
Energy Cost Optimization in Large Scale Distributed Systems

by Resource Allocation Techniques

by

Hüseyin Güler

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

Koç University

September 9, 2013

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Hüseyin Güler

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Öznur Özkasap (Advisor)

Assoc. Prof. Yücel Yemez

Prof. A. Murat Tekalp

Date:

To my family.

iii

ABSTRACT

Large scale distributed systems require massive amount of computing power to

provide reliable services and to solve computationally complex problems. In that re-

gard, energy needs in these systems are increasing rapidly and that brings substantial

costs. Thus, reducing energy costs of such organizations is crucial to advance in these

fields. In addition to explicitly reducing energy consumption, it is also possible to

cut down the total electricity bill by exploiting spatial and temporal variations in

electricity prices.

In the first part of the thesis, we propose a volunteer computing network where

peers can set monetary budgets, limiting the financial burden incurred on them due

the usage of their computational resources. Assuming that the price of the electricity

consumed by the peers has temporal variation, we show that our approach leads to

an interesting task allocation problem, where the goal is to maximize the amount

of work done by the peers without violating the monetary budget constraints set by

the peers. We propose various polynomial time heuristic algorithms to the problem,

which is NP-hard, and our extensive simulations show that our approach can increase

the total amount of work done up to 35% compared to an existing baseline.

In the second part, we consider a geographically distributed data center network

that is specialized to run batch jobs with previously determined Service Level Agree-

ments (SLAs). Taking into account the spatial and temporal variations in the electric-

ity prices and free cooling opportunities by utilizing the outside weather, we model the

problem of minimizing the energy cost as a linear programming problem. We propose

two job scheduling heuristic algorithms and our simulations using real-life workload

traces and electricity prices demonstrate that the proposed heuristics can decrease

the total energy cost up to 6% compared to a load balancing baseline solution.

iv

ÖZETÇE

Büyük ölçekli daǧıtılmış sistemler güvenilir servis saǧlamak ve karmaşık prob-

lemlerin çözümü için yüksek miktarlarda hesaplama gücüne ihtiyaç duyarlar. Bu

baǧlamda, bu tarz sistemlerin enerji ihtiyaçları hızlı bir şekilde artmakta ve bu da

beraberinde çok yüksek maliyetler getirmektedir. Bu alanlarda daha ileri nokta-

lara gelebilmek için bu maliyetleri düşürmek bu organizasyonlar için hayati önem

taşımaktadır. Kullanılan toplam enerji miktarını düşürmenin yanı sıra, elektrik fiy-

atlarında görülen coǧrafi ve zamana baǧlı deǧişimlerden faydalanarak elektrik fatu-

ralarını düşürmek de mümkün olmaktadır.

Tezin ilk kısmında, kullanıcıların finansal bütçeler belirleyebildiǧi ve bu sayede

kendi kaynaklarının kullanımından doǧan finansal yükü sınırlayabilecekleri bir gönüllü

işlem aǧı sunuyoruz. Kullanıcıların tükettikleri elektrik fiyatının zamana baǧlı olarak

deǧiştiǧi varsayımı altında, yaklaşımımızın ilginç bir görev atama problemi oluşturduǧunu

gösterdik. Burada amaç kullanıcıların belirledikleri bütçelerini aşmayacak şekilde

işlem aǧında yapılan toplam işin maksimuma taşımak. NP zorlukta olan bu probleme

çözüm olarak polinom zamanda çalışan sezgisel algoritmalar sunduk ve detaylı sim-

ulasyonlarımız sonucunda gönüllü işlem aǧında işlenen toplam iş miktarının şu anda

kullanılmakta olan tekniklere oranla %35 arttırılabileceǧini gösterdik.

İkinci kısımda, toplu işlerin çözümü için özelleşmiş coǧrafi olarak daǧıtımlı veri

merkezleri modelliyoruz. Elektrik fiyatının mekana ve zamana baǧlı olarak deǧiştiǧi

varsayımını ve dışarıdaki havayı kullanan soǧutma fırsatlarını göz önüne alarak, enerji

masrafını azaltmayı lineer programlama problemi olarak modelliyoruz. İki sezgisel

iş planlama algoritması sunuyoruz ve gerçek sistem kayıtları ve elektrik fiyatlarını

kullandıǧımız simülasyonların sonucuna göre sunduǧumuz algoritmalar toplam enerji

masraflarını iş dengeleme amaçlı algoritmalara oranla %6’ya kadar azaltmaktadır.

v

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor Assoc. Prof. Öznur

Özkasap. Her guidance and insights helped me a lot to finalize my research with

success. I offer a special gratitude to Dr. Berkant Barla Cambazoǧlu, without his

persistence help and invaluable contributions this thesis would not have been com-

pleted.

I want to thank to my thesis committee members, Assoc. Prof. Yücel Yemez and

Prof. A. Murat Tekalp, for their time, effort and valuable remarks.

My heartfelt appreciation goes to my dear friends in Networked and Distributed

Systems Lab as well as in Graduate School: Adilet Kachkeev, İrem Nizamoǧlu, Seyhan

Uçar, Yalçin Sadi and many others, and the sincerest gratitude to my lifelong friends,

Burak Özen and Orçun Simsek, whom I shared the best times of my life.

I am particularly grateful for the financial support of Scientific and Technologi-

cal Research Council of Turkey (TUBITAK) and COST (European Cooperation in

Science and Technology) framework, Action IC0804.

I am deeply grateful to my family for their endless support in my entire life. My

mother, Gülsüm Güler, is the kindest and the most caring person I will ever know. My

father, Nazir Güler, always supported my decisions and thought me to think freely.

My beautiful little sister, Hilal Güler and my little cool brother, Ertunç Güler. They

are everything for me and they will always be.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Chapter 1: Introduction 1

1.1 Contributions . 5

1.2 Organization . 6

Chapter 2: Related Work 7

2.1 Volunteer Computing . 7

2.2 Energy Cost Optimization . 8

Chapter 3: Task Allocation in Volunteer Computing Networks under

Monetary Budget Constraints 13

3.1 Problem Specification . 13

3.2 Solutions . 16

3.2.1 Algorithms . 17

Naive Baseline (Baseline) . 17

Solutions Based on the Expected Electricity Price 18

History Repeats (HistoryRepeats) 19

Online Knapsack (OnlineKnapsack) 21

Oracle (Oracle) . 21

3.3 Simulation Setup . 21

3.3.1 Electricity Prices . 22

3.3.2 Peers . 23

vii

3.3.3 Budgets . 24

3.3.4 Other Parameters and Performance Metrics 25

3.4 Experimental Results . 25

Chapter 4: Energy Cost Aware Job Scheduling in Geographically

Distributed Cloud Data Centers 33

4.1 Problem Specification . 33

4.2 Proposed Scheduling Algorithms . 35

4.2.1 Immediate Scheduling Algorithms 36

4.2.2 Delayed Scheduling Algorithm (LookAhead) 37

4.3 Simulation Setup . 38

4.4 Experimental Results . 41

Chapter 5: Conclusion 51

Bibliography 54

Vita 64

viii

LIST OF TABLES

2.1 Literature Review Comparison . 12

3.1 System parameters . 16

3.2 Percentage of peers whose budget consumption is below a certain rate 28

4.1 System parameters . 43

4.2 PUE of Simulated Data Centers . 44

4.3 Performance of different heuristics (no penalty). 44

4.4 Performance of the LookAhead heuristic (idle servers are not switched

off). 45

4.5 Performance of the LookAhead heuristic (idle servers are switched off). 49

ix

LIST OF FIGURES

3.1 Daily change in the average electricity prices for spring and fall. . . . 22

3.2 Hourly change in electricity prices and the fraction of active peers. . . 23

3.3 Computational work distribution with respect to weekly budgets in

Spring . 26

3.4 Computational work distribution with respect to weekly budgets in Fall 27

3.5 The total electricity bill of the peers versus the amount of work done

in Spring . 29

3.6 The total electricity bill of the peers versus the amount of work done

in Fall . 29

3.7 Computational work distribution with respect to countries. 30

3.8 Computational work distribution with respect to the day of the week. 31

3.9 Computational work distribution with respect to the hours of the day. 32

4.1 Distribution of jobs according to length. 39

4.2 Distribution of jobs according to arrival time. 40

x

Chapter 1

INTRODUCTION

Large scale distributed systems have seen growing interests and advances since the

emergence of Internet and related Internet services. Complex real world problems,

communication and information sharing between hundreds of millions people directed

researchers and industrial bodies to find efficient and reliable solutions which involve

several different distributed system paradigms, and P2P computing and networking,

Grid computing and Cloud computing systems are the best known examples.

In the first part of our work, we focus on a specific class of distributed P2P com-

puting system, Volunteer computing. Volunteer computing became popular in the

last decade. In volunteer computing networks, a large number of geographically dis-

tributed computer owners (peers) donate their resources (e.g., network, CPU, and

storage) for use in a certain large-scale project, whose objective is to solve a compu-

tationally expensive problem by harnessing the provided resources. The best known

examples of such networks are SETI@Home,1 Folding@Home,2 ClimatePrediction,3

and ABC@Home.4

In volunteer computing networks, a central authority is responsible for the man-

agement of the network. Typically, the central authority divides a large problem

instance into smaller tasks and distributes them among the peers for processing. The

peers join the network on a voluntary basis and help the processing without receiv-

1SETI@Home, http://setiathome.berkeley.edu/index.php.

2Folding@Home, http://folding.stanford.edu/.

3ClimatePrediction, http://climateprediction.net/.

4ABC@Home, http://abcathome.com/.

2 Chapter 1: Introduction

ing any immediate financial benefit. Since the peers allocate their computational

resources, which consume energy, they even end up with increased electricity bills.

This may create an obstacle for growing the volunteer computing network as peers

will be less motivated to join the network.

In some volunteer computing networks, the peers are allowed to specify an upper

bound on the number of tasks they are willing to process in a given period of time,

or they may specify the time duration their resources can be used [Anderson, 2011,

Kondo et al., 2007]. In this work, we go one step beyond and propose an alternative

where peers can explicitly specify the maximum amount of money they can afford to

spend in a time period while their resources are being used. For example, peers can

set monetary limits such as ”at most 10 cents per week” or ”at most two cents per

day”. The incentive behind this approach is that allowing such monetary constraints

may motivate more peers to contribute to the network since the peers will have a

guarantee that the financial overhead incurred by the network will be limited.

From the perspective of the volunteer computing network, having such mone-

tary constraints leads to an interesting task allocation problem. Obviously, the goal

of the network is still to maximize the amount of work done in a given time pe-

riod. However, under the assumption that the electricity prices show temporal vari-

ation [Kayaaslan et al., 2011, Qureshi et al., 2009, Rao et al., 2010b], the dispatcher

now needs to decide when to assign a task to a peer for processing. Assigning tasks

to a peer when the peer is consuming electricity at high prices will lead to quick ex-

haustion of the peer’s monetary budget. Hence, it is important for the dispatcher to

estimate the time periods where the peers are consuming cheap electricity and assign

the tasks to them accordingly, trying to exhaust peers’ monetary budgets as much as

possible but without exceeding them.

The second part of the thesis is focused on Cloud computing systems. Serving

large amount of tasks and managing big amount of data generated by the Internet

services as well as IT industries can be done efficiently with the emerging cloud sys-

tems that provide massive computing power. Majority of the Internet services have

Chapter 1: Introduction 3

started to move to the server side due to growing complexity of these services and

the trend from client-side computing to server-side computing directed several key IT

companies to build their own massive data centers. For instance; Google, Amazon,

Facebook and Microsoft are among the first that operate their own data center net-

works referred as Warehouse Scale Computers (WSCs) in [Barroso and Hölzle, 2009],

since they highly differ from traditional data centers. In general, the WSCs host

thousands of computing nodes that are mostly homogeneous, constantly interacting

with each other in order to process complex and massive tasks.5

A major cost of running such large scale cloud data centers is the energy cost

associated with them. Energy consumption of cloud data centers include several

factors, and CPU energy consumption and cooling overheads are the most domi-

nant factors (42% being CPU energy usage and 15.4% being the cooling overhead

[Barroso and Hölzle, 2009]). Aforementioned big IT companies mostly utilize hun-

dreds of thousands of servers geographically distributed around the world to bet-

ter serve their customers and such distributed data centers cost millions of dollars

to run. Thus, even small reductions achieved in power cost imply huge cost sav-

ings [Yao et al., 2012]. For example, a recent Google report states they saved over

one billion dollars to date from their energy efficiency efforts.6 Moreover, data centers’

high computing power also require complex and advanced cooling infrastructures to

cool down heated servers and network components, and cooling cost associated with

the operation of a data center is one of the biggest consumers of the total electricity

used [Barroso and Hölzle, 2009]. Airside economization systems offer some opportu-

nities to use cold and dry outside weather in order to lower the power usage efficiency

(PUE) of a particular data center.7

Decreasing the energy consumption of geographically distributed data centers has

been an active area of research. However, in addition to improving energy efficiency,

5We refer to WSCs as cloud data centers in the rest of the the thesis.

6Google green, The Big Picture:http://www.google.com/green/bigpicture

7http://www.datacenterknowledge.com/archives/2013/08/08/

building-efficient-data-centers/

4 Chapter 1: Introduction

there is also an opportunity to decrease the total electricity bill of a data center

by considering temporal and spatial variations in electricity prices. In particular,

geographically distributed cloud data centers can greatly benefit from these variations

by scheduling their tasks to and allocating their resources in electrically cheaper

places. Thus, optimizations considering temporal and spatial variation in electricity

prices can achieve reductions in the total electricity bill of data centers.

