consumed energy especially for Des greater

than 30 m as shown in Fig. 2.13.
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Figure 2.13: Ec (mJ) vs. Des (m) for different r (m) when R = 20 m and N = 200.
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Figure 2.14: Average energy consumed per node(µJ) vs. R (m) (N = 200 and r = 15 m)

We also perform simulations to study the energy consumption of the nodes to form clusters

during an event process that is generated at X = 50 m and Y = 50 m. 200 CR nodes and 20 PU nodes

are distributed randomly and there are 10 licensed channels. Transmission ranges of PU and CR are

30 and 15, respectively. According to this setup, average energy consumed per event by a node in
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Figure 2.15: Average connectivity per cluster vs. r (m) (N = 200 and R = 20 m)

ESAC is less than SOC as shown in Fig. 2.14 since SOC forms clusters in the entire region and it

is more prone to re-clustering due to dynamic radio environment. SOC re-clustering rate is taken as

0.2 in our simulations. In ESAC, clusters are formed in the corridor between event and sink and not

maintained after the event. ESAC uses network resources when communication exists in the region

between event and sink, hence, our protocol is more appropriate in terms of energy consumption for

sensor networks which are event based systems.

Connectivity of clusters is an important metric for valid cluster formations. We define the cluster

connectivity as the the number of two-hop nodes that cluster-heads can communicate with by its

members through cluster channel normalized by total eligible nodes in the network. Our algorithm

aims to maximize the number of two-hop neighbors which are the members of neighbor clusters

having common channels with the cluster-head. In this simulation setup, event is generated at

X=100 m and Y=50 m, CR transmission range is varied during simulation. Fig. 2.15 shows that our

algorithm performs better than the SOC algorithm if it is applied in ESAC configuration. In other

words, not considering two-hop neighbors in ESAC results in degradation in connectivity. The

condition of maximizing accessible two hop members for connectivity make ESAC performance

better than SOC algorithm used in ESAC configuration.
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Chapter 3

ON THE EFFECTS OF NETWORK CODING IN COGNITIVE RADIO SENSOR

NETWORKS

The integration of cognitive radio module with sensor nodes have revealed a new networking

paradigm, i.e., cognitive radio sensor networks [4]. The challenges posed by sensor networks are

amplified by the union with cognitive radio capability. Network coding is a novel technique improv-

ing capacity by combining multiple flows into one flow. In this chapter, we investigate the effects

of network coding in cognitive radio sensor networks. We consider event-driven communication

scenario for CRSN operation. In our simulations, CRSN benefit from the network coding technique

to facilitate energy-efficient and reliable many-to-one communication.

3.1 Introduction

Demand on wireless communication has revealed the inefficient use of the electromagnetic ra-

dio spectrum due to the fixed frequency assignment approach. This situation triggered the use of

dynamic spectrum access (DSA) schemes in wireless communications. DSA enabling technology

is cognitive radio [2, 3, 39]. With the cognitive radio (CR) capability, wireless nodes can detect

the spectrum vacancies, and utilize these radio frequencies for communication. The unique features

of CR capability overcome the spectrum scarcity challenge and increase the spectrum utilization

efficiency.

The adoption of cognitive radio capability in sensor networks introduces a new networking

paradigm called Cognitive Radio Sensor Networks (CRSN) [4]. Sensor nodes sense the spectrum to

determine the vacant channels. They have the capability to change the spectrum parameters after de-

termining the communication channel. These operations are the vital tasks of the cognitive cycle [3].

Cognitive capability of wireless sensor nodes enable opportunistic access to the spectrum. Improve-

ment on spectrum utilization matches the unique requirements of resource-constrained multi-hop
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wireless sensor networks (WSN). Multiple channel usage availability of CRSN nodes overcomes

the problem of spectrum scarcity due to the dense deployment of sensor networks. These features

show the communication potentials and the challenges of CRSN. Furthermore, they point out that

CRSN stands as an promising and important networking architecture.

There is an emerging body of studies on CRSN. Recent studies focus on channel management

schemes in an efficient manner [6], transport layer in CRSN [7], channel assignment schemes [5],

wideband spectrum sensing [40], packet size optimization [8], power and rate adaptation for maxi-

mization of information theoretical capacity [9], delay performance analysis [10]. However, to the

best of our knowledge, no attempt has yet been made to investigate the effects of network coding in

cognitive radio sensor networks.

Low-processing ability and energy-constraint challenges are the two key challenges of wireless

sensor networks. The cognitive capability of the sensor nodes in CRSNs amplifies the challenges

owned by WSN due to DSA capability. A CRSN node can not interfere with the communication

of primary users. Packet loss due to spectrum mobility is an important challenge among them.

Furthermore, the communication between nodes can be interrupted due to spectrum sensing and

spectrum management issues raise due to DSA capability. Network coding is a novel technique to

increase reliability and throughput in wireless networks. In this chapter, we apply network coding

technique to observe the effects on the reliability of the event-to-sink communication and the energy

consumption for this communication. Event readings of the sensor nodes are combined in the way

to the sink by intermediate nodes between the event and the sink. While the generated packets in the

event region are transmitted to the sink, the intermediate nodes opportunistically listen the channels

in order to receive them for network coding operation. Thus information extent of the packets

increases as packets are transmitted in multi-hop manner as they get close to the sink. However, as

the packet extent increases by mixing more source packets, the decoding complexity increases. If

information extent of the packet is low, then the network coded packets may be redundant such that

some packets are linearly dependent.

In this chapter, we investigate the response of CRSN in terms of energy efficiency and reliability

when using network coding. Network coding is a well investigated technique for communication

networks [41, 42, 43, 44]. It has been suggested to achieve max-flow capacity for multicast commu-
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Figure 3.1: Abstraction of a sensor network scenario where multiple nodes send packets to the sink.

nication [41]. The network coding studies can be divided into theoretical [43, 44], simulation-based

[53, 54], and implementation based [46] classes. None of these works studies the applicability

of network coding in CRSN taking into account the challenges of cognitive radio capability and

the resource-constraint of sensor network challenges. Our chapter relies on simulation-based study

scrutinizing the positive and negative effects of network coding and investigating the applicability

of this novel technique with respect to energy efficiency and reliability.

In our setup, CRSN adopts event-driven scenario where readings of the sensor nodes in the

event region are transmitted in multi-hop manner to the sink as shown in Fig. 3.1. During the the

data transmissions, nodes choose best available channel among the vacant bands. Furthermore, in

our scenario, the communication occurs in the region between the event and the sink. Every node

in this region searches for coding opportunity. Due to the broadcasting nature of wireless CRSN

nodes, some of the event nodes and the intermediate nodes can exploit the coding opportunities.

However, the intermittent connection of CRSN imposes a dynamic behavior on network coding

since the incoming links of an intermediate node may fail due to the changes in channel availability.

This situation has effects on energy-efficiency and latency. Based on the explained scenario, we

investigate how much network coding is beneficial for CRSN architecture.

The remainder of this chapter is organized as follows. In Section 3.2, the system model is

represented. Background information about network coding is provided in Section 3.3. The effects

of network coding is explained by simulation study in Section 3.4.
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3.2 System Model

3.2.1 Network Model

A cognitive radio sensor network consists of two types of network. CRSN nodes form secondary

network, and primary users (PUs) form the primary network. PUs use the licensed channels without

any restriction, however, cognitive radios opportunistically access the spectrum bands with their

DSA capabilities. Data gathering is triggered by the event. Information flow is from event to sink

through the intermediate nodes.

