
End-User Authoring of Mid-Air Gestural Interactions

by

Mehmet Aydın Baytaş

A Thesis Submitted to the

Graduate School of Social Sciences and Humanities

in Partial Fulfillment of the Requirements for the Degree of

Master of Arts

in

Design, Technology & Society

September 2014

Graduate School of Social Sciences and Humanities

This is to certify that I have examined this copy of a master’s thesis by

Mehmet Aydın Baytaş

and have found that it is complete and satisfactory in all respects,
and that any and all revisions reqired by the final

examining committee have been made.

Committee Members:

Oğuzhan Özcan
Professor of Design

(Thesis Advisor)

Yücel Yemez
Associate Professor of Computer Engineering

(Thesis Advisor)

Kerem Rızvanoğlu
Associate Professor of Informatics

Evren Yantaç
Associate Professor of Design

Tilbe Göksun
Assistant Professor of Psychology

Date: 11 September 2014

Abstract

Devices that sense the alignment and motion of human limbs via computer vision have recently
become a commodity; enabling a variety of novel user interfaces that use human gesture as the
main input modality. The design and development of these interfaces requires programming tools
that support the representation, creation and manipulation of information on human body gestures.
Following concerns such as usability and physical differences among individuals, these tools should
ideally target end-users and designers as well as professional software developers.

This thesis documents the design, development, deployment and evaluation of a software application
to support gesture authoring by end-users for skeletal tracking vision-based input devices. The
software enables end-users without programming experience to introduce gesture control to
computing applications that serve their own goals; and provides developers and designers of gestural
interfaces with a rapid prototyping tool that can be used to experientially evaluate designs.

Keywords

Hotspotizer; gestural interaction; gesture authoring; visual programming; end-user development;
interface prototyping; mid-air gestures; perceptual interaction; Kinect.

Dedication

This thesis is dedicated to my friend Hasan Sinan Bank, who has shown me how even seemingly
impossible things can be done quite quickly and easily, once you actually put yourself to work.

Acknowledgements

The work presented in this paper has been conducted as part of research supported by the Scientific
and Technological Research Council of Turkey (TÜBİTAK), project number 112E056.

Much of the research described in this thesis has been conducted as part of efforts initiated and
directed by my advisors, Oğuzhan Özcan and Yücel Yemez. For two years they have continuously
dedicated their time and energy to nourishing my growth as a researcher. Being their student has
been a pleasure for me.

Ayça Ünlüer and Tilbe Göksun have provided invaluable input in terms of creative vision and
scholarly insights. I honestly don’t know where my research would have ended up without their
advice.

Evren Yantaç, Ahmet Börütecene, Oğuz Turan Buruk, Damla Çay, Özge Genç, Ahmet Güzererler,
Barış Serim, İlker Temuzkuşu, and all of the others with whom I have had the pleasure of occupying
the same workspace have been a continuous source of inspiration and motivation.

Çağatay Başdoğan, Hakan Ürey, Metin Sezgin, Kaan Akşit, Hasan Sinan Bank, and Selim Ölçer
have personally shown me on numerous occasions that engineering is not merely a vocation, but a
supremely empowering state of mind.

I thank the anonymous participants in my studies, who have given their time and feedback to
support my research.

Above all, I thank my mother and my father, for making me into who I am.

Notice of Prior Publication

Parts of this thesis have been adapted from the following publications:

Mehmet Aydın Baytaş, Yücel Yemez, and Oğuzhan Özcan. 2014 (forthcoming).
Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions. In Pro-
ceedings of the 8th Nordic Conference on Human-Computer Interaction (NordiCHI
’14).

Mehmet Aydın Baytaş, Yücel Yemez, and Oğuzhan Özcan. 2014. User Interface
Paradigms for Visually Authoring Mid-air Gestures: A Survey and a Provo-
cation. In Proceedings of the Workshop on Engineering Gestures for Multimodal
Interfaces (EGMI 2014).

Additionally, during the course of the research described in this thesis, the author has contributed
to the following publication:

Oğuzhan Özcan, Ayça Ünlüer, Mehmet Aydın Baytaş, and Barış Serim. 2012. Re-
thinking Spherical Media Surfaces by Re-reading Ancient Greek Vases. Paper
presented at the workshop “Beyond Flat Displays: Towards Shaped and Deformable
Interactive Surfaces,” co-located with the ACM International Conference on Interactive
Tabletops and Surfaces (ITS ’12).

See Appendices B, C, and D for reproductions of these publications.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 3
1.3 Scope . 4
1.4 Method . 6

2 Background and Related Work 7
2.1 Gestural Interaction . 7
2.2 End-User Programming . 10
2.3 Design and Evaluation of User Interface Authoring Tools 12
2.4 Authoring Mid-Air Gestures . 14

3 Hotspotizer: Description 23
3.1 Space Discretization . 23
3.2 Hotspotizer . 28

4 Hotspotizer: Design and Evaluation 35
4.1 Formative Studies . 35
4.2 User Interface Design . 39
4.3 Summative Studies . 39

5 Conclusion and Future Work 45
5.1 Revisiting the Research Questions . 45
5.2 Revisiting the Hypothesis and Contributions . 46
5.3 Future Work . 47

Bibliography 49

A Attributions 57

B Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions 59

C User Interface Paradigms for Visually Authoring Mid-Air Gestures: A Survey and
a Provocation 71

D Rethinking Spherical Media Surfaces by Re-reading Ancient Greek Vases 79

Chapter 1

Introduction

1.1 Motivation

Historically, using the alignment and motion of human limbs as an input modality for human-
computer interfaces has been accomplished through intrusive methods — by placing markers or
sensors on the body. Up until recently, non-intrusive sensing of human limb positions has been
limited to research efforts (see Moeslund, Hilton, and Krüger (2006); Porta (2002); Moeslund
and Granum (2001); and Gavrila (1999) for surveys of these works). In recent years, vision-based
skeletal tracking sensors have become commercially available from a variety of established vendors
such as Microsoft1 (Figure 1.1) and Asus2. Non-intrusive — or perceptual (Crowley, Coutaz, and
Bérard, 2000; Turk and Robertson, 2000) — sensing of body movements has thus become widely
accessible for both commercial and non-commercial applications (Francese, Passero, and Tortora,
2012).

Figure 1.1 – The Microsoft Kinect sensor is equipped with a depth
camera that can “see” the positions and motion of human limbs.

There are a variety of computing applications where the non-intrusive detection of human
limb positions can be desirable as an input modality. Gaming is an obvious one (see Figure 1.2),
where using movements with “prior mappings” to real-world happenings increases immersion
(Cairns et al., 2014). Another one is user interfaces on public interactive systems: An input
modality that does not require physical contact is often cheaper to deploy and maintain, and more
hygienic to use. Of course, there are numerous other contexts where hygiene considerations can
make a touch-less interface desirable: Cooking, gardening, working on a dirty mechanism, and
performing surgery (Wen et al., 2013) come to mind. Other applications for perceptual interfaces
include convenient control of smart homes (Tang and Igarashi, 2013), interactive art and musical
instruments3, interfaces for manipulating 3D images (Gallo, 2013), and spatial medicine (Huang,
2011; Lozano-Quilis et al., 2013; Simmons et al., 2013).

The design and development of perceptual interfaces requires that gestures — limb positions
and movements that constitute inputs to the interface — be programmed (Lü and Li, 2012) —

1microsoft.com/en-us/kinectforwindows
2www.asus.com/Multimedia/Motion Sensor Products
3vimeo.com/45417241

1

http://www.microsoft.com/en-us/kinectforwindows/
http://www.asus.com/Multimedia/Motion_Sensor_Products/
http://vimeo.com/45417241

End-User Authoring of Mid-Air Gestural Interactions

Figure 1.2 – Gaming with the Microsoft Kinect. The
sensor detects the motion of large human limbs without
requiring any markers or devices to be worn or wielded.

or authored (Hartmann, Abdulla, et al., 2007; Kim and Nam, 2013) — in a machine-readable
manner and mapped to events within the interactive system. This can be done in a textual
programming environment using tools supplied by vendors of gesture-sensing hardware45 or third
parties6. Using textual programming to author gestures, however, has drawbacks — both for adept
software developers and for comparatively non-technical users such as designers, artists, hobbyists
or researchers in fields other than computing. (Borrowing the definition from Ko, Abraham, et al.
(2011); I will henceforth refer to these users who use or produce software not as an end, but as
a means towards goals in their own domain, as end-users). These drawbacks can be expressed
in terms of Norman’s (1986, 2002) concepts of the gulf of execution and the gulf of evaluation.
Specifically; for end-users, textual programming embodies a significant gulf of execution — a
chasm between the user’s goals and the actions taken within a system to achieve those goals –
since it introduces additional tasks like setting up the programming environment and getting used
to the development ecosystem. For both end-users and software developers, textual programming
embodies a significant gulf of evaluation — a gap between a system’s output and the users’
expectations and intentions — since it does not allow for rapid testing of whether an authored
gesture specification conforms to the design that the user has in mind. (See Figure 1.3 for a
visualization of the gulf of execution and the gulf of evaluation.) From a software engineering
perspective, Hoste and Signer (2014) suggest that imperative textual programming “cannot cope”
with mid-air gestures “due to the inversion of control where the execution flow is defined by
input events rather than by the program, the high programming effort for maintaining an event
history and the difficulty of expressing complex patterns.” Thus, textual programming does not
fully support the embodied (Dourish, 2004), reflective (Schön, 1984), and experiential (Lindell,
2014) practices inherent in the design, construction and evaluation (Hartmann, Klemmer, et al.,
2006) of these highly interactive artifacts (Lim, Stolterman, and Tenenberg, 2008; Myers, Hudson,
and Pausch, 2000).

An appropriately designed user interface that matches the user’s needs “in a form that can
be readily interpreted and manipulated” (Norman, 1986) helps bridge the gulfs of evaluation and
execution.

This thesis presents my attempt at producing an appropriate user interface to support the
design and development of perceptual gesture-based interfaces by end-users.

4microsoft.com/en-us/kinectforwindowsdev
5softkinetic.com
6kinecttoolbox.codeplex.com

2

http://www.microsoft.com/en-us/kinectforwindowsdev/
http://www.softkinetic.com
http://kinecttoolbox.codeplex.com

Introduction

Figure 1.3 – The gulfs of execu-
tion and evaluation pertain to
unidirectional aspects of interac-
tion: The gulf of execution lies
between the user’s goals and the
system; the gulf of evaluation di-
vorces the system response from
the users’ expectations.

1.2 Aim

The aim of this thesis is to document the design, development, deployment and evaluation of a
software application to support end-users’ authoring gross mid-air gestures for skeletal tracking
perceptual input devices.

The term end-user refers to those who utilize or produce software as a means towards goals in
their own domain, rather than producing computing applications as an end (Ko, Abraham, et al.,
2011). A mid-air gesture authoring tool may target diverse populations of end users including
designers, artists, hobbyists, gamers and educators.

The methods employed in the design and evaluation of the application are selected to be
appropriate for these purposes. The practices employed for the construction and deployment of the
application also reflect its end-user focus: The application must perform well and reliably on users’
computers, be easy to obtain and set up, and be maintainable to facilitate rapid adaptation to
evolving technologies and user needs (Brooks, 1995; McConnell, 2009).

1.2.1 Research Questions

The main research question pursued in this thesis is as follows:

• How can end-users’ authoring of gross mid-air gestures for skeletal tracking interfaces be
supported with a software tool?

The main research question engenders the following secondary questions:

• What are the desiderata and design considerations that would pertain to mid-air gesture
authoring software for end-users?

• What methods are appropriate to evaluate the application?

1.2.2 Hypothesis and Expected Contributions

I hypothesize that a suitably designed gesture authoring tool will accomplish the following:

• It will enable end-users with no experience in textual programming and/or gestural interfaces
to introduce gesture control to computing applications that serve their own goals.

• It will provide developers and designers of gestural interfaces with a rapid prototyping tool that
can be used to experientially evaluate designs.

3

End-User Authoring of Mid-Air Gestural Interactions

I expect the following to be the contributions of this work:

1. A software application for authoring mid-air gestures that will accomplish the goals above and
constitute an authentic contribution as an artifact of research through design.

2. Insights derived from the design, development, deployment and evaluation of the gesture
authoring software that may inform future interaction design research and practice.

The software application constitutes an artifact of research through design (Frayling, 1993).
Thus, it is expected to fulfill the following criteria proposed by Zimmerman, Forlizzi, and Evenson
(2007) for the evaluation of such artifacts:

• Process. The methods employed must be selected rationally and documented rigorously.

• Invention. Various topics must be integrated in a novel fashion to create the artifact.

• Relevance. The artifact must be situated within a real, current context; while supporting a
shift towards a justifiably preferable state.

• Extensibility. The work must enable the future exploitation of the knowledge derived from it.

1.3 Scope

This section defines the scope of the research presented in this thesis. Table 1.1 presents a
summary of the scope, while the text serves to elaborate on details and clarify the terminology
used.

In human-computer interaction (HCI) and interaction design (IxD) literature, the usage of
the word gesture is ambiguous: Depending on the context, it may denote finger strokes on a
touchscreen (Lü and Li, 2013), deformations inflicted on a tangible input device (Warren et al.,
2013), full-body poses (Walter, Bailly, and Müller, 2013), even finger movements on a keyboard
(Zhang and Li, 2014). For the purposes of this thesis; the following definition, adapted from
Kurtenbach and Hulteen (1990), will be used:

A gesture is a movement or position of a human body part that conveys information.

Figure 1.4 – The Microsoft Kinect sensor employs an
infrared projector-camera pair to capture 3D depth im-
ages, and fits a skeletal model onto what resembles a
human body in the image.

4

Introduction

Figure 1.5 – The continuum of
fine vs. gross movements.

By design, in order to accommodate existing works, this definition is broad. It allows for the use
of any body part in gesturing as well as the use of sensing devices such as mouse, styli and gloves.
It does not require an explicit intention to justify gesturing, thus accommodating non-command
user interfaces (Nielsen, 1993a) such as those that respond to affective (Kapur et al., 2005) and
habitual (Liu et al., 2009) gestures.

More specifically, I use the term mid-air gestures to denote gestures that are performed in a
volume where limbs can move freely in 3 dimensions; e.g. free space. This excludes gestures that
are constrained to affect a tangible surface or a controller device that mechanically changes form;
e.g. a keyboard, a touch-sensitive surface, or a shape display (Follmer et al., 2013).

The gesture sensing input device used during the course of this work was a Microsoft Kinect for
Xbox 360 ; chosen from among alternatives due to its availability. The device employs an infrared
projector-camera pair to capture 3D depth images. If what resembles a typical human body is
present in the depth image, the positions (relative to the sensor) of its large limbs are detected using
machine learning (Girshick et al., 2011; Shotton, Fitzgibbon, et al., 2011; Shotton, 2012; Shotton,
Girshick, et al., 2013). A skeletal model of the user is produced in this fashion (Figure 1.4). The
alignment and motion of the skeletal model is then used to to control interactive applications. This
type of gesture-sensing hardware is said to detect the movements and/or location of human body
parts perceptually — without requiring physical contact (Crowley, Coutaz, and Bérard, 2000; Turk
and Robertson, 2000). This excludes, from the scope of this thesis, systems that sense gestures
using devices that must be worn, wielded, or touched — e.g. a mouse, a stylus, a ring78, or an
accelerometer (Ashbrook and Starner, 2010; Kela et al., 2006).

The Microsoft Kinect for Windows Software Development Kit (SDK) version 1.8 was used to
implement gesture sensing. The capabilities of the Kinect sensor and the SDK are not limited to
skeletal tracking; they also include the detection of hand gestures, speech recognition, background
removal from videos, facilitating proxemic interaction (Ballendat, Marquardt, and Greenberg, 2010),
fusing color and 3D images, and fusing data from multiple sensors. These topics, however, lie
outside the scope of this work.

In kinesiology, human movements are classified according to movement precision (Haibach,
Reid, and Collier, 2011): Gross motor skills denote large and comparatively imprecise movements
produced by large muscles; e.g. jumping, or lifting weights. Fine motor skills involve smaller
movements with higher accuracy and precision; e.g. typing, or writing. Gestures do not always
belong strictly to one of two discrete classes. Rather, the distinction between fine and gross gestures
forms a continuum characterized by the size of the engaged musculature and the trade-off between
force and precision (Edwards, 2010) (Figure 1.5). One limitation of the skeletal tracking technology
used for this work is that it can only detect gross gestures9. Thus, this work deals specifically with
issues related to the use of gross movements of the human limbs as an interaction modality in
computing.

7wearfin.com
8hellonod.com
9Currently, the Kinect SDK does have support for hand gestures. However, this feature was not available while

the design work described in this thesis was done.

5

http://www.wearfin.com/
https://www.hellonod.com/

End-User Authoring of Mid-Air Gestural Interactions

Aspect Coverage Excluded Topics

Spatial Qualities of Gestures Mid-Air Gestures
Surface Gestures
Tangibles
Pointing Devices

Gesture Sensing Input
Devices

Perceptual Input Devices
(specifically, Microsoft
Kinect)

Touch Sensors
Inertial Sensors
Wearables

Sensor Capabilities Skeletal Tracking

Hand and Finger Gestures
Speech Recognition
Image Processing
Proxemics
Sensor Fusion

Gestural Bulk10 Gross Movements Fine Movements

Table 1.1 – Summary of the topics covered within and excluded from the scope of the research presented in this
thesis.

In sum, the scope of this work covers the design and development of a software tool for
authoring gross mid-air gestures for interactive computing systems that employ skeletal tracking
perceptual input devices.

1.4 Method

The method that I adopted to guide the design and development of the gesture authoring tool
can be summarized as follows:

1. Prior work that may inform the design of a gesture authoring tool for skeletal tracking interfaces
is surveyed to situate the work within the context of pertinent current research, reveal design
guidelines, and determine appropriate strategies for design and evaluation. Chapter 2 documents
this effort.

2. Formative studies are conducted with a focus group comprising 10 participants that form a
representative sample from the target user populations, using prototypes with varying levels
of fidelity. The process and the results of these studies, filtered through the lens of the
aforementioned design guidelines, determine the nature and the core features of the gesture
authoring tool — what it is going to be. Section 4.1 describes these studies in detail.

3. The resulting design for the gesture authoring tool is implemented as a working application.
Various aspects of the implementation are described in Chapter 3.

4. Summative studies are conducted to assess if the implementation fulfills the previously stated
aims for this work. A user study with 5 participants is conducted to assess the conformance of
the artifact with its design rationale. A classroom workshop with 6 participants reveals the
tool’s potential in supporting rapid prototyping of user interface designs. Section 4.3 describes
these studies and their results.

10See Section 2.1.

6

Chapter 2

Background and Related Work

This chapter presents a survey of previously published related works that inform the design of
a gesture authoring tool for skeletal tracking interfaces; in order to situate the work within the
context of pertinent current research, reveal insights that may inform the design of the tool, and
determine appropriate strategies for design and evaluation.

2.1 Gestural Interaction

This section discusses dimensions that characterize gesture-based interactive systems and
propose terms that clearly label pertinent concepts. Thus, the scope of and the design space for
the research described in this thesis is partly situated in relation to previous works on gestural
interaction.

Studies related to human gesture in HCI and IxD draw from a variety of domains, including
but not limited to industrial design, psychology, anthropology, linguistics and computing. Here,
also drawing from a multitude of disciplines, I argue that there are three important dimensions
that characterize the design space for systems that utilize gesture as the main means of interaction
(see Figure 2.1):

1. The capture medium is a high-level description of the hardware used to recognize gestures.

2. The gestural bulk is a description of the body parts involved in gesturing.

3. The gestural engagement domain is a description the kinds of gesture that the system utilizes.

Figure 2.1 – Visualizing the three dimensions
that characterize gesture-based interactive
systems.

7

End-User Authoring of Mid-Air Gestural Interactions

The first of these dimensions, the capture medium, describes the hardware technology used
for sensing gestures. The hardware in this sense may comprise a 2-dimensional space that allows
gesturing with a tangible pointing device such as a mouse or pen or a surface that detects touch
events without utilizing a pointing device; tangible sensors that detect gestures in 3D space;
perceptual input devices that “see” human movement from a distance; or myriad other current
and emerging technologies (Figure 2.2).

Capture media differ in accordance to the degrees of freedom of the space in which the gestures
are performed. It should be noted that while the degrees of freedom of the performance space
is related to the degrees of freedom that the hardware can sense, the two are not the same: For
instance, when gesture sensing is performed using cameras with algorithms based on edge detection
instead of depth sensing (Moeslund and Granum, 2001; Moeslund, Hilton, and Krüger, 2006);
computers are often only able to recognize activity in the horizontal and vertical, while changes
in depth are ignored. However, from the user’s perspective, the gestures are performed on a
3-dimensional medium, regardless of the level of detail that the computer can sense.

Adopting the user’s perspective, I distinguish between free-form and constrained capture
media. I propose term constrained to identify capture media where gestures are performed on
a 2-dimensional surface, while the term free-form identifies capture media where gestures are
performed in a 3-dimensional volume. Examples to constrained capture media are computer
mice, trackpads and touchscreens; while camera- and accelerometer-based gesture sensing systems
constitute examples to free-form capture media.

Capture media also differ according to whether or not they require special input devices to be
worn or wielded by the user. An input device in this sense denotes any electronic device or object
that is directly coupled to the movement or position of the body part(s) that make up the gesture.
In most cases where such input devices are used, the system senses only the movements or the
position of the input device. Quek (1996) has previously coined the term unencumbered to describe
a class of capture media that do not employ such devices. The term has been used previously to
refer only to free-form interactions. I wish to extend its definition to also accommodate constrained
capture media that do not require pointing devices be used on the gesture-sensing surface, e.g.
touchscreens that can be manipulated by human fingers alone. Conversely, when the capture
medium –– whether constrained or free-form —- relies on input devices such as mice, styli, gloves
or accelerometers; I propose the term equipped to describe it.

A device that allows gestural interaction does not need to afford only one capture medium.
Indeed, modern smartphones offer touchscreens that allow for both equipped and unencumbered
input, while they also function as equipped free-form capture media since they harbor accelerometers
and gyroscopes.

The second dimension, the gestural bulk describes body parts involved in interacting with the
system. Following conventional terminology in kinesiology; I classify gestures for HCI as those
relying on fine motor movements and those that rely on gross motor movements. Fine movements
are precise and involve small musculature; e.g. typing on a keyboard or writing with a pen. Gross
movements require the use of larger muscles and emphasize muscular force over precision; e.g.
jumping or weight lifting. Section 1.3 describes this dimension in greater detail, in order to clarify
the scope of my research.

The last of the dimensions I propose to classify gesture-based interactive computing systems is
the gestural engagement domain, which describes what kinds of gestures a user interface utilizes.
Psychology (McNeill, 1992, 2008) often provides the basis for classifications and analyses of human
gesture in HCI and IxD literature1 (Eisenstein and Davis, 2006; Kettebekov, 2004; Wexelblat,
1998). The perspective on the classification of human gestures proposed by Quek et al. (2002)

1In computing, the term classification also refers to the outcomes from a machine learning algorithm. Here, I use
the term in pertinence to the characterization of gestures.

8

Background and Related Work

Figure 2.2 – Classifying capture
media. A capture medium can
be constrained or free-form de-
pending on the space where ges-
tures are performed, and unen-
cumbered or equipped depend-
ing on the use or non-use of an
input device that proxies human
movement.

and extended by Karam and schraefel (2005) draws from these studies and forms an appropriate
basis for my classification, albeit with modifications. I distinguish human gestures as belonging to
one of four classes:

1. Deictic gestures that involve pointing to convey the identity and/or position of an entity.

2. Manipulative gestures that involve a direct connection between movements and the properties
of an entity in the system in use.

3. Semaphoric gestures that function as symbols attached to a clear meaning.

4. Gesticulations that accompany speech.

Deictic gestures involve pointing (often with hands and/or fingers) to communicate the identity
and/or the position of an entity. The canonical example for the use of deictic gestures in computing
applications was implemented in MIT‘s “Media Room,” where free-form pointing at items on a
computer screen while uttering verbs and pronouns was exploited as an interface modality (Bolt,
1980). Somewhat unconventionally, since I adopt a broad definition for what gesture denotes, what
I label as deictic gestures also includes everyday interactions such as pointing and clicking with a
mouse or pressing a button on a touchscreen.

Manipulative gestures correspond to situations where “a tight relationship between the actual
movements of the gesturing hand/arm with the entity being manipulated” is established (Quek
et al., 2002). Using such gestures, often on constrained capture media, for moving, resizing and
otherwise transforming objects on a display are common in contemporary desktop and mobile
computing scenarios. Examples for manipulative gestures on constrained capture media include
actions such as “drag-and-drop,” drawing a box with the mouse cursor to select multiple items on
the screen, and touch-scrolling documents on a touchscreen tablet. On free-form capture media;
the primary interactions in sports games such as bowling or tennis on the Nintendo Wii constitute
examples for manipulative gestures: The movements of the handheld controller are tightly related
to the movements of a ball, a racquet, a sword etc.

Semaphoric gestures — also referred to as “emblems” McNeill (2008) — are static poses or
dynamic movements that function as symbols attached to a clear meaning. Sign language gestures
— which some researchers such as McNeill (2008); and textciteKaram:2005 consider to be distinct
from semaphores — may be considered semaphoric to the extent that they relate to my analysis.
Examples for semaphoric gestures commonly used in computing include the mouse-controlled

9

End-User Authoring of Mid-Air Gestural Interactions

“navigation gestures” implemented in version 11 of the Opera web browser and the “wave to
engage” gesture that proposed in Microsoft’s 2013 Kinect for Windows Human Interface Guidelines.
Although demonstrated in many works (Cao and Balakrishnan, 2003; Lenman, Bretzner, and
Thuresson, 2002; Wilson and Shafer, 2003); Wexelblat (1995) disputes the usefulness of strictly
semaphoric gestures in HCI, with the argument that “the one-to-one mapping of input to command
reduces gesture to only the expressive power of a function-key pad.” However, recent sensing
technologies and implementation aides allow for very rapid development of interactions that employ
semaphoric gestures. This leads to a proliferation of content that exploits the limited expressive
power of semaphores for meaningful use. Today, in many cases, the use of semaphoric gestures
over a key pad makes sense when aspects such as the system’s cost and context, pedagogical
considerations, and/or the overall user experience (Fogtmann, Fritsch, and Kortbek, 2008) are
taken into account.

