
InterLocal: Integrity and Replication Guaranteed

Locality-based Peer-to-Peer Storage System

by

Adilet Kachkeev

A Thesis Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

Koç University

July 25, 2013

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Adilet Kachkeev

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Öznur Özkasap (Advisor)

Assist. Prof. Alptekin Küpçü (Advisor)

Prof. Özgür Barış Akan

Assoc. Prof. Mine Çağlar

Assoc. Prof. Yücel Yemez

Date:

To my family.

iii

ABSTRACT

Trend in computer storage flows from possessing data locally to data outsourcing.

Although users tend to store data at cloud or peer-to-peer storage systems, they also

require guarantees about the security of data. A key requirement is the ability to

check integrity of the files without downloading them and make necessary updates.

In case of peer-to-peer storage systems, it is also desirable to place files at the nodes

physically close to the data owner for minimal response time and efficient access.

In the first part of this thesis, we implement and examine a system based on Dy-

namic Provable Data Possession (DPDP) model. We present an optimized data struc-

ture based on skip lists called FlexList and its advantages over other data structures.

We then propose FlexDPDP: a complete dynamic provable data possession system

employing FlexList. Furthermore, we develop optimized algorithms for FlexDPDP

operations and analyze the efficiency gains in terms of time, size and energy.

In the second part of this thesis, we propose and evaluate InterLocal, a novel

integrity and replication guaranteed locality-based peer-to-peer storage system. We

employ a skip graph as the underlying overlay structure, and use landmark multidi-

mensional scaling for peer locality calculation, on the top of FlexDPDP at each node

to provide data integrity. We implement both a regular skip graph based storage

system and InterLocal, and evaluate their performance on the PlanetLab under vari-

ous scenarios. We obtain 3x speed up in terms of file access by providing InterLocal,

and a gradual performance decrease in case of replica failures, having a worst-case

performance that is equal to that of a regular skip graph based storage system.

iv

ÖZETÇE

Bilgisayar sistemlerinde veri depolama eğilimi veriyi lokal olarak tutmaktan dış

kaynak kullanımına kaymıştır. Kullanıcıların veriyi bulut veya görevdeş ağlarda

tutma eğilimi yanında, önemli bir gereksinim de bilginin güvenliğidir. Başlıca güvenlik

gereksinimlerinden birisi dosyaların tamamını kullanıcı tarafına almadan tutarlılığının

sağlanması ve güncellemelerin yapılabilmesidir. Görevdeş depolama sistemlerinde

sağlanması önemli diğer bir özellik tepki süresi ve hızlı erişim açısından dosyaların

veri sahibine yakın düğümlerde tutulmasıdır. Tez çalışmasının birinci kısmında, di-

namik ispatlanabilir veri saklama adlı model önerilip, başarım analizi yapılmıştır. Bu

modelde, atlamalı liste yapılı optimize edilmiş FlexList adlı bir veri yapısı sunup, bu

yapıyı temel alan FlexDPDP adlı bütün dinamik ispatlanabilir veri saklama sistemi

önerilmiştir. Ayrıca, FlexDPDP işlemleri için optimize algoritmalar önerilip, bun-

ların zaman, enerji ve depolama boyutu bakımından kazanımları analiz edilmiştir.

İkinci kısımda ise, InterLocal adlı yeni bir tutarlılık ve replikasyon garantili yerel

görevdeş depolama sistemi onerilmektedir. InterLocal, her düğümde bilgi tutarlılığını

sağlayabilmek amacıyla atlamalı grafik veri yapısı tabanlı FlexDPDP kullanıp, dönüm

noktalı çok boyutlu ölçeklenebilir algoritmalar ile düğüm yer hesaplaması yapmak-

tadır. Hem normal atlamalı grafik tabanlı depolama sistemi hem de InterLocal depo-

lama sisteminin gerçekleştirimi yapılmış ve başarımları çeşitli ağ senaryolarında Plan-

etLab ortamındaki deneylerde karşılaştırılmıştır. Dosya erişim süresinde tutarlılığı

sağlama koşulu ile üç kat kadar hızlanma elde edilmiş ve en kötü senaryoda bile nor-

mal atlamalı grafik depolama sisteminin erişim süresinin sağlandığı gözlenmiştir.

v

ACKNOWLEDGMENTS

First of all, I offer my sincerest gratitude to my advisors Assoc. Prof. Öznur

Özkasap and Assist. Prof. Alptekin Küpçü for their invaluable assistance, family like

support, patient guidance, great motivation, knowledge and insights throughout my

research. Without them this thesis would not have been completed or written. They

have been more than my advisors to me.

In particular, I am grateful to Assoc. Prof. Yücel Yemez for enlightening and very

useful discussions. I would like to thank the thesis committee members Prof. Özgür

Barış Akan and Assoc. Prof. Mine Çağlar for providing their valuable time, effort

and remarks.

Special thanks to my fellow and colleague Ertem Esiner. We have worked together

on the first 8 months of the project and built our first system prototype. I feel very

lucky to meet him and grateful for his brilliant ideas, for the sleepless nights we were

working together before deadlines, and for all the fun we have had in the last two

years. We worked together till Chapter 4.4 inclusive, prepared and submitted the

first 5 chapters as a journal paper. The rest of this work, starting from Chapter 5, is

going to be submitted to a conference.

I thank my fellow friends in Networks and Distributed Systems Lab: Seyhan Uçar,

Nabeel Akhtar, Hüseyin Güler and many others. Also I thank my labmates in Crypto

Lab: Mohammad Etemad, Handan Kılınç, Ozan Okumuşoğlu and Samuel Braunfeld.

I offer my regards to all my friends from the Fatih University, who have kept in

touch and supported me throughout my studies.

vi

The financial support of the Scientific and Technological Research Council of

Turkey (TÜBİTAK) and Türk Telekom are also sincerely acknowledged.

I wish to express my most sincerely gratitude to my family. My mother, Kadyrbu

Djetigenova is the kindest person in the world who supported me with all her heart,

motivated as if I am the best person and guided me with her experience throughout

my life. My father, Jalalkan Kachkeev, has taught to be passionate about my dreams

and made me stronger in every aspect of the life. My sister, Ayjan Tuleeva is the

person whom I idolize and thank for all support and guidance she has given in all

these years.

TABLE OF CONTENTS

List of Tables xii

List of Figures xiii

Chapter 1: Introduction 1

1.1 Contributions . 5

1.1.1 FlexList and FlexDPDP contributions 5

1.1.2 InterLocal contributions . 6

1.2 Overview . 7

Chapter 2: Related Work 8

2.1 Skip Lists and Related Data Structures 8

2.2 State of the Art in Cloud Storage . 9

2.3 Peer-to-Peer Storage Related Work 12

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 16

3.1 Basic Definitions . 16

3.2 FlexList Structure . 19

3.2.1 Preliminaries . 20

3.2.2 FlexList Methods . 24

3.2.3 Novel FlexList Build Function 28

3.3 FlexList Evaluation . 30

3.3.1 Analysis of Core FlexList Algorithms 31

ix

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 34

4.1 Preliminaries . 35

4.2 Managing Multiple Challenges at Once 39

4.2.1 Proof Generation . 40

4.2.2 Proof Verification . 42

4.3 Verifiable Variable-size Updates . 46

4.3.1 Update Execution . 46

4.3.2 Update Verification . 47

4.4 Performance Analysis . 51

4.5 Energy-Efficiency Analysis . 56

Chapter 5: InterLocal: Integrity and Replication Guaranteed

Locality-based Peer-to-Peer Storage System 60

5.1 Skip Graph . 60

5.2 Landmark Multidimensional Scaling 63

5.3 InterLocal construction . 64

5.3.1 Locality-based skip graph . 64

5.3.2 Search in a locality-based skip graph 65

5.3.3 File operations . 68

5.3.4 Locality-based Replication . 68

Chapter 6: Performance Analysis on the PlanetLab 72

6.1 Evaluation settings . 72

6.2 Evaluation of the Skip Graph Operations 73

6.3 Evaluation of the Provable Integrity Operations 75

6.4 Evaluation of the Replication Operations 77

x

Chapter 7: Conclusions 79

Bibliography 81

Vita 87

xi

LIST OF TABLES

2.1 Data structure and idea comparison. 8

2.2 Comparison table of various peer-to-peer storage systems 15

3.1 Symbol descriptions of skip list algorithms. 21

4.1 Symbols used in our algorithms. 36

xii

LIST OF FIGURES

3.1 Regular skip list example . 17

3.2 Skip list of Figure 3.1 without unnecessary links and nodes. 17

3.3 Skip list alterations depending on an update request. 18

3.4 A FlexList example with 2 sub skip lists indicated. 21

3.5 Insert at index 450, level 4 (FlexList). 26

3.6 Remove block at index 450(FlexList). 27

3.7 buildFlexList example. 30

3.8 Optimizations performed on the links and nodes 31

3.9 Time ratio on buildFlexList algorithm against insertions. 33

4.1 Client Server interactions in FlexDPDP. 35

4.2 Proof path for challenged index 450 in a FlexList. 38

4.3 Multiple blocks are challenged in a FlexList. 41

4.4 Proof vector for Figure 4.3 example. 42

4.5 Verifiable insert example. 49

4.6 Verifiable remove example. 50

4.7 Multiple block challenge for different file sizes 52

4.8 Performance gain graph . 53

4.9 Time ratio on genMultiProof algorithm. 54

4.10 Performance evaluation of FlexList methods and their verifiable versions. 56

4.11 Time and energy ratios on buildFlexList algorithm against insertions. 57

xiii

4.12 Time and energy ratios on genMultiProof algorithm. 58

5.1 An example of a skip graph. 60

5.2 An example of search algorithm using numerical ID. 62

5.3 A node joining a distributed system using LMDS. 65

5.4 A map with the location information of peers. 66

5.5 A locality-based skip graph. 67

6.1 Search in a skip graph based system and InterLocal. 73

6.2 Upload time graph . 74

6.3 Proof receipt time graph . 75

6.4 Update operation experiment with a fixed update size of 125 Kb. . . 76

6.5 Update operation test with a fixed file size of 200 Mb. 77

6.6 Replication performance when nodes are leaving a system. 78

xiv

Chapter 1

INTRODUCTION

Peer-to-peer storage systems have been deeply investigated for the past

decade [Stoica et al., 2001, Rowstron and Druschel, 2001a, Zhao et al., 2001,

Ratnasamy et al., 2001, Aspnes, 2003, Harvey et al., 2003, Saroiu et al., 2002,

Martins et al., 2006]. Many storage systems provide some security measures against

malicious nodes in the network, such as a secure search, provable content retrieval or

user anonymity, where provable data retrieval deals with the verification of the claims

that the data items were put in the DHT by the data owner and were not modified

by malicious nodes. But all of the systems lack, proofs on the data integrity. In this

work, we aim to provide a locality-based peer-to-peer storage system with integrity

and replication guarantees.

However, efficient data integrity checking for a file can be provided only by means

of a proof of possession, a set of values related with the file. The cloud storage

systems have substantial research works [Ateniese et al., 2007, Ateniese et al., 2008,

Cash et al., 2013, Dodis et al., 2009, Erway et al., 2009, Juels and Kaliski., 2007,

Shacham and Waters, 2008, Stanton et al., 2010] on data integrity, therefore client-

server based scheme for checking data integrity should be developed and then applied

to our peer-to-peer storage system. A client in cloud storage system outsources her

data to the third party data storage provider (server), which is supposed to keep data

intact and make it available to her. The problem is that the server may be malicious,

and even if the server is trustworthy, hardware/software failures may cause data cor-

2 Chapter 1: Introduction

ruption. The client should be able to efficiently and securely check the integrity of

her data without downloading the entire data from the server [Ateniese et al., 2007].

One such model proposed by Ateniese et al. is Provable Data Pos-

session (PDP) [Ateniese et al., 2007] for provable data integrity. In this

mode, the client can challenge the server on random blocks and verify

the data integrity through a proof sent by the server. PDP and re-

lated static schemes [Ateniese et al., 2007, Ateniese et al., 2009, Dodis et al., 2009,

Juels and Kaliski., 2007, Shacham and Waters, 2008] show poor performance for

blockwise update operations (insertion, removal, modification). While the static

scenario can be applicable to some systems (e.g., archival storage at the li-

braries), for many applications it is important to take into consideration the dy-

namic scenario, where the client keeps interacting with the outsourced data in a

read/write manner, while maintaining the data possession guarantees. Ateniese et

al. [Ateniese et al., 2008] proposed Scalable PDP, which overcomes this problem with

some limitations (only a pre-determined number of operations are possible within a

limited set of operations). Erway et al. [Erway et al., 2009] proposed a solution called

Dynamic Provable Data Possession (DPDP), which extends the PDP model and pro-

vides a dynamic storage scheme. Implementation of the DPDP scheme requires an

underlying authenticated data structure based on a skip list [Pugh, 1990b].

Authenticated skip lists were presented by Goodrich and Tamassia

[Goodrich and Tamassia, 2001], where skip lists and commutative hashing are em-

ployed in a data structure for authenticated dictionaries. A skip list is a key-value

store whose leaves are sorted by keys. Each node stores a hash value calculated with

the use of its own fields and the hash values of its neighboring nodes. The hash value

of the root is the authentication information (meta data) that the client stores in order

to verify responses from the server. To insert a new block into an authenticated skip

list, one must decide on a key value for insertion since the skip list is sorted according

Chapter 1: Introduction 3

to the key values. This is very useful if one, for example, inserts files into directories,

since each file will have a unique name within the directory, and searching by this key

is enough. However, when one considers blocks of a file to be inserted into a skip list,

the blocks do not have unique names; they have indices. Unfortunately, in a dynamic

scenario, an insertion/deletion would necessitate incrementing/decrementing the keys

of all the blocks till the end of the file, resulting in degraded performance. DPDP

[Erway et al., 2009] employs Rank-based Authenticated Skip List (RBASL) to

overcome this limitation. Instead of providing key values in the process of insertion,

the index value where the new block should be inserted is given. These indices are

imaginary and no node stores any information about the indices. Thus, an inser-

tion/deletion does not propagate to other blocks.

Theoretically, an RBASL provides dynamic updates with O(log n) complexity,

assuming the updates are multiples of the fixed block size. Unfortunately, a variable

size update leads to the propagation of changes to other blocks, making RBASL

inefficient in practice. Therefore, one variable size update may affect O(n) other

blocks. We discuss the problem in detail in Chapter 3. We propose FlexList to

overcome the problem in DPDP. With our FlexList, we use the same idea but instead

of the indices of blocks, indices of bytes of data are used, enabling searching, inserting,

removing, modifying, or challenging a specific block containing the byte at a specific

index of data. Since in practice a data alteration occurs starting from an index of

the file, not necessarily an index of a block of the file, our DPDP with FlexList

(FlexDPDP) performs much faster than the original DPDP with RBASL. Even

though Erway et al. [Erway et al., 2009] presents the idea where the client makes

updates on a range of bytes instead of blocks, but a naive implementation of the idea

leads to a security gap in the storage system [Esiner et al., 2013]. Our optimizations

result in an efficient dynamic cloud storage system, and its security directly follows

from the DPDP security proof and the security of authenticated skip lists.

4 Chapter 1: Introduction

Another aspect of our peer-to-peer storage system is locality-based distributed

data structure and replication mechanism. The efficiency of the storage system

is measured by a query processing time and response. The most familiar query

is search, which has aim to find particular data item in the network and send

it to the owner of the query. Most of the systems use distributed hash ta-

bles (DHTs), such as CAN [Ratnasamy et al., 2001], Chord [Stoica et al., 2001],

Pastry [Rowstron and Druschel, 2001a], Tapestry [Zhao et al., 2001], skip graph

[Aspnes, 2003] and etc. All of these DHTs provide at their best O(log N) search

query processing time, where N is the number of nodes in the system. Therefore, the

minimal time with security enhancements can be at least with complexity of search

query processing time O(log N).

