
Automation of PRISM Algorithm for Prediction of

Protein-Protein Interactions

by

Pelin Atıcı

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Sciences and Engineering

Koc University

August 2013

Koc University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Pelin Atıcı

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Date:

Prof. Attila Gürsoy (Advisor)

Prof.Özlem Keskin

Assoc. Prof. Engin Erzin

iii

ABSTRACT

Protein - protein interactions among numerous proteins are the building blocks of the

biological networks. To understand the function of a cell, it is necessary to examine biological

processes occuring in the cell. Many biological processes in the cell depend on these

biological networks, thus researchers in the field of biology always give attention to these

networks and interactions. There are many experimental methods available to predict protein-

protein interactions. Also, many computational methods have been developed for this aim,

especially in recent years.

In this project, we present a web server for the automation of a protein-protein

interaction prediction algorithm. PRISM (Protein Interactions by Structural Matching)

algorithm predicts interactions among various proteins by using structural and evolutionary

similarity to known template interfaces. Our software system constructs a relational database

of pre-calculated protein-protein interaction predictions, and the template and target structures

used to calculate these predictions. It involves three sections which are templates, targets and

predictions. Contents of the database can be queried using the appropriate PRISM web page.

Also, visualization of these template and target structures are generated using Jmol plug-in in

our web server.

 Also, another important aim of our web server is to run the PRISM algorithm from

scratch when the protein structures in hand are not present in the relational database. In the

case of such a situation, the steps of the algorithm are executed in an orderly fashion and all

manual operations between these steps are eliminated. Computation of PRISM algorithm can

take a lot time and effort. Using a 4-tier web database application architecture and a message

queue system, many computations can run concurrently and users do not have to do any

manual operations during the computation aside from input their protein structures. Since the

manual operations are eliminated, users do not have to wait one step to finish to continue to

the next step of the algorithm.

iv

ÖZET

Çok sayıda protein arasındaki etkileşimler biyolojik ağların yapıtaşlarını oluşturur. Bir

hücrenin fonksiyonunu anlamak için, hücre içinde gerçekleşen biyolojik süreçleri incelemek

gerekir. Hücredeki birçok biyolojik süreç de biyolojik ağlara bağlıdır. Bu yüzden biyoloji

alanındaki araştırmacılar her zaman bu ağlara ve etkileşimlere önem vermiştir. Proteinler

arasındaki etkileşimleri öngören birçok deneysel yöntem mevcuttur. Ayrıca özellikle son

yıllarda, bu amaç için birçok hesaplamalı yöntem de geliştirilmiştir.

Bu projede, protein etkileşimlerini tahmin etmek için kullanılan bir algoritma bir

internet sunucusu aracılığıyla otomatik hale getirilmiştir. PRISM algoritması, bilinen şablon

protein arayüzlerine yapısal ve evrimsel benzerlik kullanarak çeşitli proteinler arasındaki

etkileşimleri tahmin eder. Bizim yazılımsal sistemimiz, önceden hesaplanmış protein

etkileşimlerinden ve bu etkileşimleri hesaplamak için kullanılan şablon ve hedef yapılarından

oluşan ilişkisel bir veritabanı oluşturur. Yazılımsal sistem; şablonlar, hedefler ve tahminler

olmak üzere üç bölümden oluşur. Veritabanının içeriği uygun PRISM internet sayfası

kullanılarak sorgulanabilir. Ayrıca, JMol eklentisi kullanılarak şablon ve hedef yapıların

görselleştirilmesi sağlanmıştır.

İnternet sunucumuzun bir başka önemli amacı, mevcut protein yapıları ilişkisel

veritabanımızda bulunmadığı zaman PRISM algoritmasını en baştan çalıştırmaktır. Bu

durumda, algoritmanın adımları sırasıyla uygulanır ve bu adımlar arasındaki elle yapılan

bütün işlemler elenmiş olur. PRISM algoritmasının hesaplaması fazla zaman alabilir ve çaba

gerektirebilir. Dört katmanlı bir internet veritabanı uygulama mimarisi ve mesaj sıra sistemi

kullanılarak birçok hesaplama aynı anda çalışabilir ve kullanıcılar protein yapılarını girmek

harici elle yapılan herhangi bir işlem yapmak zorunda kalmazlar. Elle yapılan işlemler

elendiği için, kullanıcılar algoritmanın bir sonraki aşamasına geçmek için önceki aşamanın

bitmesini beklemek zorunda kalmazlar.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Dr. Attila Gürsoy and Prof. Dr. Özlem Keskin for

their comments and support on my thesis. I would also like to thank Assoc. Prof. Engin Erzin

for agreeing to be in my thesis jury and for his valuable feedback.

I would like to thank all my friends in Koc University; especially my housemate Aslı

Pınar Yapıcı, my source of entertainment in the office, Büşra Topal, Tuğçe Yıldızoğlu and

Engin Çukuroğlu, and my other office mates Serap Beldar, Emine Güven Mayorov, Selin

Karagülle, Güray Kuzu who have always been eager to help and share their knowledge during

the last three years.

Lastly, I would like to express my gratitude to my dear sister, my mother and my father

who have always supported me during all my education.

vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

NOMENCLATURE.. x

Chapter 1: INTRODUCTION .. 1

Chapter 2: RELATED WORK... 3

2.1 Protein Interfaces ... 3

2.2 Protein-Protein Interaction Prediction .. 4

2.3 Web Servers and Databases .. 5

2.3.1 Web Servers for Prediction of Protein-Protein Interactions 5

2.3.2 Web Servers that are Similar from Usage and Software Architecture 7

2.3.3 The Old PRISM Web Server ... 12

2.4 Web-Database Application Architecture (3-tier) ... 13

Presentation Layer: .. 14

Business Layer:.. 14

Data Layer:... 15

2.5 Interprocess Message Queues ... 15

2.6 Contributions of the Thesis ... 17

vii

Chapter 3: METHODS .. 19

3.1 PRISM Algorithm .. 19

3.1.1 Template Dataset .. 19

3.1.2 Target Dataset ... 20

3.1.3 The Algorithm .. 21

3.1.4 PRISM Protocol ... 23

3.2 PRISM’s Web-Database Application Architecture (4-tier) .. 24

Chapter 4: RESULTS .. 27

4.1 Design of PRISM ... 27

4.1.1 Database Design ... 28

4.1.2 Application Architecture Design ... 33

4.1.3 Web Interface Design... 36

Chapter 5: CONCLUSION ... 47

BIBLIOGRAPHY ... 49

viii

LIST OF TABLES

Table 4.1 Description of ‘templates’ table .. 30

Table 4.2 Description of ‘targets’ table ... 30

Table 4.3 Description of ‘predictions’ table .. 31

Table 4.4 Description of ‘jobs’ table ... 32

Table 4.5 Description of ‘onlineRun’ table ... 33

Table 4.6 Description of ‘simpleCount’ table ... 33

ix

LIST OF FIGURES

Figure 2.1 Example of a protein interface [11]. The residues which are shown with surface

representation instead of ribbon representation indicate the interacting residues (interface

area).. 4

Figure 2.2 Three tier architecture ... 14

Figure 2.3 Simple Point-to-Point Messaging .. 16

Figure 2.4 Simple operation of RabbitMQ. “P” represents “Producer”, “C” represents

“Consumer”. Messages published by producers are sent to a queue. Messages are stored on

the queue. Consumers wait to receive messages. .. 17

Figure 3.1 Construction of template dataset [34] .. 20

Figure 3.2 Construction of target dataset [34]... 21

Figure 3.3 The algorithm of prism [37] ... 22

Figure 3.4 Web-Database Application Architecture of PRISM web server. Note that Business

Layer is separated into two parts as Application Logic and Compute Server. 25

Figure 4.1 ER Diagram of PRISM Database .. 29

Figure 4.2 Application Architecture Design of PRISM Web Server... 34

Figure 4.3 Templates Page ... 37

Figure 4.4 Jmol Visualization of a Template (1c4z)... 38

Figure 4.5 Targets Page .. 39

Figure 4.6 Visualization of a Target (1i7k) ... 40

Figure 4.7 First two sections of the Predictions page ... 42

Figure 4.8 Page of all Predictions present in PRISM ... 43

Figure 4.9 Last three sections of the Predictions page ... 44

Figure 4.10 Results Page .. 45

Figure 4.11 Partners of Template Interfaces page .. 46

x

NOMENCLATURE

ASA Accesible Surface Area

GUI Graphical User Interface

HTML HyperText Markup Language

PDB Protein Data Bank

PHP HyperText Preprocessor

PRISM Protein Interactions by Structural Matching

WWW World Wide Web

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Proteins rarely act in isolation, and the complexity of organisms arise mostly from the

interactions between the proteins (genes) of an organism rather than the number of proteins in

it [1, 2]. Protein-protein interactions occur when two or more proteins bind together to carry

out their biological function.