The final class of gestures that is relevant for HCI and IxD are gesticulations, which comprise
what McNeill (2008) calls “motion that embodies a meaning relatable to the accompanying speech”
–– i.e. body movements produced along with speech to clarify or augment its content. The
recognition of gesticulations is an important technical challenge in computing. The most common
applications for gesticulations in HCI are affect recognition and multimodal interfaces where they
accompany a speech recognition system to remove ambiguity and extend the interactive capacity
(Kopp, Tepper, and Cassell, 2004; Krum et al., 2002; Silva and Arriaga, 2003).

There are, of course, gestures that do not fall strictly into one of the categories above. A swipe
towards the left on a trackpad or tablet that is commonly utilized to invoke a “go back” command,
for example, may be classified as a manipulative as well as a semaphoric gesture depending on the
context and the system’s feedback. However, I find this classification to be relevant and useful
for examining gesture-based interfaces for what sort of gestural triggers they implement; hence
specifying which domain of gestures that such interfaces can engage.

Some of the terms and concepts I propose are, to my knowledge, novel; and I believe they will
foster future research and discussion: The distinction of constrained vs. free-form and equipped
vs. unencumbered capture media will come in handy for classifying works appropriately. Yet,
gesture-based HCI is a rapidly advancing field, with new technologies and concepts being introduced
continuously. Thus, I am not putting forward an exhaustive and conclusive treatment of the topic.
I covered what I believe are the most salient characteristics of gesture-based interactive systems
and compiled a set of terms and concepts to support discussion and situation of my work.

In terms of the concepts introduced in this section, the scope of this thesis pertains to the
design of a gesture authoring tool for use with perceptual (unencumbered, free-form) input devices
that sense gross gestures. In line with the desiderata uncovered through formative studies (see
Section 4.1), the gestural engagement domain that influences the expressive power of the resulting
authoring tool is limited to semaphoric gestures, although support for deictic and manipulative
gestures can be “hacked” together using various strategies (see Chapter 3).

2.2 End-User Programming

“Programming” can be defined as “the process of transforming a mental plan of desired actions
for a computer into a representation that can be understood by the computer” (Myers, Ko, and
Burnett, 2006). The study of various aspects of programming has been a long-established topic
of human-computer interaction research. Traditionally, the focus of this field has been on the
activities of professional programmers and novices who are aiming to become professionals. A
relatively recent topic of interest is the study of end-user programming as a topic distinct from
the activities of professional and novice software developers (Myers, Ko, and Burnett, 2006). As
such, interaction with a diverse array of devices — e.g. TVs, telephones, alarm clocks... — and a

10

Background and Related Work

Figure 2.3 – Comparing the cost
structure for software develop-
ment, adaptation and appropria-
tion with and without end-user
programming support. Adapted
from Wulf and Jarke (2004).

diverse assortment of tasks comprise topics of interest for programming research.
What differentiates an end-user from a professional programmer is their goals: Professionals

create and maintain software as an end, while end-users produce and customize software artifacts
to support their own goals in some other domain (Ko, Abraham, et al., 2011). In many domains,
the case for end-user programming — rather than entrusting all development to professionals — is
mainly economical: Wulf and Jarke (2004) argue that support for end-user programming makes
software investments more efficient since empowering end-users to customize software mitigates
the need for expensive development teams and processes (see Figure 2.3). The effect is significant,
since end-users outnumber professional programmers by orders of magnitude (Scaffidi, Shaw, and
Myers, 2005). From a user-focused perspective, research on end-user programming is motivated by
usability and engagement concerns (Germonprez, Hovorka, and Collopy, 2007); as well as the simple
fact that some systems such as smart homes (Blackwell, 2004) and health-related applications
(Lange et al., 2011; Rizzo et al., 2011) must be customizable to suit individual needs (Holloway
and Julien, 2010).

This thesis covers the design and development of a gesture authoring tool for designers’
prototyping novel user interfaces and end-users’ extending existing interfaces with the ability to
recognize and respond to custom mid-air gestures. Various works on end-user programming that
inform this effort are discussed below. A complete survey of this field is beyond the scope of this
work; I recommend surveys by Paternò (2013); and Myers, Ko, and Burnett (2006) as a starting
point for the interested reader.

One strand of research on end-user programming considers issues beyond the construction
and customization of software; e.g. design, testing, debugging, integration, reuse, and security.
This strand, called end-user software engineering, aims improve the quality of software artifacts
produced by end-users by leveraging knowledge derived from professional software engineering. A
comprehensive review of this research is beyond the scope of this thesis. While end-users’ design,
specification, testing, debugging, and reuse of software artifacts are indeed relevant for a gesture
authoring tool; this thesis (as Chapter 4 describes) approaches such issues from a design — rather
than software engineering — perspective. For the reader interested in end-user software engineering,
I recommend surveys by Burnett, Cook, and Rothermel (2004), and Ko, Abraham, et al. (2011).

A number of end-user programming researchers focus on psychological and cognitive issues
that relate to end-user programmers. One objective for such research, as Blackwell (2006) declares
in his survey of the field, is “to increase our understanding of human cognition by studying a rather
extreme domain of reasoning.” Another objective is to tackle quality issues by informing the design
of end-user programming tools and methods. Topics of interest include the difficulties of learning
(Ko, Myers, and Aung, 2004; Pea and Kurland, 1987) and performing (Lewis and Olson, 1987)
programming-related tasks, and how people envision programming concepts (Pane, Myers, and
Ratanamahatana, 2001).

From among research on the psychology of programming, particularly relevant for a gesture
authoring tool is work by Ko, Myers, and Aung (2004) where the authors identify six “learning
barriers” that obstruct end-user programmers across a variety of contexts:

11

End-User Authoring of Mid-Air Gestural Interactions

1. Design barriers are difficulties that are inherent in a problem, independent from how the solution
is represented. They represent the inability of a learner to construct a solution to a given
problem, which must be accomplished before the solution is implemented as software.

2. Selection barriers impede learners from discovering what components are afforded by the
programming environment, and which of those can be used to implement their design for a
software solution.

3. Coordination barriers hinder learners’ understanding of how various components offered by the
programming environment can be combined to achieve desired behaviors.

4. Use barriers obscure the intent, usage and effects of programming components. To illustrate
with an example: a learner may have determined that they need to use a “list” structure to
implement an algorithm, but they may not know how to declare and initialize one within the
programming environment.

5. Understanding barriers arise when learners are not able to compare the external behavior, i.e.
the results, of the software with their expectations. This is usually a result of an absence or
inadequacy of feedback as to what the software does or does not do.

6. Information barriers disrupt learners’ understanding of the internal workings of the software.
They manifest as learners’ inability to test hypotheses they might have about how the software
does what it does.

The authors relate these learning barriers to Norman’s (1986, 2002) concepts of the gulf of
execution and the gulf of evaluation (which I described in section 1.1 to motivate the development
of a gesture authoring tool). Specifically, they explicate that design, coordination, and use barriers
spawn gulfs of execution; understanding barriers pose gulfs of evaluation; while selection and
information barriers constitute gulfs of execution and evaluation. The authors recommend adapting
Norman’s (1986, 2002) recommendations for bridging the gulfs and overcoming the learning barriers.

2.3 Design and Evaluation of User Interface Authoring Tools

Olsen (2007) argues that user interface design tools, particularly those that deal with unconven-
tional interaction techniques (e.g. mid-air gesture sensing), do not lend themselves to conventional
software evaluation methods. One reason for this is that such tools require domain-specific expertise,
which — by the nature of novel tools — no user population possesses. Another reason is that these
tools support complex tasks with high inter-user variability in terms of the users’ mental models
of the tasks. “Meaningful comparisons between two tools for a realistically complex problem are
confounded in so many ways as to make statistical comparisons more fantasy than fact.” (Olsen,
2007) From the framework proposed by Olsen for the evaluation of user interface toolkits, I derived
the following four guidelines to direct the design of my mid-air gesture authoring tool:

• Reduce development time. A good authoring tool should allow for the rapid implementation of
design changes. This can be encouraged by reducing the number of choices that have to be
made to express a design. (Granted, there may exist a tradeoff between this concern and the
expressive power of the authoring tool.)

• Encapsulate and simplify expertise. Considerable technical know-how is required to design
and develop applications for emerging technologies. A good design tool liberates the designer
from the need for prior knowledge, yet communicates the capabilities and limitations of the
technology to nudge the designer towards feasible designs.

12

Background and Related Work

• Lower skill barriers. Empowering new populations of users to envision and implement designs
“expands the set of people who can effectively create new applications.” (Olsen, 2007)

• Make use of a common infrastructure. It is difficult to get users to adopt a new standard. As
much as possible, authoring tools should hook up to existing and widely adopted tools and
practices, and complement existing workflows; upgrading rather than negating the common
denominator.

Employing a user interface paradigm for expressing design choices that reflects the problem
being solved and embodies the constraints of the design space (Norman, 1993) serves all four the
guidelines above.

In addition, Shoemaker et al. (2010) propose design guidelines for body-centric interaction with
large displays. From among the guidelines they propose, two generalize to influence the design of
an authoring tool for mid-air gestures:

• Interaction using mid-air gestures at a distance should be “mediated through a representation
that binds personal and extrapersonal space.” A means for communicating the constraints
and opportunities of the interaction space to the user is recommended for mid-air gestural
interfaces. This holds for design tools that target these interactions.

• It is recommended that users’ sense of proprioception be leveraged by allowing some operations
to be performed in the user’s personal space, without requiring visual feedback. In terms of
authoring interactions, this guideline calls for encouraging gesture designs that capitalize on
proprioception through the nature of the authoring paradigm.

In sum, six guidelines derived from previous work form the basis of my design rationale for the
gesture authoring interface (Figure 2.4). The first four, derived from Olsen’s (2007) work, identify
and address concerns that pertain to user interface design tools. The last two, derived from the
work of Shoemaker et al. (2010), attend to concerns related to perceptual interactions in general.
Whether or not the final design for the authoring tool conforms to these guidelines is evaluated
through user studies.

Figure 2.4 – Guidelines derived
from the literature formed the
basis of the design rationale for
a gesture authoring tool.

13

End-User Authoring of Mid-Air Gestural Interactions

Additionally, from a programming perspective (see Section 2.2), Myers, Hudson, and Pausch
(2000) identify five themes that influence the success of user interface tools:

• User interface tools should strive to achieve a low threshold — i.e. be easy to learn — and a
high ceiling — i.e. significant expressive power.

• Successful tools lead users to making the right choices and avoiding wrong designs by offering
a well-designed path of least resistance

• A tool should embody predictability and avoid unpredictable automatic operations.

• Developers of user interface tools should stay on top of developments, since user interface
technologies are moving targets that can change significantly or become obsolete at a rapid
pace.

• A tool should only address the parts of the user interface that are needed.

The first of these themes is specifically captured in part by Olsen’s recommendations that a tool
should lower skill barriers and empower new users. A high level of expressive power is desirable, but
the weight of this concern will be governed by user needs (see Section 4.1). The encapsulation and
simplification of expertise, along with the use of user-centered design tools and methods, integrate
all of these themes.

2.4 Authoring Mid-Air Gestures

This section presents an overview of prior research on gesture authoring tools which has
influenced my design. While development tools provided by vendors of gesture-sensing hardware
focus on supporting textual programming, ongoing research suggests a set of diverse approaches to
the problem of how to represent and manipulate three-dimensional gesture data. Existing works
approach the issue in three ways that constitute distinct paradigms for visually authoring mid-air
gestures. These are:

1. using 2-dimensional graphs of the data from the sensors that detect movement;

2. using a visual markup language; and,

3. representing movement information using a timeline of frames.

In addition, there are approaches to manipulating gesture information that rely predominantly
on textual representations.

These paradigms for visualizing and manipulating gesture data often interact with two approaches
to authoring gesture information:

• Authoring gestures by declaration involves the use of a high-level syntax to describe gesture
information without specifying a computational control flow.

• Authoring gestures by demonstration is done by recording one or more examples and employing
machine learning techniques to train a recognizer.

In addition, gestures can be defined through imperative programming, in terms of a sequence
of states or actions. This is the standard approach for authoring gestures in general-purpose textual
programming environments. From a design perspective, this approach embodies significant gulfs of
execution and evaluation, while erecting learning barriers for end-users (see Sections 1.1 and 2.2).

14

Background and Related Work

Imperative authoring of gestures is also suboptimal from a software engineering perspective (see
Section 1.1; as well as Hoste and Signer (2014)). Thus, imperative textual programming has not
influenced my design significantly.

The three visual authoring paradigms enumerated above do not have to be used exclusively, and
nor do demonstration and declarative programming. Aspects of different paradigms may find their
place within the same user interface. A popular approach, for example, is to introduce gestures by
demonstration, convert gesture data into a visual representation, and then declaratively modify it.

Below, I use examples from the literature to elaborate on the approaches enumerated above. I
comment on their strengths and weaknesses based on previously published evaluations conducted
with software that implement them.

Some of the work discussed below pertains to gesture-sensing systems which employ intrusive
methods (e.g. markers or inertial sensors) rather than perceptual input devices. Even though the
scope of this thesis does not fully encompass the intrusive sensing of mid-air gestures; the user
interfaces of gesture authoring applications for intrusive sensors have aspects that inform the design
of an authoring tool for perceptual interfaces. Thus, tools that target intrusive sensing applications
and tools for perceptual interfaces are both considered.

2.4.1 Using Graphs of Movement Data

Visualizing and manipulating movement data using 2-dimensional graphs that represent low-level
kinematic information is a popular approach for authoring mid-air gestures. This approach is often
preferred when gesture detection is performed using inertial sensors such as accelerometers and
gyroscopes. It also accommodates other sensors that read continuously variable data such as
bending, light and pressure. Commonly the horizontal axis of the graph represents time while the
vertical axis corresponds to the reading from the sensor. Often a “multi-waveform” occupies the
graph, in order to represent data coming in from multiple axes of the sensor. Below, we study three
software tools that implement graphs for representing gesture data: Exemplar, MAGIC and GIDE.

Exemplar

Exemplar (Hartmann, Abdulla, et al., 2007) relies on demonstration to acquire gesture data and
from a variety of sensors - accelerometers, switches, light sensors, bend sensors, pressure sensors
and joysticks. Once a signal is acquired via demonstration, on the resulting graph, the developer
marks the area of interest that corresponds to the desired gesture. The developer may interactively
apply filters on the signal for offset, scaling, smoothing and first-order differentiation. Exemplar
offers two methods for recognition: One is pattern matching, where the developer introduces many
examples of a gesture using the aforementioned method and new input is compared to the examples.
The other is thresholding, where the developer manually introduces thresholds on the raw or filtered
graph and gestures are recognized when motion data falls between the thresholds. This type of
thresholding also supports hysteresis, where the developer introduces multiple thresholds that must
be crossed for a gesture to be registered.

Exemplar ’s user studies suggest that this implementation of the paradigm is successful in
increasing developer engagement with the workings and limitations of the sensors used. Possible
areas of improvement include a technique to visualize multiple sensor visualizations and events and
finer control over timing for pattern matching.

MAGIC

Ashbrook and Starner’s (2010) System for Multiple Action Gesture Interface Creation (MAGIC)
is another tool that implements the 2-dimensional graphing paradigm. The focus of MAGIC is

15

End-User Authoring of Mid-Air Gestural Interactions

programming by demonstration. It supports the creation of training sets with multiple examples
of the same gesture. It allows the developer to that keep track of the internal consistency of the
provided training set; and check against conflicts with other gestures in the vocabulary and an
“Everyday Gesture Library” of unintentional, automatic gestures that users perform during daily
activities. MAGIC uses the graph paradigm only to visualize gesture data and does not support
manipulation on the graph.

One important feature in MAGIC is that the motion data graph may be augmented by a video
of the gesture example being performed. Results from user studies indicate that this feature has
been highly favored by users, during both gesture recording and retrospection. Interestingly, it is
reported that the “least-used visualization [in MAGIC] was the recorded accelerometer graph;”
with most users being “unable to connect the shape of the three lines [that correspond to the 3
axes of the accelerometer reading] to the arm and wrist movements that produced them.” Features
preferred by developers turned out to be the videos, “goodness” scores assigned to each gesture
according to how they match gestures in and not in their own class, and a sorted list depicting the
“distance” of a selected example to every other example.

GIDE

Gesture Interaction Designer (GIDE) by Zamborlin et al. (2014) features an implementation
of the graph paradigm for authoring accelerometer-based mid-air gestures. GIDE leverages a
“modified” hidden Markov model approach to learn from a single example for each gesture in
the vocabulary. The user interface implements two distinct features: (1) Each gesture in the
vocabulary is housed in a “gesture editor” component which contains the sensor waveform, a video
of the gesture being performed, an audio waveform recorded during the performance, and other
information related to the gesture. (2) A “follow” mode allows the developer to perform gestures
and get real- time feedback on the system’s estimate of which gesture is being performed (via
transparency and color) and where they are within that gesture. This feedback on the temporal
position within a gesture is multimodal: The sensor multi-waveform, the video and the audio
waveform from the video are aligned and follow the gestural input. GIDE also supports “batch
testing” by recording a continuous performance of multiple gestures and running it against the
whole vocabulary to check if the correct gestures are recognized at the correct times.

User studies on GIDE reveal that the combination of multi- waveform, video and audio was
useful in making sense of gesture data. Video was favored particularly since it allows developers to
still remember the gestures they recorded after an extended period of not working on the gesture
vocabulary. Another finding from the user studies was the suggestion that the “batch testing”
feature where the developer records a continuous flow of many gestures to test against could be
leveraged as a design strategy — gestures could be extracted from a recorded performance of
continuous movement.

Discussion

Graphs that display acceleration data seem to be the standard paradigm for representing
mid-air gestures tracked using acceleration sensors. This paradigm supports direct manipulation
for segmenting and filtering gesture data, but manipulating acceleration data directly to modify
gestures is unwieldy. User studies show that graphs depicting accelerometer (multi-)waveforms
are not effective as the sole representation of gesture information, but work well as a component
within a multimodal representation along with video.

16

Background and Related Work

2.4.2 Visual Markup Languages

Using a visual markup language for authoring gestures can allow for rich expression and
may accommodate a wide variety of gesture-tracking devices, e.g. accelerometers and skeletal
tracking, at the same time. The syntax of these visual markup languages can be of varying
degrees of complexity, but depending on the sensor(s) used for gesture detection, making use
of the capabilities of the hardware may not require a very detailed syntax. Below, I examine a
software tool, EventHurdle, that implements a visual markup language for gesture authoring; and I
discuss a gesture spotting approach based on control points which does not feature a concrete
implementation, but provides valuable insight.

EventHurdle

Kim and Nam (2013) describe a declarative hurdle-driven visual gesture markup language
implemented in the EventHurdle authoring tool. The EventHurdle syntax supports gesture input
from single-camera-based, physical sensor-based and touch-based gesture input. In lieu of a timeline
or graph, EventHurdle projects gesture trajectory onto a 2-dimensional workspace. The developer
may perform the gestures, visualize the resulting trajectory on the workspace, and declaratively
author gestures on the workspace by placing “hurdles” that intersect the gesture trajectory. Hurdles
may be placed in ways that result in serial, parallel and/or recursive compositions. “False hurdles”
are available for specifying unwanted trajectories. While an intuitive way to visualize movement
data from pointing devices, touch gestures and blob detection; this approach does not support the
full range of expression inherent in 3-dimensional mid-air gesturing.

Gestures defined in EventHurdle are configurable to be location-sensitive or location-invariant.
By design, orientation- and scale-invariance are not implemented in order to avoid unnecessary
technical options that may distract from “design thinking.”

User studies on EventHurdle comment that the concept of hurdles and paths is “easily
understood” and it “supports advanced programming of gesture recognition.” Other than this,
supporting features, rather than the strengths and weaknesses of the paradigm or comparison with
other paradigms, have been the focus of user studies.

Worth noting is that EventHurdle is implemented as a plug-in for Adobe Flash2, which may
pose as a barrier for users who have not invested in the software.

Control Points

Hoste, Rooms, and Signer’s (2013) versatile and promising approach uses spatiotemporal
constraints around control points to describe gesture trajectories. While the focus of the approach
is on gesture spotting (i.e. the segmentation of a continuous trajectory into discrete gestures) and
not gesture authoring, they do propose a human-readable and manipulable external representation.
This external representation has significant expressive power and support for programming constructs
such as negation (for declaring unwanted trajectories) and user-defined temporal constraints. While
the authors’ approach is to infer control points for a desired gesture from an example, the
representation they propose also enables the manual placement of control points.

The authors do not describe an authoring implementation that has been subjected to user
studies. However, they discuss a number of concepts that add to the expressive power of using
control points as a visual markup language to represent and manipulate gesture information. The
first is that it is possible to add temporal constraints to the markup; i.e. a floor or ceiling value
can be specified for the time taken by the tracked limb or device to travel between control points.
This is demonstrated not on the graphical markup (which can be done easily), but on textual

2adobe.com/products/flash

17

http://www.adobe.com/products/flash.html

End-User Authoring of Mid-Air Gestural Interactions

code generated to describe a gesture – another valuable feature. The second such concept is that
the control points are surrounded by boundaries whose size can be adjusted to introduce spatial
flexibility and accommodate “noisy” gestures. Third, boundaries can be set for negation when
the variation in the gesture trajectory is too much. The authors discuss linear or planar negation
boundaries only, but introducing negative control points into the syntax could also be explored.
Finally, a “coupled recognition process” is introduced, where a trained classifier can be called to
distinguish between potentially conflicting gestures; e.g. a circle and a rectangle that share the
same control points.

One limitation of this approach is the lack of support for scale invariance. One way of introducing
scale invariance may be to automatically scale boundary sizes and temporal constraints with the
distance between control points. However, it is likely that the relationship between optimal values
for these variables is nonlinear, which could make automatic scaling infeasible.

Discussion

The expressive power and usability of a visual markup language may vary drastically depending
on the specifics of the language and the implementation. The general advantage of this paradigm
is that it is suitable for describing and manipulating location-based gesture information (rather than
acceleration-based information commonly depicted using graphs). This makes using a visual markup
language suitable for mid-air gestures detected by depth-sensing cameras, where the interaction
space is anchored to the sensor and the users’ body parts move in relation to each other and the
sensor. Either the motion sensing device or part of the skeletal model could be used to define a
reference frame and gesture trajectories could be authored in a location-based manner using a
visual markup language.

2.4.3 Timelines

Timelines of keyframes are commonly used in video editing applications. They often consist of
a series of ordered thumbnails and/or markers that represent the content of the moving picture and
any editing done on it, such as adding transitions. A collection of commercial3,4 and research (Tang
and Igarashi, 2013) efforts implement timelines along with demonstration for authoring skeletal
tracking gestures. Introducing gestures via demonstration requires the temporal segmentation
of intended gestures from intermediate movements to be done manually - this is accomplished
through manual editing on a timeline of keyframes.

Gesture Studio

One application that implements a timeline to visualize gesture information is the commercial
Gesture Studio5. The application works only with sensors that detect gestures through skeletal
tracking using an infrared depth camera. Users introduce gestures in Gesture Studio by demonstra-
tion, through performing and recording examples. The timeline is used to display thumbnails for
each frame of the skeleton information coming from the depth sensor. The timeline is updated
after the user finishes recording a gesture; while during recording, a rendering of the skeletal model
tracked by the depth sensor provides feedback. After recording, the user may remove unwanted
frames from the timeline to trim gesture data for segmentation. Reordering frames is not supported
since gestures are captured at a high frame rate (depending on the sensor, usually around 30 frames
per second), which would make manual frame-by-frame editing inconvenient. The process through

3gesturepak.com
4gesturestudio.ca
5gesturestudio.ca

18

http://www.gesturepak.com
http://www.gesturestudio.ca
http://www.gesturestudio.ca

Background and Related Work

which these features have been selected is opaque, since there are no published studies that present
the design process or evaluate Gesture Studio in use.

Discussion

In gesture authoring interfaces, timelines make sense when gesture tracking encompasses many
limbs and dynamic movements that span more than a few seconds. Spatial and temporal concerns
for gestures in two dimensions, such as those performed on surfaces, can be represented on the
same workspace. The representation of mid-air gestures requires an additional component such as
a timeline to show the change over time.

Timelines of keyframes are used often in conjunction with programming by demonstration, for
the manual segmentation of gesture data from intermediate bodily movements. For end-users
without familiarity with machine learning concepts, the task of composing good training samples
is not trivial. Moreover, this method cannot be used if the depth sensing device is not available
during development (e.g. due to malfunction or devices being shared between users).

2.4.4 Textual Approaches

Domain-specific declarative gesture specification languages that augment general purpose
programming tools are a very common approach to gesture authoring for both constrained and
free-form capture media (see Section2.1). Scholliers et al.’s (2011) Midas; GeforMT by Kammer
et al. (2010); Echtler and Butz’ (2012) GISpL; GestureAgents by Julià, Earnshaw, and Jordà (2013);
Spano et al.’s (2013) GestIT and work by Khandkar and Maurer (2010) are examples of such efforts.
Most of the works within this body of research concentrate on the formal specification (Lamsweerde,
2000; Sommerville, 2010) of gestures — i.e. providing a rigorous, complete description of gesture
information. As such, these tools are not designed to be utilized by end-users. The exception is the
Flexible Action and Articulated Skeleton Toolkit (FAAST) by Suma et al. (2013), which provides a
graphical user interface, along with an understandable grammar and vocabulary for the authoring
of mid-air gestures.

FAAST

For declaratively authoring mid-air gestures for skeletal tracking, the Flexible Action and
Articulated Skeleton Toolkit (FAAST) (Suma et al., 2013) provides atomic action primitives that
can be used to compose rules in plain English such as “right hand above right shoulder by at least
20 cm.” (Figure 2.5) These constraints specify the position of, the speed of, or the angle between
limbs, as well as general body orientation. FAAST controls other applications on the computer via
mapping gestures to keyboard and mouse events. While describing gestures using atomic rules
affords significant expressive power, this representation does not embody a visualization of the
constraints embedded in the design space and thus may not serve to bridge the gulf of execution
that obstructs end-users.

FAAST has been adopted widely among hobbyists and numerous applications that utilize
the toolkit have been exhibited online6. The authors draw attention to the permissive license
that accompanies the software as they explain its popularity. Also notable in this regard is that
FAAST — uniquely among the gesture authoring tools considered in this section — embodies the
design guideline of leveraging a common infrastructure and interfaces with arbitrary third-party
applications.

6projects.ict.usc.edu/mxr/faast/faast-video-gallery/

19

http://projects.ict.usc.edu/mxr/faast/faast-video-gallery/

End-User Authoring of Mid-Air Gestural Interactions

Figure 2.5 – FAAST
(Suma et al., 2013)
provides atomic
primitives that can
be used to compose
rules in plain English
that map to mid-air
gestures.