Efficient replication system i.e. locality-based replica placement is one of the

components of an efficient storage system. The client wishes to store her data at

the physically closest nodes in the system, since it will save power and time on

network communication. In early works, replication was performed on the nodes

requesting the file only like in the systems like Gnutella [Gnutella,] and Napster

[napster,]. Freenet [Clarke et al., 2001] employs a trivial replication method of cre-

ating replicas on the search or insert path in the system. Another peer-to-peer stor-

age system called Oceanstore [Kubiatowicz et al., 2000] monitors query loads for par-

ticular files, when needed creates new replicas to overwhelmed zones and adjusts

them afterwards. Past [Rowstron and Druschel, 2001b], which is based on Pastry

[Rowstron and Druschel, 2001a], has locality-based replication method. It makes use

of latency information in the selection of replica holders. Neighbors in terms of latency

are chosen to hold replicas.

Currently proposed schemes provide one at a time, either a efficient repli-

cation mechanism or a data integrity security measure. Peer-to-peer stor-

age systems, such as Freenet [Clarke et al., 2001], CFS [Dabek et al., 2001], Past

Chapter 1: Introduction 5

[Druschel and Rowstron, 2001] and Wuala [Mager et al.,], provide static file storage

capabilities, therefore no block-wise update operations are possible. A storage system

based on paper by Tamassia and Triandopoulos et al. exploits a new data structure

distributed Merkle tree [Tamassia and Tri, 2007], it gives the user opportunity to ver-

ify the correctness of data and path verification, however the system has single point

of failure (root of the distributed Merkle tree). This problem is solved in the paper

by Goodrich et al. [Goodrich et al., 2009], where a scheme with employment of skip

graphs and directed acyclic graphs is presented. The advantage of skip graph, which

has multiple points of entry for the queries, has been exploited.

A skip graph using LMDS to represent its locality information through member-

ship vectors is our novel locality-based peer-to-peer storage system (InterLocal). A

client in such a system wishes to spend less power and time on network communi-

cation. Therefore, it is substantial to store the client’s data at physically close by

neighbors. Our goals are to provide a peer-to-peer storage system with the security

features of data integrity and ability for the file manipulations using the nearby repli-

cas. We develop and adopt a FlexDPDP scheme [Esiner et al., 2013] for data integrity

in our project. A FlexDPDP scheme provides dynamic solution for the cloud storage

systems with variable block size updates.

1.1 Contributions

1.1.1 FlexList and FlexDPDP contributions

• Our implementation uses the optimal number of links and nodes; we created

optimized algorithms for basic operations (i.e., insertion, deletion). These opti-

mizations are applicable to all skip list types (skip list, authenticated skip list,

rank-based authenticated skip list, and FlexList).

• Our FlexList translates a variable-sized update to O(u) insertions, removals, or

6 Chapter 1: Introduction

modifications, where u is the size of the update divided by the block size, while

an RBASL requires O(n) block updates.

• We provide multi-prove and multi-verify capabilities in cases where the client

challenges the server for multiple blocks using authenticated skip lists, rank-

based authenticated skip lists and FlexLists. Our algorithms provide an optimal

proof, without any repeated items. The experimental results show efficiency

gains of 35%, 35%, 40% in terms of proof time, energy, and size, respectively.

• We provide a novel algorithm to build a FlexList from scratch in O(n) time

instead of O(n log n) (time for n insertions). Our algorithm assumes the original

data is already sorted, which is the case when a FlexList is constructed on top

of a file in secure cloud storage.

1.1.2 InterLocal contributions

• We propose InterLocal: a novel integrity and replication guaranteed peer-to-

peer storage system. It provides storage for client’s files at physically close

peers and efficient file access. Furthermore, we present an algorithm for search

by locality information, which is useful for replica search in InterLocal.

• We deploy InterLocal and regular skip graph based system on the network

testbed PlanetLab. We test time efficiency of both systems for skip graph,

provable integrity and replication operations. Replication system of InterLocal

provides up to 3x faster operations on the file than regular skip graph based

solutions. Moreover, a worst-case performance of InterLocal in case of gradual

replica failures is equal to that of a regular skip graph based storage system.

Chapter 1: Introduction 7

1.2 Overview

This thesis is organized as follows. In Chapter 2, we discuss related work on cloud

based and peer-to-peer storage systems and data structures related to their con-

struction. One of the most important parts of InterLocal is provable data integrity

checking scheme. Therefore, we first present an efficient authenticated data structure

to be used for that scheme in Chapter 3. Then, in Chapter 4 we propose our complete

dynamic provable data possession scheme called FlexDPDP, its optimized operations

and evaluate their performance. In Chapter 5, we propose a novel locality-based

peer-to-peer storage system with integrity and replication guarantees called Inter-

Local, where FlexDPDP guarantees data integrity. In Chapter 6, we evaluate the

performance of InterLocal and its operations. Chapter 7 concludes and states future

directions.

Chapter 2

RELATED WORK

In this chapter, we discuss the literature review. First, skip list and related data

structures for cloud storage systems are discussed. Then, the state of art for cloud

storage systems is presented with comparison between them. At last, related work

about peer-to-peer storage systems is discussed.

2.1 Skip Lists and Related Data Structures

Storage
(client)

Proof Complexity
(time and size)

Dynamic (in-
sert, remove,
modify)

Hash Map (whole file) O(1) O(n) -
Hash Map (block by block) O(n) O(1) -
PDP [Ateniese et al., 2007] O(1) O(1) -
Merkle Tree [Wang et al., 2009] O(1) O(log n) -
Balanced Tree (2-3 Tree)
[Zheng and Xu, 2011]

O(1) O(log n) + (balancing
issues)

RBASL [Erway et al., 2009] O(1) O(log n) + (fixed
block size)

FlexList O(1) O(log n) +

Table 2.1: Complexity and capability table of various data structures and ideas for
provable cloud storage. n: number of blocks

Table 2.1 provides an overview of different data structures proposed for the

secure cloud storage setting. Among the structures that enable dynamic opera-

tions, the advantage of skip list is that it keeps itself balanced probabilistically,

without the need for complex operations [Pugh, 1990b]. It offers search, modify,

insert, and remove operations with logarithmic complexity with high probability

Chapter 2: Related Work 9

[Pugh, 1990a]. Skip lists have been extensively studied [Anagnostopoulos et al., 2001,

Battista and Palazzi, 2007, Crosby and Wallach, 2011, Erway et al., 2009,

Goodrich et al., 2001, Maniatis and Baker, 2003, Polivy and Tamassia, 2002].

They are used as authenticated data structures in two-party proto-

cols [Papamanthou and Tamassia, 2007], in outsourced network storage

[Goodrich et al., 2001], with authenticated relational tables for database

management systems [Battista and Palazzi, 2007], in timestamping systems

[Blibech and Gabillon, 2005, Blibech and Gabillon, 2006], in outsourced data stor-

ages [Erway et al., 2009, Goodrich et al., 2008], and for authenticating queries for

distributed data of web services [Polivy and Tamassia, 2002].

In a skip list, not every edge or node is used during a search or update operation;

therefore those unnecessary edges and nodes can be omitted. Similar optimizations

for authenticated skip lists were tested in [Goodrich et al., 2007]. Furthermore, as

observed in DPDP [Erway et al., 2009] for an RBASL, some corner nodes can be

eliminated to decrease the overall number of nodes. Our FlexList contains all these

optimizations, and many more, analyzed both formally and experimentally.

A binary tree-like data structure called rope is similar to our FlexList

[Boehm et al., 1995]. It was originally developed as alternative to the strings, bytes

can be used instead of the strings as in our scheme. Since a rope is tree-like struc-

ture, it requires rebalancing operations. Moreover, a rope needs further structure

optimizations to eliminate unnecessary nodes.

2.2 State of the Art in Cloud Storage

PDP was one of the first proposals for provable cloud storage [Ateniese et al., 2007].

PDP does not employ a data structure for the authentication of blocks, and is applica-

ble to only static storage. A later variant called Scalable PDP [Ateniese et al., 2008]

10 Chapter 2: Related Work

allows a limited number of updates. Wang et al. [Wang et al., 2009] proposed the

usage of Merkle tree [Merkle, 1987] which works perfectly for the static scenario,

but has balancing problems in a dynamic setting. For the dynamic case we would

need an authenticated balanced tree such as the data structure proposed by Zheng

and Xu [Zheng and Xu, 2011], called range-based 2-3 tree. Yet, there is no algo-

rithm that has been presented for rebalancing either a Merkle tree or a range-based

2-3 tree while efficient updating and maintaining authentication information. Nev-

ertheless, such algorithms have been studied in detail for the authenticated skip list

[Papamanthou and Tamassia, 2007]. Table 2.1 summarizes this comparison.

For dynamic provable data possession (DPDP) in a cloud storage setting, Erway

et al. [Erway et al., 2009] were the first to introduce the new data structure rank-based

authenticated skip list (RBASL) which is a special type of the authenticated skip list

[Goodrich et al., 2001]. In the DPDP model, there is a client who wants to outsource

her file and a server that takes the responsibility for the storage of the file. The client

pre-processes the file and maintains meta data to verify the proofs from the server.

Then she sends the file to the server. When the client needs to check whether her

data is intact or not, she challenges some random blocks. Upon receipt of the request,

the server generates the proof for the challenges and sends it back. The client then

verifies the data integrity of the file using this proof. Many other static and dynamic

schemes have been proposed [Juels and Kaliski., 2007, Shacham and Waters, 2008,

Dodis et al., 2009, Cash et al., 2013] including multi-server optimizations on them

[Bowers et al., 2009, Curtmola et al., 2008, Etemad and Küpçü, 2013].

An RBASL, unlike an authenticated skip list, allows a search with indices of the

blocks. This gives the opportunity to efficiently check the data integrity using block

indices as proof and update query parameters in DPDP. To employ indices of the

blocks as search keys, Erway et al. proposed using authenticated ranks. Each node in

the RBASL has a rank, indicating the number of the leaf-level nodes that are reachable

Chapter 2: Related Work 11

from that particular node. Leaf-level nodes having no after links have a rank of 1,

meaning they can be used to reach themselves only. Ranks in an RBASL handle

the problem with block numbers in PDP [Ateniese et al., 2007], and thus result in a

dynamic system.

Nevertheless, in a realistic scenario, the client may wish to change a part of a

block, not the whole block. This can be problematic to handle in an RBASL. To

partially modify a particular block in an RBASL, we not only modify a specified

block but also may have to change all following blocks. This means the number of

modifications is O(n) in the worst case scenario for DPDP as well.

Another dynamic provable data possession scheme was presented by Zhang et

al. [Zhang and Blanton, 2013]. They employ a new data structure called a balanced

update tree, whose size grows with the number of the updates performed on the

data blocks. Due to this property, they require extra rebalancing operations. The

scheme uses message authentication codes (MAC) to protect the data integrity. Un-

fortunately, since the MAC values contain indices of data blocks, they need to be

recalculated with insertions or deletions. The data integrity checking can also be

costly, since the server needs to send all the challenged blocks with their MAC values,

because the MAC scheme is not homomorphic (see [Ateniese et al., 2009]). In our

scheme we send only tags and a block sum, which is approximately of a single block

size. At the client side, there is an overhead for keeping the update tree.

Our proposed data structure FlexList, based on an authenticated skip list, per-

forms dynamic operations (modify, insert, remove) for cloud data storage, having

efficient variable block size updates.

12 Chapter 2: Related Work

2.3 Peer-to-Peer Storage Related Work

A client-oriented efficient peer-to-peer storage system should be implemented ex-

ploiting efficient distributed data structure and locality-based replica placement. Re-

searchers in this field has advanced and presented a lot of works on data replica-

tion [Martins et al., 2006]. Most of them exploit benefits of distributed hash ta-

bles (DHTs) [Stoica et al., 2001, Rowstron and Druschel, 2001a, Zhao et al., 2001,

Ratnasamy et al., 2001, Aspnes, 2003, Harvey et al., 2003]. A skip graph is a dis-

tributed data structure, based on skip lists [Pugh, 1990b], that provides the full func-

tionality of a balanced tree in a distributed system where resources are stored in

separate nodes that may fail at any time. Skip graph is designed for use in searching

peer-to-peer systems, and by providing the ability to perform queries based on key

ordering, they improve on existing search tools that provide only hash table function-

ality. Furthermore, since a query can start at any node in the system, it has no single

point of failure. Another advantage is that the links between neighbors are based on

prefix similarities of membership vectors.

Another aspect of peer-to-peer storage system is data management. Popular peer-

to-peer storage systems like Freenet [Clarke et al., 2001], CFS [Dabek et al., 2001],

Past [Druschel and Rowstron, 2001] and Wuala [Mager et al.,] have different struc-

tures and lookup algorithms but all of them static, since no block-wise updates are pos-

sible. Oceanstore [Kubiatowicz et al., 2000] that employs super nodes (cloud servers)

as a backbone for the system availability. It has capability to read/write but it

will require to update the whole file, since it uses erasure coding on the files. Past

[Rowstron and Druschel, 2001b] has a similar replication method to ours. Its idea is

to place file replicas near to the client according the node identification number. In

the search operation most of client’s requests received for file operations are processed

by one of the replicas [Rowstron and Druschel, 2001b]. However, in our system we

Chapter 2: Related Work 13

also place replicas using the hash function on the file name (file owner), similarly as

in other DHTs. Therefore, the diversity of the replica placement prevents possible

availability problems with the files.

Tamassia and Triandopoulos et al. [Tamassia and Tri, 2007] presented a new

model for data authentication in peer-to-peer network and their construction of a

distributed Merkle tree (DMT). DMT is a authentication tree distributed over peer-

to-peer network, which allows users to verify the integrity of the data objects received

from the network and give the data owner ability to verify the integrity of updates

executed by the network. There are two type of nodes: network node and DMT node.

Each DMT node is represented by one of the network nodes. A query is processed

by authenticated distributed hash table (ADHT), which is secure extension of DHT.

When the query is delivered to the node holding data object, then the node is the

leaf-level node in DMT. Starting from it, the proof for the data object is generated.

The proof traverses backward from the leaf-level node to the top of the tree (root)

and on its way collects auxiliary information (level, position in the tree) and hash

values. At the end, the user can verify the proof by comparing hash value of the root

and hash value computed using proof, as well as check validity of the signature of the

hash value of root. Unfortunately, this model lacks load balancing and there is single

point of failure, which the root of the DMT.

The extension of the previous paper is presented by [Goodrich et al., 2009]. They

propose two hashing-based scheme for reliable resource location and content retrieval

queries. In peer-to-peer setting, there can be nodes that can act maliciously. These

type of nodes can redirect queries to wrong nodes or resources, change requests, or

even redirect to not only to outdated file but to virus infected. Their idea is to

limit the ability of adversarial nodes to carry out attacks. Their first authenticated

scheme is called skip-DHT, is based on skip graphs [Aspnes, 2003]. Its construction

authenticates all possible search paths that can be used for locating the resource. The

14 Chapter 2: Related Work

second authentication scheme is a middleware component that can be exploited by

any DHT to verify put/get operations on a data set. And each of the search path

is linked to the verifiable hash value signed by the data owner. Scheme basically

addresses data integrity issues at the distributed data structure level, but we perform

that checks at the node level, therefore a single node affected by these operations.

For a more detailed comparison of the storage systems see Table 2.2. There a

number of criteria that are used to compare those systems. One of them is decen-

tralization, which is ”Full” if a system consists of regular peers with same duties and

”Hybrid” if a system employs some super nodes that perform special duties.