However, determining such a large scale problem is very hard both from the experimental

view and from the computational view. Computational methods can guess the protein-protein

interactions at different levels: they can predict the binding sites of proteins, find specific

residues contributing the interaction, and design specific interfaces. Further, computational

‘docking’ [3-5] methods can predict protein-protein interactions. However, even without the

computational costs, if there is a lack of biochemical information about the interaction sites, it

is very difficult to predict the native interaction because there are many energetically-

favorable ways for proteins to interact. Docking becomes much more challenging and

computationally demanding if we want to apply it on the whole genome when we do not

know which proteins interact. An alternative strategy is to apply structural similarity to an

interface of a known protein complex.

In light of the information that the interface regions of proteins are more conserved than

their overall structures [6], and also protein pairs with different structures and functions can

associate via similar interface architectures [7-9], using interface structures can produce

promising models for protein complexes even in the absence of global sequence or fold

similarity. PRISM (Protein Interactions by Structural Matching) is an algorithm for finding

interactions between the proteins based on this idea. In this work, we design a web server to

predict interactions between input target proteins using PRISM algorithm.

Chapter 1: Introduction 2

Related work about the subject, which includes definition of protein interfaces and

methods to predict protein-protein interactions, is presented in Chapter 2. In this section, web

servers about proteins which are similar to the PRISM web server on content and design is

explained too. Lastly, typical web-database applications and interprocess message queue

systems are reviewed.

In Chapter 3, we present the details of the PRISM algorithm and web-database

application architecture used in the design of the web server. Firstly, we describe the

construction of datasets that are used in the algorithm. Then PRISM protocol, a downloadable

protocol using PRISM algorithm to predict interactions between proteins, is explained in

terms of usage. With this, we aim to show the steps that are eliminated when using the web

server. Lastly, the web-database application architecture used in the design of PRISM web

server and its difference from other typical architectures is explained.

The details about the implementation of web server and the result pages are provided in

Chapter 4. The entity relationship diagram of the PRISM database and description of the

tables is presented. Then, different sections of PRISM web server is described with

screenshots and instructions. Example pages of visualization, query and online run are

provided.

In the final chapter, a brief summary of the work done in this thesis is given.

Chapter 2: Related Work 3

Chapter 2

RELATED WORK

This chapter includes information about the subjects which are necessary to understand

the studies in this thesis. These subjects are about protein interactions and web servers that are

similar in content to the web server implemented in the scope of this thesis.

2.1 Protein Interfaces

Proteins rarely function seperately. Instead, they generally interact to fulfill their

biological functions and form protein complexes. The portion that takes part on the interaction

of the protein is called the interface.

An interface is defined as interacting residues and nearby residues, respectively. If the

distance between any two atoms belonging to two residues from different chains is less than

the sum of their van der Waals radii plus 0.5 A, these two residues are defined as 'interacting';

if the distance between the Cα of a non-interacting residue and an interacting residue in the

same chain is under 6 A, the noninteracting residue is flagged as a 'nearby' residue [10]. An

example of an interface can be seen in Figure 2.1.

Chapter 2: Related Work 4

Figure 2.1 Example of a protein interface [11]. The residues which are shown with surface

representation instead of ribbon representation indicate the interacting residues (interface

area).

2.2 Protein-Protein Interaction Prediction

The interactions among proteins rather than the number of proteins in an organism

indicate the complexity of it. Hence, understanding the interaction between pairs or groups of

proteins is important to predict the function of proteins. There are different experimental

methods to predict protein-protein interactions such as yeast two-hybrid systems, affinity

purification/mass spectrometry, protein-fragment complementation assays (PCA), protein and

DNA microarrays, fluorescence resonance energy transfer (FRET) and Microscale

Thermophoresis (MST).

http://en.wikipedia.org/wiki/Two-hybrid_screening
http://en.wikipedia.org/wiki/Protein_microarray
http://en.wikipedia.org/wiki/Protein_microarray
http://en.wikipedia.org/wiki/Microscale_Thermophoresis
http://en.wikipedia.org/wiki/Microscale_Thermophoresis

Chapter 2: Related Work 5

However, experimental methods sometimes lead to false positives or false negatives.

They are biased towards certain protein types and cellular localizations. Also, they tend to

detect higher affinity interactions since they are more stable and last for long periods of time

whereas lower affinity interactions behave in the opposite direction. As might be expected,

these methods also have a high cost in both time and expense. The limitations of the

experimental methods create the need of the computational methods for predicting protein-

protein interactions.

In recent years, computational methods are also developed to predict protein-protein

interactions. These methods can guess the protein-protein interactions at different levels: they

can predict the binding sites of proteins, find specific residues contributing the interaction,

and design specific interfaces. Further, computational ‘docking’ methods can predict protein-

protein interactions. A great number of computational tools have been developed based on the

assumption that proteins which are functionally related most probably interact physically.

Computational approaches can be classified in five categories: genomic methods,

evolutionary relationship, protein structure based methods, domain-based methods, protein

sequence based methods.

2.3 Web Servers and Databases

This section is about the similar web servers to the one implemented in the scope of

this thesis in terms of content and implementation. This list includes web servers which

predict interactions between proteins with different methods, implement docking between

protein structures, predict specific residues of proteins(e.g. ligand-binding, catalytic, interface

residues) or visualize gene networks. They generally use PDB formatted files for input

proteins and implement a job queue system to run jobs in order.

2.3.1 Web Servers for Prediction of Protein-Protein Interactions

PredUS

PredUS is a web server that predicts protein-protein interfaces of potential locations at

which proteins interact with other proteins [12]. It uses template-based prediction. Given a

query protein, an interface of its inferred based on some similarity to another protein. (Given a

Chapter 2: Related Work 6

query protein, PredUS ‘map’ interaction sites of structural neighbors involved in a complex to

residues on the surface of the query.)

PredUS server’s algorithm is composed of two steps. In the first step, structural

neighbours are found using a structural alignment program. After that, contact frequencies of

all residues of the query protein are compared with structural neighbours.

Users can enter input protein structure as a PDB formatted file or a PDB code. After

PredUS validates the input structure, users can either wait or provide an e-mail adress and job

id to retrieve the results. As an output, list of residues and their scores downloadable in text

format are generated. Users also visualize individual predictions in which resudies are colored

according to the residue score.

PredUS is accessible from http://bhapp.c2b2.columbia.edu/PredUs/.

PRED_PPI

PRED_PPI is a web server for predicting protein-protein interactions with probability

assignments [13]. It uses a sequence based approach to predict interactions among proteins.

Users enter two protein sequences in FASTA format, chooses an organism-specific

predictor(database) for the query proteins. Then, a probability threshold is chosen between 0

and 1 whose default value is 0.5.

The result page reports whether the entered proteins interact or not under the chosen

probability threshold. Also, users are provided with the actual probability of the interaction

between their query proteins.

PRED_PPI is available at http://cic.scu.edu.cn/bioinformatics/predict_ppi/default.html.

Struct2Net

Struct2Net is a web server for predicting protein-protein interactions using a structure-

based approach [14]. It combines a threading approach for template alignment with a machine

learning approach to estimate a score for the interaction.

Users can directly retrieve the pre-computed predictions for the most commonly

studied organisms (saccharomyces cerevisiae, drosophila melanogaster, homo sapiens) by

entering gene name/id or a keyword. For the other organisms, users can query by entering

http://bhapp.c2b2.columbia.edu/PredUs/
http://cic.scu.edu.cn/bioinformatics/predict_ppi/default.html

Chapter 2: Related Work 7

protein sequences in FASTA format. Users also can upload a file containing multiple

sequences in FASTA format.

Users have the option to get the results fast but approximately using orthology over

pre-computed interactions and slower but with full computation. This option is available in

the user interface page. When querying the pre-computed interactions, results are returned

instantaneously. If users select fast-but-approximate option, completion of the submitted job

only lasts till twenty seconds. Slower but full computation lasts for fourty five mins. Users

can enter their e-mail adresses for the jobs with full computation to retrieve the link of the

results page when the run is finished. Also, users can check the ongoing job’s progress using

job id from the ‘Fetch job’ section.

In the results page, for the querying pre-computed interactions, each prediction with its

confidence score is listed. Also, there are links for each gene to view their GO annotations.

For predictions by threading sequences onto all templates, the output page shows the greatest

probability for the interaction between the query proteins. For a potential interaction,

template-sequence alignments for best-fit complex templates are shown along with their

confidence scores and threading details. Confidence scores are between 0 and 1, where 0

indicates minimum confidence and 1 indicates maximum confidence.

Struct2Net is available at http://groups.csail.mit.edu/cb/struct2net/webserver/.

2.3.2 Web Servers with Similar Usage and Software Architectures

Kinari-Web

Kinari-Web is a web server for performing rigidity and flexibility analysis of proteins

[15]. It predicts which groups of atoms (rigids clusters) are likely to move together using only

inter-atomic connectivity and interaction information as different from molecular dynamics.