2.4.5 Discussion

Above, tools that exemplify user interface paradigms for visually and textually authoring mid-air
gestures have been presented (Table 2.1). For sensor-based gesturing, the standard paradigm used
to represent gesture information appears to be projecting the sensor waveforms onto a graph. Graphs
appear to work well as components that represent sensor- based gestures, allow experimentation
with filters and gesture recognition methods, and support direct manipulation to some extent. User
studies show that while the graphs alone may not allow developers to fully grasp the connection
between movements and the waveform (Ashbrook and Starner, 2010), they have been deemed
useful as part of a multimodal gesture representation (Zamborlin et al., 2014). Using hurdles as
a visual markup language offers an intuitive and expressive medium for gesture authoring, but it
is not able to depict fully 3-dimensional gestures. Using spherical control points may be more
conducive to direct manipulation while still affording an expressive syntax, but no implementation
of this paradigm exists for authoring mid-air gestures. Finally, timelines of frames may come in
handy for visualizing dynamic gestures with many moving elements, such as in skeletal tracking;
but, used in this fashion, they allow only visualization and not manipulation.

20

Background and Related Work

System UI Paradigm
Programming
Approach

Insights from Evaluation

Exemplar
(Hartmann,
Abdulla, et al.,
2007)

Graphs Demonstration
Increases engagement with
sensor workings and
limitations.

MAGIC
(Ashbrook and
Starner, 2010)

Graphs
(multi-waveform)

Demonstration

Users unable to connect
waveform to physical
movements. Optional video
is favored over graphs.

GIDE
(Zamborlin et al.,
2014)

Graphs
(multi-waveform,
with video)

Demonstration
Multimodal representation
helps make sense of gesture
data.

EventHurdle
(Kim and Nam,
2013)

Visual markup
language

Declaration
Easily understood.
Supports “advanced”
programming.

Control Points
(Hoste, Rooms,
and Signer, 2013)

Visual markup
language

Declaration and
Demonstration

Not implemented.

Gesture Studio7 Timeline Demonstration Not published.

FAAST
(Suma et al., 2013)

Textual Declaration
Widely adopted due to
standalone, end-to-end
implementation.

Table 2.1 – Summary of studies on systems that exemplify user interface paradigms for authoring mid-air gestures.

21

Chapter 3

Hotspotizer: Description

This chapter describes a novel user interface paradigm for authoring mid-air gestures based on
space discretization, and its implementation as part of an end-to-end software tool designed to
support end-users: Hotspotizer. The design of the space discretization paradigm and Hotspotizer’s
user interface has been informed by insights from previously published research and the analysis of
related artifacts (described in Chapter 2), along with the use of methods from user-centered design
(described in Chapter 4).

3.1 Space Discretization

This section introduces a user interface paradigm based on space discretization for visualizing
and manipulating gesture information. The essence of the paradigm is the partitioning of the
interaction space into discrete cells. These discrete cells within the workspace may be marked
to become hotspots – or hotspotized – that register when a limb or input device passes through
them. Multiple cells can be hotspotized to form large regions with relaxed spatial constraints; and
temporal ordering between different regions can be specified to express movement. In essence,
hotspots behave like virtual, invisible buttons positioned in the interaction space (Figure 3.1).

Figure 3.2 shows how this paradigm can be applied to describe a gesture trajectory that follows
the form of the letter Z on a 2-dimensional surface. Four regions consisting of multiple hotspots
have been defined and they must be traversed in a certain order — indicated by the numbers on
the figure — for the gesture to register.

Figure 3.1 – Hotspots behave like virtual buttons set in the interaction space. A wide
variety of gestures can be described in as sequences of hotspot configurations.

23

End-User Authoring of Mid-Air Gestural Interactions

Figure 3.2 – A 2-dimensional surface “Z” gesture defined using
ordered hotspots in discretized space.

The paradigm is versatile in that it can be used to author gestures for a variety of capture
media (see Section 2.1) ranging from touch-sensitive surfaces to perceptual interaction spaces.

The partitioned workspace must be placed in relation to a certain frame of reference. The
origin of this frame of reference may be, depending on the capture medium, a certain point on a
touch-sensitive surface; a camera that consists a perceptual input device; a certain limb of the user;
the initial point where a stylus makes contact with a touchscreen; etc. Barring some rare cases,
hotspot configurations that make up a certain gesture will differ if the origin of the workspace
changes.

In line with Shoemaker et al.’s (2010) recommendation that users’ sense of proprioception be
leveraged within body-centric perceptual interactions (see Section 2.3), the hotspot array’s frame of
reference can originate from the user’s center of gravity for applications that use coarse movements.
This way, the user’s position in relation to the perceptual sensor does not affect gesture recognition,
as long as the sensor can build the correct skeletal model.

Authoring dynamic movements relies on temporal constraints between hotspots. This can take
the form of a simple inter-keyframe timeout; where the time that elapses between the traversal
of subsequent hotspots must not exceed a given value. A variety of visualization styles can be
explored for the authoring of the temporal constraints. Using an integrated visualization that shows
spatial and temporal constraints together (as in Figure 3.2) is one option; as is splitting motion
into discrete keyframes. With a focus on the latter option, design considerations for interacting
with temporal constrains are discussed in Sections 4.2 and 3.2.

Gestures designed using space discretization are dependent on location, scale and orientation
with respect to the workspace. Affixing the workspace to a physical part of the interactive system
— including the user’s limbs — can be exploited to introduce location and orientation invariance.
For supporting scale invariance, the paradigm affords a degree of spatial flexibility; hotspotizing a
larger volume of cells allows for relaxed gesture boundaries. (User studies described in Section 4.3
have shown that using large hotspots in lieu of spatially overconstrained gesture designs is indeed a
desirable — although not inherently discoverable — strategy.)

Figure 3.3 – For full-body perceptual interactions, the origin for the
hotspot array’s frame of reference can be affixed to the centroid of the
user. This design leverages proprioception (see Section 2.3).

24

Hotspotizer: Description

Figure 3.4 – A jagged array used to keep
a memory of how tracked limbs traverse
hotspots. The elements of the outer array
are arrays that correspond to the gestures
that the system can recognize. The elements
of the inner arrays keep track of when the
tracked limb last occupied the hotspots that
belong to each keyframe of gesture.

In essence, aspects of this technique are based on Hoste, Rooms, and Signer’s (2013) control
points paradigm, modified to confine the locations of the control points to discrete pre-defined
locations and standardize the shapes of control point boundaries. Multiple areas or volumes
within the workspace can be hotspotized and added together to create custom shapes. Dynamic
movements can be defined by splitting motion into keyframes related by temporal or merely ordinal
constraints.

3.1.1 Gesture Spotting in Discretized Space

The nature of perceptual user interfaces is such that input signals are often in the form of
continuous streams. The continuous stream often comprises meaningful information intermingled
with portions of the signal that are irrelevant or even confounding — i.e. noise. Locating where
meaningful information begins and ends within the continuous stream — i.e. distinguishing signal
from noise — and interpreting the input signal is called spotting (Rose, 1992). Gesture spotting
is the identification of meaningful gestures in a real-time continuous stream where gestures are
performed alongside intermediate, unintentional movements (Alon et al., 2009; Elmezain et al.,
2010; Kang, Lee, and Jung, 2004; Lee and Kim, 1999; Malgireddy et al., 2010). Identification
in this sense denotes both the segmentation of meaningful portions of the stream from noise;
and identifying what those meaningful portions actually mean — i.e. classification or labeling in
machine learning terms (Alon et al., 2009; Malgireddy et al., 2010).

For gesture-based interfaces, the difficulty of gesture spotting depends on the choice of capture
medium (see Section 2.1). On constrained capture media, gesture segmentation is often inherent
because input devices or limbs do not make contact with the gesture-sensing medium during
intermediate movements. On equipped capture media, segmentation can be triggered manually, e.g.
via a button on the input device. With perceptual interfaces, gesture spotting must be performed

Figure 3.5 – A 2-dimensional array keeps track of what state each gesture is in. With each incoming frame from the
input device, the present state expires and gets pushed back in the array to represent history. The highlights indicate
candidacy for gesture recognition (Gesture 2, as in Figure 3.4, has one keyframe).

25

End-User Authoring of Mid-Air Gestural Interactions

Listing 3.1 – Part 1 of pseudocode for gesture spotting in discretized space. This part of the algorithm records the
traversal of hotspots.

Traverse all gestures

foreach gesture in AllGestures:

i = AllGestures.IndexOf(gesture)

Advance gesture state

States[i][0] = States[i][1]

Traverse each keyframe of the current gesture

foreach keyframe in gesture.Keyframes:

j = gesture.Keyframes.IndexOf(keyframe)

See if the limb tracked by the current gesture

occupies the any hotspotized areas for this keyframe

if keyframe.Bounds.Contain(gesture.TrackedLimb.Coordinates):

If it does , record *when*

Times[i][j] = TimeOfNow

Also check if this is the last keyframe

and set gesture state

if keyframe == gesture.Keyframes.Last:

States[i][1] = Final

else:

States[i][1] = Occupied

If this keyframe does not register any activity ...

else:

Set the gesture state accordingly

States[i][1] = Vacant

automatically. (Indeed, as Turk and Robertson (2000) imply, this one of the characteristics that
define perceptual interaction.)

Defining gestures as sequences of hotspot sets in discretized space significantly alleviates the
difficulties associated with perceptual gesture spotting. The interaction space consists of a finite
volume, and hotspots are defined over a finite number of discrete compartments that span portions
of the interaction space. Hotspots behave like virtual buttons that have two states: an on state for
when the tracked limb or input device occupies the hotspot, and an off state for when the hotspot
does not register occupation. These characteristics of operating in discretized space reduce the
gesture spotting problem to one that can be solved by simple thresholding (Hartmann, Abdulla,
et al., 2007; Hoste, Rooms, and Signer, 2013) — without requiring the application of machine
learning concepts.

An algorithm for traversing hotspots within a workspace and performing gestures spotting can
be expressed in two parts. This algorithm assumes that the interface between the input device and
the application logic is event-driven, but it can adapt to a polling model as well1. When using the
Microsoft Kinect sensor as the input device, this means that the positions of the tracked limbs
that comprise the skeletal model are published to the application at regular intervals (by default,
at 30 frames per second). The two parts of the algorithm are executed consecutively upon the
arrival of each data frame.

A second assumption of the algorithm is that temporal constraints that separate keyframes are

1See 100experiencepoints.com/polling-vs-event-driven-models/ for a discussion on event-driven and polling
interfaces between application components.

26

http://100experiencepoints.com/polling-vs-event-driven-models/

Hotspotizer: Description

Listing 3.2 – Part 2 of pseudocode for gesture spotting in discretized space. This part of the algorithm determines
whether the previously recorded activity should trigger any of the gestures we are spotting for.

Traverse all gestures

foreach gesture in AllGestures:

i = AllGestures.IndexOf(gesture)

Single - and multi -keyframe gestures are handled differently

if gesture.Keyframes.Count == 1:

Check states

if States[i][0] == Vacant and States[i][1] == Final:

gesture.Engage ()

if States[i][0] == Final and States[i][1] == Vacant:

gesture.Disengage ()

else:

Check states

if not(States[i][0] == Final) and States[i][1] == Final:

if InterKeyframeTimeoutIsNotExceeded(i):

gesture.Engage ()

if States[i][0] == Final and not(States[i][1] == Final):

gesture.Disengage ()

defined in terms of a fixed inter-keyframe timeout value. For a gesture to register, hotspots that
belong to its consecutive keyframes must be traversed before the timeout occurs.

The first part of the algorithm is a loop that traverses hotspots and checks if the hotspot is
occupied by a limb that is being tracked. Listing 3.1 provides pseudocode for this portion of the
algorithm. Notice that each gesture has one limb associated with it, and it does not care about
where the other body parts are. The algorithm can be adapted to accommodate gesture designs
that require tracking the movement of more than one limb, but this more complicated case lies
outside the scope of the current implementation (see Section 3.2) and this thesis.

A 2-dimensional jagged (or ragged) array where arrays of different lengths comprise the
elements of an encompassing array 2 keeps a record of the activity going on in the hotspots. The
size of the outer dimension is equal to the number of distinct gestures (in machine learning terms,
gesture classes) that can be recognized by the system. The inner arrays have one element for
every keyframe of the gesture that they relate to. Each element of the inner array holds time
information. In the C# programming language, used to realize the implementation discussed in
this thesis, this is done by using the DateTime structure provided in the System namespace of
the .NET 4.5 Framework class library3. Figure 3.4 shows a visualization of this array. Notice on
Listing 3.1 that elements of this array are updated only when a keyframe registers a tracked limb.
The absence of a limb in the hotspots of a keyframe does not delete previous information.

Another 2-dimensional array is needed to keep a memory of what state every gesture is in.
Trivially, the limb being tracked by the gesture may be occupying a hotspot that belongs to one
of the gesture’s keyframes, in which case the gesture would be in an Occupied state; or none of
the gesture’s keyframes may be registering activity, in which case the gesture’s state can be called
Vacant. Additionally, it is important to know which keyframe is registering activity — is it just
any of the keyframes, or is it the last one? If the gesture’s ultimate keyframe has registered the
most recent activity, this marks the end point of the gesture trajectory and segments the gesture

2stackoverflow.com/questions/18269123
3msdn.microsoft.com/en-us/library/system.datetime

27

http://stackoverflow.com/questions/18269123/
http://msdn.microsoft.com/en-us/library/system.datetime

End-User Authoring of Mid-Air Gestural Interactions

from subsequent “noise.” Thus, a third state — which we can label as Final — is used to keep
track of this information. These states are held in a 2-dimensional array of size n× 2; where n is
the number of gesture types that can be recognized by the system, and two array elements for
each gesture record the previous and current states of the gestures respectively. Notice, again
on Listing 3.1, that the states are updated with each incoming event from the input device: The
expiring current state expires gets pushed back and becomes the previous state, while the new
current state is computed anew (see Figure 3.5 for a visualization of this activity).

Thus, we now know the times when every keyframe of every gesture has been last occupied by
the limb that it is tracking. Now, the second part of the algorithm determines whether this activity
corresponds to any of the gestures we are spotting for (Listing 3.2).

Notice that this is an overview of the basics of the gesture spotting algorithm. The implemen-
tation is subject to various additions in order to handle edge cases, allow further expressive power
in terms of interaction designs (such as the tap/hold option for output events), and introduce
interactive feedback (similar to Zamborlin et al.’s (2014) “follow” mode) to the user interface. I
refer interested readers to the source code.

3.2 Hotspotizer

This section presents an overview of the features and workings of Hotspotizer: an end-to-end,
standalone toolkit for end-users’ authoring gross mid-air gestures and mapping them to keyboard
events. In this manner, Hotspotizer can relay keyboard commands to arbitrary third-party desktop
applications and adapt any user interface for gesture control. Hotspotizer currently only supports
Microsoft’s Kinect for Windows and Xbox Kinect sensors.

See Figure 3.6 for screenshots of the three modules that make up Hotspotizer: (1) The Manager
module is for editing, saving and loading collections of gestures; and adding, deleting and editing
individual gestures. (2) The Editor comprises the main workspace where gesture authoring occurs.
Finally, (3) the Visualizer module presents visual feedback while the gesture recognizer is engaged
and relaying system-wide keyboard commands.

3.2.1 Usage

To describe how mid-air gestures can be authored and mapped to keyboard events using
Hotspotizer, lets consider the case of an end-user, Ali, who would like to adapt a document viewing
application for gesture control. (Ali may require this functionality in contexts where touching
a device to navigate a document is undesirable; e.g. when performing surgery on a patient or
repairing an oily mechanism.) Figure 3.7 depicts his workflow, and the numbers in parentheses
throughout this section relate to the numbered panes in the figure.

Ali has to be able to cycle up and down between the pages of a document, as well as zoom in
and out, using mid-air gestures. These actions may correspond to different keyboard commands
depending on the document viewing application; lets assume that, respectively, the Page Up, Page
Down keys and the Ctrl + Plus and Ctrl + Minus key combinations are used. To cycle between
pages, the left hand is swiped in air as if turning the pages of a real, albeit large book. To zoom in
and out, the right hand performs beckoning and pushing motions. Figure 3.8 shows one way of
describing these two gestures in terms of hotspots (for brevity, the page up and zoom out gestures
are not shown).

Creating and Editing Gestures

Hotspotizer greets Ali with the Manager module containing empty gesture collection upon
launch. Ali creates a new gesture in the collection, launching the Editor module (1). Here, Ali

28

Hotspotizer: Description

Figure 3.6 – Hotspotizer consists of three modules: (1) The Manager lists all of the gestures in the current collection
and allows creating, saving and loading collections as well as adding, removing and editing individual gestures. (2)
The Editor is the main workspace where gestures are authored. (3) The Visualizer provides interactive feedback on
available and recognized gestures.

assigns a name for the gesture for easy recall, specifies the Page Down key to be triggered when
the gesture is performed, and confirms that the loop toggle button is not checked – otherwise
performing the gesture and holding the tracked limb over the hotspots in the last frame continues
to hold down the keyboard key assigned to the gesture (2).

Ali moves on to the main workspace where they use the front- and side-views over a represen-
tation of the tracked user to mark the positions of the hotspots for the first frame. Initially, all of
the cells in the side view are disabled and grayed out. Marking cells on the front view enables the
corresponding rows on the side view, whereupon Ali can mark the vertical and depth-wise position
of their hotspots. Once hotspots are specified in all three dimensions by using these two grids, they
appear on the 3D viewport on the right.

Once Ali completes marking the first frame’s hotspots, they can proceed to add another frame
using the button next to the timeline of keyframes, and then another (3). Finally, after marking
the second and third frames’ hotspots, Ali selects the left hand as the limb that will be used in

29

End-User Authoring of Mid-Air Gestural Interactions

performing this gesture.

After saving the first gesture into the collection, Ali is taken back to the Manager module where
they can add the remaining gestures and see the existing gestures to review, edit or delete them
(5). Once they are satisfied with the gesture collection they created, Ali can save the collection
into a file for later use (6).

Testing Designs and Controlling External Applications

At any time when using the Editor module, if they have a Kinect sensor connected to the
computer, Ali may step in front of the sensor and see a rendering of the skeletal model of their
body on the front, side and 3D viewports (4). This feature can be used to rapidly test and tune
hotspot locations at design time.

Testing over the whole gesture collection is available through the Visualizer module (7). This
module depicts a list of the gestures in the current collection and all of their hotspots on 3D, front
and side viewports. Each gesture is shown in a different color. On the 3D viewport, transparency
implies the order of hotspots. Hotspots glow when the tracked limb enters them in the correct
order.

The Visualizer module also embeds the keyboard simulator. Launching the visualizer attaches a
virtual keyboard to the system, which relays associated key events upon the successful performance
of gestures. The visualization and the emulator continue to work when Hotspotizer is not in focus
or is minimized.

3.2.2 Space Discretization Specifics

In the current implementation, the space around the skeletal model tracked by the Kinect
sensor is partitioned into cubes that are 15cm on each side. The total workspace is a large cube
that is 3m on each side. While this is much larger than both the horizontal and vertical reach of
many people; this is by design, to accommodates unusually tall users. The centroid of the cube
that comprises the workspace is affixed to the “hip center” joint returned by the Kinect sensor,
which roughly corresponds to the centroid of the user’s body. By specifying and tracking joint
movements relative to the user’s skeletal model rather than the sensor’s position in real space, the
user interfaces leverages the user’s sense of proprioception (Shoemaker et al., 2010) in gesturing.

To describe gestures, the cubic cells within the workspace are marked to become hotspots
– or hotspotized – that register when a specified limb passes through them. Hotspotizing is
accomplished by using front and side views in the Editor workspace. The front view is used to
specify the horizontal and vertical positions of the hotspots. The side view is used to confirm
the vertical and specify depth-wise positions. The design of this interaction style was inspired by
architectural and engineering drawings.

Limbs available for tracking are the hands, feet, elbows, knees and the head. Each gesture can
track only one limb. The design of user interface for authoring gestures that utilize multiple limbs
without embodying excessive complexity can be explored in future work (see Section 5.3).

In order to enable the authoring of dynamic movements along with static poses, movements
are split into discrete keyframes. A timeline in the Editor module shows the keyframes and allows
adding, removing, reordering and editing actions. Hotspots within subsequent frames do not need
to be adjacent, but the frames need to be traversed in the correct order and within a certain time
limit for a gesture to be recognized. The inter-frame timeout in Hotspotizer is pre-set to 500ms. If
more than 500ms elapses between a tracked limb engaging hotspots of subsequent frames, the
gesture is not recognized. In order to relieve the user interface from complexity, this parameter has
not been made adjustable.

30

Hotspotizer: Description

F
ig

u
re

3
.7

–
T

h
e

w
or

kfl
ow

o
f

an
en

d
-u

se
r

au
th

or
in

g
g

es
tu

re
s

in
H

o
ts

p
o

ti
ze

r.

31

End-User Authoring of Mid-Air Gestural Interactions

Figure 3.8 – Next page and zoom in ges-
tures to control a document viewing applica-
tion and the keyboard functionality that they
map to. The diagrams show, respectively,
hotspot arrangements for a swipe gesture
and a beckoning motion.

The space discretization technique supports a versatile array of features. The size of hotspots
could be made adjustable, even adaptive; to allow for fine gesturing close to the user’s body
and more relaxed gesture boundaries at a distance. The total workspace volume could be made
adjustable. The workspace could be defined in reference to limbs other than the center or in
reference to the environment; supporting whole-body movements, a larger interaction space and
rich proprioceptive interactions. Temporal constraints could be made adjustable or adaptive to
allow designs that exploit velocity and acceleration in gesturing. Hotspotizer does not implement
these features. The design of the interface focuses on rapid development, simplification of expertise
and lowering of skill barriers. Through pre-adjusted parameters for space discretization and timing,
the complexity of the gesture authoring process has been reduced and the capabilities of the sensor
are encapsulated within the interface. Future work may investigate empowering expert users with
adjustability while maintaining the value added for non-experts.

32

Hotspotizer: Description

Figure 3.9 – If the Kinect sensor is not functioning properly or if pre-requisite software
is not installed on the computer, Hotspotizer prompts the user with a warning
message.

3.2.3 Implementation Details

Hotspotizer was written in the C# programming language4, using the Microsoft .NET Frame-
work 4.55 and the Windows Presentation Foundation (WPF)6 subsystem therein to create the user
interface.

The following open source packages were used:

• Windows Input Simulator7 for keyboard emulation;

• Json.NET 8 for reading and writing gesture data to files; and,

• Helix 3D Toolkit9 for 3D graphics.

Hotspotizer runs on Microsoft’s Windows 7 and Windows 8 operating systems and requires
the Microsoft Kinect Runtime10, and, if used with an Xbox Kinect sensor, the Kinect SDK 11 to be
installed on the user’s computer.

Care has been taken to make the process of installing and running Hotspotizer as straightforward
as possible, in order to accommodate diverse user populations. Hotspotizer is packaged as a
Windows application that can, as convention dictates, be installed from a single executable installer
file, launched from the Start Menu, and uninstalled from the operating system’s Control Panel.
Upon launch, Hotspotizer checks for its external requirements, the Kinect Runtime and SDK. If
the requirements are unavailable, it prompts the user to install them, providing links to the web
pages where they can be downloaded (Figure 3.9).

4msdn.microsoft.com/library/kx37x362
5microsoft.com/net
6msdn.microsoft.com/library/ms754130
7inputsimulator.codeplex.com
8json.codeplex.com
9helixtoolkit.codeplex.com

10microsoft.com/download/details.aspx?id=40277
11microsoft.com/download/details.aspx?id=40278

33

http://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://www.microsoft.com/net
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://inputsimulator.codeplex.com/
http://json.codeplex.com/
http://helixtoolkit.codeplex.com/
http://www.microsoft.com/en-us/download/details.aspx?id=40277
http://www.microsoft.com/en-us/download/details.aspx?id=40278

End-User Authoring of Mid-Air Gestural Interactions

3.2.4 Discussion

The space discretization paradigm and its current implementation in Hotspotizer feature
strengths and limitations that manifest as side effects of design choices.

One strength of the implementation is that gesture recognition is not influenced by the user’s
position and orientation within the sensor’s field of view, provided that the depth image is not
distorted and the sensor can build an accurate skeletal model of the user. Since the discretized
workspace is affixed to the user’s hip, hotspot locations are defined relative to the user’s own
body and the traversal of hotspots is detected properly as long as the skeletal model is built
correctly. As a limitation of the depth sensor, skeletal modeling fails under certain conditions;
e.g. the user turning their back to the sensor or engaging in contortions, the presence of objects
that resemble a human form in the sensor’s field of view, etc. Hotspotizer automatically hides the
skeletal representation and halts gesture recognition when failures occur, and resumes operation
when the sensor provides a skeletal model.

Certain limitations result from the design choice to prioritize leveraging a common infrastructure
for end-users by mapping gestures to keyboard events. This obscures what Hartmann, Abdulla,
et al. (2007) call “association semantics” — i.e. the relationship between commands relayed to
applications from Hotspotizer and the resulting application behaviors — and limits the expressive
power of the gesture authoring paradigm.

A further limitation is that Hotspotizer currently does not support authoring continuous —
or online (Hoste and Signer, 2014) — gestures that affect some variable while they are being
performed (as opposed to offline gestures that execute commands when the gesture is performed
from the beginning to the end). This is not a limitation of the space discretization paradigm; since,
theoretically, smaller portions of a gesture could be assigned to affect continuous variables (albeit
in a quantized manner). Likewise, gestures that involve pointing at or manipulating dynamic user
interface components in third party applications are not supported. This could be overcome by
linking the discretized space model around the user with the virtual space of the user interface.
However, these features require integration with a fully featured programming environment or
language, which is beyond the design goals for this project. Exploring “tighter integration with
application logic” (Hartmann, Abdulla, et al., 2007) to empower software developers is a goal for
future work.

34

Chapter 4

Hotspotizer: Design and Evaluation

Hotspotizer has been developed through a process that utilizes user-centered design tools, in
order to fulfill the needs of end-users. The choice of methods employed for the design work was
influenced by methods used in previously published research on similar software (Ashbrook and
Starner, 2010; Kin et al., 2012; Long, Landay, and Rowe, 1999; Lü and Li, 2012, 2013; Reis
et al., 2012). This section describes the evolution of Hotspotizer; the evaluation of the final
prototype; and insights gained throughout design, development, and deployment. Figure 4.1 depicts
a summary of the design and development processes on a timeline.

4.1 Formative Studies

In the early stages of the design work for a tool to support authoring mid-air gestural interactions,
the motivating question was what to build. The expected outcome from this stage — which
Klemmer (2014) calls “needfinding” — is the identification of the desiderata and the core features
for the gesture authoring interface. To this end, two focus group meetings were conducted with
a representative sample of end-users. The knowledge derived from the focus groups, along with
insights from related work and analysis of related artifacts (described in Section 2.4) informed
subsequent design work. The later stages of development are described in Section 4.3.

