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Assist. Prof. Özgür Yılmaz
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ABSTRACT

A service system is a configuration of technology and organizational networks de-

signed to deliver services that satisfy needs, wants and aspirations of customers. Call

centers, universities, hospitals, restaurants, shopping centers, hotels, beauty centers

are a few examples of the service systems which provide service to customers in dif-

ferent areas. A strategic customer in a service system acts in order to maximize his

individual welfare or utility. To maximize his individual utility, a strategic customer

compares all of his possible alternatives and chooses the one which brings the highest

pay-off to him. The alternative with the highest pay-off is referred as the optimal be-

havior (action) of this customer. Indeed, each customer’s optimal behavior is affected

by acts taken by the service provider (system manager) and by the other customers.

The result is an aggregate equilibrium pattern of behavior which may not be opti-

mal from the perspective of the society as a whole. So, the optimal decisions of the

individual customer, social planner who is responsible from maximizing the social

welfare, and the service provider all need to be analyzed in these systems. Many ser-

vice systems are queueing type systems. So service systems generally include queues,

and the individual customer, social planner and the service provider must (directly

or indirectly) consider the displeasure of waiting in the queue. Moreover, the service

systems that we consider in this thesis have imperfect quality. The service failures

which are caused by the service quality problem will require resolutions. Designing

the service systems by using different system structures we analyze different service

failure resolution alternatives in Strategic Customer Setting. In summary, our goal in

this thesis is to integrate service quality issues with strategic behavior and compare

different service system structures.
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ÖZETÇE

Servis sistemleri, müşterilerin ihtiyaç ve isteklerini karşılamak için oluşturulan

tasarım ve teknolojilerdir. Bu sistemlere verilebilecek başlıca örnekler çağrı merkez-

leri, üniversiteler, hastaneler, restoranlar, alışveriş merkezleri, oteller, güzellik merke-

zleri olarak sıralanabilir. Servis sistemlerindeki stratejik müşteriler kendi amaç (haz)

fonksiyonlarını maksimize etmek için karar verirler. Stratejik bir müşteri karar verirken

amaç fonksiyonunu maksimize edebilecek bütün alternatifleri karşılaştırır ve ken-

disine en çok tatmin verecek (en yüksek hazzı sağlayacak) olanı seçer. Temelde

her müşterinin en iyi kararı diğer müşterilerin kararından ve hizmet verenin (sis-

tem yöneticisi) sunduklarından etkilenmektedir. Sonuç olarak, müşterilerin kararı

diğer müşterilerinin de kararına bağlı olan bir denge stratejisi olarak düşünülmek-

tedir ve bu strateji sosyal sistem için en iyi strateji olmayabilir. Bu nedenle, bu

sistemlerde müşterilerin problemleri, sosyal sistem problemi ve hizmet veren firmanın

problemi ayrı ayrı incelenmelidir. Servis sistemleri genelde kuyruk tipi sistemlerdir.

Bu nedenle karar verirken müşteriler, sosyal sistemden sorumlu kişiler ve hizmet veren

kişiler kuyruktaki beklemenin müşteriler üzerinde yaratacağı memnuniyetsizliği göz

önünde bulundurmalıdır. Bunun yanında, bu tezde incelenen sistemler mükemmel

kalitede hizmet veren sistemler olarak düşünülmemektedir yani sistemlerdeki hizmet

kalitesindeki problemler de göz önünde bulundurulmaktadır. Hizmet kalitesinde prob-

lem olduğunda bunun olası çözüm metotları da bu tezde incelenmiştir. Dolayısıyla, bu

tezde stratejik müşterilerin olduğu sistemlerde, kalite problemlerini çözme metotları

farklı sistem yapıları kullanılarak karşılaştırılmıştır. Kısacası bu tezin amacı kalite

konusunu stratejik kararlarla birleştirmek ve farklı sistem dizaynlarını bu bağlamda

karşılaştırmaktır.



ACKNOWLEDGMENTS

I would first like to thank my advisor Prof. Fikri Karaesmen for his great supervi-

sion and invaluable support during my PhD. study. I am also very thankful to Prof.
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Odabaş as PhD. candidates. I thank them for their invaluable friendship.

All this would not be possible without the support of my family: my irrevocable (my

mother), my hero (my father), my sweetheart (my sister) and my aunts. I dedicate

this dissertation to my mother Fatma and father Ferda. Without their invaluable sup-

port, patience and encouragement it would be very difficult to complete this work.

I would finally thank my husband, Mustafa Gökalp Ataman, the greatest surprise
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Chapter 1

INTRODUCTION

A service system is a configuration of technology and organizational networks de-

signed to deliver services that satisfy needs, wants and aspirations of customers. Call

centers, universities, hospitals, restaurants, shopping centers, transportation compa-

nies, hotels, beauty centers are a few examples of the service systems which provide

service to customers in different areas. Operators, professors, doctors, waiters, sales-

man, drivers, room-cleaners, cosmeticians are the service providers of these service

systems. These workers provide service to customers to satisfy their tangible and

in-tangible needs.

A strategic customer in a service system acts independently in order to maximize

his individual welfare or utility. To maximize his individual utility, a strategic cus-

tomer compares all of his possible alternatives and chooses the one which brings the

highest pay-off to him. The alternative with the highest pay-off is referred as the

optimal behavior (action) of this customer. Indeed, each customer’s optimal behavior

is affected by acts taken by the service provider (system manager) and by the other

customers. The result is an aggregate equilibrium pattern of behavior which may not

be optimal from the perspective of the society as a whole. So, the optimal decisions

of the individual customer, social planner who is responsible from maximizing the

social welfare, and the service provider all need to be analyzed in these systems.

Since the designers and the servers of the service systems are humans who provide

service using technological labor and equipments, there is always a probability of the

service failure. Some possible reasons for this service failure can be characterized as:

The inefficiency, temporary emotional burnout, carelessness, tiredness-illness of the
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service provider, oldness or the defect of the technological equipment, power blackout

or the disconnection of the internet etc. Such kind of failures shows that for a strate-

gic customer assuming a perfect service in all of his visits to a specific service system

is unrealistic. So, in real life service systems are imperfect and a strategic customer,

the social planner and the service provider must take this imperfection or the service

failure probability into account.

Moreover, many service systems are queueing type systems. For example, when a

customer makes a call to a call center, if all of the operators are busy, he waits until

one of the operator becomes idle. When a patient wants to get examined by a doc-

tor in a policlinic, he generally makes an appointment, since there are other patients

who made their appointments earlier. If a customer goes to a restaurant to get his

dinner, he waits for the waitress to come after serving the customers who came to

the restaurant before. All of these examples illustrate that service systems generally

include queues, and the individual customer, social planner and the service provider

must (directly or indirectly) consider the displeasure of waiting in the queue.

Based on the above motivation, we analyze how the strategic (rational) customer, the

social planner and the service provider behave in imperfect quality queueing systems.

The customer is strategic, so he is able to take the best decision for himself among all

other alternatives. The possible decisions in these systems typically concern whether

or not to join the queue, but can also consider decisions pertaining to the abandon-

ment from the queue. For the social problem, the possible decision strategies of the

social planner is to accept some or all of the customers to the system, which maxi-

mizes the social welfare. In the problem of the service provider (profit maximizer),

the decision is to determine the model parameters which maximize his profit. In this

thesis, for the decision parameters of the profit maximizer’s problem, we use the queue

entrance price, the service quality level and the service rate.

We assume that the satisfaction of receiving a service which satisfies the needs of the

customers, is expressed with a monetary value, service reward. So, the customers who

receive the satisfactory service take the service reward; on the other hand the ones who
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are subjected to a service failure cannot take this reward. Since the service systems

being considered are queueing type systems, customers choose the decision, in which

their service is completed in the shortest time; i.e. they don’t want to wait much. To

express the displeasure of waiting, we use a monetary value for the unit waiting cost.

If a customer decides to join the queue, he pays an entrance fee. To summarize, the

utility function of a strategic customer includes three parts: Expected service reward

which has a positive sign and increases the satisfaction of the customers, and the

expected waiting cost and the queue entrance price which have negative signs and de-

crease the pleasure of the customers. The social problem includes the first two parts.

We consider the entrance fee as a transfer payment in the social problem. So, we

express the social welfare function by subtracting total expected waiting cost of the

entire system from the total expected reward of the all customers. The revenue of the

profit maximizer is formed by the total entrance prices taken from the customers who

decide to join the system. However, since providing service with higher quality levels

is costly for the profit maximizer, in order to form the problem of the profit maximizer

we subtract the total cost of the quality from the total revenue (total entrance price).

Although it seems like the expected reward and the waiting cost of the customer are

independent from the problem of the profit maximizer, these values affect the profit

maximizer’s problem indirectly. That is why the service provider must consider these

values in setting the entrance price.

Moreover, the service systems that we consider in this thesis have imperfect quality.

The service failures which are caused by the service quality problem, will require res-

olutions. The possible service failure resolution alternatives are listed as:

A customer who is subjected to a service failure

1. can leave this system and go to any other service system to satisfy his needs.

2. returns to the same system,

immediately, and goes to the end of the queue as a queueing discipline.

immediately, and keeps the server busy (goes to the beginning of the queue
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as a queueing discipline).

after a sufficiently long time such that upon next arrival she observes the

system in steady state.

3. can be escalated to higher levels of servers in the same system.

In order to analyze the first two service failure resolution alternatives, having a sin-

gle server in the service system is enough. However, to analyze the third resolution

alternative, we must use at least two servers in modeling our systems. Based on this

motivation, we first model our service systems using a single server, then we analyze

and compare the first two resolution alternatives from the viewpoints of the individual

customer, social planner and the service provider. Next, we model our systems using

two servers (multi-server models with minimum server number), and analyze all of

the three resolution alternatives for the individual customer’s, social planner’s and

the service provider’s perspective.

We label the first part as the Single Stage Models. This part contains: The Bench-

mark Model which is used to model the first resolution alternative, The Model With

Resolution and The Model With Returns to model the second resolution alternative.

We analyze the three problems, the problem of the individual customer, the social

problem and the problem of the profit maximizer using these Single Stage Models.

We then compare the performances of these models by using the performance crite-

ria of the equilibrium joining probability for the individual problem, socially optimal

joining probability for the social problem, and the profit value of the problem of the

profit maximizer.

The label of the second part is the Two Server Models. In order to analyze the third

service failure resolution alternative we use the Escalation Models. As a system design,

we model the Escalation Models, as a sequential multi-stage system. That is we as-

sume that there are two sequential servers providing service respectively. To compare

the performance of these sequential stage systems based on the performance criteria

given before, we also use the other alternative for the Two Server Models. This alter-
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native is the Two-Parallel-Server Model which basically is the M/M/2 model having

two identical servers providing service simultaneously. In order to analyze additionally

the first two resolution alternatives in these Two Server Models part, we model the

Escalation and the Two-Parallel-Server Models in two ways. In order to represent the

first resolution alternative, we use the Simple Escalation and the Two-Parallel-Server

Benchmark Models which assume that the unsatisfied customers (for the escalation

model, the unsatisfied customers refer the customers who are subjected to a service

failure in both of the two servers.) leave the system. We analyze the second resolution

alternative by using the Perfect Escalation Model and the Two-Parallel-Server Model

With Resolution which assume that the customers do not leave the system without

taking the service reward; i.e. all the customers keep returning until they leave the

system satisfied.

In order to combine our analyses given in these two parts, we compare the perfor-

mances of the Two Server Models with the Single Server Models with a single server

who provides service with double server rate.

Up to this point, we assume that the profit maximizer provides service for the fixed

service rates. So, he decides on the entrance price and the service quality level. How-

ever, since changing the service rate might be easier and less time consuming for the

profit maximizer in some settings, we change the structure of the profit maximizer’s

problem in the last part of this thesis. Here we assume that the profit maximizer

decides on the entrance price, service rate, and the service quality level. Since in this

case, the entrance price is a function of the other parameters, service rate and service

quality level, we consider this problem as an optimization problem with two decisions.

In order to analyze how the performance of our models are affected with this change

from the profit maximizer’s viewpoint, we consider two cases in this part. The first

case is the Fixed Server Rate Case, which assumes that the profit maximizer provides

service with fixed service rate and changes the service quality level. The second case

is the Service Rate Is A Decision Case, assuming that both the service rate and the

service quality level are the decisions.
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The outline of this thesis is as follows: The second chapter is the Literature Review.

We divide this chapter corresponding to the literature survey in two sections. In

the first section we briefly mention the related papers published in this area. In the

second section, we review and explain the three most relevant references in detail.

The third chapter is the Single Server Models. We describe the Single Server Models,

and then analyze the individual, social and the service provider’s problem based on

these models. The fourth chapter is the Two Server Models. Here after explaining

the models corresponding to this chapter, we analyze the three problems based on

these models. In the end, by comparing the performance criteria of the previously-

mentioned problems based on the different Single Server and Two Server Models, we

discuss which models are better in terms of a system design. Moreover, we discuss

which resolution alternative is better from the different perspectives, individual, social

and service provider. The fifth chapter is the Service Rate Decision. In this chapter,

we investigate how the performance of the profit maximizer’s problem is affected by

changing the server rate. The last chapter is the Conclusions and we summarize our

results and contributions here.
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Chapter 2

LITERATURE REVIEW

In recent years, academic research in modeling the strategic customer’s behavior

in queueing models has shown an increase in volume. In this chapter, we review some

of this research in the first section, and then we discuss the most relevant three papers

in detail.

2.1 References

The subject of this thesis is related to three main subjects in the literature.

The first subject is ”Strategic Customers in Queueing Systems”. This subject deals

with the rational behaviour of the customer, whose goal is to maximize his utility,

where he waits in queues of the systems. There are many different topics that are

analyzed under this title. The ones which are closely related with the subject of our

thesis can be given as: Equilibrium (individual problem of the customer) and the

social problem in both of the observable and unobservable queues, the short term

(deciding only on the price) and long term (deciding not only on the price but also on

the other model parameters) problem of the profit maximizing firm, and the service

rate control.

The second subject is ”Queueing Systems Design”. The papers of this subject ana-

lyze and compare different queueing system design structures. Queueing systems can

be designed in different ways: Single queues can be served by a unique server, by

multiple parallel servers providing simultaneous service or by the multiple sequential

servers providing service respectively. Similar service design issues can be used for

multiple queues. Additionally, in such systems pooling which is the replacement of

multi queues by a similar (functionally equivalent) single queue is used in designing
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the queueing systems. We give the related references which analyzes parallel systems

design, sequential systems design and pooling effect.

The last subject is ”Service Quality and Recovery.” This subject focuses on the per-

ceived quality of the service, which is generally subjective for the customers, and can

be affected by many different measures as the service level, proficiency of servers, out-

side hearings, loyalty and personal preferences of a customer, waiting in the system

etc. The papers of this subject also concern about how the service quality problem

can be resolved upon its occurrence. Here we focus on the Service Quality Literature

by giving the related references.

For the detailed review of the literature of Strategic Customer, see Hassin and Haviv

[20]. In their book, they summarize all the papers that are published on this subject

starting from the first known one, namely Naor [30], until the year of 2000’s.

Naor [30] observe the aggregate equilibrium pattern of individual where it is not only

affected by acts taken by the service providers but also by the acts of the other cus-

tomers. For a long time, it is known by the economists that this individual equilibrium

may not be optimal from the point of social view (society as a whole). But this issue

has been considered in the context of queueing theory only after the publication in

1969 of a paper by Naor [30].

The subject of the Naor’s paper [30] is the control of first-come-first-served (FCFS)

M/M/1 system. In his model, there is a queue manager who announces an entrance

price (admission fee) for the customers. Based on this price, customer decides whether

or not to join this queue, by comparing his utility value under these two pure strate-

gies. He noticed that in observable queues, where the customer knows their exact

position in the queue, the decision of the individual customer is different from the

socially optimal one. In order to decrease the mismatch between the individual and

social optima Naor suggests imposing an appropriate admission fee. The models given

in this thesis are very similar to the one given in Naor [30]. But in his model he as-

sumes that the quality of the service is perfect once the customer joins whereas we

are working on the quality (service failure probability) and the recovery problems.
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Hassin [19] suggested a way to achieve social optimality without imposing admission

fees. He observed that the service discipline regime of LCFS-PR leads to a socially

optimal behavior. Here the service discipline regime of LCFS-PR denotes that the

newly arrived customer joins the system and is immediately served, possibly preempt-

ing the service of another customer. Here preempted customers join a queue where

later arrivals get priority over earlier arrivals. When a preempted customer’s turn to

re-enter service comes, his service is resumed from the point of interruption. In this

model, rather then deciding whether to join the queue, individual customer decides

when to leave the queue. Olson [32] showed that customers receive priority levels

based on their payments under this service discipline regime of LCFS-PR. He shows

that the social optimality can be achieved in such a pricing system. These two refer-

ences deal with the observable queues as we also consider. However, they consider the

perfect quality systems and LCFS-PR service discipline, where the service quality is

im-perfect and the service discipline is FCFS in our models. Moreover, the decision

that an individual faces in our model is whether or not to join to the system rather

than when to leave the queue.

For the observable queues, some papers compare the profit maximization decision of

the service provider with the socially optima rather than comparing the individual

and social decisions. In his model, Naor concludes that the profit maximizing fee

is higher compared to socially optimal one. Knudsen [22] generalizes this result to

multi-server queues when the waiting cost functions are nonlinear. He shows that the

result of Naor holds when the benefit from the service is concave decreasing in total

waiting time of the system. Yechiali [39] showed how to compute the profit maximiz-

ing fee in GI/M/1 system. Rusen and Rosenshine [34] investigated the sensitivity

of the thresholds and gains in Naor’s model to changes in the arrival rates. For the

observable queues, Chen and Frank [10] analyzes the state dependent pricing. In their

paper, they observed the case where the objective of the profit maximizer matches

with the socially optimal one. Thus, they showed that the profit maximizing pricing

scheme is to charge the maximum possible fee as long as the queue length is less
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than a threshold and then charge a higher fee otherwise, when the server is able to

adjust the price to the state of the system. Since all of the consumer surplus goes to

the server, the optimal profit of the profit maximizer is than socially optimal. Levy

and Levy [25] considered an M/M/1 queue where the server adjusts a price pi when

there are i customers in the system. They proved that under the profit maximizing

pricing scheme the expected profit is higher than the related system where customers

pay the price before they arrive. When the joining rates are determined through an

equilibrium mechanism, Hassin and Haviv [20] suggest an extension of the previous

model. In this thesis, we did not consider the problem of the profit maximizing firm

when the queue length is observable. But these papers can be references for our future

research.

Some of the studies which analyze observable queues with heterogeneous type of cus-

tomers are listed as: Larsen [23] considered a generalization of Naor’s model where

the service values of the customers are different. Larsen proves that the profit maxi-

mizing fee is greater than or equal to the socially optimal fee. Edelson and Hildebrand

[16] showed that the comparison between the profit maximizing and socially optimal

price does not necessarily hold when the time values of customers also differ from

each other. De Vany [15] considered an observable queue where the service demand is

a function of the admission fee. He showed that in Naor’s model, the fee charged by a

profit maximizing server is too high and thus the rate by which customers join is too

small relative to the socially optimal solution. Miller and Buckman [29] considered

an M/M/s/s model for observable queues.

In this literature, many of the researchers work on the unobservable queue length

setting, namely they assume that the customers cannot observe the queue and they

decide based on their expected waiting time in the queue. The properties of the ba-

sic unobservable single server queue were discovered by Edelson and Hildebrand [16].

They showed that individual optimization leads to queues that are longer than are

socially desired, as in the case of observable queues. They also concluded that this

gap can be corrected by imposing an admission fee. In this thesis, we also coincide
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unobservable queueing setting analyzing the equilibrium and social problems of basic

M/M/1 queues, where we similarly conclude that the individually optimal joining

rates are higher than the socially optimal ones. By comparing the social problem and

the problem of the profit maximizer in unobservable queues, Hassin and Haviv [20]

showed in their book that the objectives of the profit maximizer and society coincide.

However, we do not have this result in our thesis. Because, we assume that providing

service with high quality levels is costly for the profit maximizer and consider this

cost in his profit function, whereas since the service is perfect Hassin and Haviv [20]

ignore this cost.

Assuming the queue length is unobservable, Chen and Frank [11] considered a short

term (pricing problem) and a long term (deciding on the price and the service rate)

problems of the profit maximizing firm. In their short term models, assuming all the

model parameters are fixed except the queue entrance price, they showed that the

comparison between the different pricing schemes (market capturing and monopolistic

pricing) depends on the model parameters. In our models, we also consider the short

term pricing problem of a profit maximizer and as given in Chen and Frank [11], we

show that the comparison between the market capturing and the monopolistic pricing

depends also on the model parameters; i.e. when the utilization level of the server is

high setting a monopolistic price is more profitable compared to the market capturing

pricing. In their long term model, Chen and Frank analyzed the problem of a profit

maximizing server in which the cost of maintaining a service rate µ is bµ per unit of

time and the cost of serving the customer is r. They observed that in this model,

if a positive profit is possible, then the server will select a processing rate µ and an

entrance fee p such that all the potential arrivals will be served. They also observed

that the optimal service rate decision does not vary with the cost r and this cost only

determines whether a positive profit is possible. They additionally observed that the

firm responds to an increase in λ by increasing µ and p. Finally, they observed that

the long-run profit maximizing solution is socially optimal as in the short-run. In our

thesis, we additionally analyze the long term problem of the profit maximizer. In our
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long term models, we first assume that the profit maximizer decides on the service

quality level for the fixed service rate and then assume that both the service quality

level and the service rate are decisions. In our long term analysis, we reach a similar

conclusion from a different perspective to the one given in Chen and Frank [11]. That

is, in the long term for the market capturing pricing setting, offering a resolution to

the unsatisfied in order not to lose them is optimal for the profit maximizer. Thus,

when the profit maximizer has chance to play with at least one of his model parame-

ters, it is optimal for him to capture the whole market and not to lose them.

Besides the joining decisions of the individual and social problem and the pricing

problem of the profit maximizer, the subject of Service Rate Decisions is explored in

the concept of the strategic customers. In these articles the service rate is a decision

variable. In most cases, it is the server who determines the service rate, but there are

also other models where the service rate decision is made by customers. Mendelson

[28] analyzed the long run version of unobservable queueing models of the social plan-

ner for the heterogenous service values. In this model, unlike to short run case, the

socially optimal solution and profit maximizing solution cannot be compared conclu-

sively. He concluded that the comparison depends on the model parameters. Dewan

and Mendelson [14] found that in an M/M/1 system with linear service rate costs, the

optimal admission price is equal to marginal cost of increasing the service rate. Ittig

[21] worked with a revenue function depending on the arrival rate and a cost function

depending on a number of servers in an M/M/s queue or on the service rate in an

M/M/1 queue. For different demand functions, he computed the optimal number of

servers and the service rate maximizing the social welfare. In their paper So and Sang

[36] characterized the optimal price and capacity for an M/M/1 system where the

service demand function has two parameters: the price and the the α-percentile of the

waiting time distribution where α is a decision. Ha [18] considered an unobservable

system when customer chooses their own service rate. He showed that the choice of

the service rate that the customer chose reflects the amount of service he requests and

affects his utility. Cachon and Harker [8] made a similar assumption in their model.
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Balachandran and Schaefer [2] described a type of an equilibrium inefficiency: when

potential population of customer consists of classes that differ by their cost/reward

ratios, a single class dominates in equilibrium and it is not necessarily the socially

desired class. They additionally proved that this inefficiency does not exist in the

long run model, when the cost of operating the server is linear in the server rate. In

their paper, Balachandran and Srinidhi [3] worked with an M/G/1 model assuming

the cost of the service rate µ given an arrival rate λ is proportional to e−(λ/µ). They

concluded that the first order optimality conditions of the social problem in the short

and long runs coincide. This result holds, since they ignored the dependence between

the service rate cost and the arrival rate, in the short run model. Our models related

with the service rate decisions are somehow different than the ones given in literature,

because previous models all assume that the service quality level is perfect once the

customer joins the system. Whereas, since we are analyzing these systems when the

service quality is not perfect, in all of our models, we consider two decisions: service

quality level and the service rate.

The second subject of the literature which is related with our thesis is the ”Queue-

ing Systems Design”. This subject analyzes the different design alternatives of the

queueing systems. The systems can include a single queue or multiple queues. When

a service provider is designing his system, he can use either a single server or mul-

tiple servers which provide service to the customers in these queues. The multiple

server systems can both be designated in ways that these servers provide simultaneous

service (Parallel Servers Systems) and they provide service respectively (Sequential

Servers Systems). In his paper, using the service systems which are designated by

serial Markovian queues Burnetas [7] analyzed the customer’s optimal equilibrium

strategies. Namely, the series of M/M/m queues with strategic customer behavior

is considered in this article. In this model, customers arrive to the first queue and

decide whether to join the system, if they join they also decide up to which queue to

proceed in this serial system before leaving. Based on the objective of maximizing

his own utility value, each customer decides or acts independently. In his model, the
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decision of a customer is formulated as a game, and using a backward recursive form

the unique symmetric Nash equilibrium strategy is identified. By additionally ana-

lyzing the social problem and he established the relationship between the equilibrium

and social strategies, where these strategies do not coincide. Our models considering

the escalations are closely related to the one given in Burnetas [7]. Indeed we restrict

this M/M/m systems to an M/M/2, and the only decision of the customer is whether

or not to join the system. That is the customer decides whether or not to join, and

if he joins and is served successfully in the first server, he leaves the system before

proceeding to the second server, otherwise he proceeds his service in the second server

and leaves the system when his service in this server is completed. Using the prior-

ity options, Printezis and Burnetas [33] analyzed M/M/m queues. In their model,

the service provider offers priority options, and by deriving the optimal demand of a

customer and the policy of a customer as a function of system congestion, remaining

options, expiration time, and balking possibility, they identified the optimal option

pricing policy. In our models of the escalation systems including M/M/2 queues,

service provider offers resolution options to unsatisfied customers rather than offer-

ing them priorities. The other studies which analyze the multi-server models in the

unobservable environment are as follows: In a queueing system, Bell and Stidham [4]

analyzed an equilibrium model of routing customers. They analyze both the equilib-

rium and the social problem, and concluded that, in both of the equilibrium and the

socially optimal solution, the active server’s input is the service rate minus a portion

of the excess of the total rate of service of the active servers over total demand. In

social optimization this excess is not distributed uniformly among the active servers

whereas in equilibrium solution it is. In the social optimization, the excess is dis-

tributed in a way that it is proportional to the square root of their service rates. In

a queueing network, Larson [24] analyzes the equilibrium. In this model by choosing

their travel speeds, customers move between queues. He thought that customers move

at their maximum speeds which is not socially efficient. Mandelbaum and Reiman

[26] analyzed the server pooling effects in queueing networks. They concluded that
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care must be used in pooling. Pooling sometimes helps the service provider by in-

creasing his profit, but it sometimes hurts where its effects can be unbounded. In our

analyses, we also showed that if the multi-server models are properly designed they

can be profitable for the profit maximizer, otherwise working with a single server is

optimal.

The last subject which is related with the subject of this thesis is ”Service Quality

and Recovery”. According to the Gronross [17] the service is a complicated issue. In

his paper he discussed the perception of the service quality by the customers. For the

perceived quality, Gronross [17] presented a conceptual model. In describing the com-

mon characteristics of the perceived quality he used six criteria, namely six criteria

of good perceived service quality. They summarize the six criteria as: profession-

alism and skills, attitudes and behavior, accessibility and flexibility, reliability and

trustworthiness, reputation and credibility and recovery. On the other hand, prior

research on service failure has focused on four main aspects: types of service failure,

recovery strategies, service failure’s effect on customer satisfaction, and application of

the attribution theory and justice theory. Bell and Zemke [5] focused on the service

failure types where they defined the service failures as conditions in which customers

are dissatisfied. This dissatisfaction of the customer occurs because the perception of

the service that the customer has received is worse than he expected. In our mod-

els, we also assume that if a customer receives a perfect quality service he leaves the

system satisfied, whereas when the service failure occurs which is not the customer

expects, he leaves unsatisfied. By reviewing the prior researches, Smith et al. [35]

identified service failure in two types: outcome and process related failure. The out-

come related failure refers the what actually occurs during the service. The process

related failure contains the manner in which the service is delivered. The service

failure type in our models are closer to the former one, which is the outcome related

failure, since the failure occurs during the service and as an outcome customer is ei-

ther satisfied or unsatisfied. According to McColl-Kennedy et al. [27], customers may

experience dissatisfaction following a single such failure given that service failures are
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common in the service industry. When this failure occurs it is important to resolve

dissatisfied customers through an appropriate set of actions which is labeled as the

customer recovery process. In our models, we also define different resolution actions

which deals with the service failure problems. The interaction between service failure

and recovery is the one of the common subject in the service management literature.

A theory-driven model of customer satisfaction which is related to mental accounting

theory is proposed by Chuang, Chang, Yang and Cheng [12]. In this article they con-

sidered whether different types of service failure (i.e. outcome- and process-related

failure) warrant different types of service recovery (i.e. psychological and tangible

recovery). As previously mentioned, the service failure are outcome related in our

models, additionally the service recovery, which we refer as the service resolution

alternatives can be considered as tangible recoveries, because when the service reso-

lution is proposed to the customer who is subjected to this service failure, he receives

the service reward which is defined in monetary values. by investigating the role of

service failure severity, Weun, Beatty, Jones [38] developed the previous research on

service recovery subject. Results of this paper showed that service failure severity

highly affects the satisfaction, trust, commitment and negative word-of-mouth. In

our paper, rather than using the severity of the service failure, we use the all or noth-

ing rule, namely the customer either receives the satisfactory service or not. Oh [31]

proposed an integrative model of service quality, customer value, and customer satis-

faction. This model can be compared with our model, because we also use these three

issues in our models. In order to understand the service encounter evaluation Bitner

[6] presented a model which synthesizes consumer satisfaction, services marketing,

and attribution theories. To assess the effects of physical surroundings and employee

responses (explanations and offers to compensate) on attributions and satisfaction in

a service failure context, they tested portion of their model experimentally. Cronin

and Taylor [13] measured the service quality and the relationships between service

quality, consumer satisfaction, and purchase intentions. The purchase intentions of

our models can be considered as the joining or not joining decision of the customer.
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Namely, in our models we analyze how the service quality level affects the joining de-

cisions of the customer. The results given in Cronin and Taylor [13] provided support

that a performance-based measure of service quality can improve the measurements

of the service quality construct. They also showed that the service quality is prior to

consumer satisfaction. They finally concluded that the consumer satisfaction highly

affects the purchase intentions. In our models, we similarly conclude that the join-

ing decisions of the customer’s is increasing in the service quality level. All of the

summarized researches show that service quality and recovery problem is one of the

main subject of the Service Quality literature. However, these papers of the related

all ignore the waiting effect of the queueing systems. In this thesis, we try to relate

and merge the quality and recovery problems with the waiting effect of the queueing

systems.

2.2 Review of the Most Relevant References

In this section, we review three of the main motivating papers, for our study in detail.

The purpose is to provide a background for the modeling assumptions in our analysis.

We then formulate some basic models with service failure that build on these papers.

• Naor [30]: We review Naor’s model which analyzes and compares the individual

and social problems when the queue length is observable.

• Edelson and Hildebrand [16]: We review this model comparing the individual

and social problems when the queue length is unobservable.

• Chen and Frank [11]: We review the long-run model for the problem of the

profit maximizer for the unobservable queue length assumption.

• We start to model basic ”Quality Models” and analyze the individual and social

problems based on these models. We then compare the performances of the

models for the observable queues.
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2.2.1 Individual and Social Problem When The Queue Length is Observable

The subject of the paper written by Naor [30], is the control of first-come-first-served

(FCFS) M/M/1 system having strategic customers. This model deals with queueing

systems, where an arriving customer observes the length of the queue before making

his decision. In this model the queue manager sets an entrance fee, and customers

react by setting a pure strategy of whether or not to join this system. He shows that

the individual optimization generally defined with a pure threshold strategy. The

model assumptions given in Naor [30] is listed as:

• A stationary Poisson stream of customers-with rate λ- arrive to a single server.

• The service times are independent, identically distributed with parameter µ.

• A customer’s benefit from completed service is R

Customers who join the system always take this reward, since Naor assumes

that the service is perfect once the customer joins the queue.

• The cost to a customer for staying in the system, either while waiting or while

being served, is C per unit of time.

• Customers are risk neutral, that is they maximize the expected value of their

net benefit.

• Utility functions of individual customers are identical and additive, from the

social point of view.

• Rµ ≥ C2, since otherwise not joining is always dominant equilibrium strategy.

• The service discipline is FCFS.

• A decision to join is irrevocable, and reneging is not allowed.
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• Upon arrival, a customer inspects the queue length and decides whether to join

or not. A customer who leaves, never returns to the system.