We consider a CRSN network with N stationary CRSN nodes. M number of non-overlapping

orthogonal licensed channels are potentially available for a CRSN node in the network. These

channels have the same bandwidth. The communication environment is assumed to be collision-

free. CR-enabled sensor nodes periodically scan and identify available channels in the frequency

spectrum. The network has one sink to collect the event readings in a timely and robust fashion.

Time is slotted in the cognitive radio sensor network operation. Time slots have two mini slots.

The first one is for the spectrum sensing, and the second one is for data transmission and reception.

The time slot for transmission is sufficient for packet transmission. One data symbol is transmitted

in one time slot duration Ts. Hence, a node can transmit its packet if the channel is idle. Nodes can

access the decided channel using CSMA/CA medium access protocol for wireless medium. Sensor

nodes sense the spectrum bands without any error.

3.2.2 Traffic Model

The traffic in the CRSN is event-driven. An event in the monitoring area triggers the communi-

cation. The nodes in the network are idle at most of the time, however, they become active abruptly

after the occurrence of an event. In our scenario, an event affecting the region with the event radius

R is considered for the event model. The nodes within this radius sample the event and generate

independent packets. These packets are conveyed to the sink in multi-hop manner in multi-channel

environment. During the transmissions of the packets, some of them can not reach to the sink due

to loss, hence they need to be transmitted again by the source. Primary user transmit data with

probability pt without any failure on any operating channel.
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A packet generated by an event detecting node i is denoted by xi. Event detecting nodes use

geographical routing for the transmission of the data from the event to the sink. We exploit the

broadcast nature of the CRSN nodes.The source symbols generated by the event detecting nodes

are the data packets. A CRSN node sends its packet when the channel is idle without any collision.

Symbol and packet are used interchangeably in this chapter.

The packets at the source nodes are directed to the sink. The information flow is always toward

to the sink [24]. During this flow, communicating nodes contend for the medium at time slots

reserved for communications. We assume that there is no collision for the contention.

The computation of data symbols is less energy consuming operation than the transmissions of

data symbols. Hence, we use network coding for processing the received data symbols as explained

in Section 3.3. In this operation, it is sufficient for the sink node to gather innovative packets whose

number is the same with the event detecting nodes. This coding make the network more robust since

the sink only needs gathering a number of innovative packets.

Encoding is performed by some source nodes which are at the intersection of the different source

flows. Intermediate nodes between event and sink also perform encoding operations. Decoding is

only performed by the sink node.

3.3 Network Coding

In this section, we present brief information about network coding in the literature. Network

coding is a new technique for information flow in networks [41]. Routers in the wireline networks

are allowed to mix the incoming packets and generate new set of encoded packets. If sufficient num-

ber of encoded packets arrive at the destination, destination nodes decode these packets according

to Gaussian elimination method to achieve minimum-cut max-flow capacity in multicast networks

[41]. In [42], the authors presented an algebraic framework for network coding to achive capacity

in networks. Furthermore, the authors in [43] proposes linear codes by decreasing encoding and

decoding complexity by achieving capacity. Ho et al. proposes the coefficients of native packets

in encoded packets to be random over a finite field [44]. This randomness offers the benefit of de-

centralized operation. Success probabilities of random linear network coding is also investigated

and as the field size increases, the probability of the encoded packet becoming an innovative packet
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increases since the random numbers are generated from a greater set.

Network coding has been performed in wireless networks recently. The broadcast nature of the

wireless communications provide benefits for network coding since nodes opportunistically listen

the packets of neighbors to generate encoded packets. Katti et al. use opportunistic listening in

wireless routers and present COPE architecture for wireless mesh networks. Mixing the incoming

packets increases the information content of the encoded packets. COPE is one of the first practical

implementation of the network coding for wireless networks. Furthermore, there has been efforts

to minimize the energy-per-bit by utilizing network coding in wireless networks. In [47], authors

investigate the network coding advantage over routing and study the minimum energy required for

multicast by linear programming. Network coding is also used in content distribution [48, 49],

broadcasting [50, 51] and unicast [52] applications for different types of wireless networks.

Network coding has been recently implemented in sensor networks [53, 54, 55]. In these works,

network coding is used for energy efficiency and reliability in sensor networks. Furthermore, there

are not enough research on network coding in cognitive radio networks. In [56], network coding

technique is implemented to improve the throughput of the secondary networks with minimum

energy per bit consideration under interference and signal to interference plus noise constraint.

3.3.1 Practical Network Coding

We apply the network coding technique proposed by Chou et al. [57]. The authors consider

the real packet networks where packets are subject to random delays and losses. They propose

a network coding scheme that is not requiring a centralized knowledge about the network. This

property perfectly matches the decentralized CRSN regime.

The network can be represented by directed graph G= (V , E) where V is the set of nodes or

vertices and E is the set of edges that interconnect some of these nodes. An edge from node u to

node v can be shown as e = (u, v), and v = in(e) and u = out(e). The edges directed to node

v carry symbols to combined. If an outgoing symbol from an edge e′ is denoted by y(e′), then the

encoded symbol for node v is

y(e) =
∑

e′:out(e′)=v

me(e
′)y(e′) (3.1)
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wherem(e′) is the encoding coefficient of the input symbol y(e′). In vector form, the local encoding

vector can be represented as m(e) = [me(e
′)]e′:out(e′)=v.

The symbol on any edge is a linear combination of h source symbols. Hence, the global encoding

vector along an edge e is denoted by

y(e) =
∑

e′:out(e′)=v

me(e
′)y(e′) =

h∑
i=1

gixi (3.2)

. The total received symbol coefficient matrix R can be represented as

R =


g11 . . . g1h

...
. . .

...

gh1 . . . ghh



x1

...

xN

 = Gx. (3.3)

If the sink receives h independent encoded symbols, the matrix G is invertible. It decodes

the information successfully by taking the inverse of G. The decoded symbols can be found as

x = G−1R.

The encoding coefficients are generated randomly from a finite field. If the field size is sufficient

enough, the sink can recover the information with high probability. Hence, the field size is important

for decodability.

In the packet format, the encoded packet must contain the coefficients of each source symbols

to specify the content of the packet. However, this means simply an overhead. For example, if the

number of source symbol h is 10, and the field size is 28, then the overhead is 10 bytes. Since the

packet size in sensor networks is small, the overhead may be excessive and it may deteriorate the

energy efficiency.

In our scenario, an event triggers h nodes to create packets which are independent of each other.

All h sessions are directed to same destination, i.e., the sink. Hence, our scenario is an application

of inter-session network coding. The communication is the union of multiple unicast flows having

the same destination.

3.4 Performance Evaluation

In this section, we present the simulation results on the performance of network coding in CRSN.

We develop a simulation environment using MATLAB to evaluate the performance. We investigate
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the performance of CRSN with and without network coding.

3.4.1 Simulation Environment

In our setting, a node having a packet transmits it to the one-hop neighbors closer than itself

to the sink. A channel is randomly selected from the vacant channel set of the transmitter. In our

simulation setup, secondary nodes are randomly distributed in a 50 m x 50 m area. Also, 20 primary

users are randomly distributed in the area. There are 5 channels in the system, and a channel is

assigned randomly to each primary user.

3.4.2 Energy-Efficiency

In this subsection, we investigate the effect of network coding on energy consumption. The

number of sources, h, changes according to the event radius R. The effect is investigated according

to the changes in the transmission range, the event radius, and the distance between event and sink.

In Fig. 3.2, we investigate the effect of cognitive radio transmission range on total energy

consumption with and without network coding. An event with event radius 10 m is generated

at (25 m, 25 m). In network operation, event detecting nodes send their messages to the one-hop

neighbors closer to the sink over randomly selected vacant channel. Some messages are not received

due to packet erasure probability. As seen in Fig. 3.2, as we increase the transmission range, total

energy consumption increases. The increase in the range results in more nodes to hear about the

transmission. Hence, nodes have to transmit more packet. Network coding has less total energy

consumption since it benefits from the encoding operation such that a node can combine different

flows into one flow which results in less energy consumption.

