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ABSTRACT 

In this thesis we develop the first metaheuristic method for a selective and periodic 

inventory routing problem (SPIRP) that arises in reverse logistics. The problem concerns a 

biodiesel production company collecting used vegetable oil from restaurants and hotels 

which are the source nodes using and wasting vegetable oil in considerable amounts. The 

production facility reuses the waste oil as raw material to produce biodiesel and meets the 

raw material requirement for each day from daily collection, inventory and by purchasing 

oil. The manager needs to decide which of the present source nodes to include in the 

collection program, and which periodic routing schedule to repeat in every planning 

horizon to visit these nodes accumulating vegetable oil. His objective is to minimize the 

total collection, inventory and purchasing costs while the production requirements and 

operational constraints are met. Recently, a flow-based mixed integer linear programming 

(MILP) formulation was proposed for this problem, and solved on a real-world case with 

up to 40 source nodes. However, it was observed that the average optimality gap attained 

by the commercial MILP solver in three hours exceeds 10% when there are more than 25 

nodes present. In order to solve large sized instances of SPIRP more effectively in a 

reasonable time, we develop an Adaptive Large Neighborhood Search (ALNS) algorithm 

by using a rich neighborhood structure comprised of 11 distinct moves. Some of these 

moves modify the visiting schedule and vehicle routes, while others change also the subset 

of visited source nodes. We test our algorithm on small size instances and compare the 

results with the MILP model. While our algorithm solves the small instances in several 

seconds, the MILP model runs for hours to find similar results. When the number of 

source nodes is 30 and more, our algorithm outperforms the MILP model. We also test our 

algorithm on larger instances with up to 100 nodes and present the related computational 

results. For the instances with 50 to 100 nodes, the problem is solved with around 10.7% 

gap.    
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ÖZETÇE 

Bu çalışmada, tersine lojistik alanında karşımıza çıkan seçici ve periyodik envanter 

rotalama problemi için literatürdeki ilk sezgisel methodu geliştiriyoruz. Bu problemde, 

restoran ve otel gibi büyük miktarda bitkisel yağ tüketimi yapan ve Ġstanbul’un anadolu 

tarafına yayılmış bu kaynak noktalarından atık bitkisel yağ toplayan bir biyodizel üretim 

tesisini inceliyoruz. Toplanan atık yağlar bu tesiste biyodizel üretmek için hammadde 

olarak kullanılmaktadır. Üretim tesisinin yöneticisi mevcut kaynak noktalarından 

hangilerini atık toplama programına dahil edilmesi gerektiğine; hangilerinin her gün 

ziyaret edilmesi gerektiğine; sonsuz süre zarfında hangi periyodik rotalama çizelgesinin 

tekrarlanması gerektiğine karar vererek, üretim gereksinimleri ile operasyonel kısıtlar 

altında araç kullanımı, rotalama, envanter ve satın alma maliyetlerin toplamını minimize 

etmeyi amaçlamaktadır. Bu seçici ve periyodik envanter rotalama problemi için yakın 

geçmişte ilk olarak akış tabanlı bir doğrusal tamsayılı programlama (DTP) modeli 

geliştirildi ve 40 kaynak noktasına kadar gerçek hayat problemleri üzerinde test edildi. 

Kaynak nokta sayısı 25’i aştığında, bu modelin 3 saat limitli çözümlerinin uygunluk 

düzeyinin %10’u aştığı belirtildi. Bu problemi daha fazla kaynak sayısı ile uygun zaman 

limitleriyle daha etkili çözebilmek için 11 farklı komşu yapısından oluşan bir uyarlanmış 

geniş komşu arama sezgisel algoritması geliştirdik. Bazı komşu yapıları kaynak noktasının 

ziyaret programını ve araçların rotalamasını modifiye ederken, diğerleri ziyaret edilen 

kaynak nokta listesini de değiştirebiliyor. Algoritmamızın sonuçlarını DTP modeli ile 

karşılaştırdığımızda, bizim methodumuzun birkaç saniye içinde bulduğu çözümü DTP 

modelinin bir kaç saate bulduğunu gördük. Kaynak nokta sayısı 30’u geçtiğinde bizim 

algoritmamız, DTP modelinden daha iyi sonuçlar vermektedir. Aynı zamanda, 

algoritmamızı 100 kaynak noktasına kadar büyük problemlerde de test ettik. 50 ile 100 

arasında kaynak noktasına sahip problemlerin çözümlerini hesapladığımız alt limitlerle 

karşılaştırdığımızda, algoritmamızın bu problemleri ortalama %10.7 uygunluk düzeyinde 

çözdüğünü gözlemledik. 

 



 
 

v 
 

 

 

ACKNOWLEDGEMENTS 

First of all, I would like to express my gratitude to my supervisors, F. Sibel Salman, 

Onur Kaya, and Deniz Aksen. Their expertise, understanding and patience contributed 

considerably to my thesis and graduate experience. I consider myself very lucky to have 

advisors such as them and I am also very proud of being one of their students.  

I am also very grateful to Semra Ağralı for taking part in my thesis committee and for 

their valuable suggestions and comments. 

I would like to thank to TUBITAK (The Scientic and Technological Research Council 

of Turkey) for providing the graduate scholarship during my M.S. study. 

I would like to thank to all of my friends for their support and kindness. I would like 

to thank specially to Pelin Doğan, Hadi Feyzollahi, and Maziar Kasaei and my brother 

Emre Tüncel for their tremendous help in my thesis. 

And I would like to thank my parents and my brothers for believing in me, guiding me 

and supporting me through my whole life. 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 

 

 

TABLE OF CONTENTS 

 

List of Tables                                                                                                        viii 

List of Figures                                                                                                        ix 

Nomenclature                                                                                                          x 

Chapter 1: Introduction                                                                                       12 

Chapter 2: Literature Review                                                                              14 

2.1 VRP .............................................................................................................. 16 

2.1.1 Variants of Vehicle Routing Problem (VRP) ........................................ 17 

2.1.2 Common Properties of Vehicle Routing Problems (VRPs) ................... 18 

2.1.3 Solution Methods for Vehicle Routing Problem.................................... 19 

2.2 PVRP ............................................................................................................ 19 

2.2.1 Variants of the Periodic Vehicle Routing Problem ................................ 21 

2.2.2 Common Properties of the Periodic Vehicle Routing Problems ........... 23 

2.2.3 Solution Methods for Periodic Vehicle Routing Problem ..................... 24 

2.3 IRP ................................................................................................................ 30 

2.3.1 Problem Definition ................................................................................. 31 

2.3.2 Origins of the Inventory-Routing Problem ............................................ 32 

2.3.3 Solution Methods [30IRP] ..................................................................... 33 

2.4 Waste Collection Problems .......................................................................... 43 

Chapter 3: A Selective And Periodic Inventory Routing Problem                  48 

3.1 MILP model .................................................................................................. 49 

3.2 Partial Relaxation ......................................................................................... 53 

3.3 Relaxation without Routing .......................................................................... 54 



 
 

vii 
 

Chapter 4: An Adaptive Large Neighborhood Search Algorithm for SPIRP 56 

4.1 Main Structure of the Algorithm .................................................................. 57 

4.2 Applying ALNS ............................................................................................ 61 

4.3 Initial Solution .............................................................................................. 64 

4.4 Moves of the Algorithm ............................................................................... 60 

Chapter 5: Computational Results                                                                      72 

5.1. Acquisition of the problem data .................................................................. 72 

5.2. Computing platform, Cplex options and JAVA programming ................... 75 

5.3 Test results and optimality gaps ................................................................... 76 

5.4 Analysis of the ALNS Algorithm ................................................................. 81 

Chapter 6: Conclusions                                                                                        84 

Bibliography                                                                                                          86 

Vita                                                                                                                       107 

 

 

  



 
 

viii 
 

LIST OF TABLES 
 

Table 2.1: Different characteristics of most studied IRPs in the literature ........................ 31 

 
Table 5. 1: Fuel and daily operating costs of the light commercial vehicle....................... 74 

 

Table 5. 2: Computational results for the small size instances .......................................... 78 

 

Table 5. 3: MILP versus ALNS performance on small instances (on average) ................. 79 

 

Table 5. 4: Computational results for the large size instances ........................................... 80 

 

Table 5. 5: CPU times with respect to requirement levels and number of source nodes ... 82 

 

Table 5. 6: The performances of moves in finding new solutions ..................................... 83 

 
  

 

 

  



 
 

ix 
 

LIST OF FIGURES 

 

Figure 2. 1: The basic problems of the VRP class and their interconnections ................... 18 

 

Figure 2. 2: Variants of the PVRP ..................................................................................... 22 

 

Figure 2. 3: Evaluation of models and solution methods for the PVRP ............................ 24 

 
Figure 4. 1: Intra-route 2-Opt ............................................................................................ 62 

 

Figure 4. 2: Intra-route 3-Opt ............................................................................................ 62 

 

Figure 4. 3: Inter-route 2-Opt ............................................................................................ 63 

 

Figure 4. 4: Inter-route customer move ............................................................................. 63 

 

Figure 4. 5: 2 routes customer exchange ........................................................................... 63 

 

Figure 4. 6: 3 routes cycle customer exchange .................................................................. 63 

 
Figure 5. 1: The geographical locations of the restaurants on the Asian side of Istanbul.. 73 

 

Figure 5. 2: The CPU time of ALNS with respect to the number of source nodes............ 81 

 

 

  



 
 

x 
 

 

NOMENCLATURE 

 

SPIRP   Selective and Periodic Inventory Routing Problem 

MILP   Mixed Integer Linear Programming 

ALNS   Adaptive Large Neighborhood Search 

PVRP   Periodic Vehicle Routing Problem 

IRP    Inventory Routing Problem  

VRP  Vehicle Routing Problem    

CVRP    Capacitated Vehicle Routing Problem   

DCVRP   Distance-Constrained Capacitated Vehicle Routing Problem   

VRPTW  Vehicle Routing Problem with Time Windows 

VRPB   Vehicle Routing Problem with Backhauls 

VRPBTW  Vehicle Routing Problem with Backhauls and Time Windows 

VRPPD  Vehicle Routing Problem with Pickup and Delivery 

VRPPDTW Vehicle Routing Problem with Pickup and Delivery and Time Windows 

MCVRP  Multi-Compartment Vehicle Routing Problem 

MDPVRP  Multi-Depot Period Vehicle Routing Problem 

PVRPIF  Periodic Vehicle Routing Problem with Intermediate Facilities 

PVRP-SC  Periodic Vehicle Routing Problem with Service Choice 

SIRP   Stochastic Inventory Routing Problem 

LP     Linear Programming 

 



 
 

xi 
 

 

 

 

VMI   Vendor-Managed Inventory 

ML    Maximum Level Policy 

OU    Order-Up-to Level Policy 

VNS   Variable Neighborhood Search 

NEARP  Node, Edge and Arc Routing Problem 

GLS   Guided Local Search 

SA    Simulated Annealing  

IF    Intermediate Facilities 

LNS   Large Neighborhood Search



Chapter 1: Introduction  12 

 
 

 

Chapter 1 

INTRODUCTION 

 

In our study we propose the first heuristic method for a recently introduced routing 

and scheduling problem. The problem is based on a case study about a biodiesel 

production facility (the company) in Istanbul that collects waste vegetable oil from source 

nodes at different locations throughout the city to use the oil as input in biodiesel 

production. The source nodes include businesses that consume cooking oil in large 

volumes, such as restaurants, and hotels. The company makes an agreement with each 

source node and specifies on which days of the week the accumulated waste oil will be 

collected. Waste vegetable oil accumulates with different rates at the source nodes and 

uncollected amount at any day is kept till the next visitation day.  

The company has a predetermined daily production plan and needs to obtain the input 

materials to follow this plan. Thus, the production plan creates a necessity to obtain the 

daily input requirements for vegetable oil. The company can satisfy the vegetable oil 

needed for biodiesel production either by the waste vegetable oil collection or by 

purchasing virgin oil. Purchasing virgin oil is considered to be more costly, but waste 

vegetable oil collection also has a significant cost due to the utilized vehicles, drivers, 

fuel, etc. Thus, the manager needs to decide on how much waste vegetable oil to collect, if 

possible, from source points and how much to purchase on each day, depending on the 

available inventory at hand, in order to satisfy the input requirements for production. The 

manager also needs to decide on the route of each vehicle in order to make the collection 

at the minimum possible cost. Moreover, the amount of waste vegetable oil accumulated 

at the source nodes might be more than the amount needed for production or more than the 

production capacity. In such cases visiting all the source nodes will not be necessary. 

Hence, the manager has to decide with which of the source nodes they should make a 

collection agreement. The company can also keep an inventory at its production. The 

objective is to find the decisions considering which of the potential source nodes to 
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include in the collection program, which of them to visit on each day, which periodic 

routing schedule to repeat over an infinite horizon and how many vehicles to operate such 

that the total collection, inventory and purchasing costs are minimized while the 

production requirements and operational constraints are met. This considerably hard 

routing and scheduling problem has been recently defined as the Selective and Periodic 

Inventory Routing Problem (SPIRP) by Aksen et al. [1] in 2012. 

For this problem, we apply an Adaptive Large Neighborhood Search (ALNS) 

algorithm. As the problems in the literature get more complicated to deal with real life 

issues, the ability of the existing methods to escape local optima has become insufficient. 

Therefore, the emergence of more sophisticated solution methods became necessary. 

ALNS is in the class of large neighborhood search algorithms. Recent literature has shown 

us the effectiveness of the large neighborhood search mechanisms especially on routing 

and scheduling problems. Searching larger and more complicated neighborhoods that can 

escape local optima more effectively is the basic idea of these algorithms. Dealing with a 

larger neighborhood gives a chance to span a larger proportion of the solution space, 

which in return helps to find better objective values. This characteristic is a disadvantage 

in terms of the time it takes the method to perform. To avoid this problem, the use of these 

large neighborhoods is limited into a subset of the search space. Furthermore, the ALNS 

algorithm uses several moves interchangeably throughout the algorithm unlike many other 

metaheutistics. The chance of a move to be used for the next iteration depends on the past 

performance of the move itself. If a move updates the best or the current solution, the 

probability of that move to be chosen for the later iterations increases.    

We present a wide literature review in Chapter 2. In Chapter 3 we give the problem 

definition and provide the mixed integer linear programming model. In Chapter 4 we 

focus on the heuristic method we apply to the problem; Adaptive Large Neighborhood 

Search algorithm. In Chapter 5 we apply the heuristic method to the problem. We generate 

54 instances with 20 to 100 source nodes using real life data. We test our algorithm and 

compare its performance with that of MILP introduced by Aksen et. al. [1]. Finally, in 

Chapter 6 we give our concluding remarks and discuss brief directions for future work.
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Chapter 2 

LITERATURE REVIEW 

 

Rapid advances and complexity in technology changed the shape of competition. The 

effects of traditional competition elements, quality and cost, are reduced. To survive the 

competition, the companies have to reduce cost while improving services by considering 

social and economic factors related to their supply chain. All aspects of the supply chain 

became the focus of attention to win the competition, from raw materials to recycling. 

Moreover, companies started to realize the importance of sustainable supply chain 

management and reverse logistics to increase quality and profitability. It is stated that the 

unit cost of remanufacturing can be about 40-60% of the unit manufacturing cost of an 

original product in some industries like transportation, automotive, and construction [2]. 

The next step for the efficient and comprehensive supply chain designs of the future now 

leans on the sustainable supply chain management and reverse logistics [3]. 

Besides the heating competition between the rival companies in all sectors, the other 

important motivation pushing companies towards reverse logistics and sustainable 

systems is limited natural resources. The need for energy is increasing due to increases in 

industrialization and population all over the world. The basic sources of this energy have 

been petroleum, natural gas, coal, hydro, and nuclear. Petroleum diesel is the major fuel 

source worldwide and almost 50% of the petroleum diesel is used in the transportation 

sector. However, the source of petroleum, the fossil fuel reserves are decreasing day by 

day. Moreover, petroleum diesel creates atmospheric pollution. Since the use of petroleum 

does not seem like the best choice anymore, the need for an alternative source of energy 

became unavoidable [4]. As the new source of energy for transportation, biodiesel can be 

a substitute for petroleum. Biodiesel is a nontoxic and biodegradable alternative fuel. 