For data integrity we use FlexDPDP scheme [Esiner et al., 2013]. It is a

Dynamic Provable Data Possession (DPDP) scheme [Erway et al., 2009] using

FlexList (underlying data structure) proposed by [Esiner et al., 2013]. FlexList

is a skip list like authenticated data structure with support for variable block

size updates. It is an enhanced version of rank-based authenticated skip

lists [Erway et al., 2009]. which . Earlier works include a variety of static

[Ateniese et al., 2007, Juels and Kaliski., 2007, Shacham and Waters, 2008,

Wang et al., 2009, Zheng and Xu, 2011, Dodis et al., 2009] and dy-

namic [Erway et al., 2009, Esiner et al., 2013, Zhang and Blanton, 2013,

Ateniese et al., 2008] solutions. However, even dynamic schemes have their limita-

tions. In a scalable PDP [Ateniese et al., 2008], the client can have a predetermined

number of updates. A scheme proposed by Zhang et al. [Zhang and Blanton, 2013]

has rebalancing issues with update trees and has to perform extra calculations with

each update. A FlexDPDP scheme [Esiner et al., 2013], which allows variable block

size updates, is a modified version of DPDP [Erway et al., 2009].

Chapter 2: Related Work 15

System name Data lo-
cating

De-
cen-
tral-
iza-
tion

Replication Data
Up-
date

Proof of Pos-
session Lo-

cal-
ity

Past
[Druschel and Rowstron, 2001]

Pastry F Replicate to
k numerically
closest nodes

R No No

Freenet [Clarke et al., 2001] Proba-
bilistic
routing

F Create replicas
on search path

R No No

CFS [Dabek et al., 2001] Chord F Replicate
blocks of a
file and cache
them if needed

R No No

Oceanstore
[Kubiatowicz et al., 2000]

Tapestry
and
Proba-
bilistic
routing

H Replicate at
hot spots and
caching

R No No

Wuala [Mager et al.,] Chord /
Tapestry

H Random
replica place-
ment

R No No

DMT
[Tamassia and Tri, 2007]

Dis-
tributed
Merkle
tree

F No replication RW Authentication
of search path
at distributed
data structure

No

skip-DHT
[Goodrich et al., 2009]

Skip
graph

F No replication RW Authentication
of search path
at distributed
data structure

No

InterLocal Skip
graph

F Random and
locality-based
replication

RW Authenticated
search path of
data structure
at the peer

Yes

Table 2.2: Comparison table of various peer-to-peer storage systems. R: Read-only
RW: Read/Write F: Full H: Hybrid

Chapter 3

FLEXLIST: FLEXIBLE LENGTH-BASED

AUTHENTICATED SKIP LIST

In this chapter, we present the underlying authenticated data structure for dy-

namic cloud storage system called FlexList. It starts with the definitions and compar-

ison of FlexList with RBASL. Afterwards, basic helper functions and main methods

of FlexList are presented and detailed with examples. Then, a novel function to build

a FlexList from a scratch is presented. Finally, experimental results for both FlexList

main functions and the novel build function are evaluated.

3.1 Basic Definitions

Skip List is a probabilistic data structure presented as an alternative to bal-

anced trees [Pugh, 1990b]. It is easy to implement without complex balanc-

ing and restructuring operations such as those in AVL or Red-Black trees

[Anagnostopoulos et al., 2001, Foster, 1973]. A skip list keeps its nodes ordered by

their key values. We call a leaf-level node and all nodes directly above it at the same

index a tower.

Figure 3.1 demonstrates a search on a skip list. The search path for the node with

key 24 is highlighted. In a basic skip list, the nodes include key, level, and data (only

at leaf level nodes) information, and below and after links (e.g., v2.below = v3 and

v2.after = v4). To perform the search for 24, we start from the root (v1) and follow

the link to v2, since v1’s after link leads it to a node which has a greater key value

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 17

Figure 3.1: Regular skip list with search path of node with key 24 highlighted. Num-
bers on the left represent levels. Numbers inside nodes are key values. Dashed lines
indicate unnecessary links and nodes.

than the key we are searching for (∞ > 24). Then, from v2 we follow link l1 to v4,

since the key value of v4 is smaller than (or equal to) the searched key. In general,

if the key of the node where after link leads is smaller or equal to the key of the

searched node, we follow that link, otherwise we follow the below link. Using the

same decision mechanism, we follow the highlighted links until the searched node is

found at the leaf level (if it does not exist, then the node with key immediately before

the searched node is returned).

Figure 3.2: Skip list of Figure 3.1 without unnecessary links and nodes.

We observe that some of the links are never used in the skip list, such as l2, since

any search operation with key greater or equal to 11 will definitely follow link l1, and

a search for a smaller key would never advance through l2. Thus, we say links that

are not present on any search path, such as l2, are unnecessary. When we remove

unnecessary links, we observe that some nodes, which are left without after links

(e.g., v3), are also unnecessary since they do not provide any new dependencies in

18 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

the skip list. Although it does not change the asymptotic complexity, it is beneficial

not to include them for time and space efficiency. An optimized version of the skip

list from Figure 3.1 can be seen in Figure 3.2 with the same search path highlighted.

Formally:

• A link is necessary if and only if it is on any search path.

• A node is necessary if and only if it is at the leaf level or has a necessary

after link.

Assuming existence of a collision-resistant hash function family H, we randomly

pick a hash function h from H and let || denote concatenation. Throughout our study

we will use: hash(x1, x2, ..., xm) to mean H(x1||x2||...||xm).

Figure 3.3: Skip list alterations depending
on an update request.

An authenticated skip list is con-

structed with the use of a collision-

resistant hash function and keeps a hash

value in each node. Nodes at level

0 keep links to file blocks (may link

to different structures e.g., files, di-

rectories, anything to be kept intact)

[Goodrich et al., 2001]. A hash value

is calculated with the following inputs:

level and key of the node, and the hash

values of the node after and the node

below. Through the inputs to the hash

function, all nodes are dependent on

their after and below neighbors. Thus, the root node is dependent on every leaf

node, and due to the collision resistance of the hash function, knowing the hash value

of the root is sufficient for later integrity checking. Note that if there is no node

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 19

below, data or a function of data (which we will call tag in the following sections) is

used instead of the hash of the below neighbor. If there is no after neighbor, then a

dummy value (e.g., null) is used in the hash calculation.

A rank-based authenticated skip list (RBASL) is different from an authen-

ticated skip list by means of how it indexes data [Erway et al., 2009]. An RBASL has

rank information (used in hashing instead of the key value), meaning how many nodes

are reachable from that node. An RBASL is capable of performing all operations that

an authenticated skip list can in the cloud storage context.

3.2 FlexList Structure

A FlexList supports variable-sized blocks whereas an RBASL is meant to be used

with fixed block size since a search (consequently insert, remove, modify) by index

of data is not possible with the rank information of an RBASL. For example, Figure

3.3-A represents an outsourced file divided into blocks of fixed size.

In our example, the client wants to change “brown” in the file composed of the

text “The quick brown fox jumps over the lazy dog...” with “red” and the diff al-

gorithm returns [delete from index 11 to 15] and [insert “red” from index 11 to 13].

Apparently, a modification to the 3rd block will occur. With a rank-based skip list, to

continue functioning properly, a series of updates is required as shown in Figure 3.3-B

which asymptotically corresponds to O(n) alterations. Otherwise, the beginning and

the ending indices of each block will be complicated to compute, requiring O(n) time

to translate a diff algorithm output to block modifications at the server side. It also

leaves the client unable to verify that the index she challenged is the same as the

index of the proof by the server (this issue is explained in Section 4.2 with the veri-

fyMultiProof algorithm). Therefore, for instance a FlexList having 500000 leaf-level

nodes needs an expected 250000 update operations for a single variable-sized update.

20 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

Besides the modify operations and related hash calculations, this also corresponds

to 250000 new tag calculations either on the server side, where the private key (or-

der of the RSA group) is unknown (thus computation is very slow) or at the client

side, where the new tags should go through the network. Furthermore, a verification

process for the new blocks is also required (that means a huge proof, including half

of the data structure used, sent by the server and the verified by the client, where

she needs to compute an expected 375000 hash values). With our FlexList, only one

modification suffices as indicated in Figure 3.3-C.

Due to the lack of providing variable block sized operations with an RBASL, we

present FlexList which overcomes this problem and serves our purposes in the cloud

data storage setting. A FlexList stores, at each node, how many bytes can be reached

from that node, instead of how many blocks are reachable. The rank of each leaf-level

node is computed as the sum of the length of its data and the rank of the after node

(0 if null). The length information of each data block is added as a parameter to the

hash calculation of that particular block. Note that when the length of data at each

leaf is considered as a unit, the FlexList reduces to an RBASL (thus, ranks only count

the number of reachable blocks). Therefore all our optimizations are also applicable

to RBASL, which is indeed a special case of FlexList.

3.2.1 Preliminaries

Algorithm 3.2.1: nextPos Algorithm
Input: pn, cn, i, level, npi
Output: pn, cn, i, tn
tn = new empty Stack1

while cn can go below or after do2

if canGoBelow(cn, i) and cn.below.level ≥ level and npi then3

cn = cn.below4

else if canGoAfter(cn, i) and cn.after.level ≥ level then5

i = i - cn.below.r; cn = cn.after6

add cn to tn7

In this section, we introduce the helper methods required to traverse the skip list,

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 21

Figure 3.4: A FlexList example with 2 sub skip lists indicated.

Symbol Description
cn current node
pn previous node, indicates the last node that current node moved from
mn missing node, created when there is no node at the point where a node has to be

linked
nn new node
dn node to be deleted

after the after neighbor of a node
below the below neighbor of a node
r rank value of a node
i index of a byte

npi a boolean which is always true except in the inner loop of insert algorithm
tn stack (initially empty), filled with all visited nodes during search, modify, insert or

remove algorithms

Table 3.1: Symbol descriptions of skip list algorithms.

create missing nodes, delete unnecessary nodes, delete nodes, and decide on the level

to insert at, to be used in the essential algorithms (search, modify, insert, remove).

Note that all algorithms are designed to fill a stack tn where we store nodes which may

need a recalculation of hash values if authenticated, and rank values if using FlexList.

All algorithms that move the current node immediately push the new current node

to the stack tn as well. Further notations are shown in Table 3.1.

We first define a concept called sub skip list to make our FlexList algorithms

easier to understand. An example is illustrated in Figure 3.4. Let the search index be

22 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

250 and the current node start at the root (v1). The current node follows its below

link to v2 and enters a sub skip list (big dashed rectangle). Now, v2 is the root of

this sub skip list and the searched node is still at index 250. In order to reach the

searched node, the current node moves to v3, which is the root of another sub skip list

(small dashed rectangle). Now, the searched byte is at index 150 in this sub skip list.

Therefore the searched index is updated accordingly. The amount to be reduced from

the search index is equal to the difference between the rank values of v2 and v3, which

is equal to the rank of below of v2. Whenever the current node follows an after link,

the search index should be updated. To finish the search, the current node follows

the after link of v3 to reach the node containing index 150 in the sub skip list with

root v3.

nextPos (Algorithm 3.2.1): The nextPos method moves the current node cn repet-

itively until the desired position according to the method (search, insert, remove)

from which it is called. There are 4 cases for nextPos:

• insert - moves current node cn until the closest node to the insertion point.

• remove or search - moves current node cn until it finds the searched node’s

tower.

• loop in insert - moves cn until it finds the next insertion point for a new node.

• loop in remove - moves current node cn until it encounters the next node to

delete.

Algorithm 3.2.2: createMissingNode Algorithm
Input: pn, cn, i, level
Output: pn, cn, i, tn
tn = new empty Stack1

mn = new node is created using level //Note that rank value for missing2

node is given ∞
if canGoBelow(cn,i) then3

mn.below = cn.below; cn.below = mn4

else5

mn.below = cn.after; cn.after = mn6

i = i - cn.below.r //Since current node is going after, i value should7

be updated
pn = cn; cn = mn; then cn is added to tn8

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 23

createMissingNode (Algorithm 3.2.2) is used in both the insert and remove algo-

rithms. Since in a FlexList there are only necessary nodes, when a new node needs

to be connected, this algorithm creates any missing node to make the connection.

deleteUNode (Algorithm 3.2.3) is employed in the remove and insert algorithms

to delete an unnecessary node (this occurs when a node loses its after node) and

maintain the links. It takes the previous node and current node as inputs, where

the current node is unnecessary and meant to be deleted. The purpose is to preserve

connections between necessary nodes after the removal of the unnecessary one. This

involves deletion of the current node if it is not at the leaf level. It sets the previous

node’s after or below to the current node’s below. As the last operation of deletion,

we remove the top node from the stack tn, as its rank and hash values no longer need

to be updated.

Algorithm 3.2.3: deleteUNode Algorithm
Input: pn, cn
Output: pn, cn, tn
tn = new empty Stack1

if cn.level == 0 then2

cn.after = NIL3

else4

if pn.below == cn then5

pn.below = cn.below6

else7

pn.after = cn.below8

tn.pop(); cn = pn9

deleteNode method, employed in the remove algorithm, takes two consecutive nodes,

the previous node and the current node. By setting after pointer of the previous node

to current node’s after, it detaches the current node from the FlexList.

tossCoins: Probabilistically determines the level value for a new node tower. A coin

is tossed until it comes up heads. The output is the number of consecutive tails.

24 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

3.2.2 FlexList Methods

FlexList is a particular way of organizing data for secure cloud storage systems. Some

basic functions must be available, such as search, modify, insert and remove. These

functions are employed in the verifiable updates. All algorithms are designed to fill

a stack for the possibly affected nodes. This stack is used to recalculate of rank and

hash values accordingly.

search (Algorithm 3.2.4) is the algorithm used to find a particular byte. It takes the

index i as the input, and outputs the node at index i with the stack tn filled with

the nodes on the search path. Any value between 0 and the file size in bytes is valid

to be searched. It is not possible for a valid index not to be found in a FlexList. A

search path, which is the basic idea of a proof path, is visible in the stack in the basic

algorithms.

Algorithm 3.2.4: search Algorithm
Input: i
Output: cn, tn
tn = new empty Stack1

cn = root2

// cn moves until cn.after is a tower node of the searched node
call nextPos3

cn = cn.after then cn is added to tn4

// cn is moved below until the node at the leaf level, which has data
while cn.level 6= 0 do5

cn = cn.below then cn is added to tn6

In algorithm 3.2.4, the current node cn starts at the root. The nextPos method

moves cn to the position just before the top of the tower of the searched node. Then

cn is taken to the searched node’s tower and moved all the way down to the leaf level.

modify: By taking index i and new data, we make use of the search algorithm for the

node, which includes the byte at index i, and update its data. It then we recalculate

hash values along the search path. The input of this algorithm contains the index i

and new data. The outputs are the modified node and stack tn filled with nodes on

the search path.

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 25

Algorithm 3.2.5: insert Algorithm
Input: i, data
Output: nn,tn
tn = new empty Stack1

pn = root; cn = root; level = tossCoins()2

call nextPos// cn moves until it finds a missing node or cn.after is3

where nn is to be inserted
// Check if there is a node where new node will be linked. if not,
create one.
if !CanGoBelow(cn, i) or cn.level 6= level then4

call createMissingNode;5

// Create new node and insert after the current node.
nn = new node is created using level6

nn.after = cn.after; cn.after = nn and nn is added to tn7

// Create insertion tower until the leaf level is reached.
while cn.below 6= null do8

if nn already has a non-empty after link then9

a new node is created to the below of nn; nn = nn.below and nn is added10

to tn
call nextPos // Current node moves until we reach an after link that11

passes through the tower. That is the insertion point for the
new node.
// Create next node of the insertion tower.
nn.after = cn.after; nn.level = cn.level12

// cn becomes unnecessary as it looses its after link, therefore
it is deleted
deteletUNode(pn, cn);13

// Done inserting, put data and return this last node.
nn.data = data14

// For a FlexList, call calculateHash and calculateRank on the nodes
in the tn to compute their (possibly) updated values.

insert (Algorithm 3.2.5) is run to add a new node to the FlexList with a random

level by adding new nodes along the insertion path. The inputs are the index i and

data. The algorithm generates a random level by tossing coins, then creates the new

node with given data and attaches it to index i, along with the necessary nodes until

the level. Note that this index should be the beginning index of an existing node,

since inserting a new block inside a block makes no sense.1 As output, the algorithm

returns the stack tn filled with nodes on the search path of the new block.