In Fig. 3.3, we investigate the effect of event radius, R. The event is generated at (25 m, 25

m). As the event radius increases, more nodes become source nodes. This increase is the cause

of overhead since more bits are reserved to represent the coefficients. In Fig. 3.3, greater event

radius results in more source packets and more packet transmissions which causes increase in energy

consumption. If the event radius is less than R = 7 m, the encoding overhead causes more energy

consumption, therefore, total energy consumption in network coding scenario is greater than the

scenario without network coding. As event radius increases, the increase in source message results
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Figure 3.2: Total energy consumption (mJ) with respect to r (m) with and without network coding.
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Figure 3.3: Total energy consumption (mJ) with respect to R (m) with and without network coding.
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in more message transmission beyond the network coding overhead. This increase causes increase

in overhead, however, there are more transmission effort for data delivery to recover all the source

symbols. Hence, more energy is consumed for the scenario without network coding for event radius

greater than 7 m. Since network coding decreases the transmission by combining packets, there is

less energy consumption when using network coding as compared to the case without employing

network coding.

In Fig. 3.4, event radius is 10 m and transmission range r is 20 m. As the event to sink dis-

tance increases, more nodes join the communication process. Hence, the total energy consumption

increases. With network coding, only h independent messages are necessary to recover source

messages. On the other hand, without network coding some incoming packets are the same and the

nodes transmit duplicate messages unnecessarily. This redundancy causes more energy expenditure.
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Figure 3.4: Total energy consumption (mJ) with respect to respect to Des (m) with and without
network coding.
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3.4.3 Packet delivery ratio

In sensor networks, high packet delivery ratio is highly desirable with the limited energy re-

source. Hence, network coding effect on delivery ratio is investigated with respect to transmission

range. In this simulation setup, the packet erasure probability of any link for all channel is set to

be 0.3. Network coding provides more reliable communication in average since it is sufficient to

recover h number of linearly independent packets. However, in some cases, if the sink does not

receive the sufficient packets, it cannot recover the source messages and the reliability becomes

zero. In our simulation settings, since the channel erasure probability is 0.3, we do not observe

this all-or-nothing effect much and the source symbols are mostly recovered. The effect is observed

only in smaller CR transmission range cases. As transmission range of CR increases, more packets

delivered to the sink. Hence, the packet delivery ratio increases. Furthermore, as the transmission

range increases, more coding opportunity occurs and more packets are mixed at the encoding nodes.

This increases the linear independency among the encoded packets and it has a positive effect on

reliability.
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Figure 3.5: Packet delivery ratio per event with respect to transmission range.
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Chapter 4

ON THE MAXIMUM COVERAGE AREA OF WIRELESS NETWORKED

CONTROL SYSTEMS WITH MAXIMUM COST-EFFICIENCY UNDER

STABILITY CONSTRAINT

The integration of wireless communication and control systems revealed wireless networked

control systems (WNCSs). One fundamental problem in WNCSs is to have a wide coverage area.

For the first time in the literature, we address this problem and we obtain the maximum coverage

area by solving an optimization problem. In this chapter, we consider a WNCS where the output

sensor measurements are transmitted over separate multi-hop wireless ad-hoc sensor subnetworks.

We employ both homogeneous and heterogeneous multi-hop wireless ad-hoc sensor network mod-

els. The observation process is divided into N parts and the system state is estimated using the

Kalman filter and we present the critical arrival probability for a sensor measurement packet such

that if the packet arrival probability is larger than the critical value, it is guaranteed that the expected

state estimation error covariance is bounded, and hence the WNCS is stable. We find the optimum

hop-diameter of a multi-hop wireless ad-hoc subnetwork having maximum cost-efficiency under the

constraint of the stability of the WNCS. Furthermore, under this constraint, we derive the maximum

total coverage area of both the homogeneous and heterogeneous wireless ad-hoc sensor subnetworks

with maximum cost-efficiency. The numerical analyses show that the maximum total coverage area

can be increased by appropriately adjusting the number of sensors, the successful packet transmis-

sion probability between relay nodes, the transmission range of network nodes, and the eigenvalues

of the system matrix.

4.1 Introduction

Recent developments on micro sensor integrated systems have enabled combination of commu-

nication and control systems. This integration revealed networked control systems (NCSs) where
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the communication system enables the sensor observation delivery [59, 60]. The control system

components such as sensors, actuators and plants with wireless communication capabilities consti-

tute a wireless networked control system (WNCS). The observations of the sensors deployed over a

wide area are fed to the WNCS through a wireless network. The WNCSs have a wide application

area such as smart grid, automatic management and navigation systems [61].

For the WNCS applications requiring large coverage areas, e.g., space and terrestrial explo-

ration, navigation systems, the maximum achievable area of the wireless network which ensures the

stability of the WNCS is crucial. To the best of our knowledge, no attempt has yet been made to find

the maximum coverage area of the wireless network under the stability of the WNCS constraint.

For the first time in the literature, we address this problem and obtain the solution by solving an

optimization problem [62]. Although in [63, 64], the authors investigate the maximum coverage

area problem for wireless networks, they do not consider the stability of a WNCS which utilizes

these wireless networks. In this chapter, we find the maximum coverage area of a wireless network

having maximum cost-efficiency by considering the stability of the WNCS.

In our scenario, wireless sensor nodes are employed to observe the system behavior. We con-

sider that the sensor measurements are transmitted to the controller over multi-hop wireless ad-hoc

sensor networks. We employ both a homogeneous and a heterogeneous multi-hop wireless ad-

hoc sensor network models. In the homogeneous network, each node is able to communicate with

each other. However, in the heterogeneous network, cognitive radio sensor networks (secondary

networks) coexists with licensed networks (primary networks) and the secondary network nodes

cannot communicate with the primary network nodes. Cognitive radio sensor networks enable the

unlicensed secondary users (SUs) to utilize the spectrum holes unoccupied by the licensed primary

users (PUs) so that the spectrum resource utilization can be significantly increased [65]. Further-

more, two key properties of the multi-hop wireless ad-hoc networks are that they can be employed

in a fast and easy way and very large coverage areas can be formed by means of their multi-hop

property. However, measurement packets may be lost due to the unreliable wireless channel charac-

teristics caused by the noise, collision, and congestion. Since the WNCSs rely on the observations

of the sensors to estimate the state of the system, any loss of the sensor measurements degrades the

stability of the WNCS.
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We use the Kalman filter for the state estimation of the system. The Kalman filtering is a well

investigated technique in control theory [66, 67]. In the classical sense, the Kalman filter uses all

the observation data provided by the sensors for the state estimation. However, for the WNCSs, the

observations may be lost due to wireless channel conditions as stated above. In [66], the Kalman

filter is studied when the observations are intermittent; nevertheless, the authors do not consider

statistical convergence behavior. In [67], the authors investigate the state estimation process, in

which the sensor measurements are received or lost completely in a stochastic manner, and they

show that if the probability of arrival of an observation is above a threshold, the expectation of the

state estimation error covariance is bounded. In [68], the authors consider two sensors, and the

measurement of each sensor is independently received or lost by the Kalman filter.

We present the general case of the system presented in [68]. The observation process is divided

into N parts and each part is independently and randomly received or lost by the Kalman filter.

