
Kuda: Accelerating Dynamic Race Detection using

Parallelism on a GPU

by

Ümit Can BEKAR

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

Koç University

June 24, 2013

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ümit Can BEKAR

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Serdar Taşıran (Advisor)

Prof. Alper Demir

Assist. Prof. Metin Sezgin

Date:

To my family...

iii

ABSTRACT

We propose a novel technique by introducing a coprocessor to runtime verifica-

tion, ergo reducing the cost of race detection without any hardware extension to

mainstream PC environment. The goal of our approach is to offload the high com-

putational overhead of traditional race detection to hundreds of cores available at

modern GPUs. Existing runtime verification frameworks have been designed to run

on the same processing units as the code being monitored and (i) instrumentation

and (ii) analysis costs contribute to the slowdown of the program being monitored.

The framework we propose allows us to carry out (ii) on separate, dedicated cores. As

a result, the program being monitored experiences slowdown due to bookkeeping of

events, bottleneck is not caused by race detection. An orthogonal line of work shows

that with some inexpensive hardware support, monitoring costs can be reduced to

negligible levels. By parallelizing the offloaded work, our experiments show that they

run as fast as the program being monitored, on separate computational resources. As

a demonstration of concept, we investigate runtime monitoring for concurrency bugs,

in particular, data race detection. We use a few CPU threads and a large number of

cores on a GPU to minimize the slowdown of the application on which race detection

is being run.

iv

ÖZETÇE

Bu tezde sunulacak olan iş özgün bir çalışma zamanı doǧrulama çerçevesidir.

Yaklaşımımızdaki ana amaç ise geleneksel yarış durumu denetleyicilerindeki işletim

yüklerini ayırıp, bilgisayarlarımızda bulunan donanımsal olanakları kullanarak, hali-

hazırdaki çalışma zamanına koşut çalışan, koşutlu doǧrulama yapmaktır. Bu yüzden

çerçevemizi çok çekirdekli işlemcilere (CPU) ve grafik işlemcisine (GPU) sahip kişisel

bilgisayarlara herhangi bir donanım eklemesi gerekmeksizin gerçekleştirdik. Çalışma-

mızdaki ana yenilik, koşutzamanlı bir programın güvenilirlik özelliklerinin grafik işlem-

cisindeki iş parçacıklarında denetlenmesinin ilk olarak öne sürülmesi ve bunun için

gerekli tekniklerin ve algoritmaların tasarlanmasıdır. Daha önceki çalışmalarda bu

denetlemenin tamamı merkezi işlem ünitesi üzerinde gerçekleşmekteydi, ve denet-

leyicinin iş parçacıklarının denetlenen program iş parçacıklarıyla aynı işlemci üzerinde

koşması programın başarımını önemli ölçüde düşürmekteydi. Denetleyicilerdeki işletim

yükünü ikiye ayırıyoruz: gözlemleme ve denetleme yükleri. Detaylı inceleyeceǧimiz bu

yazılım çerçevesi, ayırdıǧımız iki işletim yükünü farklı işlemcilere paylaştırmaktadır.

Sonuç olarak, denetlenen koşutzamanlı programın başarımı, yalnızca gözlemleme ve

bu gözle- min öteki işlemciye aktarımından kaynaklanan işletim yüklerinden dolayı

etkilenir. Sunacaǧımız çerçevenin ön ürünü olan KUDA birimlerimizle yaptıǧımız

v

deneylerimiz, farklı işlemcideki iş parçalarında koşut zamanda yarış durumlarını (data

race) denetlemektir.

ACKNOWLEDGMENTS

I would like to express my gratitude to my co-author Tayfun Elmas for his quality

work with Semih Okur, which made the grounds of this thesis project. I would

like to thank my thesis advisor Serdar Taşıran, all the past and current members of

the Multicore Software Engineering Research Center: Burcu, Erdal, Hassan, İsmail,

Ömer and Süha, and of course, my friends who were also co-located in our lab:

Ayse Nur, İdil, Özge and Salih. The work reported in this thesis was supported by

Microsoft R© Research. I am very lucky to have my parents, Fazilet and Cemal. I am

also very lucky to have my aunt and her husband Nuran and İsa for having me in

their home with my dear cousins Mert and Cansu, especially when the times were

harsh for me. Of course, I send love to my brothers Alp and Berk for their love back.

My grandma Fatma and my other aunt Neşe and her husband Ismail, my cousin Cem

and his newly wed wife Burcu with the cutest nephew, Emir; I feel sorry that I could

not spend more time with them.

Finally, I thank anyone who took time to read my thesis. Especially, I must give

immense gratitude to my dearest friends Betül Gül and İsmail Kuru, because if they

wouldn’t be a part of my journey here, I would possibly have been graduated at least

a semester before, leaving this office without having so much fun in the process!

vii

TABLE OF CONTENTS

List of Figures xii

Nomenclature xiii

Chapter 1: Introduction 1

1.1 Programming on Multicore Hardware 1

1.2 Software Verification . 3

1.3 Our Approach . 4

1.4 Our Contributions . 6

1.5 Organization of the Thesis . 8

Chapter 2: Runtime Verification 9

2.1 Challenges in Runtime Verification 9

2.2 Race Detection . 10

2.2.1 Formal Definition of Data Races 11

2.2.2 Segments of a thread [1] . 11

2.2.3 Happens-before Relation, Vector Clocks and Precise Race De-

tection . 13

2.3 Some Race Detection Algorithms . 15

ix

2.3.1 Eraser algorithm . 16

2.3.2 An Eraser implementation 17

2.4 Previous Research on Race Detection 19

Chapter 3: Extraction of Target Application’s Execution Trace 24

3.1 Binary Instrumentation . 24

3.1.1 Native binaries . 25

3.1.2 Java byte-code: . 26

3.2 Kuda Interface . 26

3.2.1 Event Bookkeeping . 27

3.2.2 Recording of events (RecordEvent in Fig. 3.3) 29

3.2.3 Processing of frames: (CheckFrames in Fig. 3.4) 32

Chapter 4: Dynamic Race Detection on GPUs 35

4.1 Introduction to CUDA
TM

. 35

4.2 CUDA
TM

programming model . 36

4.3 Software Engineering Challenges on the GPU 38

4.3.1 Isolated execution . 39

4.3.2 Limited device memory space 39

4.3.3 Enforcing SIMD model . 40

4.3.4 Limited shared memory and limited shared memory functionality 41

4.3.5 Memory and arithmetic latencies 42

x

4.4 Data Race Detection on the GPU . 43

Chapter 5: Experimental Setup 49

5.1 Experiments . 50

5.2 Results . 51

5.3 Analysis . 54

5.4 Unlisted experiments . 56

Chapter 6: Conclusion 58

Bibliography 61

Vita 70

xi

LIST OF FIGURES

3.1 Components of our runtime monitoring system. 24

3.2 The cyclic linked list of event frames 30

3.3 RecordEvent pseudocode . 30

3.4 CheckFrames pseudocode . 31

4.1 A generic kernel launch . 37

4.2 Kernel code for Eraser . 47

4.3 Kernel code for Goldilocks . 48

xii

NOMENCLATURE

CLR Common Language Runtime

CMP Chip-level Multiprocessing

CPU Central Processing Unit

GB Giga bytes

GPU Graphics Processing Unit

KB Kilo bytes

OS Operating System

PC Personal Computer

RAM Random Access Memory

SIMD Single Instruction Multiple Data

SMP Symmetric Multiprocessing

STI Sony, Toshiba, IBM

xiii

Chapter 1

INTRODUCTION

1.1 Programming on Multicore Hardware

Writing commercial grade parallel software on top of multicore platforms today con-

sidered harder than writing sequential software on these platforms, it is mainly be-

cause achieving high performance and correctness together at the same time is noto-

riously harder job to accomplish on time. One of the main reason for this challenge is

that, debugging parallel programs is much harder due to its nondeterministic execu-

tion behavior, resulted from different executions of a buggy program may work cor-

rectly for some time and on a specific interleaving, it may crash. This phenomenon is

caused by nondeterministic behaviors of software, running on deterministic hardware.

There exist two main reasons why any kind of software to behave nondeterministi-

cally: (i) input nondeterminism or (ii) thread scheduling nondeterminism that may

lead to at least one data race during the execution of the program.

A second reason for increased difficulty of programming in parallel is that, when

a program has a data race on today’s computer systems, programmers can not rely

on memory models of their systems due to the lost sequential consistency property.

2 Chapter 1: Introduction

The memory model of a shared-memory multicore is basically a contract between the

hardware designer and the programmer of the multicore. For example, Java memory

model[23] asserts that any Java program must have data race freedom in every exe-

cution in order to developers to have conventional reasoning during programming on

Java platform. Sequential consistency is one of the consistency models used in the

domain of concurrent programming. This property can be elaborated as a result of

any execution of a program is the same as if the operations of all the processors were

executed in some sequential order, and the operations of each individual processor

appear in this sequence in the order specified by its program. It is a property was

so fundamental that all the software developers (apart from the software developers

who worked in then-niche area of HPC/cluster distributed programming) were con-

sidering it as a given, however since the superscalar CPU microarchitectures have

been introduced, the sequential consistency[20] has became a property that has been

relaxed.

Informally, a data race is a type of conflicting memory access that leads to nonde-

terministic behavior. A data race happens when at least two threads accesses a shared

variable concurrently without synchronization, and at least one of them is a write (see

Chapter 2, Section 2.2.1). A data race error[27, 26] results to memory corruption,

other than lost sequential consistency. Lack of sequential consistency means that an

execution that was further up in the source code could happen before the execution

of the line; this situation lets us lose conventional reasoning for bugs in programs.

Secondly, nature of thread level parallelism is that the threads are scheduled by the

Chapter 1: Introduction 3

operating system non-deterministically: one execution interleaving might not happen

until after millions of other possible following interleaving. These two reasons are

exactly why debugging a parallel program is notoriously hard, one out of a billion

execution might end up in an error and to catch that bug you have to recreate the

whole interleaving up to the point of origin of data race.

1.2 Software Verification

Software verification is a field of software engineering whose goal is to assure confor-

mance to all of the expected requirements of computer programs. Seminal papers by

Robert Floyd in 1967 [14] and C.A.R. Hoare in 1969 [17] gave the field its start. In

layman’s terms, if we think of a program execution as a state machine, we can make

assertions [39] about the state of the machine before and after the program executes.

Since the first piece of software was ever created, there existed specifications for it

to be conformed, other than syntactic rules. Division by zero is the perfect example

among others. For some critical programs these requirements can be much more

detailed than a division by zero freedom. Requirements expected from software can

be widely varied; there also exists specifications related to liveness of a program,

which are orthogonal to safety specification, e.g. absence of a null dereference.

The crux of software verification is the Hoare logic, it is a formal system with a

set of logical rules for reasoning rigorously about the correctness of computer pro-

grams using Hoare triples, basically a precondition, the statement and a postcon-

dition. Hoare logic can provide rules for all the constructs of a simple imperative

4 Chapter 1: Introduction

programming language. There exist two branches of software verification: dynamic

and static verification. It is also common to have hybrid approaches[40]. Any formal

software verification method can be reduced to Hoare triples.

Dynamic verification techniques are usually runtime testing methods and static

verification techniques are usually source code analysis techniques. e.g. Kuda is

a novel dynamic verification technique. However, dynamic verification techniques

lack the ability to verify that software is error-free. Because dynamic techniques

are basically functional testing, monitoring programs for errors appearing with re-

spect to correctness algorithms, or kinds of temporal logic. This leads to Dijktra’s

famous quotation: ”Testing can show the presence of errors, but not their absence”.

To tackle completeness of verification researchers have developed automated testing

tools and rigorous testing tools, using systematic [24] or fuzzy approaches [16]. Both

techniques can be commonly referred as model checkers. Model checkers are basically

tools that monitor a target program over and over again for some time, and while

doing eventually checks for all possible program states that it can represent. Such

static verification techniques can be considered as a more complete approach to soft-

ware verification, however it has completely different challenges and advantages over

dynamic verification that will not be covered in this thesis.