4.1.1 Focus Groups

For user interface design, focus groups are a technique that can be used before higher fidelity
design and development work to elicit user wants and needs (Nielsen, 1997). The nature of focus
groups is informal and the results are generally qualitative. Focus groups have limited power,

Figure 4.1 – A summary of the design and development processes.

35

End-User Authoring of Mid-Air Gestural Interactions

Figure 4.2 – Rough sketches, paper prototypes, digital wireframes and interactive prototypes were used to gather
feedback which directed design and development.

precision and accuracy due to methodological issues (Franz, 2011; Smithson, 2000); but they are
recommended as an initial needfinding strategy in the pursuit of open-ended questions (Kitzinger,
1995; Morgan, 1996; Nielsen, 1997).

Nielsen (1997) recommends “exposing users to the most concrete examples of the technology
being discussed” to improve the accuracy of the data gathered during focus groups. Per his
advice, discussions during the focus group meetings were facilitated using various prototypes of
different levels of fidelity. Initially, concepts were produced in the form of rough sketches and paper
prototypes. During a second focus group meeting, a second round of prototypes of varying fidelity
were used, which included video sketches and interactive user interface prototypes built using the
Processing1 programming language. Figure 4.2 shows samples from these preliminary renderings.

Participants

Participants consisted of a group of 10 potential users, aged 22-31 (µ=26), from diverse
backgrounds. While recruited from among students and staff of a single university and not
representative of a wide demographic, they represented the target users of a gesture authoring
tool well. Each had different skills and interests. Among them was an industrial designer, a
semi-professional musician, an electronics engineer, a computer scientist, a museum studies student,
an interaction designer, a psychologists and a legal consultant. All participants were regular users
of desktop computing applications. They were all were self-reportedly familiar with mid-air gestural
interaction in the context of gaming; though none had any familiarity with existing tools for
authoring custom interfaces. Participants’ profiles was appropriate for the aim of the study: to
elicit desiderata for a tool that would enable “nonconsumers” (Christensen and Raynor, 2003; Fried,
2008) by lowering the threshold for building custom gesture interfaces.

1processing.org

36

http://www.processing.org

Hotspotizer: Design and Evaluation

Figure 4.3 – Early designs implemented rudimentary functionality and visually differed from the current user interface.
Screenshots on the top row depict a very early prototype. The bottom row depicts a version with custom graphic
design elements, later abandoned in favor of components native to the operating system.

Procedure

Two meetings were conducted with the participants. Qualitative and semi-structured feedback
formed the basis for the results obtained during these meetings.

During the first meeting, participants were given an introductory presentation on gestural
interfaces, enabling technologies, and applications. Including this presentation, the meeting time
slightly exceeded one hour. After the presentation, we discussed possible applications of gesture
interfaces in participants’ own domains of interest, with a focus on the use of mid-air gestures. Initial
ideas for the design of a gesture authoring tool, in the form of rough sketches and paper prototypes,
were presented to the participants. These initial prototypes were inspired by design considerations
derived from the literature (see Section 2.3) and previous works on tools for authoring mid-air
gestures (see Section 2.4). Feedback collected from participants regarding the initial prototypes
formed the basis for a second round of concepts.

Another round of sketches and prototypes was prepared, some of them higher fidelity; e.g. as a
mock screencast showing the use of various modules in a gesture authoring suite, video sketches
depicting a gesture authoring process based on programming by demonstration (see Section 2.4),
and interactive user interface prototypes realized with Processing. Knowledge derived from the
comments and reactions of the participants to these concepts culminated in the construction of a
prototype application with rudimentary features. This application implemented a simple version of
the space discretization paradigm for authoring mid-air gestures, which was identified during the
course of the second meeting.

Results

Early concepts that were presented to focus group participants included an end-to-end environ-
ment for creating gesture-controlled interactive movies that fused gesture authoring and content
creation in one application; ready-made widgets that pre-implemented gesture control and plugged
into existing development and design environments; and tools to overlay information (such as

37

End-User Authoring of Mid-Air Gestural Interactions

Figure 4.4 – Rough early design sketches and higher fidelity wireframes were used to reflect on the workflow and user
interface components for visualizing and authoring dynamic movements of human limbs.

the distance between two specific joints) onto a visualization of a skeletal model, to complement
textual programming. Discussions on possible applications for custom gesture control revealed
that a modular approach that can interface with a diverse variety of applications is preferable to a
full-blown content creation suite. Moreover, even among users engaged in design or programming
activities, tools used for these purposes varied greatly. This illustrated the value of a standalone
application rather than a tool that generates code in a specific programming language or plugs
into a specific environment.

The idea of creating virtual buttons or hotspots in the space around the user and using them to
define gestures was depicted in the sketches that were shown in the second meeting, as well as an
interactive mockup developed in Processing (see Figure 4.2). Other ideas included an application
that recognized static poses and a graphical language consisting of atomic primitives for composing
gestures. Here, the concept of space discretization was proposed by a participant, an interaction
designer. Upon interacting with the mockup of an interface where free-form areas in space can
be made into gesture-tracking hotspots, she commented that she often makes use of squared
paper when sketching. Instead of defining free-form regions in space, why not divide space into
squares and constrain hotspots to these squares? Further discussion with participants revealed
that this paradigm is grasped more easily than composing with atomic actions or constraints, or
even demonstration. Moreover, using a visualization of the skeletal model and the space around it
allows direct manipulation (Hutchins, Hollan, and Norman, 1985); encapsulates the limitations and
prospects of the design space; capitalizes on proprioception; and can mediate interaction through a
tight feedback loop (Wilson, 2012).

Hotspotizer was developed as an implementation of this space discretization paradigm yielded
by these workshops. The design guidelines derived from Olsen (2007) and Shoemaker et al. (2010)
informed initial prototypes. They were also used as filters that transformed the findings from the
formative studies into a concrete user interface design. The decision to map gestures to key press
events from an emulated keyboard was grounded in Olsen’s (2007) principle for building on an
infrastructure that is common across users and situations. The use of the user’s centroid — rather
than the Kinect sensor itself — as the origin for the grid of hotspots functions as a binding between
personal and extrapersonal space and leverages the user’s sense of proprioception. Adherence to
the remaining three design considerations guided the use of focus groups and user studies as design
tools.

38

Hotspotizer: Design and Evaluation

Figure 4.5 – User interface components for visualizing and manipulating 3-dimensional spatial constraints using front-
and side-views was inspired 3D modeling software and technical drawings for expressing architectural and engineering
designs.

4.2 User Interface Design

The knowledge on user needs, abilities, and preferences uncovered during the formative studies,
along with insights derived from the analysis of gesture authoring software developed previously for
both research and commercial purposes, has been utilized in the construction of the user interface
for Hotspotizer. Design insights from previous works were collected from both previously published
research findings, and from experience in using the artifacts. (Section 2.4 describes these efforts.)

The initial prototype featured only 2-dimensional gesture authoring capability, ignoring the
depth component and tracking motion in the horizontal and vertical dimensions only. No key
combinations were allowed, gestures could only be mapped to single key presses. There are also
significant differences in the functionality and visual design of the user interface between this
preliminary prototype and the final application. Two iterations on the interface design are shown in
Figure 4.3.

Following the initial stripped-down prototype, new features such as manipulating 3-dimensional
spatial constraints and defining movement by using a timeline of keyframes (Figure 4.4) were added
to the application. Each feature underwent an iterative design and development process; beginning
with rough sketches, evolving through prototypes of increasing fidelity, and finally culminating in
the implementation (Figure 4.6).

Beside tools for authoring gestural interactions (see Section 2.4), a wide range of software and
tangible design tools inspired the composition of the user interface. The interaction style for the
main workspace for authoring 3-dimensional constraints using front- and side-views was inspired by
3D modeling software, along with architectural and engineering drawings (Figure 4.5).

The current version of the user interface is discussed in a detailed manner in Chapter 3.

4.3 Summative Studies

To evaluate Hotspotizer in use, two studies were conducted. The first was a study with 5 users
to assess if Hotspotizer conforms to its design rationale. The second was a class workshop with 6
students working in pairs to build interactive prototypes of gestural interfaces. Qualitative results
from these summative studies confirm that Hotspotizer conforms to its design rationale Figure 4.7
summarizes the observations that relate to the design guidelines, and the pertinent details are
discussed below.

39

End-User Authoring of Mid-Air Gestural Interactions

Figure 4.6 – Rough early design sketches and higher fidelity paper prototypes were used to reflect on the workflow
and user interface components.

4.3.1 User Study

Participants

For the user study, five graduate students from a single university were recruited: an industrial
designer, a museum studies student, a computer scientist, a psychologist and an interaction designer.
These were not the same people who participated in the previous workshops. Participants were
given a pre-study questionnaire where, on average, they self-reported a low level of experience with
computer programming (µ=2.1 on a 5-point Likert scale) and a low-medium level of experience
with using mid-air gesture-based interfaces (µ=2.4).

Procedure

Participants were given the task of adapting a non-gestural interface for a computer game to
gesture control. They were provided a PC with a Kinect sensor. The game that was to be adapted
for gesture control was a side-scrolling platformer — this style of game was selected since users
were expected to be fully familiar with the game mechanics and not be distracted from the process
of gesture authoring. The participants were not given specific gestures to implement, but the
game required three commands to operate: left and right for movement, and a jump command.
Participants were required to play through and complete the first level of the game using gestures
at the end of the study. Participants first finished one level of the game using a keyboard; and
they were gave a demonstration of Hotspotizer before they began authoring gestures to control
the game. Participants were not explicitly instructed to think aloud (Boren and Ramey, 2000;
Holzinger, 2005; Jaspers et al., 2004; Nielsen, 1993b), but they nevertheless made comments
during the task, which were recorded along with observations on behavior.

40

Hotspotizer: Design and Evaluation

Figure 4.7 – Qualitative findings
from two studies affirm that
Hotspotizer is in keeping with
our design rationale.

Results

All five participants were able to complete the assignment successfully, within 5-14 minutes
(µ=7.4min) after being given the demonstration and left alone with the interface. Participants
commented that the interface was “easy to use” and understandable.

Participants iterated rapidly over gesture designs — for each gesture, they went through
2-6 (µ=3) cycles of hotspotizing cells on the Editor and moving into the sensor’s range to test
designs in person. Static hand positions were preferred for the left and right commands, while the
jump command inspired diverse gestures including kicking and nodding. A common error across
participants was that they marked areas outside the reach of the arms and the legs.

Semi-structured post-study interviews revealed that users had gained insights about the workings
of skeletal tracking gestural interfaces. Support for full-body postures such as jumping, along
with compositions that involve multiple limbs and grab detection were reported to be desirable as
additional features. This is in line with my vision for future work (see Section 5.3).

4.3.2 Class Workshop

Participants

The workshop was conducted with 6 graduate students who were taking a course titled “Design
Thinking for Interactivity.” Participants worked in groups of two, with the three groups working
the same time on different PCs.

All participants — per course requirements — were familiar with interaction design concepts
and user interface prototyping processes. They self-reported low levels of experience with textual
computer programming and using mid-air gestures to interact with computing applications outside

41

End-User Authoring of Mid-Air Gestural Interactions

Figure 4.8 – User strategies included working in pairs.
One user performs gestures in front of the sensor while
the other marks hotspots that correspond to limb posi-
tions.

of gaming (µ=1.8 and µ=2 on a 5-point Likert scale, respectively). One exception was a participant
who claimed some understanding of software development concepts due to his experience as a
graphic designer working on computer games, but even he did not have any programming experience.
Again, per course requirements and the curriculum, participants were familiar with all of the software
used during the study, except for Hotspotizer.

Procedure

The study began with a 20-minute presentation on how the Hotspotizer interface works.
Participants were then tasked with creating interactive prototypes for three different systems (one
per group) by following a single given use case for each system. The three systems comprised
interactive digital signage for a movie theater, a penalty kick game and a video jukebox for public
use. Participants were to create the visual design for the system’s screens in Microsoft PowerPoint2,
and assign gestures to shortcut keys in PowerPoint to add interactivity. Each group was provided a
Kinect sensor, a PC with Hotspotizer and PowerPoint installed, and a cheat sheet that exposed
keyboard commands available in PowerPoint. A diverse set of interactions is possible in this manner,
including moving between screens, starting and stopping video, adjusting the volume of the system,
displaying versatile animations and automatically triggering timed behavior.

Results

All of the three groups were able to complete their implementations of an interactive prototype,
from scratch, within the 60 minutes allocated for the activity. On average, about one third of this
time was spent ideating and sketching designs, one third on composing visuals in PowerPoint and
one third on authoring gestures with Hotspotizer.

The digital signage prototype was controlled by six hand gestures that involved pointing, swiping,
pushing and pulling. The penalty kick game employed four gestures: kicking a ball towards the left,
the right and the center; and making a large circle with the hand to restart. The video jukebox
prototype was controlled by five gestures that comprised swipes and touching various parts of the
head and the torso.

Participants expressed enjoyment from the process of creating interactivity and working with
new interface technology. “A few days ago I did not even know that [mid-air gesture control] was
possible. Now I just made my own working design,” commented one participant.

Initially, users did struggle to understand the workings of the skeletal tracking. Two groups
attempted to use gestures with minute differences that the Kinect sensor may not distinguish from

2office.microsoft.com/en-us/powerpoint

42

http://office.microsoft.com/en-us/powerpoint/

Hotspotizer: Design and Evaluation

Figure 4.9 – Initially, users preferred gesture designs that
involved small hotspots and unspecified motion. Frames
were added to constrain motion, and hotspots were
enlarge to allow for variations during gesturing. Here,
both panes depict hotspot configurations that may be
used for a “punch” gesture. The configuration on the
right is more conducive to robust recognition because of
its sequentially constrained and spatially relaxed nature,
compared to the rather extremely simplistic design on
the left.

each other, such as touching the eye with one finger versus touching the nose. Through trial and
error, participants revised their gesture designs to match the capabilities of the sensor.

A limitation to the space discretization paradigm was expected to surface: Hotspots configured
for one user could be inappropriate for another user due to differences in body size. After the three
groups completed their projects, they tried out each other’s implementations to see if this was the
case. The only time when gestures from a new user were not recognized was in the case of the
football game, where large leg movements were involved. Differences in the length of the legs
hindered gesture recognition across users. Tuning the gesture design to involve larger hotspot areas
alleviated the problem. When using hand gestures, no issues were apparent.

When working in pairs rather than alone, users adopted a different strategy when editing
gestures: A single user would mark hotspots using the static on-screen silhouette of a human body
as a reference and then test using the interactive representation. Working in pairs, one of the users
preferred to stand in front of the sensor and perform gestures, while the other watched the moving
representation on the screen and used it as a reference when marking hotspots (Figure 4.8). To
allow a single user to enjoy the advantages of using the interactive skeletal model for authoring,
future work can implement the ability to infer hotspots from demonstration, along with voice
control to interact with the program from a distance (see Section 5.3).

Participants were interviewed after the study, where they suggested that while editing, being
able to see where hotspots belonging to previously authored gestures reside could be beneficial.
This visualization was later added into the Editor module in a later version of Hotspotizer.

4.3.3 Generalizable Observations

During the summative studies, observations that are relevant for the design of mid-air gestural
interfaces in general were encountered.

Users who self-reported little experience with mid-air gestural interfaces (a vast majority among
participants) tended to be unaware of the limitations regarding the sensor’s field of view. This
manifested as an initial tendency to stand too close to the sensor and perform gestures in areas
outside the sensor’s field of view. Within minutes, users adjusted to become aware of the boundaries
of the interaction area. To promote users’ awareness of the depth sensor’s field of view, the depth
map provided by the sensor could be displayed on screen, as opposed to displaying the user’s
skeleton alone.

As they tested and used their own gesture-controlled designs, users tended to keep the
Hotspotizer interface open and utilize the on-screen representation of the human skeleton. This
confirms that the requirements for including a tight feedback loop and a representation for reporting
the user’s actions within space are justified. Based on this observation, I can recommend that
interfaces based on mid-air gestures include a representation of the tracked skeleton(s).

In general, when designing gestures, users preferred to start with static poses or specify only
the end point of a gesture trajectory, utilizing only one frame to implement their designs. In simple
cases, such as in controlling the side-scrolling platformer, these designs did suffice. However, as

43

End-User Authoring of Mid-Air Gestural Interactions

the quantity and complexity of gestures in the interface increases, this approach results in a high
number false positives in gesture recognition due to intermediate movements intersecting hotspots.
Users, due to inexperience, did not anticipate this. Through trial and error, gesture designs were
revised and conflicts were resolved, by adding frames and authoring movement further constrain
designs. Often, gesture designs resulted in false negatives due to spatially overconstrained designs
that involved small volumes, requiring precise and accurate performance of gestures. Participants,
through trial and error, revised their designs by enlarging hotspotized volumes to allow for some
degree of ambiguity when performing gestures. The general tendency among users was to initially
design gestures that were temporally or sequentially underconstrained and spatially overconstrained.
Designs that minimize conflicts by introducing sequential constraints (i.e. more frames) while
allowing for some flexibility by relaxing spatial constraints (i.e. more hotspots) were observed to
be more conducive to robust recognition (see Figure 4.9).

4.3.4 Discussion

Olsen (2007) reasons that conventional structured usability evaluation methods are not appro-
priate for novel user interfaces and design tools in particular; since they violate three important
assumptions of usability testing:

• “Walk up and use.” The first assumption is that the system being evaluated must be operable
with minimal training. This holds for tools intended for a very wide non-expert user base —
e.g. home appliances — and for tools that target a population with “shared expertise” — e.g.
doctors or teachers. User interface design, Olsen argues, requires “specialized expertise” which
will vary highly among participants recruited for a usability test, even among those belonging
to the same profession.

• The standardized task assumption. “A task that is suitable for a usability experiment must
have low inherent variability so that any variance can be assigned to the differing techniques
being tested, not to variations in approach to the task or user expertise.” (Olsen, 2007) In
other words, software built to support complex tasks involving a high number of steps and
many solutions cannot be evaluated through conventional usability approaches. The design of
gestural interactions is one such task.

• Scale. Due to economic and psychological issues — e.g. participants’ attention spans —
usability tests must be completed within 1-2 hours. The return on investment — in terms of
statistical significance — for running lengthy and multiple sessions is low.

Olsen recommends design considerations and evaluation criteria for novel user interface tools,
which were described in Section 2.3 and used extensively to inform the design process for Hotspotizer.
The user studies described in this chapter, while inspired by conventional usability tests in terms of
the procedures followed, were conducted with a focus on obtaining qualitative results. Also in line
with the approach recommended by Nielsen (2000, 2011), and Nielsen and Landauer (1993); I used
usability-inspired procedures to uncover bugs and implementation errors in the system, elicit user
strategies, inspire new features, evaluate the use and misuse of existing features, and determine
if users can make sense of the user interface and the task in general. These efforts have proven
valuable in informing design and development. In short, while I agree with Olsen that conventional
usability testing with a quantitative focus is not a productive approach for the for novel interfaces;
but usability methods could be adapted in these cases towards comparatively informal procedures
that deliver qualitative feedback from real users. This feedback is highly valuable for user interface
design.

44

Chapter 5

Conclusion and Future Work

This thesis described efforts in developing a software tool for authoring mid-air gestures to
support the activities of end-users. For this purpose, through guidelines derived from the literature
and a user-centered design process; desiderata, design considerations, and evaluation strategies were
uncovered. These led to the development of a user interface paradigm based on space discretization
for visualizing and declaratively manipulating mid-air gesture information. This paradigm was
implemented in Hotspotizer, a standalone Windows application that maps mid-air gestures to
commands issued from an emulated keyboard. Hotspotizer was evaluated through a user study
and class workshop.

Findings from the evaluation sessions verify that Hotspotizer observes its design rationale and
supports gesture authoring for end-users. Using Hotspotizer, gestural interactions were implemented
by users who did not have the skills to use textual programming tools. Usage strategies and
users’ choices for gesture designs implied that users understood the domain expertise embedded in
the interface and leveraged their sense of personal space and proprioception in interacting with
the system. Hotspotizer was used to control other programs on a PC, making use of a common
infrastructure.

Parts of the research described in this thesis have culminated in two academic publications.
One is a paper presented at the Workshop on Engineering Gestures for Multimodal Interfaces
(EGMI 2014), part of the sixth ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2014) (Baytaş, Yemez, and Özcan, 2014b). The other is a forthcoming paper to be
presented at and published in the proceedings of the 8th Nordic Conference on Human-Computer
Interaction (NordiCHI ’14) (Baytaş, Yemez, and Özcan, 2014a).

5.1 Revisiting the Research Questions

The research described in this thesis principally sought to answer how end-users’ authoring of
gross mid-air gestures for skeletal tracking interfaces be supported with a software tool. One way
to enable end-users’ authoring of gross mid-air gestures for skeletal tracking interfaces has been
found to be with a software tool that implements a user interface paradigm for visually representing
and manipulating gesture information by splitting motion into discrete keyframes and using spatial
constraints confined to a discrete compartments in a 3-dimensional array. This method has been
observed to be understandable and accessible for end-users designing gestures for current perceptual
sensors. Of course, as user interface technologies change over time, the benefits and drawbacks
associated with this approach and other methods of authoring gestures may have to be reassessed.

A secondary research question was specifying the desiderata and design considerations that
would pertain to mid-air gesture authoring software for end-users. The necessary and desirable
features for the gesture authoring tool were determined through formative studies that comprised

45

End-User Authoring of Mid-Air Gestural Interactions

Figure 5.1 – An early stage design sketch for a new
feature: adjustable brush size may support overcom-
ing users’ tendency to spatially overconstrain gesture
designs.

workshops with focus groups where feedback was gathered using prototypes of varying levels of
fidelity. The production of the initial prototypes, as well as the formulation of the findings from
these studies were directed by design guidelines derived from previous research. Nonetheless, while
the processes I employed seem to have produced good results; as Zimmerman, Forlizzi, and Evenson
(2007) would concur, different desiderata and design considerations may also have led to a valid
solution.

Finally, another secondary research question regarded the evaluation of the tool. Whether
or not the final artifact observed its design rationale and fulfilled its purpose as an enabler for
end-users and a rapid prototyping tool for designers was evaluated through summative studies
comprising a user study with 5 participants and a classroom workshop with 6 design students.
All participants successfully completed the given tasks, confirming that the design fulfills the
aforementioned criteria. Qualitative findings from these studies inform subsequent iterations on
the software and highlight opportunities for future work. However, due to issues set forth by Olsen
(2007) and discussed in Section 2.3, structured usability tests that yield comparable quantitative
results have not been conducted with Hotspotizer. This exposes an opportunity for future research
on the evaluation of novel intelligent interfaces from a design perspective.

5.2 Revisiting the Hypothesis and Contributions

Revisiting my hypothesis for the accomplishments of a successfully designed tool for authoring
skeletal tracking gestures; evaluations demonstrate that my design accomplishes the following:

• Hotspotizer enables end-users with no experience in textual programming and/or gestural
interfaces to introduce gesture control to computing applications that serve their own goals.
Results from a summative user study with 5 participants and a classroom workshop with
6 participants, described in Section 4.3, confirm this: Participants without prior experience
in developing gesture-based interfaces have successfully completed gesture authoring tasks
and demonstrated an understanding of related concepts in usage strategies and post-study
interviews. These results are based on qualitative findings. As I stated previously, per Olsen’s
(2007) recommendation, Hotspotizer has not been subjected to usability tests that would
lead to structured, quantitative, comparable results. This highlights an opportunity for future
research on methods the structured evaluation of novel tools.

• The application provides developers and designers of gestural interfaces with a rapid prototyping
tool that can be used to experientially evaluate designs. It has been used precisely for this
purpose at a workshop with 6 participants in the context of a design-oriented classroom
(Section 4.3). Design students have implemented prototypes of gesture-based interfaces using
Hotspotizer as part of their workflow. As perceptual interactions become pervasive, future
research can focus on getting feedback from professional designers and programmers with
experience with these technologies.

46

Conclusion and Future Work

Figure 5.2 – An early stage design sketch for a new
feature: inferring hotspots from demonstration while
controlling segmentation via a speech interface.

As expected, Hotspotizer fulfills the criteria proposed by Zimmerman, Forlizzi, and Evenson
(2007) for the evaluation of research-through-design artifacts (Frayling, 1993). The design and
development process employs methods that have been selected rationally and documented in this
manuscript. Various topics have been integrated in a novel fashion to create an artifact with
the qualities of an invention. The resulting artifact, Hotspotizer, demonstrates relevance. It is
situated within a real, current context; while supporting a shift towards a justifiably preferable
state. Finally, the work is extensible, as it enables the future exploitation of the knowledge derived
from it. Extensible insights gained during design, development and evaluation are documented in
this thesis, and the software has been made freely available for use.

The contributions of this work, as expected, are as follows:

1. The primary contribution from this work is, Hotspotizer, a software application that encompasses
an end-to-end solution to authoring mid-air gestures for skeletal tracking input devices. The
application accomplishes its previously stated goals of enabling end-users and supporting the
activities of designers, and constitutes an authentic contribution as an artifact of research
through design. The latest stable release of Hotspotizer’s can be obtained online as a free
download, for use under the MIT license.

2. Insights that may inform future interaction design research and practice have been derived
from the design, development, deployment and evaluation of the gesture authoring software.
Principally, it has been found that the discretization of both spatial and temporal aspects of
gestures contributes to an appropriate user interface paradigm for representing and manipulating
gesture information.

5.3 Future Work

The research described in this thesis instigates a number of opportunities for future work. These
opportunities can be examined in two broad categories. First, Hotspotizer can be expanded and
improved by addressing a number of technical and design challenges that have surfaced during the
research described in this thesis. Second, the space discretization paradigm for authoring gestures
can be evaluated, refined and adapted for use with a wider variety of input devices.

5.3.1 Expanding Hotspotizer

One strand of future work may deal with expanding the expressive power of Hotspotizer by
implementing new features in a user-friendly manner.

47

End-User Authoring of Mid-Air Gestural Interactions

While it did not come up in the user studies, I find that the current visualization style may
become convoluted as gesture collections grow in size. Exploring alternative ways of visualizing
many gestures within one workspace is on our agenda for future versions of the software.

Currently, (as I discussed in Section 3.2) Hotspotizer does not directly support “online” (REF)
— i.e. continuous — gesturing, since it adopts a traditional event-based model for detecting and
responding to gestures. As such, support for manipulative and deictic gestures, which are common
across gesture-based user interfaces, is severely limited. As Myers, Hudson, and Pausch (2000)
recommend, ideally, the “continuous nature of the input [should] be preserved.” This, however,
requires “tighter integration with application logic” (Hartmann, Abdulla, et al., 2007) through
interfacing with a textual programming language or third-party applications integrating support for
continuous input streams. Unfortunately, the first option oversteps the scope of the Hotspotizer
project (See Section 1.3). The second option can be explored for a limited set of third-party
applications.