Kinari-Web is also used for visually exploring rigidity of proteins by using a Jmol-based 3D

visualizer. Kinari-Web uses PDB formatted file for the calculations which contains protein

structure data. Users can either upload a PDB formatted file or they enter a PDB code and

Kinari-Web retrieves PDB file from the Protein Data Bank.

http://groups.csail.mit.edu/cb/struct2net/webserver/

Chapter 2: Related Work 8

In the running phase, Kinari-Web analyzes the protein given and show some results

about the protein to the users. Users can change some variables or modeling options and

choose to recalculate or remodel interactions.

Users can download list of the rigidity analysis results (# of clusters, size of largest

cluster etc.) after running phase or they can visualize the rigid clusters with different options.

Kinari-Web is accesible from http://kinari.cs.umass.edu.

PINTA

PINTA is a web server which identifies candidate genes related to a disease (gene

prioritization problem) [16]. It uses the assumption that strong candidate genes tend to be

surrounded by many differentially expressed genes and performs candidate gene prioritization

starting from a pre-defined set of candidate genes.

PINTA web server completes its function in four steps. In the first step, the organism

of interest is chosen among five organisms (human, mouse, rat, worm, yeast) that are

available. In the second step, users choose the type of ranking whether it is genome-wide

ranking or ranking the list of candidate genes. In the third step, users decide how to compare

gene ranks. The last step involves choosing to use exemplary data or uploading expression

data specific to a disease. After these steps, the method can be run with default setting or

advanced setting. In advanced setting section, users can choose the ranking strategy and

network type. As a result, PINTA generates a candidate gene ranking table that is

downloadable.

PINTA is accesible from http://www.esat.kuleuven.be/pinta/.

FlexPepDock

FlexPepDock is a web server which uses a high resolution peptide docking protocol

for the modeling of peptide-protein complexes [17]. It is important since peptide-protein

interactions are common among the interactions in the cell.

The input for the web server is a PDB file of a complex between a protein receptor and

peptide. After submitting the input file, users can either wait for the results or enter an e-mail

adress to be notified when the results are ready.

The server will dock the peptide starting from the initial conformation in the submitted

file. It will then rank the total 200 created models and provide users with the top 10 results

http://kinari.cs.umass.edu/
http://kinari.cs.umass.edu/
http://kinari.cs.umass.edu/
http://www.esat.kuleuven.be/pinta/
http://www.esat.kuleuven.be/pinta/
http://www.esat.kuleuven.be/pinta/
http://www.esat.kuleuven.be/pinta/
http://www.esat.kuleuven.be/pinta/
http://www.esat.kuleuven.be/pinta/
http://www.esat.kuleuven.be/pinta/

Chapter 2: Related Work 9

with their scores and a plot of the energy landscape sampled by these 200 models. Another

important feature of the web server is that it allows the users to see the status of their

submitted jobs (queued, docking, failed, completed etc.). Also, it shows how many models

have been created instantaneously in the job queue since the start of the submitted job.

FlexPepDock is accesible from http://flexpepdock.furmanlab.cs.huji.ac.il/.

Firestar

Firestar is a web server for predicting catalytic and ligand-binding residues in protein

sequences [18, 19]. It predicts functional residues from the information extracted from

remotely related structures. Alignments between query sequences and FireDB [20] templates

are used to predict functional information using HHsearch [21] and PSI-BLAST [22]

alignment search tools.

Users can enter a PDB code, a PDB coordinates file or a FASTA sequence as input.

Also, they can change the e-value for the PSI-BLAST tool on the input screen. After

submitting the input structure, users can wait for the results or enter an e-mail adress to

retrieve the results later. The alignments generated are evaluated using SQUARE [23] to

predict the functionally important resudies in the input protein structure.

As an output, a text summary which includes information for each predicted catalytic

and bindig site, a static image of local alignment results (if input is a structure, structural

alignment results) and a visualization of catalytic and ligand-binding residues are shown.

Firestar is available at http://firedb.bioinfo.cnio.es/Php/FireStar.php.

PRUNE and PROBE

PRUNE and PROBE are two web services for protein-protein docking [24]. Docking

is also important for understanding the protein-protein interactions. Protein-protein docking

algorithms generally includes four major tasks:

1. Generating of docking posses

2. Select a subset of posses

3. Structural refinement and scoring of selected posses

4. Ranking for the final assesment

PRUNE web server is used for the first and second tasks, whereas PROBE web server

is used for the third and the forth tasks.

http://flexpepdock.furmanlab.cs.huji.ac.il/
http://firedb.bioinfo.cnio.es/Php/FireStar.php

Chapter 2: Related Work 10

PRUNE:

PRUNE web server is used to select a subset of docking poses generated during

sampling search using an edge-scoring function.

Users input a receptor coordinate file (PDB format), a ligand coordinate file (PDB

format) and a file containing transformation matrix. Then, they choose the format of the

transformation matrix (FTDock,Z-DOCK PatchDock, GrammX). After entering the inputs,

users can wait or enter their e-mail adresses to retrieve the link of the result page later. The

result page outputs transformation matrices of the generated poses in the same format as the

input. Users can download the pruned poses and use a program to rank them. Also, there is an

option to forward these generated poses to the PROBE server to be scored and ranked by it.

PRUNE is available at http://pallab.serc.iisc.ernet.in/prune/.

PROBE:

PROBE web server is used to refine, score and rank selected docking posses. As input,

users may enter subset of poses generated by some docking technique or enter two unbound

protein molecules to dock. As in the PRUNE server, users can wait fort he results or enter

their e-mail adresses to retrieve the results later.

The results page includes a table of rank-sorted list of complexes with details on

individual parameters and the final PROBE score values. Each predicted complex can be

visualized using Jmol[25] software.

PROBE is available http://pallab.serc.iisc.ernet.in/probe/.

CSpritz

CSpritz is a web server for the prediction of protein disorder [26]. Disordered regions

are non-folding or partially folding regions in proteins and they also have a functional

importance.

As input, users enter single or multiple sequences in FASTA format by pasting the

sequences as text or uploading files. After that, they select the prediction type which can be

for short(x-ray) or long(disprot) disorder. In the running phase of the server, users can wait for

the job to finish or they can choose to be notified when the results are ready by giving their e-

mail adresses.

http://pallab.serc.iisc.ernet.in/prune/
http://pallab.serc.iisc.ernet.in/probe/

Chapter 2: Related Work 11

After users submit the job, a page that gives information about the current status of the job

opens and it is refreshed in every thirty seconds. When the job finished running, the results

are returned to the users on this page. These results include:

• Disorder plot (Residue index vs. Probability of disorder) as a PDF file

• Graph of homologues found (Residue vs. # of residues found in structural templates)

as a PDF file

• Disorder prediction (Disorder probabilities) as a text file

• Protein statistics (Total amino acids, total # of disordered residues, # of disordered

segments etc.)

• Statistics and graphs of each disordered segment as pdf and text files

CSpritz is accesible from http://protein.bio.unipd.it/cspritz/.

GeneMANIA

GeneMANIA is a web interface which generates hypotheses about gene function,

analyzes gene lists and prioritizes genes for functional arrays (Extend query genes with

functionally similar genes) [27]. It is mostly about visualization of gene networks.

The input to GeneMANIA is a list of genes. As advanced options, they can select the

desired network, network weighting method and the number of genes to return. The results

are loaded in a short time.

GeneMANIA extends the input gene list with the genes that are functionally similar

and visualize an interactive functional association network, illustrating the relationships

between genes (some relationships can be eliminated). On a side panel, networks of different

types, genes and functions in the displayed network are listed and categorized. Users also can

save the results of their analysis by the drop-down menu above the network. The network can

be saved as text or vector image and genes, functions, interactions, attributes, search

parameters can be saved, likewise.

GeneMANIA is available at http://www.genemania.org/.

http://protein.bio.unipd.it/cspritz/
http://protein.bio.unipd.it/cspritz/
http://protein.bio.unipd.it/cspritz/
http://protein.bio.unipd.it/cspritz/
http://protein.bio.unipd.it/cspritz/
http://protein.bio.unipd.it/cspritz/
http://protein.bio.unipd.it/cspritz/
http://www.genemania.org/
http://www.genemania.org/
http://www.genemania.org/

Chapter 2: Related Work 12

2.3.3 The Old PRISM Web Server

The old PRISM Web Server is a website which is used to analyze protein-protein

interfaces and protein-protein interactions [28]. It consists a database of protein interface

structures derived from the Protein Data Bank (PDB) and a list of similarity matchings.

Unlike other web sites which are explained in the previous sections, PRISM is mostly

a database of known protein-protein interactions. Users can query the contents of PRISM’s

database using different sections of the web server. The main way of accessing the contents of

the database is by querying for a particular interface, target protein, or similarity matching,

and then retrieve the specific details of these structures [29].