1.3 Our Approach

Most significant difference of Kuda framework is that the application being monitored

and the analysis program run on separate runtimes. They communicate with each

Chapter 1: Introduction 5

other using a custom message passing interface provided by NVidia R©CUDA
TM

[29].

The instrumented application code only has the additional responsibility of communi-

cating relevant events to the monitoring code. The monitoring and runtime analysis

code can be quite complex, but runs on separate processors and is parallelized, thus,

the application performance is not affected by the runtime analyses being performed.

CPU produces the events to be consumed on the GPU, so our approach is basically

using GPU as a co-processor. Using co-processing for runtime verification, race detec-

tion to be exact, is our main contribution. Related work is left for another chapter.

Today’s GPU architectures provide a highly parallel, multithreaded computation

environment with hundreds of processor cores and a higher memory bandwidth than

today’s CPUs. Thus, our framework allows us to investigate opportunities for ef-

ficiently performing various kinds of runtime analyses on highly parallel computing

environments.

We conjecture that the performance penalty on the application being monitored

due to instrumentation and communication of relevant events can be reduced to neg-

ligible levels, for example, using inexpensive hardware support such as hardware-

assisted message passing [41, 42]. The goal is for the monitoring code to run at least

the same speed as the application being monitored, but lag behind by a very small

delay due to bookkeeping of events. As a demonstration of concept, we investigate

runtime monitoring for concurrency bugs, in particular, data races. Since CPUs with

hundreds of cores are not yet available as mainstream, to investigate the feasibility

of our proposal, we use a few CPU threads/cores to carry out the efficient transfer of

6 Chapter 1: Introduction

logged events from the CPU cores to a GPU, and we use the GPU to run our race

detection algorithm.

1.4 Our Contributions

We first provide a framework that instruments binaries so that the application threads

log the interesting events in a central event list. The analysis threads then work off

of this event list to perform possibly expensive but parallelized analyses. For this,

we use carefully designed algorithms and block-based handling of the event list for

efficient recording of the events in this list. In particular, we communicate the events

to the GPU for processing in fixed-size segments called frames. We accomplish fast,

highly parallelized runtime analysis on a GPU with hundreds of cores by exploring

algorithms that can check each event frame independently from other frames. Our

experience was that this could be done without significantly affecting the soundness

of the checking. Long-enough frames allow the analyses to catch all errors that can be

caught by analyzing the entire execution. Since the computational cost of the analysis

threads does not affect application performance, in this highly parallel setting one can

achieve a lower performance impact while still not sacrificing from precision.

For demonstration, we adapted the well-known Eraser, Goldilocks and Fast-

Track algorithms for SIMD-based parallel data race checking, so that they can be

parallelized to run on a large number of threads and cores on the GPU. Surprisingly,

this high parallelism has a simplifying effect on the algorithm implementation. Since

we have many threads/cores, the algorithm can be written to make each thread or

Chapter 1: Introduction 7

core to perform a local and independent check (for a single memory access) without

having to worry about sharing or interaction with other threads. Each thread cre-

ates only the necessary data structures for the check and discards/reuses them after

the check completes; this avoids the need for memory management and sharing of

complicated algorithm-specific data structures.

We implemented our proposed system in a tool called Kuda. Kuda is open source

and available at http://kuda.codeplex.com. We use the Pin library to instrument

binaries for monitoring and the CUDA library to run our analysis algorithms on

the GPU. We applied Kuda to a number of multithreaded programs from the PAR-

SEC [4] and SPLASH-2 [45] benchmark suites. We performed experiments using CPU

and GPU implementations of the Eraser and Goldilocks algorithms. We chose

Eraser to represent a cheap (although imprecise) algorithm, while Goldilocks

served as a representative precise, higher-complexity algorithm. We contrasted two

approaches: (i) a straightforward implementation of Eraser running on the same

threads and cores as the application, and (ii) implementations of Goldilocks and

Eraser using our framework, where the checking threads are decoupled and run

on the GPU. Overall, our early experimental results indicate that our approach is

promising. Using a cheaper race detection algorithm using the traditional approach

as exemplified by (i) causes about 5x slowdown compared to a more complex race-

detection algorithm implemented in our approach.

8 Chapter 1: Introduction

1.5 Organization of the Thesis

The organization of this thesis is as follows. In Chapter 2, we provide the necessary

technical background information to reflect the importance and challenges of state

of the art runtime verification of concurrent programs and introduce some of the

significant algorithms also used as components of this thesis. In Chapters 3 and 4,

we present the CPU and GPU components of Kuda project respectively, through-

out these chapters our splitting framework has been contrasted with traditional race

checkers. In Chapter 5, experimental results from the application of Kuda to bench-

mark programs are described. Finally, in Chapter 6 we introduce some future work

and conclude the thesis.

Chapter 2

RUNTIME VERIFICATION

The purpose of this chapter is to point out the key challenges one is likely to

face while doing research on runtime verification (see 2.1), precise race detection

using vector clocks (see 2.2.1), some important runtime verification algorithms for

detecting data races (see 2.3) and significant research directions one is likely to take

when building a runtime verification tool for concurrency-related errors (see 2.4).

2.1 Challenges in Runtime Verification

The main challenge for implementing a runtime verification tool originates from the

aim for generating the minimum runtime overhead of the monitoring on the appli-

cation without sacrificing the completeness of detection. Completeness of a runtime

verification tool can be analyzed by its ability for catching concurrency errors. A

verification tool can be: complete (sound and imprecise), sound but imprecise, un-

sound but precise or unsound and imprecise. A complete runtime verification tool is

able to report a violation iff it occurs during runtime, an unsound and imprecise tool

generates false errors and misses some errors during runtime. Data race detection is

one of the most important branches of runtime verification. We will limit this thesis

to data race detection tools.

10 Chapter 2: Runtime Verification

2.2 Race Detection

A race detection algorithm for concurrent programs maintains data structures shared

among the threads participating in the algorithm (It is common to name the content

of these data structures as meta-data). For example, the seminal Eraser [34] paper

has an implementation maintaining a lockset for each thread and for each shared

variable; yet there are other algorithms which maintain pointers to the last access-

ing thread or an additional virtual-clock vector to internal locks for synchronizing

accesses by different threads. Any race detection algorithm needs to use proper syn-

chronization to ensure consistent accesses to the algorithm-specific data structures by

different threads. Fetching and manipulating these data structures at high frequencies

creates a considerable overhead and may cause big divergences in the timing behavior

of threads. Overheads induced by runtime tools actually impact the responsiveness of

the target application and also influences its concurrency characteristics. Implement-

ing an online monitoring system for such programs requires a considerable amount of

engineering effort in order to reduce the runtime overhead of the monitoring and thus

to have the minimal impact on programs runtime behavior. Apart from the runtime

challenges of such monitors, precisely detecting all possible data races (i.e. without

any false detection) within a program’s execution is an NP-Hard problem as shown

in [27]. However, dynamic race detection tools check for races only during an actual

(or speculative) execution of the target parallel program.

In the following section, we introduce you to Eraser race detection algorithm and

traditional implementation on the CPU. Details of Goldilocks and FastTrack

Chapter 2: Runtime Verification 11

algorithms are available in our references [9, 12, 8, 6, 7].

2.2.1 Formal Definition of Data Races

There exists several definitions of data races. We respect the C++11 specification:

The execution of a program contains a data race if it contains two conflicting actions

in different threads, at least one of which is not atomic, and neither happens before

the other. Any such data race results in undefined behavior. Two memory accesses

conflict if they access the same memory location (e.g. variable), and at least one access

is a store instruction. The notion of happening before partial ordering of actions (or

events) can be captured by the happens-before partial order on a program execution,

defined in Lamport’s seminal paper [19], which can be represented as a directed acyclic

graph. A data race occurs when two actions are not ordered via happens-before dag

-they occur simultaneously during execution of the program. A program is said to be

data-race-free (on a particular input) if no particular execution results in a data race.

However, proving data-race-freedom is an NP-Hard problem and it is beyond scope

of this thesis. In this thesis we are focusing on detecting races occurring online, i.e.

on-the-fly detection during an execution. Now we will provide a formal definition of

detection of races via happens-before relation:

2.2.2 Segments of a thread [1]

Creation or termination of threads and communication among threads are all con-

trolled by executing certain special sequences of instructions called synchronization

12 Chapter 2: Runtime Verification

operations. The synchronization operations on a given thread are executed in a def-

inite order. These operations are used to partition the thread into parts called seg-

ments. A segment of a thread is a maximal sequence of instructions containing exactly

one synchronization operation that ends the sequence. A synchronization operation

executed on a thread T is a posting operation, if it posts some information carried

by T that can be read later by T itself or by some other thread. A synchronization

operation executed on a thread T is a receiving synchronization operation, if it reads

the information already posted by one or more posting synchronization operations.

A given synchronization operation cannot both post and receive. However, the infor-

mation posted by a single posting operation can be read by more than one receiving

operation, and a given receiving operation may read information posted by more than

one posting operation.

Consider a thread T and label the distinct sync ops on it by A1, A2,..., An in the

order of their execution. Let Sk denote the segment defined by Ak, where 1 ≤ k ≤

n. For 2 ≤ k ≤ n, the segment Sk consists of the sequence of instructions between

Ak1 and Ak, including Ak and excluding Ak−1. The first segment S1 consists only

of the instructions belonging to the sync op A1. The segments of T are executed

in the order: S1, S2,..., Sn. In a given segment Sk, the instructions are executed

sequentially. The sync op Ak is always executed last, but the other instructions in

Sk, if any, are executed in an unspecified order. No instructions of Sk are executed

before the execution of Ak−1 is complete.

A segment on a thread knows exactly how many segments on that thread have

Chapter 2: Runtime Verification 13

already executed. However, it has only a partial knowledge of how many segments on

a different thread have already executed. Any such knowledge that the segment has is

based upon the information, if any, that its thread has already received by executing

receiving synchronization operations. Since a global clock is not available, we have to

base our analysis on this incomplete knowledge.

2.2.3 Happens-before Relation, Vector Clocks and Precise Race Detection

We now define happens-before, a partial order relation ≺ between segments. Let S

denote a segment on a thread T and S′ a segment on a thread T′. We have S ≺ S′, if

one of the following holds:

1. T = T′ and S is executed before S′.

2. S is a posting segment on T defined by a synchronization operation A, S′ imme-

diately follows a receiving segment on T′ defined by a synchronization operation

B, and B reads the information posted by A.

3. There exist a finite sequence of segments S0, S1,..., Sm in the program with S =

S0 ≺ S1 ≺ ... ≺ Sm−1 ≺ Sm = S′,

such that for 0 � p � m1, the relation Sp ≺ Sp+1 holds in the sense of either Condition

1 or Condition 2. If S ≺ S′, the segments S and S′ must be distinct. As usual, the

notation S � S′ means either S ≺ S′ or S = S′. It is clear that � is a partial order on

the set of segments in the program.

14 Chapter 2: Runtime Verification

If S ≺ S′, then segment S must finish executing before segment S′ starts (in the

particular program execution under consideration). Even if S finishes executing before

S′ starts, the relation S ≺ S′ may or may not be true. If S and S′ overlap or S finishes

before S′ starts, then S′ ≺ S is false. If neither S ≺ S′, nor S′ ≺ S is true then S and

S′ are said to be parallel segments.

Consider any segment S on any thread T in the program. Let TS denote the set

of all threads known to S. This set consists of T itself, and every other thread T′

with a posting segment S′ such that S′ ≺ S. The vector clock of S is a function VS :

TS → 0,1,2,...,∞ defined as follows: For all T′ ∈ TS, VS(T′) = [Number of posting

segments S′ on T′ such that S′ ≺ S].

Theorem 1.

Let T and T′ denote two distinct threads, S a segment on T, and S′ a segment on T′.