While the cost of virgin oil used in the production of biodiesel constitutes 85% of the total 

production cost, Gonzalez et al. [5] and Predojevic [6] state that collecting and using 

waste vegetable oil costs almost half the price of using virgin vegetable oil in biodiesel 
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production. Therefore, waste cooking oil is an economical choice for biodiesel production, 

because of its availability and low cost. The studies show that biodiesel obtained from 

waste oil gives better engine performance and less emission with respect to virgin oil 

when tested on commercial diesel engines.  [4]  

The studies show that using waste vegetable oil in the production of biodiesel is 

important for an environmentally and economically sustainable system [7]. In the USA, 

every year between 4.5 billion and 11.3 billion liters of cooking oil is used; and in Japan, 

the amount of waste cooking oil generated is between 400 and 600 thousand tons [8]. 

While worldwide 108 billion liters of waste oil is estimated to be generated annually, only 

6 billion liters of the waste oil are collected to be used in the production of biodiesel [9]. 

In Turkey, every year almost 390 thousand tons of cooking oil is wasted, which could 

have been used to produce biodiesel that can meet 5% of total diesel fuel consumption in 

Turkey. This much biodiesel can help Turkey to save about 300 million dollars per year. 

Besides, collecting waste vegetable oil decreases the contamination of rivers, lakes or 

oceans. It is stated that one liter of waste oil poured down the drain can contaminate one 

million liters of water and cause serious damage to the environment and the ecological life 

[9]. 

The economic and environmental importance of reverse logistics has attracted the 

attention of researchers and there are now lots of case studies in the literature for different 

real-life problems [10].  Fleischmann [11] analyzes logistic network design in a reverse 

logistic content and the article presents a generic facility location model. Teixeira [12] 

analyzes a case study of planning vehicle routes for the collection of urban recyclable 

waste and develops heuristic techniques to create collection routes for every day of the 

month while minimizing the operation cost. Repoussis [13] presents a web-based decision 

support system for efficiently and effectively managing waste lube oil collection and 

recycling operations. They apply their system to a real-life industrial environment and 

show improved productivity and competitiveness, proving the applicability of their 

method on real-life reverse logistic planning problems.  

Our problem is another real-life application of reverse logistics. Periodic vehicle 

routing problem (PVRP) and inventory routing problem (IRP) are two of the research 



Chapter 2: Literature Review 16 

 
 

topics that are related to our study and widely studied in the literature. These problems are 

extended versions of the vehicle routing problem (VRP).  

2.1 VRP 

The Vehicle Routing Problem (VRP) is a combinatorial optimization and integer 

programming problem consisting in designing the optimal set of routes for a fleet of 

vehicles in order to serve a given set of customers. This well-known problem in the fields 

of transportation, distribution and logistics was introduced by Dantzig and Ramser in 1959 

[14]. Real-life application of VRP is studied in many sectors such as garbage collection, 

street cleaning, school bus routing, mail delivery, task sequencing, and collection of 

household waste, gasoline delivery, goods distribution and snow plough. In fact, the 

studies of Maffioli [15], Toth and Vigo [16] declare that using VRP algorithms in 

distribution processes helps companies save between 5% and 20% in transportation cost.  

The classical Vehicle routing problem (VRP) is defined on an undirected graph 

        where                is vertex set and                           is 

an edge set. The depot is represented with    and the other vertices represent customers. 

The depot houses a fleet of vehicles with capacity of  . The distance or the travel time 

matrix is described with        . Elements in   represent the travel cost or the travel 

time between each pair of customers and between the depot and the customers. It can be 

asymmetric or symmetric. Moreover, customers have demands and service times to be 

met.  

The solution of VRP is defining a set of routes, each traversed by a single vehicle that 

starts and ends at the depot such that each customer is visited exactly once by exactly one 

vehicle, total demand of the route does not exceed the vehicle capacity, and total duration 

or length of any route does not exceed a preset bound; while requirements of the 

customers are fulfilled and the global transportation cost is minimized. The original graph 

is transformed into a complete graph, whose vertices are the customers and the depot.  

The composition and size of the fleet of vehicles can be fixed or can be defined 

according to the requirements of the customers. Moreover, a fixed cost associated with the 

utilization of the vehicle can be added to the problem.   
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The problem is studied for more than 50 years since it was introduced by Dantzig and 

Ramser [14] with a real-world application concerning the delivery of gasoline to gas 

stations. They propose the first mathematical programming formulation and algorithmic 

approach for the solution of the problem. Soon after, an effective greedy heuristic 

algorithm was introduced by Clarke and Wright [17]. Their algorithm make improvements 

on the Dantzig-Ramser approach. Taking these papers as basis, several exact and heuristic 

methods were proposed finding the optimal and approximate solutions for several versions 

of VRP.  

The first book devoted to the Vehicle Routing Problem was published in 1971 [18]. 

Since then, a number of books dealing with Vehicle Routing Problem have been published 

[19], [20], [21]. Moreover, several survey papers were published over the years; [22], 

[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]. 

2.1.1 Variants of Vehicle Routing Problem (VRP) 

The variants of the VRP which have received great attention in the scientific literature are: 

- Capacitated VRP (CVRP) 

- Distance-Constrained CVRP (DCVRP) 

- VRP with Time Windows (VRPTW) 

- VRP with Backhauls (VRPB) and with Time Windows (VRPBTW) 

- VRP with Pickup and Delivery (VRPPD) and with Time Windows (VRPPDTW) 

- Multi-compartment Vehicle Routing Problem (MCVRP) 

- Periodic Vehicle Routing Problem (PVRP) 

- Inventory Routing Problems 

- Stochastic VRP 
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Figure 2. 1: The basic problems of the VRP class and their interconnections[21] 

 (An arrow moving from problem A to problem B means B is an extension of A) 

2.1.2 Common Properties of the Vehicle Routing Problems (VRPs) 

Routing and scheduling problems including all these VRP variants have some common 

characteristics such as: 

- Size of available fleet; one or multiple, 

- Type of available fleet; homogenous or heterogeneous, 

- Housing of vehicles; single depot or multiple depots, 

- Nature of demands; deterministic or stochastic or partial satisfaction of demands 

allowed, 

- Underlying network; directed or undirected or mixed or Euclidean, 

- Vehicle capacity restrictions; limited or unlimited, 

- Maximum route times; same for all routes or different for all routes or not imposed, 

- Operations; pickups only or deliveries only or mixed (pickups & deliveries) or split 

deliveries (allowed or disallowed), 
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- Planning Horizon; single period or multiple periods, 

- Time windows; one sided or two sided or soft windows or hard windows, 

- Costs; variable/routing cost or fixed operating/variable acquisition costs or common 

carrier cost (for unserviced demands), 

- Objectives; single-objective or multi-objective. 

2.1.3 Solution Methods for the Vehicle Routing Problem 

Many researchers worked on exact solution methods on VRP. However, VRP is an NP-

hard problem. To solve the problem to obtain optimal solution, all solution alternatives 

have to be enumerated. Thus, it is not expected to develop exact solution methods that can 

solve a VRP instance in reasonable amount of running time. Therefore; besides exact 

methods, lots of heuristic algorithms have been proposed. The most well-known proposed 

solution methods are: 

Exact Solution Methods 

Some methods developed and widely used as exact solution methods are Branch-and-

Bound [37], [38], [39], [16], Branch-and-Cut [40], [41], [42], and Branch-and-Cut-and-

Price [43], [44]. 

Heuristic Methods:  

Simulated and deterministic annealing, tabu search, GRAPS, genetic algorithms, adaptive 

memory, ant colony optimization, neural networks, large scale neighborhood search and 

hybridizations of these methods. 

2.2 PVRP 

Most of the real problems which need pick-up and/or delivery operations, customers 

generally require frequent visits over a planning horizon. This creates demand to 

development of Periodic Vehicle Routing Problem (PVRP) also called allocation/routing 

problems. In classical VRPs the planning horizon is most of the time limited with very 

short time horizon, such as 8-10 hours or a day. In the case of the PVRP, the classical 
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VRP is generalized by extending the planning horizon to M days. (Different time units can 

used as well) PVRP is a more realistic and complex variation of VRP. A wide range of 

real life applications could be defined as PVRP such as courier services, elevator 

maintenance and repair, vending machine replenishment, the collection of waste and the 

delivery of interlibrary loan material [45]. 

In the Periodic VRP, vehicle routes are constructed over multiple days, assuming for 

each vehicle, one vehicle route represents a day. Within the planning period, each day a 

number of vehicles travels on their routes starting from and ending at the depot and 

visiting a number of customers in between. The objective of the problem is to minimize 

the total distance travelled within the planning horizon. 

In the periodic vehicle routing problems deliveries are made to a set of customers over 

multiple time units during the period and optimizing these iterative operations can result 

in significant cost savings. According to the underlying complete graph         we 

can find the distances among all arcs; therefore, by using these distances we can calculate 

the travel costs. All the nodes N, including depot and customers are visited with 

predetermined frequencies over the planning period. In most of the PVRP models, 

researchers propose a set of schedules which are a collection of time units within the 

planning period in which customers receive service. During the planning period by 

choosing one of these schedules customers can be visited several times and the visiting 

frequencies k for each customer may be in a predetermined interval      . 

In general, after creating a set of schedules, the PVRP is viewed as a multi-stage 

combinatorial optimization problem combining two defined problems: the assignment 

problem and the vehicle routing problem. PVRP involves three simultaneous decisions: 

• Select a schedule from a candidate set of schedules for each node 

• Assign a set of nodes to be visited by each vehicle on each day 

• Route the vehicles for each day of the planning period 

In the classic VRP, only the last two decisions are needed to be made, and over a 

single day only. In the PVRP, each customer needs to be visited several times with a 

frequency of    during the planning horizon. [61]. 
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The first PVRP model was introduced in 1974 by Beltrami and Bodin for assigning 

hoist compactor trucks in municipal waste collection [46]. They propose heuristics to 

solve the PVRP, but do not present any model, just enlighten its complexity in comparison 

of the Classical VRP. Their heuristic method is based on cluster-first and route-second 

method. 

 The first formal definition of PVRP was introduced by Russell and Igo [47] in 1979 

as ―Assignment Routing Problem‖ and they introduced a Mixed Integer Linear 

Programming (MILP) model. They draw attention to the difficulties of choosing a 

schedule for each customer besides solving the routing problem.  

The second formal definition was introduced by Christofides and Beasley [48] in 1984 

as the generalization of vehicle routing problems over a planning horizon where each 

customer has a number of visit requirements over the horizon. They present an integer 

programming model which considers both assignments of schedules to the customers and 

routing of a vehicle at each time unit. 

In summary, two viewpoints have emerged in defining the PVRP: Russell and Igo [47] 

and Tan and Beasley [49] approach the problem as an extension of the assignment 

problem with a routing component; Christofides and Beasley [48] formulate the PVRP as 

a routing problem with a selection decision involved.  

2.2.1 Variants of the Periodic Vehicle Routing Problem 

Mainly the literature includes three variants related to the Periodic Vehicle Routing 

Problems: 

i. Multi-Depot PVRP 

ii. PVRP with Time Windows 

iii. PVRP with Service Choice 
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Figure 2. 2: Variants of the PVRP 

In the Multi-Depot Vehicle Routing Problem (MDVRP) periodic deliveries are made 

using a fleet of vehicles that are based across a number of depots. Cordeau et al. [51] 

present a formulation of PVRP and show that the Multi-Depot Vehicle Routing Problem 

(MDVRP) is a special case of PVRP by associating depots with days. In their paper 

Hadjiconstantinou and Baldacci [52] combine the ideas of periodicity and multiple-depots, 

extending the PVRP to include multiple depots. This greatly increases the difficulty of the 

resulting problem as it involves the additional decisions of assigning vehicles to depots as 

well as customer nodes to depots. Their Multi-Depot Period Vehicle Routing Problem 

(MDPVRP) is the problem of designing a set of routes for each day of a given  −day 

planning period. Each route of day     must be executed by one of a homogenous fleet 

of   vehicles (service teams visiting customers) based at a certain depot (i.e., it must start 

and finish at its assigned depot). 

The PVRP with Intermediate Facilities (PVRPIF) is similar to the MDPVRP. While 

Angelelli and Speranza [53] do not allow multiple vehicle depots, they do use the idea of 

―drop-off points‖, or intermediate facilities, at which vehicle can stop along their vehicle 

routes, allowing them to replenish their capacities. Vehicles start and end their routes at 

their own depots, but visit these intermediate facilities along the way. Such problems arise 

in applications like waste collection with recycling facilities or goods collection with 
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warehouse facilities. The authors solve the resulting extended PVRP problem using a 

Tabu search method. 

Another variant of PVRP, the PVRPTW is the problem of designing   different 

vehicle routes such that all customers are visited with their desired service frequency over 

the planning period, and each visit lies within a specified time interval. It was introduced 

by Cordeau et al. [54] as the extension of the earlier work by Cordeau et al. [51] including 

time-windows. The authors modify the Tabu search heuristic presented in Cordeau et al. 

[51]. The change to the heuristic is minor, principally requiring an additional penalty term 

to be added to the objective function for violations of time window constraints. 

Francis et al. [55] extend the PVRP to make visit frequency a decision of the problem. 

The extended problem is called the PVRP with Service Choice (PVRP-SC). The problem 

concerns customers who have a minimum requirement for visits over the period but are 

willing to accept higher visit frequency as well. This property changes the problem in 

terms of arrangement of visit frequencies for each customer in a flexible way and this may 

decrease in the routing costs. This increases the difficulty of solving the problem in two 

ways: first, there is the added complexity of determining the service frequency; second, 

the vehicle capacity requirement when visiting a node also becomes a decision of the 

model. 

2.2.2 Common Properties of the Periodic Vehicle Routing Problems 

The common properties of the PVRP are defined in general as follows: 

Given: A complete network graph         with known arc costs    ,         , a 

planning period of   days indexed by  ; a depot node indexed    ; a set of customer 

nodes          with each node      having a total demand of    over the planning 

period, and requiring a fixed number of visits   ; a set of vehicles   each with capacity  ; 

a set of schedules  . 

Find: An allocation of customer nodes to schedules such that each node is visited the 

required number of times; a routing of vehicles for each day to visit the selected nodes 

during that day; with 

Objective: Minimum cost of visiting the nodes. [61]. 
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2.2.3 Solution Methods for Periodic Vehicle Routing Problem 

The evaluation of the problem definition and solution methods for the PVRP is explained 

by Francis, Smilowitz, and Tzur in [61]. The figure below shows the evaluation of the 

PVRP solution approaches. 

 
 

 
 
 

 
           

Figure 2. 3: Evaluation of models and solution methods for the PVRP [61]. 

Both the first definition of the problem and the first heuristic method were presented 

by Beltrami and Bodin in 1974 [62]. In the paper, Beltrami and Bodin [62] adopt a cluster-

first, route-second approach since the agency operating the vehicles ―decided a priori the 

day assignment for each site‖. After such an a priori assignment, the nodes to be visited on 

each day of the week are known and independent VRPs are solved for each day of the 

week.  

Two-phase solution methods similar to that of Beltrami and Bodin [46] are commonly 

found in early heuristics for the PVRP. Recent PVRP literature has focused on 

metaheuristic methods of solving the problem that can escape the trap of local optimality 

that plagues conventional heuristics. In this section, we review the classical heuristics, the 

metaheuristics, as well as recent mathematical programming based approaches to solving 

the PVRP. 
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Classical Heuristics 

Besides providing a formal definition of PVRP as the ―Assignment Routing Problem‖, 

Russell and Igo [47] propose three heuristics; an improvement heuristic, and two 

construction heuristics. The viewpoint presented in Russell and Igo [47] is that the 

problem is one of picking a valid day combination for a specified service frequency. The 

first heuristic involves creating route clusters for all days using nodes whose day 

assignments are fixed. Then, the remaining unallocated nodes are assigned in descending 

order of required visit frequency. After initial construction, an improvement phase 

attempts to reassign nodes to other schedules. Their second heuristic is an improvement 

heuristic that reoptimizes the allocation and routing of nodes. It is a modified version of 

the MTOUR heuristic for VRP [57]. The third heuristic is an implementation of the 

Clarke-Wright savings method with additional conditions to ensure that any proposed 

savings move results in a feasible allocation of nodes to days. 