The main pages of the web server can be categorized into three types: 1) search pages,

2) result pages, and 3) details pages. Search pages contain a query form for users to search

different entities. According to the entity type, the parameters of the search form differ. Result

pages contains the results of the users’ query. Contents of the results pages also differ

according to the entity which is queried. After users select an entity among the results, details

of this chosen entity are shown in details page. The details shown are also different for every

type of entity chosen as expected.

In the aspect of usage, old PRISM web server contains three sections which are

interfaces, targets and predictions. On the interfaces page, users can browse through clusters

or template interfaces. Also, they can query the interfaces dataset using the search form. On

targets page, users can list all targets present in the database or query a specific target protein

by using the search form. Under the predictions section of PRISM web server, users can

browse all predictions present in the database or search a prediction for specific proteins.

The old PRISM web server can also be used to predict new interactions between

proteins. But this feature is limited to only one protein. In the Predictions section, Online

Calculation part users enter a four character PDB id or the PDB structure file of their input

protein. Then the web server begins to run PRISM protocol (see Section 3.1.4) for this target

protein. After that, users should wait for the results without moving to any other section of the

web server. If they close the current page where the calculation runs, then the results are

inaccesible. Also different users can not access the web server during any calculation process.

Chapter 2: Related Work 13

2.4 Web-Database Application Architecture (3-tier)

In software engineering, web-database applications use different tiers to logically

separate the presentation, business (application processing) and data management functions

into different layers. This type of architecture are referred to as multi-tier architecture (n-tier

architecture).

The most commonly used type of multi-tier architectures is three-tier architecture.

Visual overview of this architecture can be seen in Figure 2.2.

Three-tier architecture is a client-server architecture in which the user interface,

functional process logic (business rules), data storage and access are seperate modules [30]. In

this kind of architecture, each tier should be independent from the others and should not

include any dependency to other tiers at implementation. It means that these three tiers should

not communicate.

The main advantage of using this type of architecture is that it allows any of the three

tiers to be upgraded or altered according to the changing requirements of the application. It is

also faster to develop such a system since work needs to be done can be distributed among the

people with different duties (web designer for presentation, developer for business logic, db

admin for data model).

Three-tier architecture is also the most secure architecture since the front-end users

can not access the data because of the middle layer. By separating the business logic from the

client, the client is only handles the presentation logic. Thus, only little communication is

needed between the presentation and middle layer which makes front-end users to see and

provide information fast and with no delay. An example of such a “thin” client is an Internet

browser [31].

Chapter 2: Related Work 14

Figure 2.2 Three tier architecture

Presentation Layer: It is the top most level of the three-tier application architecture which

is often referred as GUI (graphical user interface), client view or front end. All interactions

with the front users are handled in this layer. It communicates with the business tier and

output results to the users through the browser/client architecture. This layer should not

include any code about business logic or data access.

Business Layer: It is the middle layer of the three-tier application architecture which is often

referred as middleware or back-end. This layer includes some set of rules for processing

information. It communicates with both presentation layer and data access layer. It determines

the logic to make the data in the data layer meaningfully available for the presentation layer.

Chapter 2: Related Work 15

In a web application this layer is a dynamic content processing and generation level

application server (e.g. Java EE, ASP.NET, PHP). This layer should not include any code

about presentation or data access.

Data Layer: It is the bottom level of the three-tier application architecture which is

sometimes called as back-end. It handles the storage and retrieval of data from a database or

file system. In a web application this layer is both a database and a database management

system. This layer should not include any code about presentation or business logic.

2.5 Interprocess Message Queues

To create a scalable web server it is important to process asynchronous jobs. Using a

message queue implementation, it is possible to put the jobs in order and process them when

their time comes. Message queue systems use a queue for messaging (e.g. delivering content

between processes) and provide asynchronous inter process communication. In this type of

communication, one process acts as a client and sends a message to a specific queue. This

queue stores messages until they are ready to be retrieved by the recipient. Since it is an

asynchronous communication, the two processes (sender and receiver of the message) do not

need to interact with the message queue at the same time. The other process acts as a server,

retrieves the message from the specified queue and handles it. The message queue system

takes care of everything in between. A simple overview of such a system can be seen in

Figure 2.3.

Chapter 2: Related Work 16

Figure 2.3 Simple Point-to-Point Messaging

Message-oriented middleware is a kind of implementation of message queue systems.

It is a software or hardware platform for sending and receiving messages between systems.

These implementations are also called as message brokers. The middleware creates a

distributed communications layer and separates application developers from the details and

complexity of master-slave nature of client/server mechanism. The other advantage of

message-oriented middleware systems is that they support asynchronous communication.

With this feature, if the receiver fails for any reason the sender can continue sending messages

without affected of this situation. The messages sent will be collected in the message queue

for later processing. The main disadvantage of these systems is that they require an extra

component in the architecture which is the message broker.

There are a lot of open source message-oriented middleware systems in the market.

Some examples of these are OpenAMQ, Apache QPid, Apache ActiveMQ, JORAM and

RabbitMQ. RabbitMQ [32] came to the fore with its scalability, stability and simplicity

among them. It is a robust messaging system (message broker) based on the AMQP

(Advanced Message Queuing Protocol) [33]. AMQP is a binary protocol and defined set of

rules to transmit application messages between two systems.

Chapter 2: Related Work 17

Figure 2.4 Simple operation of RabbitMQ. “P” represents “Producer”, “C” represents

“Consumer”. Messages published by producers are sent to a queue. Messages are stored on

the queue. Consumers wait to receive messages.

The basic working principle of RabbitMQ can be seen in Figure 2.4. Producer is a

program that sends messages and consumer is a program that mostly waits for messages. A

queue is like a message box and it lives inside RabbitMQ. It has no limit for the storage of

messages. In a typical message-queueing implementation, a developer defines a named

queue after configuring message broker. After that, the producer (an application that

publishes messages) send message to this queue and RabbitMQ stores the messages until a

receiving application connects. Then, the consumer (an application that processes messages)

receives messages from that queue and processes them properly.

2.6 Contributions of the Thesis

Within this work, we implemented a web server which is mainly used to predict

protein-protein interactions. To carry out this function, we automated an existing prediction

algorithm and a protocol which uses this algorithm for ease of use and saving time. We

believe that this research offers the scientific community to understand interactions between

proteins with a useful tool.

Recapitulating, this work has made the following contributions:

 We eliminated all manual operations to run the PRISM protocol (see Section 3.1.4)

which uses the PRISM algorithm for the calculation of interactions. These manual

operations can be changing directory, giving parameters by hand when running some

Chapter 2: Related Work 18

python scripts, copying some result files to another folder to be able to continue to the

next step, replacing some files with the files prepared by hand.

 We removed the necessity of installing any external program before beginning to use

the PRISM protocol. By doing this, we eliminated the possibility of version

mismatches of compilers and users’ making mistakes during the installation process.

By this, we prevented the disfunction of external programs.

 We implemented a message queue system, aiming for to separate the database

operations and the computation process from the application logic. This is done

because computation of the algorithm can take a long time according to the number of

target proteins and the template set used. Since calculation takes a lot of time, there is

a bottleneck in the middle layer of the architecture. To eliminate this bottleneck,

computation part is separated from the application logic and users are saved from the

necessity of waiting.

 We have provided concurrent access of more than one users to the web server at the

same time and during any calculation process. As mentioned, calculation can take a

long time according to the number of input proteins. Being forced to wait for a

calculation to finish can cause a lot of difficulty to the users when using the web

server. By implementing a job queue system, we eliminated such a situation.

Chapter 3: Methods 19

Chapter 3

METHODS

Prediction of protein-protein interactions between two or more protein structures is a

current and important problem as discussed in Section 2.2.

In this work, we find the interactions between two proteins in a way that is fast and easy

to use. To accomplish this goal, we designed a web server which uses PRISM algorithm

(details are explained in Section 3.1) to predict protein-protein interactions. It is a standart

web-database application which uses a job queue system. The algorithm, the job queue system

and the general architecture used in the implementation of PRISM web server will be

presented next.

3.1 PRISM Algorithm

PRISM (Protein Interactions by Structural Matching) [10, 28] is a system which

employs a novel prediction algorithm for protein-protein interactions. It predicts interactions

and binding residues between target proteins by using a structural and evolutionary similarity

to known template interfaces. The method consists of two components: rigid body structural

comparisons of target proteins to a set of protein-protein interfaces and flexible refinement

and scoring using a docking energy function [34].

PRISM uses two types of datasets: a template dataset and a target dataset. The first one

is a subset of a nonredundant dataset of known protein-protein interfaces derived from the

PDB; the second one is a set of the structures of protein chains in a target cellular pathway.