In general, cloud data centers are responsible for computing different set of jobs

including batch jobs, interactive web queries, big data analysis and many others

which have different characteristics and requirements. These requirements have direct

impact on setting business goals which are mostly conflicting in its very sense. For

example, in web search queries, response time is the most important objective and

it needs to be kept under several milliseconds [Kayaaslan et al., 2011]. On the other

hand, for big data analysis or batch jobs, the objective is maximizing the throughput

or reducing the computation time. In this work, we focus on delay tolerant batch

jobs to better observe the effects of time related changes in data centers, in other

words, having the ability to delay some jobs to better exploit temporal electricity

price variations. However, service providers are entitled to satisfy certain requirements

detailed in Service Level Agreements (SLAs), thus it is not always possible to delay

each job as much as desired. Any violation in SLAs, for example missing a job’s

deadline, results in paying penalty fee that brings additional costs.

Required massive computing power in data centers and its related cost push ser-

vice providers to constantly chase novel methods to reduce their energy cost, and

reducing the energy consumption of large-scale distributed systems has recently been

a hot research topic. Some studies focus on server consolidation by moving virtual ma-

chines across data centers and also consider SLA penalties if the deadline of a certain

job is not satisfied [Buchbinder et al., 2011, Li et al., 2012]. Le et al. [Le et al., 2010]

and Gao et al. [Gao et al., 2012] concentrate on the greenness aspect of data cen-

ters and allow service providers to trade off between the electricity cost and the

carbon footprint. Some studies investigate the data center cooling problem and pro-

Chapter 1: Introduction 5

pose solutions based on workload placement [Moore et al., 2005, Tang et al., 2008].

In recent years, researchers have also investigated the impact of spatio-temporal elec-

tricity price variations on financial cost savings [Qureshi et al., 2009, Ren et al., 2012,

Zhang et al., 2012].

Our focus in this part, however, is not to decrease energy usage but to minimize the

total electricity cost of a geographically distributed data center system by scheduling

incoming batch workload jobs. Above mentioned individual aspects (computational

cost, cooling cost and penalty cost) that constitute the total financial cost of a cloud

data center are tried to be solved in isolation. However, to the best of our knowledge,

no prior work presented a complete cost model incorporating all of the issues.

1.1 Contributions

Contributions of this thesis can be given under two main topics. First is the contri-

butions of our work of task allocation in volunteer computing networks:

• We investigate the problem of allocating tasks in a volunteer computing network

under monetary budget constraints that are set by the peers.

• We formally state the problem and propose various heuristic solutions.

• We investigate the performance of the proposed heuristics through simulations

based on realistic data traces and real-life electricity prices.

• The empirical results indicate significant improvements (up to 30%) in the task

processing capacity of the network relative to an existing baseline.

Second, we list the contributions of our work in energy cost optimization in dis-

tributed cloud data centers:

• We introduce a detailed cost model for geographically distributed cloud data

centers by including IT related server costs, cooling costs and penalties due to

any SLA violation.

6 Chapter 1: Introduction

• We propose two job scheduling heuristics as solution that exploit spatial and

temporal electricity price differences between data centers and ’free cooling’

opportunities by utilizing outside weather.

• We conduct extended experiments in a realistic setting (with real world work-

loads and real electricity prices) using a detailed simulator.

• Our experimental results show that total energy cost of such large scale systems

can be reduced up to 6% using our proposed algorithms depending on SLA

constraints.

1.2 Organization

The rest of the thesis is organized as follows. In Chapter 2, we survey the related

literature in two parts; first is a review of works in volunteer computing domain and

the second is a literature review of energy optimization efforts in large scale distributed

systems. Chapter 3 provides the study of task allocation in volunteer computing

networks under monetary budget constraints, with problem formulation, simulation

setup and experimental results. Similarly, in Chapter 4, we investigate energy cost

aware job scheduling in geographically distributed cloud data centers with a complete

cost model, heuristic solutions, simulation environment and performance results. The

thesis is concluded in Chapter 5.

Chapter 2

RELATED WORK

We provide the literature review in two groups. First group of work is related to

volunteer computing domain and the second group focuses on energy cost optimization

in distributed data centers.

2.1 Volunteer Computing

The dynamics of volunteer computing systems are explained in [Kondo et al., 2007,

Anderson, 2007], focusing on the BOINC middleware system, which provides local

schedulers exploiting resources of the participating hosts such as CPU and memory

resources based on host availability. The schedulers take into account job specific

properties like the length and deadline of the job. This system employs user con-

straints for CPU availability as we employed, but omits the financial costs incurred

on the peers. In our problem, the focus is on the total computational work done by

the peers in the network within given budget constraints.

Estrada et al. [Estrada et al., 2006, Taufer et al., 2007] focus on the availability

and reliability of peer resources in order to determine how to distribute the tasks to

existing peers. To this end, they introduce some threshold-based heuristics. They

simulate their heuristics using the SimBA simulator and compare against a naive

baseline. Different from our local task allocation heuristics, their heuristics work on

the server-side of the system.

There are also some studies and real-life projects focusing on voluntary cloud

computing [Costa et al., 2011, Kondo et al., 2009, Lombraña González et al., 2012,

Himyr et al., 2012]. Basically two sustainability models for voluntary cloud com-

puting paradigm are used: a non-profit volunteer cloud and a commercial volunteer

8 Chapter 2: Related Work

cloud, in which a charity engine model is introduced. The commercial voluntary cloud

includes selling volunteer resources in exchange of some monetary means to other en-

tities in the cloud (e.g., one cent per core-hour resource).1 Even though some lottery

systems are proposed for keeping the existing peers in the system, giving the peers

the option to set monetary budgets on their resources may provide an extra level of

motivation.

2.2 Energy Cost Optimization

Reducing the energy consumption of large-scale distributed systems has been recently

a hot research topic [Barroso and Hölzle, 2009]. A comprehensive comparison of pre-

vious works is listed in Table 2.1. We extracted some identifying features that are

important in optimizing energy consumption and/or energy bill of cloud data centers.

These features are:

• Problem: Is the problem online or offline? The problem type significantly affects

how it is handled.

• Techniques: There are different techniques to follow and the table is grouped

according to these techniques. Abbreviations used for these techniques are as

follows: WS - Workload Scheduling, SOIS - switching off idle servers, CFS

- CPU frequency scaling, DVFS - dynamic voltage frequency scaling, BCD -

battery charge/discharge, SC - server consolidation, TS - thermal storage, OS -

Server Outsourcing.

• Electricity price: Is spatial or temporal electricity price variation exploited?

• Cooling: Is the cooling cost considered?

• Temperature: Is temperature variation taken into account during the cooling

process?

1Charity Engine, http://www.charityengine.com/.

Chapter 2: Related Work 9

• SLA/Penalty: Are service level agreements utilized during problem solving,

especially penalty terms?

• Workload: What type of workload is used for testing proposed solutions?

• Greenness: Is the total energy consumption (not the cost) minimized?

Some recent works try to reduce the total electricity bill of data centers by

taking into account the spatial and/or temporal variation in the electricity prices

[Liu et al., 2011, Sakamoto et al., 2012, Xu et al., 2013, Buchbinder et al., 2011]

and [Garg et al., 2011b, Zhang et al., 2012, Mani and Rao, 2011, He et al., 2012] and

[Yigitbasi et al., 2011, Sadhasivam et al., 2009, Van den Bossche et al., 2010].

Qureshi et al. [Qureshi et al., 2009] is the first to propose exploiting electricity price

variations in order to minimize energy costs in distributed data centers. They utilize

workloads obtained from Akamai, a content delivery network, to perform simula-

tions that illustrate potential financial gains. Ren et. al. [Ren et al., 2012] propose

an efficient online scheduling algorithm named GreFar for batch jobs in geograph-

ically distributed data centers. They consider the metrics of energy cost and fair-

ness, and achieve energy cost savings at the expense of fairness among users. Gao et.

al. [Gao et al., 2012] propose a dynamic workload control algorithm in order to adjust

the trade-off between access latency, carbon footprint and electricity cost according

to changes in request load and carbon footprint. They also propose an upgrade plan

for the data centers due to growth in request loads. Rao et. al. [Rao et al., 2010b]

follow a similar approach to work of [Qureshi et al., 2009] but they exploit a multi-

regional electricity market rather than wholesale market with the same objective

using Brenners algorithm. Yao et. al. [Yao et al., 2012] construct a general frame-

work for power cost reduction by exploiting time and space variations in electric-

ity prices. They work in two time scales; one is for global scheduling of workloads

and the other is for in-data center scheduling. In [Sankaranarayanan et al., 2011],

they investigate heterogeneous data centers that are globally distributed and pro-

pose greedy heuristic solutions for global and local scheduling of incoming requests

10 Chapter 2: Related Work

with the objective of minimizing energy cost using electricity price variations. Le et

al. [Le et al., 2009] and [Le et al., 2010] propose optimization based request distribu-

tion framework aiming to either reduce energy cost by using electricity price variations

or reduce the brown energy consumption in the expense of acceptable cost increases

by dispatching the incoming requests to data centers located near green energy re-

sources. In [Guo et al., 2011] and [Urgaonkar et al., 2011], the authors investigate

cost reduction by using uninterrupted power supply (UPS) units as energy storage

devices in which they charge the UPS units when electricity is cheap and use the

stored energy instead of regular grid when electricity price is high.

Techniques of dynamic voltage frequency scaling, turning off idle servers and

server consolidation have been proposed to reduce the total energy consumption of

cloud data centers and some of these works also consider the cooling related energy

costs [Rao et al., 2010a, Lin and Ng, 2005, Young et al., 2013, Krioukov et al., 2010,

Lin et al., 2011, Chase et al., 2001, Zhang et al., 2013, Mazzucco and Dyachuk, 2012b,

Mazzucco and Dyachuk, 2012a, Stanojevic and Shorten, 2010] and [Wang et al., 2013,

Garg et al., 2011a, Goiri et al., 2012]. Leon et al. [León and Navarro, 2011] aim to

reduce the energy consumption of the allocation of resources to networked appli-

cations by proposing an algorithm that finds an upper bound on energy saving by

optimizing the energy consumption as well as resource requirements of applications.

In [Xu and Liu, 2012], they design an intelligent through filling system for delay tol-

erant jobs in order to achieve cost savings by obeying delay constraints. Dynamic

speed scaling, electricity price diversity and statistical multiplexing are the key con-

tributions of their energy cost efficiency efforts. Li et al. [Li et al., 2012] mathemati-

cally formulate the problem of dispatching job requests to geographically distributed

data centers in order to minimize the overall energy cost. They consider examining

temperature effect on the cooling cost in addition to temporal and spatial electric-

ity price variations. However, they solve the problem only by means of LP solver

like CPLEX for very small cases (three data centers each having only three servers)

and do not propose any solution that can be applied to realistic cases. Shah and

Chapter 2: Related Work 11

Krishnan [Shah and Krishnan, 2008] show that, in a globally connected data cen-

ter network, dynamic optimization of the thermal workloads based on local weather

patterns can reduce the environmental burden by up to 30%.

In addition to studies examining variations in electricity prices, there exist some

works [Moore et al., 2005, Pakbaznia and Pedram, 2009, Wang et al., 2011] and

[Weerts et al., 2012] that aim at reducing energy consumption by enhancing cooling

units and their placement. They are making use of economization systems in which

they try to exploit as much free resources (air, water, etc.) from the environment as

possible to reduce the cost of cooling efforts.

12 Chapter 2: Related Work
T

ab
le

2.
1:

L
it

er
at

u
re

R
ev

ie
w

C
om

p
ar

is
on

R
e
fe

r
e
n
c
e

P
r
o
b
le

m
T
e
c
h
n
iq

u
e
s

E
le

c
t
r
ic

it
y

p
r
ic

e
C
o
o
li
n
g

T
e
m

p
e
r
a
t
u
r
e

S
L
A

/
P
e
n
a
lt
y

W
o
r
k
lo

a
d

G
r
e
e
n
n
e
s
s

[G
a
o

e
t

a
l.
,

2
0
1
2
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

W
e
b

−

[R
e
n

e
t

a
l.

,
2
0
1
2
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

B
a
tc

h
−

[R
a
o

e
t

a
l.
,

2
0
1
0
b
]

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

W
e
b

−

[L
iu

e
t

a
l.
,

2
0
1
1
]

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

W
e
b

+

[Y
a
o

e
t

a
l.
,

2
0
1
2
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

B
a
tc

h
−

[S
a
k
a
m

o
to

e
t

a
l.

,
2
0
1
2
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

W
e
b

−

[L
e

e
t

a
l.
,

2
0
0
9
]

O
ffl

in
e

W
S

T
e
m

p
o
ra

l
−

−
−

W
e
b

+

[S
a
n
k
a
ra

n
a
ra

y
a
n
a
n

e
t

a
l.
,

2
0
1
1
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

W
e
b

−

[X
u

e
t

a
l.
,

2
0
1
3
]

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
+

+
−

B
a
tc

h
,

W
e
b

−

[B
u
c
h
b
in

d
e
r

e
t

a
l.
,

2
0
1
1
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

B
a
tc

h
−

[L
e

e
t

a
l.
,

2
0
1
0
]

O
n
li
n
e
,

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

W
e
b

+

[G
a
rg

e
t

a
l.
,

2
0
1
1
b
]

O
n
li
n
e

W
S

S
p
a
ti

a
l

−
−

+
B

a
tc

h
+

[Q
u
re

sh
i

e
t

a
l.
,

2
0
0
9
]

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

W
e
b

−

[Z
h
a
n
g

e
t

a
l.