Figure 3.5 demonstrates the insertion of a new node at index 450 with level 4.

nextPos brings the current node to the closest node to the insertion point with level

1In case of an addition inside a block we can do the following: search for the block including the
byte where the insertion will take place, add our data in between the first and second part of data
found to obtain new data and employ modify algorithm (if new data is long, we can divide it into
parts and send it as one modify and a series of inserts).

26 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

Figure 3.5: Insert at index 450, level 4 (FlexList).

greater than or equal to the insertion level (c1 in Figure 3.5). Lines 3-4 create any

missing node at the level, if there was no node to connect the new node to (e.g.,

m1 is created to connect n1 to). Within the while loop, during the first iteration, n1

is inserted to level 2 since nodes at levels 3 and 4 are unnecessary in the insertion

tower. Inserting n1 makes d1 unnecessary, since n1 stole its after link. Likewise, the

next iteration results in n2 being inserted at level 1 and d2 being removed. Note that

removal of d1 and d2 results in c3 getting connected to v1. The last iteration inserts

n3, and places data. Since this is a FlexList, hashes and ranks of all the nodes in the

stack will be recalculated (c1,m1, n1, c2, c3, n2, n3, v1, v2). Those are the only nodes

whose hash and rank values might have changed.

remove (Algorithm 3.2.6) is run to remove the node which starts with the byte

at index i. As input, it takes the index i. The algorithm detaches the node to

be removed and all other nodes above it while preserving connections between the

remaining nodes. As output, the algorithm returns the stack tn filled with the nodes

on the search path of the left neighbor of the node removed.

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 27

Algorithm 3.2.6: remove Algorithm
Input: i
Output: dn,tn
tn = new empty Stack pn = root; cn = root1

call nextPos // Current node moves until after of the current node is2

the node at the top of deletion tower
dn = cn.after3

// Check if current node is necessary,if so it can steal after of the
node to delete, otherwise delete current node
if cn.level = dn.level then4

deleteNode(cn, dn); dn = dn.below; // unless at leaf level5

else6

deleteUNode(pn, cn);7

// Delete whole deletion tower until the leaf level is reached
while cn.below 6= null do8

call nextPos// Current node moves until it finds a missing node9

// Create the missing node unless at leaf level and steal the
after link of the node to delete
call createMissingNode; deleteNode(cn, dn)10

dn = dn.below // move dn to the next node in the deletion tower11

unless at leaf level
// For a FlexList, call calculateHash and calculateRank on the nodes
in the tn to compute their (possibly) updated values.

Figure 3.6: Remove block at index 450(FlexList).

Figure 3.6 demonstrates removal of the node having the byte with index 450. The

algorithm starts at the root c1, and the first nextPos call on line 2 returns d1. Lines

4-7 check if d1 is necessary. If d1 is necessary, d2 is deleted and we continue deleting

from d3. Otherwise, if d1 is unnecessary, then d1 is deleted, and we continue searching

from c1. In our example, d1 is unnecessary, so we continue from c1 to delete d2.

Within the while loop, the first call of nextPos brings the current node to c3. The

goal is to delete d2, but this requires creating of a missing necessary node m1. Note

28 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

that, m1 is created at the same level as d2. Once m1 is created and d2 is deleted,

the while loop continues its next iteration starting from m1 to delete d3. This next

iteration creates m2 and deletes d3. The last iteration moves the current node to v2

and deletes d4 without creating any new nodes, since we are at the leaf level. The

output stack contains nodes (c1, c2, c3,m1,m2, v1, v2). Rank and hash values of those

nodes could have changed, those values will be recalculated.

3.2.3 Novel FlexList Build Function

Algorithm 3.2.7: buildFlexList Algorithm
Input: B, L, T
Output: root

// H will keep pointers to tower heads
H = new vector is created of size L0 + 11

// Loop will iterate for each block
for i =B.size− 1 to 0 do2

pn= null3

for j = 0 to Li+1 do4

// Enter only if at level 0 or Hj has an element
if Hj 6= null or j = 0 then5

nn = new node is created with level j //if j is 0, Bi,T i are6

included to the creation of nn
nn.below = pn; nn.after = Hj // Connect tower head at Hj as7

an after link
call calculateRank and calculateHash on nn8

pn = nn; Hj = null9

// Add a tower head to H at HLi

HLi
= pn10

root = HL0
//which is equal to pn11

root.level =∞; call calculateHash on root12

return root13

The usual way to build a skip list (or FlexList) is to perform n insertions (one for

each item). When original data is already sorted, one may insert them in increasing

or decreasing order. Such an approach will result in O(n log n) total time complexity.

But, when data is sorted as in the secure cloud storage scenario (where blocks of a

file are already sorted), a much more efficient algorithm can be developed. Observe

that a skip list contains 2n nodes in total, in expectation [Pugh, 1990b]. This is an

O(n) value, and thus spending O(n log n) time for creating O(n) nodes is an overkill,

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 29

since creation of nodes take a constant time only. We present our novel algorithm

for building a FlexList from scratch in just O(n) time. To the best of our knowledge,

such an efficient build algorithm did not exist before.

buildFlexList (Algorithm 3.2.7) is an algorithm that generates a FlexList over a

set of sorted data in time complexity O(n). It has the small space complexity of

O(l) where l is number of levels in the FlexList (l = O(log n) with high probability).

As the inputs, the algorithm takes blocks B on which the FlexList will be generated,

corresponding (randomly generated) levels L and tags T . The algorithm assumes data

is already sorted. In cloud storage, the blocks of a file are already sorted according to

their block indices, and thus our optimized algorithm perfectly fits our target scenario.

The algorithm attaches one link for each tower from right to left. For each leaf node

generated, its tower follows in a bottom up manner. As output, the algorithm returns

the root node.

Figure 3.7 demonstrates the building process of a FlexList where the insertion

levels of blocks are 4, 0, 1, 3, 0, 2, 0, 1, 4, in order. Labels vi on the nodes indicate

the generation order of the nodes. Note that the blocks and the tags for the sentinel

nodes are null values. The idea of the algorithm is to build towers of a given level

for each block. As shown in the figure, all towers have only one link from left side to

its tower head (the highest node in the tower). Therefore, we need to store the tower

heads in a vector, and then make necessary connections. The algorithm starts with

the creation of the vector H to hold pointers to the tower heads at line 1. At lines

6-9 for the first iteration of the inner loop, the node v1 is created which is a leaf node,

thus there is no node below. Currently, H is empty; therefore there is no node at H0

to connect to v1 at level 0. The hash and the rank values of v1 are calculated. Since

H is still empty, we do not create new nodes at levels 1, 2, 3, 4. At line 10, we put v1

to H as H4. The algorithm continues with the next block and the creation of v2. H0

is still empty, therefore no after link for v2 is set. The hash and the rank values of

30 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

v2 are calculated. The next iterations of the inner loop skip the lines 6-9, because H1

and H2 are empty as well. At line 10, v2 is inserted to H2. Then, v3 is created and

its hash and rank values are calculated. There is no element at H0 to connect to v3.

Its level is 0, therefore it is added to H as H0. Next, we create the node v4; it takes

H0 as its after. The hash and the rank values are calculated, then v4 is added to H

at index 0. The algorithm continues for all elements in the block vector. At the end

of the algorithm, the root is created, connected to the top of the FlexList, then its

hash and rank values are calculated.

Figure 3.7: buildFlexList example.

3.3 FlexList Evaluation

We have developed a prototype implementation of an optimized FlexList (on top

of our optimized skip list and authenticated skip list implementations). We used

C++ and employed some methods from the Cashlib library [Meiklejohn et al., 2010,

Brownie Points Project,]. The local experiments were conducted on a 64-bit machine

with a 2.4GHz Intel 4 core CPU (only one core is active), 4GB main memory and

8MB L2 cache, running Ubuntu 12.10. As security parameters, we used 1024-bit RSA

modulus, 80-bit random numbers, and SHA-1 hash function, overall resulting in an

expected security of 80-bits. All our results are the average of 10 runs. The tests

include I/O access time since each block of the file is kept on the hard disk

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 31

drive separately, unless it stated otherwise. The size of a FlexList is suitable to

keep a lot of FlexLists in RAM.

3.3.1 Analysis of Core FlexList Algorithms

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Number of blocks

N
um

be
r

of
 li

nk
s

or
 n

od
es

Optimal number of nodes
Optimal number of links
Standard number of nodes
Standard number of links

Figure 3.8: The number of nodes and links used on top of leaf level nodes, before and
after optimization.

One of the core optimizations in a FlexList is done in terms of the structure. Our

optimization, removing unnecessary links and nodes, ends up with 50% less nodes

and links on top of the leaf nodes, which are always necessary since they keep the

file blocks. Figure 3.8 shows the number of links and nodes used before and after

32 Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List

optimization. The expected number of nodes in a regular skip list is 2n [Pugh, 1990b]

(where n represents the number of blocks): n leaf nodes and n non-leaf nodes. Each

non-leaf node makes any left connection below its level unnecessary as described in

Section 3.1. Since in a skip list, half of all nodes and links are at the leaf level

in expectation, this means half of the non-leaf level links and half of the leaf level

links are unnecessary, making a total on n unnecessary links. Since there are n/2

non-leaf unnecessary links, it means that there are n/2 non-leaf unnecessary nodes

as well, according to unnecessary node definition (Section 3.1). Hence, there are

n − n/2 = n/2 non-leaf necessary nodes. Since each necessary node has 2 links, in

total there are 2 ∗ n/2 = n necessary links above the leaf level. Therefore, in Figure

3.8, there is an overlap between the standard number of non-leaf nodes (n) and the

optimal number of the non-leaf links (n). Therefore, we eliminated approximately

50% of all nodes and links above the leaf level (and 25% of all).

Moreover, we presented a novel algorithm for the efficient building of a FlexList.

Figure 3.9 demonstrates time ratios between the buildFlexList algorithm and building

FlexList by means of insertion (in sorted order). The time ratio is calculated by

dividing the time spent for the building FlexList using insertion method by the time

needed by the buildFlexList algorithm. In our time ratio experiments, we do not take

into account the disk access time; therefore there is no delay for I/O switching. As

expected, buildFlexList algorithm outperforms the regular insertion method, since in

the buildFlexList algorithm the expensive hash calculations are performed only once

for each node in the FlexList. So practically, the buildFlexList algorithm reduced

the time to build a FlexList for a file of size 400MB with 200000 blocks from 12

seconds to 2.3 seconds and for a file of size 4GB with 2000000 blocks from 128

seconds to 23 seconds.

Chapter 3: Flexlist: Flexible Length-Based Authenticated Skip List 33

2*10^2 2*10^3 2*10^4 2*10^5 2*10^6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of blocks

R
at

io

Time Ratio

Figure 3.9: Time ratio on buildFlexList algorithm against insertions.

Chapter 4

FLEXDPDP: FLEXIBLE DYNAMIC PROVABLE DATA

POSSESSION

In this section, we describe the application of our FlexList to integrity checking

in secure cloud storage systems according to the DPDP model [Erway et al., 2009].

Preliminaries and basic definitions for this chapter are given in the beginning. Then,

algorithms for the proof generation and verification are discussed and detailed by

examples. Then, algorithms for verifiable variable-size updates are presented and

detailed by examples. Then, the analysis of these algorithms under various scenarios

is given. Finally, the proof generation algorithm is evaluated under energy-efficiency

metric.

The DPDP model has two main parties: the client and the server. The cloud

server stores a file on behalf of the client. Erway et al. showed that an RBASL can

be created on top of the outsourced file to provide proofs of integrity (see Figure 4.1).

The following are the algorithms used in the DPDP model for secure cloud storage

[Erway et al., 2009]:

• Challenge is a probabilistic function run by the client to request a proof of

integrity for randomly selected blocks.

• Prove is run by the server in response to a challenge to send the proof of

possession.

• V erify is a function run by the client upon receipt of the proof. A return value

of accept ideally means the file is kept intact by the server.

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 35

• prepareUpdate is a function run by the client when she changes some part of

her data. She sends the update information to the server.

• performUpdate is run by the server in response to an update request to perform

the update and prove that the update performed reliably.

• verifyUpdate is run by the client upon receipt of the proof of the update. Re-

turns accept (and updates her meta data) if the update was performed reliably.

Figure 4.1: Client Server interactions in
FlexDPDP.

We construct the above model with

FlexList as the authenticated data struc-

ture. We provide new capabilities and

efficiency gains as discussed in Section

3 and call the resulting scheme FlexD-

PDP. In this section, we describe our

corresponding algorithms for each step in

the DPDP model.

The FlexDPDP scheme uses homo-

morphic verifiable tags (as in DPDP

[Erway et al., 2009]); multiple tags can be combined to obtain a single tag that cor-

responds to combined blocks [Ateniese et al., 2009]. Tags are small compared to data

blocks, enabling storage in memory. Authenticity of the skip list guarantees integrity

of tags, and tags protect the integrity of the data blocks.

4.1 Preliminaries

Before providing optimized proof generation and verification algorithms, we introduce

essential methods to be used in our algorithms to determine intersection nodes, search

multiple nodes, and update rank values. Table 4.1 shows additional notation used in

this section.

36 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

Symbol Description
hash hash value of a node
rs rank state, indicates the byte count to the left of current node and used to recover i

value when roll-back to a state is done
state state, created in order to store from which node the algorithm will continue, contains

a node, rank state, and last index
C challenged indices vector, in ascending order
V verify challenge vector, reconstructed during verification to check if the proof belongs

to challenged blocks, in terms of indices
p proof node
P proof vector, stores proof nodes for all challenged blocks
T tag vector of challenged blocks
M block sum
ts intersection stack, stores states at intersections in searchMulti algorithm
th intersection hash stack, stores hash values to be used at intersections
ti index stack, stores pairs of integer values, employed in updateRankSum
tl changed nodes’ stack, stores nodes for later hash calculation, employed in hashMulti

start start index in ti from which updateRankSum should start
end end index in ti
first current index in C
last end index in ts

Table 4.1: Symbols used in our algorithms.

isIntersection: This function is used when searchMulti checks if a given node is an

intersection. A node is an intersection point of proof paths of two indices when the

first index can be found following the below link and the second index is found by

following the after link (the challenged indices will be in ascending order). There are

two conditions for a node to be called an intersection node:

• The current node follows the below link according to the index we are building

the proof path for.

• The current node needs to follow the after link to reach the element of chal-

lenged indices at index last in the vector C.

If one of the above conditions is not satisfied, then there is no intersection, and the

method returns false. Otherwise, it decrements last and continues trying until it finds

a node which cannot be found by following the after link and returns last′ (to be used

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 37

in the next call of isIntersection) and true (as the current node cn is an intersection

point). Note that this method directly returns false if there is only one challenged

index.