3.1.1 Template Dataset

As can be seen in Figure 3.1, for the construction of the template dataset, by using the

description for an interface, all interfaces between two protein chains obtained from protein

assemblies of all types available in the PDB database were extracted. As a result, 49,512 two-

Chapter 3: Methods 20

chain interfaces are obtained and grouped into 8,205 clusters by their architectural similarity.

Each cluster includes a representative interface structure and members similar to the

representative interface [35].

Figure 3.1 Construction of template dataset [35]

3.1.2 Target Dataset

Figure 3.2 shows the work flow of the construction of the target dataset. Firstly, all the

polypeptide chains and complexes existing in the PDB were extracted. Every pair of member

structures in this dataset is used for testing for potential interactions. A list of 10,158 proteins

is obtained by downloading the set of proteins obtained by applying a sequence identity filter

of 50% to all existing protein structures in the PDB. Then, the multimeric proteins are split

into constituent chains and the target dataset consists of 18,698 structures [35].

Chapter 3: Methods 21

Figure 3.2 Construction of target dataset [35]

3.1.3 The Algorithm

 Since protein pairs with different global structures and different functions can

associate via similar interface architectures [8], using interface structures can produce

promising models for protein complexes even in the absence of global sequence or fold

similarity.

Chapter 3: Methods 22

The algorithm of PRISM arises from this concept: if the two complementary sides of a

template interface are similar to the surfaces of two target proteins, then these two proteins

can interact with each other using this template interface architecture. Visual explanation

and work flow of the algorithm can be seen in Figure 3.3.

The algorithm consists of four phases:

1. The surface regions of target proteins are extracted.

2. The similarity of each side of a known interface to monomer surface regions is

evaluated by using structural alignments (MultiProt) [36, 37].

3. The two chains whose surface regions are similar to the two parts of the template

interface are transformed onto this template forming a complex structure, and the solution is

assessed.

4. Flexible refinement of the rigid docking solutions of MultiProt is done to resolve

steric clashes, and to rank the putative complexes by the global energy by FiberDock [34].

The predicted protein complexes are ranked according to these results obtained from

FiberDock.

Figure 3.3 The algorithm of prism [38]

Chapter 3: Methods 23

In the surface extraction step, the Naccess program [39] is used. It is a method based

on the idea of rolling a probe (solvent molecule) of given size on a van der Waals surface. The

accessible surface area (ASA) of an atom is defined as the area on the surface of a sphere of

radius R, which is given by the sum of the van der Waals radius of the atom and the chosen

radius of the solvent molecule.

MultiProt [36, 37] is a program that evaluates the multiple structural alignments of

proteins. It finds the common geometrical cores between the input molecules. Unlike most of

the existing methods, MultiProt does not require that all the input molecules participate in the

alignment. Actually, it efficiently detects high scoring partial multiple alignments for all

possible number of molecules from the input. The final structural alignment can either

preserve the sequence order (like sequence alignment), or be sequence order independent.

To rank the predicted complexes, FiberDock (an efficient method for flexible

refinement and rescoring of rigid-body protein-protein docking solutions) [34, 40] is used.

The method models both side-chain and backbone flexibility and performs rigid body

optimization on the ligand orientation. The backbone and side-chain movements are modeled

according to the binding van der Waals forces between the receptor and ligand. The method is

able to model both global and local conformational changes, such as opening of binding sites

and loop movement. After refining all the docking solution candidates, the refined models are

re-scored according to an energy function.

3.1.4 PRISM Protocol

PRISM Protocol is a downloadable protocol which uses PRISM algorithm to find

interactions between proteins. It is available at http://prism.ccbb.ku.edu.tr/prism_protocol/ . It

is a zip package consisting collections of programs which include Python scripts, some

external tools like MultiProt, FiberDock. It predicts interactions between a set of proteins in

four steps as in the PRISM algorithm. For these four steps, there are four different folders and

four different python scripts.

Before beginning to run PRISM protocol, users should install some external programs

in the respective folder by following their installation guides and obtain the executables of

these programs. After that, users decide whether they want to use the default template set or a

customized template set to predict interactions between their target proteins. The default

template set is directly available in the PRISM protocol package. If users want to use their

http://prism.ccbb.ku.edu.tr/prism_protocol/

Chapter 3: Methods 24

own template set, they should construct it according to the specifications. There are python

scripts available also for this generation process. After the template set is ready, users prepare

their target protein structures. Target protein structure files in PDB format can be downloaded

manually or a python script can be run to download them automatically by listing them in a

file.

After the preparation of template and target structures, the protocol can be run by

executing four python scripts for the four steps in the algorithm. In the first phase, users go to

the respective directory for the extraction of surfaces of target proteins. After putting the

target protein list file into the directory, related python script is run with different parameters

(working folders, number of target proteins etc.). When the surface extraction process is

finished, a file which contains the surface files’ paths should be copied to another folder for

the next step. In the second phase, a phyton script for structural alignments between template

interfaces and target structures is run. This script also needs some parameters. In the third

phase, another script is run to transform target proteins into a complex. In this step, if the

template set in use is not the default set, some replacements should be done with the files

created in the template preparation step before running the script. In the last step, flexible

refinement of docking solutions is done using a phyton script. When this step is finished

running, results will be available as text files in which every column indicate a value. Users

should be familiar with the meaning of each column to interpret the results.

3.2 PRISM’s Web-Database Application Architecture (4-tier)

Many web-database applications use 3-tier application architecture as discussed in

Section 2.4. This architecture is also used in the implementation of PRISM web server with a

slight difference. In PRISM architecture, the middle layer (logic tier) is divided into two

layers as application logic and compute server components. Therefore, it can be considered as

a 4-tier architecture. Visual diagram of the architecture can be seen in Figure 3.4.

As discussed in the previous section, it takes a lot of effort to run the PRISM

algorithm from the beginning to the end. In addition, computation of the algorithm can take a

long time according to the number of target proteins and the template set used. Since

calculation takes a lot of time, there is a bottleneck in the middle layer of the architecture. To

eliminate this bottleneck, computation part is separated from the application logic. The

Chapter 3: Methods 25

communication between these two components is provided by an interprocess message queue

system explained in Section 2.5.

Figure 3.4 Web-Database Application Architecture of PRISM web server. Note that Business

Layer is separated into two parts as Application Logic and Compute Server.

In the implementation of PRISM web server, RabbitMQ (See Section 2.5) is used.

Application logic speaks with the compute server through RabbitMQ. This is done as follows:

A phyton program sends messages to another python program through a queue named

“prism”. The other program receives messages from the queue, interpret these messages and

create jobs to send to the compute server. Jobs on the compute server are handled by Sun Grid

Engine which is an open source batch-queuing system.

This process takes place when the entered target proteins is not in our target dataset

and prism needs to be run from the beginning. In this case, computation takes a lot of time.

There are four steps and four different scripts to be run to predict the interactions between

input proteins. Data handling at these steps of PRISM is also hard. Manual operations

between these steps (see Section 3.1.4) are automated using the web server. The folders

needed are created using unique job ids to run more than one job concurrently.

Presentation
Layer

Database

Storage

Data Layer
Business
Layer

Application
Logic

Compute
Server

Message Queue
(RabbitMQ)

Web
UI

Chapter 3: Methods 26

The presentation layer and the data layer of the PRISM web server is similar to the

typical 3-tier web-database application architectures. Presentation layer includes the web user

interface. Front end users interact with the web server using this layer. After communicating

the middle layer, presentation layer presents results to the users. Data layer includes the

database and the storage (in PRISM’s case file system). This layer transmits information from

the database to the middle layer.

Chapter 4: Results 27

Chapter 4

RESULTS

4.1 Design of PRISM

PRISM’s architecture is a typical multitier (n-tier) web application architecture, which

is a 4-tier web application in our case as discussed in Section 3.2. The main functionality of

the PRISM web server is to provide to users to run the PRISM protocol automatically without

doing any manual operations. Other than that, contents of a relational database (PRISM

database) can be queired via WWW(World Wide Web) [41].

In the implementation, HTML, PHP, MySQL and Phyton technologies are used. To

create the web pages in PRISM web server, HTML(HyperText Markup Language) is used.

HTML is the main markup language for creating web pages and other information that can be

displayed in a web browser [42]. The World Wide Web is composed primarily of HTML

documents transmitted from web servers to web browsers. PHP is also used as embedded into

HTML in PRISM web server. PHP(HyperText Preprocessor) is an open-source scripting

language commonly used in web development [43]. It can be used on server-side scripting,

command line scripting and creating desktop applications but its main area of use is for

developing server-side applications. PHP supports all major operating systems and wide range

of databases including MySQL and this has an influence of choosing the PHP as a

programming language in the implementation of PRISM.