Christofides and Beasley [48] do not attempt to solve PVRP to optimality given the 

complexity of the problem. They propose a two-stage heuristic method: first, they allocate 

nodes to days; second, they attempt node exchanges with the aim of minimizing the 

vehicle routing costs. They have a merit order of nodes according to which they make 

initial allocations. The idea is to reduce the possibility of infeasible solutions. 

Tan and Beasley [49] summarize the results of Beltrami and Bodin [46], Russell and 

Igo [47], and Christofides and Beasley [48] and propose a problem that can be solved 

more simply than the PVRP itself. Given the difficulty of solving this problem, Tan and 

Beasley [49] suggest that the assignment of nodes to vehicles be neglected to reduce the 

size of the problem. They make the decision of allocating nodes to days in the first phase 

and the routing decision for each day in the second phase. 

Russell and Gribbin [58] propose a solution method that consists of an initial route 

design using a network approximation, followed by three improvement phases. Their 

network flow model is similar to the formulation of Tan and Beasley [49]. The first 

improvement heuristic uses the interchange method of Christofides and Beasley [48] to 

make improvements in individual tours. The second heuristic applies this interchange idea 
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at the vehicle routing level. Finally, the authors propose a binary integer program to 

further refine the proposed solution. 

Gaudioso and Paletta [59] suggest an alternative heuristic for the tactical problem of 

minimizing fleet size, rather than the operational problem of reducing distance. They 

impose constraints on the maximum route duration as well as the vehicle capacity. 

Gaudioso and Paletta [59] do not impose a schedule set from which to choose day 

combinations, but instead place restrictions on the minimum and maximum number of 

days between visits for each node. They note that the distance cost of their solution is 

usually greater than other PVRP solution methods for two possible reasons: one, their 

objective is to minimize fleet size and not distance; and, two, they use a simple algorithm 

to solve the embedded TSP to optimize the routes after nodes have been allocated to 

delivery combinations. 

Metaheuristics 

Later, some metaheuristics are introduced starting with Chao et al. [60]. The method uses 

a relaxation of Christofides and Beasley [48] formulation to find an initial solution. Then, 

an improvement heuristic is used, moving a node from one schedule to another. If the total 

distance is reduced, the move is accepted immediately. If not, the new solution is accepted 

if total distance is under a threshold value. As the algorithm repeats, the threshold value is 

decreased. Algorithm stops when no more improving move is found. 

Cordeau et al. [51] introduce a Tabu search method to solve PVRP. The algorithm 

gives comparable results with the algorithm of Chao et al. [60]. Their Tabu search method 

has been modified to use specific insertion and route improvement techniques developed 

by the authors; however, there is no significant change to the core of the Tabu search 

technique that is specific to PVRP. 

Later, a hybrid metaheuristic combining genetic algorithm and Local Search is 

introduced by Drummond et al. [61]. It is a combination of genetic algorithm and local 

search heuristics. The days customers are assigned and accumulated demands are kept as 

chromosome and fitness value of each chromosome is calculated solving savings method 
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for each individual day. They present a numerical study, comparing their solutions to 

those of Cordeau et al. [51], providing improved solutions to some problem instances. 

A different heuristic approach was introduced in 2007 by Alegre et al [56] based on a 

real case of Periodic Pick-up of Raw Materials Problem for a manufacturer of auto parts. 

They state real life problems have longer horizon even as long as 90 days with respect to 

data sets in the literature. That’s why, their algorithm is designed to perform well 

especially on PVRPs with longer planning horizons. They adapt scatter search which is an 

evolutionary algorithm. Scatter search differs from other evolutionary algorithm due to its 

use of randomness less than others. Their method is also a two-phase method. Even 

though their initial aim to solve problems with longer planning horizons, they apply the 

algorithm to the problem instances in the literature as well to evaluate the performance of 

the algorithm. Their algorithm turns out to perform well and give competitive results with 

Cordeau et al. [51]  and Chao et al. [60]. However, they do not compare their results with 

Drummond et al. [61] because they state that there are evident errors.  

Later, a more sophisticated heuristic method, Variable Neighborhood Search, was 

applied to PVRP by Hemmelmayr et al. [62].  The method defines several neighborhoods 

in order to be used in the search and systematically change the neighborhoods in a local 

search procedure. After determination of initial solution, three steps are performed 

repetitively. The first step is Shaking, meaning randomly selecting a solution from the first 

neighborhood. The second step is applying a Local Search algorithm to the solution and 

finding the local optimum. The last step is deciding whether to move solution by checking 

if it is better than the current solution. If a new acceptable solution is not found, the steps 

are applied to the next neighborhood until the solution is found. When new solution is 

found, the algorithm returns to the first neighborhood and repeats the procedure until 

stopping criteria is met [62]. They compare their results with literature and state that their 

results are competitive with the existing solutions. The method performs faster for large 

instances even though this is not the case for others. 

Very recently, Vidal et al. [63] proposed a hybrid genetic algorithm: the population 

consists of individuals representing feasible and infeasible solutions; the population 

evolves by applying different operators with the aim of having high quality solutions 
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while maintaining diversity. They test the algorithm on benchmark instances for PVRP 

and MDVRP and on a new set of instances for the multi-depot periodic vehicle routing 

problem (MDPVRP), providing very good solutions. 

Another very recent approach was proposed in Pacheco et al. [64]; the authors study 

the problem of a bakery company in northern Spain. In order to minimize the total 

distance traveled for the daily routes over the week, the bakery company allows some 

flexibility in the dates of delivery. The authors propose a mixed-integer linear 

programming model and solve the problem through a two phase algorithm. In the first 

phase, a set of good and diverse solutions is generated, based on GRASP. In the second 

phase, path-relinking is applied to improve the solutions. Computational experiments are 

performed on real-data-based instances. In addition, the authors apply the necessary 

modifications to treat the problem as a PVRP, in order to compare their algorithm with 

state-of-the-art algorithms for PVRP [65]. 

Lastly, in 2013, Cacchiani et al. [65] presented a hybrid optimization algorithm for 

mixed-integer linear programming, embedding both heuristic and exact components. Their 

algorithm is based on the linear programming (LP) relaxation of a set-covering-like 

integer linear programming formulation of the problem, with additional constraints. The 

LP-relaxation is solved by column generation, where columns are generated heuristically 

by an iterated local search algorithm. The whole solution method takes advantage of the 

LP-solution and applies techniques of fixing and releasing of the columns as a local 

search, making use of a tabu list to avoid cycling. They show the results of the proposed 

algorithm on benchmark instances from the literature and compare them to the state-of-

the-art algorithms, showing the effectiveness of our approach in producing good quality 

solutions. 

Mathematical Programming Based Approaches 

Furthermore, mathematical programming based models are implemented by some authors 

such as [55], [67] and [50].  

Francis et al. [55] develop an exact solution method based on Lagrangian relaxation of 

an integer programming formulation of the PVRP. Their Lagrangian relaxation phase 
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removes the constraints that link the two sets of decision variables, and the problem 

decomposes into a capacitated assignment subproblem and a number of prize-collecting 

traveling salesman subproblems. Then, they apply a branch-and-bound phase to reach the 

optimality. This provides the first known exact solution method, a heuristic method with a 

bounded gap, and a lower bound for the PVRP class of problems. 

Mourgaya and Vanderbeck [67] propose an algorithm which schedules visits and 

assigns these visits to vehicles but they disregarded sequencing customers will be visited 

within each time unit for each vehicle. In the algorithm they have two objectives; one is 

regionalization which is clustering customers geographically for tour lengths and the other 

one is workload balancing among vehicles. The authors use truncated column generation 

method with rounding heuristic to solve the model. With this method they solve the 

instances with 50 - 80 customers with 5 day planning period but not into optimality. They 

state this range of instances is solved by using metaheuristics in most of the PVRP 

literature. 

In 2011 a new exact algorithm is proposed by Baldacci et al.[50] . It is based on a set 

partitioning integer linear programming formulation of the problem and on three different 

relaxations used to derive powerful lower bounds. 

The algorithm consists of (i) computing a near-optimal dual solution of the LP-

relaxation of the formulation strengthened by valid inequalities, (ii) using this dual 

solution to generate a reduced integer problem containing all optimal solutions, and (iii) 

solving the resulting problem using an integer programming solver. They solve the most 

well-known PVRP instances in the literature. For the instances with up to 76 source nodes, 

they state they find the optimal solutions. For some instances with higher source nodes, 

they outperform the best values in the literature as well.  

To summarize, the PVRP literature relating to solution methods recognizes that the 

problem is computationally hard. Research in this area has focused on heuristics for the 

PVRP. Of the heuristics reviewed, the classical heuristics tend to solve the assignment and 

routing decisions sequentially. More recent work has focused on metaheuristics and 

mathematical programming based approaches, recognizing the need to take an integrated 

approach to the PVRP problems [61]. 
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2.3 IRP 

Most of the logistic activities focus on material flow among the companies and 

processes. Those activities require relating different quantity decisions, such as Inventory 

Management and Vehicle Routing. The intersections between these areas make the 

problems of such logistic activities harder. These problems take place in the framework of 

Vendor-Managed Inventory (VMI), a business activity designed for decreasing logistics 

expenses and increasing business value. VMI requires supplier assessments on 

replenishment issues for transporting the goods to consumer. Furthermore decisions of the 

supplier must rely on unique inventory and supply chain policies. These problems are 

defined as Inventory Routing Problem (IRP) in the literature. Lately, serious researches 

are conducted on this topic; [94], [95], [96], [97]. 

IRPs differ from VRPs greatly. VRPs happen when customers set orders and the 

delivery company, on a randomly selected day, allocates the orders for the selected day for 

trucks routes. Furthermore according to the IRP applications, decisions about amount of 

goods will be delivered, are made by the delivery company rather than the customer. Also 

customer orders are not placed in IRP applications. As an alternative, the delivery 

company manages according to the principle that the customers never be run out of 

product. Also VRPs and IRPs differentiate in the planning horizon.  Generally VRPs run 

for one day, and the single requisite is that all orders must be delivered before the end of 

the day, whereas IRPs are used for longer horizon. On a daily basis the delivery company 

decides on which customers to visit and amount of good to be delivered. The main 

purpose is minimum total cost and customers never be run out of product. For reducing 

distribution costs the time and volume of the delivery can be vary. Nevertheless, this 

flexibility as well makes harder to determine a product, approximately an optimal, cost-

effective distribution plan. The options are endless because both the customers to serve 

and amount of good are variables [98]. 

IRP applications are widely used in different industries such as: The gas distribution 

industry [99], the petrochemical industry, suppliers of supermarkets [100], [101], 

department store chains, including Walmart [102], home products, such as Rubbermaid 

[103], the clothing industry, where vendor managed resupply (VMR) is supported by the 
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American Apparel Manufacturers Association [104], and the automotive industry (parts 

distribution) [105], chemical components industry [106], [107] and in the oil and gas 

industries [108], [109], [110], [111], [112], [113], [114]. 

2.3.1 Problem Definition 

IRPs construct a large class problems and the number of solution approaches that have 

been suggested forms a larger class. Nevertheless, IRPs all have some basic 

characteristics. According to the definition, the IRP tackles with the repetitive allocation 

of one good from one facility to a set of   customers over a known length of planning 

horizon T. T is infinity for most cases. Customer   uses the good at a given rate of volume 

   (volume per day) and has the competence to retain a local inventory of the good up to a 

maximum value of   . The inventory at customer   is     at time 0. A fleet of M 

homogeneous vehicles, with capacity  , is presented for the allocation of the goods.  

The objective is to minimize the average shipping costs in the planning period without 

causing stock-outs at any of the customers. Three decisions have to be made:  

i. When to serve a customer,  

ii. How much to deliver to a customer when served, and  

iii. Which delivery routes to use.  

Even the basic version of the IRP has some variety of characteristics depending of a 

particular inventory routing problem. They are presented in Table 2.1.  

Table 2.1: Different characteristics of most studied IRPs in the literature [115].  

Criteria Possible Options 

 Time horizon Finite Infinite   

 Structure One-to-one One-to-many Many-to-many 

 Routing Direct Multiple Continuous 

 Inventory policy Maximum level Order-up-to level    

 Inventory decisions Lost sales Back-order Non-negative 

 Fleet composition Homogeneous Heterogeneous   

 Fleet size Single Multiple Unconstrained 
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In Table 2.1, time refers to the horizon taken into account by the IRP model. Time can 

be finite or infinite.   

The number of customers and suppliers are variable so the configuration preserve to 

be one-to-one in when a single supplier supplying to a single customer and one-to-many 

when single supplier and more than one customers, or seldom, many-to-many for more 

than one suppliers and more than one customers. 

Routing splits in three: direct routing (one customer for each route), multiple (a 

number of customers in one route) and continuous (without central depot).There is no 

central depot in most maritime applications. 

To decide when to make replenishment at customers, the inventory policies that will 

be used is also decided beforehand in IRPs. These policies establish how the inventory 

management is modeled. In the literature, the two most studied inventory policies are the 

maximum level (ML) policy and the order-up-to level (OU) policy. Under an ML 

inventory policy, the replenishment level is flexible but bounded by the capacity available 

at each customer. Under an OU policy, whenever a customer is visited, the quantity 

delivered is that to fill its inventory capacity.  

Another characteristic of IRPs is option of back-ordering. If the inventory level at the 

customer can be negative, then back-ordering becomes an option, meaning the demand 

can be met after it is placed. If back-ordering is not an option, then the extra demand is 

considered as lost sales. In both cases there may exist a penalty for the stock out. In 

deterministic contexts, the inventory can be forced to be non-negative.  

The last two criteria refer to fleet composition and size as in VRPs. The fleet can 

either be homogeneous or heterogeneous, and the number of vehicles available may be 

fixed at one, fixed at many, or be unconstrained [114]. 

2.3.2 Origins of the Inventory-Routing Problem 

The studies on IRP first started as variations of models designed for the VRP and 

heuristics developed for VRP taking inventory costs into consideration. Its study is rooted 

in the paper of Bell et al. [116] published 30 years ago. The paper deal with the case 

where only transportation costs are included, demand is stochastic and customer inventory 
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levels must be met. This was followed by a number of variants of the problem defined by 

the same authors. Later, Federgruen and Zipkin [117] modify the VRP heuristic of Fisher 

and Jaikumar [118] to accommodate inventory and shortage costs in a random demand 

environment; Blumenfeld et al. [119] consider distribution, inventory and production set-

up costs; Burns et al. [120] analyze trade-offs between transportation and inventory costs, 

using an approximation of travel costs; Dror et al. [121] study short term solutions. The 

latter study was extended to stochastic demand by Dror and Ball [122]. The paper of Dror 

and Levy [123] adapts earlier VRP heuristics to the solution of a weekly IRP, while Anily 

and Federgruen [124] propose the first clustering algorithm for the IRP. Most of these 

papers assume that the consumption rate at the customer locations is known and 

deterministic.  

2.3.3 Solution Methods 

The inventory routing problem (IRP) is a challenging and intriguing problem that provides 

a good starting point for studying integration of different components of the logistics value 

chain, i.e., inventory management and transportation. For the inventory routing problem, 

several matheuristic and metaheuristic approaches have been developed. Several 

extensions of the IRP have been introduced. With the new variants of the IRP, several new 

solution methods were proposed. Coelho et al. [114] define the type of IRPs on which 

most of the research effort has focused on as the basic versions. The more sophisticated 

versions are defined as extensions of the basic versions.  

In this section first, the solution methods introduced for the basic versions of the IRP 

are presented. Later, the solution methods for the relatively more well-known variations of 

the IRP are explained. 

Basic Versions 

Since the basic IRP is an NP-hard problem, most papers propose heuristics for its solution, 

but also there are some exact algorithms trying to get the exact results. In the following we 

will describe the exact and heuristic methods. 

i. Exact Algorithms 
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The first branch-and-cut algorithm for a single-vehicle IRP is proposed in Archetti et al. 