Then S ≺ S′ if and only if VS(T) <VS′(T).

Corollary 1.

A segment S on a thread T is parallel to a segment S′ on a thread T′, iff VS(T) ≥

VS′(T) and VS′(T′) ≥ VS(T′).

Theorem 2.

A segment S on a thread T is parallel to a segment S′ on a thread T′. Let RS denote

the set of memory locations read and WS the set of locations written by the segment

S, and similarly for the segment S′. Then there is a data race between S and S′, iff

the following two conditions hold:

1. VS(T) ≥ VS′(T) and VS′(T′) ≥ VS(T′);

Chapter 2: Runtime Verification 15

2. Either [RS ∪ WS] ∩ WS′ 6= ∅, or [RS′ ∪ WS′] ∩ WS 6= ∅.

2.3 Some Race Detection Algorithms

Dynamic race detection algorithms can be divided into two subcategories: lockset

based and vector clock based. Both approaches have the ability to completely detect

data races in any environment. Eraser and Goldilocks are lockset based race

detection algorithms, and FastTrack is a vector clock race detection algorithm.

Throughout their evolution, lockset based approaches were seen as fast, sound yet

imprecise approaches, which basically generates numerous false positives; rendering

them less useful for programs with many shared data. Actually, there exists a side

research to prioritize the error reports of such tools, utilizing source code charac-

teristics, i.e. static analysis. On the other hand, vector clock based approach was

regarded as complete yet slow one. However FastTrack authors have engineered

this approach so well that the performance of the race detection is currently known

as the state of the art since the last couple of years. As in RaceTrack, there exists

hybrid approaches, combining a phase of lockset based algorithm and then applying

vector clocks and thereby achieving a third kind of race detection [46, 30].

Completeness of data race detection can also be tweaked by changing the gran-

ularity of race detection. However, in this thesis we are only interested with word

granularity data race detection tools. Some algorithms adjust the granularity of

shared variables between collection of variables (objects, arrays) to individual mem-

ory cells [44, 46]. Increasing the granularity of the checking significantly decreases

16 Chapter 2: Runtime Verification

(at least an order of magnitude) the computational cost of both instrumentation and

analysis.

2.3.1 Eraser algorithm

Eraser is a well-known lockset-based algorithm for detecting race conditions dy-

namically [34]. Variants of Eraser in the literature use additional mechanisms such

as a state machine per shared variable in order to handle special cases such as thread

locality and object initialization patterns [34, 44, 46]. To detect race conditions,

Eraser enforces the locking discipline that every shared variable x is protected by

a common lock throughout the execution. If this assumption holds for every variable

in the execution, then the execution is declared race free. The other direction of this

statement is not valid: There are race free programs violating this assumption, which

makes Eraser sound yet imprecise.

For simplicity of presentation, we focus on the core algorithm using generic locksets

without distinguishing between read and write accesses. A race condition occurs if

two different threads perform conflicting accesses (i.e., at least one of them is a write)

on a shared (global) variable and there is no proper synchronization between these

accesses. The Eraser algorithm maintains a lockset LS(x) representing the set of

the algorithm’s guess of the locks protecting x. It also maintains for each thread t,

a lockset LH(t) representing the set of locks held by thread t at a given point in an

execution. LH(t) is updated appropriately when thread t acquires and releases a lock.

The algorithm attempts to infer the actual protecting locks for each data variable x

Chapter 2: Runtime Verification 17

by initializing LS(x) to the set of all locks in the program and then updating LS(x) to

be the intersection LH(t)∩LS(x) at each access to x by a thread t. If this intersection

becomes empty, this means that x has not been consistently protected by the same

lock, thus a race is reported. The implementation of the Eraser algorithm requires

1) to monitor the events in an execution that the algorithm needs to keep track of,

which is usually done by instrumenting the program’s source or binary code, and 2) to

perform some computation to update the algorithm-specific data structures, i.e., the

maps LH and LS, and check some conditions, i.e., “Does LS(x) become empty?”.

In 1), events are either immediately communicated to the algorithm by running a

callback function to perform 2), or saved to a temporary buffer to be processed later

(e.g., in a linked list of events as in [8]). There are two main sources of runtime cost,

which combined together contribute highly to the overhead of the monitoring on the

application:

2.3.2 An Eraser implementation

In Eraser, every shared memory operation and synchronization (locking) operations

has to be monitored. As the number and variety of events monitored by the algorithm

increases, the frequency of interrupting the execution with callbacks to the algorithm

increases and this becomes a bottleneck even though the actions of the algorithm are

simple and cheap. Our experimental results in Sec. 5.2 show that only instrumenting

the program (without performing any computation at instrumentation points) can

generate 3x overhead on the un-instrumented program.

18 Chapter 2: Runtime Verification

In order to accelerate accessing to these data structures, it is a well-known tech-

nique to distribute the structures to appropriate locations in over memory [46, 8].

For example, locksets LH(t) can be attached to thread t using thread-local storage

pointers and LS(o.f) for fields f of an object o can be attached to object o by adding

an extra field. Many instrumentation framework including Pin [21] provide utilities

to attach an auxiliary pointer to a thread object that can be fetched and updated

throughout the execution, that pointer refers to the data structures that are used

when processing the events of that thread. fetching the locksets from these maps may

require expensive hash computations with expensive memory operations and nontriv-

ial arithmetic operations. It is also possible to filter the instrumentation points by

static analyses, for example, to identify thread-local variables, but this creates extra

effort, e.g., code annotations as in [11], and often imprecise in the presence of complex

sharing and aliasing.

For Eraser, accessing the map LS (or LS(x), if the map is distributed) requires

to use a common lock to avoid two threads both accessing x to manipulate LS(x)

simultaneously. This creates large critical sections (code segments to be executed

atomically) throughout the execution and is a significant source of runtime overhead.

In summary, while Eraser is one of the simplest, cheapest algorithms for race de-

tection, their implementations can cause considerable runtime and memory overhead

and this makes the race checking hard to apply at the post-deployment.

The programmer has to spend a high amount of effort to make use of nontrivial

and often error-prone mechanisms. For example, a naive Eraser implementation

Chapter 2: Runtime Verification 19

requires a large memory space to store locksets when there are a high number of shared

variables. Moreover, it has to manage the locksets in the case of dynamic and frequent

allocation/deallocation of threads and variables. In order to reduce the runtime and

memory cost of the algorithm, the programmer has to develop a highly optimized

implementation. A clever way of reducing cost of analysis is to filter out events

(memory accesses) that are known not to result in a data race with any other event.

In [33] authors have developed three filters for such purpose. Another example, to

reduce the number of memory allocations for locksets, locksets of deallocated variables

is reused for newly allocated variables, requiring a memory pool of locksets. These and

similar extra management tasks are usually nontrivial and error-prone to implement

and if not implemented carefully, may create extra overhead on the core algorithm.

This results in highly complicated implementations for very simple algorithms such

as Eraser.

2.4 Previous Research on Race Detection

Both in FastTrack [12] and Goldilocks [8] provide a complete race detection tool

for applications running on a managed environment, Java in this case. Other complete

data race detection tools are available, Radish [5]. However there exists wide variety

of research tools that favor performance over completeness of race detection. Such

incomplete yet faster tools fall into three categories: sound but imprecise Eraser [34],

Racetrack [46], and MultiRace [32]; unsound but precise Kuda [2]; both unsound and

imprecise Racez [37] and DataCollider [10].

20 Chapter 2: Runtime Verification

RaceTrack [46] employs adaptive techniques for tracking properties, meta-data and

granularity contexts while using a hybrid detection algorithm. The potential races

that are generated in the coarse-grained approach are used for handling adaptation,

which leads to refinement; secondly threadset technique has the ability to ignore

race checking on safe variables. Racetrack is embedded to .NETs VM CLR where

RaceTrack exploits the tools framework. Plus it also employs post-processing of

potential race warnings. Experiments show that the detector does 3x slowdown for

worst, but typically 2x.

ThreadSanitizer [36] is another sampling data race detection tool developed by

Google. It is built on LLVM and therefor it is based on low-level compiler instrumen-

tation. Another important tool from Google’s research team is Racez [37]. Racez

uses the sampled memory trace collected by the hardware Performance Monitoring

Units (PMUs) for race checking via a lockset based detection algorithm. Racez is the

first race detection tool that uses PMUs for instrumenting. Thread library functions,

are wrapped so that each synchronization call updates thread local lockset informa-

tion. Whereas all memory operations (includes locks, mallocs etc.) are collected by

the PMUs and then this two separate bookkeeping are correlated. When an applica-

tion thread I created by the wrapped call, PMU interrupts are bound to each using

a file descriptor, creating PMU context. Then a system call inside a thread starts

the self-monitoring process. When a PMU samples an event it creates an interrupt,

when the buffer is read PMU closes and waits for a restart. Sampling period and

buffers can be configured at each start. Therefor PMUs can be configured at runtime,

Chapter 2: Runtime Verification 21

which enables dynamic optimizations. Sampling period can be configured on the fly.

Racez basically delivers a signaling mechanism to multithreaded applications for

self-monitoring. Hardware seamlessly keeps track of sampled memory accesses and

signals threads to collect it. Race detection is done post-mortem and both unsound

and imprecise but contains stack traces. This approach leads down to a surreal 0.02x

overhead on average to the target application under average sampling.

Authors of DataCollider [10] have implemented a race checker, oblivious to syn-

chronization protocols, right into the OS kernel. It samples memory access data via

random code breakpoints and captures the racing thread red-handed via data break-

points. DataCollider race checker uses a repeated-read strategy. It reads the value

once before and once after the delay. A change in value is an indication of a conflict-

ing write, and hence a data race. DataCollider incurs very low overhead while using

sampling option.

RaceFuzzer [35] is composed of two phases; first a race detection algorithm, sec-

ond phase is the actual fuzzing. This work attempts to force entire reported race

interleaving during testing in order to separate false positives from true race bugs.

RaceFuzzer instruments Java byte code to observe various events and to control the

thread scheduler. The algorithm takes set of potential races from first phase then,

basically second phase actively controls a randomized thread scheduler of concur-

rent program based on potential data races discovered by an imprecise race detection

technique. Therefore RaceFuzzer is actually a race-directed random testing based on

previously known potential races. That leaves RaceFuzzer out of our focus. Experi-

22 Chapter 2: Runtime Verification

ments show that tool does 3x slowdown, 1.1x at best. But with the exception of an

order of magnitude slowdown for HPC programs.

HARD [48] is the first hardware implementation of the lockset algorithm to ex-

ploit the race detection capability of this algorithm with minimal overhead. HARD

efficiently stores lock sets in hardware bloom filters (it is similar to our kernel imple-

mentations, see 4.4) and converts the expensive set operations into fast bit- wise logic

operations with negligible overhead.

Kuda has three different race detection algorithms available in its core. Keep

in mind that analysis can be extended with other detection algorithms, not limited

with race detection, like atomicity checking [47, 18, 31] and other security checks [28].

Kuda using Goldilocks race detection algorithm is an unsound but precise race

detection tool, meaning the result of race detection may contain false negatives (some

data races might be missed) but any error given by the tool is actually a data race.

Eraser is an algorithm that is sound but imprecise, meaning it does not miss any

data race yet it may alert the user even when there are no data races occurred. Kuda

using Eraser race detection algorithm is both unsound and imprecise race detection

tool. The reason Kuda introduces unsoundness to runtime verification is left out for

the following chapters. Kuda also has a FastTrack kernel, however it is a very

limited implementation compared to the other two, due to commodity GPU’s current

architectural limitations such as very limited shared memory.

Our separation of instrumentation and analysis allows one to focus not on opti-

mizations but a simple implementation of the core algorithm on highly efficient cores,

Chapter 2: Runtime Verification 23

available on commodity GPUs. In order to reduce the runtime overhead of the check-

ing, we distribute the responsibilities for the algorithm to worker (checker) threads

separate from the application threads. Checker threads run on separate cores, and do

not slow down the application being monitored. We investigate this idea by running

the runtime analyses on GPUs. Our novel approach has the side benefit of simplifying

the implementation of runtime verification algorithms, which are often forced to make

use of tricky data structures and optimizations when run on the same threads as the

applications. When run on separate cores, simpler but parallelized implementations

of these algorithms provide the required performance.