MySQL is used in the database component of PRISM web server. MySQL is the most

popular relational database management system [44]. The SQL part of ‘MySQL’ stands

for ‘Structured Query Language’. SQL is the most commonly used language to access

databases. MySQL provides multi-user access to more than one databases. In PRISM web

application, SQL statements are embedded into PHP codes which means that users do not

directly access to the database. They query the contents of the database via the web server

which is explained in Section 4.1.1. However, administrators can access and update the

Chapter 4: Results 28

database locally. For these administrative purposes, Phyton scripts are used. Phyton is a

object-oriented, high-level programing language with dynamic semantics (dynamic typing

and binding) [45].

4.1.1 Database Design

All information about template structures, target structures and predictions are kept in

a relational database. Using relational database to store information has some advantages. The

most crucial one is that it is easy to interpret information when it is stored in tables consisting

of rows and columns. Also, it is easy to manipulate data to give information in the form which

it is desired. The database of PRISM is implemented using the MySQL system as mentioned

in the previous section and its current version is MySQL 5.5.31. It consists of 6 tables and the

ER diagram of these tables can be seen in Figure 4.1.

Chapter 4: Results 29

Figure 4.1 ER Diagram of PRISM Database

The properties of each column of the tables is explained below.

Field: The name of the corresponding column in the database table.

Type: Describes the type of individual values the column can have. The numbers in

parantheses indicate the size allocated in bytes for each value.

Chapter 4: Results 30

Key: Shows whether or not the column acts as part of a primary key (PK) or foreign

key (FK) for that table.

Default: The default value assigned to that column if one is not set explicitly.

Extra: Miscellaneous information

The details of tables present in the PRISM database will be presented next.

4.1.1.1 Templates Table

Template dataset of PRISM (see Section 3.1.1) is stored in ‘templates’ table whose details

can be seen in Table 4.1. This includes only one column which keeps the ‘templateID’

information of these template proteins. ‘templateID’ is a field which is six characters long and

it consists of four-character PDB code followed by two-character chain identifiers of the

interface on that template structure (e.g. 1c4zAD).

Table 4.1 Description of ‘templates’ table

Field Type Null Key Default Extra

templateID varchar(6) NO PK

4.1.1.2 Targets Table

Target datasef of PRISM (see Section 3.1.2) is stored in ‘targets’ table whose details can

be seen in Table 4.2. This table also includes just one column like templates table. This

column is ‘targetID’ column and it keeps a unique id for the target protein structures.

‘targetID’ can take two forms: First one is a four-character PDB code in case of monomers

with no chain identifiers (e.g. 1bor). Second one is a five-character code which includes a

chain identifier as a fifth character appended to the four-character PDB code (e.g. 1d5fA).

Table 4.2 Description of ‘targets’ table

Field Type Null Key Default Extra

targetID varchar(6) NO PK

Chapter 4: Results 31

4.1.1.3 Predictions Table

This table keeps the current prediction results which are calculated among the target

protein structures in the targets table and using the template protein structures in the templates

table. ‘interfaceID’ column represent the interface on the template protein via which the target

proteins interact. ‘leftTarget’ is the target protein structure matching to the the left partner of

the template and ‘rightTarget’ is the target protein structure matching to the right partner of

the template. ‘fiberdockScore’ column is the calculated score from the flexible refinement of

the predicted complexes with the template and target proteins. Description of Predictions table

can be seen in Table 4.3.

Table 4.3 Description of ‘predictions’ table

4.1.1.4 Jobs Table

When the user wants to see possible interactions between target proteins and these

proteins are not in our target dataset, PRISM algorithm runs from the beginning for these

protein structures as explained in Section 4.1.3.3 Predictions Section These runs are added

to a queue using RabbitMQ (see Section 2.5).

The contents of ‘jobs’ table consists the jobs which are added to the queue. These jobs can

be running at that moment or finished running. ‘status’ column stores the current status of the

jobs. It is ‘0’ if the job is running at that moment, and ‘1’ if the job is finished already. ‘jobId’

column stores the id of the jobs which are given to the users when they submit the job. It is

given incrementally by looking at the ‘SimpleCount’ table. ‘name’ column includes the name

of the job that the user chooses. It can be null since the users give a name to their submitted

job if they want to (it is optional). ‘mail’ column holds the email adresses that users give

when they are submitting a job. To retrieve a job, this email adress and the job id are checked

Field Type Null Key Default Extra

interfaceID varchar(6) YES NULL

leftTarget varchar(10) YES NULL

rightTarget varchar(10) YES NULL

fiberdockScore float YES NULL

Chapter 4: Results 32

to see whether they match or not from this table. Description of ‘jobs’ table and the properties

of its columns can be seen in Table 4.4.

Table 4.4 Description of ‘jobs’ table

4.1.1.5 OnlineRun Table

This table contains the prediction results which are calculated when the target structures

given by the user are not in our dataset. ‘leftTarget’ column represents the first protein and

‘rightTarget’ column represents the second protein given by the user. Actually, ‘leftTarget’

column is for the target protein structure which matches with the left side of the interface and

‘rightTarget’ column is for the target protein structure which matches with the right side of

the interface via which they interact. ‘multiLeft’ is the MultiProt solution number for the

alignment between the template protein and the target protein matching to the left partner of

this template. Likewise, ‘multiRight’ is the MultiProt solution number for the alignment

between the template protein and the target protein matching to the right partner of this

template. ‘fiberdockScore’ is the calculated global energy for this predicted complex. ‘jobId’

column represents the id for this particular job which is given to the user when the job is first

submitted. It is a foreign key column and it refers to the ‘jobId’ column of ‘jobs’ table.

Field Type Null Key Default Extra

jobId varchar(20) NO PRI

name varchar(20) YES NULL

status int(11) YES NULL

mail varchar(50) YES NULL

Chapter 4: Results 33

Table 4.5 Description of ‘onlineRun’ table

4.1.1.6 SimpleCount Table

It is a simple table which keeps the last job id that is given to the users to be able to

determine the new job’s id. If a new job is submitted by the users, it is given an id which is

one more than this last id.

Table 4.6 Description of ‘simpleCount’ table

Field Type Null Key Default Extra

count_id int(11) YES NULL

count int(11) YES NULL

4.1.2 Application Architecture Design

PRISM’s application architecture is a 4-tier architecture as discussed in Section 3.2. In

a 4-tier architecture, all of the data storage and retrieval processes are logically and usually

physically located on a single tier. A 4-tier architecture allows an unlimited number of

programs to run simultaneously, send information to one another, use different protocols to

communicate, and interact concurrently. This allows for a much more powerful application,

providing many different services to many different clients. The details of the architecture can

be examined from Figure 4.2.

Field Type Null Key Default Extra

interfaceID varchar(6) NO PRI

leftTarget varchar(10) NO PRI

multiLeft int(11) NO PRI 0

rightTarget varchar(10) NO PRI

multiRight int(11) NO PRI 0

fiberdockScore float NO PRI 0

jobID varchar(20) NO PRI

Chapter 4: Results 34

Figure 4.2 Application Architecture Design of PRISM Web Server

Chapter 4: Results 35

In PRISM’s application architecture, the middle layer is divided into two parts as

application logic and compute server as seen in the figure above. It is done to eliminate the

bottleneck in this layer due to the difficulty of computing the PRISM algorithm. Application

logic determines the reasoning to make the data meaningfully available for the presentation

layer. It also processes the dynamic content (e.g. showing existing predictions) using PHP

scripts. On the other hand, compute server takes place between application logic and data

layer. It handles the database operations which load too much burden to the application logic.

By this, database transactions would have been separated from the application logic and

encapsulated in the compute server.

Communication between application logic and compute server is handled by an

interprocess message queue system namely RabbitMQ (see Section 2.5). This is done as

explained in Section 3.2: A phyton program sends messages to another python program

through a queue named “prism”. The other program receives messages from the queue and

interpret these messages. The interpreration occurs like this: This program checks the jobs in

the ‘jobs’ table (see Section 4.1.1.4) on the database. It creates shell scripts (‘run.sh’ files) for

each ongoing job on this table. With these scripts, the jobs are created to send to the compute

server. Jobs on the compute server are submitted to Sun Grid Engine, which is an open source

batch-queuing system, using qsub command.

Dividing the middle layer as application logic and compute server has some

advantages. Even if it is not implemented in current version of PRISM web server, recovering

erroneous jobs running with qsub command is more applicable. Using qsub command,

keeping track of possible errors and monitor them is easy to implement.

After the steps of PRISM algorithm finish, a phyton program is called to add the

results to the database. To be able to understand whether a job is finished running or not,

‘status’ column is checked from the ‘jobs’ table with the job id as discussed in Section

4.1.1.4. ‘onlineRun’ table (see Section 4.1.1.5) can also be checked with the target proteins in

hand. If the results are available, these results are directly returned to the users. If there are no

rows in the ‘onlineRun’ table for these target proteins, we understand that the job is stil

running and users are also told so.