,
2
0
1
2
]

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
+

−
+

W
e
b

−

[M
a
n
i

a
n
d

R
a
o
,

2
0
1
1
]

O
n
li
n
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

W
e
b

−

[H
e

e
t

a
l.
,

2
0
1
2
]

O
n
li
n
e
,

O
ffl

in
e

W
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

R
a
n
d
o
m

+

[Y
ig

it
b
a
si

e
t

a
l.

,
2
0
1
1
]

O
n
li
n
e

W
S

−
−

−
−

B
a
tc

h
,

W
e
b

+

[S
a
d
h
a
si

v
a
m

e
t

a
l.
,

2
0
0
9
]

O
n
li
n
e

W
S

−
−

−
+

B
a
tc

h
,

W
e
b

−

[V
a
n

d
e
n

B
o
ss

c
h
e

e
t

a
l.
,

2
0
1
0
]

O
ffl

in
e

W
S

−
−

−
+

B
a
tc

h
−

[X
u

a
n
d

L
iu

,
2
0
1
2
]

O
ffl

in
e

W
S
,

C
F

S
S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

B
a
tc

h
−

[R
a
o

e
t

a
l.
,

2
0
1
0
a
]

O
n
li
n
e

W
S
,

C
F

S
,

S
O

IS
S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

W
e
b

−

[U
rg

a
o
n
k
a
r

e
t

a
l.

,
2
0
1
1
]

O
n
li
n
e

B
C

D
S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

R
a
n
d
o
m

−

[G
u
o

e
t

a
l.
,

2
0
1
1
]

O
ffl

in
e

B
C

D
S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
−

T
h
e
o
re

ti
c
a
l

−

[L
i

e
t

a
l.
,

2
0
1
2
]

O
ffl

in
e

W
S
,

C
F

S
,

S
O

IS
S
p
a
ti

a
l,

te
m

p
o
ra

l
+

+
−

W
e
b

−

[L
in

a
n
d

N
g
,

2
0
0
5
]

O
ffl

in
e

W
S
,

D
V

F
S

−
−

−
+

R
a
n
d
o
m

+

[Y
o
u
n
g

e
t

a
l.
,

2
0
1
3
]

O
n
li
n
e

D
V

F
S

−
−

−
+

B
a
tc

h
−

[K
ri

o
u
k
o
v

e
t

a
l.
,

2
0
1
0
]

O
n
li
n
e

W
S
,

S
O

IS
−

−
−

−
W

e
b

+

[L
in

e
t

a
l.
,

2
0
1
1
]

O
n
li
n
e

S
O

IS
−

−
−

−
W

e
b

−

[C
h
a
se

e
t

a
l.
,

2
0
0
1
]

O
n
li
n
e

S
O

IS
−

−
−

+
W

e
b

−

[Z
h
a
n
g

e
t

a
l.

,
2
0
1
3
]

O
ffl

in
e

S
O

IS
−

−
−

−
B

a
tc

h
,

W
e
b

+

[M
a
z
z
u
c
c
o

a
n
d

D
y
a
c
h
u
k
,

2
0
1
2
b
]

O
n
li
n
e

S
O

IS
−

+
−

+
B

a
tc

h
,

W
e
b

+

[M
a
z
z
u
c
c
o

a
n
d

D
y
a
c
h
u
k
,

2
0
1
2
a
]

O
n
li
n
e

S
O

IS
−

+
−

−
W

e
b

+

[S
ta

n
o
je

v
ic

a
n
d

S
h
o
rt

e
n
,

2
0
1
0
]

O
ffl

in
e

C
F

S
T

e
m

p
o
ra

l
−

−
−

R
a
n
d
o
m

−

[W
a
n
g

e
t

a
l.
,

2
0
1
3
]

O
n
li
n
e

S
C

S
p
a
ti

a
l,

te
m

p
o
ra

l
−

−
+

N
o

In
fo

−

[G
a
rg

e
t

a
l.
,

2
0
1
1
a
]

O
n
li
n
e

S
C

−
−

−
+

B
a
tc

h
,

W
e
b

−

[G
o
ir

i
e
t

a
l.
,

2
0
1
2
]

O
n
li
n
e

S
C

,
O

S
−

−
−

+
B

a
tc

h
,

W
e
b

−

[S
h
a
h

a
n
d

K
ri

sh
n
a
n
,

2
0
0
8
]

O
n
li
n
e
,

O
ffl

in
e

W
S

S
p
a
ti

a
l

+
+

−
R

a
n
d
o
m

+

[M
o
o
re

e
t

a
l.
,

2
0
0
5
]

O
n
li
n
e

W
S

−
+

+
−

B
a
tc

h
−

[P
a
k
b
a
z
n
ia

a
n
d

P
e
d
ra

m
,

2
0
0
9
]

O
n
li
n
e

S
C

−
+

−
−

N
o

in
fo

+

[W
a
n
g

e
t

a
l.
,

2
0
1
1
]

O
n
li
n
e

T
S

S
p
a
ti

a
l,

te
m

p
o
ra

l
+

−
−

R
a
n
d
o
m

−

[W
e
e
rt

s
e
t

a
l.
,

2
0
1
2
]

O
n
li
n
e

S
C

−
+

−
−

R
e
a
l-

ti
m

e
+

Chapter 3

TASK ALLOCATION IN VOLUNTEER COMPUTING

NETWORKS UNDER MONETARY BUDGET

CONSTRAINTS

In this chapter, we first formally state the investigated task allocation problem in

volunteer computing networks and propose heuristic solutions. Then, we explain our

simulation setup and provide the comparative performance results of our proposed

algorithms.

3.1 Problem Specification

We consider a volunteer computing network consisting of N peers and a central dis-

patcher. The dispatcher can exploit the computational resources of the peers to per-

form certain tasks. For example, some data can be transferred from the dispatcher

to a peer for processing, and the peer may return some output data that it produced

back to the dispatcher. We assume that the main computational overhead is in the

processing of the tasks by the peers and the communication overheads are negligi-

ble since this is typically the case in practice. In our problem specification, we also

omit the financial costs potentially incurred by Internet service providers due to the

allocated network bandwidth.

Each peer i, when joining the network for the first time, specifies a personal

monetary budget Bi, which indicates the maximum electricity bill increase that the

peer can afford while it contributes to the processing of the tasks assigned by the

dispatcher. This budget forms an upper bound on the monetary cost the network is

allowed to incur on the peer due to the exploitation of the computational resources

14
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

of the peer. The budgets are defined over time periods, each with a fixed length of

T units of time.1 The dispatcher keeps track of an estimate of the monetary cost

incurred on each peer during the current time period. The cost estimates are reset to

zero at the end of every time period. The computational resources of a peer can be

used only if its monetary budget is not yet fully consumed within the current time

period. For example, assuming weekly sessions starting on Monday, if the budget of

a peer is reached on Friday, the peer’s resources cannot be exploited in the remaining

two days of the week. However, the peer becomes available again by the start of the

next week.

To simplify the problem definition, we assume that the time is partitioned into unit

time intervals, i.e., the time is not continuous but discrete. More specifically, the time

period T is divided into T/u time slots, each of length u time unit. The dispatcher

can allocate a time slot [t, t+u) either entirely or may decide not to allocate it at all.

A peer can process the tasks assigned to itself independent of the other peers and

tasks. Therefore, the allocation problem we will describe can be optimized separately

for each peer.

When subscribing to the network, the peers let the dispatcher know about the

properties of their computational resources (e.g., the number of cores and the CPU

clock frequency).2 Also, when joining the network, the peers independently set a

minimum and a maximum CPU utilization threshold, which are denoted by mi and

Mi, respectively. Moreover, at the beginning of every time slot [t, t+u), through

a locally running daemon, each peer i lets the dispatcher know about its expected

CPU utilization Ui(t) in that time slot. The CPU utilization Ûi(t) due to the tasks

assigned by the dispatcher is bounded by max(Mi−Ui(t), 0), i.e., the dispatcher fully

utilizes the CPU of the peer without exceeding Mi. The tasks can be allocated on

the computational resources of peer i only if Ui(t) < mi, i.e., the expected CPU

utilization in the given time slot must be less than the minimum utilization threshold

1In our work, we assume that the budgets are set on a weekly basis. Some of the solutions
presented in Section 3.2 will be based on this assumption.

2We assume that each peer has a single CPU with varying clock frequencies.

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 15

value. Otherwise, the peer’s resources are not used since the peer is assumed to be

actively using them. Under these constraints, we have

Ûi(t) =

Mi − Ui(t), mi < Ui(t) ≤Mi,

0, otherwise.

(3.1)

We also assume that the dispatcher has access to the information about the current

and historical electricity prices for each peer and exploits the fact that the electric-

ity prices show temporal variation [Kayaaslan et al., 2011, Qureshi et al., 2009]. The

dispatcher, however, has no knowledge of the future electricity prices. We denote by

Ei(t) the price of the electricity for peer i in time slot [t, t+u). If the computational

resources of peer i are used by the network during the time slot [t, t+u), the increase

Ii(t) in the electricity bill of peer i is estimated by

Ii(t) = Ûi(t)×Wi × Ei(t)× u, (3.2)

where Wi denotes the power consumption of peer i’s CPU in watts.

For a given peer and a particular time slot, the utility is measured by the compu-

tational work done by the peer in that time slot. The computational work is defined

in terms of the clock frequency of the peer and the expected CPU utilization due to

execution of the tasks issued by the dispatcher in the given time slot. More formally,

the computational work done by peer i in time slot [t, t + u) is denoted by Ji(t) and

defined as

Ji(t) = Ûi(t)× Fi, (3.3)

where Fi denotes the CPU clock frequency of peer i.

Given the above-mentioned definitions and notations, which are summarized in

Table 3.1, our objective is to maximize

N∑
i=1

bT/uc∑
t=0

Ji(t), (3.4)

subject to
bT/uc∑
t=0

Ii(t) ≤ Bi, for 1 ≤ i ≤ N. (3.5)

16
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

Table 3.1: System parameters

Parameters Symbol

Number of peers in the network N

Monetary budget of peer i Bi

Time period after the monetary budgets of peers are reset T

Length of a unit time slot u

Increase in the electricity bill of peer i in time slot [t, t+u) Ii(t)

Electricity price for peer i in time slot [t, t+u) Ei(t)

Expected CPU utilization of peer i in time slot [t, t+u) Ui(t)

Maximum CPU utilization threshold for peer i Mi

Minimum CPU utilization threshold for peer i mi

CPU clock frequency of peer i Fi

Power consumption of peer i’s CPU in watts Wi

In other words, the goal is to maximize the total amount of computational work done

in a given time period while respecting the monetary budget constraints set by the

peers.

3.2 Solutions

In this section, in order to simplify the presentation, we refer to the time slots as

tasks. This is because, in our problem definition, the time is discretized into time

slots and each time slot is either fully allocated for processing tasks or not allocated

by the dispatcher. We assume that the dispatcher has infinitely many tasks. The goal

is to determine in which time slots to allocate the computational resources of each

peer, rather than how to schedule individual computational tasks for execution.

We note that, if perfect knowledge of future electricity prices is available, our

task allocation problem can be formulated as the 0-1 knapsack problem. In this

formulation, the knapsack value corresponds to the monetary budget of the peer and

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 17

the items correspond to the tasks (time slots). An item’s weight corresponds to the

cost of allocating the respective task, i.e., occupying the resources of the peer during

the respective time slot (see Eq. 3.2). The value of an item is determined by the work

done in the respective time slot (see Eq. 3.3).

In our scenario, naturally, the dispatcher has no information about the future

electricity prices. The time slots must be allocated on-the-fly using only the past

electricity price information. Consequently, our problem reduces to the online knap-

sack problem, where the item weights and values are not known beforehand. In our

case, we also have an additional peer availability constraint.

The online knapsack problem is first studied in [Marchetti-Spaccamela and Vercellis, 1995]

and its solution is applied to different problems, including the auction bidding prob-

lem [Zhou et al., 2008, Zhou and Naroditskiy, 2008] and the knapsack secretary prob-

lem [Babaioff et al., 2007]. The problem is known to be NP-hard [Babaioff et al., 2007]

and hence there is no polynomial-time algorithm for an optimal solution. Since the

online knapsack problem is NP-hard, our task allocation problem is also NP-hard.

Hence, heuristics play an important role in finding solutions. In the rest of the sec-

tion, we present some heuristic solutions for our problem.

3.2.1 Algorithms

Naive Baseline (Baseline)

This approach does not take into account the temporal variation in the electricity

prices. A time slot is allocated by the dispatcher if the peer’s computational resources

are available in that time slot, i.e., whenever the peer is online and the minimum

CPU utilization constraint set by the peer is satisfied (i.e., Ui(t) < mi must hold).

In this approach, since the time slots are allocated without considering the price of

the electricity, there is the risk of using the peers’ computational resources when the

electricity price is high. Consequently, the monetary budgets of the peers may be

quickly exhausted, potentially reducing the amount of work done by the peers.

18
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

Algorithm 1 A generic algorithm for the heuristic solutions that rely on the expected

electricity price computed using the past electricity price information.

totalWork ← 0

t← 0

while t < T do

for i = 0 to N do

expectedPrice← calculateExpectedPrice(i, t)

if Ei(t) < expectedPrice then

if Ii(t) ≤ Bi then

if Ui(t) < mi(t) then

totalWork ← totalWork + Ûi(t)× Fi

Bi ← Bi − Ii(t)

i← i + 1

t← t + u

return totalWork

Solutions Based on the Expected Electricity Price

The main idea behind this class of heuristics is to exploit the past electricity prices to

decide whether the price of the electricity currently consumed by the peer is relatively

high or not. The techniques compute an expected electricity price value based on the

price data observed in the past. To decide whether the current time slot should be

allocated for processing tasks, the electricity price estimated for the current time slot

is compared against the expected electricity price value. If the current electricity price

is lower than that value, the time slot is allocated; otherwise, it is not allocated. A

generic algorithm for this class of heuristics is provided in Algorithm 1. We summarize

below three alternative approaches for computing the expected electricity price.