Thus, we consider N separate multi-hop wireless ad-hoc subnetworks for our scenario and each

subnetwork includes sensor nodes. Based on the derivations presented in [68], we derive the crit-

ical arrival probability for the measurement of each sensor such that if the arrival probability of a

sensor measurement is larger than the critical value, it is guaranteed that the expectation of the state

estimation covariance is bounded and the system is stable; otherwise it is not stable.

The packet arrival probability decreases as the number of hops during the packet transmission

increases. The maximum hop number of the shortest paths between any two node pairs in the

network is the hop-diameter of the network. We show that there exists a critical hop-diameter of a

subnetwork such that if the hop-diameter of the subnetwork is less than the critical hop-diameter,

the WNCS is stable. Another significant parameter for the WNCS is the cost-efficiency of the multi-

hop wireless network. Based on the solution of an optimization problem, we find both the optimum

hop-diameter and the maximum coverage area of the multi-hop wireless ad-hoc networks having

maximum cost-efficiency under the constraint of the stability of the WNCS.

The chapter is organized as follows. In Section 4.2, we describe the Kalman filtering with partial

observation losses. In Section 4.3, we present both the homogeneous and heterogeneous multi-

hop wireless ad-hoc sensor network models and investigate the connectivity of these networks. In

Section 4.4, we derive the maximum coverage area of the homogeneous and heterogeneous multi-
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hop wireless ad-hoc sensor networks having maximum cost efficiency under the constraint of the

stability of the WNCS. In Section 4.5, we present the numerical analysis of both optimum hop-

diameter and maximum coverage area of multi-hop wireless ad-hoc sensor networks.

4.2 Kalman Filtering with Partial Observation Losses

In a WNCS, the Kalman filter gathers sensor measurements from distinct sensors and each

sensor node encodes its own observation into a single packet. However, some of the packets might

be lost during the wireless data transmission. In [68], the authors present a state estimation process

with partial observation losses considering that the observation process is divided into two parts

which are transmitted over different wireless channels by two different sensor nodes. In this section,

we present a general state estimation process, i.e., the observation process is divided into N parts,

with partial observation losses using the Kalman filter. In other words, the Kalman filter uses the

output observations of N independent sensors.

We consider a general multiple-input multiple-output (MIMO) discrete time linear time-invariant

system which is described by the following system equations

xt+1 = Axt + wt,
y1,t

...

yN,t

 =


C1

...

CN

xt +


v1,t

...

vN,t

 (4.1)

where xt ∈ Rn is the system state vector, wt ∈ Rn is the system disturbance vector, A ∈ Rn×n

is the system matrix, y1,t ∈ Rm1 , y2,t ∈ Rm2 , . . . , yN,t ∈ RmN are sensor measurement output

vectors, v1,t ∈ Rm1 , v2,t ∈ Rm2 , . . . , vN,t ∈ RmN are the measurement noise vectors, and

C1 ∈ Rm1×n, C2 ∈ Rm2×n, . . . , CN ∈ RmN×n are the output matrices. The subscript t indicates

the time index. Also note that the boldface symbols in this chapter represent vectors. We define

yt = [y1,t; y2,t; . . . ; yN,t], vt = [v1,t; v2,t; . . . ; vN,t], and C = [C1; C2; . . . ; CN ]. Both wt

and vt are assumed to be Gaussian random vectors with zero mean and their covariance matrices are

Q ≥ 0 andR > 0, respectively. R is defined byR =


R11 . . . R1N

...
. . .

...

RN1 . . . RNN

 whereRij = E[vi,tv
′
j,t].
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Figure 4.1: The block diagram of the WCSN.

Furthermore, we assume that the system (A,C) is observable; hence, the Kalman filter converges

without sensor measurement losses.

The sensor measurement packets y1,t,y2,t, . . . ,yN,t are encoded independently and transmitted

over different multi-hop wireless ad-hoc sensor subnetworks. We use random variable γi,t which

indicates whether the measurement packet of ith sensor, yi,t, is correctly received during a given

sample period. We assume γi,t for i = 1, 2, . . . , N are independent Bernoulli random variables with

Pr{γi,t = 1} = λi and Pr{γi,t = 0} = 1−λi. That is, if γi,t = 1, then the measurement packet yi,t

is correctly received; otherwise, the packet is lost during the wireless data transmission. The arrival

probabilities of the sensor measurements, i.e., λi for i = 1, 2, . . . , N , represent the percentage of

the sensor measurement packets that are correctly received by the Kalman filter. Furthermore, λi for

i = 1, 2, . . . , N are proportional to the throughput of the communication link between the ith sensor

and the Kalman filter. Thus, the total network throughput of the multi-hop wireless ad-hoc network

can be defined as (λ1, λ2, . . . , λN ), which depends on the channel gains, the network resource

allocation, the network traffic, and the number of hops taken by a packet to reach the Kalman filter.

The block diagram of the WNCS for our scenario is shown in Fig. 4.1. Note that the observation
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process is stochastic due to the random measurement losses during the packet transmission process.

Furthermore, since we assume that γi,t and γj,t′ for i 6= j are independent for every t and t′,

the sensor measurement packets yi,t for i = 1, 2, . . . , N can be independently lost or received.

Therefore, the loss of a measurement packet is equivalent to the reception of a measurement having

an infinite noise variance. Then, for the measurement noise vectors vi,t, we define the following

conditional probability distribution function

fv|γ(vi,t|γi,t) ∼


N (0, Rii), if γi,t = 1

N (0, σ2
i I), if γi,t = 0.

(4.2)

Then, we take the limit as σ2
i → ∞ to derive the Kalman filter equations in the case of random

partial losses.

Let us define the vectors γt , [γ1,t; . . . ; γN,t], γt0 , {γ0, . . . ,γt}, and yt0 = {y0, . . . ,yN}.

Then, we define

x̂t|t , E[xt|yt0,γt0],

Pt|t , E[(xt − x̂t|t)(xt − x̂t|t)
′|yt0,γt0],

x̂t+1|t , E[xt+1|yt0,γt0],

Pt+1|t , E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|yt0,γt0].

(4.3)

For the Kalman filter, the time update and the observation processes are independent. Hence,

for our scenario, the time update process of the Kalman filter is formulated based on the classical

Kalman filter as x̂t+1|t = Ax̂t|t and Pt+1|t = APt|tA
′+Q. However, since the observation process

is stochastic, the classical Kalman filter equations cannot be directly used for the measurement

update process. Based on the results presented in [68], the state estimation error covariance Pt+1|t

can be expressed in terms of Pt|t−1 as Pt+1|t = g(Pt|t) where g(X) is defined in (4.4), where

Di,j,...,k = [Ci;Cj ; . . . ;Ck], Fi,j,...,k = Cov[vi,t;vj,t; . . . ;vk,t]. Because of the stochastic nature

of the Kalman filter updates, a unique deterministic state estimation error covariance cannot be

obtained in the steady state. Therefore, we consider the statistical properties of the state estimation

error covariance of the Kalman filter.

In [67], the authors investigate the state estimation process, in which the sensor measurement

packet is received or lost completely, and they show the existence of a critical packet arrival prob-
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g(X) = AXA′ +Q

− γ1,tγ2,t . . . γN,tAXC
′(CXC ′ +R)−1CXA′

− (1− γ1,t)γ2,t . . . γN,tAXD
′
2,...,N (D2,...,NXD

′
2,...,N

+ F2,...,N )−1D2,...,NXA
′

− γ1,t(1− γ2,t)γ3,t . . . γN,tAXD
′
1,3,...,N (D1,3,...,NXD

′
1,3,...,N

+ F1,3,...,N )−1D1,3,...,NXA
′

− (1− γ1,t)(1− γ2,t)γ3,t . . . γN,tAXD
′
3,...,N (D3,...,NXD

′
3,...,N

+ F3,...,N )−1D3,...,NXA
′

− γ1,tγ2,t(1− γ3,t)γ4,t . . . γN,tAXD
′
1,2,4,...,N (D1,2,4,...,NXD

′
1,2,4,...,N

+ F1,2,4,...,N )−1D1,2,4,...,NXA
′

. . .