[125], which are able to solve IRPs with both order-up-to level (OU) and maximum level 

(ML) policies. They introduce a general model by incorporating both inventory holding 

cost at customers and supplier. These authors solve instances with up to 50 customers in a 

three-period horizon and 30 customers in a six-period horizon within two hours of 

computing time.  

After them, Solyalı and Süral [126] improve the model by using stronger formulation 

with the shortest path networks representing customer replenishments. With the new 

model, they solve larger problems, such as 15 customers and 12 periods or 12 customers 

and 9 periods. They also just consider the OU policy in their model.  

Besides, rather than just considering OU and ML policies, solving multi vehicle 

version is proposed recently by Coelho and Laporte [127] and Adulyasak et al. [128]. By 

using branch-and-cut fashion in the algorithm, they solve instances with up to 45 

customers, three periods and three vehicles to optimality with CPLEX. 

ii. Heuristic Algorithms 

Simple heuristics have been used in early papers on IRP to explore the solution space and 

decompose it into hierarchical sub-problems, in a way that after finding the solution of 

one sub-problem, its solution is used in the next step. In this regard, assignment heuristic 

[121], an interchange algorithm [123], trade-offs based on approximate routing costs [120] 

are such examples. 

Nowadays, the new heuristic algorithms are able to obtain high quality solutions to 

difficult optimization problems. In the heuristics proposed by Gendreau and Potvin [129] 

to avoid local optima and thorough evaluation performance, the concept of metaheuristics 

and local search procedures is used. Raidl et al. [130] by using hybridization of different 

metaheuristic concepts create even more powerful algorithms. Additionally, matheuristic 

which is the hybridization of a heuristic and of mathematical programming algorithm 

increased the quality of the results even further [131]. 

Bell et al. [116] study a case where only transportation costs are included and also 

inventory levels must be met at the customers. Dror et al. [121] offer the first algorithmic 
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comparison for IRP with a case that OU policy is applied and customers are only visited 

once during the planning period. For a weekly IRP, Dror and Levy [123], propose a vertex 

interchange algorithm. They generate initial solutions to a VRP and try to improve the 

results using the idea by Dror et al. [121]. 

Burns et al. [120] propose formulas based on the trade-offs between transportation and 

inventory costs and prove that under direct shipping the optimal delivery size is the 

economic order quantity. 

Anily and Federgruen [124] and Campbell and Savelsbergh [132] propose the 

clustering heuristics for IRP. Gallego and Simchi-Levi [133] study the direct deliveries 

and their long-term effectiveness. In addition, to allow the vehicles to perform more than 

one route per period Aghezzaf et al. [134] propose the new heuristic algorithm which uses 

heuristic column generation proposed by Anily and Federgruen [124]. As an extension to 

their work Raa and Aghezzaf [135] add driving time constrain to the model. In this regard, 

for a problem with heterogeneous fleet Chien et al. [136] proposed the improvement and 

construction heuristics. 

Abdelmaguid [137] propose a construction heuristic which also considers backlogging 

and using the genetic algorithm Abdelmaguid and Dessouky [138] get better results for 

this model. Abdelmaguid et al. [139] review the heuristics for IRP with backlogging. 

For a case that a single producer cannot usually meet the demand of the customers, 

Savelsbergh and Song [140] formulate and solve the problem with several suppliers and 

trips lasting longer than one period. This problem which is called IRP with continuous 

moves is solved by using initial solutions which are generated by a randomized greedy 

heuristic and a local search algorithm is applied on that. 

Raa and Aghezzaf [141] develop an algorithm allowing multiple tours which also 

considers a cyclic planning approach and a long term-distribution pattern. In their 

algorithm customers are partitioned over vehicles and then for each vehicle, the set of 

customers assigned to it is partitioned over different tours. To check feasibility, a delivery 

schedule is made for each partition of customers over tours and each combination of tour 

frequencies. 
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Geiger and Sevaux [142] consider identifying pareto-optimal solution by comparing 

different solutions with respect to the two opposing terms in the objective function. 

According to the authors, when they change some of the parameters, customer visiting 

frequency becomes more important, since it’s inventory cost becomes low but routing cost 

becomes expensive, and vice versa.  

Michel and Vanderbeck [143] propose a heuristic column generation algorithm to 

solve a tactical IRP in which customer demands are deterministic and are clustered to be 

served by different vehicles. This heuristic yields solutions that deviate by approximately 

6% from the optimum and increase upon industrial practice by 10% with respect to travel 

distances and the number of vehicles used. 

Campbell et al. [144] propose a two-phase heuristic based on a linear programming 

model. The model calculates the exact visiting period and quantity to be delivered to each 

customer and after that customers are sequenced into vehicle routes. It also considers time 

constraints explicitly but does not include any consideration for the inventory holding 

costs. Because of the high number of possible routes, the model becomes difficult to 

solve. An increase in the length of the planning horizon also increases the difficulty of the 

problem. By limiting the model into small set of routes and aggregating periods toward 

the end of the horizon they find more reasonable results. The output of first phase shows 

how much to deliver to each customer in each period of the planning horizon. Then the 

information from it becomes input for the second phase. Because the result of the second 

phase is related to the first phase, and the decisions in the phases are taken separately, the 

second phase can only be optimal with respect to the solution obtained from the first 

phase. 

For a single-vehicle case in which an OU inventory policy is applied by Bertazzi et al. 

[145]. They propose a fast local search algorithm which decreases the flexibility of the 

decision maker and restricts the set of possible solutions. They also consider both 

inventory and transportation costs in their model. Then, by using heuristics they solve the 

simplified problem. A first step creates a feasible solution, and a second one is applied as 

long as a given minimum improvement is made to the total cost function. While in this 

heuristic the optimality gap is larger than 5% it is extremely fast. 
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By combining tabu search and exact solution of mixed integer linear programs 

(MILPs) Archetti et al. [146] propose a more involved heuristic to approximate routing 

decisions. A combination of a tabu search heuristic with four neighborhood search 

operator and two MILPs is used in the paper. The algorithm searches the neighborhood of 

current solution and performs occasional jumps to other regions. The algorithm starts from 

a feasible solution and infeasible solutions are sometime accepted for diversification. With 

optimality gap of about 0.1% the heuristic performs well on benchmark instances.  

The adaptive large neighborhood search (ALNS) is developed by Coelho et al. [147] 

to solve the IRP as a special case of a broader problem including transshipments. After 

creating the vehicle routes by ALNS operators, the algorithm determines delivery 

quantities by using an exact min-cost network flow algorithm. In comparison with 

Archetti et al. [146], this matheuristic performs a little bit worse, in a case that no 

transshipments are considered. For the multi-vehicle version of IRP, Coelho et al. [148] 

propose an extension of the previous algorithm. By approximating the costs of inserting or 

removing customers from existing solutions through the exact solution of a MILP, better 

solutions are obtained. 

Hewitt et al. [149] propose a fast way to obtain primal solutions using a branch-and-

price method. They deal with a maritime IRP with a many-to-many structure and single 

product. They use heterogeneous fleet of vessels and a finite horizon. They state their 

method works extremely faster than MILP model and they provide comparable results. 

Extensions of the Basic Versions 

 i. The Production-Routing Problem 

Production-Routing Problem (PRP) is an extension of IRP including one more element of 

the supply chain, meaning production. The PRP integrates inventory and Lot-Sizing 

Problem over a given planning horizon with the Vehicle Routing Problem to perform the 

deliveries. Therefore, The PRP combines production and distribution decisions. 

The PRP is introduced by Chandra [150] and then Chandra and Fisher [151]. Later, 

Chandra and Fisher [151], Herer and Roundy [152], Fumero and Vercellis [153], Bertazzi 
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et al. [154], Bard and Nananukul [155], [156] study the PRP. Recently, Archetti et al. 

[157] and of Adulyasak et al. [158] also work on this topic. 

Moreover, other constraints such as inventory and production set-up cost has been 

added to the model in Blumenfeld et al. [119]. 

ii. The IRP with Multiple Products 

In the case study of Speranza and Ukovich [159], [160], they work on a multi-product 

flow for a single customer with deterministic frequencies. Following these studies, 

Bertazzi et al. [161] add multiple customers into model. Popovic et al. [162] study the 

multi-item IRP. In their model they deal with different types of fuel which have to be 

delivered to customers. Since the proposed MILP can only handle the smallest instance 

from a practical application, they solve the problem with variable neighborhood search 

(VNS) heuristic. 

Moin et al. [163] study a multi-product version with multiple suppliers and one 

customer. By linear mathematical formulation they find upper and lower bounds for the 

problem. Mjirda et al. [164] improve their results by using a variable neighborhood search 

(VNS) heuristic. And then, Ramkumar et al. [165] analyze many-to-many case. They 

propose a MILP formulation for a multi-item multi-depot IRP. But, they cannot solve to 

optimality even the small instances due to time limit. 

Multi-product formulation for a deterministic maritime problem is proposed by Ronen 

[166] but, it can only solve small instances. Coelho and Laporte [167] propose an exact 

MILP to solve muti-vehicle multi-product version of the problem. Their study also 

considers shared inventory capacity and shared vehicle capacity for products. 

 

iii. The IRP with Direct Deliveries and Transshipment 

Dealing with direct deliveries, Kleywegt et al. [168] and by Bertazzi [169] simplify the 

problem. Direct deliveries remove the routing dimension from it and more effective when 

economic order quantities for the customers are close to the vehicle capacities [133], 

[170]. 
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Li et al. (2010) develop an analytic method for performance evaluation of this delivery 

strategy, whose effectiveness can be represented as a function of system parameters. In 

this context, some policies are proposed. Herer and Roundy [152] propose power-of-two 

policies, and Zhao et al. [171] propose a fixed partition policy combined with a tabu 

search heuristic, and for multi-product version Viswanathan and Mathur [172] propose a 

stationary nested joint replenishment policy.  

Roundy [173] studies the case with multiple customers receiving direct deliveries at 

discrete times, and defines frequency based policies proven to be within 2% of the 

optimum in the worst case. In this model, inventory holding costs are linear, but there are 

fixed ordering and delivery costs. 

Coelho et al. [147] introduce transshipments in the IRP framework. To decrease 

distribution cost, planned transshipment decisions should be added to the model. 

As a mean of reducing stock outs when demand is more than inventory, Coelho et al. 

[174] propose transshipment within a DSIRP framework. Their results show that 

emergency transshipment is a valuable option to mitigate average stock outs while 

reducing distribution costs. 

iv. The Consistent IRP 

In some cases such as when very small deliveries take place on consecutive days, 

followed by a very large delivery, after which the customer is not visited for long period, 

cost-optimal solution may result in inconveniences for supplier and customers. 

Christofides and Beasley [64], Beasley [175], Barlett and Ghoshal [176] or Zhong et 

al. [177] include workforce management within the periodic VRP for assigning territories 

to drivers. Smilowitz et al. [178] analyze potential trade-offs between workforce 

management and travel distance goals in a multi-objective PVRP.  

By Coelho et al. [148], quality of service features are incorporated in IRP solutions. 

This is achieved by ensuring consistent solutions from three different aspects: quantities 

delivered, frequency of the deliveries and workforce management. Experiments on 

benchmark instances show that, ensuring consistent solutions over time increases the cost 

of the solution between 1% and 8% on average. 



Chapter 2: Literature Review 40 

 
 

v. Stochastic Inventory-Routing 

When the suppliers know customer demand just in a probabilistic sense, the problem is 

Stochastic Inventory-Routing Problem (SIRP). In the SIRP shortage can occur but to 

prevent that shortage there is a penalty cost and this penalty is usually modeled as a 

proportion of the unsatisfied demand. When there is no backlogging, unsatisfied demand 

is lost, but, the objective of SIRP remains the same. 

In the SIRP the supplier, over a planning horizon, must decide on a distribution policy 

that maximizes its expected discounted value. Bard et al. [179], Federgruen and Zipkin 

[117] work with gas and oil industry as a case which mostly deals with SIRP. 

For SIRP with the finite horizon, there are lots of heuristic algorithms. For a random 

demand environment and to accommodate inventory and shortage costs, Federgruen and 

Zipkin [117] develop the VRP heuristic of Fisher and Jaikumar [118]. And to consider 

multiple products, Federgruen et al. [180] extend their work. By considering the 

customers degree of urgency, Golden et al. [181] determine which customers to visit. 

Using the rolling horizon framework of Bard et al. [179], Jaillet et al. [182] solve the 

problem for a short-term. The specific problem of them includes direct deliveries for 

emergency deliveries when customers run out of stock and satellite facilities where trucks 

can be replenished during their routes. 

For an unknown demand varying within 10% of the mean value, Geiger and Sevaux 

[97] propose several polices base on delivery frequencies for the customers. They apply 

the record-to-record travel heuristic of Li et al. [183] to solve the problem for much more 

periods. To demonstrate the solution better, they use a pareto front approximation of the 

policies when moving from a total routing optimized solution to an inventory-optimized 

one. 

Liu and Lee [184] solve the classical road-based IRP with time windows. While a 

combination of variable neighborhood search and tabu search is used in their algorithm, 

the algorithm is not indicated as so effective. Minkoff [185] suggest a heuristic approach 

based on a Markov decision model to a problem similar to the IRP, called the Delivery 

Dispatching Problem. First he makes the objective function simple with making it a sum 

of smaller and simpler objective functions, then, solve it heuristically. 
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Considering transportation and stock out costs and no inventory holding cost, 

Campbell et al. [144] introduce a dynamic programming model for the SIRP. Also, in 

their problem, supplier knows the inventory level at each of customers, the amount to 

deliver to each and how to combine them into routes, in the beginning of the periods. 

Also, Berman and Larson [186] use dynamic programming to solve the case where the 

demand probability distributions are known. In their method, they adjust the amount of 

goods delivered to each customer, in order to minimize the expected sum of penalties.  

The approach is followed by Kleywegt et al.[168], [187] who, as in Campbell et al. 

[144], use a Markov decision process to formulate the SIRP. Here, a set of customers must 

be served from a warehouse by means of a fleet of homogeneous capacitated vehicles. 

Each customer has an inventory capacity, and the problem is modeled in discrete time. 

Inventory at each customer at any given time is known to the supplier. Customer demands 

are stochastic and independent from each other, and the supplier knows the joint 

probability distribution of their demands, which does not change over time. The supplier 

must decide which customers to visit, how much to deliver to them, how to combine 

customers into routes, and which routes to assign to each vehicle. The set of admissible 

decisions is constrained by vehicle and customer capacities, driver working hours, 

possible time windows at the customers, and by any other constraint imposed by the 

system or the application. Although demands are stochastic, the cost of each decision is 

known to the supplier. Thus, Kleywegt et al. [168], [187] consider traveling costs, 

shortages which are proportional to the amount of unsatisfied and lost demand and 

holding costs. The problem is formulated so as to maximize the expected discounted value 

over an infinite horizon as a discrete time Markov decision process. 

Kleywegt et al. [168] work on the cases with direct deliveries. However, Kleywegt et 

al. [187] allow deliveries to up to three customers per route. In the direct deliveries study 

of Kleywegt et al. [168] optimal solutions are obtained on instances with up to 60 

customers and up to 16 vehicles, whereas in Kleywegt et al. [187]  instances with up to 15 

customers and five vehicles are solved. Adelman [188] prefers to limit maximal route 

duration and vehicle capacity instead of number of customers visited per route. He derives 
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a linear program from a value function, and its optimal dual prices are used to calculate 

the optimal policy of the semi-Markov decision process.  

Qu et al. [189] develop a periodic policy for a multi-item IRP as exceptions to the 

dynamic programming approach. Huang and Lin [190] solve it with an ant colony 

optimization algorithm. Hvattum and Løkketangen [191] and Hvattum et al. [192] solve 

the IRP with the stochastic information over a short horizon. They solve the problem 

using a GRASP by increasing the volume delivered to customers.  