Among other features are negative hotspots that mark space that should not be engaged when
gesturing (i.e. negation (Hoste and Signer, 2014)), a movable frame of reference for the workspace
to enable gesturing around peripheral body parts, resizable hotspot boundaries, adjustable timeout,
compositions that involve multiple limbs, and recognition of hand movements. As implied by user
studies, the capability to infer hotspots from demonstration, and speech recognition to control the
application from a distance are features that may further accelerate user workflows (Figure5.2).

Incorporating classifier-coupled gesture recognition (Hoste, Rooms, and Signer, 2013) could
serve to alleviate recognizer errors (Myers, Hudson, and Pausch, 2000), and, when needed, to
decouple overlapping gesture definitions.

Studies have revealed a tendency among users to initially overconstrain gesture designs in terms
of spatial restrictions; i.e. users tend to begin with gesture designs that utilize too few hotspots
(see Section 4.3). To steer away users from this tendency, the size of the cursor — or “brush” —
for marking hotspots could be made adjustable; with the default size being set to mark a larger
area and the finer brush made accessible as an option (Figure 5.1).

5.3.2 Space Discretization

A second strand of future work may focus on evaluating and refining the space discretization
paradigm.

The usability and expressive power of the user interface paradigm is independent from its
implementation. However, due to various factors that constrain its scope, this work does not
evaluate the paradigm separately. In order to refine the user interface paradigm and support
implementations in different contexts, user studies can be conducted to evaluate the difficulty of
understanding and manipulating gestures visualized as hotspots in discretized space. Kin et al.
(2012) have conducted a study that examines the speed and accuracy of users’ understanding
various representations for touch gestures. A similar study that examines representations of gross
gestures may inform future work on gesture authoring and documentation.

The space discretization paradigm may also have value for authoring gestures enabled using
technologies other than skeletal tracking. I encourage designers, developers, and researchers to
adopt the paradigm for use in different contexts.

48

Bibliography

Alon, J. et al. (2009). “A Unified Framework for Gesture Recognition and Spatiotemporal Gesture
Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.9
(cit. on p. 25).

Ashbrook, D. and T. Starner (2010). “MAGIC: A Motion Gesture Design Tool”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM (cit. on pp. 5, 15, 20,
21, 35).

Ballendat, T., N. Marquardt, and S. Greenberg (2010). “Proxemic Interaction: Designing for a
Proximity and Orientation-aware Environment”. In: ACM International Conference on Interactive
Tabletops and Surfaces. ACM (cit. on p. 5).

Baytaş, M. A., Y. Yemez, and O. Özcan (2014a). “Hotspotizer: End-User Authoring of Mid-Air
Gestural Interactions”. In: Proceedings of the 8th Nordic Conference on Human-Computer
Interaction: Fun, Fast, Foundational. ACM (cit. on p. 45).

— (2014b). “User Interface Paradigms for Visually Authoring Mid-Air Gestures: A Survey and
a Provocation ”. In: Proceedings of the Workshop on Engineering Gestures for Multimodal
Interfaces. Ed. by F. Echthler et al. Sun SITE Central Europe (CEUR) (cit. on p. 45).

Blackwell, A. F. (2004). “End-user Developers at Home”. In: Communications of the ACM 47.9
(cit. on p. 11).

— (2006). “Psychological Issues in End-User Programming”. In: End User Development. Ed. by
H. Lieberman, F. Paternò, and V. Wulf. Vol. 9. Springer Netherlands, pp. 9–30 (cit. on p. 11).

Bolt, R. A. (1980). “”Put-that-there”: Voice and Gesture at the Graphics Interface”. In: Proceedings
of the 7th Annual Conference on Computer Graphics and Interactive Techniques. ACM (cit. on
p. 9).

Boren, T. and J. Ramey (2000). “Thinking aloud: reconciling theory and practice”. In: IEEE
Transactions on Professional Communication 43.3 (cit. on p. 40).

Brooks, F. P. (1995). The Mythical Man-Month: Essays On Software Engineering. Pearson Education
(cit. on p. 3).

Burnett, M., C. Cook, and G. Rothermel (2004). “End-user Software Engineering”. In: Communi-
cations of the ACM 47.9 (cit. on p. 11).

Cairns, P. et al. (2014). “The Influence of Controllers on Immersion in Mobile Games”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (cit. on
p. 1).

Cao, X. and R. Balakrishnan (2003). “VisionWand: Interaction Techniques for Large Displays Using
a Passive Wand Tracked in 3D”. In: Proceedings of the 16th Annual ACM Symposium on User
Interface Software and Technology. ACM (cit. on p. 10).

Christensen, C. and M. Raynor (2003). “Value Networks and the Impetus to Innovate”. In: The
Innovator’s Solution: Creating and Sustaining Successful Growth. Harvard Business School
Press. Chap. 3 (cit. on p. 36).

Crowley, J. L., J. Coutaz, and F. Bérard (2000). “Perceptual User Interfaces: Things That See”. In:
Communications of the ACM 43.3 (cit. on pp. 1, 5).

49

End-User Authoring of Mid-Air Gestural Interactions

Dourish, P. (2004). Where the Action Is: The Foundations of Embodied Interaction. MIT press
(cit. on p. 2).

Echtler, F. and A. Butz (2012). “GISpL: Gestures Made Easy”. In: Proceedings of the Sixth
International Conference on Tangible, Embedded and Embodied Interaction. ACM (cit. on
p. 19).

Edwards, W. (2010). Motor Learning and Control: From Theory to Practice. Cengage Learning
(cit. on p. 5).

Eisenstein, J. and R. Davis (2006). “Visual and Linguistic Information in Gesture Classification”.
In: ACM SIGGRAPH 2006 Courses. ACM (cit. on p. 8).

Elmezain, M. et al. (2010). “Robust methods for hand gesture spotting and recognition using
Hidden Markov Models and Conditional Random Fields”. In: Proceedings of the 2010 IEEE
International Symposium on Signal Processing and Information Technology (cit. on p. 25).

Fogtmann, M. H., J. Fritsch, and K. J. Kortbek (2008). “Kinesthetic Interaction: Revealing the
Bodily Potential in Interaction Design”. In: Proceedings of the 20th Australasian Conference
on Computer-Human Interaction: Designing for Habitus and Habitat. ACM (cit. on p. 10).

Follmer, S. et al. (2013). “inFORM: Dynamic Physical Affordances and Constraints Through Shape
and Object Actuation”. In: Proceedings of the 26th Annual ACM Symposium on User Interface
Software and Technology. ACM (cit. on p. 5).

Francese, R., I. Passero, and G. Tortora (2012). “Wiimote and Kinect: Gestural User Interfaces Add
a Natural Third Dimension to HCI”. In: Proceedings of the International Working Conference
on Advanced Visual Interfaces. ACM (cit. on p. 1).

Franz, N. K. (2011). “The Unfocused Focus Group: Benefit or Bane?.” In: Qualitative Report 16.5
(cit. on p. 36).

Frayling, C. (1993). “Research in Art and Design”. In: Royal College of Art Research Papers 1.1
(cit. on pp. 4, 47).

Fried, J. (2008). Why we disagree with Don Norman. https://signalvnoise.com/posts/904-
why-we-disagree-with-don-norman (cit. on p. 36).

Gallo, L. (2013). “A Study on the Degrees of Freedom in Touchless Interaction”. In: SIGGRAPH
Asia 2013 Technical Briefs. ACM (cit. on p. 1).

Gavrila, D. M. (1999). “The Visual Analysis of Human Movement: A Survey”. In: Computer Vision
and Image Understanding 73.1 (cit. on p. 1).

Germonprez, M., D. Hovorka, and F. Collopy (2007). “A Theory of Tailorable Technology Design”.
In: Journal of the Association for Information Systems 8.6 (cit. on p. 11).

Girshick, R. et al. (2011). “Efficient Regression of General-activity Human Poses from Depth
Images”. In: Proceedings of the 2011 International Conference on Computer Vision. IEEE
Computer Society (cit. on p. 5).

Haibach, P. S., G. Reid, and D. H. Collier (2011). Motor Learning and Development. Human
Kinetics (cit. on p. 5).

Hartmann, B., L. Abdulla, et al. (2007). “Authoring Sensor-based Interactions by Demonstration
with Direct Manipulation and Pattern Recognition”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM (cit. on pp. 2, 15, 21, 26, 34, 48).

Hartmann, B., S. R. Klemmer, et al. (2006). “Reflective Physical Prototyping Through Integrated
Design, Test, and Analysis”. In: Proceedings of the 19th Annual ACM Symposium on User
Interface Software and Technology. ACM (cit. on p. 2).

Holloway, S. and C. Julien (2010). “The Case for End-user Programming of Ubiquitous Computing
Environments”. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. ACM (cit. on p. 11).

Holzinger, A. (2005). “Usability Engineering Methods for Software Developers”. In: Communications
of the ACM 48.1 (cit. on p. 40).

50

https://signalvnoise.com/posts/904-why-we-disagree-with-don-norman
https://signalvnoise.com/posts/904-why-we-disagree-with-don-norman

Bibliography

Hoste, L., B. D. Rooms, and B. Signer (2013). “Declarative Gesture Spotting using Inferred
and Refined Control Points”. In: Proceedings of the 2nd International Conference on Pattern
Recognition Applications and Methods (cit. on pp. 17, 21, 25, 26, 48).

Hoste, L. and B. Signer (2014). “Criteria, Challenges and Opportunities for Gesture Programming
Languages”. In: Proceedings of the Workshop on Engineering Gestures for Multimodal Interfaces.
Sun SITE Central Europe (CEUR) (cit. on pp. 2, 15, 34, 48).

Huang, J.-D. (2011). “Kinerehab: A Kinect-based System for Physical Rehabilitation: A Pilot Study
for Young Adults with Motor Disabilities”. In: The Proceedings of the 13th International ACM
SIGACCESS Conference on Computers and Accessibility. ACM (cit. on p. 1).

Hutchins, E. L., J. D. Hollan, and D. A. Norman (1985). “Direct Manipulation Interfaces”. In:
Human Computer Interaction 1.4 (cit. on p. 38).

Jaspers, M. W. et al. (2004). “The think aloud method: a guide to user interface design”. In:
International Journal of Medical Informatics 73.11–12 (cit. on p. 40).

Julià, C. F., N. Earnshaw, and S. Jordà (2013). “GestureAgents: An Agent-based Framework
for Concurrent Multi-task Multi-user Interaction”. In: Proceedings of the 7th International
Conference on Tangible, Embedded and Embodied Interaction. ACM (cit. on p. 19).

Kammer, D. et al. (2010). “Towards a Formalization of Multi-touch Gestures”. In: ACM International
Conference on Interactive Tabletops and Surfaces. ACM (cit. on p. 19).

Kang, H., C. W. Lee, and K. Jung (2004). “Recognition-based gesture spotting in video games”.
In: Pattern Recognition Letters 25.15 (cit. on p. 25).

Kapur, A. et al. (2005). “Gesture-Based Affective Computing on Motion Capture Data”. In:
Proceedings of the First International Conference on Affective Computing and Intelligent
Interaction. Springer-Verlag (cit. on p. 5).

Karam, M. and m. c. schraefel (2005). A Taxonomy of Gestures in Human Computer Interactions.
Technical Report. University of Southampton (cit. on p. 9).

Kela, J. et al. (2006). “Accelerometer-based Gesture Control for a Design Environment”. In:
Personal and Ubiquitous Computing 10.5 (cit. on p. 5).

Kettebekov, S. (2004). “Exploiting Prosodic Structuring of Coverbal Gesticulation”. In: Proceedings
of the 6th International Conference on Multimodal Interfaces. ACM (cit. on p. 8).

Khandkar, S. H. and F. Maurer (2010). “A Domain Specific Language to Define Gestures for
Multi-touch Applications”. In: Proceedings of the 10th Workshop on Domain-Specific Modeling.
ACM (cit. on p. 19).

Kim, J.-W. and T.-J. Nam (2013). “EventHurdle: Supporting Designers’ Exploratory Interaction
Prototyping with Gesture-based Sensors”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM (cit. on pp. 2, 17, 21).

Kin, K. et al. (2012). “Proton++: A Customizable Declarative Multitouch Framework”. In:
Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology.
ACM (cit. on pp. 35, 48).

Kitzinger, J. (1995). “Qualitative research: introducing focus groups”. In: British Medical Journal
311.7000 (cit. on p. 36).

Klemmer, S. (2014). Human-Computer Interaction. Online course on Coursera. Retrieved 22 August
2014 from https://www.coursera.org/course/hciucsd (cit. on p. 35).

Ko, A. J., R. Abraham, et al. (2011). “The State of the Art in End-user Software Engineering”. In:
ACM Computing Surveys 43.3 (cit. on pp. 2, 3, 11).

Ko, A. J., B. A. Myers, and H. H. Aung (2004). “Six Learning Barriers in End-User Programming
Systems”. In: Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric
Computing. IEEE Computer Society (cit. on p. 11).

51

End-User Authoring of Mid-Air Gestural Interactions

Kopp, S., P. Tepper, and J. Cassell (2004). “Towards Integrated Microplanning of Language and
Iconic Gesture for Multimodal Output”. In: Proceedings of the 6th International Conference on
Multimodal Interfaces. ACM (cit. on p. 10).

Krum, D. M. et al. (2002). “Speech and Gesture Multimodal Control of a Whole Earth 3D
Visualization Environment”. In: Proceedings of the Symposium on Data Visualisation 2002.
Eurographics Association (cit. on p. 10).

Kurtenbach, G. and E. A. Hulteen (1990). “Gestures in Human-Computer Communication”. In:
The Art of Human-Computer Interface Design. Ed. by B. Laurel. Addison Wesley, pp. 309–317
(cit. on p. 4).

Lamsweerde, A. v. (2000). “Formal Specification: A Roadmap”. In: Proceedings of the Conference
on The Future of Software Engineering. ACM (cit. on p. 19).

Lange, B. et al. (2011). “Development and Evaluation of Low Cost Game-Based Balance Reha-
bilitation Tool Using the Microsoft Kinect Sensor”. In: Engineering in Medicine and Biology
Society,EMBC, 2011 Annual International Conference of the IEEE (cit. on p. 11).

Lee, H.-K. and J. Kim (1999). “An HMM-based threshold model approach for gesture recognition”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 21.10 (cit. on p. 25).

Lenman, S., L. Bretzner, and B. Thuresson (2002). “Using Marking Menus to Develop Command
Sets for Computer Vision Based Hand Gesture Interfaces”. In: Proceedings of the Second Nordic
Conference on Human-computer Interaction. ACM (cit. on p. 10).

Lewis, C. and G. Olson (1987). “Empirical Studies of Programmers: Second Workshop”. In: ed. by
G. M. Olson, S. Sheppard, and E. Soloway. Ablex Publishing Corp. Chap. Can Principles of
Cognition Lower the Barriers to Programming?, pp. 248–263 (cit. on p. 11).

Lim, Y.-K., E. Stolterman, and J. Tenenberg (2008). “The Anatomy of Prototypes: Prototypes As
Filters, Prototypes As Manifestations of Design Ideas”. In: ACM Transactions on Computer-
Human Interaction 15.2 (cit. on p. 2).

Lindell, R. (2014). “Crafting Interaction: The Epistemology of Modern Programming”. In: Personal
and Ubiquitous Computing 18.3 (cit. on p. 2).

Liu, J. et al. (2009). “uWave: Accelerometer-based Personalized Gesture Recognition and Its
Applications”. In: Pervasive and Mobile Computing 5.6 (cit. on p. 5).

Long Jr., A. C., J. A. Landay, and L. A. Rowe (1999). “Implications for a Gesture Design Tool”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM
(cit. on p. 35).

Lozano-Quilis, J. A. et al. (2013). “Virtual Reality System for Multiple Sclerosis Rehabilitation
Using KINECT”. In: Proceedings of the 7th International Conference on Pervasive Computing
Technologies for Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (cit. on p. 1).

Lü, H. and Y. Li (2012). “Gesture Coder: A Tool for Programming Multi-touch Gestures by
Demonstration”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM (cit. on pp. 1, 35).

— (2013). “Gesture Studio: Authoring Multi-touch Interactions Through Demonstration and
Declaration”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM (cit. on pp. 4, 35).

Malgireddy, M. et al. (2010). “A Framework for Hand Gesture Recognition and Spotting Using Sub-
gesture Modeling”. In: Proceedings of the 20th International Conference on Pattern Recognition
(cit. on p. 25).

McConnell, S. (2009). Code Complete. Microsoft Press (cit. on p. 3).
McNeill, D. (1992). Hand and Mind: What Gestures Reveal about Thought. University of Chicago

Press (cit. on p. 8).
— (2008). Gesture and Thought. University of Chicago Press (cit. on pp. 8–10).

52

Bibliography

Moeslund, T. B. and E. Granum (2001). “A Survey of Computer Vision-Based Human Motion
Capture”. In: Computer Vision and Image Understanding 81.3 (cit. on pp. 1, 8).

Moeslund, T. B., A. Hilton, and V. Krüger (2006). “A Survey of Advances in Vision-based Human
Motion Capture and Analysis”. In: Computer Vision and Image Understanding 104.2 (cit. on
pp. 1, 8).

Morgan, D. L. (1996). “Focus Groups”. In: Annual Review of Sociology 22.1996 (cit. on p. 36).
Myers, B. A., A. J. Ko, and M. M. Burnett (2006). “Invited Research Overview: End-user

Programming”. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems.
ACM (cit. on pp. 10, 11).

Myers, B., S. E. Hudson, and R. Pausch (2000). “Past, Present, and Future of User Interface
Software Tools”. In: ACM Transactions on Computer-Human Interaction 7.1 (cit. on pp. 2, 14,
48).

Nielsen, J. (1993a). “Noncommand User Interfaces”. In: Communications of the ACM 36.4 (cit. on
p. 5).

— (1993b). Usability Engineering. Morgan Kaufmann (cit. on p. 40).
— (1997). The Use and Misuse of Focus Groups. http://www.nngroup.com/articles/focus-

groups/ (cit. on pp. 35, 36).
— (2000). Why You Only Need to Test with 5 Users. http://www.nngroup.com/articles/why-

you-only-need-to-test-with-5-users/ (cit. on p. 44).
— (2011). Parallel & Iterative Design Competitive Testing H̄igh Usability. http://www.nngroup.

com/articles/parallel-and-iterative-design/ (cit. on p. 44).
Nielsen, J. and T. K. Landauer (1993). “A Mathematical Model of the Finding of Usability

Problems”. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors
in Computing Systems. ACM (cit. on p. 44).

Norman, D. A. (1986). “Cognitive Engineering”. In: User Centered System Design. Ed. by D. A.
Norman and S. W. Draper. CRC Press. Chap. 3, pp. 31–61 (cit. on pp. 2, 12).

— (1993). Things that make us smart: Defending human attributes in the age of the machine.
Basic Books (cit. on p. 13).

— (2002). The Design of Everyday Things. Basic Books (cit. on pp. 2, 12).
Olsen Jr., D. R. (2007). “Evaluating User Interface Systems Research”. In: Proceedings of the 20th

Annual ACM Symposium on User Interface Software and Technology. ACM (cit. on pp. 12, 13,
38, 44, 46).

Pane, J. F., B. A. Myers, and C. A. Ratanamahatana (2001). “Studying the Language and
Structure in Non-programmers’ Solutions to Programming Problems”. In: International Journal
of Human-Computer Studies 54.2 (cit. on p. 11).

Paternò, F. (2013). “End User Development: Survey of an Emerging Field for Empowering People”.
In: ISRN Software Engineering 2013 (cit. on p. 11).

Pea, R. D. and D. M. Kurland (1987). “Mirrors of Minds: Patterns of Experience in Educational
Computing”. In: ed. by R. D. Pea and K. Sheingold. Ablex Publishing Corp. Chap. On the
Cognitive Effects of Learning Computer Programming, pp. 147–177 (cit. on p. 11).

Porta, M. (2002). “Vision-based user interfaces: methods and applications”. In: International
Journal of Human-Computer Studies 57.1 (cit. on p. 1).

Quek, F. K. H. (1996). “Unencumbered Gestural Interaction”. In: IEEE MultiMedia 3.4 (cit. on
p. 8).

Quek, F. et al. (2002). “Multimodal Human Discourse: Gesture and Speech”. In: ACM Transactions
on Computer-Human Interaction 9.3 (cit. on pp. 8, 9).

Reis, B. et al. (2012). “Increasing Kinect Application Development Productivity by an Enhanced
Hardware Abstraction”. In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM (cit. on p. 35).

53

 http://www.nngroup.com/articles/focus-groups/
 http://www.nngroup.com/articles/focus-groups/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/parallel-and-iterative-design/
http://www.nngroup.com/articles/parallel-and-iterative-design/

End-User Authoring of Mid-Air Gestural Interactions

Rizzo, A. S. et al. (2011). “Virtual Reality and Interactive Digital Game Technology: New Tools to
Address Obesity and Diabetes”. In: Journal of Diabetes Science and Technology 5.2 (cit. on
p. 11).

Rose, R. (1992). “Discriminant wordspotting techniques for rejecting non-vocabulary utterances in
unconstrained speech”. In: Proceedings of the 1992 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Vol. 2 (cit. on p. 25).

Scaffidi, C., M. Shaw, and B. Myers (2005). “Estimating the Numbers of End Users and End
User Programmers”. In: Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing. IEEE Computer Society (cit. on p. 11).

Scholliers, C. et al. (2011). “Midas: A Declarative Multi-touch Interaction Framework”. In: Proceed-
ings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction.
ACM (cit. on p. 19).

Schön, D. A. (1984). The Reflective Practitioner: How Professionals Think in Action. Basic Books
(cit. on p. 2).

Shoemaker, G. et al. (2010). “Whole Body Large Wall Display Interfaces”. In: CHI ’10 Extended
Abstracts on Human Factors in Computing Systems. ACM (cit. on pp. 13, 24, 30, 38).

Shotton, J., A. Fitzgibbon, et al. (2011). “Real-time Human Pose Recognition in Parts from Single
Depth Images”. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society (cit. on p. 5).

Shotton, J. (2012). “Conditional Regression Forests for Human Pose Estimation”. In: Proceedings
of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society (cit. on p. 5).

Shotton, J., R. Girshick, et al. (2013). “Efficient Human Pose Estimation from Single Depth
Images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.12 (cit. on
p. 5).

Silva, V. H. Z. and H. H. A. Arriaga (2003). “Evaluation of a Visual Interface for Gesticulation
Recognition”. In: Proceedings of the Latin American Conference on Human-computer Interaction.
ACM (cit. on p. 10).

Simmons, S. et al. (2013). “Prescription Software for Recovery and Rehabilitation Using Mi-
crosoft Kinect”. In: Proceedings of the 7th International Conference on Pervasive Computing
Technologies for Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (cit. on p. 1).

Smithson, J. (2000). “Using and analysing focus groups: limitations and possibilities”. In: Interna-
tional Journal of Social Research Methodology 3.2 (cit. on p. 36).

Sommerville, I. (2010). “Dependability and security specification”. In: Software Engineering (9th
Edition). Addison Wesley, pp. 309–340 (cit. on p. 19).

Spano, L. D. et al. (2013). “GestIT: A Declarative and Compositional Framework for Multiplatform
Gesture Definition”. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM (cit. on p. 19).

Suma, E. A. et al. (2013). “Adapting User Interfaces for Gestural Interaction with the Flexible
Action and Articulated Skeleton Toolkit”. In: Computers & Graphics 37.3 (cit. on pp. 19–21).

Tang, J. K. T. and T. Igarashi (2013). “CUBOD: A Customized Body Gesture Design Tool for End
Users”. In: Proceedings of the 27th International BCS Human Computer Interaction Conference.
British Computer Society (cit. on pp. 1, 18).

Turk, M. and G. Robertson (2000). “Perceptual User Interfaces”. In: Communications of the ACM
43.3 (cit. on pp. 1, 5, 26).

Walter, R., G. Bailly, and J. Müller (2013). “StrikeAPose: Revealing Mid-air Gestures on Public
Displays”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM (cit. on p. 4).

54

Bibliography

Warren, K. et al. (2013). “Bending the Rules: Bend Gesture Classification for Flexible Displays”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM
(cit. on p. 4).

Wen, R. et al. (2013). “In Situ Spatial AR Surgical Planning Using Projector-Kinect System”. In:
Proceedings of the Fourth Symposium on Information and Communication Technology. ACM
(cit. on p. 1).

Wexelblat, A. (1995). “An Approach to Natural Gesture in Virtual Environments”. In: ACM
Transactions on Computer-Human Interaction 2.3 (cit. on p. 10).

— (1998). “Research Challenges in Gesture: Open Issues and Unsolved Problems”. In: Proceedings
of the International Gesture Workshop on Gesture and Sign Language in Human-Computer
Interaction. Springer-Verlag (cit. on p. 8).

Wilson, A. D. (2012). “Sensor- and Recognition-Based Input for Interaction”. In: The Human-
Computer Interaction Handbook. Ed. by J. A. Jacko. CRC Press. Chap. 7, pp. 133–156 (cit. on
p. 38).

Wilson, A. and S. Shafer (2003). “XWand: UI for Intelligent Spaces”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM (cit. on p. 10).

Wulf, V. and M. Jarke (2004). “The Economics of End-user Development”. In: Communications of
the ACM 47.9 (cit. on p. 11).

Zamborlin, B. et al. (2014). “Fluid Gesture Interaction Design: Applications of Continuous Recog-
nition for the Design of Modern Gestural Interfaces”. In: ACM Transactions on Interactive
Intelligent Systems 3.4 (cit. on pp. 16, 20, 21, 28).

Zhang, H. and Y. Li (2014). “GestKeyboard: Enabling Gesture-based Interaction on Ordinary
Physical Keyboard”. In: Proceedings of the 32Nd Annual ACM Conference on Human Factors
in Computing Systems. ACM (cit. on p. 4).

Zimmerman, J., J. Forlizzi, and S. Evenson (2007). “Research Through Design As a Method for
Interaction Design Research in HCI”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM (cit. on pp. 4, 46, 47).