Chapter 4: Results 36

4.1.3 Web Interface Design

PRISM can be accessed through a web site http://gene.ccbb.ku.edu.tr/protocol. All the

pages of the PRISM web site are served via the PHP module of Apache server version 2.2.22.

PRISM protocol, a downloadable protocol which is used to run PRISM algorithm, requires

users to setup necessary environments, install some external tools, prepare the datasets and

run the algorithm step by step (as discussed in Section 3.1.4). Between these steps, users

also have to set up the working folders, copy some files to different folders etc.

The main goal of the PRISM web server is to eliminate these steps in the protocol and

provide users to run the algoritm just by entering PDB ids of target protein structures. Other

than that, users also can access the contents of PRISM database by using different sections of

PRISM web server. The main sections of the web site are templates, targets and predictions

sections. These sections will be presented next.

4.1.3.1 Templates Section

Contents of the template dataset is available in the Templates section as seen in Figure 4.3.

Users can browse through the list of templates available in the PRISM database through this

section. Also, they can go to the protein data bank (PDB) web site to see the details of a

template when PDB id of one of the templates under the Template ID section is clicked.

Likewise, users can go to the PRINT web server to see the details of the interface (see Section

2.1) of a protein when they click to the PDB image next to the PDB ID of the protein if an

interface exists in the protein structure.

http://gene.ccbb.ku.edu.tr/protocol

Chapter 4: Results 37

Figure 4.3 Templates Page

In this section, users also can visualize the template structures using Jmol plug-in as

seen in Figure 4.4. Jmol is a open-source Java viewer for chemical structures in 3D [25, 46]. It

has three versions for usage: 1) Jmol Applet, which is integrated into web pages as a web

browser applet, 2) Jmol application, downloadable as a desktop application, 3) Jmol Viewer, a

development tool kit that can be integrated to other Java applications. In PRISM web server,

the Jmol Applet is used. If the user clicks on the Jmol logo under the Jmol visualization

section, a java applet in a seperate window opens and a visualization of the chosen template

structure is presented to the user. Since Jmol Applet works as a java applet, Java software

must be installed to the computer and Java applets must be given permission to run. Jmol can

work on all major web browsers like Internet Explorer, Mozilla Firefox, Google Chrome,

Safari, Opera etc.

Chapter 4: Results 38

Figure 4.4 Jmol Visualization of a Template (1c4z)

Chapter 4: Results 39

4.1.3.2 Targets Section

Figure 4.5 shows the Targets section which works similar to the Templates section, but

this time users access the target structures stored in the PRISM database. Once a target protein

is selected among the results, the details of the target structure in the protein data bank (PDB)

and PRINT web server can be viewed in a similar way to the Templates section.

Figure 4.5 Targets Page

Jmol visualization tool also works as in the Templates section. If the user clicks on the

Jmol image under the Jmol visualization section, an applet opens and shows the 3D

representation of the target protein. Figure 4.6 shows such an example.

Chapter 4: Results 40

Figure 4.6 Visualization of a Target (1i7k)

Chapter 4: Results 41

4.1.3.3 Predictions Section

In the Predictions section, users are basically provided the prediction results stored in the

database and can search for possible interactions between target structures. However, there

are cases in which the precalculated interaction predictions on the target dataset do not cover

the protein in hand. In these situations, the interactions can be computed online by running the

prediction algorithm. In this process, the query structure splits into its constituent chains, the

homologies among them are eliminated, and the algorithm is run for each distinct chain.

The basic operations in the Predictions part of the web server is to find interactions

between target proteins (two or more), if these interactions are not present in the database,

then to run PRISM algorithm from the beginning for the target proteins and to retrieve results

which are calculated earlier on the web server. There are five main parts in the Predictions

section:

Interaction Between Two Target Proteins

The first part of the Predictions section is to view the interactions between two target

proteins (see Figure 4.7). Users can enter two PDB IDs for the target structures that are

wanted to examine in the respective fields. Instead of entering PDB IDs, users also can

upload two files which include protein structures that are wanted to examine when the

structures are not present in PDB or users do not have the PDB IDs. After entering the two

target structures (in either way), user clicks the submit button. If entered target proteins

are in our target dataset, interactions between them which are present in our database

directly returned to the users. If they are not in our target dataset, PRISM algorithm is run

from the beginning and results are returned to the users whenever they are finished as seen

in the Results page (see Figure 4.10). If users do not enter any PDB IDs and click to the

submit button, all prediction results in the PRISM database are returned to the users as

seen in the Figure 4.8.

In the result page, the two target structures which interacts and the template structure

they are interacting via is viewed. Also, the FiberDock score of the predicted complexes

can be seen in this page. Users can also go to PDB or PRINT web sites of the templates

and targets as in the Templates and Targets sections of PRISM web server. Jmol

visualization tool also works in the same way as in the Templates and Targets sections.

Chapter 4: Results 42

Figure 4.7 First two sections of the Predictions page

Protein List Run

Second part of the Predictions section is the Protein List Run part (see Figure 4.7). In

this part, users can enter more than two target proteins in a file which includes PDB IDs of

the target structures that are wanted to examine. An example of such a file can be viewed

if the users click on the Example Input File link on the rightmost part. It is a file which

includes PDB ID of a protein in each line. Also, this example file can be submitted as a

demo file if Submit Demo File button is clicked next to the example input file link.

After the file is submitted (whether the demo file or user’s own file), PRISM protocol

is run from the beginning and try to find interactions between the target proteins in every

combination of two. When the interactions are found, they are returned to the users as

seen in the Results page (see Figure 4.10).

Chapter 4: Results 43

Figure 4.8 Page of all Predictions present in PRISM

Protein Network Run

Third part of the Predictions section is the Protein Network Run part (see Figure 4.9).

This part is similar to the Protein List Run part which is explained in the previous section.

The difference between them is that users enter network of proteins instead of list of

proteins this time. Users prepare the input files to include in groups of two target protein

structures. In the input file, every line includes two proteins and PRISM algorithm

examines the interactions between these two proteins line by line.

As in the Protein List Run part, users can also view an example input file by clicking

the Example Input File link and submit this example file as a demo by clicking the Submit

Demo File button.

After the file is submitted (whether the demo file or user’s own file), PRISM protocol

is run from the beginning and try to find interactions between the target proteins as in the

protein list run discussed in the previous section. But this time only the interactions

Chapter 4: Results 44

between the proteins given as groups of two are searched instead of all binary

combinations examined. When the interactions are found, they are returned to the users as

seen in the Results page (see Figure 4.10).

Figure 4.9 Last three sections of the Predictions page

Retrieve Job

Fourth part of the Predictions section is the Retrieve Job part (see Figure 4.9). In this

part, users can query the previous jobs that they submitted to the server. To retrieve the

old jobs, users enter their email adresses that they entered when they were submitting the

job they want to retrieve now and the id of the jab that they submitted which is given to

them by the server.

Chapter 4: Results 45

If email or job id is not entered, an alert window opens which says to users that they

should enter them. If the entered job id and email do not match, users are confronted with

a page which states this mismatch and directs the users to return the previous page. If the

job that is wanted to retrieve is stil running and the results are not ready, users are

confronted with a page that states that protocol is running for the job with the job id

entered and directs the users to return the previous page similarly. If the job is finished

and results are ready, they are returned to the users as seen in the Results page (see Figure

4.10).

Figure 4.10 Results Page

Left and Right Partners of Template Structures

Last part of the Predictions sections is the part where the users can search one or more

template protein structures’ left and right partners (see Figure 4.9). It means that users can

view the target protein structures which interact via the chosen template structures.

Chapter 4: Results 46

In this part, all templates present in the PRISM database is listed in a combobox. Users

can choose the template structures whose partners they want to view and add to the list

below by clicking the Add button. After finishing to add the template structures, users

click the submit button to see the results.

After all chosen template structures are submitted to the system, users are confronted

with a page (see Figure 4.11) where all left and right partners are listed for the chosen

templates. These structures can be viewed in PDB or PRINT web sites as in the Templates

or Targets sections. Also, they can be visualized using Jmol similarly.

Figure 4.11 Partners of Template Interfaces page

Chapter 5: Conclusion 47

Chapter 5

CONCLUSION

Detecting protein-protein interactions in the cell becomes much more important as large

amount of protein structure data become available. Many of the processes in the cell are

regulated by means of interactions among various proteins. There is a great increase in

available experimental and computational methods to find interactions between proteins in

recent years. Novel computational methods and computational tools have been developed and

this is expected to do so in the near future.

In this work, we take advantage of an available prediction algorithm which uses both

structure and sequence conservation in protein interfaces. We design a web accesible and

database oriented software tool, namely PRISM web server, that is used to find interactions

between target protein structures using this algorithm. This web server is used mainly to find

whether there are interactions between input proteins or not. It is also used for examining the

datasets employed in the algorithm: a set of protein interfaces extracted from protein

complexes (templates) [8] and a list of proteins which are found to be similar to one or more

of these templates in terms of structure and evolution [10]. These datasets and all related data

is held in a relational database. Contents of this database is queried and displayed in a web

interface. To explore the concepts behind the PRISM database in a visual environment, a

graphical tool is integrated into PRISM’s web interface.