!""#$%&'()*+,-.&/0* 1(-2.-*+,-.&/*

333*

333*

456*+,-.&/0*

7$0+*(8*.9.)+*8-&:.0*

!"##$%&'($)*$
;9.)+0* <=##*.9.)+*8-

&:.*

CPU GPU
<-&:.*+(*%,.%2*

>.0=#+*(8*%,.%2$)?*!#?(-$+,:@0".%$A%*
:.:(-B*0"&%.*

Figure 3.1: Components of our runtime monitoring system.

Chapter 3

EXTRACTION OF TARGET APPLICATION’S

EXECUTION TRACE

Our main goal is to design a runtime verification framework that will have the

cost of analysis for race detection to have minimum negative impact on the program’s

runtime behavior. Our key design decision is to carry out the checking algorithms on

physically separate multi-processors, in our case the GPU cores.

3.1 Binary Instrumentation

In this section, we present our techniques for observing the target application’s execu-

tion trace, i.e., recording events and communicating them to the GPU. The following

chapter will complement this by introducing GPU-based algorithms for data race

Chapter 3: Extraction of Target Application’s Execution Trace 25

detection. Binary instrumentation is needed to gather the necessary data on the exe-

cution of a program. There exist several industry strength frameworks that are open

to us researchers: Intel R© Pin[21], Valgrind[25], DynamoRIO[38] and for managed

environments there is RoadRunner [13] among others.

In order to instrument the binary and gather the execution trace, we have devel-

oped two distinct toolkits for two separate runtime environments:

3.1.1 Native binaries

For native binaries, in Kuda, we are using Intel R© Pin [21]
TM

dynamic instrumentation

tool for attaching hooks to the events occurring within the target application. Pin

was originally created as a tool for computer architecture analysis, but its flexible API

and an active community (called ”Pinheads”) has created a diverse set of tools for

security, emulation and parallel program analysis. Intel R© Parallel Suite
TM

is a pack

of commercial tools for parallel programmers that uses Pin tool as their backbone.

Such tools are commonly called as Pintools. Pintools can be used to perform program

analysis on user space applications in Linux and Windows
TM

. Thus, it requires no

recompiling of source code and can support instrumenting programs that dynamically

generate code. Pin provides a rich API that abstracts away the underlying instruction-

set idiosyncrasies and allows context information such as register contents to be passed

to the injected code as parameters. Pin automatically saves and restores the registers

that are overwritten by the injected code so the application continues to work. We

have chosen to work on top of Pin since an application instrumented with Pin observes

26 Chapter 3: Extraction of Target Application’s Execution Trace

the same addresses and registers for program code and data as it would were it running

without Pin, it was the perfect framework for achieving data race detection. And the

authors of Pin have shown that Pin is faster than other systems such native binary

instrumentation framework. As for our concurrency primitives on native code, inside

our Pintool, we attach hooks for pthreads[15] library calls.

3.1.2 Java byte-code:

For instrumenting Java applications, in Kuda, we are using RoadRunner [13]. It

is a dynamic analysis framework designed to facilitate rapid prototyping and experi-

mentation with dynamic analyses for concurrent Java programs. It provides a clean

API for communicating an event stream to back-end analyses such as in Kuda, where

each event describes some operation of interest performed by the target program, such

as accessing memory, synchronizing on a lock, forking a new thread, and so on. Java

events are passed to our native Kuda interface via JNI, the Java Native Interface.

However, such interface turned out to be the bottleneck of our framework due to high

volume of data transformations, therefore we chose to limit our demonstration only

limited for native applications.

3.2 Kuda Interface

In our Kuda framework, target application threads running on the CPU, under a

managed environment or not, are only responsible for recording their events in a

shared data structure. Communication cost of these events to the GPU for further

Chapter 3: Extraction of Target Application’s Execution Trace 27

processing is a burden for a worker thread apart from the application threads. Fig. 3.1

illustrates this separation of responsibilities between the CPU and GPU threads. This

was one of our goals successfully achieved. Detailed performance results are left for

another chapter.

Note that, our splitting framework gives path to future realizations of highly ef-

ficient instrumentation and monitoring infrastructure independent of target applica-

tion’s environment and independent of targeted analysis offloaded to the GPU. There

exist several important line of work, in [42] using inexpensive hardware support for

acquiring and communicating the execution trace. And in [22] GPU is utilized for

highly parallel garbage collection. Work in [28] can also be adopted such that the par-

allel security checks could be done inside a GPU. Our goal was to utilize commodity

hardware environment with a modern GPU.

3.2.1 Event Bookkeeping

In Kuda, we basically linearize all events in the execution. For this, we use a mono-

tonically incrementing global counter to assign a global order to each and every caught

event. Our system requires no more synchronization to establish or observe the lin-

earization. While observing only a partial order (of synchronization operations) would

be sufficient for soundness. Instead of analyzing the entire execution, we observe an

execution as a linear sequence of events, we call the trace of the execution. While

multiple linearizations of the events may represent the same concurrent execution,

our system observes one of these linearizations.

28 Chapter 3: Extraction of Target Application’s Execution Trace

Our technique is based on logging the execution as a linear sequence of events

and running the analysis in a very efficient, parallelized way. Here, we overload the

term event as a data structure that carries out the identifier of the executing thread,

and the kind of the event (memory read/write, lock acquire/release, etc.), and a data

word relevant for the kind of the event (e.g., the address of the memory accessed

or the identifier of the thread created). In order to enable efficient handling of the

event log, we only process a fixed-size segment of this log, called frame, at a time. In

our experiments we fixed this size as 1024-events and refer to it by the FrameSize

constant. We treat each frame as a unit of input for the analysis implemented in the

GPU. Each frame is checked independently from other frames and minimal informa-

tion is kept between frames, e.g., racy variables to omit accesses to those variables.

When a frame is completely checked, the events in it are discarded and it is reused to

store later events. While our implementation allows enlarging or shrinking this list,

our experiments show a small number of blocks are sufficient to track without any

need to modify the list.

While splitting the linearized execution into chunks of independent frames may

cause unsound results due to lost pairings of events from separate frames, our frame-

work allows to adjust the FrameSize to increase the chance of finding bugs while

losing some performance. We have chosen to defer the soundness issue, since the

goal of this study was to show the feasibility of highly parallel, at-speed runtime ver-

ification. We overlap our frames so that the splitting of two events in consecutive

frames is always a FrameSize away. Empirical evidence by other researchers indi-

Chapter 3: Extraction of Target Application’s Execution Trace 29

cates that this is a minor source of unsoundness: Many concurrency errors involve a

small number of threads, and can be detected by focusing on a short portion of the

execution [24].

Fig. 3.2.1 shows our main data structure for keeping event frames: a circular

linked list. At any time this list contains a fixed number of frames, where each frame

is a memory buffer to store FrameSize events. As explained below, the circular

linked list allows us to reuse the frames in an efficient way throughout the execution.

Fig. 3.3 shows pseudo code to record events (RecordEvent) and to process full event

frames, i.e., communicating them to the GPU for the analysis (CheckFrames). While

application threads perform the former, we dedicate a separate worker thread (running

on the CPU) for the latter.

3.2.2 Recording of events (RecordEvent in Fig. 3.3)

At any point in the execution, we keep two pointers to frames in our event list: Head

and Tail. The part of the list between Head and Tail (both inclusively) contains

the frames (shown in white color in Fig. 3.3) that are being filled by application

threads. The rest of the list between Tail and Head contains the frames that have

become full and waiting to be checked (shown in grey). At the initial state of the

event list Head and Tail points to the same frame. While frames become full, Head

is shifted, and as the full frames are checked, Tail is shifted (as shown in Fig. 3.3).

In order to prevent data races on Head and Tail, we read from and write to these

variables by acquiring locks associated to them. These locks are implemented as a

30 Chapter 3: Extraction of Target Application’s Execution Trace

!!!!" !!!!"

#$%&'(")*"+'",-',.'/" #$%&'(")*"+'"011'/" #2$()"3$%&'"
)*",-',."

!"#$% &#'(%

Head Tail

Figure 3.2: The cyclic linked list of event frames

Algorithm RecordEvent(e)

(Executed by application threads)

// Find the first frame to insert the event

1 frame := Head

2 index := AtomicGetAndIncrement(frame.size)

3 while (index ≥ FrameSize) {

4 if (frame = Tail) { goto line 1 } // restart

5 frame := frame.next

6 index := AtomicGetAndIncrement(frame.size)

7 }

// Insert event to the frame at index

8 frame[index] := e

// Shift Head, if the frame becomes full

9 if (index = FrameSize− 1) { Head := Head.next }

Figure 3.3: RecordEvent pseudocode

spin lock. Another approach for preventing data race to these pointers was to have

atomic operations, ergo having a lock-free cyclic linked list, however our performance

Chapter 3: Extraction of Target Application’s Execution Trace 31

Algorithm CheckFrames()

(Executed by worker thread)

1 while (program is running) {

2 wait until Head 6= Tail

3 frame := Tail

// Check frame at GPU

4 Copy frame to GPU device memory

5 Asynch-Call GPU kernel for race checking

// Shift Tail to reuse the frame

6 frame.size := 0

7 Tail := frame.next

8 wait until GPU kernel finishes

9 Copy result of the checking from GPU

10 }

Figure 3.4: CheckFrames pseudocode

analysis showed that such an approach has scalability and therefore low throughput

issues when number of concurrently accessing threads become more than 4.

Each event frame has a field called size, which stores the number of events in the

frame. When an application thread wants to record an event, it traverses the list

starting from Head (lines 1-7). At each step it reads the current size of the frame

32 Chapter 3: Extraction of Target Application’s Execution Trace

being visited and increments its size by one (lines 2 and 6). If size of the last visited

frame before incrementing was less than FrameSize, then the thread uses that value

as index of the frame to record the event (line 8). Otherwise, the thread tries following

frames in the list in a loop (lines 3-7). If a thread reaches Tail while traversing the

list, it restarts as this indicates that the current frame is full and subject to checking

by the worker thread. In our experiments with number of benchmarks, shifting Tail

is happens more than shifting Head, so that there is always at least one empty slot to

insert an event between Head and Tail. We keep a global counter, called next index.

For each frame, we keep the minimum and maximum values for indices of events that

frame will store. That is, the checking phase of reads the current value of next index,

say index and increments it by one. It then locates index in the event list. For this,

it traverses the list starting from Head and going towards Tail. The thread while

traversing the list to figure out which frame to add the event uses these bound values.

Notice that, this is in fact a one-level implementation of a B-link tree. Thus, the

event list could also be organized as a tree to accelerate the location of the frame to

insert the event. After adding the event to the right frame, if the current application

thread finds out that the current frame is Head and has just become full, it shifts the

Head pointer to the next non-empty frame in the list (lines 9).

3.2.3 Processing of frames: (CheckFrames in Fig. 3.4)

When the event list is first initialized, At the initial state of the event list Head and

Tail points to the same frame. While event frames become full of events, Head starts

Chapter 3: Extraction of Target Application’s Execution Trace 33

to shift forward as explained above. Thus, the frames between Tail and Head become

full frames to be checked. Our worker thread takes a full frame a time and sends it

to the GPU for the checking (in Fig. 3.4 this is the rightmost frame in gray). For

this, the worker thread continuously executes the loop until the program finishes (We

omit the code that processes the non-empty frames after the program terminates). At

each iteration of the loop, the thread first waits until Head and Tail do not point to

the same frame, i.e., the list contains full frames (line 2). When the condition holds,

the thread locates the frame pointed by Tail (line 3) and checks it at the GPU. See

Sec. 4.1 for explanation of procedure (lines 4-5 and 8-9) for running the analysis on

the GPU. As the analysis on the GPU runs asynchronously with the CPU, the worker

thread spends the time to wait until the GPU computation terminates to mark the

currently checked frame empty (line 6) and to shift Tail forward and make the frame

available to be reused to record new events (line 7).