55

Appendix A

Attributions

• Figure 1.1 by James Pfaff / CC BY-SA 3.0

• Figure 1.2 by Sergey Galyonkin / CC BY-SA 2.0

• Figure 3.1 contains an image retrieved from Microsoft’s Kinect for Windows Human Interface
Guidelines v1.8.0

• Figure 4.3 contains graphic design work by A. Ayça Ünlüer

57

http://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/2.0/

Appendix B

Hotspotizer: End-User Authoring of
Mid-Air Gestural Interactions

This chapter reproduces the following publication:

Mehmet Aydın Baytaş, Yücel Yemez, and Oğuzhan Özcan. 2014. Hotspotizer: End-
User Authoring of Mid-Air Gestural Interactions. In Proceedings of the 8th Nordic
Conference on Human-Computer Interaction (NordiCHI ’14).

59

Hotspotizer:
End-User Authoring of Mid-Air Gestural Interactions
Mehmet Aydın Baytaş

Design Lab
Koç University, 34450 Istanbul

mbaytas@ku.edu.tr

Yücel Yemez
Department of Computer

Engineering
Koç University, 34450 Istanbul

yyemez@ku.edu.tr

Oğuzhan Özcan
Design Lab

Koç University, 34450 Istanbul
oozcan@ku.edu.tr

ABSTRACT
Drawing from a user-centered design process and guidelines
derived from the literature, we developed a paradigm based
on space discretization for declaratively authoring mid-air
gestures and implemented it in Hotspotizer, an end-to-end
toolkit for mapping custom gestures to keyboard commands.
Our implementation empowers diverse user populations – in-
cluding end-users without domain expertise – to develop cus-
tom gestural interfaces within minutes, for use with arbitrary
applications.

Author Keywords
Hotspotizer; gestural interaction; gesture authoring; visual
programming; end-user development; interface prototyping.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques;
H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
Input devices that sense mid-air gestures through depth imag-
ing and skeletal tracking have become widely available in
the recent years. Diverse populations of users – software
developers, interaction designers, artists [14], students [27],
hobbyists [17], researchers and end-users at home [19] – are
served by the possibilities offered by full-body mid-air gestu-
ral interaction. This diversity has led one such device, the Mi-
crosoft Kinect, to claim a world record in 2011 as the “fastest
selling consumer electronics device” [29]. Despite diverse
and numerous users and the popularity of the hardware, there
are few commercial software products that leverage mid-air
gestures outside of gaming, and sales of Kinect-based games
have not caught up with the success of the device [6]. This
trend has been linked to design and user experience issues
with gesture-controlled software; issues which stem from dif-
ficulties in design and development [24]. Chief among these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

NordiCHI ’14, October 26 - 30 2014, Helsinki, Finland
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2542-4/14/10 $15.00.
http://dx.doi.org/10.1145/2639189.2639255

difficulties is that for both adept programmers and compar-
atively non-technical users, the domain-specific knowledge,
time and effort required to implement custom gestural inter-
actions is prohibitive.

The diverse populations of users come with a variety of situa-
tions in which they may want to create custom gestural inter-
faces. These include rapid prototyping of gesture-based in-
teractive applications [8], developing interactive art and per-
formances [21], experiential learning [27], gaming [20] and
adapting non-gestural interfaces for gesture control [25]. Al-
though user populations and their aims in using gesture sens-
ing may vary, implementing custom gestural interfaces boils
down to two key tasks: (1) visualizing, creating and manip-
ulating gesture information and (2) mapping the recognition
of the desired gestures to events in the computer.

These two tasks constitute what we refer to as authoring ges-
tures. Depending on the aims and skills of a particular user
in a particular situation, there will naturally be other tasks in-
volved in developing a custom gestural interface. However,
gesture authoring is the key activity that is common across
users developing gestural interfaces in a variety of situations.
Supporting gesture authoring enables many user populations
to use custom gestural interfaces for many purposes.

In the absence of authoring tools, gestural interface develop-
ment is accomplished using textual programming tools pro-
vided by vendors of gesture-sensing hardware1,2, and third
parties3. Textual programming creates a significant gulf of
execution – a chasm between user goals and actions taken
within a system to achieve those goals [15] – for end users,
since it introduces additional tasks such as setting up a pro-
gramming environment. Moreover, for both end-users and
professional programmers, textual programming embodies a
significant gulf of evaluation - a gap between a system’s out-
put and the users’s expectations and intentions [15] - during
gesture authoring, since it does not allow for rapid testing for
whether the authored gesture specification conforms to the
design that the user has in mind.

This need identified above prompts the following research
question: How can we support authoring mid-air gestures
for end-users with a software tool? We began with this broad
question and refined our vision for the software tool through
1microsoft.com/en-us/kinectforwindowsdev
2softkinetic.com
3kinecttoolbox.codeplex.com

End-User Authoring of Mid-Air Gestural Interactions

60

Figure 1. Hotspotizer consists of three modules: (1) The Manager lists all of the gestures in the current collection and allows creating, saving and
loading collections as well as adding, removing and editing individual gestures. (2) The Editor is the main workspace where gestures are authored. (3)
The Visualizer provides interactive feedback on available and recognized gestures.

reviewing previous work on user interface design tools and
conducting formative studies with potential users. As a re-
sult, we developed Hotspotizer: an end-to-end, plug-and-play
application for declaratively authoring custom gestures using
a purely graphical interface and mapping them to commands
issued from an emulated keyboard. (See Figure 1 for screen-
shots from the application.)

For visualizing and manipulating gesture information, we de-
signed and implemented a user interface paradigm based on
space discretization. We designed the interface to be as sim-
ple as possible to use while supporting a diverse set of ges-
tures. The paradigm renders the space around the user’s body
as a 3-dimensional array of discrete cubic cells, which can
be marked as hotspots that register human movement when a
tracked limb passes through them (hotspotized). Using this
paradigm, a wide variety of gestures can be represented as
sets of hotspots around the user’s body. Via a timeline of
keyframes, dynamic movements can be authored in this man-
ner. Our implementation leverages the user’s sense of propri-
oception by defining the array of cells relative to the user’s
center of gravity rather than the gesture sensor.

Hotspotizer is available online as a free download4, released
under the MIT License5.

DESIGN AND EVALUATION OF AUTHORING TOOLS
Olsen argues that user interface design tools, particularly
those that deal with unconventional interaction techniques
(such as mid-air gesture sensing), do not lend themselves to
conventional software evaluation methods [18]. One reason
for this is that such tools require domain-specific expertise,
which – by the nature of novel tools – no user population pos-
sesses. Another reason is that these tools support complex
tasks with high inter-user variability in terms of the users’
mental models of the tasks. “Meaningful comparisons be-
tween two tools for a realistically complex problem are con-
founded in so many ways as to make statistical comparisons
more fantasy than fact.” [18] We derived the following four
guidelines for the design of a gesture authoring tool from the
framework proposed by Olsen for the evaluation of user in-
terface toolkits:
4designlab.ku.edu.tr/design-thinking-research-group/hotspotizer
5opensource.org/licenses/MIT

(1) Reduce development time. A good authoring tool should
be flexible to allow for the rapid implementation of design
changes. This can be encouraged reducing the number of
choices that have to be made to express a design.

(2) Encapsulate and simplify expertise. Considerable tech-
nical know-how is required to design and develop applica-
tions for emerging technologies. A good design tool liberates
the designer from the need for prior knowledge, yet commu-
nicates the capabilities and limitations of the technology to
nudge the designer towards feasible designs.

(3) Lower skill barriers. Empowering new populations of
users to envision and implement designs “expands the set of
people who can effectively create new applications.” [18]

(4) Make use of a common infrastructure. It is difficult to get
users to adopt a new standard. As much as possible, author-
ing tools should hook up to existing and widely adopted tools
and practices, and complement existing workflows; upgrad-
ing rather than negating the common denominator.

Employing a paradigm for expressing design choices that re-
flects the problem being solved and embodies the constraints
of the design space [16] serves all four the guidelines above.

Shoemaker, Tsukitani, Kitamura and Booth propose design
guidelines for body-centric interaction with large displays
[23]. Two of these generalize to influence the design of an
authoring tool for mid-air gestures.

The first is that (5) gestural interaction at a distance should be
“mediated through a representation that binds personal and
extrapersonal space.” A means for communicating the con-
straints and opportunities of the interaction space to the user
is recommended for mid-air gestural interfaces. This holds
for design tools that target these interactions.

Second, Shoemaker et al. recommend that (6) the users’
sense of proprioception be leveraged by allowing some op-
erations to be performed in the user’s personal space, without
requiring visual feedback. In terms of authoring interactions,
this guideline calls for encouraging gesture designs that cap-
italize on proprioception through the nature of the authoring
paradigm.

Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions

61

Figure 2. The workflow of an end-user using Hotspotizer to adapt an application for gesture control.

These six guidelines, derived from previous work, form the
basis of our design rationale for the Hotspotizer interface.

RELATED WORK
The design of Hotspotizer has been motivated by research
on end-user development, aspiring to build “systems that are
easy to develop” [11] for users who undertake software de-
velopment not as an end in itself but as a means towards a
goal in some other domain [10]. Hotspotizer’s features have
been influenced by prior research on gesture authoring tools.
Historically, gesture authoring by end-users has been stud-
ied in mobile contexts, for applications targeting tablets and
phones equipped with touchscreens [9, 12, 13, 22] and iner-
tial sensors [1, 3]. More recently, researchers have explored a
variety of methods for authoring mid-air gestures on devices
based on inertial sensors and depth sensors. Broadly, these
methods come in two flavors: Authoring gestures by dec-
laration involves the use of a high-level syntax to describe
gesture information. Authoring gestures by demonstration is
done by recording one or more examples and employing ma-
chine learning techniques to train a recognizer. These two
techniques interact with a variety of user interface paradigms
to visualize and manipulate mid-air gesture information [2].
From this body of work, below, we discuss four approaches to
gesture authoring that have influenced the features of Hotspo-
tizer.

For declaratively authoring mid-air gestures for skeletal
tracking, the Flexible Action and Articulated Skeleton Toolkit
(FAAST) [25] provides atomic action primitives that can be
used to compose rules in plain English such as “right hand
above right shoulder by at least 20 cm.” These constraints
specify the position of, the speed of, or the angle between
limbs, as well as general body orientation. FAAST controls
other applications on the computer via mapping gestures to

keyboard and mouse events. While describing gestures using
atomic rules affords significant expressive power, this repre-
sentation does not embody a visualization of the constraints
embedded in the design space and thus may not serve to
bridge the gulf of execution that obstructs end-users [16]. We
go beyond FAAST in terms of visually representing the de-
sign space to accelerate authoring, encapsulate expertise and
further enable non-expert users.

EventHurdle [8] leverages a visual markup language based on
hurdles that define gesture trajectories for the declarative au-
thoring of gestures for touchscreens, for inertial sensors and
in mid-air. While the hurdle paradigm is versatile and effec-
tive as a representation of the design space of surface ges-
tures, it has not been demonstrated to be particularly effective
in describing fully 3-dimensional trajectories. The tool is im-
plemented as a plug-in for Adobe Flash6, which poses a bar-
rier for users who have not invested in the software. Hotspo-
tizer builds on the idea of using a purely visual syntax for
authoring gestures.

A collection of commercial7,8 and research [26] efforts im-
plement demonstration for authoring skeletal tracking ges-
tures. While demonstration seems to be straightforward so-
lution, it requires the temporal segmentation of intended ges-
tures from intermediate movements to be done manually, of-
ten by editing on a timeline of keyframes. For end-users with-
out familiarity with machine learning concepts, the task of
composing good training samples is not trivial. Moreover,
this method cannot be used if the depth sensing device is
not available during development (e.g. due to malfunction or

6adobe.com/products/flash
7gesturepak.com
8gesturestudio.ca

End-User Authoring of Mid-Air Gestural Interactions

62

devices being shared between users). Thus, the current ver-
sion of Hotspotizer does not implement demonstration as a
method to author gestures. Yet, influenced by demonstration-
based tools, Hotspotizer uses a timeline of keyframes to rep-
resent dynamic movements, extending the idea into the con-
text of declarative authoring.

Finally, Hoste, De Rooms and Signer [4] describe an ap-
proach for representing gesture information using spatial
boundaries around sequenced control points. The paradigm
has been designed primarily for human readability and ma-
nipulability. The sizes and placement of these boundaries
can be adjusted to vary the strictness of gesture paths, and
programming constructs like negation or additional temporal
constraints can be introduced for rich expressions. An imple-
mentation of this representation for gesture authoring is not
available and its use for 3D gestures is not documented. The
paradigm implemented in Hotspotizer is functionally similar
to the idea of using control points to capture gesture trajec-
tories. We develop the idea into a concrete user interface by
adopting cubic boundaries for control points in discretized 3D
space.

USING HOTSPOTIZER
To describe how mid-air gestures can be specified and
mapped to keyboard events using Hotspotizer, we will con-
sider the case of an end-user, Ali, who would like to adapt a
document viewing application for gesture control. (Ali may
require this functionality in settings where touching an in-
put device to navigate inside a document is undesirable; e.g.
when performing surgery on a patient or repairs on oily en-
gine parts.) Figure 2 depicts this workflow, and the numbers
in parentheses throughout this section relate to the numbered
panes in the figure.

Ali wants to be able to cycle up and down between the pages
of a document, as well as zoom in and out, using mid-air
gestures. These actions may correspond to different keyboard
commands depending on the document viewing application;
we will assume that, respectively, the Page Up, Page Down
keys and the Ctrl + Plus and Ctrl + Minus key combinations
are used. To cycle between pages, the left hand will be swiped
in air as if turning the pages of a real, albeit large book. To
zoom in and out, the right hand will perform beckoning and
pushing motions. Figure 3 shows one way of describing these
two gestures in terms of hotspots (for brevity, the page up and
zoom out gestures are not shown).

Creating and Editing Gestures
Hotspotizer greets Ali with the Manager module containing
empty gesture collection upon launch. Ali creates a new ges-
ture in the collection, launching the Editor module (1). Here,
Ali assigns a name for the gesture for easy recall, specifies the
Page Down key to be triggered when the gesture is performed,
and confirms that the loop toggle button is not checked – oth-
erwise performing the gesture and holding the tracked limb
over the hotspots in the last frame continues to hold down the
keyboard key assigned to the gesture (2).

Ali moves on to the main workspace where they use the front-
and side-views over a representation of the tracked user to

Figure 3. Next page and zoom in gestures to control a document viewing
application and the keyboard functionality that they map to. The dia-
grams show, respectively, hotspot arrangements for a swipe gesture and
a beckoning motion.

mark the positions of the hotspots for the first frame. Initially,
all of the cells in the side view are disabled and grayed out.
Marking cells on the front view enables the corresponding
rows on the side view, whereupon Ali can mark the vertical
and depth-wise position of their hotspots. Once hotspots are
specified in all three dimensions through these two grids, they
appear on the 3D viewport on the right.

Once Ali completes marking the first frame’s hotspots, they
proceed to add another frame using the button next to the
timeline below, and then another (3). Finally, after marking
the second and third frames’ hotspots, Ali selects the left hand
as the limb that will be used in performing this gesture.

After saving the first gesture into the collection, Ali is taken
back to the Manager module where they can add the remain-
ing gestures and see the existing gestures to review, edit or
delete them (5). Once they are satisfied with the gesture col-
lection they created, Ali can save the collection into a file for
later use (6).

Testing Designs and Controlling External Applications
At any time when using the Editor module, if they have a
Kinect sensor connected to the computer, Ali may step in

Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions

63

front of the sensor and see a rendering of the skeletal model
of their body on the front, side and 3D viewports (4). This
feature can be used to rapidly test and tune hotspot locations
at design time.

Testing over the whole gesture collection is available through
the Visualizer module (7). This module depicts a list of the
gestures in the current collection and all of their hotspots on
3D, front and side viewports. Each gesture is shown in a dif-
ferent color. On the 3D viewport, transparency implies the
order of hotspots. Hotspots glow when the tracked limb en-
ters them in the correct order.

The Visualizer module also embeds the keyboard simulator.
Launching the visualizer attaches a virtual keyboard to the
system, which relays associated key events upon the success-
ful performance of gestures. The visualization and the emu-
lator continue to work when Hotspotizer is not in focus or is
minimized.

SPACE DISCRETIZATION
Hotspotizer implements a paradigm based on space dis-
cretization for visualizing and manipulating gesture informa-
tion. In the current implementation, we partition the space
around the skeletal model tracked by the Kinect sensor into
cubes that are 15cm on each side.

The total workspace is a large cube that is 3m on each side.
While this is much larger than both the horizontal and vertical
reach of many people; this is by design, to accommodates un-
usually tall users. The centroid of the cube that comprises the
workspace is affixed to the “hip center” joint returned by the
Kinect sensor. By specifying and tracking joint movements
relative to the user’s skeletal model rather than the sensor’s
position in real space, we aimed to leverage the user’s sense
of proprioception [23] in gesturing.

To describe gestures, the cubic cells within the workspace
may be marked to become hotspots – or hotspotized – that
register when a specified joint passes through them. Joints
available for tracking are the hands, feet, elbows, knees and
the head. Hotspotizing is accomplished by using front and
side views in the Editor workspace. The front view is used to
specify the horizontal and vertical positions of the hotspots.
The side view is used to confirm the vertical and specify
depth-wise positions. The design of this interaction style was
inspired by architectural and engineering drawings.

In order to enable the authoring of dynamic movements
along with static poses, we split movements into discrete
keyframes. A timeline in the Editor module shows the
keyframes and allows adding, removing, reordering and edit-
ing actions. Hotspots within subsequent frames do not need
to be adjacent, but the frames need to be traversed in the cor-
rect order and within a certain time limit for a gesture to be
recognized. The inter-frame timeout in Hotspotizer is 500ms.
If more than 500ms elapses between a tracked limb engaging
hotspots of subsequent frames, the gesture is not recognized.

Gestures designed using space discretization are depen-
dent on location, scale and orientation with respect to the
workspace, which is affixed to the user’s hip or center of grav-

ity. However, the paradigm affords a degree of spatial flexi-
bility; hotspotizing a larger volume of cells allows for relaxed
gesture boundaries.

This paradigm itself supports a versatile array of features.
The size of hotspots could be made adjustable, even adaptive;
to allow for fine gesturing close to the user’s body and more
relaxed gesture boundaries at a distance. The total workspace
volume could be made adjustable. The workspace could be
defined in reference to limbs other than the center or in refer-
ence to the environment; supporting whole-body movements,
a larger interaction space and rich proprioceptive interactions.
The inter-frame timeout could be made adjustable to allow
designs that exploit velocity and acceleration in gesturing.
Hotspotizer does not implement these features. The design of
the interface focuses on rapid development, simplification of
expertise and lowering of skill barriers. Through pre-adjusted
parameters for space discretization and timing, we reduce the
complexity of the gesture authoring process and encapsulate
the capabilities of the sensor. Future work may investigate
empowering expert users with adjustability while maintain-
ing the value added for non-experts

IMPLEMENTATION DETAILS
Hotspotizer was written in the C# programming language9,
using the Microsoft .NET Framework 4.510 and the Win-
dows Presentation Foundation (WPF)11 subsystem therein to
render the user interface. We used the open source pack-
ages Windows Input Simulator12 for keyboard emulation,
Json.NET13 for reading and writing gesture data to files and
Helix 3D Toolkit14 for 3D graphics. To run, Hotspotizer re-
quires the Microsoft Kinect Runtime15, and, if used with an
Xbox Kinect sensor, the Kinect Software Development Kit
(SDK)16.

We took care to make the process of installing and running
Hotspotizer as straightforward as possible, in order to accom-
modate diverse user populations. We packaged it as a Win-
dows application that can be conventionally installed, unin-
stalled and launched from the Start Menu. Upon launch,
Hotspotizer checks for its external requirements, the Kinect
Runtime and SDK. If the requirements are unavailable, it
prompts the user to install them, providing links to the web
pages where they can be downloaded.

DESIGN AND EVALUATION
Hotspotizer has been developed through a user-centered de-
sign process, in order to fulfill the needs of diverse user pop-
ulations. This section describes the evolution of Hotspo-
tizer, the evaluation of the final prototype, and insights gained
throughout development and deployment.

9msdn.microsoft.com/library/kx37x362
10microsoft.com/net
11msdn.microsoft.com/library/ms754130
12inputsimulator.codeplex.com
13json.codeplex.com
14helixtoolkit.codeplex.com
15microsoft.com/download/details.aspx?id=40277
16microsoft.com/download/details.aspx?id=40278

End-User Authoring of Mid-Air Gestural Interactions

64

Figure 4. Rough sketches, paper prototypes and mockups were used to
gather feedback which directed design and development.

Formative Studies
In the early stages of our attempt at designing a tool to support
authoring mid-air gestural interactions, the motivating ques-
tion was what to build. Design efforts were guided largely by
qualitative and semi-structured feedback from users and in-
spiration from related work. We produced many concepts in
the form of rough sketches and paper prototypes. Concepts
at this early stage included an end-to-end environment for
creating gesture-controlled interactive movies that fused ges-
ture authoring and content creation in one application; ready-
made widgets that pre-implemented gesture control, to be
plugged into existing development and design environments;
and tools to overlay information (such as the distance between
two specific joints) onto a visualization of a skeletal model,
to complement textual programming.

The rough sketches, paper prototypes and mockups have been
presented at a workshop to a group of 10 potential users, aged
22-31 (µ=26), from diverse backgrounds. While recruited
from among students and staff of a single university and not
representative of a wide demographic, the participants repre-
sented the target users of Hotspotizer well. Each had different
skills and interests. Among them was an industrial designer,
a semi-professional musician, an electronics engineer, a com-
puter scientist, a museum studies student, an interaction de-
signer, a psychologists and a legal consultant. After a presen-
tation on current design tools for mid-air gestural interfaces
and our concepts, we collected feedback and made note of
new ideas. Although all of the users were self-reportedly fa-
miliar with mid-air gestural interaction in the context of gam-
ing, none had any familiarity with existing tools for authoring
custom interfaces. Discussions on possible applications for
custom gesture control revealed that a modular approach that
can interface with other applications is preferable to a full-
blown content creation suite. Moreover, even among users
engaged in design or programming activities, tools used for
these purposes varied greatly. This illustrated the value of a
standalone application rather than a tool that generates code
in a specific programming language or plugs into a specific
environment.

We prepared another round of sketches and prototypes, some
of them higher fidelity, such as a mock screencast showing

the use of various modules in a gesture authoring suite. The
idea of creating virtual buttons or hotspots in the space around
the user and using them to define gestures was depicted in
the sketches, as well as an interactive mockup developed in
Processing17 (see Figure 4). Other ideas included an appli-
cation that recognized static poses and a graphical language
consisting of atomic primitives for composing gestures. We
presented these at a second workshop with the same 10 par-
ticipants. Here, the concept of space discretization was pro-
posed by a participant, an interaction designer. Upon inter-
acting with the mockup of an interface where free-form ar-
eas in space can be made into gesture-tracking hotspots, she
commented that she often makes use of squared paper when
sketching. Instead of defining free-form regions in space,
why not divide space into squares and constrain hotspots to
these squares? Further discussion with participants revealed
that this paradigm is grasped more easily than composing
with atomic actions or constraints, or even demonstration.
Moreover, using a visualization of the skeletal model and the
space around it allows direct manipulation [7]; encapsulates
the limitations and prospects of the design space; capitalizes
on proprioception; and mediates interaction through a tight
feedback loop [28].

We developed Hotspotizer as an implementation of the space
discretization paradigm yielded by these workshops. We ob-
served the design guidelines derived from Olsen [18] and
Shoemaker et al. [23]. The decision to map gestures to
key press events from an emulated keyboard was grounded
in the principle of building on an infrastructure that is com-
mon across users and situations.

To evaluate Hotspotizer in use, we conducted two studies.
The first was a study with 5 users to assess if Hotspotizer con-
forms to its design rationale. The second was a class work-
shop with 6 students working in pairs to build interactive pro-
totypes of gestural interfaces. Qualitative results from these
summative studies confirm that Hotspotizer conforms to our
design rationale (see Figure 5 for a summary of the observa-
tions that relate to the design guidelines).

User Study
For the user study we recruited five graduate students: an
industrial designer, a museum studies student, a computer
scientist, a psychologist and an interaction designer. These
were not the same people who participated in the previous
workshops. Participants were given a pre-study questionnaire
where, on average, they self-reported a low level of experi-
ence with computer programming (µ=2.1 on a 5-point Likert
scale) and a low-medium level of experience with using mid-
air gesture-based interfaces (µ=2.4).

Participants were given the task of adapting a non-gestural
interface on computer game for gesture control. They were
provided a PC with a Kinect sensor. The game was a side-
scrolling platformer. We selected this style of game since we
expected users to be fully familiar with the mechanics and
not be distracted from the process of gesture authoring. We
did not specify what gestures to use, but the game required

17processing.org

Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions

65

Figure 5. Qualitative findings from two studies affirm that Hotspotizer
is in keeping with our design rationale.

three commands to operate: left and right for movement, and
a jump command. We required participants to play through
and complete the first level of the game using gestures. We
let participants finish the level using a keyboard and gave a
demonstration of Hotspotizer before we had them design ges-
tures.

All five participants were able to complete the assignment
successfully, within 5-14 minutes (µ=7.4min) after being
given the demonstration and left alone with the interface.
Unanimously, the participants commented that the interface
was “easy to use” and understandable. We observed that
users iterated rapidly over gesture designs - for each gesture,
participants went through 2-6 (µ=3) cycles of hotspotizing
cells on the Editor and moving into the sensor’s range to test
designs. Static hand positions were preferred for the left and
right commands, while the jump command inspired diverse
gestures including kicking and nodding. A common error was
that they marked areas outside the reach of the arms and the
legs.

Semi-structured post-study interviews revealed that users had
gained insights about the workings of skeletal tracking gestu-
ral interfaces. Support for full-body postures such as jump-
ing, along with compositions that involve multiple limbs and
grab detection were reported to be desirable as additional fea-
tures. This is in line with our vision for future work.

Class Workshop
We conducted a workshop with 6 graduate students taking
a course titled “Design Thinking for Interactivity.” Partici-
pants worked in groups of two, at the same time. They were
given a 20-minute presentation on how the interface works;
and tasked with creating interactive prototypes for three dif-

ferent systems (one per group), following a single given use
case for each system. The three systems comprised interac-
tive digital signage for a movie theater, a penalty kick game
and a video jukebox for public use. Participants were to cre-
ate the visual design for the system’s screens in PowerPoint18,
and assign gestures to shortcut keys in PowerPoint to add in-
teractivity. Each group was provided a Kinect sensor, a PC
with Hotspotizer and PowerPoint installed, and a cheat sheet
that exposed keyboard commands available in PowerPoint. A
diverse set of interactions is possible in this manner, including
moving between screens, starting and stopping video, adjust-
ing the volume of the system, displaying versatile animations
and automatically triggering timed behavior.