Another solution of SIRP is through the use of robust optimization. The structure of 

the solution is suitable to tackle with ambiguity in the circumstances information does not 

exist on the parameter probability distributions. Mini max solution (optimizing the 

problem and providing feasibility for all possible comprehensions of the bounded 

uncertain variables)   support the solution. Aghezzaf [193] deals with the state of normally 

distributed customer demands and travel times with constant averages and bounded 

standard deviations. Robust optimization is used during his research to establish the 

distribution plan in the course of a non-linear mixed-integer programming formulation 

which is feasible for all possible realizations of the random variables.  He uses Monte 

Carlo simulation for developing the plan's significant parameters (replenishment cycle 

times and safety stock levels). Solyalı et al. [194] works on such an accurate approach 

derived from robust optimization. The instances with up to seven periods and 30 

customers within a reasonable computing time are settled by using the formulation. 
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2.4 Collection Problems 

According to Taniguchi et al.[68], the processes for planning, optimizing and 

controlling logistics and transport activities is divided into forward and reverse logistics. 

In forward logistic the system is for the flow of goods from the producers to the 

consumers and in reverse logistic the flow from the consumers to facilities. The vast 

amount of waste in cities indicates the importance of this logistic activity which yields to 

large amounts of publication in the field of collection waste, mostly trying to reduce the 

total cost of this process. 

The first paper on PVRP published by Beltrami and Bodin [69] is also one of the first 

papers studying on waste collection.  

Golden et al. [70] classify waste management problems into residential collection, 

commercial collection, and roll-on-roll-off problems. In roll-on-roll-off problem, 

customers gather garbage in waste containers and after that they request for waste 

treatment services which by moving containers from specific customer locations to 

disposal places, they satisfy the service. And, in commercial collection problems, the 

containers from commercial places are being collected.  

More specifically, the roll-on-roll-off VRP is discussed in Bodin et al. [71], where 

tractors move large trailers between locations and a disposal facility. The tractors can only 

move one trailer at a time. They propose a mathematical programming formulation, two 

lower bounds and four heuristic algorithms. 

Kulcar [72] models a case study in Brussel for solid waste collection. To find 

convincing results, they apply their model in several types of transportation modes such as 

vehicle, rail and canal. 

Within the case study of Chicago, Eisenstein and Iyer [73] publish their paper about 

scheduling of trucks to accumulate the garbage. Their new dynamic approach considers 

the different amounts of waste in different city blocks. In their model, using Markov 

decision process, they find more flexible results comparing to the previous system of 

gathering the garbage. 

In the field of reverse logistic, Jayaraman et al. [74] model a MILP to design a 

network under a pull system. In their model the customer demands for recovered products. 
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While, in some parts of their study, they investigate the managerial use of the model for 

logistics decision-making with the aim of minimizing the total costs, their model for the 

location of distribution facilities, gives the exact results for transshipment, stocking and 

production. To consider the processing costs of returned products and inventory costs, 

Krikke et al. [75] model a MILP for the two stage reverse logistic network. The model 

involves the installment of remanufacturing processes in it. And, as their case study, they 

examine the data of a copier firm in Venlo- Océ.  

Considering the Hanoi, Vietnam’s case study, Tung and Pinnoi [76] research on a 

vehicle routing and scheduling problem to solve a waste collection problem. The main 

difference between their problem and others is that their problem had several steps; first 

by handcart the waste is picked up and delivered to gather sites, then there is the 

transshipment of waste from handcart to tipper. Also, there are some other problem 

specific differences, such as time table for the gathering sites and the time restrictions. To 

solve this problem, they use a construction heuristics to find the initial solution of the 

problem, and then they try to improve it by a specific improvement heuristic.  

With respect to the vehicle’s capacity, Mourao and Almeida [77] investigate a waste 

collection problem by solving a capacitated arc routing problem. In their study, after 

accumulating the waste and after reaching the vehicle’s capacity, the vehicle delivers 

waste to specific facility and again gathers the remaining.  

For the flexible visit frequency, which is not fixed in PVRP, Baptista et al. [78] 

research on collecting the recycling papers in the Almada municipality in Portugal. They 

solve this new problem using a heuristic based on method by Christofides and Beasley 

[48].  

In a case that the PVRP has some intermediate facilities (PVRP-IF), Angelelli and 

Speranza [53] suggest a TS method and in Angelelli and Speranza [79] they extend their 

algorithm for measuring the operating cost of different waste-collection systems. They 

study PVRP with intermediate facilities (PVRP-IF). In their model, the capacity of a 

vehicle is renewed by visiting an intermediate facility. 

Teixeira et al. [12] study PVRP with some other constraints. They implement a three-

phase heuristic to deal with incorporate of the collection of different types of waste and a 
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long planning period. In their study there are three types of waste which were plastic, 

glass and paper. In their assumption, they use geographical zones to distinguish the parts 

of the city, and after that they decide on types of waste collect that should be used in that 

zone and in their final step of heuristic the sites which the collect should be placed is 

decided and they solve the routing problem depending on previous decisions. 

For the generalization of the roll-on-roll-off VRP, Archetti and Speranza [80] study a 

real life problem so-called 1-skip collection problem. In that problem, a fleet of vehicles 

must transport skips of waste, one at a time, from its location to one of different disposal 

sites, depending on the kind of waste contained in the skip.  

On the other hand, Lacomme et al. [81] model a periodic capacitated arc routing 

problem on a mixed graph. In their model the demand of an arc depends on the period or 

on the date of the previous visit. 

Prins and Bouchenoua [82] model the node, edge and arc routing problem (NEARP), 

that generalizes the VRP and the CARP. The NEARP deals with mixed graphs. The model 

requires nodes, arcs and edges. They propose a memetic algorithm and show its 

competitiveness on standard benchmark instances of the VRP and the CARP. 

One way to deal with uncertainty is to do a single or multi-parameter sensitivity 

analysis. This approach is extended by using scenarios for the input parameters and 

obtaining the individual solution that performs best over the set of scenarios.  In this 

regard, Listes and Dekker [83] propose a stochastic mixed integer programming model in 

a sand recycling network. The model presented for locating reverse logistic facilities differ 

in structure hardly from the traditional location models with the aim of maximizing the 

total profit. The results help to decide better for a reverse logistic under uncertainty. 

Üster et al. [84] consider a multi-product closed-loop supply chain network design 

problem where they locate collection centers and remanufacturing facilities while 

coordinating the forward and reverse flows in the network so as to minimize the 

processing, transportation, and fixed location costs. The problem of interest is motivated 

by the practice of an original equipment manufacturer in the automotive industry that 

provides service parts for vehicle maintenance and repair. They design a semi-integrated 

network in which the direct logistics network exists and only collection and recovery 
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centers must be located. The model optimizes the direct and reverse flows simultaneously. 

An exact method is developed based on the Benders decomposition technique. 

Lu and Bostel [85] present a two-level location problem with three types of facility to 

be located in a specific reverse logistics system, named a Remanufacturing Network 

(RMN). They propose a 0-1 mixed integer-programming model that considers the forward 

and reverse flows and their interactions, simultaneously. To solve the model, they develop 

an algorithm based on the Lagrangian heuristics. 

Wojanowski et al. [86] study the interplay between the industrial firms and 

government concerning the collection of used products from households. They present a 

continuous modeling framework for designing a drop-off facility network and determining 

the sales price to maximize the firm's profit under a specific deposit-refund. They show 

that a minimum deposit–refund requirement cannot achieve high collection rates for 

products with low return value and point out two complementary policy tools that can be 

used by the government. 

Crevier et al. [87] address an extension of the multi-depot vehicle routing problem in 

which vehicles may be replenished at intermediate depots along their route. The study 

proposes a heuristic combining the adaptive memory principle, a tabu search method for 

the solution of sub-problems, and integer programming. Getting the initial results by this 

method, Tarantilis et al. [88] propose an algorithm to improve the results. The new 

algorithm is a three-step algorithmic framework for solving the vehicle-routing problem 

with intermediate replenishment facilities. The algorithm is consist of variable 

neighborhood search, tabu search which is used as a local search in VNS and the guided 

local search (GLS) which is used as post-optimization. 

Du and Evans [89] analyze the reverse logistic networks that deal with the returns 

requiring repair service. A problem involving a manufacturer outsourcing to a third-party 

logistics provider for its post-sale services is defined. They define an advanced bi-

objective MILP model. The objectives of the model include the minimization of the 

tardiness and the total costs. In order to solve the model, a hybrid-scatter search method is 

developed. 
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Aras et al. [90] demonstrate the problem of locating collection centers of a company 

with the aim of collecting used products from product holders. They develop a nonlinear 

model for determining the locations of collection centers in a simple reverse logistics 

network. They assume that a pick-up strategy is in place according to which vehicles with 

limited capacity are dispatched from the collection centers to the locations of product 

holders to transport the returns. The important point regarding their article is the capability 

of the presented model in determining the optimal buying price of used products with the 

objective of maximizing the total profit. Based on tabu search, they develop a heuristic 

approach to solve the model. 

Pishvaee et al. [91] propose a mixed integer linear programming model to minimize 

the transportation and fixed opening costs in a multistage reverse logistics network. They 

also apply a simulated annealing (SA) algorithm with special neighborhood search 

mechanisms to their problem. 

Hemmelmayr et al. [92] consider a real world waste collection problem in which 

glass, metal, plastics, or paper is brought to certain waste collection points by the citizens 

of a certain region. The collected materials are delivered to intermediate facilities (IF). 

The problem considers a planning horizon of several days. They develop a set of 

benchmark instances and propose a method that is hybrid of variable neighborhood search 

and dynamic programming. They manage to outperform previous metaheuristics. 

Buhrkal et al. [93] demonstrate how to collect waste in an efficient way. They study 

the Waste Collection Vehicle Routing Problem with Time Window which is concerned 

with finding cost optimal routes for garbage trucks such that all garbage bins are emptied 

and the waste is driven to disposal sites while respecting customer time windows and 

ensuring that drivers are given the breaks that the law requires. They propose an adaptive 

large neighborhood search algorithm for solving the problem.  
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Chapter 3 

A SELECTIVE AND PERIODIC INVENTORY ROUTING PROBLEM 

FOR WASTE VEGETABLE OIL COLLECTION 

In this chapter, we explain the selective and periodic inventory routing problem for 

waste vegetable oil collection and present the exact model proposed by Aksen et al. [1]. 

The problem is defined on a complete directed graph with a set of n source nodes and 

a depot. The real road shortest path distances     are defined for each arc       in the 

graph. The problem has a cyclic planning horizon over a period of seven days. The source 

nodes represent waste oil accumulation points and each source node   accumulates waste 

oil deterministically in a rate of     in each period  . In each period, several source nodes 

can be visited with a fleet of vehicles having a fixed capacity of  , leaving the depot in 

order to collect the waste oil accumulated at the source nodes and return to depot. The 

depot represents the biodiesel production facility. When a source node is visited at a 

period, the total oil accumulated till then has to be collected, meaning partial collection is 

not an option.  

The production facility has to have as much as the required oil    for the period   in 

order to produce enough biodiesel to meet its demands. The required amount of oil can be 

obtained by visiting the source nodes for waste oil, purchasing virgin oil, using on hand 

oil inventory obtained in the previous periods, or any combination of them.  

A traveling cost   per unit distance traveled, a purchasing cost   per liter of virgin 

vegetable oil, a holding cost   per liter of waste oil per period, and a vehicle operating 

cost   per vehicle per period is used to calculate overall cost of the facility as the objective 

function.  

The Selective and Periodic Inventory Routing Problem (SPIRP) searches to find a 

periodic collection schedule that repeats itself in every cycle. This schedule identifies the 

set of source nodes to be visited and the associated vehicle routes in each period. The 

objective is to minimize the sum of total travel cost, vehicle operating cost, inventory 
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holding cost and purchasing cost while satisfying the production requirements and vehicle 

capacity constraints 

The SPIRP is defined as an NP-hard problem since it generalizes several well-known 

NP-hard problems related to routing and lot-sizing. When the planning horizon is a single 

period, the problem reduces to a variant of VRP in which customer visits are selective and 

the facility meets its requirement through collection and/or purchasing. In the case of a 

multi period planning horizon with only a single source node, the problem reduces to a 

variant of the capacitated lot-sizing problem since the main decision is on which days to 

visit the customer, while considering the trade-offs among the transportation cost (which 

is a step function due to vehicle costs), the inventory holding cost, and the purchasing cost 

(which is analogous to the shortage cost). [1] 

Aksen et al. [1] define an exact solution method for SPIRP. Their method has two 

main components; a visiting schedule that reveals which nodes are visited, and a set of 

vehicle routes for each period of the planning cycle. The MILP formulation they propose 

determines the visiting schedule using binary variables which determines the source nodes 

to be visited in each period. Moreover, integer variables are used to record the collected 

amounts and maintain the amount of accumulated waste oil at the source nodes according 

to the visiting schedule. The requirements at the production facility are managed by 

inventory balance constraints. For the vehicle routing decisions, the MILP model uses a 

single commodity flow formulation to ensure connectivity and sub tour elimination. Their 

method defines continuous variables to represent the flow of the commodities along the 

arcs traveled by the vehicles and incorporate the binary node selection variables into the 

flow balance constraints. 

3.1 MILP model 

The index sets, parameters, and decision variables of the model are defined as below [1]. 

Index Sets 

               the set of   source nodes and the depot 0, 

               the set of   source nodes only (a subset of  ), 

                 the set of   periods in the cyclic planning horizon. 
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Parameters 

        traveling cost per unit distance. 

       distance from node   to node                  . 

       waste vegetable oil accumulation amount in period   at node               

        waste oil requirement of the company per period,      

        inventory holding cost per period for storing one liter oil at the depot. 

        operating cost per vehicle. 

        virgin vegetable oil purchasing price per liter. 

       vehicle capacity in liters. 

       total weekly accumulation of waste oil at node         . This number serves 

    as the Big-M number in the model. It is calculated by the formula    =        . 

 

Decision variables 

       binary variable indicating if arc       is traversed by a vehicle in period  ,  

                    

        binary variable indicating if node   has been visited in period               

        binary variable indicating if node   has been visited at least once during a cycle 

               It becomes 0, if node   is not visited at all. 

        the amount of waste oil flow from node   to node   in period  ,              

       the amount of waste oil collected from node   in period               

          ending inventory of waste oil by the end of period   at node              

         initial inventory of waste oil at the beginning of the cycle at node          

         the amount of waste oil purchased by the collecting company in period          
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MILP formulation 
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                    (3.18) 

                    (3.19) 

                               (3.20) 

                      (3.21) 

                (3.22) 

                           (3.23) 

                  (3.24) 

                 (3.25) 

            (3.26) 

           (3.27) 

 

The objective function of the model, the total cost is the sum of four different cost 

functions; transportation costs, vehicle operating costs, inventory holding costs, and 

purchasing costs incurred by the collection company in the planning horizon. 

Constraints (3.2) are used to balance the flow at each source node  . Constraints (3.3) 

and (3.4) control the upper bounds on the flow variables      by considering the vehicle 

capacity and the amount of waste oil collected from node   when a vehicle travels from 

node   to node   in period  . Constraints (3.5) control the lower bounds on flow variables. 

They make sure that if a vehicle travels from   to   in period  , all accumulated oil at node 

  is collected. Constraints (3.6) and (3.7) are incoming and outgoing degree balance 

constraints for each source node  , ensuring that the incoming/outgoing degree of node   is 

equal to 1, if node   is visited in period  ; and equal to 0, otherwise. (3.6) and (3.7) relate 
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the binary variables     to     . Constraints (3.8) are used as the degree balance constraint 

for the depot, imposing the incoming and outgoing degrees to be the equal. 

Constraints (3.9) are used to ensure that the number of vehicles dispatched in a period 

is sufficient to carry the collected amount with respect to the total vehicle capacity. 

Constraints (3.10) make sure that the collection amount at node   in period   is 0 if it is not 

visited in that period. Constraints (3.11)-(3.16) are used to calculate the inventory at the 

source nodes and the depot. Constraints (3.11) are used to prevent partial collection of 

waste oil at a source node  , by making sure that the inventory at node   is zero at the end 

of period  , if it is visited in that period. Constraints (3.12) control the ending inventory at 

a source node   in period   and relates the integer variables; the daily accumulated waste 

oil at node   in period  ,    , and the amount of waste collected from node   in period  , 

   . If node   is not visited in period  , then     will be 0 and the inventory will be 

increased by    . However, when node   is not visited at all, meaning    = 0, its inventory 

amount remains constant. Constraints (3.13) make sure that the beginning and ending 

inventories of the planning horizon is equal for each source node   . (3.14) are the 

inventory balance constraints for the depot that considering the total collected amount, the 

purchased amount, and the required amount of the period  . Constraints (3.15) and (3.16) 

relate the binary decision variables    to     so that if node   is visited in any period, then 

   becomes 1; and 0, otherwise. To tighten the model, they include the sub tour 

elimination constraints (3.17) to break sub tours of size two, and constraints (3.18) and 

(3.19) to avoid visits to a node which is not in the schedule. 