Algorithm 4.1.1: searchMulti Algorithm
Input: cn, C, first, last, rs, P , ts
Output: cn, P , ts
// Index of the challenged block (key) is calculated according to the
current sub skip list root
i = Cfirst−rs1

// Create and put proof nodes on the search path of the challenged
block to the proof vector
while Until challenged node is included do2

p = new proof node with cn.level and cn.r3

// End of this branch of the proof path is when the current node
reaches the challenged node
if cn.level = 0 and i < cn.length then4

p.setEndF lag(); p.length = cn.length5

//When an intersection is found with another branch of the proof
path, it is saved to be continued again, this is crucial for the
outer loop of ‘‘multi’’ algorithms
if isIntersection(cn, C, i, lastk, rs) then6

//note that lastk becomes lastk+1 in isIntersection method
p.setInterF lag(); state(cn.after, lastk, rs+cn.below.r) is added to ts //7

Add a state for cn.after to continue from there later
// Missing fields of the proof node are set according to the link
current node follows
if (CanGoBelow(cn, i)) then8

p.hash = cn.after.hash; p.rgtOrDwn =dwn9

cn = cn.below //unless at the leaf level10

else11
p.hash = cn.below.hash; p.rgtOrDwn =rgt12

// Set index and rank state values according to how many bytes
at leaf nodes are passed while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after13

p is added to P14

Proof node is the building block of a proof, used throughout this section. It contains

level, data length (if level is 0), rank, hash, and three boolean values rgtOrDwn, end

flag and intersection flag. Level and rank values belong to the node for which the

proof node is generated. The hash is the hash value of the neighbor node, which is not

on the proof path. There are two scenarios for setting hash and rgtOrDwn values:

38 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

(1) When the current node follows below link, we set the hash of the proof node to

the hash of the current node’s after and its rgtOrDwn value to dwn.

(2) When the current node follows after link, we set the hash of the proof node to

the hash of the current node’s below and its rgtOrDwn value to rgt.

searchMulti (Algorithm 4.1.1): This algorithm is used in genMultiProof to generate

the proof path for multiple nodes without unnecessary repetitions of proof nodes.

Figure 4.2, where we challenge the node at the index 450, clarifies how the algorithm

works. Our aim is to provide the proof path for the challenged node. We assume that

in the search, the current node cn starts at the root (w1 in our example). Therefore,

initially the search index i is 450, the rank state rs and first are zero, the proof

vector P and intersection stack ts are empty.

Figure 4.2: Proof path for challenged index 450 in a FlexList.

For w1, a proof node is generated using scenario (1), where p.hash is set to v1.hash

and p.rgtOrDwn is set to dwn. For w2, the proof node is created as described in

scenario (2) above, where p.hash is set to v2.hash and p.rgtOrDwn is set to rgt.

The proof node for w3 is created using scenario (2). For w4 and w5, proof nodes are

generated as in scenario (1). The last node c1 is the challenged leaf node, and the

proof node for this node is also created as in scenario (1). Note that in the second,

third, and fifth iterations of the while loop, the current node is moved to a sub skip

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 39

list (at line 13 in Algorithm 4.1.1). Lines 4-5 (setting the end flag and collecting the

data length) and 6-7 (setting intersection flag and saving the state) in Algorithm 4.1.1

are crucial for generation of proof for multiple blocks. We discuss them later in this

section.

updateRankSum: This algorithm, used in verifyMultiProof, is given the rank dif-

ference as input, the verify challenge vector V , and indices start and end (on V). The

output is a modified version of the verify challenge vector V ′. The procedure is called

when there is a transition from one sub skip list to another (larger one). The method

updates entries starting from index start to index end by rank difference, where rank

difference is the size of the larger sub skip list minus the size of the smaller sub skip

list.

Finally, tags and combined blocks will be used in our proofs. For this purpose, we

use an RSA group Z∗N , where N = pq is the product of two large prime numbers, and

g is a high-order element in Z∗N [Erway et al., 2009]. It is important that the server

does not know p and q. The tag t of a block m is computed as t = gm mod N . The

block sum is computed as M =
|C|∑
i=0

aimCi
where C is the challenge vector containing

block indices and ai is the random value for the ith challenge.

4.2 Managing Multiple Challenges at Once

Client server interaction (Figure 4.1) starts with the client pre-processing her data

(creating a FlexList for the file and calculating tags for each block of the file). The

client sends the random seed she used for generating the FlexList to the server along

with a public key, data, and the tags. Using the seed, the server constructs a FlexList

over the blocks of data and assigns tags to leaf-level nodes. Note that the client may

request the root value calculated by the server to verify that the server constructed

the correct FlexList over the file. When the client checks and verifies that the hash

40 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

of the root value is the same as the one she had calculated, she may safely remove

her data and the FlexList. She keeps the root value as meta data for later use in the

proof verification mechanism.

To challenge the server, the client generates two random seeds, one for a pseudo-

random generator that will generate random indices for bytes to be challenged, and

another for a pseudo-random generator that will generate random coefficients to be

used in the block sum. The client sends these two seeds to the server as the challenge,

and keeps them for verification of the server’s response.

4.2.1 Proof Generation

genMultiProof (Algorithm 4.2.1): Upon receipt of the random seeds from the client,

the server generates the challenge vector C and random values A accordingly and runs

the genMultiProof algorithm in order to get tags, file blocks, and the proof path for

the challenged indices. The algorithm searches for the leaf node of each challenged

index and stores all nodes across the search path in the proof vector. However, we

have observed that regular searching for each particular node is inefficient. If we start

from the root for each challenged block, there will be a lot of replicated proof nodes.

In the example of Figure 4.2, if proofs were generated individually, w1, w2, and w3

would be replicated 4 times, w4 and w5 3 times, and c3 2 times. To overcome this

problem we save states at each intersection node. In our optimal proof, only one proof

node is generated for each node on any proof path. This is beneficial in terms of not

only space but also time. The verification time of the client is greatly reduced since

she computes less hash values.

We explain genMultiProof (Algorithm 4.2.1) using Figure 4.3 and notations in

Table 4.1. By taking the index array of challenged nodes as input (challenge vector

C generated from the random seed sent by the client contains [170, 320, 470, 660] in

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 41

Figure 4.3: Multiple blocks are challenged in a FlexList.

the example), the genMultiProof algorithm generates the proof P , collects the tags

into the tag vector T , calculates the block sum M at each step, and returns all three.

The algorithm starts traversing from the root (w1 in our example) by retrieving it

from the intersection stack ts at line 3 of Algorithm 4.2.1. Then, in the loop, we call

searchMulti, which returns the proof nodes for w1, w2, w3 and c1. The state of node w4

is saved in the stack ts as it is the after of an intersection node, and the intersection

flag for proof node for w3 is set. Note that proof nodes at the intersection points store

no hash value. The second iteration starts from w4, which is the last saved state. New

proof nodes for w4, w5 and c2 are added to the proof vector P , while c3 is added to the

stack ts. The third iteration starts from c3 and searchMulti returns P , after adding

c3 to it. Note that w6 is added to the stack ts. In the last iteration, w6 and c4 are

added to the proof vector P . As the stack ts is empty, the loop is over. Note that all

proof nodes of the challenged indices have their end flags and length values set (line

5 of Algorithm 4.1.1). When genMultiProof returns, the output proof vector should

be as in Figure 4.4. At the end of the genMultiProof algorithm the proof and tag

vectors and the block sum are sent to the client for verification.

42 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

Algorithm 4.2.1: genMultiProof Algorithm
Input: C, A
Output: T , M , P

Let C= (i0, . . . , ik) where ij is the (j + 1)th challenged index;

A = (a0, . . . , ak) where aj is the (j + 1)th random value;
statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; M = 0; ts, P and T are empty; state(root, k, rs) added to ts1

// Call searchMulti method for each challenged block to fill the
proof vector P
for i = 0 to k do2

state = ts.pop()3

cn = searchMulti(state.node,C, i,state.end,state.rs,P ,ts)4

// Store tag of the challenged block and compute the block sum
cn.tag is added to T and M += cn.data*ai5

Figure 4.4: Proof vector for Figure 4.3 example.

4.2.2 Proof Verification

verifyMultiProof (Algorithm 4.2.2): Remember that the client keeps random seeds

used for the challenge. She generates the challenge vector C and random values A

according to these seeds. If the server is honest, these will contain the same values

as the ones the server generated. There are two steps in the verification process: tag

verification and FlexList verification.

Tag verification is done as follows: Upon receipt of the tag vector T and the block

sum M , the client calculates tag =
|C|∏
i=0

T ai
i mod N and accepts iff tag = gM mod N .

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 43

By this, the client checks the integrity of file blocks by tags. Later, when tags are

proven to be intact by FlexList verification, the file blocks will be verified. FlexList

verification involves calculation of hashes for the proof vector P . The hash for each

proof node can be calculated in different ways as described below using the example

from Figure 4.3 and Figure 4.4.

The hash calculation always has the level and rank values stored in a proof node

as its first two arguments.

• If a proof node is marked as end but not intersection (e.g., c4, c2, and c1),

this means the corresponding node was challenged (to be checked against the

challenged indices later), and thus its tag must exist in the tag vector. We

compute the corresponding hash value using that tag, the hash value stored in

the proof node (null for c4 since it has no after neighbor, the hash value of v4

for c2, and the hash value of v3 for c1), and the corresponding length value (110

for c4, 80 for c2 and c1).

• If a proof node is not marked and rgtOrDwn = rgt or level = 0 (e.g., w6, w2),

this means the after neighbor of the node is included in the proof vector and the

hash value of its below is included in the associated proof node (if the node is at

leaf level, the tag is included instead). Therefore we compute the corresponding

hash value using the hash value stored in the corresponding proof node and the

previously calculated hash value (hash of c4 is used for w6, hash of w3 is used

for w2).

• If a proof node is marked as intersection and end (e.g., c3), this means the

corresponding node was both challenged (thus its tag must exist in the tag

vector) and is on the proof path of another challenged node; therefore, its after

neighbor is also included in the proof vector. We compute the corresponding

hash value using the corresponding tag from the tag vector and the previously

44 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

calculated hash value (hash of w6 for c3).

• If a proof node is marked as intersection but not end (e.g., w5 and w3), this

means the node was not challenged but both its after and below are included

in the proof vector. Hence, we compute the corresponding hash value using the

previously calculated two hash values (the hash values calculated for c2 and for

c3, respectively, are used for w5, and the hash values calculated for c1 and for

w4, respectively, are used for w3).

• If none of the above is satisfied, this means a proof node has only rgtOrDwn =

dwn (e.g., w4 and w1), meaning the below neighbor of the node is included in

the proof vector. Therefore we compute the corresponding hash value using the

previously calculated hash value (hash of w5 is used for w4, and hash of w2 is

used for w1) and the hash value stored in the corresponding proof node.

We treat the proof vector (Figure 4.4) as a stack and do necessary calculations as

discussed above. The calculation of hashes is done in the reverse order of the proof

generation in genMultiProof algorithm. Therefore, we perform the calculations in

the following order: c4, c6, c3, c2, w5, . . . until the hash value for the root (the last

element in the stack) is computed. Observe that to compute the hash value for w5,

the hash values for c3 and c2 are needed, and this reverse (top-down) ordering always

satisfies these dependencies. Finally, we compute the corresponding hash values for

w2 and w1. When the hash for the last proof node of the proof path is calculated,

it is compared with the meta data that the client possesses (in line 22 of Algorithm

4.2.2).

The check above makes sure that the nodes, whose proofs were sent, are indeed in

the FlexList that correspond to the meta data stored at the client. But the client also

has to make sure that the server indeed proved storage of data that she challenged.

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 45

Algorithm 4.2.2: verifyMultiProof Algorithm
Input: C, P , T , MetaData
Output: accept or reject

Let P = (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj ,
isEndj , lengthj) for j = 0, . . . , k; T = (tag0, . . . , tagn), where tagm = tag
for challenged blockm for m = 0, . . . , n;
start = n; end = n; t = n; V = 0; hash = 0; hashprev = 0; startTemp = 0; th and1

ti are empty stacks
// Process each proof node from the end to calculate hash of the root
and indices of the challenged blocks
for j = k to 0 do2

if isEndj and isInterj then3
hash = hash(levelj , rj , tagt,hashprev, lengthj); decrement(t)4

updateRankSum(lengthj , V , start, end); decrement(start) // Update5
index values of challenged blocks on the leaf level of current
part of the proof path

else if isEndj then6
if t 6= n then7

hashprev is added to th8

(start, end) is added to ti9

decrement(start); end = start10

hash = hash(levelj , rj , tagt,hashj , lengthj); decrement(t)11

else if isInterj then12
(startTemp,end) = ti.pop()13

updateRankSum(rprev, V , startTemp,end) // Last stored indices of14
challenged block are updated to rank state of the current
intersection
hash = hash(levelj , rj , hashprev, th.pop())15

else if rgtOrDwnj = rgt or levelj = 0 then16
hash = hash(levelj ,rj ,hashj ,hashprev)17

updateRankSum(rj− rprev, V , start, end) // Update indices of18
challenged blocks, which are on the current part of the proof
path

else19
hash = hash(levelj , rj , hashprev, hashj)20

hashprev = hash; rprev = rj21

//endnodes is a vector of proof nodes marked as End in the order of
appearance in P
if ∀a, 0 ≤ a ≤ n , 0 ≤ Ca −Va < endnodesn−a.length OR hash 6= MetaData22

then
return reject23

return accept24

The server may have lost those blocks but may instead be proving storage of some

other blocks at different indices. To prevent this, the verify challenge vector, which

contains the start indices of the challenged nodes (150, 300, 450, and 460 in our

example), is generated by the rank values included in the proof vector (in lines 5, 9,

10, 13, 14, and 18 of Algorithm 4.2.2). With the start indices and the lengths of the

46 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

challenged nodes given, we check if each challenged index is included in a node that

the proof is generated for (as shown in line 22 of Algorithm 4.2.2). For instance, we

know that we challenged index 170, c1 starts from 150 and is of length 80. We check

if 0 ≤ 170− 150 < 80. Such a check is performed for each challenged index and each

proof node with an end mark.

4.3 Verifiable Variable-size Updates

The main purpose of the insert, remove, and modify operations (update operations) of

our FlexList being employed in the cloud setting is that we want the update operations

to be verifiable. The purpose of the following algorithms is to verify the update

operation and compute new meta data to be stored at the client through the proof

sent by the server.

4.3.1 Update Execution

performUpdate is run at the server side upon receipt of an update request to the

index i from the client. We consider it to have three parts: proveModify, proveInsert,

proveRemove. The server runs genMultiProof algorithm to acquire a proof vector in

a way that it covers the nodes which may get affected from the update. For a modify

operation the modified index (i), for an insert operation the left neighbor of the insert

position (i-1), and for a remove operation the left neighbor of the remove position

and the node at the remove position (i-1, i) are to be used as challenged indices for

genMultiProof Algorithm. Then the server performs the update operation as it is

using the regular FlexList algorithms, and sends the new meta data to the client.

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 47

4.3.2 Update Verification

The algorithm verifyUpdate of the DPDP model, in our construction, not only updates

her meta data but also verifies if it is correctly updated at the server by checking

whether or not the calculated meta data and the received one are equal. It makes use

of one of the following three algorithms due to the nature of the update, at the client

side.