− (1− γ1,t)(1− γ2,t) . . . (1− γN−1,t)γN,tAXD
′
N (DNXD

′
N + FN )−1DNXA

′.

(4.4)

ability λc such that E[Pt+1|t] is bounded if λ > λc and E[Pt+1|t] becomes infinite as t → ∞ if

λ < λc. In addition, in [68], it is shown that for a state estimation process with random packet

losses considering two measurement sensors, there is a critical packet arrival probability λc1 of the

measurement of the first sensor given the packet arrival probability λ2 of the second sensor. For the

general case, based on the derivations and results given in [68], if (A,Q) is controllable and (A,C)

is observable, for a fixed set of (λ1, λ2, . . . , λi−1, λi+1, . . . λN ), if λi ≥ λci , we can obtain positive

semidefinite matrices S ≥ 0 and V ≥ 0 such that 0 ≤ S ≤ limt→∞ E[Pt+1|t] ≤ V , ∀E[P0] ≥ 0

where S = (1 − λ1) . . . (1 − λN−1)ASA′ + Q and V = E[g(V )]. Therefore, the WNCS stable,

if the state estimation error covariance is bounded. Furthermore, we know that Pt+1|t is bounded

if and only if E[Pt+1|t] is bounded. Thus, for a fixed set of (λ1, λ2, . . . , λi−1, λi+1, . . . λN ), the

WNCS is stable if and only if λi ≥ λci .

If the output matrices C1, C2, . . . , CN are square and invertible A has a single unstable eigen-

value, the upper and lower bounds for limt→∞ E[Pt+1|t] coincide and the critical packet arrival
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probability of the measurement packet of the ith sensor becomes

λci = max

{
0, 1− 1

α2(λ1, λ2, . . . , λi−1, λi+1, . . . λN )

}
(4.5)

where α = maxi |σi| and σi is the ith eigenvalue of A [68]. We discuss the appropriate selection

of the set of (λ1, λ2, . . . , λN ) in Section 4.4 for a cost-efficient WNCS with the maximum coverage

area under stability constraint.

4.3 Multi-Hop Wireless Ad-Hoc Sensor Network Models and Connectivity

For the WNCS, we employ multi-hop wireless ad-hoc sensor networks. The first advantage of

multi-hop wireless ad-hoc sensor networks is that they can be employed in a fast and easy way,

which is the reason why they are named “ad-hoc networks” [69]. The second advantage of this

network model is that very large areas can be covered by means of the multi-hop property. How-

ever, since the wireless channels are unreliable, as the number of hops increases during the packet

transmission, the packet arrival probability decreases.

In this chapter, we consider both a homogeneous and a heterogeneous multi-hop wireless ad-hoc

sensor networks which are described in detail in the following subsections.

4.3.1 Homogeneous Network Model

We first consider a homogenous multi-hop wireless ad-hoc sensor network model. In a homo-

geneous network, each node is able to communicate with each other. For our scenario, we assume

that there are N sensor nodes and each sensor transmits its measurement packet to the Kalman fil-

ter over a multi-hop wireless ad-hoc sensor subnetwork. In addition, it is assumed that the nodes in

each sensor subnetwork are independently distributed according to a two dimensional homogeneous

Poisson point process having a density ρ0. Each sensor subnetwork is considered as separate from

each other. In Fig. 4.2, the multi-hop wireless ad-hoc sensor network model used in this chapter

is shown where Gi denotes the ith subnetwork including the ith sensor node. We consider that the

transmission ranges of all sensor and relay nodes are the same and denoted by r0. That is, if the

distance between two nodes, r, satisfies r ≤ r0 condition, they are able to communicate directly via

a wireless link.
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Figure 4.2: The model of the homogeneous multi-hop wireless ad-hoc subnetworks.

A very fundamental and significant property of multi-hop wireless ad-hoc sensor networks is

the connectivity. To establish a fully connected ad-hoc sensor network, a wireless multi-hop path

from each node to each other node must exist. According to the results in [69], assuming that the

nodes in the network are distributed according to a two dimensional Poisson point process, there is

a critical node density ρ∗0 such that if the node density of the network is larger than ρ∗0, the network

is connected with a certain probability. The critical node density ρ∗0 is given by

ρ∗0 =
ln
[
1− P 1/mi

1

]−1

πr2
0

(4.6)

for i = 1, 2, . . . , N , where P1 is the probability that a multi-hop wireless ad-hoc network is 1-

connected, i.e., P1 = Pr{Gi is 1−connected}, mi is the total number of nodes in the subnetwork

Gi, and r0 is the transmission range of a node. A network is said to be 1−connected if for each pair

of nodes, there exist at least 1 mutually independent link that connects them. Note that from (4.6),

for a given number of nodes, if we set P1 = 1, the node density of the network becomes infinite

which is not realistic. However, if we set the probability that Gi is 1−connected as P1 = 0.99,

it can be said that the Gi subnetwork is almost surely connected. Therefore, in this chapter, we

consider that the subnetwork Gi is 1−connected with probability P1 = 0.99 and the subnetwork
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Figure 4.3: The model of the heterogeneous multi-hop wireless ad-hoc subnetworks.

Gi is almost surely connected.

4.3.2 Heterogeneous Network Model

Next, we consider a heterogeneous multi-hop wireless ad-hoc sensor network model in which

cognitive radio ad-hoc networks (secondary networks) coexists with licensed networks (primary

networks). In such a heterogeneous network, the secondary network nodes, i.e., Secondary Users

(SUs), cannot communicate with the primary network nodes, i.e., Primary Users (PUs). Cognitive

radio ad-hoc networks enable the unlicensed secondary users to utilize the spectrum holes unoc-

cupied by the licensed primary users so that the limited spectrum resource is more efficiently used

[65]. For the analysis presented in this part, we assume that the sensor measurements are transmitted

to the Kalman filter over the cognitive radio multi-hop wireless ad-hoc sensor subnetworks.

In this part, we assume that the primary users are distributed according to two dimensional ho-

mogeneous Poisson point process having a density ρp. We consider that the transmission ranges

of all primary network nodes are the same and denoted by rp. Furthermore, we assume that the

secondary network nodes, i.e., cognitive radio network nodes, are distributed according to two di-
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mensional homogeneous Poisson point process having a density ρs. The transmission ranges of all

secondary network nodes are the same and denoted by rs. The connectivity of cognitive radio net-

works is more troublesome than the connectivity of homogeneous networks. That is, the secondary

cognitive radio network is connected if each node pair SUi and SUj in the cognitive radio network

satisfies the following conditions:

1. The distance between SUi and SUj , r, satisfies r ≤ rs condition.

2. Both SUi and SUj are outside the transmission range rp of every active sender in the primary

network.

3. There is no active primary network receiver in the transmission range rs of SUi and SUj .

The first condition guarantees that there is a direct wireless link between the SUs. The second

condition ensures that the active PUs do not generate any interference to SUi and SUj so that two

SUs can utilize an available channel to communicate with each other. The third condition enables

that the communications between two SUs does not interfered by the active PU receivers. In Fig.

4.3, the heterogeneous multi-hop wireless ad-hoc network model used in this chapter is shown where

Gi denotes the ith cognitive radio subnetwork including the ith sensor node.