In its current form, PRISM web server is a useful tool to predict interactions between two

target proteins, among a list of proteins or a network of proteins. It also shows possible

partners of protein structures in the template dataset. Although it offers useful features, much

more can be added. Also, it has some shortcomings on performance and accuracy of the

results.

As a future work, the set of templates and targets can be expanded to include new

complexes and calculated predictions. Expanding the template set will allow us to find more

Chapter 5: Conclusion 48

possible interactions between input target proteins. Also, the web interface can be modified to

provide possible different queries. For instance, users can choose the templates that they want

to use when predicting interactions between proteins. By applying this particular restriction,

the performance of the algorithm will be enhanced and predictions will be more purposive.

With these improvements, we believe the next version of PRISM will be a useful tool to

answer many other questions in the field of finding the protein-protein interactions.

In conclusion, predicting protein-protein interactions is a significant problem in systems

biology. Even if there are different available methods to answer this question, there is no

certain way to decipher all interaction networks in an organism. This question will continue to

appeal scientific community to research on because such knowledge help researchers to

identify nodes in pathways that cause disorders and design drugs that will impact on these

nodes.

Bibliography 49

BIBLIOGRAPHY

1. Valencia, A. and F. Pazos, Computational methods for the prediction of protein

interactions. Curr Opin Struct Biol, 2002. 12(3): p. 368-73.

2. Ferrer, M. and S.C. Harrison, Peptide ligands to human immunodeficiency virus type 1

gp120 identified from phage display libraries. J Virol, 1999. 73(7): p. 5795-802.

3. Gray, J.J., High-resolution protein-protein docking. Curr Opin Struct Biol, 2006. 16(2):

p. 183-93.

4. Halperin, I., et al., Principles of docking: An overview of search algorithms and a guide

to scoring functions. Proteins, 2002. 47(4): p. 409-43.

5. Andrusier, N., et al., Principles of flexible protein-protein docking. Proteins, 2008.

73(2): p. 271-89.

6. Caffrey, D.R., et al., Are protein-protein interfaces more conserved in sequence than

the rest of the protein surface? Protein Sci, 2004. 13(1): p. 190-202.

7. Tsai, C.J., et al., A dataset of protein-protein interfaces generated with a sequence-

order-independent comparison technique. J Mol Biol, 1996. 260(4): p. 604-20.

8. Keskin, O., et al., A new, structurally nonredundant, diverse data set of protein-

protein interfaces and its implications. Protein Sci, 2004. 13(4): p. 1043-55.

9. Tsai, C.J., et al., Protein-protein interfaces: architectures and interactions in protein-

protein interfaces and in protein cores. Their similarities and differences. Crit Rev

Biochem Mol Biol, 1996. 31(2): p. 127-52.

10. Aytuna, A.S., A. Gursoy, and O. Keskin, Prediction of protein-protein interactions by

combining structure and sequence conservation in protein interfaces. Bioinformatics,

2005. 21(12): p. 2850-5.

Bibliography 50

11. Keskin, O., et al., Principles of protein-protein interactions: what are the preferred

ways for proteins to interact? Chem Rev, 2008. 108(4): p. 1225-44.

12. Zhang, Q.C., et al., PredUs: a web server for predicting protein interfaces using

structural neighbors. Nucleic Acids Res, 2011. 39(Web Server issue): p. W283-7.

13. Guo, Y., et al., PRED_PPI: a server for predicting protein-protein interactions based on

sequence data with probability assignment. BMC Res Notes, 2010. 3: p. 145.

14. Singh, R., et al., Struct2Net: a web service to predict protein-protein interactions using

a structure-based approach. Nucleic Acids Res, 2010. 38(Web Server issue): p. W508-

15.

15. Fox, N., et al., KINARI-Web: a server for protein rigidity analysis. Nucleic Acids Res,

2011. 39(Web Server issue): p. W177-83.

16. Nitsch, D., et al., PINTA: a web server for network-based gene prioritization from

expression data. Nucleic Acids Res, 2011. 39(Web Server issue): p. W334-8.

17. London, N., et al., Rosetta FlexPepDock web server--high resolution modeling of

peptide-protein interactions. Nucleic Acids Res, 2011. 39(Web Server issue): p. W249-

53.

18. Lopez, G., A. Valencia, and M.L. Tress, firestar--prediction of functionally important

residues using structural templates and alignment reliability. Nucleic Acids Res, 2007.

35(Web Server issue): p. W573-7.

19. Lopez, G., et al., firestar--advances in the prediction of functionally important residues.

Nucleic Acids Res, 2011. 39(Web Server issue): p. W235-41.

20. Lopez, G., A. Valencia, and M. Tress, FireDB--a database of functionally important

residues from proteins of known structure. Nucleic Acids Res, 2007. 35(Database

issue): p. D219-23.

21. Soding, J., Protein homology detection by HMM-HMM comparison. Bioinformatics,

2005. 21(7): p. 951-60.

22. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.

Bibliography 51

23. Tress, M.L., O. Grana, and A. Valencia, SQUARE--determining reliable regions in

sequence alignments. Bioinformatics, 2004. 20(6): p. 974-5.

24. Mitra, P. and D. Pal, PRUNE and PROBE--two modular web services for protein-protein

docking. Nucleic Acids Res, 2011. 39(Web Server issue): p. W229-34.

25. Jmol: an open-source Java viewer for chemical structures in 3D. 2004-2013; Available

from: http://www.jmol.org/.

26. Walsh, I., et al., CSpritz: accurate prediction of protein disorder segments with

annotation for homology, secondary structure and linear motifs. Nucleic Acids Res,

2011. 39(Web Server issue): p. W190-6.

27. Warde-Farley, D., et al., The GeneMANIA prediction server: biological network

integration for gene prioritization and predicting gene function. Nucleic Acids Res,

2010. 38(Web Server issue): p. W214-20.

28. Ogmen, U., et al., PRISM: protein interactions by structural matching. Nucleic Acids

Res, 2005. 33(Web Server issue): p. W331-6.

29. Ogmen, U., PRISM : A System for the Query, Visualization and Analysis of Protein

Interfaces and Their Networks, in Graduate School of Engineering. 2006, Koc

University.

30. Eckerson, W.W., Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications. Open Information Systems,

1995. 10.

31. Howitz, C., What Is 3-Tier(Multi-Tier) Architecture And Why Do You Need It?, in

SimCrest. 2012.

32. RabbitMQ Messaging that just works. 2010-2013; Available from:

http://www.rabbitmq.com/.

33. O'Hara, J. Toward a commodity enterprise middleware. Acm Queue, 2007. 5, 48-55.

34. Mashiach, E., R. Nussinov, and H.J. Wolfson, FiberDock: Flexible induced-fit backbone

refinement in molecular docking. Proteins, 2010. 78(6): p. 1503-19.

http://www.jmol.org/
http://www.rabbitmq.com/

Bibliography 52

35. Aytuna, A.S., A High Performance Algorithm For Automated Prediction of Protein-

Protein Interactions, in Graduate School of Engineering. 2004, Koc University.

36. Nussinov, R. and H.J. Wolfson, Efficient detection of three-dimensional structural

motifs in biological macromolecules by computer vision techniques. Proc Natl Acad Sci

U S A, 1991. 88(23): p. 10495-9.

37. Shatsky, M., R. Nussinov, and H.J. Wolfson, A method for simultaneous alignment of

multiple protein structures. Proteins, 2004. 56(1): p. 143-56.

38. Tuncbag, N., et al., Predicting protein-protein interactions on a proteome scale by

matching evolutionary and structural similarities at interfaces using PRISM. Nat

Protoc, 2011. 6(9): p. 1341-54.

39. Hubbard, S.J.T., J.M., 'NACCESS', Computer Program. 1993: Department of

Biochemistry and Molecular Biology, University College London.

40. Mashiach, E., R. Nussinov, and H.J. Wolfson, FiberDock: a web server for flexible

induced-fit backbone refinement in molecular docking. Nucleic Acids Res, 2010.

38(Web Server issue): p. W457-61.

41. World Wide Web (WWW). 1990-2013.

42. HTML (HyperText Markup Language). 1991-2013; Available from:

http://www.w3.org/html/.

43. PHP: Hypertext Preprocessor. 1995-2013; Available from: http://www.php.net/.

44. MySQL: The world's most popular open source database. 1995-2013; Available from:

http://www.mysql.com/.

45. Phyton Programming Language. 1991-2013; Available from: http://www.python.org/.

46. Herraez, A., Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ,

2006. 34(4): p. 255-61.

http://www.w3.org/html/
http://www.php.net/
http://www.mysql.com/
http://www.python.org/