Algorithm 4.3.1: verifyModify Algorithm
Input: C, P , T , tag, data, MetaData, MetaDatabyServer

Output: accept or reject, MetaData ′

Let C= (i0) where i0 is the modified index; P = (A0, . . . , Ak), where
Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for
j = 0, . . . , k; T = (tag0), where tag0 is tag for block0 before
modification; P, T are the proof and tag before the modification;
tag and data are the new tag and data of the modified block
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject;2

else3

i = size(P) - 14

hash = hash(Ai.level, Ai.rank - Ai.length + data.length, tag, Ai.hash,5

data.length)
// Calculate hash values until the root of the Flexlist
MetaDatanew = calculateRemainingHashes(i-1, hash, data.length - Ai.length,6

P)
if MetaDatabyServer = MetaDatanew then7

Metadata = MetaDatanew8

return accept9

else10
return reject11

verifyModify (Algorithm 4.3.1) is run at the client to approve the modification. The

client alters the last element of the received proof vector and calculates temp meta

data accordingly. Later she checks if the new meta data provided by the server is

equal to the one that the client has calculated. If they are the same, then modification

is accepted, otherwise rejected.

verifyInsert (Algorithm 4.3.2) is run to verify the correct insertion of a new block

to the FlexList, using the proof vector and the new meta data sent by the server. It

calculates the temp meta data using the proof P as if the new node has been inserted

in it. The inputs are the challenged block index, a proof, the tags, and the new block

48 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

information. The output is accept if the temp root calculated is equal to the meta

data sent by the server, otherwise reject.

Algorithm 4.3.2: verifyInsert Algorithm
Input: C, P , T , tag, data, level, MetaData, MetaDatabyServer

Output: accept or reject, MetaData ′

Let C= (i0) where i0 is the index of the left neighbor; P
= (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj ,
isEndj , lengthj) for j = 0, . . . , k; T = (tag0) where tag0 is for precedent
node of newly inserted node; P, T are the proof and tag before the
insertion; tag, data and level are the new tag, data and level of the
inserted block
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject;2

else3

i = size(P) - 1; rank = Ai.length; rankTower = Ai.rank - Ai.length +4

data.length
hashTower = hash(0, rankTower, tag, Ai.hash, data.length)5

if level 6= 0 then6

hash = hash(0, Ai.length, tag0, 0);7

decrement(i)8

while Ai.level 6= level or (Ai.level = level and Ai.rgtOrDwn = dwn) do9

if Ai.rgtOrDwn = rgt then10

rank += Ai.rank - Ai+1.rank11

// Ai.length is added to hash calculation if Ai.level = 0
hash = hash(Ai.level, rank, Ai.hash, hash)12

else13

rankTower += Ai.rank - Ai+1.rank14

hashTower = hash(Ai.level, rankTower, hashTower, Ai.hash)15

decrement(i)16

hash = hash(level, rank + rankTower, hash, hashTower)17

MetaDatanew = calculateRemainingHashes(i, hash, data.length, P)18

if MetaDatabyServer = MetaDatanew then19
MetaData = MetaDatanew20

return accept21

return reject22

The algorithm is explained using Figure 4.5 as an example where a verifiable insert

at index 450 occurs. The algorithm starts with the computation of the hash values

for the proof node n3 as hashTower at line 5 and v2 as hash at line 7. Then the loop

handles all proof nodes until the intersection point of the newly inserted node n3 and

the precedent node v2. In the loop, the first iteration calculates the hash value for

v1 as hash. The second iteration yields a new hashTower using the proof node for

d2. The same happens for the third iteration but using the proof node for d1. Then

the hash value for the proof node c3 is calculated as hash, and the same operation is

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 49

done for c2. The hash value for the proof node m1 (intersection point) is computed

by taking hash and hashTower. Following this, the algorithm calculates all remaining

hash values until the root. The last hash value computed is the hash of the root,

which is the temp meta data. If the server’s meta data for the updated FlexList is

the same as the newly computed temp meta data, then the meta data stored at the

client is updated with this new version.

Figure 4.5: Verifiable insert example.

verifyRemove (Algorithm 4.3.3) is run to verify the correct removal of a block in

the FlexList, using the proof and the new meta data by the server. Proof vector P

is generated for the left neighbor and the node to be deleted. It calculates the temp

meta data using the proof P as if the node has been removed. The inputs are the

proof, a tag, and the new block information. The output is accept if the temp root

calculated is equal to the meta data from the server, otherwise reject.

50 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

Algorithm 4.3.3: verifyRemove Algorithm
Input: C, P , T , MetaData, MetaDatabyServer

Output: accept or reject, MetaData ′

Let C= (i0, i1) where i0, i1 are the index of the left neighbor and the
removed index respectively; P = (A0, . . . , Ak), where Aj = (levelj , rj ,
hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for j = 0, . . . , k; T
= (tag0, tag1) where tag1 is tag value for deleted node and tag0 is for
its precedent node ; P, T are the proof and tags before the removal;

if !VerifyMultiProof(C, P , T , MetaData) then1
return reject2

else3

dn = size(P) - 1; i = size(P) - 2; last = dn4

while !Ai.isEnd do5

decrement(i)6

rank = Adn.rank; hash = hash(0, rank, tag0, Adn.hash, Adn.length)7

decrement(dn)8

if !Adn.isEnd or !Ai.isInter then9

decrement(i)10

while !Adn.isEnd or !Ai.isInter do11

if Ai.level < Adn.level or Adn.isEnd then12

rank += Ai.rank - Ai+1.rank13

// Ai.length is added to hash calculation if Ai.level = 0
hash = hash(Ai.level, rank, Ai.hash, hash)14

decrement(i)15

else16

rank += Adn.rank - Adn+1.rank17

hash = hash(Adn.level, rank, hash, Adn.hash)18

decrement(dn)19

decrement(i)20

MetaDatanew = calculateRemainingHashes(i, hash, Alast.length, P)21

if MetaDatabyServer = MetaDatanew then22
MetaData = MetaDatanew23

return accept24

return reject25

Figure 4.6: Verifiable remove example.

The algorithm will be discussed through the example in Figure 4.6, where a ver-

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 51

ifiable remove occurs at index 450. The algorithm starts by placing iterators i and

dn at the position of v2 (line 6) and d4 (line 4), respectively. At line 7, the hash

value (hash) for the node v2 is computed using the hash information at d4. dn is

then updated to point at node d3 at line 8. The loop is used to calculate the hash

values for the newly added nodes in the FlexList using the hash information in the

proof nodes of the deleted nodes. The hash value for v1 is computed by using hash

in the first iteration. The second and third iterations of the loop calculate the hash

values for m2 and m1 by using hash values stored at the proof nodes of d3 and d2

respectively. Then the hash calculation is done for c3 by using the hash of m1. After

the hash of c2 is computed using the hash of c3, the algorithm calculates the hashes

until the root. The hash of the root is the temp meta data. If the server’s meta data

for the updated FlexList is verified using the newly computed temp meta data, then

the meta data stored at the client is updated with this new version.

4.4 Performance Analysis

Proof Generation Performance : Figure 4.7 shows the server proof generation

time for FlexDPDP as a function of the block size by fixing the file size to 16MB,

160MB, and 1600MB. As shown in the figure, with the increase in block size, the

time required for the proof generation increases, since with a higher block size, the

block sum generation takes more time. Interestingly though, with extremely small

block sizes, the number of nodes in the FlexList become so large that it dominates

the proof generation time. Since 2KB block size worked best for various file sizes, our

other tests employ 2KB blocks. These 2KB blocks are kept on the hard disk drive,

on the other hand the FlexList nodes are much smaller and subject to be kept in

RAM. While we observed that buildFlexList algorithm runs faster with bigger block

sizes (since there will be fewer blocks), the creation of a FlexList happens only once.

52 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

256 512 1024 2048 4096 8192 16384 32768 65536 131072
0

50

100

150

200

250

Block Size [Bytes]

S
er

ve
r

T
im

e
[m

s]

16 MB File
160 MB File
1600 MB File

Figure 4.7: Server time for 460 random challenges as a function of block size for
various file sizes.

On the other hand, the proof generation algorithm runs periodically depending on

the client, therefore we chose to optimize for its running time.

The performance of our optimized implementation of the proof generation mech-

anism is evaluated in terms of communication and computation. We take into con-

sideration the case where the client wishes to detect with more than 99% probability

if more than a 1% of her 1GB data is corrupted by challenging 460 blocks; the same

scenario as in PDP and DPDP [Ateniese et al., 2007, Erway et al., 2009]. In our ex-

periment, we used a FlexList with 500,000 nodes, where the block size is 2KB.

In Figure 4.8 we plot the ratio of the unoptimized proofs over our optimized

proofs in terms of the FlexList proof size and computation, as a function of the

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 53

50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

Number of challenges

R
at

io

Total Gain (Time)
Total Gain (Size)
FlexList Gain (Time)
FlexList Gain (Size)

Figure 4.8: Performance gain graph ([460 single proof / 1 multi proof] for 460 chal-
lenges).

number of challenged nodes. The unoptimized proofs correspond to proving each block

separately, instead of using our genMultiProof algorithm for all of them at once. Our

multi-proof optimization results in 40% computation and 50% communication

gains for FlexList proofs. This corresponds to FlexList proofs being up to 1.75 times

as fast and 2 times as small.

We also measure the gain in the total size of a FlexDPDP proof and com-

putation done by the server in Figure 4.8. With our optimizations, we clearly see

a gain of about 35% and 40% for the overall computation and communica-

tion, respectively, corresponding to proofs being up to 1.60 times as fast and 1.75

times as small. The whole proof roughly consists of 213KB FlexList proof, 57KB

54 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

of tags, and 2KB of block sum. Thus, for 460 challenges as suggested by PDP and

DPDP [Ateniese et al., 2007, Erway et al., 2009], we obtain a decrease in total proof

size from 485KB to 272KB, and the computation is reduced from 19ms to

12.5ms by employing our genMultiProof algorithm. We could have employed gzip

to eliminate duplicates in the proof, but it does not perfectly handle the duplicates

and our algorithm also provide computation (proof generation and verification) time

optimization as well. Compression is still beneficial when applied on our optimal

proof.

2*10^3 2*10^4 2*10^5 2*10^6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Number of blocks

R
at

io

Time Ratio Constant
Time Ratio Proportional

Figure 4.9: Time ratio on genMultiProof algorithm.

Furthermore, we tested the performance of genMultiProof algorithm in terms of

time efficiency. The time ratio graph for the genMultiProof algorithm is shown in

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 55

Figure 4.9. We have tested the algorithm in different file size scenarios, starting a

file size from 4MB to 4GB (where block size is 2KB, and thus the number of blocks

increase with the file size). In constant scenario we applied the same challenge size

of 460. Our results showed a relative decline in the performance of the genMultiProof

as the number of blocks in the FlexList increases. This is caused by the number of

challenges being constant. Because as the number of blocks in the FlexList grows, the

number of repeated proof nodes in the proof decreases. In proportional scenario, we

have the time ratio for 5, 46 and 460 challenges for the block number of 20000, 200000

and 2000000 respectively. The graph shows a relative incline in the performance of

genMultiProof for the proportional number of challenges to the number of blocks in a

file. The algorithm has a clear efficiency gain in the computation time in comparison

to the generating each proof individually.

Provable Update Performance: In FlexDPDP, we have optimized algorithms

for verifiable update operations. The results for the basic functions of the FlexList

(insert,modify, remove) against their verifiable versions are shown in Figure 4.10.

The regular insert method takes more time than any other method, since it needs

extra time for the memory allocations and I/O delay. The remove method takes

less time than the modify method, because there is no I/O delay and at the end

of the remove algorithm there are less nodes that need recalculation of the hash

and rank values. As expected, the complexity of the FlexList operations increase

logarithmically. The verifiable versions of the functions require an average overhead

of 0.05 ms for a single run. For a single verifiable insert, the server needs less

than 0.4ms to produce a proof in a FlexList with 2 million blocks (corresponding

to a 4GB file). These results show that the verifiable versions of the updates can be

employed with only little overhead.

56 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

2*10^1 2*10^2 2*10^3 2*10^4 2*10^5 2*10^6
0

0.1

0.2

0.3

0.4

0.5

Number of blocks

T
im

e
[m

s]

Insert
Verifiable Insert
Modify
Verifiable Modify
Remove
Verifiable Remove

Figure 4.10: Performance evaluation of FlexList methods and their verifiable versions.

4.5 Energy-Efficiency Analysis

For energy efficiency tests (Figure 4.11 and 4.12), we used Watts up Pro meter. It

measures the total energy consumption of the connected device. We conducted the

tests and took their energy consumption measurements. Then, we measured the

average energy cost for the idle time when no tests were taking place. The difference

between these two measurements were used in the calculation of the results. Energy

consumption and time (CPU) gain results are close for both graphs. For the energy

efficiency tests we do not take I/O delay into account. Therefore, we argue that

energy efficiency of our algorithms is directly impacted by the CPU usage time of

them. Therefore, our algorithms that optimize operations in the FlexList creation

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 57

and multi-challenge proof generation are efficient in terms of both time and energy.

2*10^2 2*10^3 2*10^4 2*10^5 2*10^6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of blocks

R
at

io

Energy Ratio
Time Ratio

Figure 4.11: Time and energy ratios on buildFlexList algorithm against insertions.

We presented a novel algorithm for the efficient building of a FlexList. Figure 3.9

demonstrates energy consumption and time ratios between the buildFlexList algo-

rithm and building FlexList by means of insertion (in sorted order). The time ratio is

calculated by dividing the time spent for the building FlexList using insertion method

by the time needed by the buildFlexList algorithm. The same ratio equation is applied

to the energy consumption ratio calculation. In our energy-time ratio experiments,

we do not take into account the disk access time; therefore there is no delay for I/O

switching. The energy and time ratio values are close to each other because of the

same reason: the more time, the algorithm executes, the more energy is spent.

58 Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession

2*10^3 2*10^4 2*10^5 2*10^6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

Number of blocks

R
at

io

Energy Ratio Constant
Time Ratio Constant
Energy Ratio Proportional
Time Ratio Proportional

Figure 4.12: Time and energy ratios on genMultiProof algorithm.

Furthermore, we tested the performance of genMultiProof algorithm in terms of

energy efficiency [Kachkeev et al., 2013]. The time and energy ratio graph for the

genMultiProof algorithm is shown in Figure 4.9. We have tested the algorithm in

different file size scenarios, starting a file size from 4MB to 4GB (where block size is

2KB, and thus the number of blocks increase with the file size). In constant scenario

we applied the same challenge size of 460. Our results showed a relative decline in the

performance of the genMultiProof as the number of blocks in the FlexList increases.

This is caused by the number of challenges being constant. Because as the number

of blocks in the FlexList grows, the number of repeated proof nodes in the proof

decreases. In proportional scenario, we have the time and energy ratio for 5, 46 and

Chapter 4: FlexDPDP: Flexible Dynamic Provable Data Possession 59

460 challenges for the block number of 20000, 200000 and 2000000 respectively.

Chapter 5

INTERLOCAL: INTEGRITY AND REPLICATION

GUARANTEED LOCALITY-BASED PEER-TO-PEER

STORAGE SYSTEM

In this chapter, we propose a novel locality-based peer-to-peer storage system

with integrity and replication guarantees called InterLocal. First, preliminaries such

as a skip graph and landmark multidimensional scaling (LMDS) are discussed. Then,

locality-based skip graph with search algorithm employing membership vectors is

presented. Finally, the replication mechanism that places client’s files to the physically

closest neighbor is presented.

5.1 Skip Graph

Figure 5.1: An example of a skip graph.

Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer
Storage System 61

In this section, we give a short description of skip graph, which is a backbone of

the InterLocal. Skip graph [Aspnes, 2003] (Figure 5.1) consists of sparse and sorted

doubly-linked lists divided by levels, with starting level at 0. On level 0, all nodes

are connected in a sequence. Skip graph can be viewed as distributed version of skip

lists [Pugh, 1990b]. The difference between them is that the skip graph may have

many lists at level i, and each node participates only in one of them, until the nodes

are divided into singletons after O(logn) levels on average, where n is the number of

nodes. A skip graph supports regular DHT operations, such as put and get, as well as

skip list operations like search, insert and delete. An operation get(x) is done using

numerical ID on a skip graph on a set K of keys is returning the greatest key x’ ∈ K

such that x’ ≤ x. Another value stored at each node is name ID called membership

vector of the node. Membership of a given key y ∈ set K’ of keys in the list at some

level i is determined by the first i bits in the possibly infinite sequence of random

bits related to y, which is called membership vector of y as denoted as m(y). The

first i bits of the membership vector m(y) is therefore denoted by m(y)|i. Two keys y

and y’ appear in the same list at level i if and only if their first i bits of membership

vectors m(y) and m(y′) are identical i.e. m(y)|i = m(y′)|i [Aspnes, 2003].