In [70], the authors show that there exists a critical node density ρ∗s such that if the node density

of the secondary network is larger than ρ∗s, the secondary network percolates at all time, i.e., there

exists always an infinite connected component in the secondary network under the time-varying

spectrum availability. To guarantee the connectivity of the secondary network, we use the upper

bound of the critical node density which is given by [70]

ρ∗s =
5

r2
s

ln

[
1−

√
(1− (

√
6/3)Λ)e(|Re|+|R′

e|)Π1ρp

]−1

(4.7)
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where

Λ = (4Ld+ 2d+ 1)× (4Ld+ d) + (4Ld+ d+ 1)× (4Ld+ 2d)− 1

|Re| = (2 + 2drp/de)× (1 + 2drp/de)× d2

|R′e| = (2 + 2drs/de)× (1 + 2drs/de)× d2

L = dmax{rp, rs}/de

d = rs/
√

5.

We assume that each PU sender is associated with an independent and identically distributed (i.i.d.)

alternating renewal process, denoted by Sp(t), which alternates between two states: the ON state,

during which the PU is active; and the OFF state, during which the PU is inactive. Π1 in (4.7) is

defined as Π1 = Pr{Sp(t) = 1}. That is, Π1 can be considered as the expected activation rate of a

PU.

In the next section, to maximize the coverage area of a WNCS, we assume that the node densities

of the homogeneous and heterogeneous multi-hop wireless ad-hoc networks are the same as the

critical node densities ρ∗0 and ρ∗s, respectively.

4.4 Maximum Coverage Area of Cost-Efficient Networks Under Stability Constraint

In a multi-hop network, we can increase the coverage area by increasing the number of nodes

in the network. However, if the coverage is enlarged with an increase in the number of nodes, the

number of hops during the packet transmission between two distant nodes rises. Because of the

unreliable wireless channels, an increase in the number of hops during the packet transmission de-

creases the packet arrival probability, and the WNCS might become unstable as discussed in Section

II. Therefore, for a stable WNCS, the hop-diameter of the network becomes a critical parameter. In

the chapter, the hop-diameter of the subnetwork Gi is denoted by di.

In this chapter, the successful packet transmission probability between two nodes, which are

within the transmission range of each other, is assumed to be constant and the same for each trans-

mission process in the network and it is denoted by β. Therefore, the probability that the ith sensor

measurement is correctly received by the Kalman filter, i.e., λi, can be expressed as

λi = βMi , for i = 1, 2, . . . , N (4.8)
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where Mi is the number of hops taken by the packet transmitted by the ith sensor until it reaches

the Kalman filter. Mi depends on the routing protocol, network topology, and number of nodes in

the network.

Let the critical packet arrival probability of the ith sensor measurement be λci . Based on the

definition of the hop-diameter of a network, the maximum number of hop taken by a measurement

packet until it reaches the Kalman filter is less than or equal to the hop-diameter of the subnetwork.

Then, using (4.8), the critical-hop diameter of ith subnetwork is

dci = bln(λci )/ ln(β)c . (4.9)

That is, if the hop-diameter of the subnetwork Gi satisfies di ≤ dci condition, it is guaranteed

that the arrival probability of the packet transmitted by ith sensor is larger than the critical arrival

probability; hence, the WNCS is stable. However, if di > dci , the stability of the system is not

guaranteed. Since the hop-diameter depends on several factors such as topology, network size, node

locations, sensor communication range, and node density, it is difficult to find a upper bound for

the maximum number of nodes which ensures a given hop-diameter. Therefore, to guarantee the

stability of the control system, one can use lower bound for the maximum number of nodes in a

subnetwork given asmi(λ
c
i ) = dci +1 wheremi(λ

c
i ) denotes the number of nodes which guarantees

that the packet arrival probability is less than the critical value and the proof is straightforward.

If we consider only the stability criterion, for a given set of (λ1, λ2, . . . , λi−1, λi+1, . . . λN ), as

λci → 0, mi(λ
c
i ) → ∞, and hence the total coverage area of the ith subnetwork becomes infinite.

Indeed, it is irrational and cost-inefficient to place infinitely many nodes in a subnetwork including

a sensor node whose critical packet arrival probability is 0. That is, a decrease in λci decreases

the the importance of the subnetwork Gi, and when λci = 0, the measurements of the ith sensor

in Gi become unnecessary for the WNCS. Thus, for the maximum coverage area of the multi-hop

wireless network, it is not enough to consider only the stability of the WNCS. The cost-efficiency

of the multi-hop wireless network should also be considered. In other words, a multi-hop wireless

network for a stable WNCS might have infinite coverage area. However, such a multi-hop wireless

network is cost-inefficient. As a result, the selection of a set of packet arrival probabilities of the

sensor measurements, i.e., (λ1, λ2, . . . , λN ), affects the cost-efficiency of the multi-hop wireless

ad-hoc network.
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Since when λi → 0, mi(λ
c
i )→∞ and λimi(λi)→ 0, we can use λimi(λi) as the efficiency of

the ith subnetwork. Therefore, to find a cost-efficient multi-hop wireless ad-hoc network, we define

a cost-efficiency function as follows

f(λ1, . . . , λN ) = λ1m1(λ1) + · · ·+ λNmN (λN ) (4.10)

where mi(λi) is the number of nodes in the subnetwork Gi which guarantees that the packet arrival

probability is bounded above by λi and it is given by mi(λi) = bln(λi)/ ln(β)c + 1. Note that the

cost-efficiency function is the weighted sum of the number of nodes in the subnetworks.

maximize
λ1,...,λN

f(λ1, . . . , λN ) = λ1m1(λ1) + λ2m2(λ2) + · · ·+ λNmN (λN )

subject to λi < max

{
0, 1− 1

α2(1− λ1) . . . (1− λi−1)(1− λi+1) . . . (1− λN−1)

}
for i = 1, 2, . . . , N

(4.11)

Using (4.5), the set of (λ1, λ2, . . . , λN ) which both maximizes f(λ1, . . . , λN ) and ensures the

stability of the WNCS can be found by solving the optimization problem in (4.11). The solution of

(4.11) is given by

λopt
i = max{e− ln(β)−1, 1− α−2/N} (4.12)

for i = 1, 2, . . . , N , where (λopt
1 , λopt

2 , . . . , λopt
N ) denotes the optimum stable set having the max-

imum cost-efficiency. The solution given in (4.12) satisfies the stability constraint of the WNCS

and maximizes the cost-efficiency of the multi-hop wireless ad-hoc subnetworks. Then, using the

optimum set of packet arrival probabilities given in (4.12), the optimum hop-diameter of the ith

subnetwork having the maximum cost-efficiency is given by

dopt
i =

⌊
ln(max{e− ln(β)−1, 1− α−2/N})

ln(β)

⌋
. (4.13)

Furthermore, to guarantee the stability of the WNCS, we use the lower bound for the maximum

number of nodes in Gi, denoted by mi(λ
opt
i ), and it is

mi(λ
opt
i ) =

⌊
ln
(
max{e− ln(β)−1, 1− α−2/N}

)
ln(β)

⌋
+ 1 (4.14)
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for i = 1, 2, . . . , N . Based on the number of nodes in each subnetwork having maximum cost-

efficiency under the stability constraint, we can derive the maximum coverage area of the WNCS.