Average of Yesterday (Yesterday): The expected electricity price is computed by

averaging the sample price values observed on the previous day. For example, if the

current day is Wednesday, the expected price is computed by taking the average of

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 19

price values sampled from Tuesday. This technique exploits the fact that prices do

not differ too much between consecutive days, i.e., it exploits the temporal locality in

electricity prices.

Past Average of Today (SameDayHistory): The expected electricity price is com-

puted as the average of the electricity prices observed on the previous occurrences

of the current day of the week. For example, if the current day is Wednesday, the

average electricity price of all Wednesdays in the past is used as the expected price.

The rationale behind this technique is that the electricity prices tend to be similar on

the same day of the week, i.e., it exploits the weekly periodicity of prices.

Average of Entire History (EntireHistory): In this technique, the expected elec-

tricity price is computed as the average price value over the entire price history. This

technique is based on the expectation that all data available about the past electricity

prices would be useful.

Since the allocation decisions are made in run-time based on a simple compari-

son operation, the running time complexity of the above-mentioned heuristics is O(1).

Herein, we also briefly elaborate on the availability of competitive bounds. Our heuris-

tics are deterministic online algorithms, which are often compared with their offline

versions to define competitive bounds. However, in its general form, there is no com-

petitive deterministic algorithm for the online knapsack problem [Böckenhauer et al., 2012].

Hence, it is not possible to prove a competitive ratio for our heuristics.

History Repeats (HistoryRepeats)

This heuristic tries to exploit the weekly repetition in the electricity prices. We com-

press the entire price data into a single week of data by computing an average value

for each hour in a week. The assumption is that the electricity prices of the current

week will be identical to these aggregate price values. Under this assumption, the

remaining time slots of the current week are stored in a candidate list in increasing

order of their estimated electricity prices. The candidate list is traversed starting

from the time slot with the lowest price towards the time slot with the highest price.

20
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

Algorithm 2 Algorithm for the HistoryRepeats heuristic.

totalWork ← 0

t← 0

period← determinePeriod()

sortLastWeekElectricityPrice()

while t < T do

for i = 0 to N do

if T mod period then

candidateList← updateCandidateList(i, t)

if (i, t) ∈ candidateList then

if Ii(t) < Bi then

if Ui(t) < mi(t) then

totalWork ← totalWork + Ûi(t)× Fi

Bi ← Bi − Ii(t)

i← i + 1

t← t + u

return totalWork

At each step in the traversal, if the cost of the traversed time slot is less than the

remaining budget, it is marked to indicate its suitability in terms of the electricity

price and its cost is subtracted from the remaining budget. The traversal stops when

a time slot whose cost exceeds the remaining budget is encountered. Later, when

making allocation decisions, the current time slot is allocated for running tasks only

if it is among the marked slots in the candidate list. The candidate list is periodi-

cally updated since it becomes outdated in time. The above-mentioned procedure is

illustrated in Algorithm 2. Updating the candidate list, in the worst case, requires

sorting a list of T/u items. All online allocation decisions between two consecutive

updates can be made in constant time.

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 21

Online Knapsack (OnlineKnapsack)

In this solution, we adapt the algorithm proposed in [Zhou et al., 2008], which has

two assumptions about the input data: i) the weight of each item is much smaller

than the capacity of the knapsack, i.e., Ii(t)�Bi, and ii) the value/weight ratio of

each item is bounded both from above and below, i.e., L ≤ Ji(t)/Ii(t) ≤ U , for all

t. These assumptions enable the proposed algorithm to have a constant competitive

ratio of ln (U/L)+1. In our case, we also have the peer availability constraint given

in Eq. 3.5. To capture this constraint, we modify the original algorithm such that

the U and L values are used along with the remaining budget in order to determine

a threshold value. The decision of allocating the current time slot is made based on

a comparison between the gain ratio in the current time slot and the threshold value

calculated by the function given in [Zhou et al., 2008]. The algorithm allows the

system to aggressively allocate time slots at the beginning while most of the budget

is available. The system becomes more selective in time as the remaining budget gets

smaller.

Oracle (Oracle)

In order to set an upper bound on the performance of the proposed heuristics, we

design an Oracle algorithm that has access to the future electricity prices and the

future CPU utilization values of the peers. As explained before, the optimum solution

of our problem cannot be found in polynomial time. However, since Oracle is assumed

to have access to the future electricity prices, the problem is transformed into the

traditional 0-1 knapsack problem, for which there is a pseudo-polynomial algorithm

that finds an optimum solution.

3.3 Simulation Setup

To evaluate the performance of the proposed heuristics, we simulate a volunteer com-

puting network. The simulator and the heuristics are implemented in C++. In the

22
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day of the week

0

1

2

3

4

5

El
ec

tri
ci

ty
 p

ric
e

(c
en

ts
/k

W
h)

Spring
Fall

Figure 3.1: Daily change in the average electricity prices for spring and fall.

rest of the section, we provide the details of our simulation.

3.3.1 Electricity Prices

In our simulations, we use real-time electricity prices obtained from ComEd,3 an elec-

tricity provider located in the USA. We collected electricity prices from two different

seasons in 2012 (spring and fall) to evaluate the relative performance of each heuristic

under varying electricity price data. In particular, the electricity prices are sampled

on an hourly basis over a period from 2 April 2012 to 1 July 2012 for the spring season

and from 3 September 2012 to 2 December 2012 for the fall season. The last week of

each season is used for evaluation while earlier weeks provide the historical price data

for some of the heuristics. In Fig. 3.1, we display the average electricity price of each

days in a week in our three-month data set. According to the figure, the prices are

somewhat correlated between spring and fall, the former having slightly lower prices.

We assume that the peers are located in six different countries: China, Germany,

3https://www.comed.com/customer-service/rates-pricing/real-time-pricing/Pages/

rate-besh-pricing-tool.aspx

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 23

0 2 4 6 8 10 12 14 16 18 20 22
Hour of the day

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 a
ct

iv
e

pe
er

s

Active peers

0

2

4

6

8

10

El
ec

tri
ci

ty
 p

ric
e

(c
en

ts
/k

W
h)

Electricity price (Spring)
Electricity price (Fall)

Figure 3.2: Hourly change in electricity prices and the fraction of active peers.

Russia, Turkey, the UK, and the USA. Since the obtained electricity price distribution

is representative only for the USA, for each of the remaining countries, we linearly

scale this distribution by using the average electricity price in that country. The

country-specific average electricity price values are obtained from the Europe’s Energy

Portal4 and U.S. Energy Information Administration.5 Based on the average price

of the electricity, the selected countries can be sorted in decreasing price order as

Germany, the UK, China, Turkey, the USA, and Russia.

3.3.2 Peers

We assume a volunteer computing network consisting of 10,000 peers. The peers

are assumed to be distributed in the previously mentioned countries such that each

country receives peers proportional to its presence in the Internet.6 Hence, in our

simulations, we use 5,000, 800, 700, 450, 550, and 2,500 peers from China, Germany,

Russia, Turkey, the UK, and the USA, respectively. The minimum and maximum

4http://www.energy.eu/

5http://www.eia.gov/countries/prices/electricity_households.cfm

6http://www.internetworldstats.com/top20.htm

24
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

CPU utilization constraints (i.e., the mi and Mi values) of the peers are selected from

a uniform distribution within a range of 15%–20% and 60%–75%, respectively. The

CPU clock frequency values (Fi) are sampled from a uniform distribution in the range

of 1.7 GHz and 3.2 GHz. The power consumption values (Wi) are taken from the

website of Intel, taking into account the clock frequencies.7

We also simulate the peers’ availability in the volunteer computing network. We

assume that this mainly depends on the time of the day. To this end, we rely on the

measurements provided in [Bhagwan et al., 2003], where the peer availability is shown

to have a diurnal pattern. In Fig. 3.2, we display the hourly change in the electricity

prices both in spring and fall seasons together with the fraction of peers that are

online. According to the figure, the number of peers makes two separate peaks while

the electricity prices have a single peak. We observe a negative correlation in night

time: the number of online peers increases while the electricity price decreases until

the midnight.

3.3.3 Budgets

An important parameter in our problem is the monetary budgets set by the peers. In

practice, the budgets may be affected by many factors, the socio-economic and cultural

factors being the most prominent. In this work, since there is no prior published

finding in our context, we performed a small-scale user study to determine a reasonable

range for the budget values. The study involved 100 participants from Koc University,

including undergraduate students, graduate students, and some faculty members.

First, we briefly explained the participants what a volunteer computing network is and

how it operates using SETI@Home as an example. Then, the participants were asked

how much weekly budget they would be willing to allocate voluntarily if they were to

join SETI@Home network. We provided them a range of budget options between one

cent and 75 cents (the latter is approximately the cost in case the system utilizes a

peer’s resources in every available time slot). As a result of this study, we decided to

7http://ark.intel.com/

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 25

vary the budget values according to a normal distribution with mean values varying

between three and ten U.S. cents. If it is not stated otherwise, the budget values are

set to five cents.

3.3.4 Other Parameters and Performance Metrics

We assume that the start of the week is Monday. As the length of a unit time slot (u),

we use one minute. In the simulation of the HistoryRepeats heuristic, we update

the candidate list every six hours.

All reported results are averages of ten runs. As the primary performance metric,

we report the total amount of computational work done by the peers (see Eq. 3.3).

As secondary metrics, we report the fraction of peers whose budgets are consumed

less than a certain threshold and the total electricity bill incurred by the volunteer

computing network.

3.4 Experimental Results

In Fig. 3.3 and Fig. 3.4 we compare the performance of our heuristics in terms of

the amount of work done by the peers for varying monetary budget values. As ex-

pected, all of the proposed heuristics perform better than Baseline and worse than

Oracle. On average, the heuristics relying on comparisons with expected electric-

ity price (Yesterday, SameDayHistory, and EntireHistory) achieve slightly better

performance than the Online Knapsack and HistoryRepeats algorithms for both

seasons.

According to Fig. 3.3, SameDayHistory is the best performing heuristic. For the

spring season, the total computational work yield by this heuristic is 19% higher than

that yield by the Baseline and 14% less than that of Oracle, on average. According

to Fig. 3.4, for the fall season, Yesterday provides the best performance with 20%

higher computational work compared to Baseline and 8% less work compared to

Oracle, on average. Moreover, we observe that the total amount of computational

work done by each algorithm in the spring season is higher than the work done in the

26
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

3 4 5 6 7 8 9 10
Budget (cents/week)

0

5

10

15

20

25

30

35

40

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.3: Computational work distribution with respect to weekly budgets in Spring

fall season. This is due to the relatively lower electricity prices in the spring season

(see Fig. 3.1). These reported performance improvements are average values over all

budget scenarios. In fact, the performance of our heuristics tends to be better when

lower budget values are used. For example, when the mean budget value is set to three

cents, in fall season, the Yesterday heuristic improves over the total computational

work in case of Baseline by 34% and it is only 9% lower than the optimum solution.

As the budget values get higher, the performance gap between the proposed heuris-

tics and the baseline starts to diminish. This is because higher budget values imply

more flexibility in allocating the time slots while heuristics still limit them from being

allocated. In other words, it becomes less important to allocate time slots in which

the electricity prices are low. In an extreme case, if we set the budget values to

infinity, Baseline would attain the optimum result since it would allocate all avail-

able slots without any budget constraint. However, this does not necessarily mean

that the performance of the proposed heuristics decreases with higher budget values

because, while the performance of Baseline improves relative to the heuristics, in

the meantime, the performance gap between the heuristics and the optimum solution

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 27

3 4 5 6 7 8 9 10
Budget (cents/week)

0

5

10

15

20

25

30

35

40

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.4: Computational work distribution with respect to weekly budgets in Fall

(Oracle) is also closed.

In Table 3.2, we display the fraction of peers whose budget is consumed below

a certain rate. According to the table, HistoryRepeats leads to the largest frac-

tion of peers whose budgets are not fully consumed, i.e., it cannot effectively utilize

the budgets. This is the main reason behind the relatively poor performance of this

heuristic. OnlineKnapsack is observed to consume not all but most of the budgets.

This is because the algorithm makes the decision of allocating a time slot by taking

into account the fraction of budget that is already spent and allocates the time slots

more aggressively when there is enough remaining budget. Nevertheless, it still does

not fully utilize the budgets, especially in the spring season. The remaining heuris-

tics follow a similar pattern and almost fully utilize the budgets, resulting in better

performance. The budget utilization does not differ much between the spring and fall

seasons. Both Baseline and Oracle fully utilize the available budgets.

In Fig. 3.5 and Fig. 3.6, we demonstrate the trade-off between the total amount

of work done and the total electricity bill of the peers for the spring and fall sea-

sons, respectively. As expected, Baseline leads to the lowest amount of work and

28
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

Table 3.2: Percentage of peers whose budget consumption is below a certain rate

Budget consumption

Spring Fall

Heuristics <60% <70% <80% <90% <60% <70% <80% <90%

Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Yesterday 0.00 0.00 0.04 0.18 0.00 0.00 0.02 0.13

SameDayHistory 0.00 0.07 0.41 1.10 0.00 0.00 0.01 0.09

EntireHistory 0.00 0.16 0.60 1.58 0.00 0.00 0.00 0.01

HistoryRepeats 0.00 0.01 0.60 8.03 0.00 0.24 2.07 11.41

OnlineKnapsack 0.00 0.00 0.11 7.99 0.00 0.00 0.00 2.06

Oracle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

the highest electricity bill since it is completely blind to the variation in electricity

prices and fully consumes the budget of each peer. In the fall season, the Yesterday,

EntireHistory, and HistoryRepeats heuristics yield the largest amount of work

while HistoryRepeats achieves a similar performance with a much lower electricity

bill. This also holds for OnlineKnapsack. Although Oracle attains the best per-

formance in terms of the amount of work done, it has a rather poor performance in

reducing the total electricity bill since this is not the main optimization objective in

our problem.