All three groups were able to complete the implementation of
an interactive prototype, from scratch, within the 60 minutes
allocated for the activity. On average, about one third of this
time was spent ideating and sketching designs, one third on
composing visuals in PowerPoint and one third on authoring
gestures with Hotspotizer. The penalty kick game employed
four gestures: kicking a ball towards the left, the right and the
center; and making a large circle with the hand to restart. The
digital signage prototype was controlled by six hand gestures
that involved pointing, swiping, pushing and pulling. The
video jukebox prototype was controlled by five gestures that
comprised swipes and touching various parts of the head and
the torso.

Participants had self-reported low levels of experience with
computer programming and using mid-air gestural interfaces
(µ=1.8 and µ=2 on a 5-point Likert scale, respectively). They
expressed enjoyment from the process of creating interactiv-
ity and working with new interface technology. “A few days
ago I did not even know that [mid-air gesture control] was
possible. Now I just made my own working design,” com-
mented one participant.

Initially, users did struggle to understand the workings of the
skeletal tracking. Two groups attempted to use gestures with
fine differences that the Kinect sensor may not distinguish
from each other, such as touching the eye with one finger
versus touching the nose. Through trial and error, participants
revised their gesture designs to match the capabilities of the
sensor.

We expected a limitation to the space discretization paradigm
to surface: Hotspots configured for one user could be inap-
propriate for another user due to differences in body size. Af-
ter the three groups completed their projects, we had them
try out each other’s implementations to see if this was the
case. We observed that the only time when gestures from a
new user were not recognized was in the case of the football
game, where large foot movements were involved. Differ-
ences in leg size hindered gesture recognition across users.
Tuning the gesture design to involve larger hotspot areas al-
leviated the problem. When using hand gestures, no issues
were apparent.

We observed that when working in pairs rather than alone,
users adopted a different strategy when editing gestures: A

18office.microsoft.com/en-us/powerpoint

End-User Authoring of Mid-Air Gestural Interactions

66

Figure 6. User strategies included working in pairs. One user performs
gestures in front of the sensor while the other marks hotspots that cor-
respond to limb positions.

single user would mark hotspots using the static on-screen
silhouette of a human body as a reference and then test us-
ing the interactive representation. Working in pairs, one of
the users preferred to stand in front of the sensor and perform
gestures, while the other watched the interactive representa-
tion on the screen and used it as a reference when marking
hotspots (Figure 6). To allow a single user to enjoy the ad-
vantages of using the interactive skeletal model for authoring,
future work can implement the ability to infer hotspots from
demonstration, along with voice control to interact with the
program from a distance. We interviewed participants after
the study, where they suggested that while editing, being able
to see where hotspots belonging to previously authored ges-
tures reside could be beneficial. This visualization was later
added into the Editor module.

Generalizable Observations
During evaluation, we came across observations that are rel-
evant for the design of mid-air gestural interfaces in general.

We noticed that users who self-reported little experience with
mid-air gestural interfaces (a vast majority among partici-
pants) tended to be unaware of the limitations regarding the
sensor’s field of view. This manifested as an initial tendency
to stand too close to the sensor and perform gestures in areas
outside the sensor’s field of view. Within minutes, users ad-
justed to become aware of the boundaries of the interaction
area. To promote users’ awareness of the depth sensor’s field
of view, the depth map provided by the sensor could be dis-
played on screen, as opposed to displaying the user’s skeleton
alone.

We observed that as they test and use their own gesture-
controlled designs, users tend to keep Hotspotizer interface
open and utilize the on-screen representation of the human
skeleton. This confirms that our requirements for including
a tight feedback loop and a representation for reporting the
user’s actions within space are justified. Based on this obser-

Figure 7. Initially, users preferred gesture designs that involved small
hotspots and unspecified motion. Frames were added to constrain mo-
tion, and hotspots were enlarge to allow for variations during gesturing.
Here, both panes depict hotspot configurations that may be used for a
“punch” gesture. The configuration on the right is more conducive to
robust recognition because of its sequentially constrained and spatially
relaxed nature, compared to the rather extremely simplistic design on
the left.

vation, we recommend interfaces based on mid-air gestures
to include a representation of the tracked skeleton(s).

In general, when designing gestures, users preferred to start
with static poses or specify only the end point of a gesture tra-
jectory, utilizing only one frame to implement their designs.
In simple cases, such as in controlling the side-scrolling plat-
former, these designs did suffice. However, as the quantity
and complexity of gestures in the interface increases, this
approach results in a high number false positives in ges-
ture recognition due to intermediate movements intersect-
ing hotspots. Users, due to inexperience, did not anticipate
this. Through trial and error, gesture designs were revised
and conflicts were resolved, by adding frames and authoring
movement further constrain designs. Often, gesture designs
resulted in false negatives due to spatially overconstrained
designs that involved small volumes, requiring precise and
accurate performance of gestures. Participants, through trial
and error, revised their designs by enlarging hotspotized vol-
umes to allow for some degree of ambiguity when perform-
ing gestures. The general tendency among users was to ini-
tially design gestures that were temporally or sequentially un-
derconstrained and spatially overconstrained. Designs that
minimize conflicts by introducing sequential constraints (i.e.
more frames) while allowing for some flexibility by relaxing
spatial constraints (i.e. more hotspots) were observed to be
more conducive to robust recognition (see Figure 7).

DISCUSSION
The space discretization paradigm and its current implemen-
tation in Hotspotizer feature strengths and limitations that
manifest as side effects of design choices.

One strength of the implementation is that gesture recognition
is not influenced by the user’s position and orientation within
the sensor’s field of view, provided that the depth image is not
distorted and the sensor can build an accurate skeletal model
of the user. Since the discretized workspace is affixed to the
user’s hip, hotspot locations are defined relative to the user’s
own body and the traversal of hotspots is detected properly
as long as the skeletal model is built correctly. As a limita-
tion of the depth sensor, skeletal modeling fails under certain

Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions

67

conditions; e.g. the user turning their back to the sensor or en-
gaging in contortions, the presence of objects that resemble a
human form in the sensor’s field of view, etc. Hotspotizer au-
tomatically hides the skeletal representation and halts gesture
recognition when failures occur, and resumes operation when
the sensor provides a skeletal model.

Certain limitations result from the design choice to prioritize
leveraging a common infrastructure for end-users by mapping
gestures to keyboard events. This obscures “association se-
mantics” [3] (i.e. the same keyboard command may trigger
different behaviors in different applications) and limits the
expressive power of the gesture authoring paradigm. Hotspo-
tizer currently does not support authoring continuous - or on-
line [5] - gestures that affect some variable while they are
being performed (as opposed to offline gestures that execute
commands when the gesture is performed from the beginning
to the end). This is not a limitation of the space discretiza-
tion paradigm; since, theoretically, smaller portions of a ges-
ture could be assigned to affect continuous variables (albeit
in a quantized manner). Likewise, gestures involving point-
ing at or manipulating dynamic interface objects are not sup-
ported. This could be overcome by linking the discretized
space model around the user with the virtual space of the user
interface. However, these features require integration with a
development environment, which is beyond the initial design
goals. Exploring “tighter integration with application logic”
[3] to empower software developers is a goal for future work.

CONCLUSION AND FUTURE WORK
We described our efforts in developing a software tool for au-
thoring mid-air gestures to support the activities of diverse
user populations. For this purpose, through guidelines de-
rived from the literature and a user-centered design process,
we developed a paradigm based on space discretization for
visualizing and declaratively manipulating mid-air gesture in-
formation. We implemented this paradigm in Hotspotizer, a
standalone Windows application that maps mid-air gestures
to commands issued from an emulated keyboard. We evalu-
ated Hotspotizer through a user study and class workshop.

Our findings from the evaluation sessions verify that Hotspo-
tizer observes our design rationale and supports gesture au-
thoring for end-users. We observed that gestural interactions
were implemented within minutes by users who did not have
the skills to use textual programming tools. User strategies
and design choices implied that users understood the domain
expertise embedded in the interface and leveraged their sense
of personal space and proprioception in interacting with the
system. Hotspotizer was used to control other programs on a
PC, making use of a common infrastructure.

While it did not come up in the user studies, we find that the
current visualization style may become convoluted as gesture
collections grow in size. Exploring alternative ways of visu-
alizing many gestures within one workspace is on our agenda
for future versions of the software.

Future work may deal with implementing features that en-
hance the capacity for gestural expression. Among these are
negative hotspots that mark space that should not be engaged

when gesturing (i.e. negation [5]), a movable frame of refer-
ence for the workspace to enable gesturing around peripheral
body parts, resizable hotspot boundaries, adjustable timeout,
compositions that involve multiple limbs, and recognition of
hand movements. Incorporating classifier-coupled gesture
recognition [4] could serve, when needed, to decouple over-
lapping gesture definitions. As implied by user studies, the
capability to infer hotspots from demonstration, and speech
recognition to control the application from a distance are fea-
tures that may further accelerate user workflows.

The space discretization paradigm may have value for au-
thoring gestures enabled using technologies other than skele-
tal tracking. We encourage other researchers to adopt the
paradigm for use in different contexts.

ACKNOWLEDGEMENTS
The work presented in this paper is part of research sup-
ported by the Scientific and Technological Research Council
of Turkey (TÜBİTAK), project number 112E056.

We thank the anonymous participants in our study and work-
shops for their time and feedback.

REFERENCES
1. Ashbrook, D., and Starner, T. MAGIC: A Motion

Gesture Design Tool. In Proc. CHI 2010 (2010),
2159–2168.

2. Baytaş, M. A., Yemez, Y., and Özcan, O. User Interface
Paradigms for Visually Authoring Mid-Air Gestures: A
Survey and a Provocation . In Proc. EGMI 2014 (2014).

3. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer,
S. R. Authoring Sensor-based Interactions by
Demonstration with Direct Manipulation and Pattern
Recognition. In Proc. CHI 2007 (2007), 145–154.

4. Hoste, L., De Rooms, B., and Signer, B. Declarative
Gesture Spotting Using Inferred and Refined Control
Points. In Proc. ICPRAM 2013 (2013), 144–150.

5. Hoste, L., and Signer, B. Criteria, Challenges and
Opportunities for Gesture Programming Languages. In
Proc. EGMI 2014 (2014).

6. Hughes, D. Microsoft Kinect shifts 10 million units,
game sales remain poor.
http://www.huliq.com/10177/microsoft-kinect-
shifts-10-million-units-game-sales-remain-poor,
2011. Accessed: 2014-07-08.

7. Hutchins, E. L., Hollan, J. D., and Norman, D. A. Direct
Manipulation Interfaces. Human Computer Interaction
1, 4 (1985), 311–338.

8. Kim, J.-W., and Nam, T.-J. EventHurdle: Supporting
Designers’ Exploratory Interaction Prototyping with
Gesture-based Sensors. In Proc. CHI 2013 (2013),
267–276.

9. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M.
Proton++: A Customizable Declarative Multitouch
Framework. In Proc. UIST 2012 (2012), 477–486.

End-User Authoring of Mid-Air Gestural Interactions

68

10. Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A.,
Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M. B., Rothermel,
G., Shaw, M., and Wiedenbeck, S. The State of the Art
in End-user Software Engineering. ACM Computing
Surveys 43, 3 (2011), 21:1–21:44.

11. Lieberman, H., Paternò, F., Klann, M., and Wulf, V.
End-User Development: An Emerging Paradigm. In End
User Development, H. Lieberman, F. Paternò, and
V. Wulf, Eds., vol. 9. Springer Netherlands, 2006, 1–8.

12. Long, A. C., Landay, J. A., and Rowe, L. A. “Those
Look Similar!” Issues in Automating Gesture Design
Advice. In Proc. PUI 2001 (2001), 1–5.

13. Lü, H., and Li, Y. Gesture Studio: Authoring
Multi-touch Interactions Through Demonstration and
Declaration. In Proc. CHI 2013 (2013), 257–266.

14. Marquardt, Z., Beira, J. a., Em, N., Paiva, I., and Kox, S.
Super Mirror: A Kinect Interface for Ballet Dancers. In
Proc. CHI 2012 (2012), 1619–1624.

15. Norman, D. A. Cognitive Engineering. In User Centered
System Design, D. A. Norman and S. W. Draper, Eds.
CRC Press, 1896, ch. 3, 31–61.

16. Norman, D. A. Things that make us smart: Defending
human attributes in the age of the machine. Basic
Books, 1993.

17. Oliver, A., Kang, S., Wünsche, B. C., and MacDonald,
B. Using the Kinect As a Navigation Sensor for Mobile
Robotics. In Proc. IVCNZ 2012 (2012), 509–514.

18. Olsen, Jr., D. R. Evaluating User Interface Systems
Research. In Proc. UIST 2007 (2007), 251–258.

19. Panger, G. Kinect in the Kitchen: Testing Depth Camera
Interactions in Practical Home Environments. In CHI
EA 2012 (2012), 1985–1990.

20. Raghuraman, S., Venkatraman, K., Wang, Z., Wu, J.,
Clements, J., Lotfian, R., Prabhakaran, B., Guo, X.,
Jafari, R., and Nahrstedt, K. Immersive Multiplayer

Tennis with Microsoft Kinect and Body Sensor
Networks. In Proc. MM 2012 (2012), 1481–1484.

21. Rodrigues, D. G., Grenader, E., Nos, F. d. S.,
Dall’Agnol, M. d. S., Hansen, T. E., and Weibel, N.
MotionDraw: A Tool for Enhancing Art and
Performance Using Kinect. In CHI EA 2013 (2013),
1197–1202.

22. Rubine, D. Specifying Gestures by Example. In Proc.
SIGGRAPH 1991 (1991), 329–337.

23. Shoemaker, G., Tsukitani, T., Kitamura, Y., and Booth,
K. S. Body-Centric Interaction Techniques for Very
Large Wall Displays. In Proc. NordiCHI 2010 (2010),
463–472.

24. Stein, S. Kinect, 2011: Where art thou, motion?
http://www.cnet.com/news/kinect-2011-where-
art-thou-motion/, 2011. Accessed: 2014-07-08.

25. Suma, E. A., Krum, D. M., Lange, B., Koenig, S., Rizzo,
A., and Bolas, M. Adapting user interfaces for gestural
interaction with the flexible action and articulated
skeleton toolkit. Computers & Graphics 37, 3 (2013),
193 – 201.

26. Tang, J. K. T., and Igarashi, T. CUBOD: A Customized
Body Gesture Design Tool for End Users. In Proc.
BCS-HCI 2013 (2013), 5:1–5:10.

27. Villaroman, N., Rowe, D., and Swan, B. Teaching
Natural User Interaction Using OpenNI and the
Microsoft Kinect Sensor. In Proc. SIGITE 2011 (2011),
227–232.

28. Wilson, A. D. Sensor- and Recognition-Based Input for
Interaction. In The Human-Computer Interaction
Handbook, J. A. Jacko, Ed. CRC Press, 2012, ch. 7,
133–156.

29. Yin, S. Microsoft Kinect Holds World Record for
’Fastest-Selling’ Device. http:
//www.pcmag.com/article2/0,2817,2381724,00.asp,
2011. Accessed: 2014-07-08.

Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions

69

Appendix C

User Interface Paradigms for Visually
Authoring Mid-Air Gestures: A Survey
and a Provocation

This chapter reproduces the following publication:

Mehmet Aydın Baytaş, Yücel Yemez, and Oğuzhan Özcan. 2014. User Interface
Paradigms for Visually Authoring Mid-air Gestures: A Survey and a Provocation. In
Proceedings of the Workshop on Engineering Gestures for Multimodal Interfaces (EGMI
2014).

71

 8

User Interface Paradigms for Visually Authoring Mid-Air
Gestures: A Survey and a Provocation

Mehmet Aydın Baytaş1, Yücel Yemez2, Oğuzhan Özcan1
1Design Lab

Koç University, 34450 İstanbul
2Department of Computer Engineering

Koç University, 34450 İstanbul
{mbaytas, yyemez, oozcan}@ku.edu.tr

ABSTRACT
Gesture authoring tools enable the rapid and experiential
prototyping of gesture-based interfaces. We survey visual
authoring tools for mid-air gestures and identify three
paradigms used for representing and manipulating gesture
information: graphs, visual markup languages and
timelines. We examine the strengths and limitations of
these approaches and we propose a novel paradigm to
authoring location-based mid-air gestures based on space
discretization.

Author Keywords
Gestural interaction; gesture authoring; visual
programming; interface prototyping.

ACM Classification Keywords
H.5.2 Information Interfaces & Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
The recent proliferation of commercial input devices that
can sense mid-air gestures, led by the introduction of the
Nintendo Wii and the Microsoft Kinect, has enabled both
professional developers and end-users to harness the power
of full-body gestural interaction. However, despite the
availability of the hardware, applications that leverage
gestural interaction have not been thriving. A striking fact is
that while the Kinect has broken records as the fastest-
selling consumer electronics device in history, sales of
games that utilize the Kinect have been poor [5]. This has
been associated with design and user experience issues
stemming from difficulties in designing and developing
software [7]. Specifically, for both adept programmers and
comparatively non-technical but creative users such as
students, designers, artists and hobbyists, the amounts of
time, effort and domain-specific knowledge required to
implement custom gestural interactions is prohibitive.

Ongoing research aims to support gestural interaction
design and development with gesture authoring tools. These
tools aim at enabling rapid and experiential prototyping,
which are essential practices for creating compelling
designs [2]. However, few projects have gained widespread

adoption. One issue that contributes to the low rate of
adoption is the difficulty of balancing the trade-offs
between complexity and expressive power of the paradigm
used to represent and manipulate gesture information:
Interfaces employed for gesture authoring may become
convoluted and difficult to use in order to fully tap into the
expressive power of human gesture; or they may omit
useful features as they aim for usability and rapidity.

In this paper, we survey existing paradigms for visually
authoring mid-air gestures and present a provocation, a
novel gesture authoring paradigm, which we have
implemented in the form of an end-to-end application for
introducing gesture control to existing software and novel
prototypes.

The rest of this paper is organized as follows: We first
present three user interface paradigms – graphs, visual
markup languages and timelines – used in current visual
gesture authoring tools. Existing implementations of each
paradigm are examined and discussed in terms of their
capabilities and limitations. Results from evaluations with
real users, if published, are emphasized. We then present a
provocation in the form of a novel user interface paradigm
for authoring mid-air gestures, based on space discretization
and influenced by existing paradigms. We discuss future
work and conclude by presenting a summary of our results.

PARADIGMS FOR AUTHORING MID-AIR GESTURES
Authoring tools for mid-air gestural interfaces are still in
their infancy. Development tools provided by vendors of
gesture-sensing input devices are focused on textual
programming. Ongoing research suggests a set of diverse
approaches to the problem of how to represent and
manipulate three-dimensional gesture data. Existing works
approach the issue in three ways that constitute distinct
paradigms. These are:

1. using 2-dimensional graphs of the data from the
sensors that detect movement;

2. using a visual markup language; and,

3. representing movement information using a timeline of
frames.

These paradigms often interact with two programming
approaches: Demonstration and declaration. Programming
by demonstration enables developers to describe behavior
by example. In the case of gestures, many examples of the

EGMI 2014, 1st International Workshop on Engineering Gestures for
Multimodal Interfaces, June 17 2014, Rome, Italy.
Copyright © 2014 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by its editors.
http://ceur-ws.org/Vol-1190/.

End-User Authoring of Mid-Air Gestural Interactions

72

 9

same behavior are often provided in order to account for the
differences in gesturing between users and over time.
Declarative programming of gestures involves describing
behavior using a high-level specification language. This
specification language may be textual or graphical.

The paradigms we list above do not have to be used
exclusively, and nor do demonstration and declarative
programming. Aspects of different paradigms may find
their place within the same authoring tool. A popular
approach to authoring gestures is to introduce gestures by
demonstration, convert gesture data into a visual
representation, and then declaratively modify it

In this section, we describe the above approaches in detail,
with examples from the literature. We comment on their
strengths and weaknesses based on evaluations conducted
with software that implement them.

Using Graphs of Movement Data
Visualizing and manipulating movement data using 2-
dimensional graphs that represent low-level kinematic
information is a popular approach for authoring mid-air
gestures. This approach is often preferred when gesture
detection is performed using inertial sensors such as
accelerometers and gyroscopes. It also accommodates other
sensors that read continuously variable data such as
bending, light and pressure. Commonly the horizontal axis
of the graph represents time while the vertical axis
corresponds to the reading from the sensor. Often a “multi-
waveform” occupies the graph, in order to represent data
coming in from multiple axes of the sensor. Below, we
study three software tools that implement graphs for
representing gesture data: Exemplar, MAGIC and GIDE.

Exemplar
Exemplar [3] relies on demonstration to acquire gesture
data and from a variety of sensors - accelerometers,
switches, light sensors, bend sensors, pressure sensors and
joysticks. Once a signal is acquired via demonstration, on
the resulting graph, the developer marks the area of interest
that corresponds to the desired gesture. The developer may
interactively apply filters on the signal for offset, scaling,
smoothing and first-order differentiation. (Figure 1)
Exemplar offers two methods for recognition: One is
pattern matching, where the developer introduces many
examples of a gesture using the aforementioned method and
new input is compared to the examples. The other is
thresholding, where the developer manually introduces
thresholds on the raw or filtered graph and gestures are
recognized when motion data falls between the thresholds.
This type of thresholding also supports hysteresis, where
the developer introduces multiple thresholds that must be
crossed for a gesture to be registered.

Figure 1: The Exemplar gesture authoring environment. [3]
From left to right, the interface reflects the developer’s
workflow: Data from various sensors connected to the system
is displayed as thumbnails and the sensor of interest is
selected; filters are applied to the incoming signal; areas of
interest are marked for pattern recognition or thresholds are
set; and the resulting gesture is mapped to output events.

Exemplar’s user studies suggest that this implementation of
the paradigm is successful in increasing developer
engagement with the workings and limitations of the
sensors used. Possible areas of improvement include a
technique to visualize multiple sensor visualizations and
events and finer control over timing for pattern matching.

System for Multiple Action Gesture Interface Creation
(MAGIC)
Ashbrook and Starner’s MAGIC [1] is another tool that
implements the 2-dimensional graphing paradigm. The
focus of MAGIC is programming by demonstration. It
supports the creation of training sets with multiple
examples of the same gesture. It allows the developer to
that keep track of the internal consistency of the provided
training set; and check against conflicts with other gestures
in the vocabulary and an “Everyday Gesture Library” of
unintentional, automatic gestures that users perform during
daily activities. MAGIC uses the graph paradigm only to
visualize gesture data and does not support manipulation on
the graph. (Figure 2)

One important feature in MAGIC is that the motion data
graph may be augmented by a video of the gesture example
being performed. Results from user studies indicate that this
feature has been highly favored by users, during both
gesture recording and retrospection. Interestingly, it is
reported that the “least-used visualization” in MAGIC “was
the recorded accelerometer graph;” with most users being
“unable to connect the shape of the three lines” that
correspond to the 3 axes of the accelerometer reading “to
the arm and wrist movements that produced them.”
Features preferred by developers turned out to be the
videos, “goodness” scores assigned to each gesture
according to how they match gestures in and not in their
own class, and a sorted list depicting the “distance” of a
selected example to every other example.

User Interface Paradigms for Visually Authoring Mid-Air Gestures: A Survey and a Provocation

73

 10

Figure 2: MAGIC’s gesture creation interface. [2]

Gesture Interaction Designer (GIDE)
More recently, GIDE [8] features an implementation of the
graph paradigm for authoring accelerometer-based mid-air
gestures. GIDE leverages a “modified” hidden Markov
model approach to learn from a single example for each
gesture in the vocabulary. The user interface implements
two distinct features: (1) Each gesture in the vocabulary is
housed in a “gesture editor” component which contains the
sensor waveform, a video of the gesture being performed,
an audio waveform recorded during the performance, and
other information related to the gesture. (2) A “follow”
mode allows the developer to perform gestures and get real-
time feedback on the system’s estimate of which gesture is
being performed (via transparency and color) and where
they are within that gesture. (Figure 3) This feedback on the
temporal position within a gesture is multimodal: The
sensor multi-waveform, the video and the audio waveform
from the video are aligned and follow the gestural input.
GIDE also supports “batch testing” by recording a
continuous performance of multiple gestures and running it
against the whole vocabulary to check if the correct
gestures are recognized at the correct times.

User studies on GIDE reveal that the combination of multi-
waveform, video and audio was useful in making sense of
gesture data. Video was favored particularly since it allows
developers to still remember the gestures they recorded
after an extended period of not working on the gesture
vocabulary. Another finding from the user studies was the
suggestion that the “batch testing” feature where the
developer records a continuous flow of many gestures to
test against could be leveraged as a design strategy –
gestures could be extracted from a recorded performance of
continuous movement.

Figure 3: The “follow” mode in the GIDE interface. [8]

Discussion
Graphs that display acceleration data seem to be the
standard paradigm for representing mid-air gestures tracked
using acceleration sensors. This paradigm supports direct
manipulation for segmenting and filtering gesture data, but
manipulating acceleration data directly to modify gestures
is unwieldy. User studies show that graphs depicting
accelerometer (multi-)waveforms are not effective as the
sole representation of a gesture, but work well as a
component within a multimodal representation along with
video.

Visual Markup Languages
Using a visual markup language for authoring gestures can
allow for rich expression and may accommodate a wide
variety of gesture-tracking devices, e.g. accelerometers and
skeletal tracking, at the same time. The syntax of these
visual markup languages can be of varying degrees of
complexity, but depending on the sensor(s) used for gesture
detection, making use of the capabilities of the hardware
may not require a very detailed syntax. In this section we
examine a software tool, EventHurdle, that implements a
visual markup language for gesture authoring; and we
discuss a gesture spotting approach based on control points
which has not been implemented as a gesture authoring
tool, but provides valuable insight.

EventHurdle
Kim and Nam describe a declarative hurdle-driven visual
gesture markup language implemented in the EventHurdle
authoring tool [6]. The EventHurdle syntax supports gesture
input from single-camera-based, physical sensor-based and
touch-based gesture input. In lieu of a timeline or graph,
EventHurdle projects gesture trajectory onto a 2-
dimensional workspace. The developer may perform the
gestures, see the resulting trajectory on the workspace, and
declaratively author gestures on the workspace by placing
“hurdles” that intersect the gesture trajectory. Hurdles may
be placed in ways that result in serial, parallel and/or
recursive compositions. (Figure 4) “False hurdles” are
available for specifying unwanted trajectories. While an
intuitive way to visualize movement data from pointing
devices, touch gestures and blob detection; this approach
does not support the full range of expression inherent in 3-
dimensional mid-air gesturing.