To find the coverage area of the subnetworks for the number of nodes given in (4.14), we con-

sider the connectivity of the subnetworks. Thus, to have the maximum coverage area for a given

number of nodes, we assume that the node densities of the homogeneous and heterogeneous multi-

hop wireless ad-hoc networks are the same as the critical node densities ρ∗0 in (4.6) and ρ∗s in (4.7),

respectively. Then, for a stable WNCS, the maximum coverage area of the subnetwork Gi, which is

1−connected and cost-efficient, is given by Shmi = mi(λ
opt
i )/ρ∗0 and Shti = mi(λ

opt
i )/ρ∗s. Since

the number of nodes found in (4.14) is the same for each subnetwork, the maximum total coverage

area of the homogeneous subnetworks is given by

ShmT =
Nmi(λ

opt
i )πr2

0

ln

[
1− P 1/mi(λ

opt
i )

1

]−1 . (4.15)

The maximum total coverage area of the heterogeneous subnetworks is given by

ShtT =
Nmi(λ

opt
i )r2

s

5 ln

[
1−

√
(1− (

√
6/3)Λ)e(|Re|+|R′

e|)Π1ρp

]−1 . (4.16)

Both ShmT and ShtT depend on several networks parameters such as transmission range of the network

nodes and number of sensor nodes. In the next section, we investigate the effect of several network

parameters on both the maximum total coverage area of the networks and optimum hop-diameter of

the subnetworks.

4.5 Numerical Analysis

In this section, we present the numerical analyses of both the optimum hop-diameter dopt
i and

the maximum total coverage area ST of the homogeneous and heterogeneous subnetworks with

respect to several system and network parameters. For the numerical analyses, we assume that the

output matrices C1, C2, . . . , CN are square and invertible. The numerical evaluations are conducted

using MATLAB.
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4.5.1 Optimum Hop-Diameter of Subnetworks

In the first part of the numerical analyses, we present the variation of the optimum hop-diameter

of subnetworks, dopt
i , given in (4.13) with respect to the number sensor nodes, N , the successful

packet transmission probability between two nodes, β, and the eigenvalue ofA having the maximum

magnitude, α. Since we assume that the successful packet transmission probability between two

nodes is the same for both the homogeneous and heterogeneous subnetworks, the optimum hop-

diameter of the subnetworks are the same for both type of subnetworks.
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Figure 4.4: dopt
i (a) with respect to N for different β values and (b) with respect to α for different

N values.

In Fig. 4.4(a), dopt
i with respect to the number of sensor nodes N employed for the WNCS with

different β values is shown. dopt
i increases with an increase in β which is an expected result. Note

that 0 ≤ β ≤ 1 and as β → 1, ln(β)→ 0, also the numerator in (4.13) is negative; hence, an increase



Chapter 4: On the Maximum Coverage Area of Wireless Networked Control Systems with Maximum
Cost-Efficiency under Stability Constraint 64

in β causes an increase in dopt
i . As seen in Fig. 4.4(a), dopt

i increases up to N = 5, then it becomes

constant. If N > −2 ln(α)/ ln(1 − e− ln(β)−1), then max{e− ln(β)−1, 1 − α−2/N} = e− ln(β)−1,

and hence dopt
i depends only on β. On the other hand, if N < −2 ln(α)/ ln(1 − e− ln(β)−1),

then max{e− ln(β)−1, 1 − α−2/N} = 1 − α−2/N ; thus, dopt
i depends on α and N , i.e., dopt

i =

ln(1 − α−2/N )/ ln(β). Obviously, dopt
i decreases with an increase in α. For a fixed β = 0.9,

the results seen in Fig. 4.4(b) show that dopt
i decreases with an increase in α, which supports our

inferences. It is also seen that dopt
i can be increased with an increase in N .

4.5.2 Maximum Total Coverage Area of Homogeneous Network

In the second part of the numerical analyses, we investigate the maximum total coverage area of

the homogeneous multi-hop wireless ad-hoc network model. In this section of the numerical anal-

ysis, we present the effect of r0, N , β, α on the maximum total coverage area of the homogeneous

subnetworks, ShmT , given in (4.15). For the numerical analysis presented in this part, we consider

that the subnetwork Gi is 1−connected with probability P1 = 0.99.

In Fig. 4.5(a), for constant N = 15 and α = 4.0, the variation of the maximum total coverage

area ShmT with respect to r0 is illustrated for different β values. ShmT is proportional with r2
0 as seen

in (4.15) and the quadratic dependence on r0 can be seen in Fig. 4.5(a). In addition, the results

show that an increase in β enlarges the total coverage area of the homogeneous subnetworks. From

Section 4.5.1, we know that dopt
i increases with an increase in β, and mi(λ

opt
i ) = dopt

i + 1. Thus,

from (4.15), it is obvious that ShmT becomes larger with an increase in dopt
i .

In Fig. 4.5(b), for fixed r0 = 50m and α = 4.0, the variation of ShmT with respect to the number

of sensor nodes used for the WNCS for varying β values is demonstrated. According to the results,

an increase in β enlarges the total coverage area of the homogeneous subnetworks because of the

same reasons discussed above. Furthermore, ShmT becomes larger with an increase in the number

of sensors N as shown in Fig. 4.5(b), which is an expected result because ShmT = NShmi . Note

also that, for each β value, ShmT increases in a quadratic trend up to N = 5; afterwards, it increases

linearly withN . In Fig. 4.4(a), it is shown that up toN = 5, dopt
i rises with an increase inN , which

causes an increase in the maximum coverage area of a single homogeneous subnetwork Shmi and

we know that ShmT = NShmi . As a result, up to N = 5, ShmT increases quadratically. For N > 5,
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Figure 4.5: ST with respect to (a) r0 for different β values, (b) N for different β values, and (c) α
for different N values.

since dopt
i becomes constant, Shmi also becomes constant. Thus, for N > 5, ShmT increases linearly

with N as seen in Fig. 4.5(b).
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The effect of α, i.e., the eigenvalue of the system matrix A having the maximum magnitude,

on the maximum total coverage area of the homogeneous multi-hop wireless subnetworks ShmT is

shown in Fig. 4.5(c) for different N values. Here, we set r0 = 50m and β = 0.9. According

to the results, an increase in α, causes a reduction in the maximum total coverage area ShmT . As

we state previously, if N > −2 ln(α)/ ln(1 − e− ln(β)−1), then dopt
i = ln(1 − α−2/N )/ ln(β).

That is, for a given N , an increase in α decreases the optimum hop-diameter. Therefore, since

mi(λ
opt
i ) = dopt

i + 1, an increase in α also decreases ShmT , which can be seen in (4.15). Moreover,

as illustrated in the figure, ShmT increases with an increase in N , which is discussed in detail above.

4.5.3 Maximum Total Coverage Area of Heterogeneous Network

In the last part of the numerical analyses, we consider the maximum total coverage area of the

heterogeneous multi-hop wireless ad-hoc network model. In this part, we present the effect of rs,

rp, N , β, α on the maximum total coverage area of the heterogeneous subnetworks, ST
ht, given in

(4.16). For the numerical analysis presented in this part, we consider that the secondary cognitive

radio subnetwork Gi is connected. Furthermore, we set ρp = 0.01nodes/m2.

In Fig. 4.6(a), for constant rp = 100m, Π1 = 0.01, N = 15 and α = 4.0, the variation of the

maximum total coverage area ShtT with respect to the transmission range of SUs, rs, is illustrated

for different β values. According to the results, ShtT increases with an increase in rs which is an

expected result. In addition, the results show that an increase in β enlarges the total coverage area

of the subnetworks. From Section V-A, we know that dopt
i increases with an increase in β, and

mi(λ
opt
i ) = dopt

i + 1. Thus, from (4.16), it is obvious that ShtT becomes larger with an increase in

dopt
i .