The individual’s optimization strategy is easy. A customer who joins the queue when

i customers are already in the system (including the one who is currently served) ex-

pects a benefit R− (i+1)C
µ

. The customer then joins if this value is nonnegative. That

is if i + 1 < Rµ
C

. otherwise, the customer leaves. Consequently, the pure threshold

strategy, ne with

ne = bRµ
C
c

is an equilibrium strategy. Under this strategy an arriving customer joins the queue if

he observes ne− 1 or fewer customers and leaves if he observes ne customers or more.

Social optimization is not as trivial. Naor [30] also observes that there exists a pure

threshold socially optimal strategy. To show this, he denotes the expected social ben-

efit for unit of time as SO. Given a maximum queue length of n, the probability of

having n customers in the system is:

qn =
ρn

n∑
i=0

ρi
.

Assuming ρ 6= 1, the probability that an arriving customer joins is:

1− qn =
1− ρn

1− ρn+1
.
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The expected number of customers in the system is:

Ln =
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1
.

Hence,

SO = λR(1− qn)− CLn = λR
1− ρn

1− ρn+1
− C

[
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1

]
(2.1)

By some lengthy calculations, Naor shows that this social welfare function derived in

(2.1) is discretely unimodal in n. In other words, a local maximum is also a global

maximum for this function. Thus he seeks a strategy, n0, which is associated with

following inequalities:

λR

[
(1− ρ)ρn0

1− ρn0+1
− (1− ρ)ρn0+1

1− ρn0+2

]
− C

[
(n0 + 1)ρn0+1

1− ρn0+1
− (n0 + 2)ρn0+2

1− ρn0+2

]
< 0

λR

[
(1− ρ)ρn0−1

1− ρn0
− (1− ρ)ρn0

1− ρn0+1

]
− C

[
(n0)ρn0

1− ρn0
− (n0 + 1)ρn0+1

1− ρn0+1

]
≥ 0

After some algebraic manipulations, he converts the above inequalities to:

n0(1− ρ)− ρ(1− ρn0)

(1− ρ)2
≤ Rµ

C
≤ (n0 + 1)(1− ρ)− ρ(1− ρn0+1)

(1− ρ)2

After deriving threshold inequalities for the individual and the social problem, Naor

makes some numerical experiments and concludes that the threshold value of the

customer’s problem is greater than the social threshold. Namely, let ne and n∗ denote

the customer’s and social thresholds then n∗ ≤ ne.

In order to motivate the customers to adopt the threshold n∗ rather than ne, Naor

suggested imposing an appropriate admission fee.
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2.2.2 Individual and Social Problem When The Queue Length is Unobservable

The properties of the basic unobservable single server queue is discovered by Edel-

son and Hildebrand [16]. Their model presents the situation where the customers do

not observe the queue prior to their actions. They adopt the first eight assumptions

of Naor’s observable model, and add the following modification: At the time a cus-

tomer’s need for service arises, he irrevocably either joins the queue or balks. It is

not possible for him to observe the queue length before making this decision.

As in the observable model, they show that a customer who joins the queue imposes

negative externalities on others and therefore individual optimization leads to exces-

sive congestion unless the queue is regulated.

In the paper, Edelson and Hildebrand start by evaluating the customers’ behavior

in equilibrium when an admission fee of size p is imposed and the potential arrival

rate is Λ. There are two pure strategies: to join the queue or not to join. A mixed

strategy can be described by a fraction q, 0 ≤ q ≤ 1., which is the probability of

joining. Given p, they denote the equilibrium probability of joining by qe(p), and the

effective arrival rate by λe(p) where λe(p) = Λqe(p) < µ. The expected waiting time

in the M/M/1 queue is W (λ) = 1
µ−λ . The net benefit of a customer who joins the

queue is R− CW (λ)− p. They distinguish the possible three cases as:

• p+CW (0) ≥ R. In this case even if no other customer joins, the net benefit of

a customer who joins is non-positive. Therefore, the strategy of not joining is a

dominant strategy.

• p + CW (Λ) ≤ R. In this case even if all customers join, they all enjoy a non-

negative benefit. So, joining is the dominant strategy.

• p + CW (0) < R < p + CW (Λ). In this case if qe(p) = 1, then a customer who

joins suffers a negative benefit. So, it cannot be an equilibrium. Likewise if

qe(p) = 0, a customer who joins gets a positive benefit, more than by balking.

Hence this can also not be an equilibrium. Therefore, there exists a unique
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equilibrium strategy where qe = λe(p)
Λ

and where λe(p) solves CW (λe(p)) = R−p.

Substituting W (λ) = 1
µ−λ , they obtain the expressions given in the following Table.

They then turn their attention to social optimization. They let the socially optimal

Case λe(p) qe(p) W (λe(p))
Λ ≤ µ− C

R−p Λ 1 1
µ−λ

0 < µ− C
R−p ≤ Λ µ− C

R−p
µ− C

R−p
Λ

R−p
C

µ− C
R−p < 0 0 0 1

µ

Table 2.1: The equilibrium strategy

joining probability be q∗, and the socially optimal joining rate be λ∗ where λ∗ = q∗Λ.

Then,

λ∗ = argmax0≤λ≤Λλ[R− CW (λ)]

Since W (λ) is strictly convex, the function to be maximized is strictly concave and

has a unique maximum. Substituting, W (λ) = 1
µ−λ , they get the solution:

µ−
√
Cµ

R
= argmax0≤λ≤Λ

[
λR− λC 1

µ− λ

]

is optimal as long as it is in [0,Λ]. The fact that the solution is nonnegative follows

from the assumption that Rµ ≥ C. Thus if Λ ≥ µ−
√

Cµ
R

then λ∗ = µ−
√

Cµ
R

. Oth-

erwise λ∗ = Λ. In the unobservable environment denoting the social welfare under

the optimal arrival rate λ∗ with, SU , the socially optimal strategy is summarized as:

From the assumption that Rµ ≥ C, λe(0) ≥ λ∗. Thus as in the case of observ-

able queues, Edelson and Hildebrand [16] conclude that individual optimization leads

to queues that are longer than are socially desired. This gap can be corrected by

imposing an appropriate admission fee.
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Case λ∗ q∗ W (λ∗) SU

Λ ≥ µ−
√

Cµ
R

µ−
√

Cµ
R

µ−
√

Cµ
R

Λ

√
R
Cµ

(
√
Rµ−

√
C)2

Λ ≤ µ−
√

Cµ
R

Λ 1 1
µ−Λ

Λ
(
R− C

µ−Λ

)
Table 2.2: The socially optimal strategy

2.2.3 Problem of the Profit Maximizer When The Queue Length is Unobservable

Chen and Frank [11] analyzes the pricing problem of a profit maximizing firm who

provides service to strategic customers. They classify their analysis in two main parts.

In the first part, which is labeled as the short term analysis, assuming all model pa-

rameters (R, C, λ and µ) are fixed, they try to maximize the profit of the profit

maximizer by comparing different pricing settings. The possible pricing settings are

market capturing pricing, which is the minimum price that incites everybody to decide

to join, and the monopolistic pricing, in which not all of but some of the customers

decide to join with a unique equilibrium joining probability. In the second part, they

consider a long-run model of a profit maximizing server in which the cost of main-

taining a service rate µ is bµ per unit of time (other model parameters R, C, and λ

are being fixed); namely a linear cost assumption, and the cost of serving a customer

is r. They observe in their model that, if a positive profit is possible, then the server

will select a processing rate µ, and an admission fee p such that all the potential

arrivals will be served. Since the maximum fee that can be charged while maintain-

ing the arrival rate Λ is p = R−C/(µ−Λ), the problem of the service provider becomes

maxr<p<R−C
µ

(p− r)Λ− b
(

Λ +
C

R− p

)
.
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The solution is:

p∗ = R−
√
Cb

Λ
µ∗ = Λ +

√
CΛ

b
.

The observations given in Chen and Frank [11] is listed as:

• The solution does not vary with the cost r, of serving a customer. This cost

only determines whether a positive profit is possible.

The condition for a positive profit is r < R − (Cb/Λ)1/2. The right hand

side is the optimal admission fee, p∗.

• The firm responds to an increase in Λ by increasing µ and p.

• As in the short run model, the profit maximizing solution is socially optimal.

2.2.4 Basic Quality Models

In this section, we start to build basic models which consider the possibility of service

failure. These models are mainly extensions of the model given in Naor [30]. Naor[30]

assumes service is perfect once the customers join the system. Thus, customers decide

by comparing their waiting costs with the value of the service. Since service systems

do not always provide service with perfect quality, waiting time criteria is not enough

for customers while deciding. Customers also take the chance of the service failure

probability into account.

Based on this motivation, we add a quality parameter, q where 0 ≤ q ≤ 1 ,to our

elementary models and numerically analyze the optimal joining strategies of the in-

dividual and social problems in this section.

We keep all the model assumptions given in Naor [30], with only a modification in

the third assumption as: The value of the service is R, but it is taken by only the

customers who receive a satisfactory service. Receiving a satisfactory service, depends

on the service quality level, q. So, with some probability 1− q, service failure occurs,
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and customers leave the system without taking the service reward.

The first quality model which we analyze in this chapter is the Benchmark Model.

In this model we assume both the satisfied (customers who are successfully served)

and unsatisfied (customers who are subjected to a service failure) customers leave the

system without returning.

We secondly analyze a model which takes the returns of the customers into account.

We label this model as the Model With Returns. In this second model, the satisfied

customers who receive a satisfactory service leave the system where the unsatisfied

ones return to complete their service. For the Model With Returns, we assume that

the returns of the customers are memoryless. Namely, when a customer returns to

the system his new decision of whether or not to join the system is assumed to be

independent from his past experience. So these returning customers are assumed as

new customers for the system.

2.2.4.1 Individual Problem Of The Customers

In this section we assume that the queue length is observable. Thus, the utility of the

individual customer is a function of his position, i, in the queue. The reason behind

this is: Although the expected service value is the same for all customers (all cus-

tomers are homogenous), the waiting cost of the ith customer differs from the (i+1)th

customer, where the utilities of customers decrease with the increase in the cost of

waiting.

For both of the quality models, the Benchmark Model and the Model With Returns,

the server provides service with rate µ. Thus for the given model parameters, λ, µ,

R, C and q, the utility value of the ith customer of the system is the same in these

models. Using the notation U(i), the utility function of the ith customer of the sys-

tem is represented as:

U(i) = Rq − CE[W (i)] = Rq − (i)C
1

µ
, (2.2)

where E[W (i)] represents the expected waiting time of the ith customer.
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Lemma 2.1 U(i) is decreasing in i.

We give the proofs regarding to this section in Appendix A.1.

Since the individual utility function given in (2.2) is decreasing in i as given in Lemma

2.1, to characterize the joining strategies of the customers, a threshold value can be

defined. This value represents the queue length up to which customers join. If n∗ind

denotes the threshold level of individuals, it can be determined with the following

inequality:

n∗ind = bRqµ
C
c (2.3)

Thus, for the observable queue length conditions the optimal strategy of the customers

is characterized as:

i =

 not join, C
µ
≥ Rq or i > n∗ind

join, o.w.

Optimal joining strategy of the individuals is interpreted as: If the joining decision

is worthwhile, then customers join up to a threshold level. After this level, since the

expected waiting cost of customers exceeds the expected service value, they decide

not to join.

Corollary 2.1 n∗ind is increasing in R, µ, q decreasing in C, and is independent from

λ.

We interpret Corollary 2.1 as: Increases in R and q increase the expected service value.

Increasing the service rate decreases the waiting cost. So, these parameters positively

affect the joining decision of customers. On the other hand, an increase in the unit

waiting cost negatively affects the decision of the customers. Additionally, since when

taking their decisions, customers only care about themselves, the individual decisions

are independent from the potential arrival rate.
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2.2.4.2 Social Problem

In the social problem, the social planner aims to maximize the social welfare (total

expected utility function of all customers). For this total expected utility function,

the total expected waiting cost of customers must be derived. Thus, we first give the

state transition diagram of both of the models. The difference between the two state

Figure 2.1: State Transition Diagram of Benchmark Model

Figure 2.2: State Transition Diagram of The Model With Returns

transition diagrams given in Figures 2.1 and 2.2 is the service rate. In the Benchmark

Model, since both of the satisfied and unsatisfied customers leave the system, the
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service rate is µ. With this service rate and the arrival rate λ, the utilization level

of this system is ρ1 = λ
µ
. However for the Model With Returns, since unsatisfied

customers make memoryless returns, the service rate, which decreases the number of

customers in the system is µq. Hence the utilization level of this model is ρ2 = λ
µq

.

Since these two models are basic M/M/1 queueing models, the expressions for steady

state probabilities, expected queue length and expected waiting time in the system

are all known. Assuming that the social planner accepts n customers to the system,

the total expected utility function of the social system, SO(n), of these two models

can be represented as:

SO(n) = Rqλ(1−Πn)−CE[W (n)] = Rqλ
1− ρn

1− ρn+1
−C

[
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1

]
, (2.4)

where Πn and E[W (n)] respectively denote the steady state probability of having n

customers in the system, and the total expected waiting time.

Lemma 2.2 SO(n) is discretely unimodular in n.

Since the social welfare function given in (2.4) is unimodular and non-decreasing, as

expressed in 2.2, the local maximum is a global maximum. Thus, the pure strategy

of the social planner is defined with a threshold value, n∗sys, satisfying the following

inequality:

n∗sys(1− ρ)− ρ(1− ρn∗
sys)

(1− ρ)2
≤ Rqµ

C
<

(n∗sys + 1)(1− ρ)− ρ(1− ρ(n∗
sys+1))

(1− ρ)2
(2.5)

The optimal strategy of the social planner for these two models is summarized as:

i =

 do not accept, C
µ
≥ Rq or i > n∗sys

accept, o.w.

The structure of the social planner’s strategy is similar in the two models, except for

the difference between the threshold values. Since the utilization values of the two

models differ from each other, the optimal strategy of the social planner is character-

ized with different threshold values in the two models. That is, the utilization value
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used in (2.5) is ρ1 for the Benchmark Model, and ρ2 for the Model With Returns.

Corollary 2.2 n∗sys is increasing in R, µ, q decreasing in C, and λ.

Corollary 2.2 is expressed similarly to Corollary 2.1. The difference is the dependence

on the potential arrival rate. Although the individual threshold is not affected by the

potential arrival rate, the social threshold is, which shows that the social planner has

to take all the customers into consideration in making his decision.

2.2.4.3 Numerical Study

In this section, we numerically explore which represent the optimal strategies of the

individual customers and the social planner for the Benchmark Model and the Model

With Returns. In the Figures, we use the label Model 1 to denote the Benchmark

Model and Model 2 for the Model With Returns.

We list the results of these observations represented in Figure 2.3 as:

• There is a mismatch between the individually and socially optimal thresholds.

Individual threshold is higher than the socially optimal one.

• The individual threshold is not affected from the potential arrival rate; the social

threshold is.

For the same model parameters, the individual threshold values are the same

for λ = 0.5 and λ = 1.2, while the threshold of the social system is lower when

λ = 1.2 compared to the case λ = 0.5.

Since the congestion of the system is higher for the higher arrival rate,

the social planner accepts fewer customers into the system.

• For the lower quality levels, the social planner accepts fewer customers into the

system in the Model With Returns, relative to the base model.
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The number of the unsatisfied customers is high for low quality levels and

these customers return to the system by increasing the load of the server. Thus,

the social planner optimizes the social system by using a lower threshold.

For higher quality levels, since the number of returning customers are lower

and the utilization of the two models are closer, the socially optimal threshold

values of these two models are similar, i.e. models behave similarly.

• Increase in the service reward and the quality level positively affect the individ-

ual and social joining strategies.

Since the expected service value increases, joining decision is optimal.

From the analyses given in this chapter, similar results to Naor [30] are observed.

The individually optimal joining strategies of the customers differ from the socially

optimal ones. This shows that, joining decisions of the customers negatively affect the

social system. Thus, there needs to be a factor which decreases the optimal threshold

value of the customers to decrease the mismatch between the individually and socially

optimal thresholds.

One factor which decreases this mismatch is setting a queue entrance price, p, for the

customers who join the queue. This price decreases the utility of the customers, so

fewer customers join the system. On the other hand, since this entrance price is a

transfer payment for the social problem, it does not affect the social system. Thus,

the mismatch between the optimal values of the individual and social problems de-

crease.

The other factor is hiding information from the customers. In all the analyses given in

this chapter, observable queue length conditions are assumed. Based on these condi-

tions, since customers are informed about the system, they precisely decide if joining

is useful for them or not. On the other hand, if the queue length information is kept

from them, they only know their expected waiting time. So they can choose not to

join based on this expected time, although it is higher than the actual waiting time.

Using these two results, from now on, we assume that the queue length is unobserv-
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able. In the next chapter, we reanalyze these two problems in the unobservable queue

length setting. We additionally analyze the problem of the service provider (profit

maximizer). In analyzing this third problem, we add the queue entrance price p to

the customers’ problem, assuming it is taken by the service provider and generates

revenue for him.
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Figure 2.3: Comparison Between Individual and Social Thresholds- Benchmark Model
and The Model With Returns
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Chapter 3

SINGLE SERVER MODELS

In this chapter the single stage queueing models implementing quality issues that

were introduced in Chapter 2 are analyzed in a different setting where the queue

length is unobservable and an entrance price is charged to customers who decide

to join. Keeping all the model assumptions the same, except the observable queue

length assumption, in addition to the two quality models described in the previous

chapter, Benchmark Model and The Model With Returns, the third model namely

The Model With Resolution are analyzed in this chapter. Besides the Individual

Problem of the Customer and the Social Problem, we also analyze the Problem of the

Profit Maximizer. To represent the revenue of the profit maximizer, we add a queue

entrance price to the problem of the customers; i.e. the profit maximizer charges an

entrance price to customers. This price additionally decreases the mismatch between

the individual and social optima as expressed in Naor [30], Edelson and Hildebrand

[16] and Chen and Frank [11]. Since providing a service with higher quality levels

is more costly for the profit maximizer, we add a cost expression to the problem

of the profit maximizer, assuming this cost has a quadratic structure in quality, i.e.

assuming the unit cost of the service quality level is a, the total cost of providing

service with q units of quality is aq2.

The organization of this chapter is as follows: In the first three sections of this chapter,

we analyze the mentioned problems for the Benchmark Model, The Model With

Resolution and The Model With Returns respectively. In the last section, we give the

comparison between these models. To compare the models from the individual and

the social viewpoint, we use the individually and socially optimal joining probabilities.

We give the optimal quality level, optimal price and the optimal profit comparison for
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the profit maximizer’s problem, where the model comparison criteria is the optimal

profit value.

We give all the Proofs of the Lemmas, Corollaries and Propositions corresponding

this chapter in Appendix A.2. The Observations representing the Numerical Studies

of this Chapter can be found in Appendix B.1.

3.1 The Benchmark Model

We introduce the Benchmark Model in Chapter 2 in the observable queue length

setting. Since in this chapter the queue length is unobservable for the customer, the

representation and the scenario of the model is changed.

We represent the Benchmark Model when the queue length is unobservable, in Figure

3.1.

The scenario of the Benchmark Model is: Customers arrive to the system with the

Figure 3.1: Graphical representation of Benchmark Model

potential arrival rate, λ. Denoting the joining probability with α where 0 ≤ α ≤

1, some of the customers decide not to join the system with rate λ(1 − α), while

others decide to join. The ones who decide to join, enter the queue in front of the

server and wait until they are served. Some of them, who join the queue and wait,

receive satisfactory service with probability q, while others are subjected to a service

failure. Both of these satisfied and unsatisfied customers, with rates λαq and λα(1−q)

respectively, leave the system.
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We analyze the individual problem of the customers, the social problem and the

problem of the profit maximizer of this Benchmark Model in this section.

3.1.1 Individual Problem Of The Customers

The queue length is unobservable and customers are assumed to decide based on the

expected waiting time in the system. Since this information, expected waiting time in

the system, is the same for all of the customers who are homogenous, they all decide

similarly. Thus, the individual problem of customers in an unobservable setting is

also defined as the equilibrium problem of customers.

The decision variable of the customer’s individual problem is the joining probability,

α. The equilibrium joining probability of customers is found based on the utility func-

tion of the individual customer. The variables of this utility function are: expected

service value, total expected waiting cost and the queue entrance price. The customer

is assumed to join the queue if his utility function is positive.

However in analyzing the individual problem of the customer, we ignore the entrance

price. Because this price is fixed and using it in the individual problem does not

change the strategy of the customer, and only shifts the solution (equilibrium joining

probability). Based on this reasoning, in analyzing the individual problem of the

customers in all of the models, we omit the entrance price and take it into the con-

sideration in analyzing the problem of the profit maximizer.

Using the subscript 1 for the Benchmark Model the utility function of the individual

customer is represented as:

U1(α) = Rq − CE[W ]⇒ U1(α) = Rq − C

µ− λα
(3.1)

Lemma 3.1 U1(α) is concave in α.

Corollary 3.1 The equilibrium joining probability of the customers for the Bench-
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mark Model is:

αeq1 =


0, Rq ≤ C

µ
µ− C

Rq

λ
, C

µ
< Rq < C

µ−λ

1, Rq ≥ C
µ−λ

The interpretation of this result is: In the first case even if no customer joins, the

net benefit of a customer who joins is non-positive. Therefore the strategy of not

joining is a dominant equilibrium strategy; i.e. no other equilibrium is possible. In

the second case, if all potential customers enter, then a customer who joins gets a

negative benefit; hence, this cannot be an equilibrium strategy. If no one enters, then

a customer who joins gets a positive benefit, more than by balking. Hence this can

also not be an equilibrium. Therefore, there exists a unique equilibrium strategy,

which solves U1(α) = 0. In the third case, even if all potential customers join, they all

enjoy a non-negative benefit. Therefore, joining is a dominant equilibrium strategy.

From the given expression, we conclude that the equilibrium joining probability is

increasing in µ, R and q ; and decreasing in λ and C. This result is obvious, since the

increase in the parameters R and q, increase the expected reward of the customer, so

the customers become more desirous to join in this case. On the other hand, increase

in λ and C or decrease in µ, increase the total expected waiting cost of a customer,

the joining decision of a customer is negatively affected.

3.1.2 Social Problem

For the social problem we assume that there is a social planner who is responsible for

maximizing the social welfare (utility function of the whole system).

The queue entrance price is defined as a transfer payment for the social system. Thus,

the social problem does not include this price.

To find the socially optimal joining probabilities -rates- of the Benchmark Model, we

analyze the total expected utility function of the entire system.

S1(α) = λα [Rq − CE[W ]]⇒ S1(α) = λα

[
Rq − C

µ− λα

]
(3.2)
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Lemma 3.2 S1(α) is concave in α.

Since the concavity holds, there is a unique probability value, α∗1, which maximizes

the social function given in (3.2):

∂S1(α)

∂α
= 0⇒ α∗1 =

µ−
√

Cµ
Rq

λ

Corollary 3.2 The socially optimal joining probability of the Benchmark Model is:

α∗1 =


µ−

√
Cµ
Rq

λ
, µ− λ <

√
Cµ
Rq

1, o.w.

The socially optimal joining probability is increasing in µ, R and q ; and decreasing

in λ and C.

Observation 3.1: αeq1 (q) ≥ α∗1(q).

To check the numerical values of this Observation please see Table Tab. B.1. in

Appendix. For the different model parameter values, when we compare the second

column of this table with the third column, we can observe this result.

As Edelson and Hildebrand [16] represent in their paper, which analyzes and compares

the equilibrium and socially optimal joining strategies in perfect quality type queueing

systems when the queue length is unobservable, there is a mismatch between these

two strategies. Because, a customer only considers himself upon taking his decision

and does not take the load (congestion) that his joining decision creates in the whole

system into the account.

3.1.3 Problem Of The Profit Maximizer

The aim of the profit maximizer is to maximize his profit by setting the optimal queue

entrance price and the service quality level. In optimizing his strategy, he takes the

decisions of strategic customers into account. He is not allowed to charge different

entrance prices or provide service with different quality levels to different customers.
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Customers are assumed to know the entrance price and the expected service quality

level. Since the unobservable queue length condition holds, customers know their

expected waiting time but do not observe their current state in the queue.

Assuming quadratic cost structure for the service quality level, with the unit cost of

a, we analyze the problem of the profit maximizer for the Benchmark Model in this

section.

Customers who decide to join pay the queue entrance price before receiving the ser-

vice. Using the notation Π1(.) for the profit, the problem of the profit maximizer for

the Benchmark Model is represented as:

Π1(p, q) = pλαeq1 − aq2 (3.3)

So, while setting the optimal entrance price and the quality level, the profit maxi-

mizer considers the joining decisions of the customers. Since there are three possible

equilibrium joining strategies, the profit maximizer’s problem is analyzed in three

parts.

1. If (C/µ) > Rq − p, then since the expected utility of the customer is negative

even for the empty system, no customer joins.

To prevent losses, the profit maximizer sets the queue entrance price and

the quality level to 0: p1,n = 0, q1,n = 0, Π1(p1,n, q1,n) = 0, where subscript n is

used for this no entrance case.

2. If the profit maximizer chooses to serve the whole market, αeq1 = 1, he sets

the market capturing price, p1,λ (notation for market capturing price of the

benchmark model).

This market capturing price, which is a function of the service quality level

and is found by equating (3.1) to zero: p1,λ(q) = Rq − C
µ−λ .
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The profit function with this entrance price and equilibrium joining rate is:

Π1(p1,λ, q) = p1,λλ− aq2 =

(
Rq − C

µ− λ

)
λ− aq2 (3.4)

.

Lemma 3.3 Π1(p1,λ, q) is concave in q.

Using the concavity given in Lemma 3.3, the unique solution of the optimal

quality level for the market capturing price setting which maximizes (3.4) is:

∂Π1(p1,λ, q)

∂q
= 0⇒ λR− 2aq = 0⇒ q1,λ =

λR

2a
(3.5)

.

Plugging the optimal quality level given in (3.5), into the market capturing

price and profit functions, the optimal values of the profit maximizer’s problem

is summarized as:

q1,λ, p1,λ,Π1(p1,λ, q1,λ) =

 λR
2a
, λR

2

2a
− C

µ−λ ,
λ2R2

4a
− Cλ

µ−λ ifRλ < 2a

1, R− C
µ−λ , Rλ−

Cλ
µ−λ − a o.w.

Corollary 3.3 q1,λ is nondecreasing in λ and R and non increasing in a.

The interpretation of Corollary 3.3 is: For the higher service reward values,

more customers decide to enter. To prevent the congestion of the system, the

profit maximizer provides service with higher quality levels. This is one of the

interesting results which we obtain in this research. Because, if there was no
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queueing effect in this problem, if the value of the service is high for a customer,

then he should choose to join the system even when the service quality level is

low. In this case, the service reward and the quality level would be inversely

proportional. However, since these systems involve queueing and the increase

in the service reward also increases the congestion level of the system (every

customer becomes more desirous to join when the service reward increases), the

profit maximizer must provide service with higher quality levels to deal with

this congestion. This also increases his profit, because a higher entrance price is

charged for higher expected service values. With a similar reasoning, an increase

in potential arrival rate causes an increase in the quality level. On the other

hand, since the value of the quality is inversely proportional with its unit cost,

the quality level decreases in unit quality cost.

3. If the profit maximizer decides not to serve all the potential customers, since the

waiting cost of the customer who joins is lower, the profit maximizer should set

a higher entrance price compared to the market capturing price. We denote this

price as the monopolistic price and label it with the subscript m. In this case,

customers join with the equilibrium joining probability expressed in Corollary

3.1.

The profit maximizer’s problem with this equilibrium joining probability is:

Π1(p, q) = (pλαeq1 − aq2) = pλ

(
µ− C

Rq−p

)
λ

− aq2. (3.6)

Lemma 3.4 Π1(p, q) is concave in p.

Using the concavity given in Lemma 3.4, the value of the monopolistic price
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of the Benchmark Model depending on the quality level is:

∂Π1(p, q)

∂p
= 0⇒ µ− CRq

(Rq − p)2
= 0⇒ p1,m(q) = Rq −

√
CRq

µ
(3.7)

Plugging this monopolistic price given in (3.7), into the equilibrium joining

probability expression, we have: αeq1 (p1,m, q) =
µ−

√
Cµ
Rq

λ
.

Using these optimal joining probability and the monopolistic entrance price

the profit maximizer’s problem is rewritten as:

Π1(p1,m, q) = p1,mλα
eq
1 −aq2 =

(
Rq −

√
CRq

µ

)
λ
µ−

√
Cµ
Rq

λ
−aq2 = (

√
Rqµ−

√
C)2−aq2

(3.8)

Lemma 3.5 Π1(p1,m, q) is convex increasing in q.

Lemma 3.5 shows that: For the region where the cost of increasing the qual-

ity level by one unit is smaller than the unit increase in the profit maximizer’s

gain, the profit maximizer should increase the quality level as much as possible.

This means, the profit maximizer sets the service quality level to q1,m = 1

in the benchmark model when he sets the monopolistic price.

The optimal values of the profit maximizer’s problem in the monopolistic

case is:

q1,m = 1 p1,m = R−

√
CR

µ
Π1(p1,m, q1,m) =

(√
Rµ−

√
C
)2

− a

The profit maximizer finds his optimal strategy by comparing his profit values under

three possible pricing cases. Assuming the positive profitability condition holds, he

sets the market capturing price and serves the whole market if his profit is higher
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compared to the profit of the monopolistic price case. Otherwise, he sets the monop-

olistic price and serves not all of the customers but some of them who join based on

the equilibrium joining rate. Unfortunately, since the profit functions have different

structures in these two pricing strategies, we cannot compare them. But under some

conditions we know which strategy is optimal.

Proposition 3.1 If µ− λ >
√

Cµ
R

, then market capturing price strategy is optimal.

The interpretation of the result given in Proposition 3.1 is as follows: If the difference

between the server rate and the potential arrival rate is greater than the per unit gain

of the profit maximizer when he uses first order pricing, then it is better for him to

choose the market capturing case.

Proposition 3.2 If λ ≥ µ, then the monopolistic price strategy is optimal.

The reasoning behind Proposition 3.2 is obvious. In this case, if all customers join the

system, then the queue length and the expected waiting time in the system increase

quickly (infinite queue), which negatively affects the utilities of customers.

3.2 The Model With Resolution

In Resolution Models, we assume that when the service failure occurs, customers re-

turn to the same system for service failure resolution.In this section, we analyze two

Resolution Models. So, in these models if a customer decides to join in the beginning,

she can not leave the system until she is successfully served. That is, in these models

a joining customer takes the service reward, R, for sure.

The thing which differentiates the two Resolution Models is the returning position of

the unsatisfied customers. In the first model, we assume that an unsatisfied customer

returns to the beginning of the queue, so she occupies the server until she is success-

fully served. In the second one, an unsatisfied customer is assumed to return to the
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end of the queue.

We represent the first Resolution Model, in which the unsatisfied customer returns to

the beginning of the queue for the resolution in Figure 3.2.

In order to analyze the individual, social and the profit maximizer’s problem, we

Figure 3.2: Graphical representation of the first Resolution Model

have to derive the total expected waiting time expression for this model. Since only

the satisfied customers leave this system, the server utilization is: ρ2 = λ
µq

. The con-

ditional expected waiting time of a customer who finds i customers in-front is:

E[W |i] =

(
i+ 1

µ

)
1

q

Now, we uncondition this waiting time as:

E[W ] = E[W |i]P (N = i) =
i+ 1

µ

1

q
(1− ρ)ρi =

µq − λ
(µq)(µq)

(i+ 1)

(
λ

µq

)i
=
µq − λ
µ2q2

µ2q2

(µq − λ)2
=

1

µq − λ
, (3.9)
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where E[Wtot] represents the total waiting time that a customer waits in expectation

(considering his probable returns).

In the other Resolution Model, we assume that an unsatisfied customer returns to the

end of the queue. Here, we assume that the returns take place after a sufficiently long

time and that the returning customer finds the queue in a steady state. We represent

this model graphically in Figure 3.3.

The conditional waiting time of a customer who finds i customers in-front in this

Figure 3.3: Graphical representation of the second Resolution Model

model is:

E[W |i] =
i+ 1

µ

We give the unconditional waiting time as:

E[W ] = E[W |i]P (N = i) =
i+ 1

µ
(1− ρ)ρi =

µq − λ
µ(µq)

(i+ 1)

(
λ

µq

)i
=
µq − λ
µ2q

µ2q2

(µq − λ)2
=

q

µq − λ
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Since an unsatisfied customer waits this time until she is successfully served; i.e. 1/q

times in expectation, the total expected waiting time of a customer in this model is:

E[Wtot] = E[W ]
1

q
=

q

µq − λ
1

q
=

1

µq − λ
(3.10)

Proposition 3.3 The total expected waiting time of a customer, in the two Resolu-

tion Models are the same.