There are two possible ways to search in a skip graph. It can be done by searching

using numerical ID and name ID. Regular get(x) operation as in all popular DHT

systems is done employing numerical ID. The search algorithm initially starts from the

top level of the node received request, then at every other node it continues passing

request to the next neighbor with the closest key. If the received key x is greater than

its own key then it checks for the neighbor with key k such that k ≤ x. The node

checks for appropriate neighbors at level i if no found checks at level below, as soon

as an appropriate neighbor is found, the request is continued at that node. At the

level 0 when the node with the request has no node to send the request, it sends a

reply to the owner of the request pointing itself as the searched node. An example of

62
Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer

Storage System

Figure 5.2: An example of search algorithm using numerical ID.

search algorithm is shown in Figure 5.2. The numerical ID (key x) given as input is

86. The key of the node received the request is 28. Since 28 is less than 86 we check

right neighbors for the keys less than 86. We find it at the level 1 with the key 39.

Then we check its right neighbors as well and move to the node with the key 73 at

the same level 1. Lastly, we see that the right neighbor at the level 0 has key less or

equal to our searched key x. We pass the request to that node, and that node replies

to the request owner.

Another search algorithm uses the name ID (membership vector) and initially

starts from the level 0 (bottom of a skip graph). As an input algorithm receives a

name ID. The idea of the search is to find the node which has the biggest common

prefix in name ID with the given one. The node received request checks its first i bits

of the membership vector at level i (m(x)|i) with its right or left neighbors. If at least

one of them has i same prefix bits as m(x), then the node makes the same operation

at the level i+1. Otherwise it forwards the reguest to one of the neighbors (cannot

send to the neighbor it received request from). Then the neighbor continues from the

same level i, and searches for appropriate neighbors. The node which gets to the top

Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer
Storage System 63

level, sends a reply to the owner of the request.

5.2 Landmark Multidimensional Scaling

Multidimensional scaling (MDS) is a set of techniques for data analysis where the

structure of distance-like data is displayed as a geometrical picture [Wang, 2011].

There are different types of MDS, however the original and best-known approach is

classical MDS. In a classical MDS there is one similarity matrix and the Euclidean

distance applied to calculate the similarities. It is based on an efficient matrix algo-

rithm that finds a Euclidean embedding which exactly preserves the metric given on

the input data. The complexity of the algorithm is approximately O(kN2), where N

is the number of data points and k is the dimension of the embedding [Wang, 2011].

However, when the number of the points becomes too large, the run of the algorithm

becomes too expensive as well. Therefore, in InterLocal we employ Landmark Multi-

dimensional Scaling (LMDS) [de Silva and Tenenbaum, 2004], which require a set of

landmark points and their distance matrix. In the distance matrix we put the average

latency values between the landmark nodes and the other nodes. Assume that we

are given a set of N nodes and we want to embed them in the Euclidean space Rk.

Landmark MDS consists of the following steps [de Silva and Tenenbaum, 2004] :

1. Define a set of n landmark nodes

2. Employ classical MDS to compute k x n matrix L which represents an embedding

of the n landmark nodes in Rk. n x n distance matrix Dn should be used as an

input.

3. Distance-based triangulation should be applied to find a k x N matrix X repre-

senting an embedding of the N nodes in Rk. An input to that calculation is the

n x N matrix Dn,N of latencies between landmark nodes and other nodes. The

new computer coordinates are derived from the squared distances by an affine

64
Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer

Storage System

linear transformation

5.3 InterLocal construction

InterLocal is a locality-based peer-to-peer storage system with integrity and replica-

tion guarantees. The core part of the system is a locality-based skip graph, which

enables efficient and local placement of replicas and as well as content retrieval (search)

operation. The replication mechanism plays pivotal role in the client’s efficient access

to the files. File operations are the basic methods that are performed as a new file is

received, a proof of possession is requested or a file update is sent.

5.3.1 Locality-based skip graph

Locality-based skip graph construction consists of two phases of construction as in

Figure 5.3. First phase starts with the selection of n landmark nodes. Afterwards,

each of the chosen nodes measures latency values (l1, l2, l3) to every other landmark

node, all combining to the distance matrix n x n. We employ classical MDS algorithm

as in [Wang, 2011] to receive a 1 x n matrix with locality information for each of

the landmark nodes. Then, we build a skip graph using the locality information as

membership vectors for the nodes. Second phase starts with a new node joining the

system as in Figure 5.3. The new node measures latencies (l4, l5, l6) to the landmark

nodes and prepares 1 x n distance matrix. Then node uses LDMS algorithm to

compute its own relative locality information in order to join the skip graph.

To visualize our locality-based skip graph, we present a map of peers and their

locality information in Figure 5.4. We use locality information of these peers and

build a locality-based skip graph, where some of the peers are landmark nodes. To

use these locality information in a skip graph, we transform them to bits as shown

in Figure 5.4. Obviously, peers that are further away from each other have a larger

Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer
Storage System 65

Figure 5.3: A node joining a distributed system using LMDS.

difference between their numbers.

5.3.2 Search in a locality-based skip graph

Algorithm 5.3.1: Search by nameID Algorithm
Input: givenNameID, length, dir, checkbit, startNode
Output:

while length < max + 1 do1
if m(givenNameID)|length 6= m(this.nameID)|length then2

decrement(length)3
exit4

increment(length)5

if this.neighbors[dir][length] 6= NULL then6
send to this.neighbors[dir][length] SearchByName (givenNameID, length, dir,7

checkbit, startNode)
else if checkbit is true then8

checkbit set to false9

send to this.neighbors[!dir][length] SearchByName (givenNameID, length, dir,10

checkbit, startNode)
else11

send to startNode FoundByName (this.nameID, length, dir, checkbit,12

this.address)

Search is one of the most basic and crucial operations in peer-to-peer system.

66
Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer

Storage System

Figure 5.4: A map with the location information of peers.

Search by name id was first mentioned as an idea to find neighbors for a random skip

graph [Aspnes, 2003]. In InterLocal, we have a search by name id algorithm, which

performs search using membership vectors (name ids). An input to the algorithm are

a name id, length of common bits, direction dir, bit for changing direction checkbit

and address of the initiator of the search as startNode. As an output, information

for the node with the most common bits is sent to the initiator. A sample search is

presented in Figure 5.3.1 to give a more detailed explanation of this operation. The

search can start from any node, in our case it started from node with the name id

= 1110 (14) and the given name id = 0100 (4). Since even the first bits of these

two membership vectors are not equal, we send the request right (direction) neighbor

Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer
Storage System 67

with name id = 0111 since it has longer common prefix than the left neighbor. Then,

we compare the membership vector of that node with the given name id and we have

first two bits in common, so we check neighbor at level 2. We have only one neighbor

at left with name id = 0101, and we transfer the request to it and changing checkbit

to false, because we have to change the direction of the search from right to left. The

next neighbor its name id with the given name id and also sends it to its left neighbor

with name id = 0100. And it occurs to be the searched node with the given name

equal to its name id, and it replies to the initiator by sending its information. If we

look at the map in Figure 5.4 and connect nodes on the search path(14, 7, 5, 4), then

we see transitions from neighbor to neighbor. The idea of the search by name id is to

follow the efficient path to the searched locality.

Figure 5.5: A locality-based skip graph.

68
Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer

Storage System

5.3.3 File operations

File upload

Once a LMDS skip graph is built, clients can upload their files to the system. A client

wants to place a file to the physically close neighbor but before that the client has

to compute its own membership vector by getting the locality information. Then, we

employ the search by name ID (membership vector) to find an appropriate peer. The

peer, which receives a file from the client, becomes the main replica holder.

Proof of possession

The client already uploaded a file and wishes to check the data integrity of her file.

Each node having a replica of a file also stores a FlexList for that file in memory

(a FlexList is relatively small). So when a client sends a request for the proof of

possession, any replica holder receiving the request can process it and send the proof

of possession.

File update

In case of updates, the client prepares the update it wants to be applied at all replicas

of the file and sends it using membership vector information to the nearest replica

holder. The update is delivered to the main replica holder, which processes and applies

update to its FlexList and the file. Afterwards, it sends the update to a subset of

replicas in the system and the updates are slowly propagated to all replicas.

5.3.4 Locality-based Replication

Replication of the data items is crucial mechanism in InterLocal. Since our locality-

based skip graph structure produces the advantage of finding physically closest neigh-

bors, the replication of data items should be done near the client. The replication

Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer
Storage System 69

system gives the client opportunity to send, replicate and update the data with the

minimal network communication and time consumption.

Replica creation

The client initially uploads a file to one of the peers, which becomes a main replica

holder. The duties of the main replica holder include the control over the total number

of replicas for the particular file, the peer selection for new replicas, the selection of

backup peers and the maintenance of replica management mechanism. Upon the

receipt of a file, the main replica holder makes a selection between its neighbors for

appropriate replica holders. It starts from top level, if a neighbor has enough free

space above the storage threshold then it stores a new replica. The main replica

holder starts from the top level, since the closest neighbors are connected from the

higher levels due the connections based on the membership vectors. The number of

replicas for a file depends on the availability churns of the nodes.

Backup peers

Replica placement according to the client’s position is advantageous. However, we

cannot place all replicas near the client since the availability of the peers in the system

is subject to alterations and natural disasters may cause even small cities to loose

power or internet connection. Therefore, a backup mechanism should be introduced.

A backup mechanism consists of several peers that reside at some distance from the

client in case if the client looses its neighbors. In a trivial implementation of a such

backup mechanism, extra replicas are placed according to the hash value of file name.

In case of malfunctioning of the replica holders, these backup peers will not only

replicate data items to the nearest position to the client but also perform the regular

file operations (upload, update). As soon as some of the neighbors of the client get

the file replica, the neighbors take over all the work with the client. The backup peers

70
Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer

Storage System

perform the maintenance among all replica peers, checking whether some peers left

the system and if so new replicas should be introduced. Moreover, the number of

backup peers directly depends on the churn of the network peers.

Replica maintenance

Due to the nature of peer-to-peer systems, nodes leave and join the system constantly.

Therefore, a peer leaving the system should be noticed and its duties should be

delegated to another peer. For each file, there are entities like main replica holder,

replica holders and backup peers. Each entity has a list and periodically sends a short

message to one of the peers in the list, which is chosen completely randomly. If a

main replica holder for a file leaves the system, then the replica holder with the closest

membership vector to it becomes new main replica holder. In case if all replica holders

leave simultaneously, the backup peers recreate the replica holders at the peers with

the closest position to the client. On the other hand, if the backup peers leave the

system, then the replica holders delegate their duties to the other nodes. Algorithm

5.3.2 shows the steps taken during a maintenance. It takes List of peers having replica

of the file and file as an input. It basically checks a part of List for a liveness, and if

needed creates new replicas or delegates replication to the nodes with the same type.

There are two helper methods called FindNewHolder and DelegateReplication. The

first one performs a search and places a replica, the second one delegates the replica

placement to another node, which searches and places replica.

Chapter 5: InterLocal: Integrity and Replication Guaranteed Locality-based Peer-to-Peer
Storage System 71

Algorithm 5.3.2: Replica Maintenance Algorithm
Input: List, file
Output:

counter = 0 and iter = size(List) * p1
p is the size of maintenance
while counter < iter do2

peer = random from 0 to size(List)3

if List[peer] is not alive then4
if List[peer].type == this.type then5

FindNewHolder (List, file, List[peer]);6

else7
send to node in List with same type DelegateReplication (List, file,8

List[peer]);
increment(counter)9

Chapter 6

PERFORMANCE ANALYSIS ON THE PLANETLAB

In this chapter, we present the experimental analysis for InterLocal and a regular

skip graph based storage system. First, the evaluation of the basic skip graph func-

tions for both systems is given. Then, the results for provable integrity operations

such as proof of possession and update are discussed. Lastly, the analysis of replica-

tion mechanism for both systems under scenario where nodes are gradually leaving

the system is presented.

6.1 Evaluation settings

We have developed and deployed the implementations of both a skip graph and FlexD-

PDP on the real-world peer-to-peer test-bed PlanetLab. Both implementations are

done in C++, we have employed Cashlib as a main library [Brownie Points Project, ,

Meiklejohn et al., 2010] and Asio library [Boost C++ Libraries,] for the network

communication protocols. Security parameters for FlexDPDP are 1024-bit RSA mod-

ulus, 80-bit random numbers, and SHA-1 hash function, overall resulting in an ex-

pected security of 80-bits. In all tests, blocks are stored separately on the hard disk

and therefore we include I/O access time. Moreover, the size of a Flexlist is small

enough to keep it in RAM. In our experiments we used a skip graph of size from 40

to 50 nodes. The number of landmark nodes is 8. All our results are the average of

10 runs.

Chapter 6: Performance Analysis on the PlanetLab 73

6.2 Evaluation of the Skip Graph Operations

In our tests, we implemented two systems based on a skip graph. First system is a

regular skip graph with the random membership vectors. Second one is our system

with locality information according to the physical position of the nodes (InterLocal).

We have tested these two implementations for variety of scenarios. Our main purpose

is to observe a substantial efficiency of InterLocal over a system based on regular skip

graph. Therefore, experiments include measurements on different storage related

operations like search, upload, proof receipt, update.

10 20 30 40
0

100

200

300

400

500

600

700

800

900

1000

Number of nodes in skip graph

T
im

e
(m

s)

Search random node in InterLocal
Search physically close node in InterLocal
Search random node in a skip graph
Search physically close node a skip graph

Figure 6.1: Search in a skip graph based system and InterLocal.

Search is a basic operation used in the most distributed systems. We tested

search algorithm according to the physical positions of the nodes in a skip graph.

The selection of peers and the searched peers are the same in both systems. So we

wanted to test them in the same environment. There are two main test cases: search

for a random node and search for a physically close node. In case of random node it

is trivial, in other case we are looking for the node which is physically near the node,

74 Chapter 6: Performance Analysis on the PlanetLab

which starts the search operation. For an example in a skip graph of size 40, our

solution yields a search result for physically close node in approximately 450 ms.

The random skip graph with the same size spends around 750 ms to get the search

result. Moreover, the search for random nodes performed better than random search.

Since in the random search, request may be sent from one corner of the system to the

other and back again. It is caused by the random connections of the neighbor nodes.

In our case, the connections are based on the locality information therefore at high

levels (depends on the skip graph size) the request will be passed to relatively close

nodes.

2 20 200 2000

3

30

300

3000

Size of a file (Mb)

T
im

e
(s

)

Upload time in InterLocal
Upload time in a regular skip graph based solution

Figure 6.2: Time measurement on upload times for a regular skip graph based solution
and InterLocal.

The upload time plays crucial role in the client’s network communication, since the

upload may take most of the time and power from the client’s resources. For upload

time measurement we employed file sizes of 2, 20, 200 and 2000 Mb for the realistic

scenario. As the result we received time measurements for both systems, from the

Figure 6.2 we observe that for a file upload InterLocal outperforms the solution with

Chapter 6: Performance Analysis on the PlanetLab 75

a regular skip graph. For an example, for a file upload of size 2000 Mb a client in

our system requires around 1500 seconds. Client in the other system for the same

file needs more than 3500 seconds.

6.3 Evaluation of the Provable Integrity Opera-

tions

2 20 200 2000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Size of a file (Mb)

T
im

e
(m

s)

Proof receipt time in InterLocal
Proof receipt time in a regular skip graph system

Figure 6.3: Time measurement on proof receipt for a regular skip graph based system
and InterLocal.