We have the ability to apply separate helper threads for consuming the full frames

other than the worker thread. These helper threads pick up a frame and do race

checking on the CPU. This option can be enabled throughout the execution or when

Head comes close to the Tail. Since our goal is to emphasize parallel race detection

on GPU, we have disabled helper threads.

Upon completion of the kernel call (line 8), the worker thread copies the result of

the checking, i.e., racy accesses, from the GPU’s memory back to the CPU’s memory

(line 9), in an algorithm-specific memory space. While our system reports all the

errors at the end of the execution, it can be modified to report the errors as soon as

34 Chapter 3: Extraction of Target Application’s Execution Trace

it gets the response from the GPU.

Chapter 4

DYNAMIC RACE DETECTION ON GPUS

Having introduced the CPU part of our framework, we will now present cus-

tomized algorithms for the data race detection, running on the GPU cores. In section

4.1 we first brief on GPU computing on CUDA
TM

and then in section 4.2 using the

CUDA
TM

model and after that in section 4.3 we introduce the author to the challenges

that affected our design. Then, in section 4.4 we present our adaptation of Eraser,

Goldilocks and FastTrack algorithms to run on thousands of GPU threads.

4.1 Introduction to CUDA
TM

CUDA
TM

[29] is a parallel computing platform and a programming model created by

NVidia R©and implemented by the GPUs that they produce. A GPU provides a highly

parallel, multithreaded, many-core processing environment with a hierarchical mem-

ory model isolated from the main memory. Todays GPU hardware contains hundreds

of processors and a much higher memory bandwidth than CPUs. For example, the

Quadro
TM

4000 card we used contains 8 multiprocessors with 32 cores each, totally

giving 256 cores running at 1.404 MHz memory clock and 950 MHz processor clock,

and 2 GB of memory space with 89.6 GB/sec bandwidth. Theoretical limit of our

GPU is 486.4 gigaflops at single precision. An ultra High-end CUDA
TM

GPU available

36 Chapter 4: Dynamic Race Detection on GPUs

today uses the state of the art Kepler
TM

architecture having 2688 cores, with 6 GB of

memory space with 250 GB/sec bandwidth, making the theoretical limit of this ultra

GPU a 3.95 teraflops at single precision.

4.2 CUDA
TM

programming model

The CUDA
TM

model allows programmers to write code in an extension of the C lan-

guage that will be run on GPU in a highly parallel manner. The mapping of the code

to physical processing units on the GPU is transparent to the programmer, and this

enables one to write parallel code that can scale for devices with different parallel

processing capabilities and easily scale out to multiple GPUs.

Each code portion to be run on GPU is written as a C function called kernel and

can be called from C/C++ code executing on the CPU. Thus, in our framework, each

analysis algorithm is written as a C function. The CPU and GPU threads operate

on memory modules physically isolated from each other. As a result, we have to

maintain a separate memory space on the GPU’s own device memory. For this, at

the beginning of the execution, we pre-allocate a memory region, as large to fit a full

event frame, on the GPU’s own device memory at the beginning of the execution.

Additional space is also allocated to hold the intermediate results and outputs of the

kernel’s computation. The pointers to these memory regions are given as arguments

when to the kernel call. Our worker thread (running on the CPU) must follow the

given steps in Fig. 3.4 to run an analysis on a full event frame.

The worker thread first copies the contents of the event frame to the pre-allocated

Chapter 4: Dynamic Race Detection on GPUs 37

my kernel<<<numBlocks, threadsPerBlock, ...

amountOfSharedMemoryPerBlock, numStreams>>>(A, B, C);

Figure 4.1: A generic kernel launch

region on the GPU device memory, called the host memory. Then it calls the kernel

function of an available checker algorithm. The kernel function is executed by the

GPU cores in parallel and asynchronously with the application threads running on

the CPU, only the worker thread will wait for the kernel to respond back the analysis

results. When calling the kernel function, it passes as arguments the pointer to

device memory region storing the current frame, number of thread blocks, number

of threads per a thread block, the number of events in the frame, the amount of

shared memory per thread block and number of streams (see 4.2). Each kernel is

executed with a SIMD style on multiple cores and threads. The CUDA
TM

model

allows one to execute the kernel on a virtual organization of threads, independent of

the number of cores on the device. This enables scalability and transparency without

modifying the code. In order to engineer the organization of threads, there is a

tool called Occupancy Calculator. The CUDA Occupancy Calculator allows you to

compute the multiprocessor occupancy of a GPU by a given CUDA
TM

kernel. The

multiprocessor occupancy is the ratio of active threads to the maximum number of

threads supported on a single multiprocessor of the GPU. Each multiprocessor on the

device has a set of registers and shared memory available for use by CUDA
TM

program

38 Chapter 4: Dynamic Race Detection on GPUs

threads. These are shared resources that are allocated among the thread blocks

executing on a multiprocessor. The CUDA
TM

compiler attempts to minimize register

usage to maximize the number of thread blocks that can be active in the machine

simultaneously. However, in some special cases like in Kuda, having a maximum

number of active threads per multiprocessor is not the optimal solution. In Kuda, a

single thread has to access the memory in a very high frequency, which means having

more registers allocated for each thread. The reasoning behind this phenomenon

is explained thoroughly in [43]. A single sentence explanation would be that the

characteristic of any race detection algorithm actually favors lower arithmetic and

memory latency, over higher parallelism.

In Fig. 3.4, since the GPU kernel executes asynchronously with the CPU, the

worker thread can spend the time until the kernel call terminates to mark the currently

checked frame empty (line 6) and makes the frame available to be reused to recording

new events (line 7). The worker thread uses CUDA
TM

routines to synchronize with

the kernel execution for further processing. Upon completion of the kernel call, the

worker thread copies the result of the checking, i.e., pairs of racy accesses in the case

of data race detection, from the GPU’s device memory back to the CPU’s memory

to be reported later.

4.3 Software Engineering Challenges on the GPU

While the CUDA
TM

model provides hundreds of cores available to the highly parallel

analysis of event frames, it also comes with the following challenges:

Chapter 4: Dynamic Race Detection on GPUs 39

4.3.1 Isolated execution

Each GPU thread gets a unique thread identifier among the other threads. This

unique id allows the thread to determine parts of the event frame it should work on

without interfering with other threads. Explicitly transferring the inputs and outputs

of the kernel between the CPU and GPU creates an extra communication overhead for

each kernel call (newest high-end HP motherboards have a customized communication

bus in between capable of multiple GPUs just to tackle this problem). Thus, we chose

the frame size carefully to manage this overhead. In addition, we maintained any data

that was not used in the checking separately and did not sent it to the GPU; the rest

of the data relevant for the checking was encoded to fit small data structures to reduce

the CPU-GPU communication cost. In order to reduce the communication overhead,

we encode each event in two 32-bit words, storing the event kind, the identifier of the

thread generating the event, and a memory address (of variable read/written, or of

mutex locked/unlocked) relevant to the kind of the event. Any other data not used

in the checking is maintained separately and not sent to the GPU. For example, for

each event, we keep the address of the instruction that generated the event, and use it

for debugging errors in which event involves in, relating the event back to the source

code location that generated that event.

4.3.2 Limited device memory space

Although state-of-the-art GPU devices can have more than 2GB of memory and

latest CUDA
TM

libraries offer dynamic memory allocation in the kernel, we believe

40 Chapter 4: Dynamic Race Detection on GPUs

that relying on limited amount of memory is essential for the efficiency of the kernel

execution. Dynamic memory management will cause considerable overhead on the

performance of the checking. Even more importantly, in today’s commodity PC

setups there exists a single GPU that has only 256MB of device memory. Having

a 200MB of a frame would cripple the OS processes, which are working to keep up

with the display. This again brings some limits on size of data structures kernels use.

Therefore, we were determined to use fixed-size representations for data structures

(some of which are allocated prior to the execution) that store locksets and racy

pairs of accesses detected. We have experienced some minor glitches on the screen

especially during the operation of Kuda. It should be noted here that in order to

debug our Kuda kernel functions, we had to have a separate GPU for Xserver to

run on. CUDA-gdb currently does not allow their user to attach hooks to a running

kernel, without having to stop another kernel’s execution.

4.3.3 Enforcing SIMD model

CUDA
TM

enforces the SIMD execution model rather than the typical multiple-instruction

model in the CPU. In the GPU, threads are divided into multiple groups (called warp

in CUDA
TM

) and warp of threads are co-scheduled on a streaming multi-processor

and execute the same instruction in a given clock cycle. SIMD style execution of

the kernel forces the developer to implement her algorithm in a special form of data-

parallelism in order to get benefit of hardware parallelism. For example, since the

GPU is design to run the same instructions on all threads simultaneously, control flow

Chapter 4: Dynamic Race Detection on GPUs 41

instructions (e.g., if, while) affect the instruction throughput by causing diverging

paths to be serialized. Thus in [29] it is highly recommended that different execution

paths in the kernel be avoided and the branches in the code be implemented by dis-

tributing data to different threads and using thread and frame identifiers to access

different memory regions or do different computations.

4.3.4 Limited shared memory and limited shared memory functionality

Although it is not common to have nontrivial data structures such as a hash table

inside the shared memory, we had to go through with it for our FastTrack imple-

mentation. CUDA
TM

shared memory is said to be dynamically allocatable, however it

is not true, especially in the sense of how traditional software engineers expect from a

shared memory. When launching a new kernel you can only set the amount of shared

memory that a thread block should have, and basically that’s it. You cannot dynami-

cally allocate a data structure, a thread block has a shared pointer across its threads,

to the top of the allocated shared memory. It would be more fitting to call it a shared

register file. The challenge that it brings to the CUDA
TM

developers is that in order

to allocate and work with the data structures, you should build your kernel for the

worst case. Meaning without having the capability to dynamically adjust, allocate

and free, your data structure nodes, the maximum amount of nodes that you could

allocate inside the shared memory is your closest limiting factor. Since a hash table

is the building block of vector clocks, a FastTrack running on a GPU can only be

a very limited version; the target application you are monitoring for data races can

42 Chapter 4: Dynamic Race Detection on GPUs

only have a couple of threads running parallel and the FrameSize parameter should

be chosen carefully so that the vector clocks could never exceed the available, tiny

shared memory consisting of just a couple of KBs.

4.3.5 Memory and arithmetic latencies

A very common computation pattern for a GPU kernel is to access the device memory

once (or twice) for input and some small amount of computation on top of a small

matrix of pixel data. But, for race detection, each kernel thread has to access all of

the events beyond their corresponding initial event (see section 4.4). This memory

access pattern is very unusual for a kernel and puts a lot of stress on the memory

controllers. We have experienced serious memory latencies for fetching the events

inside a frame and decided to bring down the frame to the thread blocks by utilizing

shared memory. This has greatly improved the overall performance of our kernels.

Secondly, regarding arithmetic latency, a thread has to compare an event to forth-

coming events at each iteration of a for loop. If the algorithm falls into the path that

it should modify the meta-data accordingly it stresses the arithmetic capabilities of

the GPU. Since threads in the same warp have to work with the same instruction

the arithmetic latency becomes worse than a regular CUDA
TM

kernel, plus it adds

workload imbalance due to branching and nonuniform memory accesses. A possible

counter measure for this behavior is creating artificial thread level and instruction

level parallelism to hide the latency (by checking races for separate events inside the

same loop); but a successful implementation for any input is very tricky and could

Chapter 4: Dynamic Race Detection on GPUs 43

have resulted in worse performance than the original. We decided to avoid an even

more complex kernel code.