The interpretation of the result given in Proposition 3.3 is: Since the queue length

is assumed as unobservable, the position of a customer does not change anything.

The utilization level of the server, which depends on the effective arrival rate and the

service rate, is the only thing which affects the total expected waiting time. Since

the utilization level of these two models are equal, so are the total expected waiting

times.

We showed that the total expected waiting time of the two Resolution Models are the

same. Moreover, the expected rewards of a customer are the same in these models.

So these two models behave the same. Based on this result, from now on, we will

analyze a single Resolution Model.

3.2.1 Individual Problem Of The Customers

We use the subscript 2 to denote the Model With Resolution. The individual utility

function of a customer in this model is:

U2(α) = R− CE[W ]⇒ U2(α) = R− C

µq − λα
(3.11)

Lemma 3.6 U2(α) is concave in α.

Corollary 3.4 The equilibrium joining probability of the customers for the Model

With Resolution is:

αeq2 =


0, Rq ≤ C

µ

µq−C
R

λ
, C

µq
< R < C

µq−λ

1, R ≥ C
µq−λ
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This result is very similar to the one given in Corollary 3.1 which presents the equi-

librium strategy of the Benchmark Model.

The equilibrium joining probability of the Model With Resolution is increasing in µ,

R and q and decreasing in λ and C, as it is in the Benchmark Model.

3.2.2 Social Problem

The total expected utility function of the entire system in the Model With Resolution

is:

S2(α) = λα [R− CE[W ]]⇒ S2(α) = λα

[
R− C

µq − λα

]
(3.12)

Lemma 3.7 S2(α) is concave in α.

Since the concavity holds, there is a unique probability value, α∗2, which maximizes

the social function given in (3.2):

∂S2(α)

∂α
= 0⇒ α∗2 =

µq −
√

Cµq
R

λ

Corollary 3.5 The socially optimal joining probability of the Model With Resolu-

tion is:

α∗2 =


µq−
√

Cµq
R

λ
, µq − λ <

√
Cµq
R

1, o.w.

The socially optimal joining probability of the Model With Resolution is increasing

in µ, R and q ; and decreasing in λ and C as in the Benchmark Model.

Observation 3.2: αeq2 (q) ≥ α∗2(q).

We present the numerical values of this Observation in Table Tab. B.2. For the

different model parameters since the numbers of the second column is at least equal

to or greater than the numbers of the third column, the result of this Observation

follows.
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This shows, adding a quality parameter in these two problems, and modeling them

with a service failure resolution alternative, does not change the result of individually

and socially optimal strategies differing from each other.

3.2.3 Problem Of The Profit Maximizer

The problem of the profit maximizer for the Model With Resolution is:

Π2(p, q) = pλαeq2 − aq2 (3.13)

We analyze this problem based on the three equilibrium strategies stated in Corollary

3.4.

1. If (C/µ) > q(R− p), since the expected utility of the customer is negative even

for the empty system, no customer joins.

To prevent losses, the profit maximizer sets the queue entrance price and

the quality level to 0: p2,n = 0, q2,n = 0, Π2(p2,n, q2,n) = 0.

2. If the profit maximizer chooses to serve the whole market, αeq2 = 1, he then

charges the market capturing price p2,λ.

The market capturing price of this model which equates (3.10) to zero is :

p2,λ(q) = R− C

µq − λ
(3.14)

.

The profit function with this entrance price and the equilibrium joining rate

is:

Π2(p2,λ, q) = p2,λλ− aq2 = λ

(
R− C

µq − λ

)
− aq2 (3.15)

.
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Lemma 3.8 Π2(p2,λ, q) is concave in q.

So there is unique solution of this quality level which maximizes (3.15) as:

∂Π2(p2,λ, q)

∂q
= 0⇒ Cλµ

(µq − λ)2
− 2aq

.

Obtaining closed form expressions for the optimal quality level in this market

capturing case is complicated, but this problem can be solved numerically.

3. If the profit maximizer decides not to serve all potential customers, the cus-

tomers join based on the equilibrium joining probability given in Corollary 3.4.

The profit maximizer’s problem with this equilibrium joining probability is:

Π2(p, q) = (pλαeq2 − aq2) = pλ
µq − C

R−p

λ
− aq2. (3.16)

Lemma 3.9 Π2(p, q) is concave in p.

Corollary 3.6 The profit maximizer’s optimal monopolistic price as a function

of the quality level is given by:

p2,m(q) = R−

√
CR

µq
(3.17)
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We rewrite the profit function with this monopolistic price as a function of

q as:

Π2(p2,m, q) = µp2,mq −
Cp2,m

R− p2,m

− aq2 =
(√

Rµq −
√
C
)2

− aq2 (3.18)

Lemma 3.10 Π2(p2,m, q) is convex in q.

As explained in Lemma 3.5, the optimal quality level of the profit maximizer

in this monopolistic price case is 1, assuming the positive profitability condition

holds; i.e. q2,m = 1.

The optimal values of the profit maximizer’s problem in the monopolistic

case is:

q2,m = 1 p2,m = R−

√
CR

µ
Π2(p2,m, q2,m) = (

√
Rµ−

√
C)2 − a

3.3 The Model With Returns

In this model, we assume that an unsatisfied customer returns to the same system for

resolution. But in her returns, we assume that she decides in a myopic fashion. This

means she decides independent from her past experiences of the system, as if she was

a new customer for the system. The system also does not distinguish between first

time and resolution customers. So, when the service failure occurs, if an unsatisfied

customer decides to join the system for service failure resolution, she repays the

entrance price.

We represent the Model With Returns in Figure 3.4.

From the Figure 3.4, we observe that all of the unsatisfied customers return to

system, however they repetitively decide whether or not to join the system again, and
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Figure 3.4: Graphical representation of Model with Returns

not all of the returning customers but some of them takes the resolution alternative

and re-joins the system.

3.3.1 Individual Problem Of The Customers

We use the subscript 3 to denote the Model With Returns. The individual utility

function of a customer in this model is:

U3(α) = R− CE[W ]⇒ U3(α) = Rq − C

µq + µ(1− q)(1− α)− λα
(3.19)

Lemma 3.11 U3(α) is concave in α.

Corollary 3.7 The equilibrium joining probability of the customers for the Model

With Resolution is:

αeq3 =


0, Rq ≤ C

µ
µ− C

Rq

µ−µq+λ ,
C
µ
< Rq < C

µq−λ

1, Rq ≥ C
µq−λ

We interpret this result as in Corollary 3.1.

The equilibrium joining probability of the Model With Returns is increasing in µ, R

and q and decreasing in λ and C, similar to other single stage models.
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3.3.2 Social Problem

The total expected utility function of the entire system in the Model With Returns is:

S3(α) = λα [Rq − CE[W ]]⇒ S3(α) = λα

[
Rq − C

µq + µ(1− q)(1− α)− λα

]
(3.20)

Lemma 3.12 S3(α) is concave in α.

Since concavity holds, there is a unique probability value, α∗3, which maximizes the

social optimization function given in (3.20):

∂S3(α)

∂α
= 0⇒ α∗3 =

µ−
√

Cµ
Rq

µ− µq + λ

Corollary 3.8 The socially optimal joining probability of the Model With Returns is:

α∗3 =


µ−

√
Cµ
Rq

µ−µq+λ , µq − λ <
√

Cµ
Rq

1, o.w.

The socially optimal joining probability of the Model With Returns is increasing in

µ, R and q ; and decreasing in λ and C as in the other single stage models.

Observation 3.3: αeq3 (q) ≥ α∗3(q).

The numerical values of this Observation are given in Table Tab. B.3. From the

table values, we observe that the comparison follows, since the numbers of the second

column is at least equal to or greater than the numbers of the third column.

This shows that retaking the price from the returning customers does not change the

result of there is mismatch between the individual and social optima.

3.3.3 Problem Of The Profit Maximizer

The structure of the problem of the profit maximizer is different in the Model With

Returns since the returning customers who decide to join the system for the service
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failure resolution repay the entrance price. Based on this difference, the problem of

the profit maximizer is derived in this model as:

Π3(p, q) = p [λαeq3 + µ(1− q)αeq3 ρ]− aq2 (3.21)

where the server utilization is, ρ3 =
λαeq3

µq+µ(1−q)(1−αeq3 )
.

Using the equilibrium strategies given in the Corollary 3.7, we analyze the profit max-

imizer’s problem for the Model With Returns.

1. If (C/µ) > Rq, no customer decides to join.

The optimal model parameters in this case is summarized: p3,n = 0, q3,n = 0,

Π3(p3,n, q3,n) = 0.

2. In the market capturing price setting, αeq3 = 1.

This minimum price which equates Equation (3.19) to zero is :

p3,λ(q) = Rq − C

µq − λ
(3.22)

.

Using the market capturing price given in (3.22), we rewrite the problem of

the profit maximizer as:

Π3(p3,λ, q) = p3,λ
λ

q
− aq2 =

(
Rq − C

µq − λ

)
λ

q
− aq2 (3.23)

.



Chapter 3: SINGLE SERVER MODELS 53

Lemma 3.13 Π3(p3,λ, q) is concave in q.

So there is a unique solution of this quality level which maximizes (3.23) as:

∂Π3(p3,λ, q)

∂q
= 0⇒ R− Cλ(2µq − λ)

(µq − λ)2q2
− 2aq

.

Similar to the market capturing price setting of the Model With Resolution,

problem of the profit maximizer can be solved numerically in the Model With

Returns.

3. The equilibrium joining probability, when the profit maximizer sets the monop-

olistic price, which is stated in the Corollary 3.7 is:

αeq3 =
µ− C

Rq−p

µ+ λ− µq.

Using this equilibrium joining probability, the utilization of the server is

obtained as:

ρ =
λαeq3

µq + µ(1− q)(1− αeq3 )

=
λ(Rqµ− pµ− C)

λRµq − λµp+ Cµ− Cµq

So, the problem of the profit maximizer is rewritten as:

Π3(p, q) = p

[
λ
µ− C

Rq−p
λ+ µ− µq

+ µ(1− q)
µ− C

Rq−p
λ+ µ− µq

λ(Rqµ− pµ− C)

λRµq − λµp+ Cµ− Cµq

]
− aq2

(3.24)
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Lemma 3.14 Π3(p, q) is concave in p.

Then the optimal price value in this monopolistic price setting strategy is

given as:

∂Π3(p, q)

∂p
= 0⇒ p3,m =

Cµ− Cµq + λµRq −
√
Cµ(λ+ µ− µq)(C − Cq + λRq)

λµ
(3.25)

Plugging this optimal first order price expression in the profit function given

in (3.24), and analyzing the obtained function with respect to the quality level,

the optimal model parameters can be obtained. However, since the analysis of

the function with respect to quality level is analytically intractable, numerical

analysis will be used to compare the optimal model parameters of this model

with the other models.

3.4 Comparison Between Single Stage Models

In this section, we compare the performances of the three single stage models. The

equilibrium and the socially optimal joining probabilities and the optimal profit values

are the performance measures of the individual, social, and the profit maximizer’s

problem respectively.

We divide the comparison in two categories: The first category gives the so called

short term comparison. In the short term, we assume that the service quality level is

given and fixed. Since changing the quality level requires some time and investment.

We give the model comparison from the individual and the social viewpoint in this

category, since the service quality level is not a decision of these two problems. We

also give the pricing and profit comparison of the problem of the profit maximizer

when he uses the market capturing price and the monopolistic price strategies for

the given quality level. In the second category we present the long term comparison.
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The service quality level is a decision in the long term. So, in this category we give

the optimal service quality level, optimal price and the profit values of the problem

of the profit maximizer under the market capturing price and the monopolistic price

strategies. We compare the long term performances of the models based on the profit

values.

3.4.1 Short Term Comparison: Comparison For Given Quality Levels

• Equilibrium Joining Probabilities:

Proposition 3.4 For the given model parameters R,C, λ, µ and q, the equi-

librium joining probabilities of the single server model are compared as: αeq3 (q) ≤ αeq2 (q) ≤ αeq1 (q), λ ≤ µq

αeq2 (q) ≤ αeq3 (q) ≤ αeq1 (q), o.w.

For the given model parameters, R, C, λ, µ, and q, the joining decision

of a customer depends on the expected model reward and the total expected

waiting time. In the Benchmark Model, since the unsatisfied customers leave

the system the expected waiting time of this model is the lowest. This ex-

plains why a customer is most desirous to join the Benchmark Model although

with some probability she leaves the system without taking the service reward.

Between the Model With Resolution and the Model With Returns, the com-

parison follows based on a specific criterion. This criterion is interpreted as: If

µq ≥ λ, the expected waiting time of the Model With Resolution is lower than

the Model With Returns, additionally the expected reward is higher in the first

one. This explains why the customers are more willing to join the system in the

Model With Resolution. So, for the low congested systems; i.e. lower arrival,

higher service rates, the Model With Resolution performs better compared to

the Model With Returns from the customer viewpoint.

• Socially Optimal Joining Probabilities:
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Proposition 3.5 For the given model parameters R,C, λ, µ and q, the socially

optimal joining probabilities of the single server model are compared as: α∗3(q) ≤ α∗2(q) ≤ α∗1(q), λ ≤ µq

α∗2(q) ≤ α∗3(q) ≤ α∗1(q), o.w.

The interpretation of this result is very similar to the one given in Proposi-

tion 3.4.

• Problem Of The Profit Maximizer - Market Capturing Price:

Proposition 3.6 For the given model parameters R,C, λ, µ, a and q, the com-

parison between the market capturing price and profit values as functions of the

service quality levels of the single server models is: p3,λ(q) ≤ p2,λ(q) ≤ p1,λ(q),
R
Cµ
≤ 1

(µq−λ)(µ−λ)

p3,λ(q) ≤ p1,λ(q) ≤ p2,λ(q), o.w.

 Π2,λ(q) ≤ Π1,λ(q),
R
Cµ
≤ 1

(µq−λ)(µ−λ)

Π1,λ(q) ≤ Π2,λ(q), o.w.

Π3,λ(q) ≤ Π2,λ(q)

In the market capturing price strategy, all the potential customers join the

system. Since in the Model With Returns, all unsatisfied customers decide to

join again, the expected waiting time of this model is the highest. Additionally

since the returning customers repay the entrance price for this congested sys-

tem, profit maximizer must charge the minimum price to make the customers

decide to join. Since the entrance price is the lowest, so is the profit.

The comparison between the other two models, The Benchmark Model and the
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Model With Resolution depends on the model parameters. The given condition

shows the situations in which per unit gain of a customer is smaller than her

additional waiting cost. Namely, if the expected reward of a customer when she

returns to the system is smaller than the additional waiting cost that her return

creates, it is better for the profit maximizer not to accept this customer in the

system.

So, we conclude that in the short term, since the profit maximizer cannot change

the service quality level, the waiting cost is the most important criterion to

decide on which model to choose. In the Model With Returns, although he

recharges the price to returning customers, since these returns increase the wait-

ing costs by creating congestion, the profit maximizer has lower profit in this

model. That is, for the conditions stated in Proposition 3.6, it is better for the

profit maximizer when the customers choose to leave the system.

• Problem Of The Profit Maximizer - Monopolistic Price:

Proposition 3.7 For the given model parameters R,C, λ, µ, a and q, the com-

parison between the monopolistic price and profit values as functions of the

service quality levels of the single server models is:

p1,m(q) ≤ p2,m(q)

Π1,m(q) = Π2,m(q)

From this comparison we conclude that the profit maximizer takes equal

profits from the two models, The Benchmark Model and The Model With Re-

turns, by optimizing the equilibrium joining probabilities. The equilibrium join-

ing probability is lower in the Model With Resolution. Since the joining rate is

higher in the Benchmark Model compared to Resolution Model, i.e. αeq1 ≥ αeq2 ,
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the profit maximizer optimizes his profit by decreasing the entrance price in the

Benchmark Model.

However, we cannot have the exact comparison between the Model With

Returns and the other two single stage models, as we cannot obtain closed form

expressions for the Model With Returns in the monopolistic price case.

3.4.2 Long Term Comparison: Comparison When The Quality Level Is A Decision

• Problem Of The Profit Maximizer - Market Capturing Price:

Proposition 3.8 For the given model parameters R,C, λ, µ and a, the com-

parison between the optimal service quality, market capturing price and the

profit values of the single server models is:

q3,λ ≤ q2,λ p3,λ ≤ p2,λ Π3,λ ≤ Π2,λ

Proposition 3.9 If Rλ ≥ 2a, then:

q2,λ ≤ q1,λ p2,λ ≤ p1,λ Π1,λ ≤ Π2,λ

Observation 3.4: If Rλ < 2a, then Π1,λ ≤ Π2,λ.

For the numerical values of this Observation please see Table Tab. B.4. From

the values of this table, we observe that the profit of the third column is at least

equal to or greater than the values of the second column which shows the result

of this Observation.

In the long term comparison we conclude that by optimizing the quality

level, it is better for the profit maximizer to not to loose the customers; i.e. the

profit value of the Benchmark Model is lower than the Model With Resolution.

The comparison between the Benchmark Model and the Model With Returns
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is done in two cases. The first case; Rλ ≥ 2a, is given in Proposition 3.4, rep-

resenting the conditions where it is optimal for the profit maximizer to provide

perfect quality service in the Benchmark Model. The comparison between these

two models is given numerically in Observation 3.4, where Rλ < 2a representing

the conditions where providing service with interior quality levels is optimal for

the profit maximizer.

• Problem Of The Profit Maximizer - Monopolistic Price:

Proposition 3.10 For the given model parameters R,C, λ, µ and a, the com-

parison between the optimal service quality, monopolistic price and the profit

values of the single server models is:

q1,m = q2,m p1,m ≤ p2,m Π1,m = Π2,m

We interpret the result given in the Proposition 3.10 as: When the profit

maximizer sets the monopolistic pricing strategy, he can optimize his profit sim-

ilarly in the Benchmark Model and Model With Resolution, since by changing

the price he also changes the equilibrium joining probability.

3.5 Discussion

In this section we summarize our results.

• The relation between the optimal service quality level and the other model

parameters is:

In the Benchmark Model, it is increasing in R and λ, decreasing in a, and

independent from µ and C: When the service value increases, more customers

decide to join, the optimal action of the profit maximizer in this case is increasing

the quality level. Since all of the customers leave the system, the optimal quality

level does not affect the waiting cost.
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In the Model With Resolution, it is increasing in C, decreasing in a and µ

and independent fromR: Since only the satisfied customers leave the system, the

optimal quality level affects the waiting cost. If the unit waiting cost increase,

or the server rate decrease the service provider must provide service with higher

quality levels. The optimal quality level is inversely proportional to the unit

cost of the quality. All the customers are assumed to receive the service reward,

so it does not affect the optimal quality level.

In the Model With Returns, it is increasing in R and C, and decreasing in

a and µ: The dependance is very similar to the Model With Resolution except

the dependence on the service reward. In the Model With Returns, since only

the satisfied customers take the service reward, when this reward increases,

customers are more willing to join and in this case the service provider must

increase the service quality level to prevent the congestion of the system.

• Short term performance comparison:

For the social and individual problem the comparison highly depends on

the waiting time criteria. Because for this problem, there is no other model

parameter that an individual or the social planner can change.

The Benchmark Model, which assumes that the unsatisfied customers are

lost, is better from the individual and social viewpoint.

For the problem of the profit maximizer, the right of changing the entrance

price decreases the waiting time effect.

Resolution Models can perform better compared to the Benchmark Model

depending on the model parameters.

• Long term performance comparison:

Since the service provider has a power of changing the service quality level,

the waiting time effect is decreased compared to given service quality level.
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The Resolution Model is always favorable to Benchmark Models; in the

long term, it is optimal to provide resolution to the customers for the profit

maximizer compared to losing them.

• The Comparison Between The Models Capturing the Returns of the Customers:

For the market capturing pricing case, since all the returning customers are

assumed to join the system, the Resolution Model performs better compared to

Model With Returns. Retaking the price is not an optimal action in this case

for the profit maximizer: He must charge a low price, since he recharges it for

the same waiting cost and lower expected reward.

For the monopolistic price case, we can not obtain an exact comparison.

Since the equilibrium joining probability, entrance price and the service quality

level all change in this case, the comparison between the models depends highly

on the model parameters.

Before closing this section, by interpreting the model results, we decide to ignore

the Model With Returns, in the next chapters. This is because from our analysis given

in this section, we conclude that, obtaining closed form expressions and theoretical

results are hard in this model. Besides, we also show that the other model, namely

the Model With Resolution, which also analyzes the second service failure resolution

alternative, performs better not only from the individual and social viewpoint, but

also the profit maximizer’s viewpoint in the market capturing setting. Besides there

is no exact superiority between the two models for the monopolistic pricing case of

the profit maximizer’s problem.
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Chapter 4

TWO SERVER MODELS

Many service systems are multi-stage systems which include many servers within.

These systems have some advantages compared to single stage systems. First, since

there are many servers in the system, the expected waiting time of a customer is

lower compared to the single stage system, assuming the service rates of all of the

servers consideration are the same. Also, multi-server systems can offer different

service failure resolution alternatives to the customer. If there is a unique server in

the system and the service provider aims to offer resolution to the customers in order

not to lose them, then the only resolution alternative that he can provide to customers

is re-servicing them (accepting the returns of the customers). However, since there is

a unique server which provides service with a fixed service rate, these returns of the

unsatisfied customers generate congestion in the system. On the other hand, besides

accepting the returns of the customers, the escalation alternative can be used as a

service failure resolution in the multi-stage systems.

The multi-stage systems can be classified in two main categories. The first one covers

the tandem like sequential servers. In this type, there are many servers providing

sequential service in the system. As a service discipline, a customer cannot go through

the service in higher level of servers before finishing his service in lower server levels,

assuming priorities are forbidden, in this type of systems. Such multi-stage systems

can be labeled as an Escalation Systems, and if a service failure occurs in lower

level of servers, the customers who are subjected a service failure can be escalated to

higher server levels as a resolution alternative. The second type is the Parallel-Stage

Systems which include many servers, providing simultaneous service. In this second

multi-stage system type, similar to single-stage systems, the unsatisfied customers
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who are subjected to a service failure can be re-serviced as a resolution.

However, analyzing the multi-stage systems can be intractable and complicated. In

the queueing literature, analyzing such multi-stage systems, decomposition procedures

are generally used. That is, rather than analyzing the system as a whole, we can

decompose this system into smaller parts and then combine the results coming from

the analysis of the small systems. Additionally, the decomposed parts of the large

systems clearly represent the system as a whole, assuming the decomposed parts are

identical. So, if we aim to reach general conclusions about the comparisons on the

performances of different system types, we can generalize the results obtained from

the analysis of the decomposed parts.

Based on this, we work on the smallest multi-stage systems which is the two-stage

(two-server) systems in this chapter. We compare the performances of these systems

with the single-stage systems which are analyzed in the previous chapter. As before,

we analyze the three problems: Individual problem of the customer, social problem

and the problem of the profit maximizer.

For the two-stage models, we first analyze the two-sequential-server models which

are labeled as the escalation models. In the escalation models, in order to resolve

the service failure problem, the customers who leave the first server unsatisfied, are

escalated to the second server in the same system. We work on the two different

escalation models. The first one is the Simple Escalation Model which assumes that

the two servers of the system are identical; i.e. unit reward, unit waiting cost, server

rate and the service quality level of the two server are the same. The only difference

between the two servers is the arrival rate; i.e. since some of the customers leave the

system by receiving a satisfactory service from the first server, the arrival rate of the

second server is lower. In the Simple Escalation Model, since the second server can be

failed; i.e. it provides service with q quality units where 0 ≤ q ≤ 1, this system can be

compared with the Benchmark Model of the single-stage part (Some of the customers

can leave these systems unsatisfied). The second model is the Perfect Escalation

Model. We assume that in the Perfect Escalation model, the unsatisfied customers
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coming through the first server, are successfully served for sure in the second server.

Thus, the Perfect Escalation Model is similar to the Model With Resolution; i.e. all

the customers leave the system satisfied. In the Perfect Escalation Model, not only the

arrival rates, but also the quality levels of the two servers of the system are different;

i.e. the first servers provides service with q units, but the second one provides perfect

quality service.

As another two-server model, we analyze the Two-Parallel Server Models. In these

models, there are two identical servers, which simultaneously provide service. The first

Two-Parallel Server Model is very similar to the Benchmark Model which we analyze

in the previous chapter. Because, we assume that the customers who are subjected

to a service failure from any of the two parallel servers leave the system without

receiving the service reward as in the Benchmark Model. These unsatisfied customers

are assumed to go to another system for the resolution. For this reason, we label

this model as the Two-Parallel-Server-Benchmark Model. The other model which we

analyze in these two-parallel-server models section is the Two-Parallel-Server Model

With Resolution. As stated in single stage models, the unsatisfied customers who

return to the system for the service failure resolution join the system for sure; i.e.

they do not take any repetitive decision of whether or not to join and do not repay

in their repetitive visits. So, a customer cannot leave the system without taking the

service reward in the resolution models. In the previous chapter, in Model With

Resolution section, we showed that the strategy of the customer is not affected by the

queueing discipline. That is, since the unobservable queue length conditions hold, the

expected waiting time of the customer will be the same when he returns to the end of

the queue and the beginning of the queue for the resolution. The only parameters that

affect the expected waiting time are the effective server rate and the arrival rate, not

the position of the returns. So for the resolution alternative, we analyze one model.

On the other hand, in the previous chapter, we conclude that the performance of the

Model With Returns, which assumes that the unsatisfied customers make memoryless

returns to the system and take myopic decisions of whether or not to join, is worse
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compared to the Model With Resolution, assuming all the customers decide to join

the system. This shows, when the service rate is high so that the market capturing

pricing strategy is optimal, The Model With Resolution is more profitable compared

to the Model With Returns as a system design for the profit maximizer. Based on

this, to model the service failure resolution alternative of coming back to the same

system, we use the Two-Parallel-Server Model With Resolution, and ignore the Two-

Parallel-Server Model With Returns.

In the end, to combine our analyses of the Two-Server-Models with the analyses of

the Single-Server-Models presented in the previous chapter, we use the Benchmark

Model and the Model With Resolution with a double server rate; i.e. there is a single

server who provides service with the rate 2µ.

We compare these models, based on the equilibrium and the socially optimal joining

probabilities of the individual customer and the social problem and the profit of

the profit maximizer. To make the comparisons fair, we divide the models into two

groups: The first group includes the Simple Escalation Model, Two-Parallel-Stage-

Benchmark Model, and the Benchmark Model With double-server-rate. The second

group covers the perfect escalation model, two-parallel-stage-model with resolution

and the resolution model with the double-server-rate.

We give all the Proofs of the Lemmas, Corollaries and Propositions corresponding

this chapter in Appendix A.3. For the Observations of the Numerical Studies of this

Chapter, you can see Appendix B.2.

4.1 Escalation Models

The motivation behind these models is: The customers who experience a service fail-

ure in the first stage of the system can be escalated to the higher level of server for

service resolution. Based on this motivation we work on two different escalation (2-

sequential stage) models. In the first model, Simple Escalation Model, the customers

who leave the first stage unsatisfied by experiencing a service failure, go through the

queue in front of the second stage and wait to be served. However, in the second stage,
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there is still a probability of a service failure. So, some of the customers leave this

2-sequential stage system, without taking the service reward. In the second model,

Perfect Escalation Model, we assume that if a customer experiences a service failure

in the first stage, he is escalated to the second server which provides a perfect quality

service. So,the customer is successfully served in this system for sure. These two

models are represented graphically in Figures 4.1 and 4.2 respectively.

The scenario of the Simple Escalation Model given in Figure 4.1 is summarized

Figure 4.1: Simple Escalation Model

Figure 4.2: Perfect Escalation Model

as: Customers arrive to the system according to a Poisson process with rate λ. By

comparing the expected service value with the total expected waiting cost they decide

whether or not to join. The joining probability is α, so the joining rate is λα. The

ones who decide to join, wait in front of the queue of the first server. Some of these
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customers with probability q, receive satisfactory service in the first server and leave

the system, so they do not need any service failure resolution. While the others with

probability 1-q, are subjected to a service failure, and join the queue in front of the

second server for the resolution. However since this second server also provides service

with q units of quality, there is still a service failure probability, hence the customers

with rate λα(1− q)2 leave the system unsatisfied. And the remaining customers with

rate λα(1− q)q leave the system satisfied by receiving a good service from the second

server.

The scenario is very similar in the perfect escalation model given in Figure 4.2. The

difference is the following: The server in the second stage provides perfect quality

service, so customers who join the second stage receive a satisfactory service and take

the service reward for sure.

We denote these escalation models with the subscript 4, since these are the fourth

model that we analyze in this thesis. In order to show the Simple and Perfect Es-

calation Models, we use subscripts 4, n and 4, g respectively. We use these notations

because the quality of the service in the Simple Escalation Model is not guaranteed

whereas in the Perfect Escalation Model it is.

In this section we analyze the individual problem of the customers, social problem and

the problem of the profit maximizer for both of the escalation models respectively.

4.1.1 Individual Problem of the Customers

Customers decide based on their utility functions. In this section, to simplify our

analysis, we assume that the model parameters Rk, Ck, µk where k = 1, 2 are equal

for the two servers in Figures 4.1 and 4.2.

For the Simple Escalation Model, we assume that the service quality levels of the two

servers are equal; i.e. each server provides service with q units. What differentiates

the two servers is the congestion levels of the servers; since some of the customers

leave the system by receiving a satisfactory service from the first server, the arrival

rate of the second server is smaller.
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The utility function of the individual of the Simple Escalation Model, U4,n(α) is:

U4,n(α) =
2∑

k=1

Rk(1− q)k−1q −
2∑

k=1

Ck(1− q)k−1E[Wk]− p

= Rq +Rq(1− q)− C

µ− λα
− C(1− q)
µ− λα(1− q)

− p (4.1)

Lemma 4.1 U4,n(α) is concave in α.

Using the concavity given in Lemma 4.1, the equilibrium joining probability of the

problem of the individual customer for the Simple Escalation Model is derived as:

αeq4,n(q) =


0, C(2−q)

µ
> Rq(2− q)− p

αeq4,n−int(q),
C(2−q)

µ
≤ Rq(2− q)− p ≤ C(2−q)

µ−λ

1, Rq(2− q)− p > C(2−q)
µ−λ

(4.2)

where

αeq
4,n−int(q) =

−2C(1− q) + µ(2− q)[Rq(2− q)− p] +
√

4C2(1− q)2 + µ2q4R2(2− q)2 + µ2pq2(p− 4Rq + 2q2R)

2λ(1− q)[Rq(2− q)− p]
.

(4.3)

The subscript int is used for the interior probability levels 0 ≤ α.−int ≤ 1.

The utility function of a customer of the Perfect Escalation Model depending on the

joining probability, U4,g(α), is written as:

U4,g(α) = R−
2∑

k=1

Ck(1− q)k−1E[Wk]− p = R− C

µ− λα
− C(1− q)
µ− λα(1− q)

− p (4.4)

Lemma 4.2 U4,g(α) is concave in α.

Since the function given in (4.4) is concave, the equilibrium joining probability of

customers of the Perfect Escalation Model is derived as:
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αeq4,g(q) =


0, C(2−q)

µ
> R− p

αeq4,g−int(q),
C(2−q)

µ
≤ R− p ≤ C

µ−λ + C(1−q)
µ−λ(1−q)

1, R− p > C
µ−λ + C(1−q)

µ−λ(1−q)

(4.5)

where

αeq4,g−int(q) =
2C(1− q)− µ(2− q)(R− p) +

√
4C2(1− q)2 + µ2q2(R− p)2

2λ(1− q)(R− p)
. (4.6)

Proposition 4.1 αeq4,n ≤ αeq4,g.

The interpretation of the Proposition 4.1 is as follows: Although the total expected

service time expressions of the two models are the same, the service value of the

Perfect Escalation Model is higher. This explains why the customers are more willing

to join the system in the perfect escalation model.

4.1.2 Social Problem

The objective of the social planner is to maximize the total expected utility function

of the social system. For the Simple Escalation Model, the total expected utility

function of the social system, S4,n(α), is written as:

S4,n(α) = λα

(
Rq +Rq(1− q)− C

µ− λα
− C(1− q)
µ− λα(1− q)

)
(4.7)

Lemma 4.3 S4,n(α) is concave in α.