The client wishes to be convinced that her data is intact at the peers in the system.

Therefore, she periodically challenges (requests proof of possession) replicas to check

data integrity of her files. We tested it for different file sizes, ranging from 2 to 2000

Mb (Figure 6.3). The client in the system using a regular skip graph receives the

proof for the file size of 2000Mb in less then 1200ms. However, our system

based on LMDS delivers the proof receipt to the client in less than 400ms.

Dynamic storage systems provide ability to update the data files. Therefore, the

76 Chapter 6: Performance Analysis on the PlanetLab

2 20 200 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Size of a file (Mb)

T
im

e
(m

s)

Proof receipt for update time in InterLocal
Proof receipt for update time in a regular skip graph based solution

Figure 6.4: Update operation experiment with a fixed update size of 125 Kb.

update operation performance should be analysed as well. The client prepares an

update for her file. In Figure 6.4, we have a constant size of an update of 125 Kb

and file sizes 2, 20, 200, 2000 Mb. We can see that for a fixed sized 125 Kb update

for the file of 2000 Mb, the client waits 1500 ms for an update proof in regular

skip graph based system. In InterLocal, the client receives an update proof in less

than 400 ms. We chose an update size of 125 Kb to show that even if an average

size of an update is 125 Kb, still our system performs well under different file sizes.

The other case is the measurement of the dynamic update sizes of 30, 60, 125, 250

and 500 Kb for the fixed 200 Mb file. An example our locality-based system requires

approximately 750 ms to produce and deliver the proof for an update of size

500 Kb. On the other hand, the system based regular skip graph computes and

transfers the proof in 2250 ms.

Chapter 6: Performance Analysis on the PlanetLab 77

30 60 125 250 500
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Size of an update (Kb)

T
im

e
(m

s)

Proof receipt for update time in InterLocal
Proof receipt for update time in a regular skip graph based system

Figure 6.5: Update operation test with a fixed file size of 200 Mb.

6.4 Evaluation of the Replication Operations

Replication mechanism in InterLocal is based on locality of the peers. The client in

InterLocal wishes to perform file operations like upload, receive proof of possession,

or update in minimized access time. Therefore, replicas of a file should be placed

to physically close neighbors of the client. In our test scenario we have a regular

skip graph based system, InterLocal (60/40) with 60% replicas physically close to

the client (local) and 40% replicas placed according to the hash of the file name

(randomly), and InterLocal (40/60) with 40% locally and 60% randomly. We have

tested the scenarios where the nodes with replicas are gradually leaving the system to

measure degradation of the replication system. For that purpose, we tested systems

with requests for proof of possession receipts. Note that, each system has 13 replicas

and at InterLocal, the nodes with locally placed replicas leave first. Our experiment

results showed that InterLocal (60/40) is 3x faster and InterLocal (40/60) is 2x

faster than a regular skip graph solution. Moreover, a worst case performance for

78 Chapter 6: Performance Analysis on the PlanetLab

0 15 30 45 60 75 90
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

Percentage of disconnected replicas

T
im

e
(m

s)

Proof receipt time in regular skip graph system
Proof receipt time in InterLocal (60/40)
Proof receipt time in InterLocal (40/60)

Figure 6.6: Replication performance when nodes are leaving a system.

both InterLocal systems is equal to that of a regular skip graph based system. A slight

time difference between InterLocal (60/40) and InterLocal (40/60) in the beginning

of the experiment when all replica holders are still alive may be caused by relatively

small size of the skip graph to the replication number.

Chapter 7

CONCLUSIONS

Peer-to-peer storage systems have been developed and enhanced for the past

decade. There are a number of criteria to make storage system adoptable to pub-

lic such as data integrity, possibility of efficient updates and adequate replication

mechanism. However, an efficient data integrity verification scheme requires a good

authenticated data structure. We have checked and researched previous works for

cloud storage based storage systems. Early works have shown that the static solutions

with optimal complexity [Ateniese et al., 2007, Shacham and Waters, 2008], and the

dynamic solutions with logarithmic complexity [Erway et al., 2009] are within reach.

However, a DPDP [Erway et al., 2009] solution is not applicable to real life scenar-

ios since it supports only fixed block size and therefore lacks flexibility on the data

updates, while the real life updates are likely not of constant block size. We have

extended earlier studies in several ways and provided a new data structure (FlexList)

and its optimized implementation for use in the cloud data storage. A FlexList effi-

ciently supports variable block sized dynamic provable updates, and we showed how

to handle multiple proofs and updates at once, greatly improving scalability. Fur-

thermore, we provided a novel algorithm to build FlexList from a scratch. It greatly

reduces time complexity of the FlexList construction. Finally, we evaluate proof

generation and build FlexList algorithms for time, size and energy efficiency.

A DPDP with FlexList is the dynamic provable data possession scheme that we

use in InterLocal, a novel locality-based peer-to-peer storage systems with integrity

and replication guarantees. InterLocal provides a locality-based search capabilities to

80 Chapter 7: Conclusions

efficiently locate data items. Moreover, replication mechanism creates replica of a file

physically near the data owner to minimize response time.

As a future work, we plan to further study parallelism to develop and implement

algorithms for FlexDPDP operations. It can be extended to distributed and replicated

servers for multiple access purpose. One of the other extensions to our work may be

recovery mechanism or backup system for data loss prevention in case if data is

corrupted or erased. In peer-to-peer settings, InterLocal can be further enhanced to

provided load balancing and security measures against malicious nodes.

BIBLIOGRAPHY

[Anagnostopoulos et al., 2001] Anagnostopoulos, A., Goodrich, M. T., and Tamassia,

R. (2001). Persistent authenticated dictionaries and their applications. In ISC.

[Aspnes, 2003] Aspnes, J. (2003). Skip graphs. In in SODA, pages 384–393.

[Ateniese et al., 2007] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L.,

Peterson, Z., and Song, D. (2007). Provable data possession at untrusted stores.

In ACM CCS.

[Ateniese et al., 2009] Ateniese, G., Kamara, S., and Katz, J. (2009). Proofs of stor-

age from homomorphic identification protocols. In ASIACRYPT.

[Ateniese et al., 2008] Ateniese, G., Pietro, R. D., Mancini, L. V., and Tsudik, G.

(2008). Scalable and efficient provable data possession. In SecureComm.

[Battista and Palazzi, 2007] Battista, G. D. and Palazzi, B. (2007). Authenticated

relational tables and authenticated skip lists. In DBSec.

[Blibech and Gabillon, 2005] Blibech, K. and Gabillon, A. (2005). Chronos: an au-

thenticated dictionary based on skip lists for timestamping systems. In SWS.

[Blibech and Gabillon, 2006] Blibech, K. and Gabillon, A. (2006). A new timestamp-

ing scheme based on skip lists. In ICCSA (3).

[Boehm et al., 1995] Boehm, H.-J., Atkinson, R., and Plass, M. (1995). Ropes: an

alternative to strings. Software: Practice and Experience, 25.

[Boost C++ Libraries,] Boost C++ Libraries. Boost asio library.

http://www.boost.org/doc/libs.

[Bowers et al., 2009] Bowers, K. D., Juels, A., and Oprea, A. (2009). Hail: a high-

Bibliography 82

availability and integrity layer for cloud storage. In ACM CCS.

[Brownie Points Project,] Brownie Points Project. Brownie cashlib cryptographic

library. http://github.com/brownie/cashlib.

[Cash et al., 2013] Cash, D., Küpçü, A., and Wichs, D. (2013). Dynamic proofs of

retrievability via oblivious ram. In EUROCRYPT.

[Clarke et al., 2001] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2001).

Freenet: A distributed anonymous information storage and retrieval system. In

International workshop on Designing privacy enhancing technologies: design issues

in anonymity and unobservability, pages 46–66. Springer-Verlag New York, Inc.

[Crosby and Wallach, 2011] Crosby, S. A. and Wallach, D. S. (2011). Authenticated

dictionaries: Real-world costs and trade-offs. ACM TISSEC.

[Curtmola et al., 2008] Curtmola, R., Khan, O., Burns, R., and Ateniese, G. (2008).

Mr-pdp: Multiple-replica provable data possession. In ICDCS.

[Dabek et al., 2001] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica,

I. (2001). Wide-area cooperative storage with cfs.

[de Silva and Tenenbaum, 2004] de Silva, V. and Tenenbaum, J. (2004). Sparse mul-

tidimensional scaling using landmark points. Technical report, Stanford University.

[Dodis et al., 2009] Dodis, Y., Vadhan, S., and Wichs, D. (2009). Proofs of retriev-

ability via hardness amplification. In TCC.

[Druschel and Rowstron, 2001] Druschel, P. and Rowstron, A. (2001). Past: A large-

scale, persistent peer-to-peer storage utility. In In HotOS VIII, pages 75–80.

[Erway et al., 2009] Erway, C., Küpçü, A., Papamanthou, C., and Tamassia, R.

(2009). Dynamic provable data possession. In ACM CCS.

[Esiner et al., 2013] Esiner, E., Kachkeev, A., Küpçü, A., and Özkasap, Ö. (2013).

Flexdpdp: Flexlist-based optimized dynamic provable data possession. Under Sub-

Bibliography 83

mission.

[Etemad and Küpçü, 2013] Etemad, M. and Küpçü, A. (2013). Transparent, dis-

tributed, and replicated dynamic provable data possession. In ACNS.

[Foster, 1973] Foster, C. C. (1973). A generalization of avl trees. Commun. ACM.

[Gnutella,] Gnutella. Gnutella. http://www.gnutelliums.com.

[Goodrich et al., 2007] Goodrich, M. T., Papamanthou, C., and Tamassia, R. (2007).

On the cost of persistence and authentication in skip lists. In Proceedings of the

6th international conference on Experimental algorithms.

[Goodrich et al., 2008] Goodrich, M. T., Papamanthou, C., Tamassia, R., and Trian-

dopoulos, N. (2008). Athos: Efficient authentication of outsourced file systems. In

ISC.

[Goodrich et al., 2009] Goodrich, M. T., Sun, J. Z., Tamassia, R., and Triandopoulos,

N. (2009). Reliable resource searching in p2p networks. In SecureComm, pages 437–

447.

[Goodrich and Tamassia, 2001] Goodrich, M. T. and Tamassia, R. (2001). Efficient

authenticated dictionaries with skip lists and commutative hashing. Technical re-

port, Johns Hopkins Information Security Institute.

[Goodrich et al., 2001] Goodrich, M. T., Tamassia, R., and Schwerin, A. (2001). Im-

plementation of an authenticated dictionary with skip lists and commutative hash-

ing. In DARPA.

[Harvey et al., 2003] Harvey, N. J. A., Jones, M. B., Saroiu, S., Theimer, M., and

Wolman, A. (2003). Skipnet: A scalable overlay network with practical locality

properties.

[Juels and Kaliski., 2007] Juels, A. and Kaliski., B. S. (2007). PORs: Proofs of re-

trievability for large files. In ACM CCS.

Bibliography 84

[Kachkeev et al., 2013] Kachkeev, A., Esiner, E., Küpçü, A., and Özkasap, Ö. (2013).

Energy efficiency in secure and dynamic cloud storage systems. In EE-LSDS.

[Kubiatowicz et al., 2000] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,

Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W.,

Wells, C., and Zhao, B. (2000). Oceanstore: An architecture for global-scale per-

sistent storage. pages 190–201.

[Mager et al.,] Mager, T., Biersack, E., and Michiardi, P. A measurement study of

the wuala on-line storage service. In IEEE P2P 2012, Tarragona, Spain.

[Maniatis and Baker, 2003] Maniatis, P. and Baker, M. (2003). Authenticated

append-only skip lists. Acta Mathematica.

[Martins et al., 2006] Martins, V., Pacitti, E., and Valduriez, P. (2006). Survey of

data replication in P2P systems. Technical report.

[Meiklejohn et al., 2010] Meiklejohn, S., Erway, C., Küpçü, A., Hinkle, T., and

Lysyanskaya, A. (2010). Zkpdl: Enabling efficient implementation of zero-

knowledge proofs and electronic cash. In USENIX Security.

[Merkle, 1987] Merkle, R. (1987). A digital signature based on a conventional en-

cryption function. LNCS.

[napster,] napster. Napster. http://www.napster.com.

[Papamanthou and Tamassia, 2007] Papamanthou, C. and Tamassia, R. (2007).

Time and space efficient algorithms for two-party authenticated data structures.

In ICICS.

[Polivy and Tamassia, 2002] Polivy, D. J. and Tamassia, R. (2002). Authenticating

distributed data using web services and xml signatures. In In Proc. ACM Workshop

on XML Security.

[Pugh, 1990a] Pugh, W. (1990a). A skip list cookbook. Technical report.

Bibliography 85

[Pugh, 1990b] Pugh, W. (1990b). Skip lists: a probabilistic alternative to balanced

trees. Communications of the ACM.

[Ratnasamy et al., 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and

Shenker, S. (2001). A scalable content-addressable network. In IN PROC. ACM

SIGCOMM 2001, pages 161–172.

[Rowstron and Druschel, 2001a] Rowstron, A. and Druschel, P. (2001a). Pastry:

Scalable, distributed object location and routing for large-scale peer-to-peer sys-

tems.

[Rowstron and Druschel, 2001b] Rowstron, A. and Druschel, P. (2001b). Storage

management and caching in past, a large-scale, persistent peer-to-peer storage util-

ity. pages 188–201.

[Saroiu et al., 2002] Saroiu, S., Gummadi, P. K., and Gribble, S. D. (2002). A mea-

surement study of peer-to-peer file sharing systems.

[Shacham and Waters, 2008] Shacham, H. and Waters, B. (2008). Compact proofs of

retrievability. In ASIACRYPT.

[Stanton et al., 2010] Stanton, P. T., McKeown, B., Burns, R. C., and Ateniese, G.

(2010). Fastad: an authenticated directory for billions of objects. SIGOPS Oper.

Syst. Rev.

[Stoica et al., 2001] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Bal-

akrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet

applications. pages 149–160.

[Tamassia and Tri, 2007] Tamassia, R. and Tri, N. (2007). Efficient content authen-

tication in peer-to-peer networks. In Proc. ACNS, pages 354–372.

[Wang, 2011] Wang, J. (2011). Geometric Structure of High-Dimensional Data and

Dimensionality Reduction. Springer.

Bibliography 86

[Wang et al., 2009] Wang, Q., Wang, C., Li, J., Ren, K., and Lou, W. (2009). En-

abling public verifiability and data dynamics for storage security in cloud comput-

ing. In ESORICS.

[Zhang and Blanton, 2013] Zhang, Y. and Blanton, M. (2013). Efficient dynamic

provable data possession of remote data via balanced update trees. ASIA CCS.

[Zhao et al., 2001] Zhao, B. Y., Kubiatowicz, J., Joseph, A. D., Zhao, B. Y., Kubia-

towicz, J., and Joseph, A. D. (2001). Tapestry: An infrastructure for fault-tolerant

wide-area location and routing. Technical report.

[Zheng and Xu, 2011] Zheng, Q. and Xu, S. (2011). Fair and dynamic proofs of

retrievability. In CODASPY.

VITA

Adilet Kachkeev was born in Bishkek, Kyrgyzstan on August 14, 1989. He received

his B.S degree in Computer Engineering from Fatih University, Istanbul in 2011. In

September 2011, he joined M.Sc. Program in Computer Science and Engineering at

Koç University as a research and teaching assistant. During his studies he worked on

secure cloud secure storage system and locality-based peer-to-peer storage system. He

has co-authored a conference paper in EE-LSDS’13 one journal (under submission)

and one conference paper (under submission).

