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ABSTRACT

In a natural disaster; e.g., earthquake, flood, landslide, road networks can be

damaged, and consequently some parts of the roads may be blocked by building or

lamppost debris or may collapse due to ground liquefaction. As a result, the road

network may become disconnected. In order to ensure connectivity, necessary actions

should be taken after a disaster.

In the immediate disaster response phase, to facilitate emergency transportation, a

critical subset of the blocked roads should be cleared to restore network connectivity

as soon as possible. A fleet of machinery with required personnel and equipment

which are initially positioned at various locations, e.g. depots, should be dispatched

for this task. We define an optimization problem to generate a coordinated work

schedule. We represent the road network by a directed graph with estimated arc

traversal times for work vehicles. We assume that time to open each blocked arc will

be estimated after the disaster by gathering information on road conditions. The

problem is to determine which blocked arcs to open and a walk for each vehicle

starting at its depot that collectively cover the selected blocked arcs. The objective

is to minimize the total time of the longest walk, i.e. the makespan. We name

this problem that combines network design, scheduling and arc routing aspects, Arc

Routing for Connectivity Problem with K Vehicles (K-ARCP). We prove that K-

ARCP is NP-hard even when a single vehicle exists. We characterize some properties

of feasible and optimal solutions. We formulate a mixed integer program using flow

variables for the walks. We define two relaxations to obtain lower bounds and test

their performance computationally. We generate instances using data of Istanbul

highway network and analyze the effects of the number of disconnected components,

the number of vehicles and depot locations on solution time and quality.
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ÖZETÇE

Sel, deprem gibi doğal afetlerin etkisiyle karayolları hasara uğrayabilir ve zemin

sıvılaşmasına bağlı olarak çökme ya da bina ve elektrik/lamba direklerinin enkazı

yığılması sonucu bazı yollar ulaşıma kapanabilir. Sonuç olarak, bazı bölgelere ulaşım

engellenebilir. Yol ağı bağlanılırlığının sağlanması için gerekli çalışmalar yerine ge-

tirilmelidir. Bu çalışmalar acil tıbbi yardım ve ulaşımı kolaylaştırmak adına büyük

önem taşır.

Afet sonrasında en kısa zamanda ulaşımı hızlandırmak ve ulaşım ağında bağlantının

yeniden sağlanması için, kritik olan yolların açılması gerekmektedir. Yeterli per-

sonel ve teçhizata sahip, çeşitli lokasyonlarda konuşlandırılmış araçlar bu iş için kul-

lanılmalıdır. Bu çalışmada koordineli bir iş çizelgesi oluşturma amacıyla bir eniyileme

problemi tanımlanmıştır. Yol ağı, yönlü bir çizge üzerinde, araçlara ait seyir süreleri

ile birlikte temsil edilmiştir. Kapalı olan yolları açmak için gereken sürenin, afet son-

rasında edinilecek yol durumu bilgisine göre tespit edileceği varsayılmıştır. Problem,

hangi kapalı yolların açılacağının ve her araç için bir dağıtım noktasından (depo, acil

yardım merkezinden vs.) başlayan, açılacak olan yollardan geçen turların belirlen-

mesidir. Amaç, en uzun tur uzunluğunu enküçüklemektir. Ayrıt rotalama, zaman

çizelgeleme ve ağ tasarımı öğeleri içeren bu probleme K Araçlı Bağlanırlık Amaçlayan

Ayrıt Rotalama Problemi adı verilmiştir ve tek araçlı durumda bile polinom zamanda

çözümünün zor olduğu ispat edilmiştir. Olası ve en iyi çözümlerin özellikleri ince-

lenmiştir. Akış karar değişkenleri kullanılarak bir karışık tamsayı programlama for-

mulasyonu verilmiş ve iki gevşetme modelinden alt sınırlar elde edilmiştir. İstanbul

karayolları ağı kullanılarak veri oluşturulmuş ve bileşen, araç ve depo sayısının çözüm

süresi ve kalitesi üzerindeki etkileri analiz edilmiştir.
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Chapter 1

INTRODUCTION AND PROBLEM DEFINITION

Disaster management involves taking actions before and after a disaster to minimize

its destructive effects. After a disaster, it is critical to reach affected areas to provide

relief operations; such as search and rescue, medical services, aid delivery and establishing

temporary shelter. This study focuses on ensuring functionality of transportation networks

such as highway and road networks which can be affected in a disaster; e.g., earthquake,

flood, landslide. Some parts of the roads may be blocked by building, lamppost and car

debris, or may be damaged due to ground liquefaction or collapse of bridges and viaducts.