Using the concavity given in Lemma 4.3 and denoting the interior socially optimal

joining probability with α∗4,n−int(q), the socially optimal joining strategy of this Sim-

ple Escalation Model is summarized as:

α∗4,n(q) =

 α∗4,n−int(q), if 0 ≤ α∗4,g−int(q) < 1

1, ow
(4.8)

The total expected utility function of the social system in the Perfect Escalation

Model, S4,g(α), is written as:
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S4,g(α) = λα

(
R− C

µ− λα
− C(1− q)
µ− λα(1− q)

)
(4.9)

Lemma 4.4 S4,g(α) is concave in α.

Since the concavity follows, there is a unique interior socially optimal joining prob-

ability which can be derived from the first order conditions. Assuming this interior

joining probability is,α∗4,g−int(q), the socially optimal joining strategy for this Perfect

Escalation Model is summarized as:

α∗4,g(q) =

 α∗4,g−int(q), if 0 ≤ α∗4,g−int(q) < 1

1, ow
(4.10)

Proposition 4.2 α∗4,n ≤ α∗4,g.

The interpretation of Proposition 4.2 is very similar to Proposition 4.1.

Before going through the problem of the profit maximizer, we give the numerical

comparison between the equilibrium and the socially optimal joining probabilities of

the escalation models.

Observation 4.1. αeq4,g(q) ≥ α∗4,g(q), and αeq4,n(q) ≥ α∗4,n(q).

We present the numerical analysis of Observation 4.1 in Table Tab. B.5. By compar-

ing the values of the second and the third columns, additionally the fourth and the

fifth columns of this table, this result can be observed.

The result of the Observation 4.1. is interpreted as given in the previous chapter.

The customers are more desirous to join the system, but in the social system, to

prevent the congestion, the social planner optimizes the system; i.e. maximizes the

total expected utility function of all of the customers, by accepting lower number of

the customers.

4.1.3 Problem of The Profit Maximizer

In this chapter, in all of the analyses considering the problem of the profit maximizer

we assume that the profit maximizer charges the minimum entrance price for two



Chapter 4: TWO SERVER MODELS 71

reasons. First, in our single stage analysis given in the previous chapter, we conclude

that it is optimal for the profit maximizer to set the minimum entrance price and

serve the whole market, if the server rate is high enough. Since in this chapter, we

work on Two-Server Systems so the service rate of the system is higher, assuming the

fixed arrival rate, it is possible to use this result.

Corollary 4.1 If setting the market capturing price, when the server rate is µ, is

optimal for the profit maximizer, then it is also optimal when the server rate is µ+ ε,

where ε > 0.

The second reason for using this assumption is the theoretical constraints. For the

Escalation Models, we fail in showing the concavity of the profit function of the profit

maximizer when he charges the monopolistic price. Since the profit function is not

concave under monopolistic pricing strategy, we cannot have a unique optimum.

We first analyze the problem of the profit maximizer for the Simple Escalation Model.

Assuming the positive profit condition holds, based on the market capturing price

setting, the equilibrium joining probability of the customer is: αeq4,n = 1. Using this

equilibrium probability and equating (4.1) to 0, the market capturing price of the

Simple Escalation Model is found as:

Rq +Rq(1− q)− C

µ− λα
− C(1− q)
µ− λα(1− q)

− p = 0⇒

p4,n(q) = Rq +Rq(1− q)− C

µ− λ
− C(1− q)
µ− λ(1− q)

(4.11)

Using the market capturing price given in (4.11), the profit function of the profit

maximizer is written as:

Π4,n(q) = λαeq4,np4,n(q)− 2aq2 = λ

[
Rq +Rq(1− q)− C

µ− λ
− C(1− q)
µ− λ(1− q)

]
− 2aq2.

(4.12)
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Lemma 4.5 Π4,n(q) is concave in q.

Based on the concavity given in Lemma 4.5, the fact that the first order condition

suffices follows. The profit of the profit maximizer is found by plugging the interior

quality level in the equation (4.12).

The market capturing price of the Perfect Escalation Model, which equates (4.4) to

0, is:

R− C

µ− λα
− C(1− q)
µ− λα(1− q)

− p = 0⇒ p4,g(q) = R− C

µ− λ
− C(1− q)
µ− λ(1− q)

(4.13)

Using the price given in (4.13), the profit function of the profit maximizer of the

Perfect Escalation Model is derived as:

Π4,g(q) = λαeq4,gp4,g(q)− aq2 − a = λ

[
R− C

µ− λ
− C(1− q)
µ− λ(1− q)

]
− aq2 − a. (4.14)

Lemma 4.6 Π4,g(q) is concave in q.

Since the concavity follows, we find the interior quality level using the first derivative

function, and calculate the profit of the profit maximizer by plugging this quality level

into (4.14).

We close this section, by comparing the performances of the Simple Escalation and

Perfect Escalation Models from the profit maximizer’s perspective. We first provide

the short term comparison, where the profit maximizer decides only on the entrance

price for the given service quality level. We then present the long term comparison,

where the problem of the profit maximizer includes two decision parameters: price

and the service quality level.

Proposition 4.3 In the short term, for the given model parameters, R, C, a, q, λ

and µ,

-Pricing Comparison: p4,g(q) ≥ p4,n(q).

-Profit Comparison:  Π4,g(q) ≥ Π4,n(q) if Rλ
a
≥ 1+q

1−q

Π4,g(q) < Π4,n(q) o.w.
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We interpret Proposition 4.3 as: For the same waiting costs, since the expected reward

of the Perfect Escalation Model is at least equal to or greater than the expected reward

of the Simple Escalation Model, the profit maximizer charges a higher price in the

former one. We conclude that the profit comparison between these models depends

on the parameters, i.e. if the excess revenue of the firm exceeds its cost by increasing

the quality level then the profit maximizer has higher profit in the Perfect Escalation

Model.

Proposition 4.4 In the long term, for the given model parameters, R, C, a, λ and

µ,

-Quality Level Comparison: q∗4,g ≤ q∗4,n.

-Pricing Comparison: p∗4,g ≥ p∗4,n if R
Cµ
≥ q4,n−q4,g

(1−q4,n)2(µ−λ+λq4,g)(µ−λ+λq4,n)

p∗4,g < p∗4,n o.w.

Proposition 4.4 presents the following: Since the second server provides perfect quality

service in the Perfect Escalation Model, the profit maximizer optimizes his profit by

decreasing the quality level of the first server; i.e. the cost of the quality of the second

server is high. The pricing comparison between the escalation models depends on the

model parameters, i.e. if the ratio between the unit reward and the unit waiting cost

is higher than the differences between the quality levels of the models, then the profit

maximizer sets a higher price in the Perfect Escalation Model. But the profit is not

comparable between the two models, since the price and the cost of the quality highly

depend on the parameters.

4.2 Parallel Server Models With Two Servers

In this section we analyze two different parallel server models each having two servers.

We assume that there are two identical servers in the system each simultaneously pro-

vides service with the service quality level, q.



Chapter 4: TWO SERVER MODELS 74

The first parallel server model that we analyze in this section is the Two-Parallel-

Server Benchmark Model. This model is represented in Figure 4.3. We denote this

model with the subscript 1, ν, where 1 denotes that the model is benchmark type and

ν is used to denote the parallel servers. The scenario of this model is: A customer

who decides to join the system, is served by one of the servers, after she waits for

some time in the queue. If she receives a satisfactory service, she leaves the system

by receiving the service reward. Otherwise, if she is subjected to a service failure, she

leaves the system without taking the service reward, and goes to another system for

the resolution.

The other parallel server model is the Two-Parallel-Server Model with Resolution.

This model is represented in Figure 4.4. We denote this model with subscript 2, ν,

since the model is resolution type and ν is to show that it is parallel.

In order to analyze the individual problem of the customers for these parallel server

Figure 4.3: Two-Parallel Server Benchmark Model

models, we first give the expected waiting time expression of this parallel server model

with two servers; i.e. M/M/2.

Since there are two servers in the system each providing service with rate µ, the uti-

lization of the Two-Parallel-Stage Benchmark Model is: ρ1,ν = λ/cµ = λ/2µ. The

steady state probability of having no customers in the system, Π0, is:
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Figure 4.4: Two-Parallel Server Model with Resolution

Π0 =

[
c−1∑
k=0

(cρ)k

k!
+

(cρ)c

c!

1

1− ρ

]−1

=
2µ− λ
2µ+ λ

(4.15)

The steady state probability that a customer has to wait in the system, Πc+ is (since

there are at least c customers in the system):

Πc+ =
∞∑
k=c

Πk =
(cρ)c

c!(1− ρ)
Π0 =

λ2

µ(2µ+ λ)
(4.16)

The average waiting time in the queue, E[W ], is:

W =
ρ

λ(1− ρ)
Πc+ =

λ2

µ(2µ− λ)(2µ+ λ)
(4.17)

The average waiting time in the system, E[W ], is the total of average waiting time

in the queue and average service time:

E[W ] = E[W ] +
1

µ
=

4µ

4µ2 − λ2α2
(4.18)

The above results are basically the known derivations of basic M/M/2 queues with

ρ = λ/2µ. For the Two-Parallel-Server Model With Resolution, since the unsatisfied

customers do not leave the system, the utilization of this system is : ρ2,ν = λ
2µq

. Using
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this utilization level the waiting time expression derived in (4.18) is modified for this

resolution model as:

E[W ] =
4µ

4µ2q2 − λ2α2
(4.19)

We analyze the individual problem of the customers, the social problem and the

problem of the profit maximizer using the total waiting time in the system expressions

given in (4.18) and for the benchmark and the resolution type parallel server models

respectively.

4.2.1 Individual Problem of the Customers

The utility function of an individual for the Two-Parallel-Server Benchmark Model,

U1,ν(α), is:

U1,ν(α) = Rq − CE[W ]− p = Rq − 4Cµ

4µ2 − (λα)2
− p (4.20)

Lemma 4.7 U1,ν(α) is concave in α.

Since the concavity follows, the equilibrium joining strategy of this model is derived

as before. However, the interior equilibrium joining probability is analytically in-

tractable.

αeq1,ν(q) =


0, C

µ
> Rq − p

αeq1,ν−int(q),
C
µ
≤ Rq − p ≤ 4Cµ

4µ2−λ2

1, Rq − p > 4Cµ
4µ2−λ2

(4.21)

For the Two-Parallel-Stage Model With Resolution using the waiting time expression

given in (4.2) the utility function of an individual, U2,p(α), is:

U2,ν(α) = R− CE[W ]− p = R− 4Cµ

4µ2q2 − (λα)2
− p (4.22)

Lemma 4.8 U2,ν(α) is concave in α.
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Based on the concavity given in Lemma 4.8, the equilibrium joining strategy of this

model is obtained as previous models.

αeq2,ν(q) =


0, C

µ
> R− p

αeq2,ν−int(q),
C
µq2
≤ R− p ≤ 4Cµ

4µ2q2−λ2

1, R− p > 4Cµ
4µ2q2−λ2

(4.23)

The interior equilibrium joining probability expressions of the parallel server models

can not be stated in closed form. However using their first order conditions, the com-

parison can easily be given.

Proposition 4.5 αeq1,ν ≥ αeq2,ν.

Proposition 4.5 can be interpreted as follows: Although, the expected reward of the

Two-Parallel-Stage Model With Resolution is higher compared to Two-Parallel-Stage

Benchmark Model, since in expectation the customers wait a longer time in the former

one, they have a lower probability to join the system. This comparison shows the effect

of expected waiting time on individual decision strategy.

4.2.2 Social Problem

The total expected utility function which the social planner optimizes in the Two-

Parallel-Server Benchmark Model, S1,ν(α), is:

S1,ν(α) = λα

[
Rq − 4Cµ

4µ2 − (λα)2

]
(4.24)

Lemma 4.9 S1,ν(α) is concave in α.

Since the social function of the Two-Parallel-Server Benchmark Model is concave (as

in Lemma 4.9), we characterize the socially optimal joining strategy of this model as:

α∗1,ν(q) =

 α∗1,ν−int(q), 0 ≤ α∗1,p−int(q) < 1

1, ow
(4.25)
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For the Two-Parallel-Stage Model With Resolution, the total expected utility func-

tion, S2,ν(α), is:

S2,ν(α) = λα

[
R− 4Cµ

4µ2q2 − λ2

]
(4.26)

Lemma 4.10 S2,ν(α) is concave in α.

Since the concavity follows, the characterization of the socially optimal joining strat-

egy of the Two-Parallel-Server Model With Resolution is:

α∗2,ν(q) =

 α∗2,ν−int(q), 0 ≤ α∗2,p−int(q) < 1

1, ow
(4.27)

Similar to the interior equilibrium joining probabilities, the interior socially optimal

joining probabilities can not be presented in closed form, where comparing the first

order conditions is straightforward.

Proposition 4.6 α∗1,ν ≥ α∗2,ν.

The interpretation of Proposition 4.6 is very similar to that of Proposition 4.5.

We close this section, by giving the numerical comparison between the equilibrium

and socially optimal joining probabilities of the parallel server models.

Observation 4.2. αeq1,ν(q) ≥ α∗1,ν(q), and αeq2,ν(q) ≥ α∗2,ν(q).

Please see Table Tab. B.6 for the numerical values of Observation 4.2. Since the

values of the second column of this table is at least equal to or greater than the values

of the third column and the values of the fourth column is at least equal to or greater

than the values of the fifth column, the result stated in Observation 4.2 follows.

The result that the Observation 4.2 presents is the same with our earlier analysis and

Naor [30] presents.
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4.2.3 Problem of The Profit Maximizer

For the Two-Parallel-Server Benchmark Model, the market capturing price depending

on the quality level, p1,ν(q), which equates the utility function given in (4.20) to zero is:

p1,ν(q) = Rq − 4Cµ

4µ2 − λ2
(4.28)

The profit function of the profit maximizer with this entrance price is:

Π1,ν(q) = λp1,ν − 2aq2 = λ

[
Rq − 4Cµ

4µ2 − λ2

]
− 2aq2 (4.29)

Lemma 4.11 Π1,ν(q) is concave in q.

Corollary 4.2 q∗1,ν is:

q∗1,ν =
λR

4a
(4.30)

Using the optimal service quality level stated in Corollary 4.2, the optimal market

capturing price and the profit value of the profit maximizer of the Two-Parallel Server

Benchmark model is respectively given as:

p∗1,ν = Rq1,ν −
4Cµ

4µ2 − λ2
=
λR2

4a
− 4Cµ

4µ2 − λ2
(4.31)

Π∗1,ν = λp1,ν − 2a(q1,ν)
2 =

λ2R2

8a
− 4λµC

4µ2 − λ2
(4.32)

Using (4.32), we conclude that the profit value of the profit maximizer in Two-Parallel-

Stage Benchmark Model is increasing in R, and decreasing in a and C.

The market capturing price of the Two-Parallel-Stage Model With Resolution, which

equates the (4.22) to zero is:

p2,ν(q) = R− 4Cµ

4µ2q2 − λ2
(4.33)

The profit function of the profit maximizer with this entrance price is:
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Π2,ν(q) = λp2,ν − 2aq2 = λ

[
R− 4Cµ

4µ2q2 − λ2

]
− 2aq2 (4.34)

Lemma 4.12 Π2,ν(q) is concave in q.

Corollary 4.3 q∗2,ν is:

q∗2,ν =

√
λ2 +

√
8Cµ3λ
a

2µ
(4.35)

As seen in Corollary 4.3, the optimal service quality level of the Two-Parallel-Stage

Model With Resolution, is directly proportional with λ and C, and inversely propor-

tional with a and µ. Additionally, the optimal service quality level is not affected by

the change in the service reward. The interpretation behind the relation between the

model parameters is: When the arrival rate to the system or the cost of waiting in

the system, increases the profit maximizer must provide service with higher quality

levels. On the other hand, when the service rate increases, since the total expected

waiting cost in the system decreases, the profit maximizer can set the quality level

to lower values to decrease the cost of the quality. When the unit cost of the qual-

ity increases, all the other parameters being the same, the profit maximizer lowers

the service quality level to decrease his investment in the quality. Finally, since all

the customers receive the service reward in this resolution model, the optimal service

quality level is not affected by the change in the service reward.

Using the optimal service quality level stated in the corollary 4.3, the optimal market

capturing price and the profit value of the profit maximizer for the two-parallel server

model with resolution is:

p∗2,ν = R−

√
2Ca

λµ
(4.36)

Π∗2,ν = λp2,ν − 2a(q2,ν)
2 = Rλ−

√
2Cλa

µ
− a

λ2 +
√

8Cλµ3

a

2µ2
(4.37)

From Equation (4.36), we conclude that the optimal market capturing price is in-
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creasing in R, λ and µ and decreasing in C and a. The profit function of the profit

maximizer expressed in (4.37) shows that the profit value is increasing in R and µ

and decreasing in a and C.

Before closing this section, we give the short term and the long term comparison of

the problem of the profit maximizer of the Two-Parallel-Stage Models:

Proposition 4.7 In the short term, for the given model parameters, R, C, a, q, λ

and µ we have the following comparison for the short term price and profit values:

-Pricing Comparison: p1,ν(q) ≥ p2,ν(q) if 16Cµ3(1+q)
(4µ2q2−λ2)(4µ2−λ2)

≥ R

p1,ν(q) < p2,ν(q) o.w.

-Profit Comparison: Π1,ν(q) ≥ Π2,ν(q) if 16Cµ3(1+q)
(4µ2q2−λ2)(4µ2−λ2)

≥ R

Π1,ν(q) < Π2,ν(q) o.w.

We summarize this result corresponding to the short term comparison as: For given

service quality levels, the expected service reward is higher in the Resolution Model

compared to the Benchmark model. On the other hand, the expected waiting cost

is higher in the Resolution Model. Since the market capturing price is the difference

between the expected service reward and the expected waiting cost, the pricing com-

parison between the Two-Parallel-Server Models depends on the model parameters.

Since the arrival rate to the models and the cost of the quality of the models are the

same, the profit comparison depends on the pricing comparison.

Proposition 4.8 In the long term, for the given model parameters, R, C, a, λ and

µ, if Rλ ≥ 4a

-Quality Level Comparison: q∗1,ν = 1 ≥ q∗2,ν

-Pricing Comparison: p∗1,ν ≥ p∗2,ν

-Profit Comparison: Π∗1,ν ≤ Π∗2,ν
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The interpretation behind Proposition 4.8 is: Depending on the model parameters;

R, λ and a; if the profit maximizer must provide perfect quality service in the Bench-

mark Model, not to lose many customers, then he charges higher price in this model

compared to the Resolution Model, since the optimal service quality level is higher

in the former one. However, based on the higher cost of quality, the optimal profit is

lower in the Benchmark Model.

For the cases, where the profit maximizer provide service with interior quality levels,

in the Benchmark Model, i.e. Rλ < 4a, we give the comparison between the model

parameters numerically.

Observation 4.3. In the long term, for the given model parameters, R, C, a, λ and

µ, if Rλ < 4a:

-Pricing Comparison: p∗1,ν ≤ p∗2,ν

-Profit Comparison: Π∗1,ν ≤ Π∗2,ν

Table Tab. B.7 includes the numerical analysis of Observation 4.3. When we com-

pare the numbers of the second and the fourth columns, and the third and the fifth

columns the result of this Observation is straightforward.

That is, depending on the model parameters; R, λ and a; if the profit maximizer pro-

vides service with interior quality levels (imperfect service), then he charges higher

price in the Resolution Model compared to the Benchmark Model. Since the price is

higher in the Resolution Model, the profit value is also higher.

By combining the results given in Proposition 4.8 and Observation 4.3, we conclude

that in the long term, it is more profitable for the profit maximizer to not loose the

customers. So, if the profit maximizer has a chance to change the service quality

level, it is optimal for him to offer the resolution option to customers.

4.3 Model Comparison

In this section, we provide a comparison between the Benchmark models; Simple

Escalation; Two-Parallel-Stage Benchmark model, Benchmark Model With Double
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Server Rate and between the Resolution Models; Perfect Escalation, Two-Parallel-

Stage Model With Resolution and Model With Resolution With Double Server Rate.

To represent the single stage models with double server rate, we use the subscript d.

As a comparison criteria of the problem of the profit maximizer, we use the price and

profit for the short term and service quality level, price and profit for the long term.

For the individual problem of the customer and the social problem we respectively

use the equilibrium joining probability and socially optimal joining probability values.

We give the comparisons which we are able to make theoretically as Propositions, and

for the ones which are difficult to obtain theoretically we use Observations.

4.3.1 Comparison Between The Benchmark Models

1. Short Term Comparison of the Problem of the Profit Maximizer:

Proposition 4.9 p1,ν(q) ≤ p1,d(q) and Π1,ν(q) ≤ Π1,d(q) for all values of q.

2. Long Term Comparison of the Problem of the Profit Maximizer:

Proposition 4.10 q∗1,ν ≤ q∗1,d, p
∗
1,ν ≤ p∗1,d and Π∗1,ν ≤ Π∗1,d.

Observation 4.4. Assuming all the models are profitable;

• if Rλ < 4a then,

p∗1,d ≥ p∗4,n ≥ p∗1,ν .

Π∗1,d ≥ Π∗4,n ≥ Π∗1,ν .

• if Rλ ≥ 4a then,

p∗1,d ≥ p∗1,ν ≥ p∗4,n.

Π∗1,d ≥ Π∗4,n.
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Table Tab. B.8 contains the values of the numerical analysis of Observation 4.4.

For the even-valued rows of this table, i.e. 2nd, 4th, ..., 32th rows, where Rλ ≥ 4a,

we observe that the values of the sixth column is at least equal to or greater

than the values of the fourth column. And the values of the fourth column is

at least equal to or greater than the values of the second column. For the profit

comparison of this case we have an exact comparison only for the values of the

seventh and the third columns. For the other case we use the odd-valued rows

of this table, i.e. 3rd, 5th, ..., 33th rows, where Rλ ≤ 4a, we observe that the

values of the sixth column is at least equal to or greater than the values of the

second column, where the values of the latter one is at least equal to or greater

than the values of the fourth column. To compare the profit of this case we can

compare the values of the third, fifth and seventh columns of the table.

Comparing the results in Proposition 4.10 and Observation 4.4. we conclude

that the Single Stage Benchmark Model With Double Service Rate has the

highest entrance price and profit values based on the lowest waiting and quality

costs. The comparison between the two server models depend on the model

parameters. If Rλ ≥ 4a, so the profit maximizer provides perfect quality service

in the Two-Parallel-Server Benchmark Model, then he charges higher entrance

price to customers compared to Simple Escalation Model, since the former one

has lower waiting cost. In the cases, when the profit maximizer provides service

with interior quality levels, we observe that he sets the price at lower level in

the parallel-server model compared to the escalation one.

3. Equilibrium Joining Probability Comparison of The Individual Problem:

Proposition 4.11 αeq1,ν(q) ≤ αeq1,d(q) for all values of q.

4. Socially Optimal Joining Probability Comparison of The Social Problem:
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Proposition 4.12 α∗1,ν(q) ≤ α∗1,d(q) for all values of q.

We interpret the results given in Propositions 4.11 and 4.12, which compare

these models from the individual and social viewpoint as: Since for the same

expected reward, the waiting cost is lower in the Single stage model, joining

probabilities of the individual and social problem is higher in this model. By

observing the equilibrium and the socially optimal joining probabilities of the

Simple Escalation model and the Two-Parallel-Stage Benchmark Model, which

are given in Observation 4.1. and Observation 4.2, we also conclude that the

joining probability is lowest in the Simple Escalation Model for the similar

reasoning.

4.3.2 Comparison Between The Resolution Models

1. Short Term Comparison of the Problem of the Profit Maximizer:

Proposition 4.13 p2,ν(q) ≤ p2,d(q), and p4,g(q) ≤ p2,d(q).

Π2,ν(q) ≤ Π2,d(q), and Π4,g(q) ≤ Π2,d(q). for all values of q.

2. Long Term Comparison of the Problem of the Profit Maximizer:

Observation 4.5.

• Optimal Quality Level Comparison: q∗4,g ≤ q∗2,ν .

• Optimal Price Comparison: p∗4,g ≤ p∗2,ν ≤ p∗2,d.

• Optimal Profit Comparison: Π∗4,g ≤ Π∗2,ν ≤ Π∗2,d .

The numerical values of Observation 4.5 is presented in Table Tab. B.9.

We interpret the long term comparison between the resolution models, from the

profit maximizer’s viewpoint as: In Perfect Escalation Model, since the second

server provides perfect quality service, the optimization procedure sets low qual-

ity level to the first server to decrease total cost of the quality. However, since
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the quality level is low, then the arrival rate (the congestion level) of the second

server is high. Based on this, not only the waiting cost of the first server, but

also the waiting cost of the second server, so the total waiting cost of this Perfect

Escalation Model is higher compared to the other Resolution Models. So, in

order to decrease the displeasure of the waiting cost effect, the profit maximizer

sets lower entrance price in this model. Additionally, since the entrance price is

low and the cost of the quality is high, the profit maximizer has the lowest profit

in the Perfect Escalation Model compared to the other Resolution Models.

The comparison between the Two-Parallel-Server Model With Resolution and

the Single-Stage Model With Resolution With Double Server Rate can be ex-

plained as follows: Since for the given quality levels the waiting cost of the

Parallel Stage Model is higher, to decrease the latter congestion, profit maxi-

mizer must set the service quality level at higher values in this model compared

to the Single Stage Model. However, from the observation results, we conclude

that setting the higher quality level is not enough for the profit maximizer. That

is, the waiting cost of this model is still higher, so the profit maximizer must

charge a lower entrance price to customers to induce them to decide to join

all. Since the cost of the quality is higher and the entrance price of the model

is lower, the profit of the profit maximizer is lower in the Two-Parallel-Stage

Model With Resolution compared to the Single Stage Model.

3. Equilibrium Joining Probability Comparison of The Individual Problem:

Proposition 4.14 αeq4,g(q) ≤ αeq2,d(q) and αeq2,ν(q) ≤ αeq2,d(q) for all values of q.

4. Socially Optimal Joining Probability Comparison of The Social Problem:
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Proposition 4.15 α∗4,g(q) ≤ α∗2,d(q) and α∗2,ν(q) ≤ α∗2,d(q) for all values of q.

The results corresponding the comparison of the individual and social optimal

joining probabilities between the resolution models state: Since the service qual-

ity level is fixed for the individual and the social problem, and expected reward

are exactly the same in the resolution models, the only thing which differen-

tiates the models are the waiting cost. Since the waiting cost is lower in the

Single Stage Model, the customers are more willing to join this system, and the

social planner can accept more customers to this system.

4.4 Improving The Performance Of The Escalation Models

Although many service systems are designed like escalation models, the comparisons

show that their performance in the presence of strategic customers may not be that

high. The reasoning of this handicap can be listed as:

• We equally divide the total service rate to the two servers in the model. However,

fixing the server rate of the first server to µ is not efficient. Because in this case

the expected waiting cost of the first server is high, i.e. all the customers wait

to be served in the first server.

• In the Simple Escalation Model, we assume that the two servers are identical;

i.e. R1 = R2, C1 = C2 and q1 = q2. In this model, the only thing which creates

the difference between the servers is the congestion level. However, if the quality

levels of the servers are low, then the congestion level of the second server is

also high. So, setting the same quality levels and deciding on only this unique

quality level, decreases the performance of this Simple Escalation Model.

• In the Perfect Escalation Model, we assume that the second server provides

perfect quality service. Indeed, it seems good in model design at first, when

we analyze the model and optimize the service quality level of the first server,
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we conclude that the profit maximizer sets the quality level to very low values

to decrease the total cost of the quality. However, this move of the profit

maximizer, increases the total waiting cost in the system, which also decreases

the performance of the Perfect Escalation Model.

By identifying the reasons behind the low performance of Escalation Models, we add

some studies in this section, to decrease the inefficiency of these models.

To handle the first reason, we decide to change the profit maximizer’s single param-

eter, q, decision problem into the two decision variable problem, µ1 and q. In this

analysis, we fix the total server rate of the system to 2µ, and decide on the server rate

of the first server, µ1, where the remaining 2µ− µ1 is the rate of the second server.

To deal with the second and third reasons, we again change single parameter, q,

problem of the profit maximizer into a two parameter problem, where q1 and q2

which respectively denote the service quality levels of the first and the second server.

4.4.1 Escalation Models When the Service Rate and the Service Quality Level Are

Decision Variables

In this part we assume that there are two sequential servers providing service with

rate 2µ in total, i.e. if the rate of the first server is µ1, then the rate of the second

server is 2µ−µ1. In addition, the two servers provide service with the service quality

level q. So, the problem of the profit maximizer is a two decision parameter problem,

where he decides on µ1 and q.

Based on this scenario, the utility function of the customer is written as:

U4(α) = Rq +Rq(1− q)− C

µ1 − λα
− C(1− q)

(2µ− µ1)− (λα(1− q))
− p

For the market capturing price setting, the joining probability of the customer is 1,

and the price as a function of µ1, q is:
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p4(µ1, q) = Rq +Rq(1− q)− C

µ1 − λ
− C(1− q)

(2µ− µ1)− (λ(1− q))

The profit of the profit maximizer with this entrance price is:

Π4(µ1, q) = λp4(µ1, q)− 2aq2 = λRq + λRq(1− q)− Cλ

µ1 − λ
− Cλ(1− q)

(2µ− µ1)− (λ(1− q))
− 2aq2

Lemma 4.13 Π4(µ1, q) is jointly concave in µ1 and q.

Since we have the joint concavity property of the profit function with respect to the

decision parameters (as given in Lemma 4.13), we have a unique solution (maxi-

mizer) for this problem. We can then give numerical results comparing this Escala-

tion Model with the other models, Two-Parallel-Server-Benchmark-Model and Single

Stage Benchmark Model With Double Server Rate.

Observation 4.6. Π∗4(µ1, q) ≥ Π∗4,n(µ, q).

We give the values of this Observation in table Tab. B.10. From the table values

we have some conclusions. We first observe that the optimal service rate of the first

server is higher than the service rate of the second server; i.e. values of the second

column is higher than 2µ/2 = µ. Secondly, by comparing the values of fourth column

of this table with the values of the third column of Tab. B.8, we observe that the

profit of the profit maximizer is higher in the former one.

In order to interpret the numbers given in Observation 4.6, we must analyze them

together with the numbers given in Observation 4.4. By deciding on the service rate

of the first server in the escalation model, the profit maximizer increases his profit;

i.e. the profit values of the improved model given in Observation 4.6 are higher than

the ones given in Observation 4.4 which represents the Simple Escalation Model. Ad-

ditionally, by comparing these values with the profit values of the Two-Parallel-Server

Benchmark Model (as given in Observation 4.4), we conclude that if they are prop-

erly designed, the Escalation Models perform better compared to the parallel-server
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models. Moreover, the performance of the Escalation Models gets closer to the Sin-

gle Server Models With Double Rate, i.e. the difference between the profit values is

decreased.

The effect of deciding on the service rate on the performance of the Escalation Models

is decreasing the waiting cost of the first server, so the total waiting cost. By ana-

lyzing the numbers given in Observation 4.6, we see that it is optimal for the profit

maximizer to set a larger portion of his total service rate (more than 50%) to the first

stage.

4.4.2 Escalation Models When the Servers Provide Service with Different Quality

Levels

Assuming that the two sequential servers provide service with q1 and q2 quality levels,

respectively, the utility function of the individual customer is given as:

U4(α) = Rq1 +R(1− q1)q2 −
C

µ− λα
− C(1− q1)

µ− λα(1− q1)
− p.

Assuming the profit maximizer sets the market capturing price, the equilibrium join-

ing probability of the customer is 1. Based on this equilibrium joining probability,

the market capturing price as a function of the quality levels given as:

p4(q1, q2) = Rq1 +R(1− q1)q2 −
C

µ− λ
− C(1− q1)

µ− λ(1− q1)
.

Using the price given in the above equation, the profit function of the profit maximizer

is written as:
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Π4(q1, q2) = λ

[
Rq1 +R(1− q1)q2 −

C

µ− λ
− C(1− q1)

µ− λ(1− q1)

]
− aq2

1 − aq2
2

Lemma 4.14 Π4(q1, q2) is jointly concave in q1 and q2.

Since the concavity follows as stated in Lemma 4.14, we write the optimal service

quality level expression of the second server as a function of the service quality level

of the first server.

Corollary 4.4 The optimal quality level of the second server as a function of the

quality level of the first server is:

q∗2(q1) =
Rλ(1− q1)

2a

The expression given in Corollary 4.4 shows us that, the quality levels of the two

servers are inversely proportional. That is if the quality level of the first server is

high, then the quality level of the second server is low and vice versa. In other words,

if the quality level of the first server is high, the profit maximizer sets the quality level

of the second server to lower levels to optimize his profit.

We present the numerical study comparing the performance of this Escalation Model

with the other models. Since the quality level of the second server can take any value;

0 ≤ q2 ≤ 1, some of the customers can leave this system unsatisfied with probability

(1 − q1)(1 − q2). So to make the fair comparisons, as the other models we use the

Two-Parallel-Stage Benchmark Model and the Single-Stage Benchmark Model with

Double Server Rate.