3.2 Partial Relaxation 

Aksen et al. [1] also introduce a partial relaxation of the MILP model to generate 

stronger lower bounds for SPIRP. They first get rid of the binary constraints (3.20) and 

add the following additional constraints. The integer variable     represents the number of 

vehicles dispatched in period  . 

                          (3.28) 
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      (3.29) 

     
       (3.30) 

Therefore, they apply linear relaxation on the binary sequencing variables     , but 

using equations (3.29) and (3.30), they strengthen the model by imposing integrality on     

variables which are actually the sum of      variables over  .  

  Furthermore, instead of using equations (3.17) - (3.19) as tightening constraints, the 

following equations (3.31) and (3.32) are used. 

                              (3.31) 

                             (3.32) 

They state this partial linear relaxation (PLR) model provides quite strong lower bounds 

when solved within a time limit of one hour for the problem instances of 25. 

3.3 Relaxation without Routing 

We propose a new relaxation of the MILP model to provide easy-to-compute lower 

bounds for especially larger instances. We eliminate      flow variables,      binary 

variables; and related constraints (3.2)-(3.8), (3.17)-(3.19), (3.20) and (3.23), meaning 

eliminating the routing part of the problem. The number of vehicles dispatched is 

controlled by a new integer variable, namely    for each period by changing constraint 

(3.9) with (3.33) and (3.34).  

          

    

      (3.33) 

          (3.34) 

 

We also change the objective function to replace the routing costs, namely transportation 

and vehicle operating cost, with new cost functions giving lower bound values for 
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previous functions. We define minimum distance parameters          and          

representing the distances between the depot and the closest customers in each direction. 

The vehicle operation cost and transportation cost parts of the objective function is 

modified as follow: 

                              
   

                
         

 (3.35) 

 

The relaxation without routing (RR) model is computed easily in seconds; however the 

lower bounds are not very strong. Nevertheless, RR provides better bounds than PLR for 

some instances. We will discuss their performances further in chapter 5. 
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Chapter 4 

AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM FOR 

SPIRP 

The recent heuristic studies in the literature based on Large Neighborhood Search 

(LNS) presented a noticeable success in the fields of transportation and scheduling. The 

success of the method comes mostly from its ability to search a more complicated 

neighborhood with respect to previous heuristic methods used in these fields. Searching in 

a larger neighborhood increases the chance of finding better solutions, which also helps to 

find better objective values at the end. [195] 

Especially when the problem has tighter constraints, a small neighborhood can fail to 

search throughout the solution space by getting stuck in a smaller search space. However, 

the large neighborhood can search in a larger space, which is actually the idea behind 

LNS. [195] 

 LNS is in the class of Very Large Scale Neighborhood search (VLSN) heuristic 

algorithms according to Ahuja et al. [197]. This class of heuristic methods uses the power 

of large neighborhoods to find high quality local optima, which can lead to better results 

by searching a larger neighborhood. The disadvantage of VLSN algorithms is as the 

neighborhood gets larger, the time the algorithm requires gets longer. To deal with the 

time problem, the neighborhoods used in VLNS algorithm are limited to a part of the 

original search space.   

Large Neighborhood Search was first introduced by Shaw [196] in 1998. The article 

uses LNS to solve VRP, one of the most studied routing problems. The LNS heuristic 

requires a previous step to create an initial solution. Then, the algorithm applies destroy 

and repair methods to improve the objective value. To limit the search space of 

neighborhoods, Shaw [196] starts with a smaller neighborhood and gradually increases the 

degree of the neighborhood, which creates a larger neighborhood. On the other hand, 

Pisinger et al. [198] applies a random selection on the degree of the neighborhood in each 

iteration.  
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Pisinger et al. [198] modify LNS by defining several destroy and repair methods to be 

used throughout the heuristic, whereas LNS uses only one destroy method and one repair 

method. They define this new heuristic as Adaptive Large Neighborhood Search (ALNS). 

When compared to LNS, ALNS can make bigger changes to the current solution by 

exploring a larger search space with several destroy and repair methods. Moreover, ALNS 

dynamically controls the probability of using a neighborhood according to its performance 

throughout the search [195].  

Pisinger et al. [198] state that the LNS methods have been very successful within the 

areas of routing and scheduling problems. Since our focus of study is on a routing and 

scheduling problem, namely SPIRP, we apply an ALNS algorithm on SPIRP. Our 

algorithm adopts the algorithm proposed by Coelho et al. [199], an ALNS heuristic on 

Inventory Routing Problem with Transshipments (IRPT) to SPIRP. This ALNS algorithm 

differs from the previous ones in terms of the applications of destroy and repair moves. 

Coelho et al. [199] do not follow the rule of applying a repair move and a destroy move 

each iteration. For some iterations, they just apply destroy or just repair moves. In this 

study, we use the moves they described; however after each move we apply a repair step 

to adopt several variables of different cost functions in our objective. A change in the 

variables of a cost function creates a need to adopt other variables. This need of modifying 

different groups of cost function comes from the characteristics of our problem such as its 

selective structure, the flexibility on the number of vehicles used, not allowing the 

transshipment between source nodes and using no inventory policies at the source nodes. 

The method Coelho et al. [199] describes can provide high quality solutions within 

reasonable computing times on large set of instances comparing to the exact model they 

presented.  

The detailed structure of the ALNS algorithm is explained next. 

4.1 Main Structure of the Algorithm 

The ALNS algorithm is described in four main components [199]: 
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Large Neighborhood:  

The neighborhoods used are designed to make a number of changes to the current 

solution. In our algorithm, moves can modify the source node selection, visits to a source 

node in the periodic schedule, number of vehicles used in a period or in several periods, 

amount of inventory, virgin oil purchase amount and the sequence of source nodes visited 

in a route. These changes may require recalculating all the optimization function elements; 

inventory amounts, transportation cost, purchasing amounts and vehicle operating cost 

after each move. 

Adaptive Search Engine:  

In order to decide which neighborhood to use in each iteration, a roulette-wheel 

mechanism is used. Each neighborhood has a weight which represents its share at the 

wheel. The weights of the neighborhoods are determined according to past performances 

of the neighborhood. Let    be the weight assigned to neighborhood   depending on its 

past performance. Then the neighborhood is chosen with probability      
       
            

(# neigh = number of neighborhoods defined for ALNS). 

Adaptive Weight Adjustment:  

At the beginning, each neighborhood has the same probability of being chosen. During the 

run, the weights are updated several times. The run is divided into segments containing the 

same number of iterations, namely  . At the end of each segment, the weights are updated 

depending on their performances during the current segment. The performances are 

recorded by keeping scores of neighborhoods, represented here by    for neighborhood  . 

At the beginning of each segment, scores are set to 0. After each iteration, the score of the 

neighborhood used at that iteration is updated as below, where          are integer 

numbers satisfying         ;    is the new solution,       is the best solution and   

be the current solution; and      is the objective function to be minimized. 
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The main idea here is that the better the new solution is, the larger is the increment on the 

score of the chosen neighborhood. At the end of each segment, the weights are updated as 

follows:  

         
                                                     

                                 
  

Here,     is the number of times neighborhood   is used in the current segment  ,     is the 

weight of neighborhood   in the current segment   and           is the reaction factor 

controlling how much the last segment affects the current weights. 

Acceptance and stopping criteria:  

The acceptance criterion used is as in simulated annealing. Let   be a random variable 

with uniform distribution taking values between 0 and 1, and   be the temperature 

parameter. The temperature is started at        and it is decreased by a cooling factor   at 

each iteration, where      .  
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Moreover, a time limit of one hour is used as stopping criterion in order to avoid long 

CPU times. 

4.2 Applying ALNS 

Since SPIRP includes several management decisions in one problem, the problem 

itself is highly complicated. Therefore, the configuration of the algorithm is a complex 

one as well. The data structure we create for this problem includes following elements: 

- There is a distance matrix with size             that keeps real life shortest 

path distances between source nodes and the depot. (  is the number of source 

nodes as defined in Chapter 3).  

- Every source node has an accumulation array in the length of the planning 

horizon, say  . Each element in the array corresponds to the accumulation rate of 

that source node for a specific period. 

- Every source node has a binary schedule array of size   which has the same 

length with the accumulation array. Elements with the value of 1 means that the 

source node is visited in those periods. If an element is 0, then the source node is 

not visited in that period. 

-  For each source node, a collection array keeps the accumulated amounts with 

respect to schedule and accumulation arrays. These are the values corresponding 

to the collected amounts from source nodes.  

- Each period has a list of source nodes that are visited in that period. 

- Each period has a list of routes such that each element corresponding to a vehicle 

containing the list of source nodes visited by that vehicle. 

- For the depot, an inventory array of length   keeps the amount of inventory at the 

depot at the beginning of each period. 

The algorithm starts with known distance matrix and accumulation array. The initial 

solution provides the schedule array for each source node. Using these data, the collection 

array for each source node, inventory array for the depot and total purchase amount are 

calculated. Source nodes list for each period is created. Then, Clark and Wright parallel 

savings algorithm [17] is applied for each period to create the route list. As the part of the 
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initial solution, several improvement heuristics are applied that is explained in the next 

section. 

Every iteration, a move is chosen according to the roulette-wheel mechanism as 

explained in Section (4.1). After each move is applied, relatively more time is spent to 

restructure the solution as follows:  

- The change starts with updating the schedule array of related source nodes and the 

source nodes list of necessary periods.  

- The collection array is reformed.  

- If needed, the inventory array and the purchase amount are also updated.  

- Moreover, at each iteration, if a need for an extra vehicle or an opportunity to 

decrease the number of vehicles in a period arises, the parallel savings algorithm 

is solved from scratch and improvement heuristics are applied as in the initial 

solution.  

The weights of all moves are started with equal values, i.e.     . The segment length 

  in our algorithm is 200. The score updates          take values 10, 5, and 2, 

respectively. The reaction factor   is 0.7. The starting temperature         is 100,000 and 

the cooling factor   is 0.99977 which corresponds to 50,000 iterations. For larger 

instances with over 50 source nodes, the cooling factor becomes 0.9996, corresponding to 

100,000 iterations. For every parameter, several sensitivity analyses are performed and 

these values are found to be more effective.  

4.3 Initial Solution  

As explained before, the algorithms make gradual improvements over an initial solution. 

We observe that a relatively better initial solution gives better results with respect to a 

random initial solution. In order to find an initial solution, we use the solution of the 

relaxation without routing (RR) model. The model gives us a visiting schedule for each 

source node during the planning horizon. The schedule of the solution is used for the 

scheduling part of the problem and for the routing part, the parallel savings algorithm is 

used to determine the routes for each period in the planning horizon. On top of that, to 
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find a better initial solution, below improvement heuristics are applied. These heuristics 

are proven to perform well for VRP in the literature [21]: 

Intra-route 2-Opt 

Two edges are removed from the tour and the two remaining segments are reconnected 

 

 

Figure 4. 1: Intra-route 2-Opt 

 

 

Intra-route 3-Opt 

Three edges are removed from the tour and the three remaining segments are reconnected 

in all possible ways 

 

Figure 4. 2: Intra-route 3-Opt 

Inter-route 2-Opt 

Two edges from different routes are replaced by two new edges 
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Figure 4. 3: Inter-route 2-Opt 

Inter-route customer move 

A customer is moved from one route to another. 

 

Figure 4. 4: Inter-route customer move 

2 routes customer exchange   

Two strings of at most k vertices are exchanged between two routes. 

 

Figure 4. 5: 2 routes customer exchange 

3 routes cycle customer exchange 

Three routes are considered and three customers from each route are shifted to the next 

route of the cyclic permutation. 

 

Figure 4. 6: 3 routes cycle customer exchange 
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4.4 Moves of the Algorithm 

Because of the option to purchase in SPIRP, the problem does not have an infeasibility 

problem.  Therefore, we are free to apply any kind of move in our algorithm. However, 

because of the complexity of the problem, even a small move can create considerable 

changes. Periodic structure of the problem requires changes in more than a single period 

for most moves. Therefore, even with the simple moves, the time to restructure the 

solution is significant. For relatively more complicated moves, the case is even more time 

consuming. For instance; new routes are constructed from scratch for several periods.  

The moves we use in this study are described in [199] for IRPT by Coelho et al. We 

adopt for SPIRP. After each move, we apply a repair step to reform the data structure of 

the new solution and recalculate the optimization functions with their related variables. 

Several moves are applied   times at a single iteration, where   is an integer randomly 

chosen between 1 and 3 with semi-triangular distribution with negative slope. The 

probability of 1 to be chosen is    , 2 is     and 3 is    . Since the probability of   

being 1 is relatively high, in most iterations, the moves are applied only once, as in the 

classical approach in metaheuristics. However, with relatively smaller probabilities,    can 

be 2 or 3 which transforms a move into a larger move that can search a larger solution 

space.  

Each move creates changes on the schedule of either one source node or several of 

them. The source nodes that moves are applied on are chosen among a subset of source 

nodes randomly or according to a predefined rule. Considering the characteristics of the 

moves, we define subsets of the source nodes as such:  

- Subset 1: Source nodes that are not in the current solution, meaning the source 

nodes that are not visited at all in the current solution. 

- Subset 2: Source nodes that are visited once in the current solution. 

- Subset 3: Source nodes that are visited more than once, but less than the planning 

period   in the current solution.  

- Subset 4: Source nodes that are visited in all periods in the planning horizon. 

Even though a move modifies only the source list of a single period, updating the 

routing list, inventory amounts and purchase amounts of several periods might be 
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required. Before defining the moves, we explain the types of updating procedure the data 

structure goes through after a move: 

4.4.1 Repair Schemes 

Repair 1 

It is used in the case a move removes a source node that is in Subset 3 or 4 from a 

period. The source node still stays in the solution at another period. Hence, the collected 

amount in the removed period is transferred to the next visiting period. Thus, to update the 

next visiting period also becomes necessary. For the removed period, the source node list, 

and routing list are updated. We check for the possibility of reducing the number of 

vehicles for this period since the total collected amount is decreased with the removal of a 

source node. To do this, we check whether the total collected amount for this period is 

lower than the total capacity of remaining vehicles if one of them is removed. If this 

inequality holds, removing one vehicle might be possible. Then, we solve the parallel 

savings algorithm from scratch and apply improvement heuristics for this period.        

For the next period, we first need to check whether the vehicle has enough capacity to 

carry the additional collection amount for the source node. If there is enough slack 

capacity, we only update the total collected amount and slack capacity of the vehicle for 

the next visiting period. In case the space is not enough, we check whether there is a 

vehicle with enough slack capacity to carry that source node in that period. If there is, we 

insert the node with the cheapest insertion rule. If there is not enough space, we create a 

new vehicle that only carries that node. In this case we check for the possibility of 

reducing the number of vehicles for this period as we describe for removed period. If 

removing one vehicle is probable, we solve the parallel savings algorithm from scratch 

and apply improvement heuristics to this period as well.    

Total collected amount for the planning horizon stays the same but the collected 

amounts for two periods are changed. The total purchased amount does not change and so 

purchasing cost stays same. However, with different collection amounts for the periods, 

the inventory amounts for each period and so the inventory cost change. Furthermore, 
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since some routes are changed, transportation cost changes. Lastly, vehicle operation cost 

might change if number of vehicles used differs.     

Repair 2 

It is in the case a move inserts a source node that is in Subset 2 or 3 into a period. The 

source node was already in the solution for at least one other period before insertion. 