Damage to other infrastructure networks such as natural gas or drainage systems may

also cause dysfunctionality in the roads. As a result, parts of the network may become

unreachable. This will in turn disrupt emergency response and relief activities. Crippling

of transportation networks has been observed in many natural disasters. For instance, in

the Kobe Earthquake (1995), the Triple Disaster (2011) in Japan, the Indonesian Tsunami

and Earthquake in 2004 and the Haiti Earthquake in 2010. the Kocaeli Earthquake (1999)

and the Van Earthquake (2011) are two of the recent devastating natural disasters which

Turkey has faced. In the Kocaeli Earthquake, some roads collapsed and were blocked by

building debris. After such a situation, to ensure connectivity of the network and to provide

accessibility between people in different parts of the network as fast as possible, it is crucial

to unblock the roads by a fleet of machinery or vehicles, and this should be done rapidly

and efficiently. Some people will want to evacuate the disaster location, while others will be

coming in and for this reason strong connectivity of the network is required. Depending on

the damage, some of the clearing tasks take less time; e.g. hours, while others may take a

long time; e.g. days. After a disaster, the first 72 hour-time period is critical especially for

response activities and ensuring connectivity in this time frame is an important operation.

Recently, several studies focused on upgrading the road network or improving accessi-
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bility after a disaster situation. However, to the best of our knowledge, the restoration of

the roads after a disaster by a fleet of vehicles in order to ensure strong connectivity of a

network with routing perspective has not been addressed in the Operations Research liter-

ature. We define a new network optimization problem to address road restoration with the

objective of providing strong connectivity in a disconnected network in the shortest time.

This problem combines arc routing, network design and scheduling concepts. Every vehicle

has a walk which traverses several arcs; therefore, arc routing is one element in this study.

Since connectivity of the graph is an objective, network design is another element. When

more than one vehicle have to traverse a blocked arc, one vehicle unblocks it, and others

have to wait until it is unblocked. Therefore, for an arc, traversal times of vehicles have

to be considered and vehicles should be scheduled for their clearing tasks to minimize the

makespan of the operations. Therefore, scheduling is another element which exists in this

problem.

1.1 Problem Definition

Before we define our problem, some definitions may be useful to make the problem clear. A

connected graph contains a directed path from a node i to another node j or a directed path

from j to i for every pair of nodes i and j. Otherwise, the graph is disconnected. A graph

is strongly connected if it contains a directed path from i to j and a directed path from j to

i for every pair of nodes i and j. Otherwise, the graph is disconnected in the strong sense.

We define Arc Routing for Connectivity Problem with K Vehicles (K-ARCP) on a directed,

strongly connected and simple graph G = (V,A) with nonnegative arc costs. After a natural

disaster, roads may be difficult to traverse if they are damaged, which affects the speed of

transportation that is highly dependent on road and extraordinary traffic conditions (as also

stated in [27]). Therefore, costs are calculated in terms of time instead of distance. Traversal

time on an unblocked (i.e. not blocked initially) or a blocked arc after it has been unblocked

is equal to cij , where (i, j) represents the arc. There are K vehicles where K > 1. Each

vehicle k is located initially at a node d(k); e.g., its depot or an emergency response facility.

Moreover, a subset B of arcs, which are determined to be blocked according to post-disaster

information on road conditions, are given such that GB = (V,A\B) is disconnected. The

set B consists of all blocked arcs and the set R, a subset of B, represents the arcs which will

be traversed and cleared by a vehicle in order to restore strong connectivity of the graph.
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The set R is not known in advance. The solution identifies R and constructs a walk for each

vehicle that starts at its depot. We want the walks in the solution to cover R collectively.

In other words, the arcs in the set A\B ∪ R induce a connected graph, GR, on the set

V . We assume that there are |Q| disconnected components in GB where Q is the set of

disconnected components, in the strong sense. Each component in Q consists of strongly

connected nodes. We partition Q into three classes: (i) components within which the nodes

are strongly connected and which require at least one incoming and one outgoing arc in order

to be strongly connected to the remaining graph, (ii) components which require at least

one outgoing but no incoming arc to be unblocked in order to be strongly connected to the

remaining graph, and (iii) components which require at least one incoming but no outgoing

arc to be unblocked in order to be strongly connected to the remaining network. Figure 1.1

shows these classes on an example. Moreover, unblocking; i.e., passing through a blocked

arc for the first time results in a longer time than the traversal time on an unblocked arc or

the traversal time on a blocked arc after it has been unblocked. More formally, we define

the additional time of unblocking arc (i, j) as bij where bij ≥ 0. In a walk, cij time units

elapse each time an arc is traversed, and in addition, bij units elapse once for each blocked

arc which is unblocked during the walk. In other words, a blocked arc is unblocked by a

vehicle in its first traversal of that arc. We assume that traffic cannot flow in both directions

after a blocked road is unblocked in one direction by a vehicle. Considering that allowing

traffic in the reverse direction would slow down response activities. This is a reasonable

assumption.