Observation 4.7. Π∗4(q1, q2) ≥ Π∗4,n(µ, q).

Table Tab. B.11 includes the numerical values of this Observation. By comparing the

second and third columns of this table, we observe that if the values of the second

column is high, then the values of the third column is low, so the optimal quality

values of the two servers are inversely proportional. Additionally by comparing the
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fourth column of this table with the fourth column of Tab. B.8, it is straightforward

that the values are higher in the former one.

By combining the numbers given in Observation 4.4 and Observation 4.7, we come

up with similar conclusions as we present in Observation 4.6. That is, by re-designing

our Escalation Models with different service quality levels in each of the server, the

profit maximizer’s profit from these models increased where they are higher compared

to parallel-server models and closer to the Single Server Model With Double Server

Rate.

Moreover, from the numbers given in Observation 4.7, we reach such a conclusion that

assuming unit cost of the service quality are the same in each state, it is optimal for

the profit maximizer to set high quality level to the first server. The reason behind

this is to decrease the total waiting cost in the system. Since the quality levels of the

servers are inversely proportional, we see that the service quality level of the second

server is smaller compared to the first one.

4.5 Discussion

In the last section of this chapter, we discuss and compare the models.

• As a system design issue, we observe that the Escalation Models are not very

efficient. These models have lower joining probabilities for the individual and

the social problem, and lower profits for the problem of the profit maximizer.

We conclude that the reason behind this result is the high waiting cost of these

models. The first server provides service with the rate µ, and all of the cus-

tomers who join, wait in the queue in front of this server. Moreover, in the

perfect escalation model, since the second server provides perfect quality ser-

vice, to decrease the cost of the quality, the profit maximizer sets the optimal

quality level of the first server to low levels, which increase the congestion and

the waiting cost of the second server. Thus the inefficiency of the Escalation

Models is caused by the parameter choices in system design. After a redesign

which entails optimization of model parameters, the performance of this model
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is increased; i.e. the profit of the profit maximizer gets closer to the Single Stage

Models With Double Server Rate.

• The Single Server Model which provides service with a double rate performs best

between all of the models that we analyze in this chapter. The interpretation

behind this result as: It is optimal to provide service with a single but a more

qualified server; i.e. the service rate of the server is high and the optimal quality

of the server is high since the quality cost is low; i.e. profit maximizer invests the

quality cost for only a unique server. This result may not always be applicable

as a doubly fast server may not be feasible.

• The Two-Parallel-Stage Models performs well, but not as much as the Single

Stage Model. From the individual and social viewpoint, the performance of

the Two-Parallel-Stage Model is lower compared to the Single Stage Model,

because the waiting cost of the system is higher in the former one. From the

profit maximizer’s viewpoint the similar comparison holds based not only on

the higher waiting cost but also the higher cost of the quality. So, as a system

design issue the M/M/1 Model with a double server rate is better than the

M/M/2 Model.

• For the individual problem, we conclude that it is optimal for the customer to

leave the system rather than taking the resolution of the service failure; i.e.

Benchmark Models have higher joining probabilities compared to Resolution

Models. Additionally, for the social problem, it is optimal for the profit max-

imizer to not the offer resolution for the quality problem of the system. That

is the Benchmark Models have also higher joining probabilities compared the

Resolution Models. These result shows the importance of the waiting costs for

the individual and the social problem. Since the service quality level is fixed and

there is no other parameters for this problem which can decrease the displeasure

of the waiting cost effect, both the individual and the social planner chooses the

models which have the lowest waiting costs.
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• When we compare the different resolution alternatives from the profit maxi-

mizer’s viewpoint in the short term, where the quality level is fixed, we con-

clude that the performances of the models depend on the model parameters.

For example, the Benchmark Models, in which the profit maximizer loses some

of his customers, can be preferable if the service quality level or the service rate

is low, or the arrival rate is high. For the inverse situations; the service rate

or the service quality level is high or the arrival rate is low, it is optimal for

the profit maximizer to provide resolution to unsatisfied customers and not to

lose them. When we compare the short term results of the profit maximizer’s

problem and the individual and social problem, we also conclude that, since

the profit maximizer has one decision parameter, queue entrance price, he has

the chance to mitigate the displeasure of the waiting cost by decreasing the

entrance price. So, in the short term results of the profit maximizer’s problem,

we conclude that depending on the model parameters the Resolution Models

can be more profitable for the profit maximizer.

• When we analyze the problem of the profit maximizer in the long term, we

observe that the Resolution Models are always better and more profitable com-

pared to the Benchmark Models. So, since in the long term, the profit maximizer

has the chance to change both the queue entrance price and the service quality

level, it is optimal for him to offer resolution to customers and not to lose them.

• From the service quality level expressions of all of the models that we analyze,

we conclude that the optimal service quality level is affected by the change of

the service reward in Benchmark Models, since not all of the customers receive

this reward. However, for the Resolution Models, since all of the customers

receive the service reward, we conclude that the optimal service quality level is

independent from the service reward.
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Chapter 5

SERVICE RATE DECISIONS

In previous chapters, we assume that in the long term, to maximize his profit,

the profit maximizer decides on the service quality level. However, changing the

service quality level may require investment and time. For this reason, in some service

systems, rather than changing the service quality level, the profit maximizer may

choose to change the service rate.

In this chapter, we analyze the profit maximizer’s problem in our different quality

models, when the service rate is also a decision for the profit maximizer. So in this

chapter, we investigate the optimal price, service rate and the service quality level

selection problem of the profit maximizer in the quality models which are discussed

in the previous chapters. By working on such a service decision problem, we will be

able to conclude how the strategy of the profit maximizer is affected from the changes

in the service rate and the service quality level.

In the analysis of this chapter, we build on the results given in Chen and Frank [11].

In their paper, they analyze the short and long term problem of the profit maximizer

in different pricing settings assuming that the service quality level of the system is

perfect. In the long term analysis, Chen and Frank assume that the service rate

of the system is a decision for the profit maximizer, so in this problem, the profit

maximizer optimizes his profit by deciding on the entrance price and the service rate.

In their problem, they assume the linear cost structure holds for the service rate and

the unit cost of adding server to their model is q. By also considering the fixed cost,

F, of the profit maximizer, the total cost function of the long term problem given in

Chen and Frank [11] is represented as qµ + F . In the long term, by comparing the

profit values of the profit maximizer under different pricing settings; monopolistic and
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market capturing, they showed that it is optimal for the profit maximizer to set the

market capturing price and serve the whole market.

Since the service rate is also a decision in our analysis, based on the long term analysis

result given in Chen and Frank [11], we focus on the market capturing pricing setting

in this chapter. We also use the linear cost function for the service rate decision as

given in Chen and Frank [11]. But for the unit cost parameter of the service rate

we use the notation b, since their notation is used for the service quality level in our

thesis. Moreover, we omit the fixed costs in all of our analysis because in this thesis

we assume that the positive profitability condition holds in the profit maximizer’s

problem (the fixed costs are canceled in optimization). Since our main problem in

this thesis is the service quality or the failure problem, in this chapter we still analyze

this problem. So the decisions of the long term problem of the profit maximizer are

the price, service rate and the service quality level. But since in the market capturing

pricing setting, the optimal price exactly depends on the optimal service rate and

the quality level, the decision of the price can be omitted of our long term problem.

That is, our long term problem in this chapter is a maximization problem with two

decisions, service rate and the service quality level, where the optimal entrance price

is denoted by the optimal values of these parameters. As before, we use a quadratic

cost structure for changing the service quality level since the linear cost structure is

not suitable (in service systems, the cost of changing the service level from 80% to

85% is different from changing it from 85% to 90%).

In the first section of this chapter, we will analyze how the analysis changes when

we decide additionally on the service rate for the earlier single stage models. In the

second section, we repeat a similar analysis for the two-stage models. In order to

compare this analysis with the earlier ones and see how the change in the service rate

affects our analysis, we classify our analysis for all of the models in two cases. In the

first case, we analyze the profit maximizer’s problem when the service rate and the

service quality level are the decisions, and label this case as the ”Service Rate Is A

Decision Case”. In the second case, we use our earlier results where only the decision
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is the service quality level, and label this as the ”Fixed Service Rate Case”.

For the detailed Proofs of the Lemmas, Corollaries and Propositions of this chapter,

you can see Appendix A.4 and for the Observations you can see Appendix B.3.

5.1 The Single Stage Models

5.1.1 The Benchmark Model

Using the individual utility function given in (3.1), and setting the joining probability

value 1; αeq1 = 1, the market capturing price of the benchmark model as a function of

the service rate, µ, and the service quality level, q, is represented as:

p1(µ, q) = Rq − C

µ− λ
(5.1)

Using the entrance price (5.1) and the linear cost function of the service rate and the

quadratic cost function of the service quality level, the profit function of the profit

maximizer of the Benchmark Model, under the market capturing setting is shown as:

Π1(µ, q) = λp1(µ, q)− bµ− aq2 = λ

[
Rq − C

µ− λ

]
− bµ− aq2 (5.2)

Lemma 5.1 Π1(µ, q) is concave in µ.

Corollary 5.1 The optimal service rate as a function of the model parameters is:

µ∗1(q) = λ+

√
Cλ

b

As concluded in Chen and Frank [11], the firm responds to an increase in λ by in-

creasing µ. When the service rate, µ, increases, the entrance price, p, also increases.

The optimal service rate decision does not vary with the unit reward R. Compared

to Chen and Frank [11], our problems additionally include the quality parameter. In

our analysis we conclude that the optimal service rate parameter is independent of

this service quality parameter in the Benchmark Model. The reasoning of this result
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can be explained as: In the Benchmark Model all of the customers leave the system

independent of the service quality that they receive (the dissatisfaction of the cus-

tomers does not create any congestion in the system, since they do not return).

Using the optimal service rate obtained in Corollary 5.1, the profit function of the

profit maximizer is rewritten as:

Π1(µ∗1, q) = Rλq − 2
√
Cλb− bλ− aq2 (5.3)

Lemma 5.2 Π1(µ∗1, q) is concave in q.

Corollary 5.2 The optimal service quality level is given by:

q∗1 =

 Rλ
2a
, if (Rλ− a)q > 2

√
Cλb+ bλ for all 0 < q ≤ 1

0, o.w.

In order to observe how the analysis change when we additionally decide on the service

rate, we compare this optimal quality level, with the one we give earlier. In Chapter

3, we analyze the problem of the profit maximizer under market capturing pricing

setting, when we decide only on the service quality level. In this chapter, we denote

this optimal quality level with, q∗1,µ̃, since this is obtained when the service rate is not

a decision (fixed-service-rate).

Proposition 5.1 If positive profit is possible for the Service Rate is a Decision and

the Fixed Service Rate Case, then:

q∗1 = q∗1,µ̃

The result given in Proposition 5.1 seems interesting. Because it shows that if the

profit maximizer is in the positive profit conditions, his choice of service quality level

is not affected from his service rate decision. Because, the terms representing the

service quality level and the service rate are not inter-related.
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5.1.2 The Model With Resolution

For the individual utility function of the Model With Resolution, we use (3.14). Since

the market capturing pricing strategy is optimal when the service rate is a decision for

the profit maximizer, all customers are assumed to join, so αeq2 =1. Then, the market

capturing price of the Model With Resolution is:

p2(µ, q) = R− C

µq − λ
(5.4)

Using the entrance price given in (5.4), the profit function of the profit maximizer of

this model is:

Π2(µ, q) = λp2(µ, q)− bµ− aq2 = λ

[
R− C

µq − λ

]
− bµ− aq2 (5.5)

Lemma 5.3 Π2(µ, q) is concave in µ.

Corollary 5.3 The optimal service rate as a function of the model parameters and

the service quality level is:

µ∗2(q) =
λ+

√
Cλq
b

q

The interpretation of the result given in the Corollary 5.3 is: The optimal service rate

is not affected by the change in R. The service rate increases when the arrival rate

increase. Compared to the Benchmark Model, we conclude that the optimal service

rate decision is affected by the change in the service quality level in the Resolution

Model. The reasoning is: The returns of the unsatisfied customers generate the con-

gestion of the system so when the service quality level is low so return rate to the

system is high and the profit maximizer must increase his service rate. That is the

optimal service rate is inversely proportional to the service quality level.

We rewrite the profit function of the profit maximizer, by plugging the optimal service

rate expression, as a function of the service rate, which is derived in Corollary 5.3 in
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place.

Π2(µ∗2, q) = Rλ− 2

√
Cλb

q
− bλ

q
− aq2 (5.6)

Lemma 5.4 Π2(µ∗2, q) is concave in q.

Since concavity follows, the optimal service quality level is found numerically from

the first order condition.

We compare the optimal quality level of this service rate is a decision case, q∗2, with

the one we give earlier in the third chapter, fixed service rate case, q∗2,µ̃. The first order

conditions representing the service quality level of these two cases, Case 1 where the

service rate is a decision and the Case 2 with a fixed service rate, cannot be compared

analytically. Because, for the first case when the service rate is a decision, the first

order condition representing the service quality level depends on the unit service rate

cost, b, and is independent from the service rate, µ. However in the second case,

for the fixed service rate, the first order condition describing the service quality level

depends on the service rate, and is independent from the unit cost of the service rate.

So, the optimal quality levels and the optimal profits of these two cases can only be

compared numerically.

Observation 5.1:

• If µ ≤ µ∗2 then q∗2 ≤ q∗2,µ̃.

• If µ > µ∗2 then q∗2 ≥ q∗2,µ̃.

• Π (µ∗2, q
∗
2) ≥ Π

(
µ, q∗2,µ̃

)
The numerical values of this Observation is presented in Table Tab. B.12. To inter-

pret these numbers we first compare the second and fifth columns of the table and

observe that if the value of the second column is higher than the value of the fifth

column, then we also observe that the value of the third column is smaller than the

value of the sixth column. Additionally the numbers of the seventh column is always
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higher than the values of the fourth column.

The numerical result given in the Observation 5.1. shows the following: The service

rate and the service quality level are substitutes of each other. So, if the profit maxi-

mizer sets his service rate to a value that is less than its optimal, then he maximizes

his profit by increasing his service quality level. Similarly, if he holds an excess ser-

vice capacity, then he compromises from his cost regarding the service quality level,

by decreasing it. On the other hand, the profit maximizer increases his profit by

additionally deciding on the service rate.

5.1.3 The Model With Returns

The individual utility function of the model with returns is represented in (3.23). All

customers are assumed to join under the market capturing pricing strategy where

αeq3 =1. The market capturing entrance price of the Model with Returns is:

p3(µ, q) = Rq − C

µq − λ
(5.7)

As derived in the third chapter, the profit function of the profit maximizer under the

market capturing price setting of the Model With Returns is:

Π3(µ, q) =

(
Rq − C

µq − λ

)(
λ

q

)
− bµ− aq2 (5.8)

Lemma 5.5 Π3(µ, q) is concave in µ.

Corollary 5.4 The optimal service rate as a function of the service quality level is:

µ∗3(q) =
λ+

√
Cλ
b

q

The optimal service rate expression of the Model With Returns also depend on the

service quality level. As in the Resolution Model, the optimal service rate is inversely
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proportional with the service quality level.

Proposition 5.2

µ∗3(q) ≥ µ∗2(q) ≥ µ∗1(q)

The result given in Proposition 5.2 can be interpreted as follows: Since the profit

maximizer offers resolutions in the second and third models which increase the con-

gestion of the system, he has to keep the service rate higher in these models compared

to the Benchmark Model. Moreover, since he does not offer a full resolution in the

Model With Returns; i.e. the returning customers have still chance of being failed

in the service, he has to keep the maximum service rate in this model between the

single-stage-models.

Plugging the optimal service rate expression derived in Corollary 5.4 in place of (5.8),

the profit function of the profit maximizer is obtained as:

Π3(µ∗3, q) = Rλ− 2

√
Cλb

q2
− bλ

q
− aq2 (5.9)

Lemma 5.6 Π3(µ∗3, q) is concave in q.

Since concavity follows, the optimal service quality level is found numerically from

the first order condition.

Since we showed the concavities of the profit functions of the Model With Resolution

and Model With Returns, with respect to the service quality level, as given in Lemmas

5.4 and 5.6, we can compare the optimal model parameters and the optimal profit by

comparing the first order conditions.

Proposition 5.3 q∗3 ≥ q∗2 and µ∗3 ≥ µ∗2.

Based on Proposition 5.3, we conclude that: Since the market capturing price is

set, all customers are assumed to join the system in the models. Based on this, the

waiting time expressions are the same in the Model With Resolution and the Model
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With Returns. Since for the same waiting time expressions, the profit maximizer

offers full resolution in the Model With Resolution; i.e. customers cannot leave the

system without taking the reward, he must set his optimal model parameters to higher

levels in the Model With Returns, since some customers still have a chance of being

unsatisfactorily served. That is, to decrease the waiting cost of the customers,the

profit maximizer sets the service rate and the service quality level at higher levels in

the Model With Returns.

For the Model With Returns, we compare the model parameters of the Service Rate

is a Decision Case with the ones given in Chapter 3, as a Fixed Service Rate Case.

The numerical comparison for these two cases is as follows:

Observation 5.2:

• If µ ≤ µ∗3 then q∗3 ≤ q∗3,µ̃.

• If µ > µ∗3 then q∗3 ≥ q∗3,µ̃.

• Π (µ∗3, q
∗
3) ≥ Π

(
µ, q∗3,µ̃

)
.

Table B.13 contains the numerical values of Observation 5.2. The interpretation of

this table is very similar to the interpretation of Table 5.1.

We interpret our findings given in the Observation 5.2 as given after Observation 5.1.

Before closing this section we compare the profit values of the profit maximizer in

both of the cases in the Model With Resolution and the Model With Returns.

Observation 5.3:

• Π
(
µ, q∗2,µ̃

)
≥ Π

(
µ, q∗3,µ̃

)
.

• Π (µ∗2, q
∗
2) ≥ Π (µ∗3, q

∗
3).

For Observation, we use the values of Tables Tab B.12 and Tab B.13. When we com-

pare the fourth and seventh columns of these two tables, we see that the values are

higher in Table B.12.

Using the result of Observation 5.3, we conclude that the Resolution Model, which
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offers full resolution and does not retake the entrance price from the returning cus-

tomers, is more profitable compared to the Model With Returns, which retakes the

entrance price.

5.2 The Two-Server-Models

In our Two-Server-Models, we use a server in each stage. So, in our analysis during

this section, we assume that the profit maximizer invests for both of the stages; i.e.

double costs for the service rate and the service quality level.

5.2.1 Two Parallel Stage Models

In this section, we will analyze the concavity of the Two-Parallel-Stage Benchmark

and the Resolution Models respectively.

For the Two-Parallel-Stage-Benchmark Model, the market capturing price which

pushes all the potential customers to decide to join is as given in (4.28). With this

entrance price and proper cost functions of this model, the profit function of the profit

maximizer is written as:

Π1−ν(µ, q) = λp1−ν − 2µb− 2aq2 = λ

(
Rq − 4Cµ

4µ2 − λ2

)
− 2µb− 2aq2 (5.10)

Lemma 5.7 Π1−ν(µ, q) is jointly concave in µ and q.

Since the profit function is jointly concave as given in Lemma 5.7, optimal solution

of the problem of the profit maximizer is unique. Since the derivative function with

respect to the service rate, µ, is analytically hard to analyze, we analyze this model

and the model parameters numerically.

We compare the result of this analysis, with the one given in the fourth chapter, which

works on the same problem with the only decision parameter, service quality level;

Fixed Service Rate Case. This analysis is the same with the service rate is a decision

case.
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Proposition 5.4 If the positive profitability is achieved in both of the cases: Service

Rate is a Decision and the Fixed Service Rate,

q∗1−ν = q∗1−ν,µ̃ =
λR

4a

The interpretation of Proposition 5.4 is: Since in the profit function, the service

rate and the service quality level are not inter-related, the optimal service quality

level of the Two-Parallel-Stage-Benchmark Model are the same in the two cases into

consideration: Service Rate is a Decision and the Fixed Service Rate.

The numerical analysis, representing the optimal model parameters for the two cases;

i.e. q∗1−ν,µ̃,Π
(
µ, q∗1−ν,µ̃

)
for the fixed service rate case and µ∗1−ν , q

∗
1−ν ,Π

(
µ∗1−ν , q

∗
1−ν
)

for the service rate is a decision case; is represented in the Observation 5.4.

Observation 5.4: For the Parallel Server Model, optimal quality level values and the

profits of the fixed service rate and service rate is a decision case is compared as:

•  q∗1−ν,µ̃ = q∗1−ν = Rλ
4a
, (Rλ− 4aq)q > 4Cλµ

4µ2−λ2 + bµ

q∗1−ν,µ̃ = 0 < q∗1−ν , o.w.

• Π
(
µ, q∗1−ν,µ̃

)
≤ Π

(
µ∗1−ν , q

∗
1−ν
)

Please see Table Tab. B.14 for the numerical values of Observation 5.4. To interpret

this table we first use second, third, fifth and sixth columns of the table and observe

that if the values of the second column is lower than the values of the fifth column,

then the values of the third column is higher than the values of the sixth column,

and vice versa. Additionally when we compare the fourth and the seventh columns

we observe that the values of the former one is always smaller than the values of the

seventh one.

From the numbers representing the optimal model parameters of the Two-Parallel-

Stage-Benchmark Model for the two cases we have the following observations: The

profit maximizer achieves higher profit when he additionally decides on the service
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rate. Since the service rate and the service quality level parameters are not inter-

related the optimal service quality level are the same in both of the cases assuming

the positive profitability conditions hold in both of the cases. For the congested

systems, arrival rate is high and the server rate is low, the positive profitability of the

system is hard to achieve in the fixed server rate case.

We now analyze the Two-Parallel-Stage Model With Resolution for these two cases.

The market capturing price of this model is given in (4.33). Using this entrance price,

the profit function of the profit maximizer is:

Π2−ν(µ, q) = λp2−p − 2µb− 2aq2 = λ

(
R− 4Cµ

4µ2q2 − λ2

)
− 2µb− 2aq2 (5.11)

Lemma 5.8 Π2−ν(µ, q) is jointly concave in µ and q.

Since the profit function is jointly concave with respect to the model parameters as

given in Lemma 5.8, we have the unique solution of this maximization problem. How-

ever, since the optimal model parameters are untractable, we will use Observations

to perform our comparisons.

In order to compare the results above, with our earlier analysis given in Chapter 4,

representing the Fixed Service Rate Case, we present Observations based on numeri-

cal results.

The numerical analysis, representing the optimal model parameters for the two cases;

i.e. q∗2−ν,µ̃,Π
(
µ, q∗2−ν,µ̃

)
for the fixed service rate case and µ∗2−ν , q

∗
2−ν ,Π

(
µ∗2−ν , q

∗
2−ν
)

for the service rate is a decision case; is summarized in the Observation 5.5.

Observation 5.5:

• If µ ≤ µ∗2−ν then q∗2−ν,µ̃ ≥ q∗2−ν .

• If µ > µ∗2−ν then q∗2−ν > q∗2−ν,µ̃.

• Π
(
µ∗2−ν , q

∗
2−ν
)
≥ Π

(
µ, q∗2−ν,µ̃

)
.

We present the numerical results of Observation 5.5 in Table Tab. B.15. We interpret

this Table as Table Tab. B.14, which shows the numerical values of Observation 5.5.
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We interpret this Observation as follows: The profit maximizer increases his profit

when the service rate is also a decision parameter as in the Two-Parallel-Stage-

Benchmark Model. By comparing the optimal quality levels of the two cases, we

observe that the optimal quality level of the fixed server rate case is higher than the

optimal quality level of the server rate is a decision case when the fixed server rate is

smaller than it is optimal.

Now we give the comparison between the service rate expressions depending on the

service quality level, of the Two-Parallel-Server Models.

Proposition 5.5 µ∗1−ν(q) ≤ µ∗2−ν(q) if µq > λ for all values of µ and 0 < q ≤ 1.

The interpretation of Proposition 5.5 is: When the quality level is fixed, the profit

maximizer must increase the service rate if he offers resolution, since the congestion

of the system increases based on this resolution.

We close this section by comparing the profit values of the profit maximizer in the

different Two-Parallel-Server Models for the Fixed Service Rate and the Service Rate

is a Decision cases, by using the numbers given in the Observations 5.4 and 5.5.

Observation 5.6:

• Π
(
µ, q∗1−ν,µ̃

)
≤ Π

(
µ, q∗2−ν,µ̃

)
.

• Π
(
µ∗1−ν , q

∗
1−ν
)
≤ Π

(
µ∗2−ν , q

∗
2−ν
)
.

We reuse the numerical values of Tables Tab. B.14 and Tab. B.15 to reach Observa-

tion 5.6. From the tables values we observe that the fourth and seventh columns of

Table Tab. B.14 is always lower than the same column values of Table Tab. B.15.

From the model comparison given in Observation 5.6, we have the following result:

In the long term, when the profit maximizer has chance to change at least one of the

model parameters, only the quality level or the service rate and the quality level, it

is more profitable for him to give resolution to the customers and not to loose them.
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5.2.2 The Escalation Models

In this section, we analyze the two escalation models. Since the profit functions of

these models are analytically hard to analyze with respect to the model parameters

µ and q, and deriving explicit closed form expressions of these model parameters are

intractable, we give the numerical analysis representing the optimal model parameters

for the two cases: fixed service rate and the service rate is a decision.

We first give the results of the numerical analysis of the Simple Escalation Model.

Observation 5.7:

• q∗4−n,µ̃ ∼= q∗4−n.

• Π
(
µ, q∗4−n,µ̃

)
≤ Π

(
µ∗4−n, q

∗
4−n
)
.

We present the numerical values of Observation 5.7. in Tab. B.16. The table is

interpreted similarly as we give in Observations 5.4 and 5.5.

We interpret Observation 5.7 as follows: Since in the profit function the terms having

µ and q are independent, the optimal quality levels are nearly the same in both of the

cases: fixed service rate and the service rate is a decision. Additionally, as in all of

the single stage models and the two parallel stage models, in this model we observe

that the profit maximizer increases his profit by deciding on the service rate.

For the Perfect Escalation Model, we summarize our observations in Observation 5.7.

Observation 5.8:

• If µ ≤ µ∗4−g then q∗4−g,µ̃ ≥ q∗4−g.

• If µ > µ∗4−g then q∗4−g ≥ q∗4−g,µ̃.

• Π
(
µ∗4−g, q

∗
4−g
)
≥ Π

(
µ, q∗4−g,µ̃

)
.

Table Tab. B.17 contains the numerical values of Observation 5.8. The interpretation

of this table is similar to previous one.

The results which we summarized in Observation 5.8 are interpreted as: The two
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decision variables, the service rate and the service quality level are the substitutes of

each other. This means, if the fixed service rate is smaller than it is optimal, then

to maximize his profit, the profit maximizer should increase the service quality level.

Moreover, the profit of the profit maximizer is higher when he decides not only on

the service quality level but also on the service rate.

Finally, we give the long term comparison between the two models in the Observation

5.8.

Observation 5.9:

• q∗4−g,µ̃ ≤ q∗4−nµ̃ and q∗4−g ≤ q∗4−n.

• µ∗4−g ≥ µ∗4−n

• Π
(
µ, q∗4−n,µ̃

)
≤ Π

(
µ, q∗4−g,µ̃

)
.

• Π
(
µ∗4−n, q

∗
4−n
)
≤ Π

(
µ∗4−g, q

∗
4−g
)
.

To see the numbers of Observation 5.9 we use Tables Tab. B.16 and B.17.

The interpretation of Observation 5.9. is as follows: In the Perfect Escalation Model,

since the second server provides perfect quality service, the quality level of the first

server is smaller compared to the Simple Escalation Model. On the other hand, since

the service quality level of the first server is small, to decrease the waiting costs in the

perfect escalation model, the profit maximizer should keep the server rate higher in

the Perfect Escalation Model compared to the Simple Escalation Model. Moreover,

as before, we again conclude that in the long term, when the profit maximizer has

chance to decide on at least one of the model parameters, then to increase his profit

it is optimal for him to offer resolution to the customers rather than losing them.

5.3 Discussion

In this chapter, we analyze how the problem of the profit maximizer is affected when

he decides not only on the service quality level but also on the service rate in all of
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the models represented in this thesis.

We summarize our results related to this chapter as:

• Deciding on more parameters positively affects the profit of the profit maximizer.

The profit values are higher when Service Rate is a Decision compared to

the Fixed Service Rate Case in all of the models.

• The service quality level and the service rate are the substitutes of each other.

If the fixed service rate is smaller than it is optimal, the profit maximizer

must set the service quality level at least equal or greater than it is optimal.

If the fixed service rate is higher than it is optimal, than the profit maximizer

sets the service quality level at most equal or smaller levels than it is optimal.

• If the profit maximizer offers resolution to customers, then he must increase at

least one of his model parameters, service rate and the service quality level, to

prevent the system from the congestion of the returning customers create.

• In the long term, when the profit maximizer has chance to change at least one

of the model parameters, it is optimal for him to offer resolution to customers

rather than losing them.

The profit value of the Resolution type models are higher than the Bench-

mark type models.

• Especially for the congested systems; i.e. λ = 9.5, µ = 6 or µ = 10, deciding

on µ rather than fixing it highly affects the performance of the system.

The difference between the profits of the Service Rate is a Decision and

Fixed Service Rate Cases is large in all of the models.
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Chapter 6

CONCLUSIONS

In this thesis, we analyze the behavior of strategic customers in service systems

by considering the service quality. We mainly focus on three problems: Problem of

the individual customer, social problem and the problem of the profit maximizer.

By adding a service quality perspective in these problems, first we are able to ana-

lyze how the behaviour of the strategic customer and the social planner is affected

when service failure occurs with given probability levels. In our analysis, in both of

the observable and unobservable queue length settings, we see that the joining rates

of the individual and the social problems are increasing in the service quality level.

Thus, the higher the service quality level is, so are the individually and socially op-

timal joining rates. We also see that the individually and socially optimal joining

rates differ from each other, where the former one is higher compared to later one.

This result is the same with the ones given in Naor [30] and Edelson and Hildebrand

[16] which analyze these two problems in the observable and unobservable queues

respectively. One of the results, that we obtain differently compared to these papers

in literature, in our thesis is the following: The difference between the individual and

social problem is increasing in the service quality level. So, for higher quality levels

the mismatch between these two problems is higher, where it reaches the maximum

for the perfect quality of service. This shows us that providing service with lower

quality levels can be used to decrease the difference between the individual and social

optima.

We also analyze the profit maximization of the profit maximizer when he provides

service to strategic customers under service failures. In their book, Hassin and Havviv

[20], by comparing the social and profit maximizer’s problems assuming the service
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quality level is perfect, conclude that the objectives of the profit maximizer and so-

ciety coincide. However, we do not obtain this result in our thesis, since we include

the cost of the quality to the profit maximizer’s problem.

On the other hand, since we are dealing with the quality problem, we also need to

analyze the resolution of this quality problem. The possible resolution alternatives are

listed in this thesis as: Customers can leave the system and go another system, they

can return to the same system or they can be escalated to the higher level of servers

in the same system. To compare these resolution alternatives from the individual,

social and the profit maximizer’s perspective, we develop different quality models.

In the comparisons, which compare the individually and socially optimal joining rates

of these different models, we conclude that the Benchmark Type Models, which as-

sume that the customers who are subjected to a service failure in their first trials and

go to another system for the resolution, are favorable compared to the Resolution

Type Models, in which unsatisfied customers return to the same server or escalated

to the higher levels of servers in the same system. This result shows the waiting

effect on these problems. Because in Resolution Type Models, when the unsatisfied

customers retry the same system for the service failure resolution, the system be-

comes more congested. Thus, in Resolution Type Models, to prevent themselves from

the later congestion (higher waiting time) that the unsatisfied customers create, the

customer decides to join with lower rates. Similarly, the social planner accepts the

customers in the Resolution Type Systems with lower rates compared to Benchmark

Type Models.

For the profit maximizer’s problem, we divide our conclusions in two parts. The

first part is labeled as the Short Term Comparison and compares the optimal model

parameters of this problem when the quality level is fixed (profit maximizer has no

enough time or budget to change the quality of the service) and only the decision is

the entrance price. The second part is labeled as the Long Term Comparison where

the service quality level is also decision for the profit maximizer.

In the short term comparisons, we conclude that the Benchmark Type Models can be
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preferable compared to Resolution Type Models; i.e. if the additional unit waiting

time that the returning customer creates is higher than the ratio between the unit

reward and the waiting cost. Thus in the short term, losing some of the customers

(because in Benchmark Type Models, unsatisfied customers leave the system) can be

preferable for the profit maximizer. This result resembles the one given in Chen and

Frank [11] who conclude that based on the model parameters, when the system load

is high, the monopolistic price setting in which not all of but some of the customers

join the system is more profitable.