End-User Authoring of Mid-Air Gestural Interactions

74

 11

Figure 4: EventHurdle's visual markup language allows for a
variety of compositions: (from top left) a simple gesture with
one hurdle; serial and parallel compositions; combinations of
serial and parallel compositions; recursive gesturing. [6]

Gestures defined in EventHurdle are configurable to be
location-sensitive or location-invariant. By design,
orientation- and scale-invariance are not implemented in
order to avoid unnecessary technical options that may
distract from “design thinking.”

User studies on EventHurdle comment that the concept of
hurdles and paths is “easily understood” and it “supports
advanced programming of gesture recognition.” Other than
this, supporting features, rather than the strengths and
weaknesses of the paradigm or comparison with other
paradigms, have been the focus of user studies.

Control Points
Hoste, De Rooms and Signer describe a versatile and
promising approach that uses spatiotemporal constraints
around control points to describe gesture trajectories [4].
While the focus of the approach is on gesture spotting (i.e.
segmentation of a continuous trajectory into discrete
gestures) and not gesture authoring, they do propose a
human-readable and manipulable external representation.
(Figure 5) This external representation has significant
expressive power and support for programming constructs
such as negation (for declaring unwanted trajectories) and
user-defined temporal constraints. While the authors’
approach is to infer control points for a desired gesture from
an example, the representation they propose also enables
the manual placement of control points.

The authors do not describe an implementation that has
been subjected to user studies. However, they discuss a
number of concepts that add to the expressive power of
using control points as a visual markup language to
represent and manipulate gesture information. The first is
that it is possible to add temporal constraints to the markup;
i.e. a floor or ceiling value can be specified for the time
taken by the tracked limb or device to travel between
control points. This is demonstrated not on the graphical
markup (which can be done easily), but on textual code
generated to describe a gesture – another valuable feature.
The second such concept is that the control points are

surrounded by boundaries whose size can be adjusted to
introduce spatial flexibility and accommodate “noisy”
gestures. Third, boundaries can be set for negation when the
variation in the gesture trajectory is too much. The authors
discuss linear or planar negation boundaries only, but
introducing negative control points into the syntax could
also be explored. Finally, a “coupled recognition process” is
introduced, where a trained classifier can be called to
distinguish between potentially conflicting gestures; e.g. a
circle and a rectangle that share the same control points.

One limitation of this approach is the lack of support for
scale invariance. One way of introducing scale invariance
may be to automatically scale boundary sizes and temporal
constraints with the distance between control points.
However, it is likely that the relationship between optimal
values for these variables is nonlinear, which could make
automatic scaling infeasible.

Discussion
The expressive power and usability of a visual markup
language may vary drastically depending on the specifics of
the language and the implementation. The general
advantage of this paradigm is that it is suitable for
describing and manipulating location-based gesture
information (rather than acceleration-based information
commonly depicted using graphs). This makes using a
visual markup language suitable for mid-air gestures
detected by depth-sensing cameras, where the interaction
space is fixed and the limbs of the users move in relation to
each other. Either the motion sensing device or certain parts
of the skeletal model could be used to define a reference
frame and gesture trajectories could be authored in a
location-based manner using a visual markup language.

Timelines
Timelines of frames are commonly used in video editing
applications. They often consist of a series of ordered
thumbnails and/or markers that represent the content of the
moving picture and any editing done on it, such as adding
transitions.

Figure 5: Using control points to represent gestures [4]. (Left)
A “noisy” gesture still gets picked up due to relaxed
boundaries around control points. (Right) Negation is
introduced via vertical boundaries so that large movements in
the vertical axis are distinguished from the desired gesture.

User Interface Paradigms for Visually Authoring Mid-Air Gestures: A Survey and a Provocation

75

 12

System UI Paradigm Programming Approach Insights from user studies

Exemplar [3] Graphs Demonstration Increases engagement with sensor
workings and limitations.

MAGIC [1] Graphs (multi-waveform) Demonstration
Users unable to connect waveform
to physical movements. Optional
video is favored.

GIDE [8] Graphs (multi-waveform
with video) Demonstration Multimodal representation helps

make sense of gesture data.

EventHurdle [6] Visual markup language Declaration Easily understood. Supports
“advanced” programming.

Control Points [4] Visual markup language Declaration / Demonstration Not implemented.
Gesture Studio 1 Timeline Demonstration Not published.

Table 1: Summary of studies on systems that exemplify three user interface paradigms for visually authoring mid-air gestures.

Gesture Studio
One application that implements a timeline to visualize
gesture information is the commercial Gesture Studio.1 The
application works only with sensors that detect gestures
through skeletal tracking using an infrared depth camera.
Developers introduce gestures in Gesture Studio by
demonstration, through performing and recording
examples. The timeline is used to display thumbnails for
each frame of the skeleton information coming from the
depth sensor. The timeline is updated after the developer
finishes recording a gesture, while during recording a
rendering of the skeletal model tracked by the depth sensor
provides feedback. After recording, the developer may
remove unwanted frames from the timeline to trim gesture
data for segmentation. Reordering frames is not supported
since gestures are captured at a high frame rate (depending
on the sensor, usually around 30 frames per second), which
would make manual frame-by-frame editing inconvenient.
The process through which these features have been
selected is opaque, since there are no published studies that
present the design process or evaluate Gesture Studio in
use.

Discussion
In gesture authoring interfaces, timelines make sense when
gesture tracking encompasses many limbs and dynamic
movements that span more than a few seconds. Spatial and
temporal concerns for gestures in 2 dimensions, such as
those performed on surfaces, can be represented on the
same workspace. The representation of mid-air gestures
requires an additional component such as a timeline to
show the change over time.

Discussion
We have presented a number of systems that exemplify
three user interface paradigms for visually authoring mid-
air gestures for computing applications (see Table 1 for a
summary). For sensor-based gesturing, the standard

1 http://gesturestudio.ca/

paradigm used to represent gesture information appears to
be projecting the sensor waveforms onto a graph. Graphs
appear to work well as components that represent sensor-
based gestures, allow experimentation with filters and
gesture recognition methods, and support direct
manipulation to some extent. User studies show that while
the graphs alone may not allow developers to fully grasp
the connection between movements and the waveform [1],
they have been deemed useful as part of a multimodal
gesture representation [8]. Using hurdles as a visual markup
language offers an intuitive and expressive medium for
gesture authoring, but it is not able to depict fully 3-
dimensional gestures. Using spherical control points may be
more conducive to direct manipulation while still affording
an expressive syntax, but no implementation of this
paradigm exists for authoring mid-air gestures. Finally,
timelines of frames may come in handy for visualizing
dynamic gestures with many moving elements, such as in
skeletal tracking; but used in this fashion they allow only
visualization and not manipulation.

There are paradigms that allow for the authoring of sensor-
based gestures both declaratively and through
demonstration. For skeletal tracking interfaces, tools based
on demonstration exist, but we have not come across visual
declarative programming tools for skeletal tracking
interfaces. In the next section, we propose a user interface
paradigm for declaratively authoring mid-air gestures for
skeletal tracking interfaces.

PROVOCATION: SPACE DISCRETIZATION AS A NOVEL
PARADIGM FOR AUTHORING MID-AIR GESTURES
The paradigms that we surveyed above each have their
strengths and weaknesses. We wish to propose a novel
paradigm for declaratively authoring mid-air gestures,
which we will call space discretization. This paradigm
conceptually supports both declaration and demonstration
as ways to introduce gestures, and direct manipulation to
edit them. The paradigm is adaptable for sensor-based
interactions and touch gestures. We will present a rendition
aimed at authoring gestures for skeletal tracking interfaces.

End-User Authoring of Mid-Air Gestural Interactions

76

 13

Figure 6: A 2-dimensional “Z” gesture defined using ordered

hotspots in discretized space.

Overview and Implementation
We have implemented this paradigm as part of an
application called Hotspotizer. The application has been
developed as an end-to-end suite to facilitate rapid
prototyping of gesture-based interactions and adapting
arbitrary interface for gesture control. Collections of
gestures can be created, saved, loaded, modified and
mapped to a keyboard emulator within the application. The
current version is configured to work with the Microsoft
Kinect sensor and is available online as a free download.2

The paradigm we implemented works by partitioning the
space around the tracked skeletal model into discrete spatial
compartments. In a manner that is similar to the use of
control points in Hoste, De Rooms and Signer’s approach,
these discrete compartments can be marked and activated to
become “hotspots” that register movement when a tracked
limb enters them. (Figure 6) Our approach may be likened
to modifying the control points paradigm to use cubic
instead of spherical boundaries and allow the placement of
control points only at discrete locations in space. This is
due to the difficulty of manipulating continuously moveable
control points in 3 dimensions. Furthermore, using discrete
hotspots instead of control points allows for the boundaries
of the control points to be in custom shapes rather than
spheres only. Considering the precision of current skeletal
tracking devices, the difficulty of manipulating free-form
regions rather than discrete compartments does not pay off.

In Hotspotizer, the compartments are cubes that measure 15
cm on each side and the workspace is a cube, 300 cm on
each side, the centroid of which is fixed to the tracked
skeleton’s “hip center” joint returned by the Kinect sensor.
(Figure 7) The workspace has been sized to accommodate
larger users, and the compartments have been sized,
through empirical observations, to reflect the sensor’s
precision. The alignment of the workspace to the user’s
body results in gestures being location-invariant with
respect to the user’s position relative to the depth camera.

2 http://designlab.ku.edu.tr/design-thinking-research-
group/hotspotizer/

Figure 7: A 3-dimensional “swipe” gesture to be performed
with the right hand, implemented in Hotspotizer. The front
view (A) and the side view (B) depict the third frame, selected
from the timeline (C). The 3D viewport (D) depicts all three
frames, using transparency to imply the order.

However, gestures in Hotspotizer are always location-
dependent with respect to the gesturing limb’s position
relative to the rest of the body. Scale- and orientation-
invariance are not automatically supported, but it is possible
to arrange hotspots in creative ways that allow the same
gesture to be executed on different scales.

Splitting gesture data into frames, which are navigated
using a timeline, supports authoring dynamic movements.
The side view and front view grids only display hotspots
that belong to one frame at a time, since placing all of the
hotspots that belong to different frames of a gesture on the
same grids results in a convoluted interface. During gesture
tracking, if the tracked limb enters any one of the hotspots
that belongs to a frame, the entire frame registers a “hit.”
For a gesture to be registered, its frames must be hit in the
correct order and the time that elapses between subsequent
frames registering a hit must not exceed a pre-defined
timeout. Conceptually the timeout could be adjustable; in
the current implementation, for the sake of a simple user
interface, it is hard-coded to 500ms in Hotspotizer.

In essence, we propose a design for an expressive user
interface paradigm for authoring mid-air gestures detected
through skeletal tracking. Aspects of this design are based
on the control points paradigm described in [4]. We
modified the paradigm to confine the locations of the
control points to discrete pre-defined locations and use
cubic control point boundaries of fixed size, which can be
added together to create custom shapes. We also introduce a
timeline component so that spatial and temporal constraints
can be manipulated unambiguously.

Future Work
Future work includes features to enrich the expressiveness
of the paradigm and evaluating its performance in use.

The current implementation of the paradigm in Hotspotizer
supports only declaration – manually specifying hotspots by
selecting relevant areas on a grid. The interface may be
extended to allow the introduction of gestures through

User Interface Paradigms for Visually Authoring Mid-Air Gestures: A Survey and a Provocation

77

 14

demonstration, by inferring hotspots automatically from
recorded gestures.

“Negative hotspots” to mark compartments that should not
be crossed when gesturing are a possibility for future
iterations on Hotspotizer. So is supporting gestures
performed by multiple limbs; possibly by using a multi-
track timeline and coupling keyframes where movements of
the limbs should be synchronized.

In order to describe more complex gestures, it may make
sense to introduce classifier-coupled gesture recognition.
One shortage of the paradigm is that it does not
accommodate the repeated usage of hotspots within
different frames of a gesture well. If a gesture requires that
a certain hotspot be hit twice, for example, the current
implementation does not afford a way of detecting whether
the first or the second hit is registered as a user performs the
gesture.

Finally, as the precision of skeletal tracking devices
increases and in order to accommodate devices that track
smaller body parts such as the hands, adjustable workspace
and compartment sizing may be introduced.

Formative evaluations have been conducted throughout the
development Hotspotizer, focusing on prioritizing features
and the visual design of the interface. Results of these,
along with summative evaluations that compare the
application to existing solutions and uncover user strategies
for using the tool will be published in the future.

CONCLUSION
We reviewed existing paradigms for authoring mid-air
gestures and discussed how graphs of sensor waveforms are
suitable components that represent acceleration-based
gesture data; how visual markup languages are better suited
for location-based gesture data; and how timelines are used
to communicate dynamic gesturing. We presented a novel
gesture authoring paradigm for authoring mid-air gestures
sensed by skeletal tracking: a visual markup language based
on space discretization supported by a timeline to visualize
temporal aspects of gesturing. Future work may build

supporting features onto this paradigm and evaluate its
performance in use by developers.

ACKNOWLEDGEMENT
The work presented in this paper is part of research
supported by the Scientific and Technological Research
Council of Turkey (TÜBİTAK), project number 112E056.

REFERENCES
1. Ashbrook, D. and Starner, T. MAGIC: A Motion Gesture

Design Tool. Proceedings of the 28th international conference
on Human factors in computing systems - CHI ’10, ACM
Press (2010), 2159.

2. Buxton, B. Sketching User Experiences: Getting the Design
Right and the Right Design. Morgan Kaufmann, Boston, 2007.

3. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R.
Authoring sensor-based interactions by demonstration with
direct manipulation and pattern recognition. Proceedings of
the SIGCHI conference on Human factors in computing
systems - CHI ’07, ACM Press (2007), 145.

4. Hoste, L., De Rooms, B., and Signer, B. Declarative Gesture
Spotting Using Inferred and Refined Control Points.
Proceedings of the 2nd International Conference on Pattern
Recognition Applications and Methods (ICPRAM 2013),
(2013).

5. Hughes, D. Microsoft Kinect shifts 10 million units, game
sales remain poor. HULIQ, 2012.
http://www.huliq.com/10177/microsoft-kinect-shifts-10-
million-units-game-sales-remain-poor.

6. Kim, J.-W. and Nam, T.-J. EventHurdle. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
- CHI ’13, ACM Press (2013), 267.

7. Stein, S. Kinect, 2011: Where art thou, motion? CNET, 2011.
http://www.cnet.com/news/kinect-2011-where-art-thou-
motion/.

8. Zamborlin, B., Bevilacqua, F., Gillies, M., and D’inverno, M.
Fluid gesture interaction design. ACM Transactions on
Interactive Intelligent Systems 3, 4 (2014), 1–30.

End-User Authoring of Mid-Air Gestural Interactions

78

Appendix D

Rethinking Spherical Media Surfaces
by Re-reading Ancient Greek Vases

This chapter reproduces the following publication:

Oğuzhan Özcan, Ayça Ünlüer, Mehmet Aydın Baytaş, and Barış Serim. 2012. Rethink-
ing Spherical Media Surfaces by Re-reading Ancient Greek Vases. Paper presented
at the workshop “Beyond Flat Displays: Towards Shaped and Deformable Interactive
Surfaces,” co-located with the ACM International Conference on Interactive Tabletops
and Surfaces (ITS ’12).

79

Rethinking Spherical Media Surfaces
by Re-reading Ancient Greek Vases

Abstract
In this paper, we propose re-reading of past artifacts
and traditions as a possible way to inspire the design of
future media on non-flat displays. As an example, we
illustrate how different narrative typologies found in
ancient Greek vases, circular story reading, bottom-up
time reading, abstract and realistic contrast reading
and reading in alignment, can yield alternatives to
interactive content specific to spherical media. We
conclude by pointing out design considerations
regarding the composition of graphic elements on
spherical surfaces.

Author Keywords
Spherical displays; re-reading; story-telling.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces.

Introduction
Research on non-flat displays has covered ample
ground. Primitives such as the cylinder [2], the sphere
[1] and bent surfaces [15]; and irrational forms [4]
have been proposed as static media. Interactive
displays that react to manipulations such as bending
[8], rolling-out [6, 13] and folding [7, 9] have been
considered. These works also discuss functionality and

Copyright is held by the author/owner(s).

ITS’12, November 11–14, 2012, Cambridge, Massachusetts, USA.

Oğuzhan Özcan
Design Lab
Koç University
Rumelifeneri Road
34450, Istanbul, Turkey
oozcan@ku.edu.tr

Ayça Ünlüer
Dept. of Communication Design
Faculty of Art and Design
Yıldız Technical University
Istanbul, Turkey
ayca.unluer@gmail.com

Mehmet Aydın Baytaş
Design Lab
Koç University
Rumelifeneri Road
34450, Istanbul, Turkey
mbaytas@ku.edu.tr

Barış Serim
Design Lab
Koç University
Rumelifeneri Road
34450, Istanbul, Turkey
bserim@ku.edu.tr

End-User Authoring of Mid-Air Gestural Interactions

80

content for non-flat forms, but the discussions are often
limited to the adaptations and eliminations of functions
and content that already exists on conventional
displays [1, 2]. We argue that this is not sufficient to
fully explore the capabilities of non-flat display
technology.

In order to discover new ways of using novel interactive
media effectively, it is necessary to try unconventional
approaches. One such approach is to attempt to re-
read the solutions to similar problems that cultures in
the past have come up with. Past cultures have been
contemplating on variations of today’s design problems
for years. Today’s media technology necessitates
concepts and narratives be developed quickly, but past
experiences, cultivated over the years, hold clues to
enriching contemporary media experiences.

In our previous research, we have found evidence that
supports our position: The traditions of shadow play
[10], miniature painting [11] and calligraphy [14] and
the artifacts of these traditions have offered clues as to
what conventional displays are capable of. Similarly, by
examining ancient cultural artifacts, we may anticipate
what the mainstream applications of non-flat media will
look like in the future and what forms of presentation
they will afford.

We propose that re-reading the ways that imagery on
ancient Greek vases have been composed may inspire
content development for spherical interactive surfaces.

Understanding “Re-reading the Past”
Being inspired by the past does not necessitate
imitating it in new forms. Ideally, design solutions from
the past should be re-evaluated from a contemporary

perspective and they should inspire novel concepts,
e.g. the Wayang Kulit shadow play where male and
female viewers see the show from different sides of the
screen may inspire the development of a two-sided
display [10]. It is exciting that the user experience
afforded by a two-sided display existed in the past,
when the technology did not.

Similarly, re-reading miniature paintings allows us to
discover concepts such as placing elements outside the
picture’s frame and representing concepts by
juxtaposing its constituents [11], which lend us clues
as to achieve narrative richness in current media.

Re-reading traditional Turkish calligraphy also yields
surprises, in that the act of writing and drawing has
been considered to be a multi-dimensional activity in
the past. The traditional calligraphist completes his
work, a continuous form, in one breath. He is
surrounded by candlelight and music that helps him
focus as he works. He desires to trace and imprint the
forms that he imagines in air, but he may only confine
himself to a two-dimensional medium [14]. Coupling
the philosophy and rituals of traditional calligraphy with
current technology would no doubt yield novel forms of
calligraphy.

Ancient Greek Vases as Inspiration for
Spherical Interactive Media
Four different types of narratives are observed in
ancient Greek vases, where a multitude of themes are
presented simultaneously:

Circular story reading (horizontal direction)
Sequential images, flowing horizontally on the vase,
assume a linear storyboard formation. However, in

Figure 1: Detail from Chigi vase.
[5]

Rethinking Spherical Media Surfaces by Re-reading Ancient Greek Vases

81

each scene, certain characters are drawn facing left and
others facing right. There is no clear and distinct
direction and order to read in. The intent here is to
motivate the reader to turn the vase as they view.
Different stories emerge as the vase is revolves in the
clockwise and counterclockwise directions. [5]

Bottom-up time reading (vertical direction)
Emotional and epic narratives ensue in vases of this
character, summarizing on the life of a mythological
character. The reading order is vertical, from the
bottom up. The younger years of the character appear
progresses upward, they are presented with later
events in the character’s life. Events are ordered
vertically and they unfold in the horizontal direction.

Abstract and realistic contrast reading (hemispheric
look)
One side of the vase depicts commoners and stories
from daily life, and the other side comprises
mythological characters and adventures.

Reading in alignment
Every vertical row deals with a different concept and
presents the concept using mythological characters,
creatures and objects. The elements that comprise the
concept may look random, but they appear more
realistic on one side and more heroic on the other. One
row may depict a hunting scene, one side illustrating a
deer hunt and the other side portraying a skirmish
against a lion. As the reading progresses from bottom
up, the subject matter of the rows are transformed in
particular order. A vase may depict stages in the life of
a man in this fashion: The bottommost row may
embody children hunting, with an upper row illustrating
youth entertaining themselves at horse races, while

above there are scenes from a war where adults are
fighting each other. Important characters, objects or
creatures, the focal points of the rows, have been
aligned as to maintain connections between rows.

Conclusion
Today’s interactive media often presents nonlinear
stories on a medium confined to a single flat display.
For long this arrangement has allowed us to imagine
interactive cinema and continues to be a functional and
popular interface for interactive games [3]. Many works
deal with the continuation of the user experience
afforded by such media into non-flat media. However,
the content and narratives specific to non-flat displays
have not been covered extensively in the literature.
One paper proposes an icosahedron shape to exploit
the interactive potential of multifaceted displays and
gestural interaction with the object to navigate the user
interface. This, however, is an experiment in interaction
styles and proposes no narrative form [12].

The typological analysis above suggests that there is no
linear horizontal or vertical order to reading these
ancient Greek vases. This intends to motivate the
reader to rotate the vase in his hand.

It is possible to exploit the four typologies outlined
above (“Circular Reading”, “Bottom-up Time Reading”,
“Hemispheric Look” and “Reading in Alignment”) to
create interactive storytelling concepts specific to
spherical media. Previous analyses on miniature
painting indicate that it is possible to use mapping
techniques for storytelling [11]. Beyond these planar
mapping experiences, using these four typologies, it is
possible to compose with stills and animated images on
a spherical matrix. Care should be taken to maintain

Scene composition
 Each scene
 consists of a
 theme with
 characters &
 creatures.

 Elderhood

 Manhood

 Youth

 Childhood

 Heroism
 Lion Hunt

 Heroes at war
Mhytical creature

Reality

Deer Hunt
Soldiers at war

Animals

 Important
 figures on
 each line
 are aligned
 with each
 other.

Figure 2: Spherical vase frieze
reading regarding horizontal direction,
vertical direction, hemispheres and
alignment respectively.

End-User Authoring of Mid-Air Gestural Interactions

82

the viewer’s attention on the medium and the following
questions should be considered:

 will the matrix comprise stills or animated images
only, or a combination of the two?

 if stills and animated images are to be combined,
what should their ratio be?

 within the stills and the animated images, how will
the pictures be composed in relation to the spherical
matrix?

Utilizing re-reading methods, it may be possible to
develop novel narrative forms and content that fully
exploits contemporary technology, such as spherical
displays. These new media forms may then become
tools for novel gaming or learning experiences.

References
[1] Benko, H., Wilson, A. D., and Balakrishnan, R.
Sphere: multi-touch interactions on a spherical display.
In Proc. UIST 2008, ACM Press (2008), 77-86.
[2] Beyer, G., Alt, F., Müller, J., Schmidt, A., Isakovic,
K., Klose, S., Schiewe, M., and Haulsen, I. Audience
behavior around large interactive cylindrical screens. In
Proc. CHI 2011. ACM Press (2011),1021–1030.
[3] Çavus, M., and Ozcan, O. To Watch from Distance:
An interactive Film Model Based on Brechtian Film
Theory. Digital Creativity 21, 2 (2010), 127-140.
[4] Dalsgaard, P. and Halskov, K. 3d projection on
physical objects: design insights from five real life
cases. In Proc. CHI 2011. ACM Press (2011), 1041-
1050.

[5] Hurwit, J. M. Reading the Chigi Vase. Hesperia: The
Journal of the American School of Classical Studies at
Athens , 71, 1 (2002), 1-22.

[6] Khalilbeigi, M., Lissermann, R., Mühlhäuser, M.,
and Steimle, J. Xpaaand: Interaction techniques for
rollable displays. In Proc. CHI 2011. ACM Press (2011),
2729-2732.
[7] Khalilbeigi, M., Lissermann, R., Kleine, W., and
Steimle, J. FoldMe: Interacting with Dual-sided Foldable
Displays. In Proc. TEI 2012. ACM Press (2012), 33-40.
[8] Lahey, B., Girouard, A., Burleson, W. and
Vertegaal, R. PaperPhone: understanding the use of
bend gestures in mobile devices with flexible electronic
paper displays. In Proc. CHI 2011. ACM Press (2011),
1303-1312.
[9] Lee, J. C., Hudson, S. E. and Tse, E. Foldable
interactive displays. In Proc. UIST 2008. ACM Press
(2008), 287-290.
[10] Özcan, O. Cultures, the Traditional Shadow Play,
and Interactive Media Design. Design Issues 18 , 3
(2002), 18-26.

[11] Özcan, O. Turkish‐Ottoman miniature art within
the context of electronic information design education.
Journal of Technology and Design Education 15, 3
(2005), 237-252.

[12] Poupyrev, I., Newton-Dunn, H., Bau, O. D20:
Interaction with Multifaceted Display Devices. In Proc.
CHI 2006. ACM Press (2006), 1241-1246.

[13] Steimle, J. and Olberding, S. When Mobile Phones
Expand Into Handheld Tabletops. In Proc. CHI 2012.
ACM Press (2012), 271-280.

[14] Ünlüer, A and Özcan, O. Sound and Silence in the
Line: Re-Reading Turkish Islamic Calligraphy for
Interactive Media Design. Leonardo 43, 5 (2010), 450-
456.
[15] Weiss, M., Voelker, S., Sutter,C., and Borchers, J.
BendDesk: dragging across the curve. In Proc. ITS
2010. ACM Press (2010), 1-10

Rethinking Spherical Media Surfaces by Re-reading Ancient Greek Vases

83

	Introduction
	Motivation
	Aim
	Scope
	Method

	Background and Related Work
	Gestural Interaction
	End-User Programming
	Design and Evaluation of User Interface Authoring Tools
	Authoring Mid-Air Gestures

	Hotspotizer: Description
	Space Discretization
	Hotspotizer

	Hotspotizer: Design and Evaluation
	Formative Studies
	User Interface Design
	Summative Studies

	Conclusion and Future Work
	Revisiting the Research Questions
	Revisiting the Hypothesis and Contributions
	Future Work

	Bibliography
	Attributions
	Hotspotizer: End-User Authoring of Mid-Air Gestural Interactions
	User Interface Paradigms for Visually Authoring Mid-Air Gestures: A Survey and a Provocation
	Rethinking Spherical Media Surfaces by Re-reading Ancient Greek Vases