Fig. 3.7 presents the computational work distribution with respect to countries.

We observe that, although the number of peers participating from Turkey is less than

those from Germany and the UK (see the discussion in Section 3.3.2), the computa-

tional work done by the peers in Turkey is much more than the work done by the

peers in Germany and the UK. This is a consequence of the electricity price differ-

ences between these countries: Germany and the UK are the two countries having

the most expensive electricity prices and Turkey has cheaper electricity compared to

them. Consequently, the dispatcher is likely to allocate more time slots from the peers

in Turkey. The same outcome is observed when Russia and Germany are compared.

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 29

475 480 485 490 495 500 505
Total electricity bill ($)

12

14

16

18

20

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.5: The total electricity bill of the peers versus the amount of work done in
Spring

475 480 485 490 495 500 505
Total electricity bill ($)

12

14

16

18

20

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.6: The total electricity bill of the peers versus the amount of work done in
Fall

30
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

USA Germany Russia Turkey China UK Total
Countries

0

3

6

9

12

15

18

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.7: Computational work distribution with respect to countries.

Even though Germany has two orders of magnitude more peers than Russia, the total

computational work done by the peers from Russia is three times larger than the

work done by the peers from Germany. It is also important to note that, although

the OnlineKnapsack algorithm performs poorly, it is the best performing heuristic in

Germany, where the electricity price is the most expensive.

Fig. 3.8 shows the dissection of the total amount of work among the days of the

week. We observe that most time slots are allocated on Monday. Baseline is observed

to consume all of the available budget before Thursday. The heuristics relying on the

expected electricity price try to allocate tasks in early days, but are unable to extend

the task allocation to Sunday, which has a relatively low average electricity price (see

Fig. 3.1). This is the main reason for these heuristics to fall behind Oracle, which

allocates most tasks on Sunday. HistoryRepeats is observed to allocate a relatively

large fraction of the time slots on Sunday. This is because the heuristic tends to skip

previous days without allocating many tasks. Since the number of peers available on

Sunday is not sufficient enough for the heuristic to allocate all remaining tasks, it fails

to fully utilize the budgets. We had already pointed to this under-utilization issue

Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget
Constraints 31

Monday Tuesday Wednesday Thursday Friday Saturday Sunday Total
Day of the week

0

3

6

9

12

15

18

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.8: Computational work distribution with respect to the day of the week.

while discussing the results in Table 3.2.

In Fig. 3.9, we display the hourly computational work distribution. This anal-

ysis gives more insight about the performance differences between the heuristics

than the previous analysis. The two well performing heuristics (Yesterday and

EntireHistory) mostly exploit the resources at night time between 22:00 and 04:00

when the electricity prices are relatively lower. However, only a limited number

of slots can be allocated during the night since there are relatively fewer online

peers. HistoryRepeats performs closer to these two heuristics. As discussed before,

however, it needs more effort to fully utilize peer budgets to get closer to Oracle.

SameDayHistory seems to fall behind the other heuristics since it does not effectively

utilize night times. Baseline and OnlineKnapsack are observed to allocate the time

slots in a uniform manner in each hour, i.e., they are unable to distinguish cheaper

time slots. That is the reason why these heuristics perform worse than the other

heuristics.

Although the main objective in our problem is to maximize the total compu-

tational work done by the peers, we observed that, as a by-product, some heuris-

32
Chapter 3: Task Allocation in Volunteer Computing Networks under Monetary Budget

Constraints

0:00-3:00 3:00-6:00 6:00-9:00 9:00-12:00 12:00-15:00 15:00-18:00 18:00-21:00 21:00-00:00 Total
Hours of the day

0

3

6

9

12

15

18

W
or

k
(x

 m
ill

io
n)

Baseline
Yesterday
SameDayHistory
EntireHistory
HistoryRepeats
OnlineKnapsack
Oracle

Figure 3.9: Computational work distribution with respect to the hours of the day.

tics also decreased the electricity bill of the peers relative to Baseline. For exam-

ple, when the mean of the peer budgets is set to five cents in the fall season, the

HistoryRepeats heuristic led to $1,770 decrease in the weekly electricity bill of the

peers compared to Baseline. Assuming a network involving one million participants

(e.g., SETI@Home), this implies that we can achieve 1, 770×100=$177, 000 saving per

week. Projecting this to a whole year, the saving becomes 177, 000×52=$9, 204, 000

per year.

Chapter 4

ENERGY COST AWARE JOB SCHEDULING IN

GEOGRAPHICALLY DISTRIBUTED CLOUD DATA

CENTERS

In this chapter, we formally state the investigated request dispatching problem as a

linear programming problem and propose polynomial time heuristic solutions. Then,

we present our simulation setup and provide results of our conducted simulations with

performance analysis of proposed algorithms.

4.1 Problem Specification

In this section, we formally state our linear optimization problem. Table 4.1 lists the

parameters and system variables used in the formulation.

Given N geographically distributed data centers, our goal is to minimize the total

cost of a cloud service provider which has J jobs to run during the given time period.

Service provider also need to respect QoS requirements stated in SLAs and agreed to

pay penalty if any violation occurs. The total cost of the distributed data centers is

defined as:

N∑
i=1

Etotal
i + Peni (4.1)

where Etotal
i is the total operational cost of data center i and Peni is the total

penalty paid in data center i. We define total operational cost as:

Etotal
i = EIT

i × PUE(Ti) (4.2)

We introduce economization techniques that make use of cool and dry outside

34
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

weather to reduce cooling related cost. We utilize the formula given in [Xu et al., 2013]

that calculates the power usage effectiveness (PUE) values as a function of outside

temperature. The PUE of DC i with outside temperature Ti is defined as:

PUE(Ti) = 7.1705× 10−5× T 2
i + 0.0041× Ti + 1.0743 (4.3)

EIT
i indicates the total IT cost of data center i and is calculated as:

EIT
i =

∑
s∈Si

bT/uc∑
t=0

Ps,t × Ei(t)× u (4.4)

where Ei(t) is the unit electricity cost at data center i and Ps,t is the power

consumption of server s in time slot [t, t+u). We calculate Ps,t in terms of idle power

usage of a server, P idle
s , and power usage of that server at peak, P peak

s . We make use

of the equation below reported in [Ren et al., 2012] to calculate that power usage.

Ps,t = P idle
s + (P peak

s − P idle
s)× xs,t (4.5)

and xs,t is a decision variable to indicate whether server s is busy operating in

time slot [t, t+u) that will help us to determine power usage of that server:

xs,t =

1, if server s is busy operating

0, otherwise.

(4.6)

Since SLAs between service providers and customers are classified documents, we

introduce a penalty rate parameter to fine providers if they are unable to serve a

customer’s job within its agreed deadline. Normally, penalty fee defined over revenue

agreed in SLA. However, in our system we do not include revenues, but we assume that

revenue of a certain job is proportional to the cost of running that job, thus we apply

penalty fee over cost of running that particular job instance. Later in Sec. 3.3, we

define different penalty rates, prate, and policies and observe their respective outcomes.

Total penalty paid in a data center i is defined as the penalty sum of all delayed jobs

in that data center:

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 35

Peni =
J∑

j=1

∑
s∈Si

bT/uc∑
t=0

Penj,s,t (4.7)

where Penj,s,t is the penalty cost of job j which is scheduled to run on server s in

time slot [t, t+u) and it is calculated as:

Penj,s,t =

Tsj+Tj,s∑
t=Tsj

(Ps,t × Ei(t)× u× rj,s)× prate (4.8)

where rj,s is a decision variable indicating whether job j is dispatched to server s

and its deadline, Tdj, is missed:

rj,s =

1, if Tsj + Tj,s > Tdj and j is assigned to s

0, otherwise.

(4.9)

and Tsj is the submission time of job j and Ei(t) is the unit electricity price

in data center i. In addition to that, data centers may have servers with different

configurations (i.e. heterogeneous), thus time of running a job j on a server s, Tj,s,

may differ depending on number of CPUs (cj) and CPU frequency (fj) that job j

requires and length of that job (Tj) as well as server configurations including number

of CPUs (cs) and CPU frequency (fs) of server s. Thus, Tj,s is defined by:

Tj,s =
cj × fj × Tj

cs × fs
, (4.10)

4.2 Proposed Scheduling Algorithms

We assume that there exists a central scheduler that works as a proxy and receives

incoming job requests. Then, this central entity schedules each job to one of the idle

server located in geographically distributed data centers for processing. In such a

setting, keeping our objective function in mind, we have three important factors that

we can exploit:

36
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

• First is the spatial electricity price variation observed in different locations

around the world.

• Second, temporal electricity price variation observed within a day or, in general

sense, in time.

• Third is the opportunity to reduce cooling cost by utilizing economization sys-

tems in cooler climates (free cooling).

Considering these three factors, we propose two types of request dispatching al-

gorithms. In the first type, each incoming job request is immediately scheduled to an

available server. The algorithms of the second type can schedule jobs ahead of time

if they can forecast that the electricity price will be lower in the future.

4.2.1 Immediate Scheduling Algorithms

The jobs are immediately scheduled in FCFS order.

Random dispatch (Random): This is a naive baseline algorithm we used for com-

paring the performance of our proposed scheduling algorithms. The benefit of using

a random dispatcher in the scheduling phase is to balance the workload in each data

center since it distributes jobs in a uniform manner. However, since this algorithm

is oblivious to any cost related parameter, it is expected to have bad performance in

terms of financial cost.

Cheapest first (CheapestF): As the name implies the cheapest server in terms of

energy cost will be selected to run the current job in the queue. It can be considered

as a simple yet effective greedy heuristic and similar heuristics were proposed before in

the literature [Mazzucco and Dyachuk, 2012b, Mazzucco and Dyachuk, 2012a]. These

works were aimed to select a random server from the cheapest data center in terms

of electricity price. Different from early proposed solutions, our cheapest server algo-

rithm also exploits cooling efficiency of each data center according to outside weather

temperature associated with the data centers. The assumption is that the total cost

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 37

of running a job in a server in cooler locations can be cheaper even if that server is not

located in the electrically cheapest data center. In other words, the algorithm runs

the job on the server with the lowest expected total cost. If the server with the lowest

total cost is busy operating another job then the second cheapest server is selected.

The procedure continues until the job is scheduled. If all servers are busy operating

at that time, then the job is put in the queue again to be scheduled in the next time

slot.

This algorithm exploits spatial variations in the electricity price and possible re-

duced cooling opportunities, yet it lacks to utilize temporal variations in the electricity

price.

4.2.2 Delayed Scheduling Algorithm (LookAhead)

CheapestF aims at scheduling the jobs in the current time slot with the least cost.

However, it is possible to postpone the execution of a job to future time slots if we can

somehow identify that the current electricity is expensive. To this end, we make use

of historical electricity prices to determine whether to schedule the job immediately

or delay its execution to a later time slot. As in the CheapestF algorithm, we examine

each server for all time slots (i.e. current and future time slots) and select the best

server and time slot combination in terms of the total electricity cost. In this approach,

we exploit all three opportunities listed above, in particular, variations in spatial and

temporal electricity price and reduced cooling cost of servers that are located in colder

climates. Since we have the option to schedule some jobs to future time slots, there

is the possibility to violate deadline constraints as stated in SLAs. Our algorithm

considers any possible SLA violation in such cases and include that penalty to the

expected operational cost.

In addition to using a time buffer while deciding expected energy cost, we also

considered an internal job ordering strategy in this algorithm to observed its effects

on the overall performance. Apart from first come first serve (FCFS), these ordering

are longest job first (LJF), shortest job first (SJF) and earliest deadline first (EDF).

38
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

Algorithm 3 LookAhead Algorithm.

totalCost← 0

t← 0

while t < T do

updateJobQueue()

for all j in the job queue do

while i < N do

for all s in data center i do

for all t < T do

find and save estimateCost(j, s, t)

select the cheapest s, t for j

assign j to s at time t

while i < N do

Etotal
i ← calculateCost(i)

totalCost += Etotal
i + Peni

return totalCost

However, we did not observe significant performance improvements in our simulations

and we only reported results of earliest deadline first ordering in Sec. 4.4. We illustrate

the above-mentioned procedure in Algorithm 3.

4.3 Simulation Setup

We simulated a geographically distributed data center network to evaluate the perfor-

mance of the proposed algorithms. The simulator and the algorithms are implemented

in Java. We only consider delay-tolerant batch jobs and use the Grid5000 logs for

incoming job requests.1 The job requests contain job specific information including

submission time, run time, required number of CPU cores, and other related infor-

mation. We run our simulation for a week and time slots are set to one hour, so

1Grid5000, http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2.

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 39

2 4 6 8 10 12 14 16 18 20 22 24
Job length (in hours)

1

10

100

1000

10000

100000

N
um

be
r o

f j
ob

s (
lo

g
sc

al
e)

Figure 4.1: Distribution of jobs according to length.

we filtered the request logs of Grid5000 in a way that run time of any job cannot

exceed 24 hours. Job length distribution of our log is illustrated in Fig. 4.1 and we

also illustrate job arrival times in Fig. 4.2. However, it is important to note that our

proposed algorithms are oblivious to these job distributions and make no assumptions

about them. Results of Random algorithm is average of 25 runs.