In the long term, when the service quality level is a decision, we show that Resolution

Type Models are always the winner. So, in the long term, by choosing not only the

entrance price but also the quality level, the profit maximizer optimizes his profit by

offering resolutions to unsatisfied customers in order to not to lose them. The possible

resolution alternatives in which the unsatisfied customers are not lost for the profit

maximizer are: Customers can return to the same server and they are escalated to

the higher levels of servers in the same system. When the profit maximizer offers

the former one to resolve the service failure problem of the unsatisfied customer, we

conclude that it is optimal for the profit maximizer to not to retake the entrance price

from the returning customers. In the latter one, when the customers are escalated to

the higher levels of servers in the same system, we observe that the system (escalation

models) needs to be properly designed; i.e. it is optimal for the profit maximizer to

decide on the additional parameters (service rate of the first server, µ1 or the quality

levels of the servers q1 and q2.). Comparison between these two resolution alternatives

of designing the system with a rapid but a unique server, Single Stage Models With

Double Rate, or with two sequential servers, Escalation Models, shows that the former

design is favorable although it cannot always be possible. This result corresponding

to the long term comparison also resembles the one given in Chen and Frank [11]. By

comparing the market capturing and monopolistic pricing setting in the long term,

when additional to entrance price the profit maximizer decides on the service rate,

Chen and Frank [11] shows that the market capturing pricing setting in which every
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customer joins the system is optimal.

Changing the service quality level is costly and time consuming and the profit max-

imizer may not be able to do this due to the budget and time constraints. Thus

in the end we change the definition of the profit maximizer’s problem to see what

else can be done under this scenario; i.e. the profit maximizer has time and budget

constraints. In this part (Chapter 5), for all of the models that we analyze earlier,

we change our long term problem of deciding on the service quality level into that of

deciding on both of the service quality level and the service rate. Comparing the long

term problem defined in the end (decision parameters are the service quality level and

the service rate) with the one previously defined (only the decision parameter is the

service quality level), we first conclude that the service rate and the service quality

level are substitutes of each other. Thus, if the profit maximizer has some constraints

regarding time or budget, he can change his service rate rather than the service qual-

ity level. However, for the proper conditions (no time or budget constraints), it is

optimal for him to decide on both of the model parameters, service rate and the

service quality level.
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Appendix A

PROOFS

A.1 Proofs Of Chapter-II

Lemma 2.1: U(i) is decreasing in i.

Proof:

∂U(i)

∂i
= −C

µ
< 0

∂2U(i)

∂i2
= 0

Corollary 2.1: n∗ind is increasing in R, µ, q decreasing in C, and is independent from

λ.

Proof:

∂n∗ind
∂R

=
µq

C
> 0,

∂2n∗ind
∂R2

= 0

∂n∗ind
∂q

=
µR

C
> 0,

∂2n∗ind
∂q2

= 0

∂n∗ind
∂µ

=
Rq

C
> 0,

∂2n∗ind
∂µ2

= 0

∂n∗ind
∂C

= −µRq
C2

< 0,
∂2n∗ind
∂C2

=
2µRq

C3
> 0

∂n∗ind
∂λ

= 0,
∂2n∗ind
∂λ2

= 0
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Lemma 2.2: SO(n) is discretely unimodular in n.

Proof:

For detailed proof one can see Naor [30].

Corollary 2.2: n∗sys is increasing in R, µ, q decreasing in C, and λ.

Proof:

For detailed proof one can see Naor [30].

A.2 Proofs Of Chapter-III

Lemma 3.1: U1(α) is concave in α.

Proof:

∂U1(α)

∂α
= − Cλ

(µ− λα)2

∂2U1(α)

∂α2
= − 2Cλ2

(µ− λα)3
< 0

Corollary 3.1: The equilibrium joining probability of the customers for the Benchmark

Model is:

αeq1 =


0, Rq ≤ C

µ
µ− C

Rq

λ
, C

µ
< Rq < C

µ−λ

1, Rq ≥ C
µ−λ

Proof:

Assume Rq− C
µ
< 0, and customers decide to join with a joining probability α. Then,

U1(α) = Rq − CE[W ]⇒ U1(α) = Rq − C

µ− λα
< 0,
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since C
µ
< C

µ−λα . This contradicts with the utility maximization of customers, because

they have negative utility, while not joining has non-negative. Hence not joining is

the dominant equilibrium strategy.

Now, assume Rq − C
µ−λ ≥ 0, and customers decide to join with probability α, where

0 ≤ α ≤ 1. Then,

U1(α) = Rq − CE[W ]⇒ U1(α) = Rq − C

µ− λα
> 0,

since C
µ−λ >

C
µ−λα . However this can not be an equilibrium strategy, since the ones

with probability 1 − α, who decide not to join have a zero utility, while others have

positive utility. Hence joining is the dominant equilibrium strategy.

For the region where C
µ
< Rq < C

µ−λ , utility value of a tagged customer is positive

for the low joining probabilities, and it decreases with an increase in α. So, there is

a joining probability value in which, utility of the tagged customer turns to negative.

This equilibrium joining probability is the one which makes customers indifferent be-

tween joining or not. This unique value is found as:

U1(α) = 0

⇒ 0 = Rq − C

µ− λα

⇒ C = (Rq)(µ− λα)

⇒ (µ− λα) =
C

Rq

⇒ α =
µ− C

Rq

λ

Lemma 3.2: S1(α) is concave in α.

Proof:
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∂S1(α)

∂α
= λRq − Cλµ

(µ− λα)2

∂2S1(α)

∂α2
= − 2Cλ2µ

(µ− λα)3
< 0

Corollary 3.2: The socially optimal joining probability of the Benchmark Model is:

α∗1 =


µ−

√
Cµ
Rq

λ
, µ− λ <

√
Cµ
Rq

1, o.w.

Proof:

Similar proof follows as given in corollary 3.1.

Lemma 3.3: Π1(p1,λ, q) is concave in q.

Proof:

∂Π1(p1,λ, q)

∂q
= λR− 2aq

∂2Π1(p1,λ, q)

∂q2
= −2a < 0

Corollary 3.3: q1,λ is nondecreasing in λ and R and non increasing in a.

Proof:
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∂q1,λ

∂ λ
=
R

2a

∂2q1,λ

∂λ2
= 0

∂q1,λ

∂R
=

λ

2a

∂2q1,λ

∂R2
= 0

∂q1,λ

∂a
= −λR

2a2

∂2q1,λ

∂a2
=
λR

a3

Lemma 3.4: Π1(p, q) is concave in p.

Proof:

∂Π1(p, q)

∂p
= µ− CRq

(Rq − p)2

∂2Π1(p, q)

∂p2
= − 2CRq

(Rq − p)3
< 0

Lemma 3.5: Π1(p1,m, q) is convex increasing in q.

Proof:

∂Π1(p1,m, q)

∂q
= µ−

√
CRµ

q
− 2aq

The first order condition shows that:

• for q = 0, ∂Π1(p1,m,q)

∂q
= −Infinity.
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• for q = 1, ∂Π1(p1,m,q)

∂q
> 0 if µ >

√
CR
µ

+ 2a

Proposition 3.1: If µ− λ >
√

Cµ
R

, then market capturing price strategy is optimal.

Proof:

Assume for the market capturing price case λR ≥ 2a, so q1,λ = 1. For the first or-

der pricing case, q1,m = 1. We want to prove that Π1(p1,λ, q1,λ) ≥ Π1(p1,m, q1,m) if

µ− λ >
√

Cµ
R

. That is:

Π1(p1,λ, 1) ≥ Π(p1,m, 1) (A.1a)

λp1,λ − aq2 ≥ λαeq1 p1,m − aq2 (A.1b)

λ(R− C

µ− λ
)− a ≥ (µ−

√
Cµ

R
)(R−

√
CR

µ
)− a (A.1c)

λ(R− C√
Cµ
R

) ≥ λ(R−

√
CR

µ
) (A.1d)

(R−

√
CR

µ
) ≥ (R−

√
CR

µ
) (A.1e)

In obtaining the inequality (A.1d), we use the given condition as follows: We put

the maximum value of µ − λ in left hand side of the inequality (A1.c), and for the

expression (µ −
√

Cµ
R

) given in the right hand side of (B.1c) we plug its maximum

value which is λ. Since the left hand side of the equation is still greater than or

equal to the right side (although the minimum value is used in left hand side and the

maximum value is used in right hand side), we conclude that if the given condition

is satisfied then the profit maximizer chooses market capturing price case, i.e. it is

more profitable.

Now assume λR < 2a, so q1,λ = λR
2a

. To prove that the market capturing price case

is better for the same condition, we use similar strategy, with using this q1,λ in the

comparison.
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Π1(p1,λ, q1,λ) ≥ Π(p1,m, 1) (A.2a)

λp1,λ − aq2 ≥ λαeq1 p1,m − aq2 (A.2b)

λ(R
λR

2a
− C

µ− λ
)− aλ

2R2

4a2
≥ (µ−

√
Cµ

R
)(R−

√
CR

µ
)− a (A.2c)

−λ C√
Cµ
R

+
λ2R2

4a2
≥ λ(R−

√
CR

µ
)− a (A.2d)

−λ(R +

√
CR

µ
−

√
CR

µ
) ≥ −a− λ2R2

4a2
(A.2e)

−λR ≥ −(
λR

2
+
λR

2
) (A.2f)

In the above equations (A2.), we use maximum value of λ and minimum value of a

(since it has negative sign), in the right side of the inequality. Under these changes

since the inequality is still satisfied, we again conclude that the market capturing

price is optimal for the profit maximizer if µ− λ >
√

Cµ
R

.

Proposition 3.2: If λ ≥ µ, then monopolistic price strategy is optimal.

Proof:

If λ ≥ µ, assume the profit maximizer sets market capturing price, and all customers

decide to join. The equilibrium joining probability is 1 in this case. Thus the expected

waiting time is:

E{W (1)} =
1

µ− λ
< 0

Since expected waiting time can not take negative values, this equilibrium joining

probability can not be the solution of this problem.

Proposition 3.3: The total expected waiting time of a customer, in the two Reso-
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lution Models are the same.

Proof:

Comparing the total expected waiting time expressions given in (3.9) and (3.10), the

result follows.

Lemma 3.6: U2(α) is concave in α.

Proof:

∂U2(α)

∂α
= − Cλ

(µq − λα)2

∂2U1(α)

∂α2
= − 2Cλ2

(µq − λα)3
< 0

Corollary 3.4: The equilibrium joining probability of the customers for the Model With

Resolution is:

αeq2 =


0, Rq ≤ C

µ

µq−C
R

λ
, C

µq
< R < C

µq−λ

1, R ≥ C
µq−λ

Proof:

The similar proof follows as given in Corollary 3.1.

Lemma 3.7: S2(α) is concave in α.

Proof:

∂S2(α)

∂α
= λR− Cλµq

(µq − λα)2
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∂2S2(α)

∂α2
= − 2Cλ2µ

(µq − λα)3
< 0

Corollary 3.5: The socially optimal joining probability of the Model With Resolution

is:

α∗2 =


µq−
√

Cµq
R

λ
, µq − λ <

√
Cµq
R

1, o.w.

Proof:

Similar proof follows as given in Corollary 3.2.

Lemma 3.8: Π2(p2,λ, q) is concave in q.

Proof:

∂Π2(p2,λ, q)

∂q
=

Cλµ

(µq − λ)2
− 2aq

∂2Π2(p2,λ, q)

∂q2
= − 2Cλµ2

(µq − λ)3
− 2a < 0

Lemma 3.9: Π2(p, q) is concave in p.

Proof:

∂Π2(p, q)

∂p
= µq − CR

(R− p)2

∂2Π2(p, q)

∂p2
= − 2CRq

(R− p)3
< 0
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Corollary 3.6: The profit maximizer’s optimal monopolistic price as a function of the

quality level is given by:

p2,m(q) = R−

√
CR

µq

Proof:

Since the concavity follows as given in Lemma 3.9, the optimal monopolistic price as

a function of q is found by equating the first derivative function to 0 as:

∂Π2(p, q)

∂p
= 0⇒ µq − CR

(R− p)2
⇒ p2,m(q) = R−

√
CR

µq

Lemma 3.10: Π2(p2,m, q) is convex in q.

Proof:

Proof is same as given in Lemma 3.5.

Lemma 3.11: U3(α) is concave in α.

Proof:

∂U3(α)

∂α
= − C(µ− µq + λ)

(µ− α(µ− µq + λ))2

∂2U1(α)

∂α2
= − 2C(µ− µq + λ)2

(µ− α(µ− µq + λ))3
< 0

Corollary 3.7: The equilibrium joining probability of the customers for the Model With
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Resolution is:

αeq3 =


0, Rq ≤ C

µ
µ− C

Rq

µ−µq+λ ,
C
µ
< Rq < C

µq−λ

1, Rq ≥ C
µq−λ

Proof:

Proof follows as given in Corollary 3.1.

Lemma 3.12: S3(α) is concave in α.

Proof:

∂S3(α)

∂α
= λR− Cλµ

(µ− α(µ− µq + λ))2

∂2S3(α)

∂α2
= − 2Cλµ(µ− µq + λ)

(µ− α(µ− µq + λ))3
< 0

Corollary 3.8: The socially optimal joining probability of the Model With Returns is:

α∗3 =


µ−

√
Cµ
Rq

µ−µq+λ , µq − λ <
√

Cµ
Rq

1, o.w.

Proof:

Similar proof follows as given in other models.

Lemma 3.13: Π3(p3,λ, q) is concave in q.

Proof:
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∂Π3(p, q)

∂q
=
Cλ(2µq − λ)

(µq − λ)2q2

∂2Π2(p, q)

∂p2
= −Cλ(2µq − λ)(4µ2q3 − 6µq2λ+ 2λ2q)

(µq − λ)4q4
− 2a < 0

Lemma 3.14: Π3(p, q) is concave in p.

Proof:

∂Π3(p, q)

∂p
=
λ(C2(−1 + q) + λµ(Rq − p)2 + C(λRq + µ(1− q)(Rq − 2p)))

(λ(Rq − p) + C(−1 + q)2

∂2Π3(p, q)

∂p2
= −2Cλ(λ+ µ− µq)(λRq − C − Cq)

(λ(Rq − p)− C(1− q))3
< 0

Proposition 3.4: For the given model parameters R,C, λ, µ, and q , the equilibrium

joining probabilities of the single server model are compared as:

 αeq3 ≤ αeq2 ≤ αeq1 , λ ≤ µq

αeq2 ≤ αeq3 ≤ αeq1 , o.w.

Proof:

To prove this result we first compare the equilibrium joining probabilities of the

Benchmark Model and the Model With Resolution. We use the obtained probabili-

ties given in Corollaries 3.1 and 3.4.
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

0, 0 Rq ≤ C
µ

µ− C
Rq

λ
,
µq−C

R

λ
C
µ
< Rq < C

µ−λ

1,
µq−C

R

λ
Rq ≥ C

µ−λ and Rq ≤ C
µq−λ

1, 1, o.w.

Comparing the equilibrium joining probabilities in the second region, since Rµq−C
Rλq

≥
Rµq−C
Rλ

, the comparison follows.

We now compare the equilibrium probabilities of the Benchmark Model and the Model

With Returns by using the probabilities given in corollaries 3.1 and 3.7.



0, 0 Rq ≤ C
µ

µ− C
Rq

λ
,
µ− C

Rq

µ−µq+λ
C
µ
< Rq < C

µ−λ

1,
µ− C

Rq

µ−µq+λ Rq ≥ C
µ−λ and Rq ≤ C

µq−λ

1, 1, o.w.

In the second region, since µ(1−q) ≥ 0, the comparison between these models follows.

The equilibrium joining probability comparison between the Model With Resolution

and Model With Returns depend on the model parameters. To show this, assume

αeq2 ≥ αeq3 , then:

Rµq − C
Rλ

≥ Rµq − C
Rq(µ− µq + λ)

⇒ q(µ− µq + λ) ≥ λ⇒ µq(1− q) ≥ λ(1− q)⇒ µq ≥ λ

So the comparison follows.

Proposition 3.5: For the given model parameters R,C, λ, µ, and q , the socially opti-

mal joining probabilities of the single server model are compared as:

 α∗3 ≤ α∗2 ≤ α∗1, λ ≤ µq

α∗2 ≤ α∗3 ≤ α∗1, o.w.
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Proof:

To compare the socially optimal joining probabilities of the Benchmark Model and

The Model With Resolution, we use the probability expressions given in Corollaries

3.2 and 3.5. Assume αeq2 ≤ αeq1 , then:

µ−

√
Cµ

Rq
≥ µq −

√
Cµq

R
⇒ µ(1− q) ≥

√
Cµ

R

1− q
√
q
⇒ Rq ≥ C

µ

Since if the above condition does not holds, the customer does not decide to join, the

comparison follows.

Using the expressions given in Corollaries 3.2 and 3.8, we compare the socially optimal

joining probabilities of the Benchmark Model and the Model With Returns. Since

µ− µq + λ ≥ λ, the comparison follows.

Proposition 3.6: For the given model parameters R,C, λ, µ, a, and q , the compar-

ison between the price and profit values as functions of the service quality levels of the

the single server models is:

 p3,λ(q) ≤ p2,λ(q) ≤ p1,λ(q),
R
Cµ
≤ 1

(µq−λ)(µ−λ)

p3,λ(q) ≤ p1,λ(q) ≤ p2,λ(q), o.w. Π2,λ(q) ≤ Π1,λ(q),
R
Cµ
≤ 1

(µq−λ)(µ−λ)

Π1,λ(q) ≤ Π2,λ(q), o.w.

Π3,λ(q) ≤ Π2,λ(q)

Proof:

First we compare the market capturing price values as a function of the quality lev-

els for the models. We first compare the market capturing price of the Model With

Returns with the Model With Resolution and the Benchmark Model.
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p1,λ(q) = Rq − C

µ− λ
p3,λ(q) = Rq − C

µq − λ

Since for the same expected reward, the expected waiting cost is smaller in the Bench-

mark Model; i.e. C
µ−λ ≤

C
µq−λ , the comparison follows.

For the Model With Resolution and the Model With Returns, we have:

p2,λ(q) = R− C

µq − λ
p3,λ(q) = Rq − C

µq − λ

Since for the same expected waiting cost, the expected reward is greater in the first

one, the comparison follows.

Now we compare the market capturing price values of the Benchmark Model and

the Model With Resolution, assuming the market capturing price is greater in the

Benchmark Model for the given service quality level. Then:

Rq − C

µ− λ
≥ R− C

µq − λ
⇒ C

µq − λ
− C

µ− λ
≥ R(1− q)⇒ R

Cµ
≤ 1

(µq − λ)(µ− λ)

So the pricing comparison follows.

We now compare the profit values of the Model With Resolution and the Model With

Returns as:

Π2,λ(q) = Rλ− Cλ

µq − λ
− aq2 Π3,λ(q) = Rλ− Cλ

(µq − λ)q
− aq2

Since for the same expected reward the expected waiting cost is smaller in the Model

With Resolution, the comparison follows.

The profit comparison between the Benchmark Model and the Model With Resolu-

tion is same as the pricing comparison, since the profit function structures are the



Appendix A: PROOFS 134

same for these models.

Proposition 3.7: For the given model parameters R,C, λ, µ, and a , the socially opti-

mal joining probabilities of the single server model are compared as:

p1,m(q) ≤ p2,m(q)

Π1,m(q) = Π2,m(q)

Proof:

First we compare the monopolistic price values of the two models for the given service

quality levels, assuming the price is smaller in the Benchmark Model.

Rq −

√
CRq

µ
≤ R−

√
CR

µq
⇒

√
CR

µ

(
1
√
q
−√q

)
≤ R(1− q)⇒ C ≤ µq

Since the given condition always holds, monopolistic price comparison holds.

To compare the profit values, we look at the (3.9) and (3.22). Since the profit func-

tions are the same, the monopolistic profits of the models are the same.

Proposition 3.8: For the given model parameters R,C, λ, µ and a , the comparison

between the service quality level, market capturing price and the profit values of the

single server models is:

q3,λ ≤ q2,λ p3,λ ≤ p2,λ Π3,λ ≤ Π2,λ

Proof:

To compare the optimal quality levels of the Model With Returns and Model With
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Resolution, in the market capturing price strategy, we compare the first derivative

functions. Since we showed the concavity of the profit functions in Lemmas 3.8 and

3.13. If the first derivative function of the Model With Returns takes smaller value

than the Model With Resolution for all service quality levels, 0 ≤ q ≤ 1, then we

conclude that the optimal quality level of the Model With Returns is smaller than

the Model With Resolution. To show this;

Cλ(2µq − λ)

(µq − λ)2(q)2
− 2aq ≤ Cλµ

(µq − λ)2
− 2aq ⇒ (2− q) ≤ λ

µq

The condition holds, so we conclude that the optimal quality level of the Model With

Returns is smaller than the Model With Resolution.

In short term comparison we see that the market capturing price and the profit value

of the third model, is smaller than the second model for the given quality levels. Since

in this result we showed that the optimal quality level is smaller in the second model,

optimal price and profit comparison follows.

Proposition 3.9: If Rλ ≥ 2a, then:

q2,λ ≤ q1,λ p2,λ ≤ p1,λ Π1,λ ≤ Π2,λ

Proof:

In the Benchmark Model, we give that the optimal quality level in the market cap-

turing price strategy is Rλ
2a

. However, since the maximum value of a quality level is

1, we shift it to 1 when Rλ exceeds 2a. For the Model With Resolution, we showed

in the lemma 3.8 that the profit function is concave with respect to the quality level

under the market capturing price strategy. So there is an interior quality level, which

maximizes the profit value. So we conclude that the optimal profit is higher in the

Model With Resolution. Since the market capturing price expression of the Model

With Resolution; i.e. R− C
µq−λ , is increasing in the service quality level, we conclude
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that it is lower for the lower quality levels.

Proposition 3.10: For the given model parameters R,C, λ, µ and a , the compari-

son between the service quality level, monopolistic price and the profit values of the

single server models is:

q1,m = q2,m p1,m ≤ p2,m Π1,m = Π2,m

Proof:

Since the profit functions under the monopolistic price strategy of the first and the

second model are the same, (3.9) and (3.22), the optimal quality levels and the profit

values are the same. For the same quality level, the optimal pricing comparison is

same as the short term comparison which is given in the Proposition 3.5. So the result

follows.

A.3 Proofs Of Chapter-IV

Lemma 4.1: U4,n(α) is concave in α.

Proof:

∂U4,n(α)

∂α
= − Cλ

(µ− λα)2
− Cλ(1− q)2

(µ− λα(1− q))2

∂2U4,n(α)

∂α2
= − 2Cλ2

(µ− λα)3
− 2Cλ2(1− q)3

(µ− λα(1− q))3
< 0

Lemma 4.2: U4,g(α) is concave in α.

Proof:

∂U4,g(α)

∂α
= − Cλ

(µ− λα)2
− Cλ(1− q)2

(µ− λα(1− q))2
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∂2U4,g(α)

∂α2
= − 2Cλ2

(µ− λα)3
− 2Cλ2(1− q)3

(µ− λα(1− q))3
< 0

Proposition 4.1: αeq4,n(q) ≤ αeq4,g(q).

Proof:

Since the expected waiting cost expressions of the two escalation models are the

same, and the expected reward is higher in the Perfect Escalation Model; i.e. R ≥

Rq + Rq(1− q), customers are more desirous to join the system in the Perfect Esca-

lation Model. So the result follows.

Lemma 4.3: S4,n(α) is concave in α.

Proof:

∂S4,n(α)

∂α
= Rλq(2− q)− Cλµ

(µ− λα)2
− Cλµ(1− q)

(µ− λα(1− q))2

∂2S4,n(α)

∂α2
= − 2Cλ2µ

(µ− λα)3
− 2Cλ2µ(1− q)2

(µ− λα(1− q))3
< 0

Lemma 4.4: S4,g(α) is concave in α.

Proof:

∂S4,g(α)

∂α
= Rλ− Cλµ

(µ− λα)2
− Cλµ(1− q)

(µ− λα(1− q))2

∂2S4,g(α)

∂α2
= − 2Cλ2µ

(µ− λα)3
− 2Cλ2µ(1− q)2

(µ− λα(1− q))3
< 0

Proposition 4.2: α∗4,n(q) ≤ α∗4,g(q).

Proof:

Since the concavity given in Lemmas 4.3 and 4.4 follows, and the first derivative

function of the social utility function of the perfect escalation model is always greater

than the first derivative function of the social utility function of the simple escalation
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model for the same α values, the result follows.

Lemma 4.5: Π4,n(q) is concave in q.

Proof:

∂Π4,n(q)

∂q
= 2Rλ(1− q) +

Cλµ

(µ− λ+ λq)2
− 4aq

∂2Π4,n(q)

∂q2
= −2Rλ− 2Cλ2µ

(µ− λ+ λq)3
− 4a < 0

Lemma 4.6: Π4,g(q) is concave in q.

Proof:

∂Π4,g(q)

∂q
=

Cλµ

(µ− λ+ λq)2
− 2aq

∂2Π4,g(q)

∂q2
= − 2Cλ2µ

(µ− λ+ λq)3
− 2a < 0

Proposition 4.3: In the short term for the given model parameters, R, C, a, q, λ and

µ,

-Pricing Comparison: p4,g(q) ≥ p4,n(q).

-Profit Comparison:

Π4,g(q),Π4,n(q) =

 Π4,g(q) ≥ Π4,n(q) if Rλ
a
≥ 1+q

1−q

Πλ,g(q) < Πλ,n(q) o.w.

Proof:

Using the functions (4.11) and (4.13), we compare the market capturing prices of the

two escalation models. Assume p4,g(q) ≥ p4,n(q), then;

R > Rq +Rq(1− q)⇒ R > Rq(2− q)⇒ 1 > q(2− q)
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since the above comparison condition always holds, the result follows.

If the expressions of the cost of the quality were the same in these two escalation

models, then the pricing and profit comparison would also be the same for the given

quality level. However since the cost of the quality are not the same in these models,

the profit comparison depends on the model parameters. Using the profit functions

given in (4.11) and (4.14), we obtain a comparison for the profit expressions which

depend on the model parameters. If we assume that the profit value of the profit

maximizer in the Perfect Escalation Model is at least greater than his profit in the

Simple Escalation Model, then;

Rλ−aq2−a > Rλq+Rλq(1−q)−2aq2 ⇒ Rλ(1−q)2 > a(1−q)(1+q)⇒ Rλ

a
>

1 + q

1− q
.

From the above result, we obtain a comparison for the profit values as given in this

Proposition.

Proposition 4.4: In the long term for the given model parameters, R, C, a, λ and

µ,

-Quality Level Comparison: q∗4,g ≤ q∗4,n.

-Pricing Comparison:

p∗4,g, p
∗
4,n =

 p∗4,g ≥ p∗4,n if R
Cµ
≥ q∗4,n−q∗4,g

(1−q∗4,n)2(µ−λ+λq∗4,g)(µ−λ+λq∗4,n)

p∗4,g < p∗4,n o.w.

Proof:

Since the profit functions are concave as given in Lemmas 4.5 and 4.6, to compare

the optimal service quality level of the escalation models, we use the first derivative

functions. If the first derivative function of the Perfect Escalation Model given in

Lemma 4.5 is smaller than the first derivative function of the Simple Escalation Model

for all quality levels, we conclude that the optimal quality level of the perfect escalation

model is smaller compared to the simple escalation model. Assuming this holds, we
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have the following comparison;

2aq > 4aq − 2Rλ(1− q)⇒ aq < Rλ(1− q)

The above comparison holds, since otherwise unit cost of quality exceeds the unit

revenue of the firm from the second server, which ends causes negative profit.

To compare the optimal price values of the escalation models, we plug the optimal

quality values in the price expressions given in (4.11) and (4.13). Assume p4,g ≥ p4,n,

then:

R− C

µ− λ
− C(1− q4,g)

µ− λ+ λq4,g

≥ Rq4,n +Rq4,n(1− q4,n)− C

µ− λ
− C(1− q4,n)

µ− λ+ λq4,n

R−Rq4,n −Rq4,n(1− q4,n) ≥ C(1− q4,g)

µ− λ+ λq4,g

− C(1− q4,n)

µ− λ+ λq4,n

R(1− q4,n)2 ≥ Cµ(q4,n − q4,g)

(µ− λ+ λq4,n)(µ− λ+ λq4,g)

R

Cµ
≥ q4,n − q4,g

(1− q4,n)2(µ− λ+ λq4,n)(µ− λ+ λq4,g)

The above equations show that the optimal price comparison between the escalation

models depend on the model parameters.

Lemma 4.7: U1,ν(α) is concave in α.

Proof:

∂U1,ν(α)

∂α
= − 8Cαλ2µ

(4µ2 − λ2α2)2

∂2U1,ν(α)

∂α2
= −8µ(3λ4α2 + 4λ2µ2)

(4µ2 − λ2α2)3
< 0

Lemma 4.8: U2,ν(α) is concave in α.

Proof:
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∂U2,ν(α)

∂α
= − 8Cαλ2µ

(4µ2q2 − λ2α2)2

∂2U2,ν(α)

∂α2
= −8µ(3λ4α2 + 4λ2µ2q2)

(4µ2q2 − λ2α2)3
< 0

Proposition 4.5: αeq1,p(q) ≥ αeq2,p(q).

Proof:

Since the individual utility functions are concave as given in Lemmas 4.7 and 4.8, we

can compare the first derivative functions of the two models. Since the first derivative

equations are negative and the 0 ≤ q ≤ 1, the first derivative function of the Two-

Parallel-Stage Model With Resolution is smaller compared to the Two-Parallel-Stage

Benchmark Model for all values of α, where 0 ≤ α ≤ 1. So, the result follows.

Lemma 4.9: S1,ν(α) is concave in α.

Proof:

∂S1,ν(α)

∂α
= Rλq − 8λ3α2µ

(4µ2 − λ2α2)2
− 4λµ

(4µ2 − λ2α2)

∂2S1,ν(α)

∂α2
= −8µ(λ5α3 + 12αλ3µ2)

(4µ2 − λ2α2)3
< 0

Lemma 4.10: S2,ν(α) is concave in α.

Proof:

∂S2,ν(α)

∂α
= Rλ− 8λ3α2µ

(4µ2q2 − λ2α2)2
− 4λµ

(4µ2q2 − λ2α2)

∂2S2,ν(α)

∂α2
= −8µ(λ5α3 + 12αλ3µ2q2)

(4µ2q2 − λ2α2)3
< 0

Proposition 4.6: α∗1,ν(q) ≥ α∗2,p(q).
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Proof:

Using the concavity conditions given in Lemmas 4.9 and 4.10, and comparing the first

derivative functions for all values of α, the result follows.

Lemma 4.11: Π1,ν(q) is concave in q.

Proof:

∂Π1,ν(q)

∂q
= Rλ− 4aq

∂2Π1,ν(q)

∂q2
= −4a < 0

Corollary 4.2: q∗1,ν is:

q∗1,ν =
λR

4a
(A.3)

Proof:

Using the concavity given in Lemma 4.11, and equating the first derivative function

to 0 with respect to the quality level the result follows.

Lemma 4.12: Π2,p(ν) is concave in q.

Proof:

∂Π2,ν(q)

∂q
=

32Cλµ3q

(4µ2q2 − λ2)2
− 4aq

∂2Π2,ν(q)

∂q2
= −4 [a(4µ2q2 − λ2)3 + 8Cµ3(λ2 + 12µ2q2)]

(4µ2q2 − λ2)3
< 0

Corollary 4.3: q∗2,ν is:
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q∗2,ν =

√
λ2 +

√
8Cµ3λ
a

2µ
(A.4)

Proof:

Using the concavity given in Lemma 4.12, the optimal quality level is found by equat-

ing the first derivative function to 0 with respect to the quality level; i.e.

∂Π2,ν(q)

∂q
= 0⇒ q2,ν =

√
λ2 +

√
8Cµ3λ
a

2µ

Proposition 4.7: In the short term for the given model parameters, R, C, a, q, λ and

µ, we have the following comparison for the price and profit values.

-Pricing Comparison: p1,ν(q) ≥ p2,ν(q) if 16Cµ3(1+q)
(4µ2q2−λ2)(4µ2−λ2)

≥ R

p1,ν(q) < p2,ν(q) o.w.

-Profit Comparison: Π1,ν(q) ≥ Π2,ν(q) if 16Cµ3(1+q)
(4µ2q2−λ2)(4µ2−λ2)

≥ R

Π1,ν(q) < Π2,ν(q) o.w.