Hence, the new collected amount in the inserted period is actually transferred from the 

next visiting period. Thus, to update the next visiting period also becomes necessary. For 

the inserted period, we first check whether there is a vehicle with enough slack capacity to 

carry the inserted source node. If there is, we insert the node with the cheapest insertion 

rule into that vehicle. If there is not enough space in any vehicle, we create a new vehicle 

that only carries that node. In this case we check for the possibility of reducing the number 

of vehicles for this period as described in Update 1. If removing one vehicle is probable, 

we solve the parallel savings algorithm from scratch and apply improvement heuristics to 

this period as well. 

For the next period, the collected amount of the chosen node is decreased as much as 

the transferred amount to the new visiting period of the source node. We decrease the total 

collected amount of the period and increase the slack capacity of the vehicle that the node 

is in. We check for the possibility of reducing the number of vehicles as described in 

Update 1, since the total collected amount is decreased. To do this, we solve the parallel 

savings algorithm from scratch and apply improvement heuristics for this period as well.  

Total collected amount for the planning horizon stays the same but the collected 

amounts for two periods are changed. The total purchase amount does not change and so 

purchasing cost stays the same. However, with different collection amounts for the 

periods, the inventory amounts for each period and thus the inventory cost change. 

Furthermore, since some routes are changed, transportation cost changes. Lastly, vehicle 

operation cost might change if the number of vehicles used differs. 

Repair 3 

It is in the case a move deletes a source node that is in Subset 2, 3 or 4 from all 

periods. For the periods the node is removed, the source node list, and routing list are 
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updated. Then, we check for the possibility of reducing the number of vehicles for each 

period as described in Update 1. Then, we solve the parallel savings algorithm from 

scratch and apply improvement heuristics for the periods removing a vehicle is probable. 

Since the node is removed from visiting schedule, the facility might fall short to meet 

the requirements if there is not enough waste oil is collected. In this case, the company 

purchases virgin oil as required. Hence, the purchasing cost might increase. Inventory 

amounts decrease and thus the inventory cost decreases.  Furthermore, since the node is 

removed from some routes, transportation cost decreases. Lastly, vehicle operation cost 

might change if number of vehicles used differs. 

Repair 4 

It is in the case a move inserts a source node that is in Subset 1 into a random period. 

For the random period, we first check whether there is a vehicle with enough slack 

capacity to carry the inserted source node. If there is, we insert the node with the cheapest 

insertion rule into that vehicle. If there is not enough space in any vehicle, we create a new 

vehicle that only carries that node. In this case we check for the possibility of reducing the 

number of vehicles for this period as described in Update 1. If removing one vehicle is 

probable, we solve the parallel savings algorithm from scratch and apply improvement 

heuristics to this period as well. 

 If the company has been purchasing virgin oil before the insertion, the inserted amount 

is subtracted from the purchased amount without allowing negative purchase. Hence, the 

purchasing cost might decrease. Inventory amount increases and thus the inventory cost 

increases. Furthermore, since the node is inserted into a route, transportation cost 

increases. Lastly, vehicle operation cost might change if number of vehicles used differs. 

Repair 5 

It is in the case a move exchanges all the source nodes of a period with the source 

nodes of another period. For two periods, all the routes are destroyed. Because several 

source nodes’ collection values change, it is highly possible all of the periods are affected 

by this exchange. We first update the source node lists of the exchanged periods and the 

schedule arrays of the exchanged source nodes. Then, as explained in Section (4.2), we 
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restructure these two periods from scratch with their new nodes. Furthermore, we solve 

the parallel savings algorithm and apply improvement heuristics for other periods as well.   

 Total collected amount for the planning horizon stays the same but the collected 

amounts for almost all periods are changed. The total purchase amount does not change 

and so purchasing cost stays same. However, with different collection amounts for the 

periods, the inventory amounts for each period and so the inventory cost change. 

Furthermore, since all the routes in the solution updated, transportation cost changes. 

Lastly, vehicle operation cost might also change.    

4.4.2 Definition of the Moves 

The 11 movements used in this algorithm are as below: 

1. Randomly remove   visits:  

Randomly select one period and remove one random source node that is in Subset 

3 or 4 and in that period. Then, apply Repair 1. This move is repeated   times.  

2. Randomly insert   visits:  

Randomly select one source node in Subset 2 or 3 and one random period that the 

source node is not visited. Insert the source node is into the chosen period. Then, 

apply Repair 2. This move is repeated   times. 

3. Remove the worst source node:  

Remove all the visits of one source node in Subset 2, 3 or 4 such that the objective 

value will save the most when it is removed from the visiting schedule. All the 

source nodes are removed one by one and the most efficient removal is chosen. 

Then, apply Repair 3. 

4. Insert the best source node:  

Insert one source node in Subset 1 to a random period in such that the objective 

value will save the most, when it is inserted. Then, apply Repair 4.  

5. Shaw removal:  

Randomly select one period and a source node in Subset 3 or 4 and in that period; 

compute the distance from the selected source node to the closest source node in 

the same period, namely distmin. Then, remove all source nodes in Subset 3 or 4 
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within the range of 2*distmin from the selected node in the same period. For each 

source node removed, apply Repair 1. 

6. Shaw insertion:  

Randomly select one period and one source node in Subset 2 or 3 and that is not 

visited in that period. Then compute the distance to the closest source node, 

namely distmin and insert all source nodes in Subset 2 or 3 within the range of 

2*distmin of the selected node into that period. For each source node inserted, 

apply Repair 2. 

7. Remove   source nodes:  

Randomly select one source node in Subset 2, 3 or 4 and remove it from all 

periods. Then, apply Repair 3. This move is repeated   times. 

8. Insert   source nodes:  

Randomly select one source node in Subset 1 and insert it into a random period. 

Then, apply Repair 4. This move is repeated   times. 

9. Empty one period:  

Randomly select one period and remove all the source nodes in that period. For 

the removed source nodes in Subset 2, apply Repair 3 and for the removed source 

nodes in Subset 3 or 4, apply Repair 1. 

10. Swap routes:  

Randomly select two periods and swap all the source nodes in these periods. 

Then, apply Repair 5.   

11. Randomly move   visits:  

Randomly select one period and a random source node in Subset 2 or 3 and in that 

period, remove the source node from that period and insert it into another random 

period. For this move, first insert the source node into the second period and apply 

Repair 2. Then, remove the source node from the first period and apply Repair 1. 

This move is repeated   times.  

In Chapter 5, we present the accumulation of real life data, and the computational results.  
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Pseudo code of ALNS algorithm for SPIRP – part 1 

1: All weights are set to 1 and all scores are set to 0. 

2:    initial solution. 

3:                 

4:           

5:       iterations < 50,000  or time < 3,600 sec 

6:             

7:       Select a movement using the roulette-wheel mechanism based on the weights 

       of the current segment. 

8:       Apply the movement to s’ and update the number of times it is used. 

9:       Fix routing decisions, solve the remaining problem taking into account inventory 

       holding costs, purchasing cost, vehicle operating cost and transshipment cost. 

10:                          

11:                   

12:                                   

13:                            

14:                   increase the score for the neighborhood used by  1; 

15:                  

16:                   increase the score for the heuristic used by  2; 

17:                    

18:            

19:                   is accepted by the simulated annealing criterion      

20:                         

21:                   increase the score for the heuristic used by  3. 

22:                    

23:              

24:          the end of the segment, 200 iterations, is reached      

25:             update the weights of all heuristics and reset their scores. 
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Pseudo code of ALNS algorithm for SPIRP – part 2 

26:              

27:            ; 

28:           

29: Every 200 iterations perform intra-route 2-opt, intra-route 3opt, inter-route 2-opt, 

 3 route cycle customer exchange, customer move, 2-route customer exchange to 

 improve the routes. 

30:              
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Chapter 5 

COMPUTATIONAL RESULTS 

In this chapter, we solve the selective and periodic inventory routing problem (SPIRP) 

in a case study about a waste collection logistics problem of a biodiesel production facility 

in Istanbul, Turkey by designing an adaptive large neighborhood search heuristic (ALNS). 

We solve problems with 20 to 100 source nodes for a 7-day cyclic planning horizon. To 

evaluate the performance of the algorithm, we generate lower bounds with the partial 

linear relaxation (PLR) model proposed by Aksen et. al. [1] and relaxation without routing 

(RR) model as described in Section (3.3). Moreover, for the instances with 20 to 40 source 

nodes, we solved the SPIRP model proposed by Aksen et. al. [1] to compare ALNS with 

SPIRP for small-sized instances. Due to the fact that SPIRP is shown in [1] to perform 

poorly for instances with 40 nodes, we do not run the model for larger instances. In the 

following sections, we describe the data, present the results and give some analysis. 

5.1. Acquisition of the problem data 

For waste vegetable oil collection, we include 20, 25, 30, 35, 40, 50, 60, 80, and 100 

restaurants to the company’s collection program. The restaurants and the recycling facility 

operated by the company constitute a complete collection network. The restaurants are the 

source nodes and the recycling facility is the depot. The asymmetric shortest path 

distances between each origin and destination pair on this complete network have been 

obtained from Google Maps. These distances are multiplied by the unit traveling cost 

correspond to the asymmetric arc costs of the complete network under consideration. All 

restaurants are located on the Asian side of Istanbul, while the depot is situated in Gebze, 

about 50 km east of Istanbul on the northern shore of the Sea of Marmara. The distribution 

of the restaurants used as source nodes over the Asian side of Istanbul in this study has a 

similar structure with the real life distribution of the restaurants in the Asian side of 

Istanbul. Figure (4.1) shows the source nodes’ geographical distribution on the eastern 

side of the Bosphorus. The reason most of the source nodes appear to be close to each 

other is that the locations of the hospitality businesses and dining facilities are not 
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dispersed homogenously over the Asian side of Istanbul in reality.     

 

Figure 5. 1: The geographical locations of the restaurants on the Asian side of Istanbul 

Besides the distances, there are several other input parameters such as the costs of 

inventory holding, transportation, purchasing, and vehicle operating; the vehicle capacity, 

the daily waste oil accumulation rates at each restaurant, and the daily waste oil 

requirement of the company. The values of these parameters are obtained, where possible, 

from various information sources on the web and through private communication with the 

company. For the daily accumulation rates, a questionnaire is used to be able to generate 
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relatively realistic values. The instances are created to assess the performance of our 

algorithm with different real life scenarios.  

The company policy is to adopt a uniform vehicle type for its collection operations. 

We used the light commercial vehicle: Fiat Fiorino Cargo. Its fuel and operating costs 

(parameters c and v in the SPIRP exact model) are calculated in Table (5.1). The data on 

driver wages, vehicle leasing costs, and Euro 4 diesel prices were inquired in August 

2013, and may show fluctuations throughout the year. 

Since virgin oil can also be used as raw material in biodiesel production [104], we 

assume that purchasing price ( ) is at most the wholesale price of virgin vegetable oil, 

which is around 3.5 TL/lt. We also run the algorithm with another   value, namely 2.5 

TL/lt. The cost of storing one liter of waste oil in the depot of the company, namely , has 

been calculated as the daily interest rate times the highest purchasing price. This yields 

0.02 TL/day for  . 

 

Table 5. 1: Fuel and daily operating costs of the light commercial vehicle 

Vehicle Model Fiat Fiorino Cargo 

Payload (except the driver) 550 kg 

Fuel Consumption (urban) 6 lt / 100 km 

Leasing Cost 50 TL/day 

Vehicle Operating Cost 90 TL/day 

Traveling Cost 0.24 TL/km 

Wages of the Drivers 40 TL/day 

Price of Euro 4 Diesel 3.91 TL/lt 

 

The accumulation values     have been generated according to a questionnaire on 

waste oil collection in Turkey. The questionnaire shows that the large-sized restaurants 

accumulate approximately 50 lt/day waste oil per day, the medium-sized restaurants 

accumulate around 30 lt/day and the small-sized restaurants accumulate around 15 lt/day. 

These values are taken into account to generate related     values. For each day   
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       ,     values are derived from a normal distribution with means 15, 30 and 50 

according to the restaurant type of the instance with variances 5, 15 and 25 respectively.  

We test the proposed ALNS algorithm with three levels of waste oil requirements to 

assess the performance of the algorithm under different scenarios; low, medium, and high. 

The requirements are calculated according to total accumulation in a week at the 

restaurants chosen as the source nodes. The low accumulations are calculated as collecting 

around ½ of the total accumulation, the medium accumulations are calculated as collecting 

around ¾ of the total accumulation and finally the high accumulations are calculated as 

collecting approximately all of the total accumulation in the restaurants. To calculate the 

requirements for each day, these total requirement values are divided by the cycle length, 

7. Since the waste oil requirements of the company are determined according to long-term 

production plans, we assume that the daily requirements do not vary across the 7-day 

production cycle. 

Overall 54 SPIRP case instances for a waste collection problem are generated. The 

instances differ in size of the source nodes, daily requirement levels, and vegetable oil 

purchasing prices per liter. The problem instance names are indicative of these 

specifications. For example, (20n-270r-2.5p) means that the number of source nodes in the 

collection program is 20, the daily waste oil requirement is 270 lt/day, and the unit 

purchasing price of virgin oil is 2.50 TL/lt. 

5.2. Computing platform, Cplex options and JAVA programming 

All experiments and scenario analyses were conducted on a server equipped with Intel 

Xeon E5-2643 3.30 GHz Quad-Core processor and 32 GB RAM. The operating system of 

this PC is 64-bit Windows 7 Professional Service Pack 1.  

The ALNS algorithms are coded in JAVA and compiled with version 10.15.2.0. For 

every instance, 10 parallel ALNS runs are taken by converting Java files to jar files and 

starting the same 10 jar files through comment window. In this way, the computing load is 

distributed on all the cores. Among 10 results, the best result is recorded as the objective 

value of the algorithm and the time to run 10 parallel algorithms is recorded as the CPU 

time of the ALNS algorithm for each instance. 
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The 64-bit version of the mathematical modeling and optimization suite GAMS 23.7 

was used to create the SPIRP and PLR models proposed by Aksen et al. [1]; and the RR 

model. Cplex 12.3 was employed with the following options turned on: nodelim 

50000000; threads 0; parallelmode 1; workmem 30000; nodefileind 2 (GAMS/Cplex 12 

Solver Manual). This way, the computing load of Cplex is distributed on to as many as 

four cores of the Xeon Quad-Core processor.  

For the small instances, the SPIRP model is solved to compare the performance of the 

ALNS algorithm. The time limit for the SPIRP model was set to 2 hours, 2.5 hours, 3 

hours, 3.5 hours and 4 hours for the instances with respectively 20, 25, 30, 35 and 40 

source nodes. The model is not used to solve large instances since it starts to perform 

poorly as the instance size gets larger.  

The lower bounds are calculated using both the PLR and the RR models to evaluate 

the performance of the ALNS algorithm. The PLR model was run for 1 hours, 1.25 hours, 

1.5 hours, 1.75 hours, 2 hours, 2.5 hours, 3 hours, 4 hours, and 5 hours for instances with 

respectively 20, 25, 30, 35, 40, 50, 60, 80 and 100 source nodes. The RR model is solved 

instantly in all of the instances. Moreover, since the MILP model run for the small 

instances also give lower bounds, its lower bound values are also used as performance 

evaluators for the small instances. 

5.3 Test results and optimality gaps 

The ALNS algorithm is applied to 54 instances described in Section (5.1). To evaluate the 

quality of the ALNS solutions, three different lower bound methods are used as explained 

in Section (5.2). For each small instance, a lower bound is obtained by solving the SPIRP 

exact model in a limited time, the PRL model in a limited time and the RR model. For the 

large instances, only the PLR model and the RR models are solved since solving the exact 

model itself for these instances is shown to be time consuming and not useful. To evaluate 

the performance of the algorithm, we report the following: 

          The best objective value of 10 ALNS runs in parallel. 

          The best feasible objective value, the final upper bound, obtained by 

running the exact MILP model for a preset time. 

           The CPU time of 10 parallel ALNS runs.  
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            The CPU time of the SPIRP model, a preset time limit. 

           The lower bound value of the SPIRP model when run for          . 

         The lower bound value of the PLR model when run for          /2. 

        The optimal objective value of the RR model. 

                                   . (          is available only for small 

instances) 

           The final gap between the best feasible objective value obtained from 

the MILP model, namely         and the best lower bound obtained by taking 

the highest value among         ,       , and      , i.e. 
               