4.4 Data Race Detection on the GPU

Given the challenges in writing kernels, we wrote parallel kernels for the Eraser,

Goldilocks and FastTrack algorithms. Fig. 4.4 and Fig. 4.4 gives the pseu-

docode for two of these kernels, FastTrack kernel could not be used for real ap-

plications so we defer its explanation to our open source code, available online. The

implementations of the kernels are also available at http://kuda.codeplex.com.

The challenge in writing the kernels is to trade the challenges given above with the

large number of cores available on the GPU. In our algorithms, each thread checks

a unique variable access in the given event frame, creating the data structures, i.e.

locksets, necessary for the check locally (in its stack) and discarding them after the

check completes.

Due to the limited GPU memory space and the requirement to pre-allocate the

memory used by the kernel, using bounded sized representations for data structures

in the kernel is essential. For this, we represent locksets in both the Eraser and

Goldilocks kernels with bloom filters, which can represent a collection of addresses

(of locks, variables, etc.) in constant-size bitsets. As the data required for a single

check is of finite size and used locally and temporarily, dynamically created objects

or threads do not create extra memory space or management.

Bloom filters can represent a set of words in a constant space, i.e., fixed-size bitsets.

44 Chapter 4: Dynamic Race Detection on GPUs

Bloom filters allow insertions and lookups but not removal of existing elements. In

fact, our algorithms do not require removal from locksets, but only additions and

lookups. While being efficient, bloom filters make us sacrifice soundness. It might

response positive to a lookup query for items, even when it is not contained in the

set. As a result, our algorithm can incorrectly decide that a lock is in the lockset of a

variable and thus miss data races, hurting the soundness of our checking. Nevertheless,

we are already sacrificing soundness because of analyzing execution in independent

frames, and the bloom filter does not affect precision of our analysis, which is our

primary goal.

Each kernel in Fig. 4.4 and in Fig. 4.4 takes an event frame (Frame) and returns

a list of racy events (DataRaces). We start by explaining the common portions

of both kernels between lines 1-12. Note that, Frame is an array of events. We

organize threads in a one-dimensional thread block. Each thread obtains its id from

threadIdx.x (line 1), and fetches the idth event from the frame (line 2). If the fetched

event is not a shared variable access (line 3), the thread terminates. Otherwise,

between lines 4-11, it finds the next access to the same variable (saved in e.value).

If it finds a next access within the same frame (line 12), then id′ stores the index

of the access and e′ stores information about that access. The thread then checks

if the accesses recorded at e and e′ involve in a race. Both kernels transfer their

portion of the frame from device memory to its shared memories (not included in the

pseudocode). The kernels differ in how this checking is done.

EraserKernel computes two sets of locksets. Between lines 13-21, the lockset LSR

Chapter 4: Dynamic Race Detection on GPUs 45

is computed to find out the locks released by the first accessor thread (e.tid) after

accessing the variable. We also use the lockset LSA to avoid incorrectly adding a

lock to LSR that is acquired and released after the access. Between lines 22-30, the

lockset LS ′A is computed to find out the locks acquired by the second accessor thread

(e′.tid) before accessing the variable. We also use the lockset LS ′R to avoid incorrectly

adding a lock to LS ′A that is acquired and released before the access. 1 At line 31, we

compute the intersection LSR∩LS ′A. If this intersection is not empty, then this means

that the second accessor thread acquired at least one of the locks the first thread was

holding when it accessed the variable. Otherwise, then the pair (e, e′) is added to the

set of racy event pairs (line 32). Initializes a thread-local lockset as an empty set at

line 13. LS stores the locks that are released by the first accessor thread (e.tid).

The thread traverses the events (denoted e′′) between e and e′ and update LS

(lines 17-18. If the second accessor thread (e′.tid) acquire one of the locks released

by the first accessor thread, the flag racy is set to false and the traversal ends (lines

19-22). Upon completion of the traversal at line 24, the thread checks the racy flag.

sIf racy = false then this means that the second accessor thread acquired at least one

of the locks the first thread was holding when it accessed the variable. If racy = true,

then the pair (e, e′) is added to the set of racy event pairs (line 25).

GoldilocksKernel uses only one lockset, LS, initialized to a singleton containing

the id of the first accessor thread (line 13). The thread traverses the events (denoted

e′′) between e and e′ and update LS. Lines 16-20 applies the standard rules for Gol-

dilocks [8]: If the current event e′′ is of an acquire and the lock acquired (saved in

46 Chapter 4: Dynamic Race Detection on GPUs

e′′.value) is in LS, then the thread acquiring the lock (saved in e′′.tid) is added to

LS (lines 16-17). If the current event e′′ is of a release and the thread acquiring the

lock (saved in e′′.tid) is in LS, then the lock acquired (saved in e′′.value) is added

to LS (lines 18-19). In Goldilocks [8], acquiring a lock, start of a thread, joining

a thread, and reading from a volatile variable are all considered as acquire events,

and releasing a lock, creating a new thread, end of a thread, and writing to a volatile

variable are all considered as release events. Thus, the lines 16-20 can process any

events in these categories. Upon completion of the traversal at line 21, the thread

checks if LS contains the id of the second accessor thread. If the id is not in LS, then

the pair (e, e′) is added to the set of racy event pairs (line 22).

Chapter 4: Dynamic Race Detection on GPUs 47

Algorithm EraserKernel — Input: Frame – Array of events. Output: DataRaces – Pairs of racy events.

1 id := threadIdx.x e := Frame[id] //Get thread id and Fetch event

2 if (IsRead(e.kind) or IsWrite(e.kind)) { // check if this is an access event

3 id′ := -1

4 for (i = id to Frame.size) { // find out the next access to the same variable

5 e′ := Frame[i]

6 if (IsRead(e′.kind) or IsWrite(e′.kind)) {

7 if (e′.value = e.value) { id′ := i break }

8 } }

9 if (id′ 6= -1) { // if there is another access, check that access

10 LSA := LSR := ∅ // compute LSR for the first accessor

11 for (i = id + 1 to id′ − 1) { e′′ := Frame[i]

12 if (e′′.tid = e.tid) {

13 if (IsAcquire(e′′.kind)) LSA := LSA ∪ {e′′.value}

14 elseif (IsRelease(e′′.kind) and e′′.value /∈ LSA) LSR := LSR ∪ {e′′.value}

15 } }

16 LS′
A := LS′

R := ∅ // compute LS′
A for the second accessor

17 for (i = id′ − 1 back to id + 1) { e′′ := Frame[i]

18 if (e′′.tid = e′.tid) {

19 if (IsRelease(e′′.kind)) { LS′
R := LS′

R ∪ {e
′′.value} }

20 elseif (IsAcquire(e′′.kind) and e′′.value /∈ LS′
R) { LS′

A := LS′
A ∪ {e

′′.value} }

21 } }

22 if (LSR ∩ LS′
A = ∅) { DataRaces := DataRaces ∪ (e, e′) } // report for data race

23 } }

Figure 4.2: Kernel code for Eraser

48 Chapter 4: Dynamic Race Detection on GPUs

Algorithm GoldilocksKernel — Input: Frame – Array of events. Output: DataRaces – Pairs of racy events.

1 id := threadIdx.x // Get thread id

2 e := Frame[id] // Fetch event

3 if (IsRead(e.kind) or IsWrite(e.kind)) { // check if this is an access event

4 id′:=nil

5 for i = id to Frame.size do

6 e′:=Frame[i]

7 if IsRead(e′.kind) or IsWrite(e′.kind)

8 if e′.value = e.value

9 id′:=i

10 break

11 end if

12 end for

13 if id′ 6= nil // if there is another access, check that access

14 id := threadIdx.x // Get thread id

15 e := Frame[id] // Fetch event

16 if (IsRead(e.kind) or IsWrite(e.kind)) { // check if this is an access event

17 id′ := -1 // find out the next access to the same variable

18 for (i = id to Frame.size) {

19 e′ := Frame[i]

20 if (IsRead(e′.kind) or IsWrite(e′.kind)) {

21 if (e′.value = e.value) {

22 id′ := i

23 break

24 } } }

25 if (id′ 6= -1) // if there is another access, check that access{

26 LS := {e.tid} // initialize a local lockset for e.value

27 for (i = id + 1 to id′ − 1) // run rules of the algorithm{

28 e′′ := Frame[i]

29 if (IsAcquire(e′′.kind) and e′′.value ∈ LS) LS := LS ∪ {e′′.tid}// Process operations of kind Acquire

30 if (IsRelease(e′′.kind) and e′′.tid ∈ LS) LS := LS ∪ {e′′.value} // Process operations of kind Release

31 }

32 if (e′.tid /∈ LS) // perform the check for data race

33 DataRaces := DataRaces ∪ (e, e′)

34 } }

Figure 4.3: Kernel code for Goldilocks

Chapter 5

EXPERIMENTAL SETUP

In this chapter, we describe our efforts to experimentally evaluate our runtime

verification approach. We aim to evaluate two claims we referred to in our introduc-

tion:

1. to have minimal, tolerable impact on the threads being monitored, and

2. to have the monitoring algorithms work at the same speed as the program, while

possibly lagging behind by a bounded amount.

First, our separation of monitoring and analysis to CPU and GPU significantly

reduces the overhead of the traditional approach in which both are performed on the

same threads/cores. Second, our analysis code runs at a similar speed as the pro-

gram and finishes soon after the program terminates. For this, we implemented

our proposed system in a prototype tool called Kuda and applied Kuda on a

collection of multithreaded benchmarks. Kuda is open source and available at

http://kuda.codeplex.com.

Kuda consists of two parts:

1. A dynamic library containing the core functionality including the routines for

recording events, managing event frames, and running the race detection kernels

50 Chapter 5: Experimental Setup

on the GPU. We use the CUDA
TM

4.0 library [29] to write and call kernels for

analyzing frames and to manage the GPU resources (e.g., transferring data

to/from the GPU device memory). While our experiments are performed using

the global memory, our system can use constant and texture memory. The fact

that event frames are only read by the kernel enables us to make use of the

constant and texture memory, which are cached for fast read-only access.

2. A Pin [21] tool to dynamically instrument x86 binaries in order to callback the

routines in our dynamic library on certain events (shared memory read/write,

thread creation/join, and inter-thread synchronization). Our Pin tool supports

multithreaded programs written using the pthreads library [15] (for thread

creation and join, and synchronization primitives including mutex and read-

ers/writer locks). Our tool instruments pthread calls at the image level; i.e.,

inserts callbacks at the beginning and/or end of relevant pthread functions when

the pthreads library is loaded. Other instructions for memory accesses and func-

tion calls and returns are performed at the trace level (inserts callbacks right

before executing a single entry multiple exit code block).

5.1 Experiments

We applied our tool Kuda on a collection of multithreaded programs from PAR-

SEC [4] and SPLASH-2 [45] benchmark suites. In a typical execution, our bench-

marks generate a few hundreds of millions of events and hundreds of thousands of

frames, each of which is checked on the GPU. We performed our experiments on a HP

Chapter 5: Experimental Setup 51

xw9300 Workstation running Ubuntu Linux 10.10 32-bit kernel. Our machine has two

(single-core) AMD Opteron processors with 2600 MHz clock frequency, 128 KB L1

cache, 1 MB L2 cache, and 8 GB memory (400 MHz). We used a GeForce GTX 465

GPU card with Fermi chipset. Our card provides 352 cores (11 processors with 32

cores each) with 1.21GHz clock rate, 1.23 GB of memory space with 1.4 GB/sec host-

to-device memory bandwidth and 71.3 GB/sec in-device memory bandwidth.

For the experiments, we chose the following parameters that gave the best re-

sults in terms of runtime and memory overhead. We selected the event frame size

(FrameSize) to be 1024 events. We initialize the cyclic list in Fig. 3.2.1 with 2048

frames. Thus, our system requires only 2048 frames * 1024 events (each frame) * 8

bytes (each event) = 16 MB of memory space to store the events for the CPU. We

run 400 GPU threads over each event frame. In order to get the maximum benefit

from the GPU device’s concurrent computing functionality, we collect and send to

the GPU 128 consecutive event frames at a time. In this way we aim to utilize the

high parallelism on the GPU to analyze multiple frames simultaneously.