We simulated six homogeneous data centers preferably places where Google is

known to have their data centers, in particular, San Diego, California; Chicago, Illi-

nois; Santiago, Chile; Helsinki, Finland; Dublin, Ireland and Singapore, Singapore.

Our problem formulation is generalizable to heterogeneous data centers, however,

in our simulations we prefer to have homogeneous data centers in terms of hard-

ware since those big companies like Google mostly utilizes homogeneous hardware

farms [Barroso and Hölzle, 2009]. Each data center is given 100 servers with Xeon

architecture and four core CPUs running at 2.66 GHZ [Goiri et al., 2012]. We used

40
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

30 60 90 120 150
Arrival time (in hours)

0

100

200

300

400
N

um
be

r o
f j

ob
s

Figure 4.2: Distribution of jobs according to arrival time.

real electricity price traces for San Diego and Chicago from FERC (Federal Energy

Regulatory Commission of the USA),2 and scaled the prices for other countries accord-

ing to the country-wide average prices.3 Average temperatures values are gathered

from Wunderground 4 and these temperatures are given in Table. 4.2 along with the

PUE values calculated by Eq. 4.3 and these PUE values are consistent with the ones

stated in [Barroso and Hölzle, 2009].

While considering any SLA related penalty, we introduce three policies to deter-

mine how much should be added to the cost. These policies are:

• fix penalty, Fixed.

2FERC: Electric Power Markets, http://www.ferc.gov/market-oversight/mkt-electric/

overview.asp.

3Wikipedia-Electricity Pricing, http://en.wikipedia.org/wiki/Electricity_pricing.

4Wunderground, http://www.wunderground.com/history.

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 41

• penalty based on job length, Length.

• penalty based on job length and delay of the delivery of the job, Length&Delay.

We introduce a penalty rate, prate, for each of these policies. Since we do not

utilize any revenue in our problem formulation, we set prate to be some fraction of the

cost of running that job. In other words, we calculate penalty over the cost and add

that amount to the total cost later. In order to test the adaptability of our system,

we run our simulations with different prate’s, in particular 1%, 5% and 10%. In fix

penalty scheme, we calculate an average cost of running a single job and apply prate

over that cost. In job length based penalty scheme, we apply penalty over cost of

running that particular job and job length is the key factor in calculating that cost.

Finally, in penalty scheme based on job length and lateness of the delivery of the job,

we fix prate to 1% and multiply that rate with the number of time slots the deadline

is missed to find the final rate.

4.4 Experimental Results

As explained in Section 4.2, there are three factors that we consider: spatial electricity

price change, temporal electricity price change and outside weather temperature. By

comparing the performance of the algorithms, we can determine the contribution of

these factors to the cost saving.

Table. 4.3 summarizes our findings and the amount of improvement achieved by

each algorithm when deadlines are strict and cannot be violated. Since deadlines

cannot be postponed, we sometimes end up with unscheduled jobs in LookAhead al-

gorithm because some of the early time slots are not utilized by this approach if it

forecasts some cheaper future time slots especially during peak times in job requests.

In the end, we were left with some non-executed jobs in the job queue and that cre-

ates a big obstacle in user satisfaction and cannot be explicitly reflected to total cost.

Regarding that, we then introduce penalty clauses as it is the case in real applications

via SLAs. However, it is helpful to analyze the results in such settings to observe the

42
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

incremental effects of the three factors mentioned above. We test the performance

of the algorithms with different deadlines selected uniformly from different intervals,

in particular 4, 16 and 64 hours ahead of their submission time plus run time. As

expected performance of our LookAhead algorithm improves with increasing deadline

since we have more flexibility to postpone the execution of jobs. In particular its

performance improves from 3.5% (when deadline interval is 1-4 hours) to 5.5% (when

deadline interval is 1-64 hours) compared to Random. Most of the gain is achieved

by exploiting the temporal electricity price variation as seen by the performance im-

provement between the CheapestF and LookAhead since the only difference between

these algorithms is that LookAhead also exploits the temporal variations in prices by

scheduling jobs to future time slots and it improves over CheapestF by 3% and im-

proves over Random by 5.5%. Next, the biggest improvement is achieved by exploiting

spatial electricity price and temperature variations as observed by the improvement

by CheapestF over Random which is around 2.5%.

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 43

Table 4.1: System parameters

Notation Description

cj Number of CPUs job j requires

cs Number of CPU cores server s has

EIT
i Total IT cost of servers in DC i ($)

Etotal
i Total energy cost of DC i ($)

Ei(t) Electricity price of DC i in time slot [t, t+u)

fj CPU frequency job j requires

fs CPU frequency of server s

J Number of jobs

N Number of Data Center (DC)

prate Penalty rate

Penj,s,t Penalty of job j on server s in time slot [t, t+u)

Peni Total penalty paid in DC i

P idle
s Power consumption of server s when idle (Watt/u)

P peak
s Power consumption of server s at peak (Watt/u)

Ps,t Power consumption of server s in time slot [t, t+u)

Si Set of servers in DC i

Tsj Submission time of job j

Tj Total number of time slots job j requires (job length)

Tdj Deadline of job j

Tj,s Number of time slots required to process job j in server s

u Length of a unit time slot

44
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

Table 4.2: PUE of Simulated Data Centers

Location Temperature PUE

San Diego 15 ◦C 1.15

Chicago 1 ◦C 1.07

Santiago 22 ◦C 1.19

Helsinki −9 ◦C 1.04

Dublin 7 ◦C 1.10

Singapore 28 ◦C 1.24

Table 4.3: Performance of different heuristics (no penalty).

Incomp. Total Improvement over (%)

Deadline Heuristics jobs cost ($) Random CheapestF

4

Random 0 3,904.03 – –

CheapestF 0 3,817.17 2.20 –

LookAhead 31 3,752.76 3.87 1.69

16

Random 0 3,904.03 – –

CheapestF 0 3,817.17 2.25 –

LookAhead 10 3,735.07 4.33 2.15

64

Random 0 3,904.03 – –

CheapestF 0 3,817.17 2.24 –

LookAhead 0 3,696.33 5.32 3.17

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 45

T
ab

le
4.

4:
P

er
fo

rm
an

ce
of

th
e
L
o
o
k
A
h
e
a
d

h
eu

ri
st

ic
(i

d
le

se
rv

er
s

ar
e

n
ot

sw
it

ch
ed

off
).

#
o
f
jo
b
s

C
o
st

($
)

Im
p
ro
ve
m
en
t
ov
er

(%
)

P
en
al
ty

ty
p
e

D
ea
d
li
n
e

P
en
al
ty

ra
te

w
it
h
p
en
a
lt
y

IT
&

co
o
li
n
g

P
en
a
lt
y

T
o
ta
l

R
a
n
d
o
m

C
h
e
a
p
e
s
t
F

F
ix
ed

0.
01

7
,9
6
6

3
,7
2
5
.4
3

1
2
.5
8

3
,7
3
8
.0
1

4
.2
5

2
.0
7

4
0.
05

7
9
0

3
,7
4
8
.7
6

6
.2
4

3
,7
5
5
.0
0

3
.8
2

1
.6
3

0.
10

2
3
5

3
,7
5
2
.9
0

3
.7
1

3
,7
5
6
.6
1

3
.7
8

1
.5
9

0.
01

4
,7
8
1

3
,7
1
7
.1
1

7
.5
0

3
,7
2
4
.6
1

4
.6
0

2
.4
2

16
0.
05

5
3
3

3
,7
3
0
.8
4

4
.2
1

3
,7
3
5
.0
5

4
.3
3

2
.1
5

0.
10

2
8

3
,7
3
5
.2
3

0
.4
4

3
,7
3
5
.6
7

4
.3
1

2
.1
4

0.
01

7
4
4

3
,6
9
2
.8
5

1
.1
7

3
,6
9
4
.0
2

5
.3
8

3
.2
3

64
0.
05

4
7

3
,6
9
5
.5
7

0
.3
7

3
,6
9
5
.9
4

5
.3
3

3
.1
8

0.
10

0
3
,6
9
6
.2
0

0
.0
0

3
,6
9
6
.2
0

5
.3
2

3
.1
7

L
en
gt
h

0.
01

1
8
,2
6
7

3
,7
1
0
.1
9

3
.7
2

3
,7
1
3
.9
1

4
.8
7

2
.7
1

4
0.
05

1
4
,8
7
6

3
,7
1
9
.8
3

1
3
.5
2

3
,7
3
3
.3
5

4
.3
7

2
.2
0

0.
10

1
3
,3
1
6

3
,7
2
8
.2
5

2
0
.6
8

3
,7
4
8
.9
3

3
.9
7

1
.7
9

0.
01

1
4
,6
1
2

3
,7
0
3
.2
5

3
.3
9

3
,7
0
6
.6
4

5
.0
6

2
.9
0

16
0.
05

1
0
,2
9
1

3
,7
1
3
.7
1

1
0
.2
5

3
,7
2
3
.9
6

4
.6
1

2
.4
4

0.
10

7
,6
9
4

3
,7
2
1
.0
1

1
3
.4
7

3
,7
3
4
.4
8

4
.3
4

2
.1
7

0.
01

5
,0
5
0

3
,6
9
0
.5
9

1
.1
5

3
,6
9
1
.7
4

5
.4
4

3
.2
9

64
0.
05

1
,4
9
3

3
,6
9
3
.0
5

1
.8
1

3
,6
9
4
.8
6

5
.3
6

3
.2
0

0.
10

8
2
3

3
,6
9
5
.0
9

1
.5
8

3
,6
9
6
.6
7

5
.3
1

3
.1
6

L
en
gt
h
&

d
el
ay

4
0.
01

1
9
,3
7
8

3
,7
0
7
.4
8

6
9
.5
8

3
,7
7
7
.0
6

3
.2
5

1
.0
5

16
0.
01

1
6
,4
4
2

3
,7
0
3
.7
2

5
0
.7
8

3
,7
5
4
.5
0

3
.8
3

1
.6
4

64
0.
01

6
,9
6
6

3
,6
8
9
.5
8

9
.5
9

3
,6
9
9
.1
7

5
.2
5

3
.0
9

46
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

In order to overcome the non-executed jobs problem, we add penalty clauses and

increase the total cost if any of the deadlines are missed. As explained in Sec. 3.3

in detail, we tested different prate scenarios and penalty policies. Since Random and

CheapestF immediately schedule all of the incoming jobs, they have no penalized jobs

and changing penalty policies or penalty rates have no effect on their performance.

However, they are introduced to validate the stability of our proposed LookAhead

heuristic against different SLAs. In Table. 4.4 we illustrate performance of our al-

gorithms with different penalty policies, changing prates and deadline intervals. Im-

provements are close to what we observed in no penalty case, however, now we are

able to schedule all of the jobs in the job queue without leaving no job non-executed.

In general, effects of deadline change are similar in all penalty policies. When the

deadline interval increases, we have more flexibility to schedule jobs to future cheaper

time slots without paying any penalty for the delay. Similarly, sometimes we may

even use penalty clauses in our favor and prefer to pay penalty if, in total, it will

be cheaper to run that job later on. For example, if we set fix penalty policy with

prate of 0.01 when we increase deadline interval from 4 hours to 16 hours and then

64 hours, improvement of LookAhead algorithm over Random is increasing from 4% to

4.5% and to 5.5%, respectively and from 2% to 2.5% and to 3.5% over CheapestF,

respectively. Moreover, with the same reason explained above, number of penalized

jobs is also decreasing with increasing deadline intervals since we can delay more jobs

without having to pay penalty.

We also run our simulations with varying penalty rates, prate, in particular with

0.01, 0.05 and 0.1. We observed that performance of LookAhead algorithm degrades

with increasing penalty rates, which is an expected outcome. Increasing penalty

rate implies that we will be charged more if we miss the deadline of a job. Thus,

our flexibility to schedule jobs ahead in time decreases with the cost of paying too

much penalty. However, we are still able to improve the performance of Random and

CheapestF by 4% and 2%, respectively even with strict deadlines, i.e. when prate is

equal to 0.1. As expected, number of penalized jobs also decreases with increasing

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 47

penalty rates, because it will be less likely to miss the deadline of a job to avoid high

penalty costs.

Finally, we define three types of penalty policies, namely; Fixed, Length and

Length&Delay. Overall, LookAhead algorithm is able to perform similar in each of

the penalty policy, thus it is not vulnerable to changing SLA conditions. In particular,

depending on prate and deadline interval, it performs better in Length policy with

around 4 − 5% improvement over Random and 2 − 3% over CheapestF. In Fixed

policy these improvements drop around to 4% over Random and 2% over CheapestF.

In Length&Delay policy, performance improvement of our proposed algorithm is still

close to other policies and around 3− 5% over Random and 1− 3% over CheapestF.

In addition to exploiting price and temperature variations, we tested our data cen-

ter network with imaginary power proportional servers, i.e. if any server stays idle in a

time slot, we assume it consumes no power at all, in other words they are switched off.

There are several proposed solutions in the literature with the exact same purpose, i.e.

avoiding idle power consumption [Zhang et al., 2013, Mazzucco and Dyachuk, 2012b,

Mazzucco and Dyachuk, 2012a]. Since idle power consumption will be fully elimi-

nated, total energy consumption and energy cost of the overall system will be far

less than the original case. There are several conditions that needs to be considered

while switching off servers like the time delay of server openings and closure, yet our

intention here is to observe the performance of our algorithms if power proportional

servers are utilized in cloud data centers. In that regard, we do not compare our

results with our findings in Table. 4.4 (no server switch off) but rather we analyze rel-

ative performance improvement of our LookAhead algorithm against the CheapestF

heuristic and Random baseline. Table. 4.5 summarizes our findings when we switch off

any idle server in any time slot. The most important observation is that we are able to

almost triple the performance of LookAhead algorithm if server switching off feature

can be applied in cloud data centers. In particular, LookAhead achieves to improve

the Random and CheapestF by 15% and 10% respectively when we use penalty clauses

based on job length with prate equal to 0.01 and deadline interval set to 1-64 hours.