Proof:

For the given service quality levels, in order to compare the market capturing prices

of the two models, we compare the functions expressed in (4.28) and (4.33). Assume

the market capturing price as a function of the service quality level of the benchmark

model is at least equal to or greater than the price of the resolution model. Then;

Rq − 4Cµ

4µ2 − λ2
≥ R− 4Cµ

4µ2q2 − λ2
⇒
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4Cµ

4µ2q2 − λ2
− 4Cµ

4µ2 − λ2
≥ R(1− q)⇒

4Cµ(4µ2 − 4µ2q2)

(4µ2q2 − λ2)(4µ2 − λ2)
≥ R(1− q)⇒

16Cµ3(1 + q)

(4µ2q2 − λ2)(4µ2 − λ2)
≥ R

To compare the profit values we use the expressions given in (4.29) and (4.34). Since

in these functions, the arrival rate and the cost of the quality are the same, the profit

comparison depends only on the pricing comparison. So, the result follows.

Proposition 4.8: In the long term for the given model parameters, R, C, a, λ and

µ, if Rλ ≥ 4a

-Quality Level Comparison: q∗1,ν = 1 ≥ q∗2,ν

-Pricing Comparison: p∗1,ν ≥ p∗2,ν

-Profit Comparison: Π∗1,ν ≤ Π∗2,ν

Proof:

If Rλ ≥ 4a, the optimal service quality level expression given in Corollary 4.2 takes

higher values than 1, in which case we set it to 1. This means, the profit maximizer

provides perfect quality service in the Benchmark Model. On the other hand, since

the profit function of the Resolution Model is concave with respect to the quality level

as given in Lemma 4.12, it can be more profitable for the profit maximizer to set the

interior quality level. So, the service quality level comparison follows.

The price functions given in (4.28) and (4.33) are increasing in the quality level. They

receive the same value in the perfect quality level. This shows that the optimal price

of the Resolution Model is lower compared to the Benchmark Model, since the opti-

mal quality level is lower.

For the profit comparison, the profit functions stated in (4.29) and (4.34) receive

same value for the quality level 1. Since the profit function of the Resolution Model

is concave as given in Lemma 4.12, we conclude that the profit maximizer maximizes

his profit by setting the lower service quality level. This shows the profit comparison.
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Proposition 4.9: p1,ν(q) ≤ p1,d(q) and Π1,ν(q) ≤ Π1,d(q) for all values of q.

Proof:

To compare the price values between the two-parallel-stage and the single stage bench-

mark values, we use their price expressions:

p1,ν(q) = Rq − 4Cµ

4µ2 − λ2

p1,d(q) = Rq − C

2µ− λ

If p1,ν(q) ≤ p1,d(q), then;

4Cµ

4µ2 − λ2
≥ C

2µ− λ
⇒ 2µ ≥ λ

Since the above condition holds, the pricing comparison follows.

Since the price is higher, and the cost of the quality is lower in the single server model,

the profit comparison also follows.

Proposition 4.10: q∗1,ν ≤ q∗1,d, p
∗
1,ν ≤ p∗1,d and Π∗1,ν ≤ Π∗1,d.

Proof:

The optimal service quality levels of the single server and two-parallel-server bench-

mark models are:

q∗1,ν =
Rλ

4a

q∗1,d =
Rλ

2a

So the optimal quality level of the two-parallel-server model is lower.

For the optimal price comparison we have:
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p∗1,ν = Rq1,p −
4Cµ

4µ2 − λ2

q∗1,d = Rq1,d −
C

2µ− λ

Since the first term is higher and the second term is lower in the Two-Parallel-Server

Benchmark Model compared to the single server, the comparison holds.

To compare the optimal profits, we use the following profit functions:

Π∗1,ν = λ

[
R
Rλ

4a
− 4Cµ

4µ2 − λ2

]
− 2a

λ2R2

16a2
=
λ2R2

8a
− 4Cλµ

4µ2 − λ2

Π∗1,d = λ

[
R
Rλ

2a
− C

2µ− λ

]
− 2a

λ2R2

4a2
=
λ2R2

4a
− Cλµ

2µ− λ

Since the first term is higher, and the second term is lower in the Single-Stage Model,

the profit comparison follows.

Proposition 4.11: αeq1,ν(q) ≤ αeq1,d(q) for all values of q.

Proof:

Using the equilibrium joining probabilities of the 2-parallel-stage benchmark model

and the benchmark model with double rate, we have the following comparison:

0, 0 Rq ≤ C
2µ

0,
2µ− C

Rq

λ
C
2µ
< Rq ≤ C

µ√
4µ2− 4Cµ

Rq

λ
,

2µ− C
Rq

λ
C
µ
< Rq ≤ C

2µ−λ√
4µ2− 4Cµ

Rq

λ
, 1 C

2µ−λ < Rq ≤ 4Cµ
4µ2−λ2

1, 1 4Cµ
4µ2−λ2 < Rq

(A.5)
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and in the third region , to compare the equilibrium joining probabilities, we take the

squares of the expressions as:

(
αeq1,ν(q)

)2
=

4µ2 − 4Cµ
Rq

λ2(
αeq1,d(q)

)2
=

4µ2 − 4Cµ
Rq

+ C2

R2q2

λ2

since the second one is greater, the result follows.

Proposition 4.12: α∗1,ν(q) ≤ α∗1,d(q) for all values of q.

Proof:

To compare the socially optimal joining probabilities, we use the first derivative ex-

pressions of the social functions as:

∂S1,ν(α)

α
= Rλq − 4λCµ(4µ2 + λ2α2)

(2µ+ λα)2(2µ− λα)2

∂S1,d(α)

α
= Rλq − 2λCµ

(2µ− λα)2

If α∗1,ν(q) ≤ α∗1,d(q), then:

4Cµ(4µ2 + λ2α2)

(2µ+ λα)2
≥ 2Cλµ⇒

8µ2 + 2λ2α2 ≥ 4µ2 + 4λµα + λ2α2 ⇒

4µ2 + λ2α2 − 4λµα ≥ 0⇒

(2µ− λα)2 ≥ 0

Since the above condition always holds, the result follows.

Proposition 4.13: p2,p(ν) ≤ p2,d(q), and p4,g(q) ≤ p2,d(q).
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Π2,ν(q) ≤ Π2,d(q), and Π4,g(q) ≤ Π2,d(q).

for all values of q.

Proof:

We first write the price expressions of these three resolution models as a function of

q as:

p2,ν(q) = R− 4Cµ

4µ2q2 − λ2

p2,d(q) = R− C

2µq − λ

Assuming that p2,ν(q) ≤ p2,d(q), then:

4Cµ

4µ2q2 − λ2
≥ C

2µq − λ
⇒

4Cµ

4µ2q2 − λ2
≥ C

2µq − λ
⇒

2µq + λ ≤ 4µ

In the above condition, the left hand side reaches its maximum value for q = 1. Since

the left hand side is at most equal to the right hand side for this maximum value,

then we conclude that the condition already holds for the other values of 0 ≤ q < 1.

So, the result follows.

Now, we write the market capturing price functions of the Perfect Escalation Model

and The Model with Resolution With Double Server Rate as a function of the quality

level.

p2,d(q) = R− C

2µq − λ

p4,g(q) = R− C

µ− λ
− C(1− q)
µ− λ(1− q)
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Since for the same expected reward, the expected waiting cost of the Perfect Escala-

tion Model in only the first server is greater than, the total waiting cost of the Single

Stage Double Server Rate Model With Resolution, the comparison holds.

Proposition 4.14: αeq4,g(q) ≤ αeq2,d(q) and αeq2,ν(q) ≤ αeq2,d(q) for all values of q.

Proof:

The expected reward expressions of the three resolution models are the same so we

compare the expected waiting costs. The total expected waiting cost of the perfect

escalation model is :

E[W4,g] =
C

µ− λ
+

C(1− q)
µ− λ(1− q)

For the Single Stage Double Server Rate Model With Resolution it is:

E[W2,d] =
C

2µq − λ

Since the waiting cost in the first server of the perfect escalation model is higher than

the cost in the single stage model, we conclude that the customers are more willing

to join (the equilibrium probability) is higher in the Single Stage Model. This proves

the first part.

Now let us compare the waiting costs of the Two-Parallel Stage Model and the Single

Stage Model.

E[W2,ν ] =
4Cµ

4µ2q2 − λ2

E[W2,d] =
C

2µq − λ
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Assume E[W2,ν ] ≥ E[W2,d], then

4Cµ

4µ2q2 − λ2
≥ C

2µq − λ
⇒ 4µ ≥ 2µq + λ

As given in Proposition 4.12, the condition always holds. So, since the expected

waiting time of the Two-Parallel-Stage Model is higher than, the equilibrium joining

probabilities are lower.

Proposition 4.15: α∗4,g(q) ≤ α∗2,d(q) and α∗2,ν(q) ≤ α∗2,d(q) for all values of q.

Proof:

The similar result follows based on the reasoning given in Proposition 4.14.

Lemma 4.13: Π4(µ1, q) is jointly concave in µ1 and q.

Proof:

∂Π4(µ1, q)

∂µ1

=
Cλ

(µ1 − λ)2
− Cλ(1− q)

(2µ− µ1 − λ+ λq)2

∂2Π4(µ1, q)

∂µ2
1

= − 2Cλ

(µ1 − λ)3
− 2Cλ(1− q)

(2µ− µ1 − λ+ λq)3
< 0

∂Π4(µ1, q)

∂q
= 2Rλ− 2Rλq − Cλ(−2µ+ µ1)

(2µ− µ1 − λ+ λq)2
− 4aq

∂2Π4(µ1, q)

∂q2
= −2Rλ− 2Cλ2(2µ− µ1)

(2µ− µ1 − λ+ λq)3
− 4a < 0
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∂2Π4(µ1, q)

∂q, ∂µ1

=
Cλ(−2µ+ µ1 + λ(−1 + q))

(λ− 2µ+ µ1 − λq)3

∂2Π4(µ1, q)

∂µ1, ∂q
=
Cλ(−2µ+ µ1 + λ(−1 + q))

(λ− 2µ+ µ1 − λq)3

Since in the above two derivative functions, the cross terms of the Heissian functions

are the same, and the second derivative functions of the model parameters are nega-

tive, the result follows.

Lemma 4.14: Π4(q1, q2) is jointly concave in q1 and q2.

Proof:

∂Π4(q1, q2)

∂q1

= Rλ−Rλq2 +
Cλµ

(µ− λ+ λq1)2
− 2aq1

∂2Π4(q1, q2)

∂q2
1

= − 2Cλ2µ

(µ− λ+ λq1)3
− 2a < 0

∂Π4(q1, q2)

∂q2

= Rλ(1− q1)− 2aq2

∂2Π4(q1, q2)

∂q2
2

= −2a < 0

∂2Π4(q1, q2)

∂q1, ∂q2

= −Rλ < 0

∂2Π4(q1, q2)

∂q2, ∂q1

= −Rλ < 0
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As in Lemma 4.13, the result follows.

Corollary 4.4: The optimal quality level of the second server as a function of the

quality level of the first server is:

q∗2(q1) =
Rλ(1− q1)

2a

Proof:

By equating the function ∂Π4(q1, q2)/∂q2 to 0 in Lemma 4.14, the result follows.

A.4 Proofs Of Chapter-V

Lemma 5.1: Π1(µ, q) is concave in µ.

Proof:

∂Π1(µ, q)

∂µ
=

Cλ

(µ− λ)2
− b

∂2Π1(µ, q)

∂µ2
= − 2Cλ

(µ− λ)3
< 0

Corollary 5.1: Optimal service rate as a function of the model parameters is:

µ∗1(q) = λ+

√
Cλ

b

Proof:

Since the function is concave as given in Lemma 5.1, the optimal service rate is found
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by equating the first derivative function to 0.

∂Π1(µ, q)

∂µ
= 0⇒ Cλ

(µ− λ)2
− b = 0⇒ µ∗1(q) = λ+

√
Cλ

b

So,the result follows.

Lemma 5.2: Π1(µ∗1, q) is concave in q.

Proof:

∂Π1(µ∗1, q)

∂q
= Rλ− 2aq

∂2Π1(µ∗1, q)

∂q2
= −2a < 0

Corollary 5.2: Optimal service quality level is:

q∗1 =

 Rλ
2a
, if (Rλ− aq)q > 2

√
Cλb+ bλ for all 0 < q ≤ 1

0, o.w.

Proof:

Using the concavity given in Lemma 5.2, and setting the first derivative of the profit

function with respect to the service quality level, the result follows.

Proposition 5.1: If positive profit is possible for the Service Rate is a Decision and

the Fixed Service Rate Case, then:

q∗1 = q∗1,µ̃
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Proof:

Using the concavity properties of the profit functions as given in Lemmas 5.1 and 5.2,

and the optimal service quality level expressions which are derived by equating the

first derivative of the profit functions with respect to the service quality level to 0, we

obtain the result.

Lemma 5.3: Π2(µ, q) is concave in µ.

Proof:

∂Π2(µ, q)

∂µ
=

Cλq

(µq − λ)2
− b

∂2Π2(µ, q)

∂µ2
= − 2Cλq2

(µq − λ)3
< 0

Corollary 5.3: Optimal service rate as a function of the model parameters and the

service quality level is:

µ∗2(q) =
λ+

√
Cλq
b

q

Proof:

Based on the concavity given in Lemma 5.3, the optimal service rate as a function of

the service quality level as obtained from the first order conditions as:

∂Π2(µ, q)

∂µ
= 0⇒ Cλq

(µq − λ)2
− b = 0⇒ µ∗2(q) =

λ+
√

Cλq
b

q



Appendix A: PROOFS 155

So,the result follows.

Lemma 5.4: Π2(µ∗2, q) is concave in q.

Proof:

∂Π2(µ∗2, q)

∂q
=

√
Cλb

q3
+
bλ

q2
− a

∂2Π2(µ∗2, q)

∂q2
= −3

2

√
Cλb

q5
− 2bλ

q3
< 0

Lemma 5.5: Π3(µ, q) is concave in µ.

Proof:

∂Π3(µ, q)

∂µ
=

Cλ

(µq − λ)2
− b

∂2Π3(µ, q)

∂µ2
= − 2Cλq

(µq − λ)3
< 0

Corollary 5.4: Optimal service rate as a function of the model parameters and the

service quality level is:

µ∗3(q) =
λ+

√
Cλ
b

q

Proof:

Using the concavity given in Lemma 5.5, and equating the first derivative function to
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0, the result follows, as in Corollary 5.3.

Proposition 5.2:

µ∗2(q) ≥ µ∗2(q) ≥ µ∗1(q)

Proof:

Comparing the optimal service rate expressions as a function of the model parameters

given in Corollaries 5.1, 5.3 and 5.4 the result follows.

Lemma 5.6: Π3(µ∗3, q) is concave in q.

Proof:

∂Π3(µ∗3, q)

∂q
=

√
4Cλb

q4
+
bλ

q2
− 2aq

∂2Π3(µ∗3, q)

∂q2
= −

2
(
bλ+ 2

√
bCλ

)
q3

− 2a < 0

Proposition 5.3: q∗3 ≥ q∗2 and µ∗3 ≥ µ∗2.

Proof:

To prove this result, we start with comparing the optimal quality levels. Since the

profit functions are concave as given in Lemmas 5.4 and 5.6, to compare the optimal

service quality levels, we compare the first order conditions as:



Appendix A: PROOFS 157

∂Π2(µ∗2, q)

∂q
=

√
Cλb

q3
+
bλ

q2
− 2aq

∂Π3(µ∗3, q)

∂q
=

√
4Cλb

q4
+
bλ

q2
− 2aq

For all the values of the service quality level, 0 ≤ q ≤ 1, the second and third expres-

sions of the two first derivative functions given above are the same. Since the first

expression of the derivative function of the Model With Returns is higher than the

first expression of the derivative function of the Model With Resolution, the optimal

quality level expression comparison follows.

For the same service quality level, the service rate of the Model With Returns is

higher than the Model With Resolution. Since the optimal quality level is higher in

the Model With Returns, so the optimal service rate comparison also follows.

Lemma 5.7: Π1−ν(µ, q) is jointly concave in µ and q.

Proof:

∂Π2
1−ν(µ, q)

∂µ2
= −32λC(3λ2µ+ 4µ3)

(4µ2 − λ2)3
< 0

∂2Π1−ν(µ, q)

∂q2
= −4a < 0

∂2Π1−ν(µ, q)

∂q∂µ
= 0
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∂2Π1−ν(µ, q)

∂µ∂q
= 0

Since the eigen-values of the Heissian matrix,
∂Π2

1−ν(µ,q)

∂µ2
and ∂2Π1−ν(µ,q)

∂q2
, are negative

and
∂Π2

1−ν(µ,q)

∂µ2
∂2Π1−ν(µ,q)

∂q2
− ∂2Π1−ν(µ,q)

∂q∂µ
∂2Π1−ν(µ,q)

∂µ∂q
is positive, the result follows.

Proposition 5.4: If the positive profitability is achieved in both of the cases: Ser-

vice Rate is a Decision and the Fixed Service Rate,

q∗1−ν = q∗1−ν,µ̃ =
λR

4a

Proof:

Since the profit function is concave with respect to the service quality level, and the

service rate and the service quality level terms are not inter-related, equating the first

derivative functions in both of the cases, the result follows.

Lemma 5.8: Π2−ν(µ, q) is jointly concave in µ and q.

Proof:

∂2Π2−ν(µ, q)

∂µ2
= −32Cλ(3λ2µq2 + 4µ3q4)

(4µ2q2 − λ2)3
< 0

∂2Π2−ν(µ, q)

∂q2
= −32Cλµ3 (λ2 + 12µ2q2)

(4µ2q2 − λ2)3
< 0

∂2Π2−ν(µ, q)

∂q∂µ
= −32Cλµ2q(3λ2 + 4µ2q2)

(4µ2q2 − λ2)3
< 0
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∂2Π2−ν(µ, q)

∂µ∂q
= −32Cλµ2q(3λ2 + 4µ2q2)

(4µ2q2 − λ2)3
< 0

Since the eigen-values of the Heissian matrix,
∂Π2

1−ν(µ,q)

∂µ2
and ∂2Π1−ν(µ,q)

∂q2
, are negative

and

∂2Π2−ν(µ,q)
∂µ2

∂2Π2−ν(µ,q)
∂q2

− ∂2Π2−ν(µ,q)
∂q∂µ

∂2Π2−ν(µ,q)
∂µ∂q

is positive, the result follows.

Proposition 5.5: µ∗1−ν(q) ≤ µ∗2−ν(q) if µq > λ for all values of µ and 0 < q ≤ 1.

Proof:

To compare the service rate expressions as functions of the quality level, we use the

first derivative functions derived in Lemmas 5.7 and 5.8. When we look at the first

derivative functions, we observe that the numerator and the denominator of the first

derivative function of the two parallel stage model with resolution which is derived

in Lemma 5.8 is smaller. However since the denominator reduces more; i.e. it is a

squared expression, we conclude that the first derivative function of the two parallel

stage model with resolution takes higher values compared to the two parallel stage

benchmark model. This shows us that optimal service rate of the model with res-

olution is higher than the optimal service rate of the benchmark model in the two

parallel stage case for the given quality levels. However to end up with this result,

we have to reach the steady state in both of the models, which forms a condition of

µq > λ for all values of µ and 0 < q ≤ 1. Otherwise, positive profitability conditions

can not be reached in model with resolution and the comparison seems unfair.
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Appendix B

NUMERICAL RESULTS

B.1 Numerical Results of Chapter-III

Observation 3.1:αeq1 ≥ α∗1.
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Observation 3.2:αeq2 ≥ α∗2.
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Observation 3.3:αeq3 ≥ α∗3.
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Observation 3.4: If Rλ < 2a, then Π1,λ ≤ Π2,λ.

B.2 Numerical Results of Chapter-IV

Observation 4.1. αeq4,g(q) ≥ α∗4,g(q), and αeq4,n(q) ≥ α∗4,n(q).
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Observation 4.2. αeq2,ν(q) ≤ α∗1,ν(q), and αeq2,ν(q) ≤ α∗1,ν(q).
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Observation 4.3. In the long term, for the given model parameters, R, C, a, λ

and µ, if Rλ < 4a:

-Pricing Comparison: p∗1,ν ≤ p∗2,ν

-Profit Comparison: Π∗1,ν ≤ Π∗2,ν
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Observation 4.4. Assuming all the models are profitable;

• if Rλ < 4a then,

p∗1,d ≥ p∗4,n ≥ p∗1,ν .

Π∗1,d ≥ Π∗4,n ≥ Π∗1,ν .

• if Rλ ≥ 4a then,

p∗1,d ≥ p∗1,ν ≥ p∗4,n.

Π∗1,d ≥ Π∗4,n.
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Observation 4.5.

• Optimal Quality Level Comparison: q∗4,g ≤ q∗2,ν .

• Optimal Price Comparison: p∗4,g ≤ p∗2,ν ≤ p∗2,d.

• Optimal Profit Comparison: Π∗4,g ≤ Π∗2,ν ≤ Π∗2,d .
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Observation 4.6. Π∗4(µ1, q) ≥ Π∗4,n(µ, q).
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Observation 4.7.Π∗4(q1, q2) ≥ Π∗4,n(µ, q).
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B.3 Numerical Results of Chapter-V

Observation 5.1:

• If µ ≤ µ∗2 then q∗2 ≤ q∗2,µ̃.

• If µ > µ∗2 then q∗2 ≥ q∗2,µ̃.

• Π (µ∗2, q
∗
2) ≥ Π

(
µ, q∗2,µ̃

)
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Observation 5.2:

• If µ ≤ µ∗3 then q∗3 ≤ q∗3,µ̃.

• If µ > µ∗3 then q∗3 ≥ q∗3,µ̃.

• Π (µ∗3, q
∗
3) ≥ Π

(
µ, q∗3,µ̃

)
.
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Observation 5.3:

• Π
(
µ, q∗3,µ̃

)
≤ Π

(
µ, q∗2,µ̃

)
.

• Π (µ3
∗, q
∗
3) ≤ Π (µ2

∗, q
∗
2).

See Observations 5.1 and 5.2.
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Observation 5.4:For the Parallel Server Model, optimal quality level values and

the profits of the fixed service rate and service rate is a decision case is compared as:

•  q∗1−ν,µ̃ = q∗1−ν = Rλ
4a
, (Rλ− 4aq)q > 4Cλµ

4µ2−λ2 + bµ

q∗1−ν,µ̃ = 0 < q∗1−ν , o.w.

• Π
(
µ, q∗1−ν,µ̃

)
≤ Π

(
µ∗1−ν , q

∗
1−ν
)
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Observation 5.5:

• If µ ≤ µ∗2−ν then q∗2−ν,µ̃ ≥ q∗2−ν .

• If µ > µ∗2−ν then q∗2−ν > q∗2−ν,µ̃.

• Π
(
µ∗2−ν , q

∗
2−ν
)
≥ Π

(
µ, q∗2−ν,µ̃

)
.
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Observation 5.6:

• Π
(
µ, q∗1−ν,µ̃

)
≤ Π

(
µ, q∗2−ν,µ̃

)
.

• Π
(
µ∗1−ν , q

∗
1−ν
)
≤ Π

(
µ∗2−ν , q

∗
2−ν
)
.

See Observations 5.4 and 5.5.
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Observation 5.7:

• q∗4−n,µ̃ ∼= q∗4−n.

• Π
(
µ, q∗4−n,µ̃

)
≤ Π

(
µ∗4−n, q

∗
4−n
)
.



Appendix B: NUMERICAL RESULTS 177

Observation 5.8:

• If µ ≤ µ∗4−g then q∗4−g,µ̃ ≥ q∗4−g.

• If µ > µ∗4−g then q∗4−g ≥ q∗4−g,µ̃.

• Π
(
µ∗4−g, q

∗
4−g
)
≥ Π

(
µ, q∗4−g,µ̃

)
.
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Observation 5.9:

• q∗4−g,µ̃ ≤ q∗4−nµ̃ and q∗4−g ≤ q∗4−n.

• µ∗4−g ≥ µ∗4−n

• Π
(
µ, q∗4−n,µ̃

)
≤ Π

(
µ, q∗4−g,µ̃

)
.

• Π
(
µ∗4−n, q

∗
4−n
)
≤ Π

(
µ∗4−g, q

∗
4−g
)
.

See Observations 5.7 and 5.8.
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parameters αeq1 α∗1
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.4 0.91 0.57
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.8 1 0.81
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.4 1 0.94
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.72 0.46
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.91 0.65
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.4 1 0.75
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 0.97
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.44 0.24
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.8 0.9 0.57
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.4 0.94 0.55
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 0.94
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.35 0.19
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.72 0.46
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.4 0.75 0.44
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 0.75
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.4 1 0.72
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.8 1 0.91
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.4 1 1
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.85 0.58
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.97 0.73
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.4 1 0.89
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 1
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.75 0.45
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.8 1 0.72
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.4 1 0.79
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 1
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.6 0.36
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.85 0.58
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.4 0.99 0.63
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 0.89

Table B.1: Comparison Between The Equilibrium and Socially Optimal Joining Prob-
abilities of the Benchmark Model
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parameters αeq2 α∗2
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.4 0.36 0.23
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.8 0.91 0.65
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.4 0.56 0.37
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 0.97
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.28 0.18
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.73 0.52
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.4 0.45 0.3
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 0.78
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.17 0.1
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.8 0.72 0.46
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.4 0.37 0.22
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 0.75
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.14 0.08
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.58 0.37
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.4 0.3 0.18
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.8 0.9 0.6
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.4 0.42 0.29
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.8 0.97 0.73
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.4 0.62 0.44
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.34 0.23
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.78 0.58
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.4 0.5 0.36
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 0.85
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.3 0.18
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.8 0.85 0.58
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.4 0.5 0.32
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 0.89
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.24 0.14
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.68 0.46
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.4 0.4 0.25
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 0.71

Table B.2: Comparison Between The Equilibrium and Socially Optimal Joining Prob-
abilities of the Resolution Model



Appendix B: NUMERICAL RESULTS 181

parameters αeq3 α∗3
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.4 0.49 0.31
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.8 0.89 0.63
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.4 0.66 0.44
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 0.88
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.43 0.28
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.74 0.53
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.4 0.58 0.39
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 0.75
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.24 0.13
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.8 0.71 0.45
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.4 0.44 0.26
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 0.68
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.21 0.12
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.59 0.38
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.4 0.39 0.23
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.8 0.86 0.58
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.4 0.54 0.39
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.8 0.94 0.71
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.4 0.73 0.52
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 0.96
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.43 0.35
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.79 0.60
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.4 0.59 0.46
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 0.81
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.41 0.24
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.8 0.82 0.55
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.4 0.59 0.37
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 0.81
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.35 0.22
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.69 0.47
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.4 0.52 0.33
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.8 0.96 0.68

Table B.3: Comparison Between The Equilibrium and Socially Optimal Joining Prob-
abilities of the Model With Returns
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parameters Π∗1,λ Π∗2,λ
R = 5, C = 0.25, λ = 1, µ = 5.5, a = 5.5 1.08 4.12
R = 5, C = 0.25, λ = 1, µ = 5.5, a = 7.5 0.78 3.95
R = 5, C = 0.25, λ = 1, µ = 3.5, a = 5.5 1.04 3.50
R = 5, C = 0.25, λ = 1, µ = 3.5, a = 7.5 0.73 3.18
R = 5, C = 0.25, λ = 2, µ = 5.5, a = 5.5 4.40 7.96
R = 5, C = 0.25, λ = 2, µ = 5.5, a = 7.5 3.19 7.49
R = 5, C = 0.25, λ = 2, µ = 3.5, a = 5.5 4.21 6.20
R = 5, C = 0.25, λ = 2, µ = 3.5, a = 7.5 2.99 5.22
R = 5, C = 1, λ = 1, µ = 5.5, a = 5.5 0.91 3.29
R = 5, C = 1, λ = 1, µ = 5.5, a = 7.5 0.61 3.01
R = 5, C = 1, λ = 1, µ = 3.5, a = 5.5 0.74 2.30
R = 5, C = 1, λ = 1, µ = 3.5, a = 7.5 0.43 1.80
R = 5, C = 1, λ = 2, µ = 5.5, a = 5.5 3.97 6.48
R = 5, C = 1, λ = 2, µ = 5.5, a = 7.5 2.76 5.80
R = 5, C = 1, λ = 2, µ = 3.5, a = 5.5 3.21 4.00
R = 5, C = 1, λ = 2, µ = 3.5, a = 7.5 1.99 2.70
R = 3, C = 0.25, λ = 1, µ = 5.5, a = 5.5 0.35 2.12
R = 3, C = 0.25, λ = 1, µ = 5.5, a = 7.5 0.24 1.95
R = 3, C = 0.25, λ = 1, µ = 3.5, a = 5.5 0.31 1.50
R = 3, C = 0.25, λ = 1, µ = 3.5, a = 7.5 0.2 1.18
R = 3, C = 0.25, λ = 2, µ = 5.5, a = 5.5 1.49 3.96
R = 3, C = 0.25, λ = 2, µ = 5.5, a = 7.5 1.06 3.49
R = 3, C = 0.25, λ = 2, µ = 3.5, a = 5.5 1.30 2.20
R = 3, C = 0.25, λ = 2, µ = 3.5, a = 7.5 0.87 1.22
R = 3, C = 1, λ = 1, µ = 5.5, a = 5.5 0.19 1.29
R = 3, C = 1, λ = 1, µ = 5.5, a = 7.5 0.08 1.21
R = 3, C = 1, λ = 1, µ = 3.5, a = 5.5 0.01 0.30
R = 3, C = 1, λ = 1, µ = 3.5, a = 7.5 0 0
R = 3, C = 1, λ = 2, µ = 5.5, a = 5.5 1.06 2.48
R = 3, C = 1, λ = 2, µ = 5.5, a = 7.5 0.63 1.80
R = 3, C = 1, λ = 2, µ = 3.5, a = 5.5 0.30 0.32
R = 3, C = 1, λ = 2, µ = 3.5, a = 7.5 0 0

Table B.4: Comparison Between The Profits of the Benchmark Model and Model
With Resolution When Rλ < 2a
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parameters αeq4,g α∗4,g αeq4,n α∗4,n
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.92 0.64 0.79 0.51
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.94 0.68 0.93 0.67
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.4 1 0.98 1 0.83
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.4 1 0.8 0.98 0.64
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 1 1 1
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.8 1 0.85 1 0.83
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.4 1 1 1 1
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.69 0.42 0.84 0.22
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.78 0.5 0.76 0.49
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.4 1 0.73 0.85 0.5
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.4 0.86 0.53 0.51 0.27
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 0.81 1 0.79
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 1 1 0.98
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.8 0.97 0.63 0.95 0.61
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.4 1 0.91 1 0.62
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.4 0.98 0.73 0.91 0.63
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.8 0.99 0.76 0.98 0.75
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.4 1 1 1 0.96
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.4 1 0.92 1 0.79
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.8 0.99 0.76 0.98 0.75
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.8 1 0.95 1 0.94
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.4 1 1 1 1
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.4 0.84 0.56 0.67 0.4
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.8 0.89 0.61 0.88 0.6
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.4 1 0.82 1 0.7
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.4 1 0.7 0.84 0.51
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 0.94 1 0.93
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.8 1 0.77 1 0.76
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.4 1 1 1 0.89

Table B.5: Comparison Between The Equilibrium and Socially Optimal Joining Prob-
abilities of the Escalation Models
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parameters αeq1,ν α∗1,ν αeq2,ν α∗2,ν
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.4 1 1 0 0
R = 1, C = 0.75, λ = 5, µ = 5.5, q = 0.8 1 1 1 1
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.4 1 1 0 0
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.4 1 1 0.85 0
R = 1, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 1 1 1
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1, C = 0.75, λ = 4, µ = 5.5, q = 0.8 1 1 1 1
R = 1, C = 0.75, λ = 4, µ = 7.5, q = 0.4 1 1 1 0.74
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.4 1 1 0 0
R = 1, C = 1.5, λ = 5, µ = 5.5, q = 0.8 1 1 1 1
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.4 1 1 0 0
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.4 1 1 0 0
R = 1, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 1 1 1
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1, C = 1.5, λ = 4, µ = 5.5, q = 0.8 1 1 1 1
R = 1, C = 1.5, λ = 4, µ = 7.5, q = 0.4 1 1 0 0
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.4 1 1 0 0
R = 1.5, C = 0.75, λ = 5, µ = 5.5, q = 0.8 1 1 1 1
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.4 1 1 0 0
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.4 1 1 1 0.66
R = 1.5, C = 0.75, λ = 5, µ = 7.5, q = 0.8 1 1 1 1
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1.5, C = 0.75, λ = 4, µ = 5.5, q = 0.8 1 1 1 1
R = 1.5, C = 0.75, λ = 4, µ = 7.5, q = 0.4 1 1 1 1
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.4 1 1 0 0
R = 1.5, C = 1.5, λ = 5, µ = 5.5, q = 0.8 1 1 1 1
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.4 1 1 0 0
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.4 1 1 1 1
R = 1.5, C = 1.5, λ = 5, µ = 7.5, q = 0.8 1 1 1 1
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.8 1 1 1 1
R = 1.5, C = 1.5, λ = 4, µ = 5.5, q = 0.8 1 1 1 1
R = 1.5, C = 1.5, λ = 4, µ = 7.5, q = 0.4 1 1 1 1