      
. 

          The final gap between the best objective value of 10 ALNS runs, 

namely         and the best lower bound obtained by taking the highest value 

among         ,       , and      , i.e. 
              

      
. 

                The final gap between the best feasible objective value 

obtained from the MILP model, namely         and the best objective value of 

10 ALNS runs, namely        , i.e. 
                

        
. 

First, we compare the performances of the ALNS algorithm and the SPIRP model on the 

small instances. For the instances with 20 and 25 nodes the exact model provides better 

objective values. When the size of the nodes increases to 30 and more, the ALNS 

algorithm outperforms the MILP model. The methods are evaluated with respect to the 

best of the lower bound values obtained by solving the exact model and the PLR model 

for limited times, and by solving the RR model to optimality. Table (5.2) presents the 

experimental results for the small instances and Table (5.3) summarizes the comparative 

performances of the two solution methods with respect to the node sizes. 
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Table 5. 2: Computational results for the small size instances 

  LBSPIRP LBPLR LBRR TCSPIRP TCALNS 
GapSPIRP 

(%) 
GapALNS 

(%) 
CPUALNS 

(s)  

Instances 
        

20n-270r-2.5p 411.7 471.1 466.7 473.4 480.1 0.48 1.89 3.2 

20n-410r-2.5p 617.0 701.0 692.0 707.9 711.8 0.99 1.55 2.8 

20n-540r-2.5p 803.7 806.6 788.4 818.6 830.6 1.49 2.98 8.6 

20n-270r-3.5p 411.7 471.1 466.7 473.4 479.9 0.48 1.85 3.9 

20n-410r-3.5p 617.0 701.0 692.0 707.9 712.0 0.99 1.58 3.7 

20n-540r-3.5p 803.7 806.6 788.4 818.6 830.6 1.49 2.97 9.8 

25n-320r-2.5p 482.8 583.5 579.3 594.4 593.2 1.86 1.65 4.7 

25n-480r-2.5p 718.4 798.0 788.0 808.4 813.0 1.30 1.88 7.1 

25n-640r-2.5p 966.1 1,051.1 1,030.0 1,078.3 1,074.1 2.59 2.19 25.4 

25n-320r-3.5p 483.1 583.3 579.5 591.0 594.6 1.32 1.93 5.1 

25n-480r-3.5p 718.2 798.1 788.0 808.9 820.2 1.35 2.76 6.7 

25n-640r-3.5p 965.0 1,056.4 1,029.5 1,078.1 1,083.4 2.06 2.55 35.3 

30n-420r-2.5p 617.0 684.4 680.8 706.9 709.4 3.28 3.65 12.1 

30n-630r-2.5p 923.5 928.2 940.6 1,052.1 1,008.4 11.85 7.21 15.2 

30n-840r-2.5p 1,240.3 1,272.3 1,237.9 1,421.3 1,420.4 11.71 11.64 224.4 

30n-420r-3.5p 616.7 684.3 680.8 702.5 713.5 2.66 4.27 14.0 

30n-630r-3.5p 923.5 930.1 950.6 1,046.9 1,066.3 10.13 12.17 14.1 

30n-840r-3.5p 1,240.7 1,272.5 1,237.9 1,432.2 1,421.5 12.55 11.71 170.9 

35n-480r-2.5p 700.4 769.8 764.7 803.0 809.0 4.31 5.09 6.3 

35n-710r-2.5p 1,035.3 1,044.8 1,064.6 1,281.9 1,178.3 20.41 10.68 13.7 

35n-950r-2.5p 1,402.0 1,432.5 1,434.9 1,630.5 1,554.6 13.63 8.34 96.1 

35n-480r-3.5p 700.2 757.5 764.7 818.4 810.8 7.02 6.02 8.7 

35n-710r-3.5p 1,035.3 1,068.4 1,084.6 1,184.4 1,180.5 9.20 8.85 10.9 

35n-950r-3.5p 1,404.1 1,450.5 1,434.8 1,637.5 1,581.2 12.89 9.01 79.6 

40n-550r-2.5p 783.9 782.2 772.8 937.3 832.4 19.58 6.19 7.5 

40n-820r-2.5p 1,194.3 1,195.6 1,230.8 1,599.4 1,334.5 29.95 8.43 12.3 

40n-1090r-2.5p 1,584.4 1,575.9 1,547.0 2,089.4 1,673.4 31.88 5.62 141.1 

40n-550r-3.5p 783.9 782.2 772.8 937.3 838.5 19.58 6.97 9.5 

40n-820r-3.5p 1,194.3 1,195.6 1,230.8 1,599.4 1,373.5 29.95 11.60 11.8 

40n-1090r-3.5p 1,584.4 1,575.9 1,547.0 2,089.4 1,671.5 31.88 5.50 239.8 

 

The best lower bound value of each instance is indicated with bold coloring in Table 

(5.2) among the first three columns. Moreover, the best objective value between the 
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SPIRP model and the ALNS algorithm is also colored bold for each instance. Especially 

for the small instances with up to 30 nodes, the PLR model performs better than other two 

lower bound methods. When the node size gets larger, the SPIRP and RR models also 

accomplish to give the best lower bounds for some instances. For the small instances with 

20 and 25 nodes, the objective values obtained from the SPIRP model find near optimal 

solutions with less than 2% gap on average. Even though for these instances the ALNS 

algorithm cannot give better solutions than the SPIRP model, it performs nearly as good in 

really short times. 

 

Table 5. 3: MILP versus ALNS performance on small instances (on average) 

  TCSPIRP TCALNS 
GapSPIRP 

(%) 
GapALNS 

(%) 
GapSPIRP-

ALNS (%) 
CPUALNS 

(s)  
CPUSPIRP 

(s)  

N 
       

20 666.7 674.2 1.07 2.21 -1.13 5.3 7200 

25 826.5 829.7 1.82 2.22 -0.39 14.1 9000 

30 1060.3 1056.6 9.60 9.21 0.35 75.1 10800 

35 1226.0 1185.7 11.98 8.30 3.28 35.9 12600 

40 1542.0 1287.3 28.54 7.30 16.52 70.3 14400 

 

Table (5.3) summarizes the performances of the two methods comparatively on 

average values over the small instances. As we state before, ALNS is not as effective as 

the SPIRP model to solve small instances. However, the ALNS outperforms the SPIRP 

model when number of node is 30 and higher. Table (5.3) shows the success of ALNS as 

the node size gets larger.               starting with negative values becomes positive 

for larger instances. For the instances with 40 nodes, ALNS improves the SPIRP model’s 

best objective value by 16.5%. In addition, the average CPU times of ALNS is 

inconsiderable compared to the CPU times of the SPIRP model.       

We also test our algorithm on large instances to solve more realistic problems in 

reasonable times as shown in Table (5.4). Because the SPIRP model does not perform 

well for large instances even with long CPU times, we only present here results of the 

ALNS algorithm for these instances. To assess the quality of ALNS, we use the PLR and 
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the RR models to obtain lower bounds. We indicate the best lower bound for each instance 

with bold coloring in Table (5.4). We cannot say any lower bound model outperforms the 

other one. For different instances, different models give the best lower bounds. For the 

large instances, the algorithm performs with 10.7% gap on average. As the node size 

increases, the average gap shows an upward trend. This is also true for the CPU times. 

 

Table 5. 4: Computational results for the large size instances 

  LBPLR LBRR TCALNS 
GapALNS 

(%) 
CPUALNS   

(s)  

Instances 
     

50n-650r-2.5p      944.0     1,000.8     1,069.3         6.84         10.2  

50n-910r-2.5p    1,315.1     1,331.4     1,447.1         8.69         19.2  

50n-1300r-2.5p    1,886.7     1,877.5     2,129.9       12.89       286.4  

50n-650r-3.5p      944.0     1,002.0     1,070.2         6.80         12.4  

50n-910r-3.5p    1,315.1     1,334.5     1,489.6       11.62         29.7  

50n-1300r-3.5p    1,886.7     1,876.4     2,134.2       13.12       291.4  

60n-800r-2.5p    1,163.1     1,229.3     1,320.8         7.44         17.4  

60n-1190r-2.5p    1,716.8     1,781.9     1,936.5         8.67         48.6  

60n-1590r-2.5p    2,316.4     2,344.9     2,544.9         8.53       432.4  

60n-800r-3.5p    1,163.1     1,229.3     1,326.5         7.90         19.3  

60n-1190r-3.5p    1,716.8     1,781.9     1,954.1         9.67         55.1  

60n-1590r-3.5p    2,316.4     2,344.9     2,562.6         9.29       395.0  

80n-1070r-2.5p    1,517.3     1,529.8     1,722.8       12.62         59.5  

80n-1610r-2.5p    2,297.2     2,293.3     2,535.4       10.37       173.2  

80n-2150r-2.5p    3,193.2     3,155.1     3,473.1         8.76       979.5  

80n-1070r-3.5p    1,517.3     1,529.8     1,732.8       13.27         53.0  

80n-1610r-3.5p    2,297.2     2,293.3     2,581.9       12.39       198.7  

80n-2150r-3.5p    3,193.2     3,155.1     3,512.1         9.99     1,038.3  

100n-1330r-2.5p    1,832.3     1,806.0     2,083.5       13.71         89.1  

100n-2000r-2.5p    2,830.0     2,734.7     3,149.7       11.30       256.3  

100n-2670r-2.5p    3,905.9     3,665.5     4,293.2         9.92     3,492.3  

100n-1330r-3.5p    1,832.3     1,806.0     2,149.1       17.29         77.4  

100n-2000r-3.5p    2,830.0     2,734.7     3,233.7       14.27       295.1  

100n-2670r-3.5p    3,905.9     3,665.5     4,333.3       10.94     3,294.8  
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5.4 Analysis of the ALNS Algorithm 

In this section, we present some summary information about the performance of our 

algorithm. As the size of the problem gets larger than 80, the CPU time of the ALNS 

grows rapidly as shown in Figure (5.2). While the algorithm ends on average in a couple 

of seconds for our smallest instances, it takes almost half an hour for the largest ones. 

However, when compared to the SPIRP model, the longest CPU time of our algorithm for 

the largest instance is even smaller than the shortest CPU time of the SPIRP model for the 

smallest instance. When compared timewise, our algorithm is a sure winner.   

 

Figure 5. 2: The CPU time of ALNS with respect to the number of source nodes 

 

We also observe that there is a similar upward trend in CPU times for all instances 

with different number of source nodes when the requirement levels of raw material are 

increased, which can be seen in Table (5.5). For the same size of source nodes, higher 

requirement level increases the solution time of the algorithm. With fewer requirements, 

the company is freer to choose among different source nodes to apply different moves. 

However, as the requirement levels increase, the selective part of the problem weakens 

and the moves designed for this characteristic of the algorithm become ineffective. The 

algorithm has difficulty to find moves that can be applied to the solution. In addition, the 

extensive randomness in the algorithm affects the CPU time negatively when the solution 

space gets smaller. If it was for the other metaheuristics, the CPU time of the algorithm 

might decrease with the decrease in the solution space since those methods are based on 
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covering a local area completely. Another factor causing higher CPU times with high 

requirements is the reconstruction processes of the routes as in the update step of most 

moves. Solving the parallel savings and improvement heuristics to construct new routes 

take much more time since almost all the source nodes are needed to be visited in the 

solution to meet high requirements.    

Table 5. 5: CPU times with respect to requirement levels and number of source nodes 

CPUALNS (s)                    

 
Number of Source Nodes 

  20 25 30 35 40 50 60 80 100 

Requirements 
         

LOW 7 10 26 15 17 23 37 113 166 

MED 6 14 29 25 24 49 104 372 551 

HIGH 18 61 395 176 381 578 827 2,018 6,787 

 

 We next analyze the performance of each move separately. To conduct our analysis, 

we chose one instance from each group of instances with the same number of source 

nodes, namely 9 test instances. One by one we removed all the neighborhoods from the 

algorithm and ran these new algorithms for each instance. We observe that removing each 

neighborhood deteriorates our algorithm, proving the need for each single move for the 

success of ALNS. However, while removing some moves creates great worsening at the 

quality of the solution, some others affect the solution less. Removing the moves 

―Remove ρ source nodes‖ and ―Remove the worst source node‖ affect the solution 

relatively more compared to the other moves.  

Furthermore, we evaluate the effectiveness of the moves in finding a better incumbent 

solution, a better current solution and a new solution accepted with simulated annealing as 

presented in Table (5.6). These values are the sum of 10 runs for all test instances. 

―Remove the worst source node‖ move is seen to be more effective in finding new 

incumbent solution and a better current solution with respect to the other moves. ―Insert 

the best source node‖ and ―Swap routes‖ moves also seems more successful updating the 

both incumbent and current solutions. As it is stated before, different characteristics of 
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ALNS moves is one of the strongest features of this algorithm. Even though some moves 

shows more success, it is not possible to carry solution into better solutions without other 

moves. We also record the percentages of the solution updates during the algorithm. With 

only 0.16% of iterations, the incumbent solution is updated. However almost half of the 

iterations, only the current solution is updated. Overall 66.5% of iterations, a new solution 

is accepted during the algorithm.      

Table 5. 6: The performances of moves in finding new solutions 

  Incumbent Current Acceptance 

Moves 
   

Randomly remove ρ visits 13 86579 58176 

Randomly insert ρ visits 8 17571 116775 

Remove the worst source node 6356 1075346 370 

Insert the best source node 344 192351 114469 

Shaw removal 19 86809 54546 

Shaw insertion 16 92844 107949 

Remove ρ source nodes 74 69928 115086 

Insert ρ source nodes 24 100943 109297 

Empty one period 14 65958 60358 

Swap routes 263 217583 113939 

Randomly move ρ visits 27 54863 73957 

% of Solution Updates  

in the Algorithm 
0.16 45.79 20.55 

 

 Even though some moves perform better according to Table (5.6), we note that all the 

neighborhoods impact the performance of our algorithm either by intensifying or 

diversifying the search with their different characteristics.  
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Chapter 6 

CONCLUSIONS 

In this thesis, we studied a selective and periodic inventory routing problem (SPIRP) 

for a waste vegetable oil collecting biodiesel production facility. We developed an 

adaptive large neighborhood search (ALNS) algorithm for this reverse logistics problem. 

It requires to decide on which of the present source points to include in the collection 

program, which periodic routing schedule to repeat over an infinite horizon, how much 

virgin oil to purchase on each day and how many vehicles and in which routes to operate 

such that the total collection, inventory and purchasing costs are minimized while the 

production requirements and operational constraints are met.  

 The main features of an ALNS algorithm are large neighborhoods, changing weight of 

the moves with the past performances, roulette-wheel selection mechanism as well as an 

acceptance criterion for the neighborhood solutions inspired by Simulated Annealing. We 

implemented ALNS to SPIRP by applying a rich set of neighborhoods.  

 The MILP for this problem proposed recently was not successful to solve instances 

more than 30 source nodes with a reasonable gap in a reasonable time. Moreover, the 

model gives near optimal solutions for small size instances only with long CPU times. 

In this study, we solve 54 problem instances of size 20 to 100. For small sized 

instances up to 40 nodes, we compare our results with the MILP model. In instances with 

less than 30 source nodes, ALNS cannot perform as well as MILP. However, for 30 and 

above, ALNS outperforms MILP significantly. For instances with 40 source nodes, ALNS 

improves the MILP solutions with 16.5% on the average. The CPU time of our algorithm 

is only several seconds for small instances, whereas the MILP model works for hours to 

give similar gaps with our algorithm. 

For larger instances, we compare our algorithm with respect to lower bounds obtained 

from two models, namely PLR and RR. However, none of these two models could provide 

us tight enough bounds. PLR was proposed earlier as a partial relaxation model of the 

MILP. The new relaxation model RR outperforms PLR for some instances. For instances 



Chapter 6: Conclusions 85 

 

with 50 to 100 source nodes, we solve the problem with 10.7% gap in 484 seconds on 

average.  

As future work the lower bounds can be improved. Moreover, new neighborhoods 

specific to this problem may be introduced. Also, we can study the SPIRP with 

heterogeneous fleet and stochastic accumulation rates.  
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