5.2 Results

Table 5.3 gives the runtime measurements for several configurations we run for each

benchmark. The column “Uninstr.” lists the running time of the benchmark without

any instrumentation. For other columns, we report on both the running time of the

program and the slowdown in the execution over the uninstrumented runtime. The

running times for all columns are given in seconds. When computing the slowdown

52 Chapter 5: Experimental Setup

Benchmark Description Lines #Threads #Events #Frames

PARSEC

blackscholes (L) Black-Scholes partial differential equations 1661 9 238M 224K

bodytrack (L) tracking human body with multiple cameras 7385 10 2707M 2.6M

canneal (L) cache-aware simulated annealing 1793 9 468M 449K

dedup (M) data stream compression 3681 25 1993M 1.9M

fluidanimate (L) simulating incompressible fluid 945 9 2461M 2.3M

raytrace (S) optimized ray tracing ¿6K 9 332M 316K

swaptions (L) monte carlo simulation 1615 9 2731M 2.6M

x264 (M) H.264/AVC video encoder 3014 64 1460M 1.4M

SPLASH-2

barnes Barnes-Hut for N-body problem 3507 4 3035M 2.9M

cholesky blocked sparse cholesky factorization 5684 8 269M 254K

fmm adaptive fast multipole for N-body problem 5434 4 1629M 1.5M

fft complex 1D FFT 1462 8 577M 556K

lu blocked LU decomposition 1380 8 1087M 1M

ocean large-scale ocean simulation 8176 8 531M 510M

radix integer radix sort 1530 8 302M 287K

raytrace optimized ray tracing 11043 9 332M 316K

water-nsquared water simulation w/out spatial data structure 3098 4 3120M 7.2M

water-spatial water simulation with spatial data structure 3655 4 727M 701K

Table 5.1: Description of our benchmarks, and number of events and frames generated
at a typical run. For the PARSEC benchmarks the input size is given in parantheses
((S):simsmall, (M):simmedium, (L):simlarge), and for the SPLASH-2 benchmarks we
used the default inputs except that some values are taken from Table 1 of [3].

for the columns “Eraser on CPU”, “Only with Events” and “Goldilocks on GPU”,

we subtract the instrumentation cost (i.e., “Only Instrumented” - “Uninstr.”) from

the runtime before dividing it to the running time of “Uninstr”.

The column “Only Instrumented” gives the results for the experiments when the

benchmarks were loaded with Pin and relevant instructions are instrumented, but no

Chapter 5: Experimental Setup 53

Warp size 32

Memory bandwidth 102.6 GB/sec

GPU device features

Device memory to store event block Shared

events in each block (unit of work) 1024

blocks sent to GPU 128

GPU threads per event block 400

event blocks in memory 32

Configuration parameters

Table 5.2: GPU device information and parameters that give the best results.

action was taken at the instrumentation points except for calling an empty function

(simply no-op). The results indicate that the instrumentation even without executing

any extra code incurs overhead that ranges between 1.6X and 7.1X.

In order to compare the runtime cost of our approach and the traditional approach

in which the race detection runs on the same cores as the application, we implemented

the Eraser, and two vector clock-based algorithms DJIT+ [32] and FastTrack [12]

(available in our code base). For these algorithms, we used the same Pin instrumenta-

tion, but applied the algorithm’s rules on the application threads immediately when a

relevant event occurs. Our implementations are not perfectly optimized as in the orig-

inal implementations, but still provide a rough estimate for the overhead of checking

on the CPU.

54 Chapter 5: Experimental Setup

Benchmark Uninstr. Only Instrumented Eraser on CPU Only with Events Goldilocks on GPU

Runtime Runtime Slowdown Runtime Slowdown Runtime Slowdown Runtime Slowdown

PARSEC

blackscholes 1.31 2.83 2.1X 136.04 101X 20.89 14.7X 29.27 21.1X

bodytrack 4.11 10.93 2.6X 1044.48 251X 305.11 72.5X 317.58 75.6X

canneal 8.85 14.81 1.6X 431.04 47X 67.5 6.9X 71.66 7.4X

dedup 2.25 7.06 3.1X 972.12 429.9X 202.94 88X 233.56 101.6X

fluidanimate 3.29 8.46 2.5X 1024.52 308X 281.27 83.9X 295.24 88.1X

raytrace 14.43 29.35 2X ¿30min ¿123.7X 98.24 5.7X 105.37 6.2X

streamcluster 7.27 22.72 3.1X 244 31.4X 419.21 55.5X 434.94 57.7X

swaptions 2.61 8.01 3X 1150.97 437X 312.26 117.5X 318.57 119.9X

x264 1.09 7.84 7.1X 710.12 645.2X 172.2 151.7X 176.66 155.8X

SPLASH-2

barnes 3.08 7.61 4X 1542 499.1X 348.12 111.5X 362.12 116.1X

cholesky 0.94 3.04 3.2X 205.34 216.2X 32.61 32.4X 33.39 33.2X

fmm 1.85 5.53 2.9X 2697 1455.8X 169.45 89.6X 186.21 98.6X

fft 1.47 3.2 2.1X 329.21 222.7X 68.42 45.3X 72.52 48.1X

lu 0.44 2.63 5.9X 477 742.2X 123.6 190X 131.21 201.9X

ocean 0.86 3.47 4X 262 301.6X 57.21 63.4X 61.21 68.1X

radix 1.07 2.18 2X 136.62 126.6X 34.45 31.1X 36.53 33.1X

raytrace 14.6 30 2X ¿30min ¿122.2X 117.4 6.9X 120.46 7.2X

water-nsquared 4.61 16.18 3.5X 3274 707.6X 851.35 182.1X 894.12 191.4X

water-spatial 0.63 2.91 4.6X 308 485.2X 74.67 114.9X 85.14 131.5X

Table 5.3: Results from our experiments. Running times are given in seconds.

5.3 Analysis

We observed that the overhead of the DJIT+ and FastTrack implementations on

the CPU are much higher than Eraser. Thus, the Eraser algorithm provides lower

bounds for the runtime and slowdowns for these algorithms. Note that, the slowdown

when running such a simple algorithm starts from 31.4X. Overall, running Eraser

Chapter 5: Experimental Setup 55

on the same cores as the application incurs a very high overhead and a few hundreds

of times slowdown.

We give the results for our system under two columns. The column “Only with

Events” gives the results when the race checking on the GPU is disabled, but the

application threads are still recording their events. The column “Goldilocks on GPU”

gives the results when the race checking on the GPU is enabled. While our system

contains GPU kernels for both the Eraser and Goldilocks algorithms, we observed

that the overhead when using Eraser gives only slightly lower overhead. Gol-

dilocks is a precise race-detection algorithm, and is the most expensive and complex

one of the algorithms we investigated.

In both columns “Only with Events” and “Goldilocks on GPU”, we consider the

runtime of the execution after both the program and the analysis of the event frames

terminated. In fact, we observed that the analysis terminates shortly after the pro-

gram terminates.

We observed that our system does not need to allocate new event frames; it

simply reuses the initially allocated 2048 frames. This result, together with the small

difference between the execution times of the program and analysis, indicates that

the analysis runs at speed very close to the program, following the program behind

only in milliseconds.

Our results clearly indicate that performing the checking on separate cores in a

highly parallelized way dramatically reduces the overhead of the runtime verification.

The ratio of the slowdown of the race checking on the CPU to that of the race checking

56 Chapter 5: Experimental Setup

on the GPU is between 3.3 (bodytrack) and 14.7 (fmm). Only for streamcluster

the CPU-based implementation beats our system and gives less slowdown. Moreover,

for raytrace benchmarks in both PARSEC and SPLASH-2, the execution took more

than our specified upper time limit, 30 minutes; thus when we also consider these

benchmarks, the ratio of the slowdown of the CPU-based race checking to that of the

GPU-based checking reaches at least 17 and 20 times, respectively. For this paper, we

considered all the relevant events in the execution. We believe that static pre-analysis

of the program for identifying race-free variables/accesses can reduce our overhead

significantly down to tolerable limits as in [8].

Lastly, the very small difference between the slowdowns in “Only with Events”

and “Goldilocks on GPU” shows that the overhead of monitoring and recording events

and managing the list of event frames highly dominates the overall overhead of our

system. The ratio of the overall slowdown to that of only managing the events goes

only up to 1.4 (e.g., blackscholes). While the overhead of recording events is still

high (e.g., for post-deployment purposes), this small difference between enabling and

disabling on-GPU checking gives a promising evidence that the parallel processing

events on the GPU gives negligible overhead.

5.4 Unlisted experiments

Apart from the experiments presented in this thesis, we have also implemented an

interface for Kuda to work on Java bytecode using RoadRunner; experimented on

Java Grande Benchmarks. We have done intensive optimizations, both on the CPU

Chapter 5: Experimental Setup 57

and GPU runtimes of Kuda. In the CPU, using PIN, we have experimented on differ-

ent buffering mechanisms, event filtering mechanisms, scalability improvements and

utilization of extra threads for concurrent in-place race detection to achieve a maxi-

mum throughput of the event production and therefor race detection. In the GPU,

using CUDA API, we have also experimented on customised race detection algorithms

such as FastTrack, utilized shared memory for fast access to race detection meta-

data and reusing of input frame without sacrificing more registers, experimented on

different device memory access options such as texture memory and finally another

line of experiments was done on utilizing concurrent streams for asynchronous kernel

execution.

It is also important to note that the experiment setup has changed after the results

have been published; a new HP R©z600 workstation was used for new experiments.

Although the results of those experiments were showing a similar payoffs (5x speed

up over tradition race detection), raw data collected on that machine was showing

very high overheads for both traditional and parallelised race detection. Two reasons

for this bad behaviour is understood. Firstly, the dual CPU setup has resulted in

cross-CPU serialization, and secondly availability of enough hardware threads for

the benchmarks to run in highly parallel manner resulted in a higher slowdowns

on our monitoring mechanisms (i.e. both lockset and vector clock race detection

implementations on CPU and our event buffering mechanism).

Chapter 6

CONCLUSION

In this thesis, we present parallelized runtime verification algorithms and their

implementations for GPGPU’s, a byte-resolution binary instrumentation tool for x86

programs with pthreads and a cyclic linked list with two implementations, a lock-free

and a spin-lock implemented versions with the ability to be accessed and modified

concurrently both from the head and the tail, and a couple of traditional runtime

verification algorithm implementations for comparison.

Although our implementation is optimized for the current experimental setup,

the architectural and hardware limitations such as GPGPU memory, arithmetic and

CPU-GPU communication latencies and available register counts limits will definitely

ease up over time. There seems to be a lack of thrust-worthy software libraries for a

framework such as this on multicore CPU’s, however new draft of C++11 concurrency

definitely addresses this issue with the promised fine-grained nonblocking access. We

think that our novel idea of parallelized runtime verification definitely is more scalable

than the state-of-the-art race detection tools, among other runtime verification tools.

There exists three potential bottlenecks: (i) Bookkeeping of records to the buffer,

(ii) Difference between the throughputs of two concurrent runtimes (CPU and GPU)

could result a type of starvation for the record threads since the buffer is statically

Chapter 6: Conclusion 59

allocated, and (iii) throughput of the Cuda kernels a.k.a. the GPU runtime. It might

be hard to digest that these three bottlenecks are orthogonal to each other. During our

research progress, we have encountered all of these bottlenecks until we settled down

for (i) being the dominant bottleneck in all of our experiments for our benchmarks.