48
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

On the other hand, the improvements were 5.5% and 3.5% respectively, with the very

same configurations (same penalty policy, prate and deadline interval) when we did

not switch off any server. Apart from that, our findings are similar to the previous

case with no server switching off even if they are idle. However, these results show

that even greater cost benefits are achievable if we can utilize power proportional

servers and/or introduce effective server switching off techniques.

Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data
Centers 49

T
ab

le
4.

5:
P

er
fo

rm
an

ce
of

th
e
L
o
o
k
A
h
e
a
d

h
eu

ri
st

ic
(i

d
le

se
rv

er
s

ar
e

sw
it

ch
ed

off
).

#
o
f
jo
b
s

C
o
st

($
)

Im
p
ro
ve
m
en
t
ov
er

(%
)

P
en
al
ty

ty
p
e

D
ea
d
li
n
e

P
en
al
ty

ra
te

w
it
h
p
en
a
lt
y

IT
&

co
o
li
n
g

P
en
a
lt
y

T
o
ta
l

R
a
n
d
o
m

C
h
e
a
p
e
s
t
F

F
ix
ed

0.
01

7
,8
9
8

2
,1
9
5
.1
9

1
2
.4
7

2
,2
0
7
.6
6

1
2
.2
4

6
.4
2

4
0.
05

7
9
3

2
,2
3
8
.5
6

6
.2
0

2
,2
4
4
.7
6

1
0
.7
6

4
.8
5

0.
10

2
1
4

2
,2
4
3
.1
5

3
.3
8

2
,2
4
6
.5
3

1
0
.6
9

4
.7
7

0.
01

4
,8
4
1

2
,1
7
9
.7
2

7
.6
4

2
,1
8
7
.3
6

1
3
.0
4

7
.2
8

16
0.
05

5
0
5

2
,2
0
5
.1
8

4
.4
0

2
,2
0
9
.5
8

1
2
.1
6

6
.3
4

0.
10

3
7

2
,2
1
3
.7
3

0
.5
8

2
,2
1
4
.3
1

1
1
.9
7

6
.1
4

0.
01

7
9
4

2
,1
3
4
.4
1

1
.2
5

2
,1
3
5
.6
6

1
5
.1
0

9
.4
7

64
0.
05

5
0

2
,1
4
0
.7
5

0
.3
9

2
,1
4
1
.1
4

1
4
.8
8

9
.2
4

0.
10

0
2
,1
4
1
.6
0

0
.0
0

2
,1
4
1
.6
0

1
4
.8
6

9
.2
2

L
en
gt
h

0.
01

1
8
,2
8
0

2
,1
6
7
.4
1

3
.7
1

2
,1
7
1
.1
2

1
3
.6
9

7
.9
7

4
0.
05

1
4
,8
2
1

2
,1
8
5
.6
2

1
2
.5
7

2
,1
9
8
.1
9

1
2
.6
1

6
.8
2

0.
10

1
3
,2
9
1

2
,2
0
0
.2
0

2
0
.6
3

2
,2
2
0
.8
3

1
1
.7
1

5
.8
6

0.
01

1
4
,6
4
4

2
,1
5
8
.6
2

3
.2
0

2
,1
6
1
.8
2

1
4
.0
6

8
.3
6

16
0.
05

1
0
,1
4
4

2
,1
7
3
.1
6

1
0
.1
2

2
,1
8
3
.2
8

1
3
.2
1

7
.4
5

0.
10

7
,4
6
1

2
,1
8
7
.3
6

1
3
.3
8

2
,2
0
0
.7
4

1
2
.5
1

6
.7
1

0.
01

5
,0
4
0

2
,1
3
2
.8
3

1
.1
6

2
,1
3
3
.9
9

1
5
.1
7

9
.5
4

64
0.
05

1
,4
3
6

2
,1
3
6
.3
7

1
.8
3

2
,1
3
8
.2
0

1
5
.0
0

9
.3
6

0.
10

8
4
2

2
,1
4
1
.7
8

1
.6
9

2
,1
4
3
.4
7

1
4
.7
9

9
.1
4

L
en
gt
h
&

d
el
ay

4
0.
01

1
9
,3
8
0

2
,1
6
2
.8
9

6
9
.4
0

2
,2
3
2
.2
9

1
1
.2
6

5
.3
7

16
0.
05

1
6
,4
8
6

2
,1
5
5
.8
7

5
0
.7
8

2
,2
0
6
.6
5

1
2
.2
8

6
.4
6

64
0.
10

7
,0
8
7

2
,1
3
2
.5
4

9
.4
6

2
,1
4
2
.0
0

1
4
.8
5

9
.2
0

50
Chapter 4: Energy Cost Aware Job Scheduling in Geographically Distributed Cloud Data

Centers

As a side note, in LookAhead algorithm, we use historical electricity price averages

to determine which time slot will be the cheapest to run the job and actual unit

electricity price may be different than what we assume. However, some companies

prefer to purchase electricity from day-ahead markets in which they know the actual

unit electricity price they will pay 24 hours in advance. Our proposed algorithm

will be likely to have better performance in such cases, since we will have the full

knowledge of electricity prices.

Chapter 5

CONCLUSION

Energy consumption and corresponding energy costs in large scale distributed

systems is an important problem that attracted researchers from both industry and

academia. In this thesis, we have investigated two different types of distributed

systems, in particular, volunteer computing networks and geographically distributed

cloud data centers.

In the first part, we proposed the idea of having monetary budgets in volunteer

computing networks, limiting the financial burden incurred on the peers due to the

usage of their computational resources by the volunteer computing network. We

showed that, under the assumption of temporal volatility in electricity prices, this

idea leads to an interesting task allocation problem. We formally specified this task

allocation problem and proposed various heuristics as potential solutions. Simulations

using real-life electricity price data demonstrated that the proposed heuristics can

increase the amount of useful work done in the network while respecting the peers’

budgets, compared to a simple baseline.

In particular, in the fall season, the amount of work done by our best performing

heuristic, Yesterday, is 20% higher than the work done by Baseline and only 8% less

than the work done by Oracle, on average. On the other hand, in the spring season,

SameDayHistory achieves to improve the performance of Baseline by 19% and fall

behind of Oracle by 14%. We believe that there is still some room for improvement

in the performance of HistoryRepeats since it exhibits good performance behavior

especially in hour of the day analysis. OnlineKnapsack manages to beat Baseline

although it generally performs worse than the other heuristics. On the other hand,

as mentioned in Section 3.4, we observe this algorithm to perform better in countries

52 Chapter 5: Conclusion

where the electricity price is high. In general, this may imply that we can select and

use different heuristics depending on the country.

Some of the ideas in this work can also be applied to P2P clouds, which have

been recently envisioned as a promising computing model [Babaoglu et al., 2011,

Panzieri et al., 2011]. In contrast to the centralized and federated cloud architectures,

a P2P cloud operates in a fully distributed manner providing on-demand scalability.

A P2P cloud system allows building a computing infrastructure with independent

resources that can be assembled in a distributed manner to serve different tasks.

This model brings new business opportunities. Example applications that can be

hosted on a P2P cloud are loosely coupled distributed applications for which the lo-

cation of peers is important to provide resources, data, and computation close to the

client [Babaoglu et al., 2011]. Furthermore, computation-intensive parallel applica-

tions and communication-intensive data/video delivery systems can benefit from a

P2P cloud.1 Important issues in a P2P cloud setting are efficient resource partition-

ing and allocation among several tasks, as well as efficient management of tasks.

Although there exist recent studies on P2P cloud systems [Babaoglu et al., 2011,

Babaoglu et al., 2006, Cunsolo et al., 2009a, Cunsolo et al., 2009b, Valancius et al., 2009],

no work has considered the energy price aspect in allocating resources and managing

tasks.

In the second part, we investigated the problem of massive energy cost of geo-

graphically distributed cloud data centers. We first mathematically formulated the

optimization problem as a linear programming problem by including energy cost of

servers and cooling related energy costs. We also utilized SLAs to ensure user satisfac-

tion and introduced penalty clauses if any of the deadline constraints are not satisfied.

We proposed two workload scheduling algorithms that run in polynomial time and

exploit spatio-temporal electricity price variations and free cooling opportunities in

colder climates to minimize the energy cost of service providers. Our extensive sim-

1Clouds and Peer-to-Peer, http://berkeleyclouds.blogspot.com/2009/06/

clouds-and-peer-to-peer.html.

Chapter 5: Conclusion 53

ulations with real world electricity prices and workload data show that significant

electricity cost reductions can be achieved by the proposed algorithms, compared to a

random scheduler that aims to achieve only load balancing between data centers. In

particular, we are able to improve the total cost up to 6% with LookAhead algorithm

which corresponds to cost savings of millions of dollars when we think of large indus-

trial companies. We are also planning to integrate different cost and energy saving

techniques into our system including virtual machine migration and switching off idle

servers as a future work.

BIBLIOGRAPHY

[Anderson, 2011] Anderson, D. (2011). Emulating volunteer computing scheduling

policies. In Proceedings of the IEEE International Symposium on Parallel and

Distributed Processing Workshops and PhD Forum, pages 1839–1846.

[Anderson, 2007] Anderson, D. P. (2007). Local scheduling for volunteer computing.

Proceedings of the 2007 IEEE International Symposium on Parallel and Distributed

Processing, pages 1–8.

[Babaioff et al., 2007] Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R.

(2007). A knapsack secretary problem with applications. In Proceedings of the 10th

International Workshop on Approximation and the 11th International Workshop

on Randomization, and Combinatorial Optimization, pages 16–28.

[Babaoglu et al., 2006] Babaoglu, O., Jelasity, M., Kermarrec, A., Montresor, A., and

van Steen, M. (2006). Managing clouds: a case for a fresh look at large unreliable

dynamic networks. In Operating Systems Review, pages 9–13.

[Babaoglu et al., 2011] Babaoglu, O., Marzolla, M., and Tamburini, M. (2011). De-

sign and implementation of a P2P cloud system. Technical Report UBLCS-2011-10,

Department of Computer Science, University of Bologna.

[Barroso and Hölzle, 2009] Barroso, L. A. and Hölzle, U. (2009). The Datacenter as

a Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan

and Claypool Publishers, 1st edition.

[Bhagwan et al., 2003] Bhagwan, R., Savage, S., and Voelker, G. M. (2003). Under-

standing availability. In Proceedings of the 2nd International Workshop on Peer-

to-Peer Systems, pages 256–267.

Bibliography 55

[Böckenhauer et al., 2012] Böckenhauer, H.-J., Komm, D., Královič, R., and Ross-

manith, P. (2012). On the advice complexity of the knapsack problem. In Proceed-

ings of the 10th Latin American international conference on Theoretical Informat-

ics, pages 61–72.

[Buchbinder et al., 2011] Buchbinder, N., Jain, N., and Menache, I. (2011). Online

job-migration for reducing the electricity bill in the cloud. In Proceedings of the

10th International IFIP TC 6 Conference on Networking - Volume Part I, pages

172–185.

[Chase et al., 2001] Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M.,

and Doyle, R. P. (2001). Managing energy and server resources in hosting centers.

In Proceedings of the eighteenth ACM symposium on Operating systems principles,

pages 103–116.

[Costa et al., 2011] Costa, F., Silva, L., and Dahlin, M. (2011). Volunteer cloud

computing: MapReduce over the Internet. In IEEE International Symposium on

Parallel and Distributed Processing Workshops and Phd Forum, pages 1855–1862.

[Cunsolo et al., 2009a] Cunsolo, V., Distefano, S., Puliafito, A., and Scarpa, M.

(2009a). Cloud@home: Bridging the gap between volunteer and cloud computing.

In Emerging Intelligent Computing Technology and Applications, pages 423–432.

[Cunsolo et al., 2009b] Cunsolo, V. D., Distefano, S., Puliafito, A., and Scarpa, M.

(2009b). Volunteer computing and desktop cloud: The cloud@home paradigm. In

Proceedings of the 8th IEEE International Symposium on Network Computing and

Applications, pages 134–139.

[Estrada et al., 2006] Estrada, T., Flores, D. A., Taufer, M., Teller, P. J., Kerstens,

A., and Anderson, D. P. (2006). The effectiveness of threshold-based scheduling

policies in BOINC projects. In Proceedings of the 2nd IEEE International Confer-

ence on e-Science and Grid Computing, page 88.

Bibliography 56

[Gao et al., 2012] Gao, P. X., Curtis, A. R., Wong, B., and Keshav, S. (2012). It’s

not easy being green. In Proceedings of the ACM SIGCOMM 2012 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communi-

cation, pages 211–222.

[Garg et al., 2011a] Garg, S., Gopalaiyengar, S., and Buyya, R. (2011a). Sla-based

resource provisioning for heterogeneous workloads in a virtualized cloud datacenter.

In Algorithms and Architectures for Parallel Processing, volume 7016 of Lecture

Notes in Computer Science, pages 371–384.

[Garg et al., 2011b] Garg, S. K., Yeo, C. S., Anandasivam, A., and Buyya, R. (2011b).

Environment-conscious scheduling of hpc applications on distributed cloud-oriented

data centers. Journal of Parallel and Distributed Computing, 71(6):732–749.