Table B.6: Comparison Between The Equilibrium and Socially Optimal Joining Prob-
abilities of the Parallel Server Models
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parameters p∗1,ν Π∗1,ν p∗2ν Π∗2,ν
R = 5, C = 0.25, λ = 1, µ = 5, a = 3 2.03 0.99 4.45 3.84
R = 5, C = 0.25, λ = 1, µ = 5, a = 6 0.99 0.47 4.23 3.33
R = 5, C = 0.25, λ = 1, µ = 7.5, a = 3 2.05 1.01 4.55 4.08
R = 5, C = 0.25, λ = 1, µ = 7.5, a = 6 1.01 0.49 4.37 3.68
R = 5, C = 0.25, λ = 2, µ = 5, a = 3 4.11 4.06 4.61 8.21
R = 5, C = 0.25, λ = 2, µ = 5, a = 6 2.03 1.98 4.45 7.33
R = 5, C = 0.25, λ = 2, µ = 7.5, a = 3 4.13 4.10 4.68 8.63
R = 5, C = 0.25, λ = 2, µ = 7.5, a = 6 2.05 2.02 4.55 8.00
R = 5, C = 1, λ = 1, µ = 5, a = 3 1.88 0.84 3.90 2.75
R = 5, C = 1, λ = 1, µ = 5, a = 6 0.84 0.32 3.45 1.78
R = 5, C = 1, λ = 1, µ = 7.5, a = 3 1.95 0.91 4.11 3.18
R = 5, C = 1, λ = 1, µ = 7.5, a = 6 0.91 0.39 3.74 2.42
R = 5, C = 1, λ = 2, µ = 5, a = 3 3.96 3.75 4.23 6.66
R = 5, C = 1, λ = 2, µ = 5, a = 6 1.88 1.67 3.90 5.14
R = 5, C = 1, λ = 2, µ = 7.5, a = 3 4.03 3.90 4.37 7.36
R = 5, C = 1, λ = 2, µ = 7.5, a = 6 1.95 1.81 4.11 6.21
R = 3, C = 0.25, λ = 1, µ = 5, a = 3 0.7 0.32 2.45 1.84
R = 3, C = 0.25, λ = 1, µ = 5, a = 6 0.32 0.14 2.23 1.33
R = 3, C = 0.25, λ = 1, µ = 7.5, a = 3 0.72 0.34 2.55 2.08
R = 3, C = 0.25, λ = 1, µ = 7.5, a = 6 0.34 0.15 2.37 1.68
R = 3, C = 0.25, λ = 2, µ = 5, a = 3 1.45 1.4 2.61 4.21
R = 3, C = 0.25, λ = 2, µ = 5, a = 6 0.7 0.65 2.45 3.33
R = 3, C = 0.25, λ = 2, µ = 7.5, a = 3 1.47 1.43 2.68 4.63
R = 3, C = 0.25, λ = 2, µ = 7.5, a = 6 0.72 0.68 2.55 4.00
R = 3, C = 1, λ = 1, µ = 5, a = 3 0.55 0.17 1.90 0.75
R = 3, C = 1, λ = 1, µ = 5, a = 6 0 0 0 0
R = 3, C = 1, λ = 1, µ = 7.5, a = 3 0.62 0.24 2.11 1.18
R = 3, C = 1, λ = 1, µ = 7.5, a = 6 0.24 0.05 1.74 0.42
R = 3, C = 1, λ = 2, µ = 5, a = 3 1.29 1.08 2.23 2.66
R = 3, C = 1, λ = 2, µ = 5, a = 6 0.54 0.33 1.90 1.14
R = 3, C = 1, λ = 2, µ = 7.5, a = 3 1.36 1.23 2.37 3.36
R = 3, C = 1, λ = 2, µ = 7.5, a = 6 0.61 0.48 2.11 2.21

Table B.7: Optimal Price and Profit Comparison of the Parallel Server Models
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parameters p∗4,n Π∗4,n p∗1,ν Π∗1,ν p∗1,d Π∗1,d
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 3.99 4.37 4.83 5.24 4.88 6.31
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 3.02 2.52 2.92 2.08 4.88 1.31
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 4.53 5.11 4.89 5.34 4.93 6.40
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 3.77 3.70 2.99 2.18 4.93 4.40
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 1 4.26 3.19 4.84 2.84 4.9 3.9
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 3 3.15 1.83 1.94 0.89 4.05 1.98
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 1 4.41 3.37 4.89 2.90 4.94 3.94
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 3 3.31 2.01 1.99 0.94 4.09 2.22
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 1 0 0 4.3 4.45 4.5 5.80
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 3 0 0 2.4 1.29 4.5 3.75
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 1 3.78 4.29 4.56 4.84 4.71 6.07
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 3 2.94 2.32 2.66 1.68 4.71 4.07
R = 5, C = 1, λ = 1, µ = 1.75, a = 1 3.25 2.07 4.38 2.38 4.6 3.6
R = 5, C = 1, λ = 1, µ = 1.75, a = 3 2.07 0.52 1.48 0.42 3.75 1.68
R = 5, C = 1, λ = 1, µ = 2.5, a = 1 3.91 2.79 4.58 2.58 4.75 3.75
R = 5, C = 1, λ = 1, µ = 2.5, a = 3 2.72 1.34 1.68 0.62 3.9 1.83
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 6.33 8.02 7.33 8.99 7.38 10.06
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 5.56 5.73 6.88 5.01 7.38 8.06
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 7.08 9.15 7.39 9.09 7.43 10.14
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 6.34 6.90 6.94 5.11 7.43 8.14
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 1 6.83 5.55 7.34 5.34 7.4 6.4
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 3 5.63 3.75 4.49 2.19 7.4 4.4
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 1 7.01 5.73 7.40 5.39 7.44 6.44
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 3 5.83 3.95 4.55 2.24 7.44 4.44
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 1 3.34 3.43 6.8 8.2 7 9.5
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 3 2.59 0.95 6.35 4.12 7 7.5
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 1 6.34 7.96 7.06 8.60 7.21 9.82
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 3 5.58 5.59 6.61 4.61 7.21 7.82
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 1 5.84 4.47 6.88 4.88 7.1 6.1
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 3 4.59 2.51 4.03 1.72 7.1 4.1
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 1 6.48 5.07 7.08 5.18 7.25 6.25
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 3 5.31 3.29 4.23 1.93 7.25 4.25

Table B.8: Optimal Price and Profit Comparison of the Benchmark Type Models
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parameters q∗4,g p∗4,g Π∗4,g q∗2,ν p∗2,ν Π∗2,ν q∗2,d p∗2,d Π∗2,d
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 0.42 3.84 4.58 0.71 4.55 5.82 0.43 4.88 7.13
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 0.26 3.71 2.36 0.61 4.24 4.13 0.43 4.88 6.76
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 0.25 4.61 5.86 0.6 4.63 6.22 0.31 4.53 7.3
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 0.11 4.56 3.80 0.5 4.38 5.06 0.31 4.93 7.1
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 1 0.23 4.47 3.42 0.59 4.66 3.77 0.29 4.9 4.82
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 3 0.1 4.40 1.37 0.49 4.12 2.66 0.3 4.9 4.65
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 1 0.12 4.70 3.68 0.51 4.54 4.02 0.21 4.94 4.90
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 3 0.04 4.68 1.67 0.41 4.22 3.21 0.21 4.94 4.81
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 1 0 0 0 0.92 4.14 4.51 0.43 4.5 6.57
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 3 0 0 0 0.75 3.49 1.86 0.43 4.5 6.20
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 1 0.56 3.76 4.33 0.8 4.27 5.13 0.31 4.71 6.96
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 3 0.3 3.52 2.01 0.64 3.75 3.16 0.31 4.71 6.78
R = 5, C = 1, λ = 1, µ = 1.75, a = 1 0.53 3.30 2.02 0.78 3.92 2.70 0.29 4.6 4.52
R = 5, C = 1, λ = 1, µ = 1.75, a = 3 0 0 0 0.62 3.11 0.81 0.29 4.6 4.35
R = 5, C = 1, λ = 1, µ = 2.5, a = 1 0.36 3.99 2.86 0.7 4.11 3.13 0.21 4.75 4.71
R = 5, C = 1, λ = 1, µ = 2.5, a = 3 0.15 3.82 0.75 0.55 3.48 1.66 0.21 4.75 4.62
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 0.42 6.34 8.32 0.71 7.05 9.57 0.43 7.38 10.88
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 0.26 6.21 6.11 0.61 6.74 7.8 0.43 7.38 10.51
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 0.25 7.11 9.61 0.6 7.12 9.98 0.31 7.43 11.05
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 0.11 7.06 7.55 0.5 6.8 8.81 0.31 7.43 10.85
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 1 0.23 6.97 5.92 0.59 6.96 6.27 0.29 7.4 7.3
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 3 0.1 6.90 3.87 0.49 6.60 5.15 0.29 7.4 7.15
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 1 0.12 7.20 6.18 0.51 7.04 6.53 0.21 7.43 7.40
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 3 0.04 7.18 4.17 0.41 6.72 5.71 0.21 7.44 7.31
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 1 0.73 3.30 3.42 0.92 6.64 8.26 0.43 7.00 10.32
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 3 0.47 2.94 0.76 0.75 5.99 5.61 0.43 7.00 9.95
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 1 0.56 6.26 8.07 0.8 6.77 8.88 0.31 7.21 10.72
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 3 0.3 6.02 5.76 0.64 6.25 6.92 0.31 7.21 10.53
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 1 0.53 5.80 4.52 0.78 6.42 5.20 0.29 7.1 7.02
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 3 0.28 5.47 2.23 0.62 5.61 3.31 0.29 7.1 6.85
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 1 0.36 6.49 5.36 0.7 6.61 5.63 0.21 7.25 7.21
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 3 0.15 6.32 3.25 0.55 5.97 4.16 0.21 7.25 7.12

Table B.9: Optimal Price and Profit Comparison of the Resolution Type Models
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parameters µ∗1 q∗ Π∗4(µ1, q)
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 2.76 0.85 5.48
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 2.38 0.61 3.43
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 3.75 0.82 5.68
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 3.25 0.58 3.80
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 1 2.49 0.75 3.31
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 3 2.14 0.48 1.89
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 1 3.45 0.73 3.42
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 3 3.00 0.47 2.06
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 1 3.47 1 4.74
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 3 2.55 0.73 1.58
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 1 4.95 1 5.07
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 3 3.35 0.63 2.77
R = 5, C = 1, λ = 1, µ = 1.75, a = 1 2.70 0.85 2.62
R = 5, C = 1, λ = 1, µ = 1.75, a = 3 2.21 0.54 0.81
R = 5, C = 1, λ = 1, µ = 2.5, a = 1 3.6 0.79 2.97
R = 5, C = 1, λ = 1, µ = 2.5, a = 3 3.05 0.5 1.42
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 2.87 0.89 9.17
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 2.49 0.69 6.72
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 3.95 0.87 9.34
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 3.4 0.67 7.02
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 1 2.63 0.81 5.69
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 3 2.24 0.57 3.83
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 1 3.65 0.8 5.78
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 3 3.15 0.56 3.97
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 1 3.47 1 8.49
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 3 2.63 0.78 5.12
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 1 4.95 1 8.82
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 3 3.5 0.71 6.12
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 1 3.47 1 5.09
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 3 2.31 0.62 2.88
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 1 3.75 0.84 5.39
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 3 3.2 0.59 3.40

Table B.10: Optimal Model Parameters of the Escalation Models When The Service
Rate of the First Server is a Decision
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parameters q∗1 q∗2 Π∗4(q∗1, q
∗
2)

R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 0.99 0.04 4.94
R = 5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 0.99 0.01 2.98
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 0.99 0.04 6.07
R = 5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 0.99 0.01 4.11
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 1 0.99 0.02 3.64
R = 5, C = 0.25, λ = 1, µ = 1.75, a = 3 0.59 0.34 1.86
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 1 0.99 0.02 3.80
R = 5, C = 0.25, λ = 1, µ = 2.5, a = 3 0.54 0.38 2.04
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 1 0.99 0.04 0.44
R = 5, C = 1, λ = 1.5, µ = 1.75, a = 3 0 0 0
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 1 0.99 0.04 4.94
R = 5, C = 1, λ = 1.5, µ = 2.5, a = 3 0.99 0.01 2.98
R = 5, C = 1, λ = 1, µ = 1.75, a = 1 0.99 0.02 2.63
R = 5, C = 1, λ = 1, µ = 1.75, a = 3 0.83 0.14 0.7
R = 5, C = 1, λ = 1, µ = 2.5, a = 1 0.99 0.02 3.30
R = 5, C = 1, λ = 1, µ = 2.5, a = 3 0.73 0.23 1.42
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 1 0.99 0.06 8.65
R = 7.5, C = 0.25, λ = 1.5, µ = 1.75, a = 3 0.99 0.02 6.69
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 1 0.99 0.06 9.78
R = 7.5, C = 0.25, λ = 1.5, µ = 2.5, a = 3 0.99 0.02 7.82
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 1 0.99 0.04 6.11
R = 7.5, C = 0.25, λ = 1, µ = 1.75, a = 3 0.99 0.01 4.15
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 1 0.99 0.04 6.28
R = 7.5, C = 0.25, λ = 1, µ = 2.5, a = 3 0.99 0.01 4.32
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 1 0.99 0.26 4.15
R = 7.5, C = 1, λ = 1.5, µ = 1.75, a = 3 0.99 0.02 2.19
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 1 0.99 0.06 8.66
R = 7.5, C = 1, λ = 1.5, µ = 2.5, a = 3 0.99 0.02 6.69
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 1 0.99 0.04 5.11
R = 7.5, C = 1, λ = 1, µ = 1.75, a = 3 0.99 0.01 3.15
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 1 0.99 0.04 5.78
R = 7.5, C = 1, λ = 1, µ = 2.5, a = 3 0.99 0.01 3.81

Table B.11: Optimal Model Parameters of the Escalation Models When The Quality
Levels of the Servers are Different
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Model Parameters µ q∗2,µ̃ Π
(
µ, q∗2,µ̃

)
µ∗2 q∗2 Π (µ∗2, q

∗
2)

R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 0.72 88.84 12 0.63 89.07
R = 20, C = 1, λ = 5, a = 7.5, b = 2 10 0.72 73.84 6.75 0.97 76.21
R = 20, C = 1, λ = 5, a = 15, b = 0.5 10 0.66 85.34 14.75 0.49 86.78
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 10 1 158.5 17.58 0.76 174.42
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 10 0.92 82.7 15.25 0.72 84.31
R = 20, C = 1, λ = 5, a = 15, b = 2 10 0.66 70.34 8.5 0.75 70.93
R = 20, C = 1, λ = 9.5, a = 15, b = 2 10 1 136 12.83 0.91 147.55
R = 20, C = 5, λ = 9.5, a = 15, b = 2 10 1 60 14.73 0.98 136.51
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 10 1 143.5 11.88 1 154.75
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 10 1 151 21.38 0.6 171.06
R = 20, C = 5, λ = 5, a = 7.5, b = 2 10 0.92 67.7 8.5 1 68.36
R = 20, C = 5, λ = 5, a = 15, b = 0.5 10 0.82 77.10 18.5 0.56 81.38
R = 20, C = 5, λ = 5, a = 15, b = 2 10 0.82 62.10 10 0.82 62.10
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 10 1 75 26.6 0.66 164.27
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 10 1 82.5 21.85 0.85 168.42
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 10 1 67.5 14.25 1 144
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 15 0.54 88.70 12 0.63 89.07
R = 20, C = 1, λ = 5, a = 7.5, b = 2 15 0.54 66.20 6.75 0.97 76.21
R = 20, C = 1, λ = 5, a = 15, b = 0.5 15 0.48 86.77 14.75 0.49 86.78
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 15 0.86 174.16 17.58 0.76 174.42
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 15 0.72 84.30 15.25 0.72 84.31
R = 20, C = 1, λ = 5, a = 15, b = 2 15 0.48 64.27 8.5 0.75 70.93
R = 20, C = 1, λ = 9.5, a = 15, b = 2 15 0.8 146.6 12.83 0.91 147.55
R = 20, C = 5, λ = 9.5, a = 15, b = 2 15 0.96 136.48 14.73 0.98 136.51
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 15 0.86 151.66 11.88 1 154.75
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 15 0.8 169.1 21.38 0.6 171.06
R = 20, C = 5, λ = 5, a = 7.5, b = 2 15 0.72 61.8 8.5 1 68.36
R = 20, C = 5, λ = 5, a = 15, b = 0.5 15 0.63 80.93 18.5 0.56 81.38
R = 20, C = 5, λ = 5, a = 15, b = 2 15 0.63 58.43 10 0.82 62.10
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 15 0.96 158.98 26.6 0.66 164.27
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 15 1 166.36 21.85 0.85 168.42
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 15 1 143.86 14.25 1 144

Table B.12: Model With Resolution- Optimal Model Parameters: Fixed Service Rate,
Service Rate Is A Decision
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Model Parameters µ q∗3,µ̃ Π
(
µ, q∗3,µ̃

)
µ∗3 q∗3 Π (µ∗3, q

∗
3)

R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 0.77 88.15 11.25 0.72 88.25
R = 20, C = 1, λ = 5, a = 7.5, b = 2 10 0.77 73.15 6.5 1 76.17
R = 20, C = 1, λ = 5, a = 15, b = 0.5 10 0.71 84.08 14.25 0.57 85.19
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 10 1 158.5 16.63 0.84 173.86
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 10 1 82.5 14 0.86 83.32
R = 20, C = 1, λ = 5, a = 15, b = 2 10 0.71 69.09 8 0.82 70.01
R = 20, C = 1, λ = 9.5, a = 15, b = 2 10 1 136 11.88 0.98 147.31
R = 20, C = 5, λ = 9.5, a = 15, b = 2 10 1 60 14.25 1 136.51
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 10 1 143.5 11.88 1 154.75
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 10 1 151 20.43 0.68 169.67
R = 20, C = 5, λ = 5, a = 7.5, b = 2 10 1 67.5 8.5 1 68.36
R = 20, C = 5, λ = 5, a = 15, b = 0.5 10 0.89 75.92 17.75 0.68 78.99
R = 20, C = 5, λ = 5, a = 15, b = 2 10 0.89 60.92 9.25 0.93 61.06
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 10 1 75 24.7 0.78 162.29
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 10 1 82.5 19.48 0.99 168
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 10 1 67.5 14.25 1 144
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 15 0.62 87.74 11.25 0.72 88.25
R = 20, C = 1, λ = 5, a = 7.5, b = 2 15 0.62 65.24 6.5 1 76.17
R = 20, C = 1, λ = 5, a = 15, b = 0.5 15 0.56 85.17 14.25 0.57 85.19
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 15 0.89 173.79 16.63 0.84 173.86
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 15 0.84 83.29 14 0.86 83.32
R = 20, C = 1, λ = 5, a = 15, b = 2 15 0.56 62.67 8 0.82 70.01
R = 20, C = 1, λ = 9.5, a = 15, b = 2 15 0.83 145.79 11.88 0.98 147.31
R = 20, C = 5, λ = 9.5, a = 15, b = 2 15 1 136.36 14.25 1 136.51
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 15 0.89 151.29 11.88 1 154.75
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 15 0.83 168.29 20.43 0.68 169.67
R = 20, C = 5, λ = 5, a = 7.5, b = 2 15 0.84 60.79 8.5 1 68.36
R = 20, C = 5, λ = 5, a = 15, b = 0.5 15 0.73 78.75 17.75 0.68 78.99
R = 20, C = 5, λ = 5, a = 15, b = 2 15 0.73 56.25 9.25 0.93 61.06
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 15 1 158.86 24.7 0.78 162.29
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 15 1 166.36 19.48 0.99 168
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 15 1 143.86 14.25 1 144

Table B.13: Model With Returns- Optimal Model Parameters: Fixed Service Rate,
Service Rate Is A Decision
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Model Parameters µ q∗1−ν,µ̃ Π
(
µ, q∗1−ν,µ̃

)
µ∗1−ν q∗1−ν Π

(
µ∗1−ν , q

∗
1−ν
)

R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 6 1 77.98 5.06 1 78.63
R = 20, C = 1, λ = 5, a = 7.5, b = 2 6 1 59.99 5.01 1 63.66
R = 20, C = 1, λ = 5, a = 15, b = 0.5 6 1 62.99 5.06 1 63.63
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 6 0 0 9.7 1 164.01
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 6 1 73.96 6.28 1 73.99
R = 20, C = 1, λ = 5, a = 15, b = 2 6 1 44.99 5.00 1 48.66
R = 20, C = 1, λ = 9.5, a = 15, b = 2 6 0 0 9.58 1 120.38
R = 20, C = 5, λ = 9.5, a = 15, b = 2 6 0 0 9.77 1 114.54
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 6 0 0 9.58 1 135.38
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 6 0 0 9.7 1 149.01
R = 20, C = 5, λ = 5, a = 7.5, b = 2 6 1 55.96 5.12 1 58.11
R = 20, C = 5, λ = 5, a = 15, b = 0.5 6 1 58.96 6.28 1 58.99
R = 20, C = 5, λ = 5, a = 15, b = 2 6 1 40.96 5.12 1 43.11
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 6 0 0 10.01 1 143.87
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 6 0 0 10.01 1 158.87
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 6 0 0 9.77 1 129.54
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 1 72.33 5.06 1 78.63
R = 20, C = 1, λ = 5, a = 7.5, b = 2 10 1 42.33 5.01 1 63.66
R = 20, C = 1, λ = 5, a = 15, b = 0.5 10 1 57.33 5.06 1 63.63
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 10 0 0 9.7 1 164.01
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 10 1 72.33 6.28 1 73.99
R = 20, C = 1, λ = 5, a = 15, b = 2 10 1 29.47 5.00 1 48.66
R = 20, C = 1, λ = 9.5, a = 15, b = 2 10 0 0 9.58 1 120.38
R = 20, C = 5, λ = 9.5, a = 15, b = 2 10 0 0 9.77 1 114.54
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 10 0 0 9.58 1 135.38
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 10 0 0 9.7 1 149.01
R = 20, C = 5, λ = 5, a = 7.5, b = 2 10 1 42.33 5.12 1 58.11
R = 20, C = 5, λ = 5, a = 15, b = 0.5 10 1 57.33 6.28 1 58.99
R = 20, C = 5, λ = 5, a = 15, b = 2 10 1 27.33 5.12 1 43.11
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 10 0 0 10.01 1 143.87
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 10 0 0 10.01 1 158.87
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 10 0 0 9.77 1 129.54

Table B.14: Two Parallel Stage Benchmark Model- Optimal Model Parameters: Fixed
Service Rate, Service Rate Is A Decision
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Model Parameters µ q∗2−ν,µ̃ Π
(
µ, q∗2−ν,µ̃

)
µ∗2−ν q∗2−ν Π

(
µ∗2−ν , q

∗
2−ν
)

R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 6 0.84 81.85 8.16 0.62 83.96
R = 20, C = 1, λ = 5, a = 7.5, b = 2 6 0.84 62.85 5.08 0.92 63.78
R = 20, C = 1, λ = 5, a = 15, b = 0.5 6 0.84 71.26 8.16 0.62 78.19
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 6 0 0 13.59 0.7 167.17
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 6 0.84 75.58 8.93 0.72 76.93
R = 20, C = 1, λ = 5, a = 15, b = 2 6 0.84 53.26 6.58 0.76 54.59
R = 20, C = 1, λ = 9.5, a = 15, b = 2 6 0 0 11.68 0.82 121.51
R = 20, C = 5, λ = 9.5, a = 15, b = 2 6 0 0 10.35 0.92 115.99
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 6 0 0 9.58 1 135.38
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 6 0 0 13.58 0.7 159.82
R = 20, C = 5, λ = 5, a = 7.5, b = 2 6 0.84 57.58 5.12 0.99 58.35
R = 20, C = 5, λ = 5, a = 15, b = 0.5 6 0.84 64.99 11.35 0.56 70.94
R = 20, C = 5, λ = 5, a = 15, b = 2 6 0.84 46.99 6.65 0.76 47.44
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 6 0 0 15.39 0.64 152.5
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 6 0 0 11.93 0.82 160.24
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 6 0 0 9.77 0.98 129.78
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 0.52 83.54 8.16 0.62 83.96
R = 20, C = 1, λ = 5, a = 7.5, b = 2 10 0.52 53.54 5.08 0.92 63.78
R = 20, C = 1, λ = 5, a = 15, b = 0.5 10 0.52 77.48 8.16 0.62 78.19
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 10 0 0 13.59 0.7 167.17
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 10 0.68 76.81 8.93 0.72 76.93
R = 20, C = 1, λ = 5, a = 15, b = 2 10 0.52 49.48 6.58 0.76 54.59
R = 20, C = 1, λ = 9.5, a = 15, b = 2 10 0 0 11.68 0.82 121.51
R = 20, C = 5, λ = 9.5, a = 15, b = 2 10 0 0 10.35 0.92 115.99
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 10 0 0 9.58 1 135.38
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 10 0 0 13.58 0.7 159.82
R = 20, C = 5, λ = 5, a = 7.5, b = 2 10 0.52 53.54 5.12 0.99 58.35
R = 20, C = 5, λ = 5, a = 15, b = 0.5 10 0.52 69.48 11.35 0.56 70.94
R = 20, C = 5, λ = 5, a = 15, b = 2 10 0.52 46.48 6.65 0.76 47.44
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 10 0 0 15.39 0.64 152.5
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 10 0 0 11.93 0.82 160.24
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 10 0 0 9.77 0.98 129.78

Table B.15: Two Parallel Stage Model With Resolution- Optimal Model Parameters:
Fixed Service Rate, Service Rate Is A Decision
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Model Parameters µ q∗4−n,µ̃ Π
(
µ, q∗4−n,µ̃

)
µ∗4−n q∗4−n Π

(
µ∗4−n, q

∗
4−n
)

R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 6 0.87 75.84 7.25 0.87 77.39
R = 20, C = 1, λ = 5, a = 7.5, b = 2 6 0.87 57.84 6.25 0.87 57.84
R = 20, C = 1, λ = 5, a = 15, b = 0.5 6 0.77 65.69 7.25 0.77 67.26
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 6 0 0 12.83 0.93 160.36
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 6 0.89 55.40 10 0.88 71.62
R = 20, C = 1, λ = 5, a = 15, b = 2 6 0.77 47.69 6.25 0.77 47.70
R = 20, C = 1, λ = 9.5, a = 15, b = 2 6 0 0 10.93 0.87 113.59
R = 20, C = 5, λ = 9.5, a = 15, b = 2 6 0 0 12.83 0.87 97.96
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 6 0 0 10.93 0.93 125.66
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 6 0 0 12.83 0.87 148.29
R = 20, C = 5, λ = 5, a = 7.5, b = 2 6 0.89 37.40 7.5 0.89 46.51
R = 20, C = 5, λ = 5, a = 15, b = 0.5 6 0.79 44.81 10.25 0.78 61.30
R = 20, C = 5, λ = 5, a = 15, b = 2 6 0.79 26.81 7.5 0.79 36.05
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 6 0 0 16.63 0.87 140.39
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 6 0 0 16.63 0.93 152.6
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 6 0 0 12.83 0.94 110.24
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 0.87 75.89 7.25 0.87 77.39
R = 20, C = 1, λ = 5, a = 7.5, b = 2 10 0.87 45.89 6.25 0.87 57.84
R = 20, C = 1, λ = 5, a = 15, b = 0.5 10 0.77 65.80 7.25 0.77 67.26
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 10 0 0 12.83 0.93 160.36
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 10 0.88 71.62 10 0.88 71.62
R = 20, C = 1, λ = 5, a = 15, b = 2 10 0.77 35.79 6.25 0.77 47.70
R = 20, C = 1, λ = 9.5, a = 15, b = 2 10 0 0 10.93 0.87 113.59
R = 20, C = 5, λ = 9.5, a = 15, b = 2 10 0 0 12.83 0.87 97.96
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 10 0 0 10.93 0.93 125.66
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 10 0 0 12.83 0.87 148.29
R = 20, C = 5, λ = 5, a = 7.5, b = 2 10 0.88 41.62 7.5 0.89 46.51
R = 20, C = 5, λ = 5, a = 15, b = 0.5 10 0.78 61.29 10.25 0.78 61.30
R = 20, C = 5, λ = 5, a = 15, b = 2 10 0.78 31.29 7.5 0.79 36.05
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 10 0 0 16.63 0.87 140.39
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 10 0 0 16.63 0.93 152.6
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 0 0 12.83 0.94 110.24

Table B.16: Simple Escalation Model- Optimal Model Parameters: Fixed Service
Rate, Service Rate Is A Decision
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Model Parameters µ q∗4−g,µ̃ Π
(
µ, q∗4−g,µ̃

)
µ∗4−g q∗4−g Π

(
µ∗4−g, q

∗
4−g
)

R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 6 0.31 79.43 7.75 0.19 81.57
R = 20, C = 1, λ = 5, a = 7.5, b = 2 6 0.31 61.43 6.25 0.29 61.55
R = 20, C = 1, λ = 5, a = 15, b = 0.5 6 0.22 71.42 7.75 0.12 73.90
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 6 0 0 12.83 0.25 165.10
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 6 0.61 56.30 11 0.32 74.33
R = 20, C = 1, λ = 5, a = 15, b = 2 6 0.22 53.42 6.25 0.2 53.62
R = 20, C = 1, λ = 9.5, a = 15, b = 2 6 0 0 10.93 0.25 121.82
R = 20, C = 5, λ = 9.5, a = 15, b = 2 6 0 0 13.3 0.38 103.16
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 6 0 0 10.93 0.33 129.62
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 6 0 0 13.3 0.15 157.32
R = 20, C = 5, λ = 5, a = 7.5, b = 2 6 0.61 38.30 7.75 0.48 48.16
R = 20, C = 5, λ = 5, a = 15, b = 0.5 6 0.46 46.74 11.5 0.18 66.40
R = 20, C = 5, λ = 5, a = 15, b = 2 6 0.46 28.74 7.75 0.33 39.47
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 6 0 0 18.05 0.24 147.20
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 6 0 0 17.1 0.41 155.45
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 6 0 0 13.3 0.53 112.17
R = 20, C = 1, λ = 5, a = 7.5, b = 0.5 10 0.11 80.61 7.75 0.19 81.57
R = 20, C = 1, λ = 5, a = 7.5, b = 2 10 0.11 50.61 6.25 0.29 61.55
R = 20, C = 1, λ = 5, a = 15, b = 0.5 10 0.06 73.06 7.75 0.12 73.90
R = 20, C = 1, λ = 9.5, a = 7.5, b = 0.5 10 0 0 12.83 0.25 165.10
R = 20, C = 5, λ = 5, a = 7.5, b = 0.5 10 0.36 74.18 11 0.32 74.33
R = 20, C = 1, λ = 5, a = 15, b = 2 10 0.06 43.06 6.25 0.2 53.62
R = 20, C = 1, λ = 9.5, a = 15, b = 2 10 0 0 10.93 0.25 121.82
R = 20, C = 5, λ = 9.5, a = 15, b = 2 10 0 0 13.3 0.38 103.16
R = 20, C = 1, λ = 9.5, a = 7.5, b = 2 10 0 0 10.93 0.33 129.62
R = 20, C = 1, λ = 9.5, a = 15, b = 0.5 10 0 0 13.3 0.15 157.32
R = 20, C = 5, λ = 5, a = 7.5, b = 2 10 0.36 44.18 7.75 0.48 48.16
R = 20, C = 5, λ = 5, a = 15, b = 0.5 10 0.22 66.08 11.5 0.18 66.40
R = 20, C = 5, λ = 5, a = 15, b = 2 10 0.22 36.08 7.75 0.33 39.47
R = 20, C = 5, λ = 9.5, a = 15, b = 0.5 10 0 0 18.05 0.24 147.20
R = 20, C = 5, λ = 9.5, a = 7.5, b = 0.5 10 0 0 17.1 0.41 155.45
R = 20, C = 5, λ = 9.5, a = 7.5, b = 2 10 0 0 13.3 0.53 112.17

Table B.17: Perfect Escalation Model- Optimal Model Parameters: Fixed Service
Rate, Service Rate Is A Decision