In Fig. 4.6(b), for constant rs = 50m, Π1 = 0.01, N = 15 and α = 4.0, the variation of the

maximum total coverage area ShtT with respect to the transmission range of PUs, rp, is illustrated for

different β values. According to the results, ShtT decreases with an increase in rp. For connectivity

of the secondary network, the PUs are required to be outside the transmission range of SUs as

explained in Section 4.3.2. Thus, an increase in the transmission range of PUs decreases the number

of connected nodes in the secondary network, which decreases the maximum total coverage area

of the secondary subnetworks. In addition, the results show that an increase in β can significantly
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Figure 4.6: ShtT with respect to (a) rs for different β values, (b) rp for different β values, (c) α for
different N values, and (d) Π1 for different N values.

increase the total coverage area of the subnetworks as we stated above.

The effect of α, i.e., the eigenvalue of the system matrix A having the maximum magnitude, on

the maximum total coverage area of the multi-hop wireless subnetworks ST is shown in Fig. 4.6(c)

for different N values. Here, we set rs = 50m, rp = 100m, Π1 = 0.01, and β = 0.9. According to

the results, an increase in α, causes a reduction in the maximum total coverage area ShtT . As we state

in Section V-B, for a given N , an increase in α decreases the optimum hop-diameter. Therefore,

since mi(λ
opt
i ) = dopt

i + 1, an increase in α also decreases ShtT , which can be seen in (4.16).

Moreover, as illustrated in the figure, ShtT increases with an increase in N , which is an expected

result because ShtT = NShti .

In Fig. 4.6(d), the effect of Π1, i.e., the expected activation rate of PUs, on the maximum total
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coverage area of the multi-hop wireless subnetworks ST for differentN values is demonstrated. For

this analysis, we set rs = 50m, rp = 50m, α = 4.0, and β = 0.9. According to the results, an

increase in Π1, causes a reduction in the maximum total coverage area ShtT . As we state previously,

activation of the PUs degrade the connectivity of SUs. That is, for the connectivity of the secondary

network, the spectrum holes unoccupied by the licensed PUs are required. Therefore, an increase in

the activation rate of the PUs decreases the number of connected nodes in the secondary network,

which eventually decreases the maximum total coverage area of the secondary subnetworks. More-

over, as illustrated in the figure, ShtT increases with an increase in N , which is discussed in detail

above.

Note that the maximum total coverage area of the secondary cognitive radio network is less

than the maximum total coverage area of the homogeneous network by approximately one order of

magnitude. For example, although for r0 = 40m and rs = 40m, assuming rest of the parameters

are the same, the maximum coverage of the homogeneous network is ShmT = 99.8× 10−3km2, the

maximum coverage of the cognitive radio network is ShtT = 6.8 × 10−3km2. Since the cognitive

radio network nodes, i.e. SUs, utilize the spectrum holes unoccupied by the licensed PUs, the

node density of the connected secondary network is higher than the node density of the connected

homogeneous network. That is, the secondary network nodes are concentrated in narrow areas

compared with the homogeneous network nodes. Therefore, the difference between the maximum

total coverage areas of the homogeneous and cognitive radio networks is an expected result.
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Chapter 5

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis, energy-efficient techniques such as clustering and network coding is applied to

CRSN and coverage maximiziation is studied with cost efficiency constraint under stability con-

straint to realize CRSN. The following three topics have been investigated under this research and

each of them is described in the following subsections:

1. Event-driven Spectrum-Aware Clustering

2. Network Coding

3. Coverage Maximization with Maximum Cost-Efficiency under Stability Constraint

5.1 Research Contributions

In this section, we summarize the contributions of each chapter and underline the important

results.

5.1.1 Event-to-Sink Coordination in Cognitive Radio Sensor Networks

In this thesis, we present a clustering protocol for cognitive radio sensor networks to minimize

the energy consumption. We aim to manage spectrum holes and establish energy-efficient commu-

nication by means of clustering. We propose on-the-fly coordination scheme for CRSN. The most

important differences of our protocol than the others are that clustering is event-driven and in the

corridor between event and sink. Furthermore, in our clustering protocol we establish a compromise

between cluster size, common channels and two-hop neighbors that can be reachable by cluster-head

through its members. Performance evaluation shows that ESAC is energy-efficient with a delay
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caused by spontaneous cluster formation. It also forms more connected clusters avoiding isolated

entities.

5.1.2 On the Effects of Network Coding in Cognitive Radio Sensor Networks

CRSN is an event-based system that the event-readings of sensor nodes are transmitted over

multiple hops in spectrum-aware communication environment. Network coding is a novel technique

that allows mixing of the incoming packet instead of simply relaying. In this section, we observe

the effect of network coding in CRSN with respect to energy-efficiency and packet delivery ratio.

According to our simulation results, CRSN may benefit from the advantages of network coding.

In our network setup, we apply simple routing technique to observe the network coding effects,

however, there is a need for network coding aware routing protocol by addressing the challenges of

CRSN.

5.1.3 On the Maximum Coverage Area of Wireless Networked Control Systems with Maxi-

mum Cost-Efficiency under Stability Constraint

In this thesis, we investigate the maximum coverage area of homogeneous and heterogeneous

multi-hop wireless ad-hoc sensor networks which are used for a WNCS with multiple sensors. We

present the critical arrival probability for the measurement packet of a sensor such that if the prob-

ability of arrival of the packet is larger than the critical value, the state estimation error covariance

is bounded and the system is stable. We find the optimum hop-diameter of the multi-hop wire-

less sensor subnetworks having maximum cost-efficiency under the constraint of the stability of

the WNCS. Furthermore, we derive the maximum coverage area expressions of both homogeneous

and heterogeneous networks having maximum cost-efficiency under the stability constraint of the

WNCS.

The numerical analyses show that an increase in the successful packet transmission probability

between two nodes and the number of sensors increases the optimum hop-diameter of the subnet-

works, the maximum total coverage area of the both homogeneous and heterogeneous multi-hop

wireless ad-hoc sensor networks. Furthermore, a decrease in the eigenvalue of the system matrix

with maximum magnitude increases the optimum hop-diameter and the maximum total coverage
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area of the multi-hop wireless ad-hoc networks. For homogenous network, increasing the trans-

mission range of a node also increases the maximum coverage area of the network. On the other

hand, in the heterogeneous network, increasing the transmission range of SUs and decreasing the

transmission range and activation rate of PUs can significantly increase the maximum coverage area

of the cognitive radio ad hoc network.

For the WNCS applications requiring wide coverage areas, e.g., space and terrestrial exploration

and navigation systems, the maximum coverage area expressions can be used to construct a cost-

efficient multi-hop network which ensures the stability of the control system. Moreover, using the

analysis presented in this chapter, the maximum total coverage area can be increased by appropri-

ately adjusting the number of sensors, the successful packet transmission probability between relay

nodes, the transmission range of network nodes, and the eigenvalues of the system matrix.

5.2 Future Research Directions

The presentation of the event-driven spectrum-aware clustering brings a new perspective to

CRSN. However, in our work, we assume single event cases. Hence, our protocol may be enhanced

by studying multi-event cases. Furthermore, in our protocol we do not considering re-clustering

case. Therefore, the enhanced solution must take into account temporal activities of spectrum op-

portunities in addition to the spatial variations of them.

Network coding has been applied to many wired and wireless networks thus far. On the other

hand, there is not yet a study on network coding in CRSN. However, for the first time in the literature,

we observed the effects of network coding in CRSN by simulation study. Due to the possible benefits

of network coding, a new network coding-aware routing protocol may be presented by considering

the challenges posed by cognitive radio and sensor network.

In this thesis, for the first time in the literature, we investigate the coverage maximization with

maximum cost efficiency under stability constraint. However, there are open research issues for

wireless network control systems consisting of cognitive radio sensor subnetworks. New routing

and transport solutions may be developed by considering the cost-efficiency and stability challenges

posed by wireless networked control systems.
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