[Goiri et al., 2012] Goiri, I., Berral, J. L., Fitó, J. O., Julíı, F., Nou, R., Guitart,

J., Gavald́ı, R., and Torres, J. (2012). Energy-efficient and multifaceted resource

management for profit-driven virtualized data centers. Future Gener. Comput.

Syst., 28(5):718–731.

[Guo et al., 2011] Guo, Y., Ding, Z., Fang, Y., and Wu, D. (2011). Cutting down

electricity cost in internet data centers by using energy storage. In Global Telecom-

munications Conference, pages 1–5.

[He et al., 2012] He, J., Deng, X., Wu, D., Wen, Y., and Wu, D. (2012). Socially-

responsible load scheduling algorithms for sustainable data centers over smart grid.

In IEEE Third International Conference on Smart Grid Communications, pages

406–411.

[Himyr et al., 2012] Himyr, N., Blomer, J., Buncic, P., Giovannozzi, M., Gonzalez,

A., Harutyunyan, A., Jones, P. L., Karneyeu, A., Marquina, M. A., Mcintosh, E.,

Segal, B., Skands, P., Grey, F., Gonzlez, D. L., and Zacharov, I. (2012). BOINC

Bibliography 57

service for volunteer cloud computing. Journal of Physics: Conference Series,

396(3).

[Kayaaslan et al., 2011] Kayaaslan, E., Cambazoglu, B. B., Blanco, R., Junqueira,

F. P., and Aykanat, C. (2011). Energy-price-driven query processing in multi-

center web search engines. In Proceedings of the 34th International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 983–992.

[Kondo et al., 2007] Kondo, D., Anderson, D. P., and Vii, J. M. (2007). Performance

evaluation of scheduling policies for volunteer computing. In Proceedings of the 3rd

IEEE International Conference on e-Science and Grid Computing, pages 415–422.

[Kondo et al., 2009] Kondo, D., Javadi, B., Malecot, P., Cappello, F., and Anderson,

D. (2009). Cost-benefit analysis of cloud computing versus desktop grids. In IEEE

International Symposium on Parallel Distributed Processing, pages 1–12.

[Krioukov et al., 2010] Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler,

D., and Katz, R. H. (2010). Napsac: design and implementation of a power-

proportional web cluster. In Proceedings of the first ACM SIGCOMM workshop on

Green networking, pages 15–22.

[Le et al., 2009] Le, K., Bianchini, R., Martonosi, M., and Nguyen, T. D. (2009).

Cost- and energy-aware load distribution across data centers. In Workshop on

Power Aware Computing and Systems.

[Le et al., 2010] Le, K., Bilgir, O., Bianchini, R., Martonosi, M., and Nguyen, T. D.

(2010). Managing the cost, energy consumption, and carbon footprint of internet

services. In Proceedings of the ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, pages 357–358.

[León and Navarro, 2011] León, X. and Navarro, L. (2011). Limits of energy saving

for the allocation of data center resources to networked applications. In Proceedings

Bibliography 58

of the 30th IEEE International Conference on Computer Communications, pages

216–220.

[Li et al., 2012] Li, J., Li, Z., Ren, K., and Liu, X. (2012). Towards optimal electric

demand management for internet data centers. IEEE Trans. Smart Grid, 3(1):183–

192.

[Lin and Ng, 2005] Lin, M. and Ng, S. M. (2005). A genetic algorithm for en-

ergy aware task scheduling in heterogeneous systems. Parallel Processing Letters,

15(4):439–450.

[Lin et al., 2011] Lin, M., Wierman, A., Andrew, L. L. H., and Thereska, E. (2011).

Dynamic right sizing for power proportional data centers. In INFOCOM, 2011

Proceedings IEEE, pages 1098–1106.

[Liu et al., 2011] Liu, Z., Lin, M., Wierman, A., Low, S. H., and Andrew, L. L. (2011).

Greening geographical load balancing. In Proceedings of the ACM SIGMETRICS

joint international conference on Measurement and modeling of computer systems,

pages 233–244.

[Lombraña González et al., 2012] Lombraña González, D., Grey, F., Blomer, J., Bun-

cic, P., Harutyunyan, A., Marquina, M., Segal, B., Skands, P., and Karneyeu, A.

(2012). Virtual machines and volunteer computing: Experience from lhc@home:

Test4theory project. In The International Symposium on Grids and Clouds, pages

36–49.

[Mani and Rao, 2011] Mani, S. and Rao, S. (2011). Operating cost aware scheduling

model for distributed servers based on global power pricing policies. In Proceedings

of the 4th Annual ACM Bangalore Conference.

[Marchetti-Spaccamela and Vercellis, 1995] Marchetti-Spaccamela, A. and Vercellis,

Bibliography 59

C. (1995). Stochastic on-line knapsack problems. Mathematical Programming,

pages 73–104.

[Mazzucco and Dyachuk, 2012a] Mazzucco, M. and Dyachuk, D. (2012a). Balancing

electricity bill and performance in server farms with setup costs. Future Generation

Computer Systems, 28(2):415 – 426.

[Mazzucco and Dyachuk, 2012b] Mazzucco, M. and Dyachuk, D. (2012b). Optimizing

cloud providers revenues via energy efficient server allocation. Sustainable Com-

puting: Informatics and Systems, 2(1):1 – 12.

[Moore et al., 2005] Moore, J., Chase, J., Ranganathan, P., and Sharma, R. (2005).

Making scheduling “cool”: temperature-aware workload placement in data centers.

In Proceedings of the Annual Conference on USENIX Annual Technical Conference,

pages 5–5.

[Pakbaznia and Pedram, 2009] Pakbaznia, E. and Pedram, M. (2009). Minimizing

data center cooling and server power costs. In Proceedings of the 14th ACM/IEEE

international symposium on Low power electronics and design, pages 145–150.

[Panzieri et al., 2011] Panzieri, F., Babaoglu, O., Ghini, V., Ferretti, S., and Mar-

zolla, M. (2011). Distributed computing in the 21st century: Some aspects of cloud

computing. Technical Report UBLCS-2011-03, Department of Computer Science,

University of Bologna.

[Qureshi et al., 2009] Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., and

Maggs, B. (2009). Cutting the electric bill for Internet-scale systems. In Proceedings

of the ACM SIGCOMM Conference on Data Communication, pages 123–134.

[Rao et al., 2010a] Rao, L., Liu, X., Ilic, M., and Liu, J. (2010a). MEC-IDC: joint

load balancing and power control for distributed Internet data centers. In Proceed-

Bibliography 60

ings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems,

pages 188–197.

[Rao et al., 2010b] Rao, L., Liu, X., Xie, L., and Liu, W. (2010b). Minimizing elec-

tricity cost: optimization of distributed Internet data centers in a multi-electricity-

market environment. In Proceedings of the 29th IEEE International Conference on

Computer Communications, pages 1145–1153.

[Ren et al., 2012] Ren, S., He, Y., and Xu, F. (2012). Provably-efficient job scheduling

for energy and fairness in geographically distributed data centers. In the 32nd

International Conference on Distributed Computing Systems.

[Sadhasivam et al., 2009] Sadhasivam, S., Nagaveni, N., Jayarani, R., and Ram, R.

(2009). Design and implementation of an efficient two-level scheduler for cloud

computing environment. In International Conference on Advances in Recent Tech-

nologies in Communication and Computing, pages 884–886.

[Sakamoto et al., 2012] Sakamoto, T., Yamada, H., Horie, H., and Kono, K. (2012).

Energy price driven request dispatching for cloud data centers. In Proceedings of

the 5th IEEE International Conference on Cloud Computing, pages 974–976.

[Sankaranarayanan et al., 2011] Sankaranarayanan, A. N., Sharangi, S., and Fe-

dorova, A. (2011). Global cost diversity aware dispatch algorithm for heteroge-

neous data centers. In Proceedings of the 2nd Joint WOSP/SIPEW International

Conference on Performance Engineering, pages 289–294.

[Shah and Krishnan, 2008] Shah, A. J. and Krishnan, N. (2008). Optimization of

global data center thermal management workload for minimal environmental and

economic burden. IEEE Transactions on Components and Packaging Technologies,

pages 39–45.

Bibliography 61

[Stanojevic and Shorten, 2010] Stanojevic, R. and Shorten, R. (2010). Distributed

dynamic speed scaling. In Proceedings of the 29th Conference on Information Com-

munications, pages 426–430.

[Tang et al., 2008] Tang, Q., Gupta, S. K. S., and Varsamopoulos, G. (2008). Energy-

efficient thermal-aware task scheduling for homogeneous high-performance comput-

ing data centers: A cyber-physical approach. IEEE Trans. Parallel Distrib. Syst.,

19(11):1458–1472.

[Taufer et al., 2007] Taufer, M., Kerstens, A., Estrada, T. P., Flores, D. A., Zamudio,

R., Teller, P. J., Armen, R., and Brooks, C. L. (2007). Moving volunteer comput-

ing towards knowledge-constructed, dynamically-adaptive modeling and schedul-

ing. Parallel and Distributed Processing Symposium, page 478.

[Urgaonkar et al., 2011] Urgaonkar, R., Urgaonkar, B., Neely, M. J., and Sivasubra-

maniam, A. (2011). Optimal power cost management using stored energy in data

centers. In Proceedings of the ACM SIGMETRICS joint international conference

on Measurement and modeling of computer systems, pages 221–232.

[Valancius et al., 2009] Valancius, V., Laoutaris, N., Massoulié, L., Diot, C., and Ro-

driguez, P. (2009). Greening the Internet with nano data centers. In Proceedings of

the 5th International Conference on Emerging Networking Experiments and Tech-

nologies, pages 37–48.

[Van den Bossche et al., 2010] Van den Bossche, R., Vanmechelen, K., and Broeck-

hove, J. (2010). Cost-optimal scheduling in hybrid iaas clouds for deadline con-

strained workloads. In IEEE 3rd International Conference on Cloud Computing,

pages 228–235.

[Wang et al., 2013] Wang, R., Kandasamy, N., Nwankpa, C., and Kaeli, D. (2013).

Datacenters as controllable load resources in the electricity market. In The 33rd

IEEE International Conference on Distributed Computing Systems, pages 176–185.

Bibliography 62

[Wang et al., 2011] Wang, Y., Wang, X., and Zhang, Y. (2011). Leveraging thermal

storage to cut the electricity bill for datacenter cooling. In Proceedings of the 4th

Workshop on Power-Aware Computing and Systems, pages 8:1–8:5.

[Weerts et al., 2012] Weerts, B., Gallaher, D., Weaver, R., and Van Geet, O. (2012).

Green data center cooling: Achieving 90economization and unique indirect evapo-

rative cooling. In Green Technologies Conference, 2012 IEEE, pages 1 –6.

[Xu and Liu, 2012] Xu, D. and Liu, X. (2012). Geographic trough filling for internet

datacenters. In INFOCOM, pages 2881–2885.

[Xu et al., 2013] Xu, H., Feng, C., and Li, B. (2013). Temperature aware workload

management in geo-distributed datacenters. In Proceedings of the ACM SIGMET-

RICS/International conference on Measurement and modeling of computer systems,

pages 373–374.

[Yao et al., 2012] Yao, Y., Huang, L., Sharma, A., Golubchik, L., and Neely, M.

(2012). Data centers power reduction: A two time scale approach for delay toler-

ant workloads. In the 31st Annual IEEE International Conference on Computer

Communications, pages 1431–1439.

[Yigitbasi et al., 2011] Yigitbasi, N., Datta, K., Jain, N., and Willke, T. (2011). En-

ergy efficient scheduling of mapreduce workloads on heterogeneous clusters. In

Green Computing Middleware on Proceedings of the 2nd International Workshop,

pages 1:1–1:6.

[Young et al., 2013] Young, B., Apodaca, J., Briceo, L., Smith, J., Pasricha, S., Ma-

ciejewski, A., Siegel, H., Khemka, B., Bahirat, S., Ramirez, A., and Zou, Y. (2013).

Deadline and energy constrained dynamic resource allocation in a heterogeneous

computing environment. The Journal of Supercomputing, 63(2):326–347.

Bibliography 63

[Zhang et al., 2013] Zhang, Q., Zhani, M. F., Raouf, B., and Hellerstein, J. L. (2013).

Harmony: Dynamic heterogeneityaware resource provisioning in the cloud. In The

33rd IEEE International Conference on Distributed Computing Systems, pages 510–

519.

[Zhang et al., 2012] Zhang, Y., Wang, Y., and Wang, X. (2012). Electricity bill cap-

ping for cloud-scale data centers that impact the power markets. In Proceedings of

the 41st International Conference on Parallel Processing, pages 440–449.

[Zhou et al., 2008] Zhou, Y., Chakrabarty, D., and Lukose, R. (2008). Budget con-

strained bidding in keyword auctions and online knapsack problems. In Proceedings

of the 17th International Conference on World Wide Web, pages 1243–1244.

[Zhou and Naroditskiy, 2008] Zhou, Y. and Naroditskiy, V. (2008). Algorithm for

stochastic multiple-choice knapsack problem and application to keywords bidding.

In Proceedings of the 17th International Conference on World Wide Web, pages

1175–1176.

VITA

Hüseyin Güler was born in Istanbul, Turkey on March 30, 1988. He received his

BSc. degree in Computer Science and Engineering from Bilkent University in 2011.

In September 2011, he joined MSc. Program in Computer Science and Engineering at

Koç University as a research and teaching assistant. He has been working on energy

efficiency in large scale distributed systems and distributed interactive applications

as part of the Networked and Distributed Systems Laboratory. He has co-authored

three conference papers in EE-LSDS’13, W-PIN+NetEcon’13 (ACM SIGMETRICS)

and IEEE/ACM DS-RT’13, and two journal papers (one under review, one ready for

submission).