Future directions of this project could be reimplementing the CPU component of

our framework with C++11 concurrency libraries, when it is available to further opti-

mise the overall runtime of our framework. It is also possible for auto-tuning GPGPU

runtime for available GPU’s in the host computer. When today’s cutting edge Cuda

architecture is available for an average user, further optimization of our Cuda ker-

nels would be possible. Increased shared memory availability for GPU threads would

also enable FastTrack implementation. Increased register count would definitely

further increase the throughput of any Cuda kernel without any intensive work. Adap-

tive frame size for checking races would be a hard task to optimize for any type of

benchmark, and since production of events varies over runtime of any target process,

resulting framework is unlikely to ultimately benefit from such technique since there

are no known correlation between the fast produced events and distance between ac-

tual data races. Binary instrumentation could flag frames as being ”hot” regions for

increasing frame size; such hot regions are heuristically detectable via separate con-

current analysis of the target application threads, e.g. frequency of context switches.

A multi-GPU implementation could be done with ease, this would theoretically enable

us to double the frame size. A better encoding of trace of events would be beneficial

for significantly reducing the memory cost, however such method should keep in mind

60 Chapter 6: Conclusion

the available GPU arithmetic instructions and aligned types.

Our work has the benefit of the both worlds of dynamic race detection tools, it

checks for races on-the-fly however the analysis threads run on another computing

unit which makes it comparable to post-mortem race checkers. Another benefit of

our work is a try to reproduce a commercially available race detection tool such as

Intel’s ThreadChecker, Kuda has a byte-level resolution and has always-on feature

both of which are a very harsh specification for any runtime tool. A secondary benefit

of split framework is that we utilize the GPU especially when -most probably- it is

not really utilized, this also has a side benefit of decreasing power consumption with

respect to traditional race detection on CPU.

We hope that our split race checker framework would be a common future of

tomorrow’s state-of-the-art race checkers.

BIBLIOGRAPHY

[1] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A theory of data

race detection. In Proceedings of the 2006 workshop on Parallel and distributed

systems: testing and debugging, PADTAD ’06, pages 69–78, New York, NY, USA,

2006. ACM.

[2] Ü. Can Bekar, Tayfun Elmas, Semih Okur, and Serdar Taşıran. KUDA: GPU

Hızlandırılmış Ayrık Yarış Durumu Denetleyici (In Turkish). 3. Ulusal Yüksek

Başarımlı Hesaplama Konferansı, BASARIM, Ankara, Turkey, 2012.

[3] C. Bienia, S. Kumar, and K. Li. Parsec vs. splash-2: A quantitative comparison

of two multithreaded benchmark suites on chip-multiprocessors. In Workload

Characterization, 2008. IISWC 2008. IEEE International Symposium on, pages

47–56, 2008.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec

benchmark suite: characterization and architectural implications. In Proceedings

of the 17th international conference on Parallel architectures and compilation

techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[5] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman,

and Shaz Qadeer. Radish: always-on sound and complete ra detection in software

Bibliography 62

and hardware. In Proceedings of the 39th Annual International Symposium on

Computer Architecture, ISCA ’12, pages 201–212, Washington, DC, USA, 2012.

IEEE Computer Society.

[6] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: Efficiently com-

puting the happens-before relation using locksets. Technical report, Microsoft

Research, 2006.

[7] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: efficiently com-

puting the happens-before relation using locksets. In Proceedings of the First

combined international conference on Formal Approaches to Software Testing

and Runtime Verification, FATES’06/RV’06, pages 193–208, Berlin, Heidelberg,

2006. Springer-Verlag.

[8] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and

transaction-aware java runtime. In Proceedings of the 2007 ACM SIGPLAN con-

ference on Programming language design and implementation, PLDI ’07, pages

245–255, New York, NY, USA, 2007. ACM.

[9] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race-aware java

runtime. Commun. ACM, 53(11):85–92, November 2010.

[10] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk.

Effective data-race detection for the kernel. In Proceedings of the 9th USENIX

Bibliography 63

conference on Operating systems design and implementation, OSDI’10, pages 1–

16, Berkeley, CA, USA, 2010. USENIX Association.

[11] Cormac Flanagan and Stephen N. Freund. Type-based race detection for java. In

Proceedings of the ACM SIGPLAN 2000 conference on Programming language

design and implementation, PLDI ’00, pages 219–232, New York, NY, USA, 2000.

ACM.

[12] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dy-

namic race detection. In Proceedings of the 2009 ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’09, pages 121–133,

New York, NY, USA, 2009. ACM.

[13] Cormac Flanagan and Stephen N. Freund. The roadrunner dynamic analysis

framework for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineering,

PASTE ’10, pages 1–8, New York, NY, USA, 2010. ACM.

[14] RobertW. Floyd. Assigning meanings to programs. In Timothy R. Colburn,

James H. Fetzer, and Terry L. Rankin, editors, Program Verification, volume 14

of Studies in Cognitive Systems, pages 65–81. Springer Netherlands, 1993.

[15] E. W. Giering, Frank Mueller, and T. P. Baker. Implementing ada 9x features

using posix threads: design issues. In Proceedings of the conference on TRI-Ada

’93, TRI-Ada ’93, pages 214–228, New York, NY, USA, 1993. ACM.

Bibliography 64

[16] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: whitebox fuzzing

for security testing. Commun. ACM, 55(3):40–44, March 2012.

[17] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.

[18] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated

atomicity-violation fixing. In Proceedings of the 32nd ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’11, pages 389–400,

New York, NY, USA, 2011. ACM.

[19] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.

[20] Leslie Lamport. How to make a multiprocessor computer that correctly executes

multiprocess program. IEEE Trans. Comput., 28(9):690–691, 1979.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. In Proceedings

of the 2005 ACM SIGPLAN conference on Programming language design and

implementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[22] Martin Maas, Philip Reames, Jeffrey Morlan, Krste Asanović, Anthony D.

Joseph, and John Kubiatowicz. Gpus as an opportunity for offloading garbage

Bibliography 65

collection. In Proceedings of the 2012 international symposium on Memory Man-

agement, ISMM ’12, pages 25–36, New York, NY, USA, 2012. ACM.

[23] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’05, pages 378–391, New York, NY, USA, 2005.

ACM.

[24] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing

heisenbugs in concurrent programs. In Proceedings of the 8th USENIX confer-

ence on Operating systems design and implementation, OSDI’08, pages 267–280,

Berkeley, CA, USA, 2008. USENIX Association.

[25] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’07,

pages 89–100, New York, NY, USA, 2007. ACM.

[26] Robert H. B. Netzer and Barton P. Miller. Improving the accuracy of data race

detection. In Proceedings of the third ACM SIGPLAN symposium on Principles

and practice of parallel programming, PPOPP ’91, pages 133–144, New York,

NY, USA, 1991. ACM.

[27] Robert H. B. Netzer and Barton P. Miller. What are race conditions?: Some

Bibliography 66

issues and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, March

1992.

[28] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. Paral-

lelizing security checks on commodity hardware. In Proceedings of the 13th in-

ternational conference on Architectural support for programming languages and

operating systems, ASPLOS XIII, pages 308–318, New York, NY, USA, 2008.

ACM.

[29] NVIDIA Corporation. NVIDIA CUDA Programming Guide v4.0. NVIDIA Cor-

poration, 2011.

[30] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In

Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice

of parallel programming, PPoPP ’03, pages 167–178, New York, NY, USA, 2003.

ACM.

[31] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger: exposing atomicity vi-

olation bugs from their hiding places. In Proceedings of the 14th international

conference on Architectural support for programming languages and operating

systems, ASPLOS XIV, pages 25–36, New York, NY, USA, 2009. ACM.

[32] Eli Pozniansky and Assaf Schuster. Multirace: efficient on-the-fly data race

detection in multithreaded c++ programs: Research articles. Concurr. Comput.

: Pract. Exper., 19(3):327–340, March 2007.

Bibliography 67

[33] Paul Sack, Brian E. Bliss, Zhiqiang Ma, Paul Petersen, and Josep Torrellas.

Accurate and efficient filtering for the intel thread checker race detector. In Pro-

ceedings of the 1st workshop on Architectural and system support for improving

software dependability, ASID ’06, pages 34–41, New York, NY, USA, 2006. ACM.

[34] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas

Anderson. Eraser: a dynamic data race detector for multithreaded programs.

ACM Trans. Comput. Syst., 15(4):391–411, November 1997.

[35] Koushik Sen. Race directed random testing of concurrent programs. In Proceed-

ings of the 2008 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’08, pages 11–21, New York, NY, USA, 2008. ACM.

[36] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and

Dmitriy Vyukov. Dynamic race detection with llvm compiler. In Proceedings

of the Second international conference on Runtime verification, RV’11, pages

110–114, Berlin, Heidelberg, 2012. Springer-Verlag.

[37] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang

Chen, and Weimin Zheng. Racez: a lightweight and non-invasive race detection

tool for production applications. In Proceedings of the 33rd International Con-

ference on Software Engineering, ICSE ’11, pages 401–410, New York, NY, USA,

2011. ACM.

[38] Gregory T. Sullivan, Derek L. Bruening, Iris Baron, Timothy Garnett, and

Bibliography 68

Saman Amarasinghe. Dynamic native optimization of interpreters. pages 50–

57, 2003.

[39] Richard N. Taylor. Assertions in programming languages. SIGPLAN Not.,

15(1):105–114, January 1980.

[40] Richard N. Taylor. Analysis of concurrent software by cooperative application of

static and dynamic techniques. In Proc. of a symposium on Software validation:

inspection-testing-verification-alternatives, pages 127–137, New York, NY, USA,

1984. Elsevier North-Holland, Inc.

[41] Mohit Tiwari, Shashidhar Mysore, and Timothy Sherwood. Quantifying the

potential of program analysis peripherals. In Proceedings of the 2009 18th In-

ternational Conference on Parallel Architectures and Compilation Techniques,

PACT ’09, pages 53–63, Washington, DC, USA, 2009. IEEE Computer Society.

[42] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen,

Babak Falsafi, Phillip B. Gibbons, and Todd C. Mowry. Paralog: enabling and

accelerating online parallel monitoring of multithreaded applications. In Proceed-

ings of the fifteenth edition of ASPLOS on Architectural support for programming

languages and operating systems, ASPLOS XV, pages 271–284, New York, NY,

USA, 2010. ACM.

[43] V. Volkov. Better performance at lower occupancy. In GPU Technology Confer-

ence, 2010.

Bibliography 69

[44] Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings

of the 16th ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, OOPSLA ’01, pages 70–82, New York, NY, USA,

2001. ACM.

[45] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The splash-2 programs: characterization and methodological

considerations. In Proceedings of the 22nd annual international symposium on

Computer architecture, ISCA ’95, pages 24–36, New York, NY, USA, 1995. ACM.

[46] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of

data race conditions via adaptive tracking. In Proceedings of the twentieth ACM

symposium on Operating systems principles, SOSP ’05, pages 221–234, New York,

NY, USA, 2005. ACM.

[47] Wei Zhang, Chong Sun, and Shan Lu. Conmem: detecting severe concurrency

bugs through an effect-oriented approach. In Proceedings of the fifteenth edition

of ASPLOS on Architectural support for programming languages and operating

systems, ASPLOS XV, pages 179–192, New York, NY, USA, 2010. ACM.

[48] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted

lockset-based race detection. In Proceedings of the 2007 IEEE 13th International

Symposium on High Performance Computer Architecture, HPCA ’07, pages 121–

132, Washington, DC, USA, 2007. IEEE Computer Society.

VITA

Ümit Can Bekar was born in Adapazarı (Sakarya), Turkey on August 18, 1988.

He received his B.Sc. degree in Electronics Engineering from Sabancı University,

Istanbul, in 2009. He worked as a full-time embedded systems engineer in Tech-

neon Mutsis while continuing his M.Sc. degree in Electronics Engineering at Boǧaziçi

University from 2009 to 2010. From February 2011 to June 2013, he worked as a

teaching and research assistant at Koç University Research Center for Multicore Soft-

ware Engineering. Microsoft Research supported his Kuda project. He has published

his paper to a national conference, an international workshop and a national work-

shop. He co-founded the ACM student chapter during his studies at Koç University.

He served as a committee member to third Computer Science Student Workshop

CSW’12 and workshop chair to the CSW’13. His personal website is available at

www.canbekar.com.