If a vehicle arrives at a node incident to a blocked arc, it may have to wait for another

vehicle to unblock that arc. This situation arises when more than one vehicle arrive at

the same blocked arc within close times. In such a case, waiting time is added to total

travel time of the vehicle which waits at an arc. We assume that on every blocked road,

a single vehicle can operate for unblocking purpose. The case in which multiple vehicles

operate on a single road at the same time can be a more difficult version of our problem

and it can be investigated as a future work. The objective is to minimize the time which

the graph becomes strongly connected. That is, by definition, there must be a path from

each vertex to every other vertex in the network. In order to connect all the disconnected

components, at least two arcs in opposite directions within the cutset of a component must

be unblocked. Otherwise, the network cannot be strongly connected. If a vehicle leaves its

depot, it unblocks at least one blocked arc. Since we are interested in minimizing the time



Chapter 1: Introduction and Problem Definition

4

when the graph becomes connected, return of the vehicles to their depots is not considered.

Therefore, the walks are open.

Since there are multiple vehicles, and a separate walk for each vehicle, the aim is to

minimize the travel time of the longest walk. In this way, the time at which the network

becomes strongly connected is minimized and a more balanced set of walks are obtained

in terms of travel time. This objective is meaningful especially for post-disaster situations

[2], and it also provides a more balanced set of walks in terms of the number of roads

which are unblocked by vehicles. We can define the objective function as min maxk=1,...,K

c(Wk) + b(Wk) +w(Wk), where Wk is walk of the k th vehicle; c(Wk) is traversal time of the

k th vehicle and c(Wk) is calculated by summing up the traversal time of arcs (in terms of

cij) that are traversed by vehicle k ; b(Wk) is the total additional time (in terms of bij) of

unblocking for vehicle k ; w(Wk) is total waiting time of the k th vehicle at the blocked arcs.

The waiting times can be possibly zero.

The motivation behind this thesis is to develop a solution method to the connectivity

problem of the network that generates a solution in short time. Our goals are to formulate

K-ARCP and to observe for which cases it can be solved in a reasonable time. Moreover,

we provide an analysis of a case study of Istanbul network to generate some insights for

preparedness.

The organization of this thesis is as follows. Chapter 2 reviews relevant studies in the

literature. Chapter 3 gives computational complexity proof of the K-ARCP. In Chapter

4, Mixed Integer Programming (MIP) models for K-ARCP are given. Chapter 5 presents

the data related to Istanbul highway network. In Chapter 6, computational results are

provided. Finally, in Chapter 7, we conclude the thesis with a summary, some comments

and directions for future research.
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Figure 1.1: Classification of Components
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Chapter 2

LITERATURE REVIEW

Arc routing and vehicle routing problems have attracted the interest of researchers and

have many application areas such as network design, transportation, snow plowing. The

problem addressed in this thesis falls into the class of arc routing problems. The main

motivation of this section is to give an overview of arc routing problems and to introduce

some problems which are related to K-ARCP. First, problems which are in the class of

arc routing problems are presented. Next, some problems which focus on road upgrading

in disaster and non-disaster cases are introduced. Finally, some related studies with their

differences and similarities to this thesis are discussed.

2.1 Related Work: Arc Routing Problems

Chinese Postman Problem (CPP) is an arc routing problem which is defined as finding

the minimum cost closed walk on all arcs of a given directed graph. This problem is NP -

hard, but there are some special cases which can be solved by a polynomial time algorithm.

At this point, some definitions may help to make these problems clear. A mixed graph

has both directed and undirected links between nodes. A windy graph is defined on an

undirected graph but the edge costs differ depending on the direction of traversal through

an edge. An even graph is a graph with vertex degrees all even. If CPP is defined on

a totally undirected, totally directed, mixed but even [15], windy but Eulerian networks

[38], then it can be solved in polynomial time. However, if the graph is mixed, then CPP

is NP -hard [28]. There exists a 4
3 - approximation algorithm for mixed CPP [25]. There

is another version of CPP, called the Windy Postman Problem (WPP),first introduced by

Minieka [26]. In this problem, there is an undirected graph G = (V,E) with asymmetric

nonnegative edge costs and the aim is to find the minimum traversal cost of all edges in

the graph. This is an NP -hard problem [7]. There exists a 3
2 - approximation algorithm for

WPP [34].
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Hierarchical CPP is a special version of CPP for which the arcs are partitioned into

clusters, and a precedence relation is defined on the clusters. The aim is to find the minimum

tour length such that the higher prioritized arcs are traversed before the lower prioritized

arcs and each arc in the network is traversed exactly once. This problem is NP -hard [13].

Therefore, several heuristic methods are proposed [3, 23].

Another class of arc routing problems is the Rural Postman Problem (RPP) which is

a more general version of CPP. In this problem, all the arcs do not have to be traversed.

There is a subset of arcs which are required to be traversed at least once. This problem is

also NP -hard on an undirected or directed graph [24]. If the arc costs satisfy the triangle

inequality, there exists a 3
2 - approximation algorithm [16]. Some heuristic methods are

applied on RPP [18, 20, 21].

Another type of routing problem is the Stacker Crane Problem (SCP). It is defined on a

mixed graph, and the aim is to determine the shortest circuit including each arc in the graph

at least once. This problem is NP -hard and there exists a 9
5 - approximation algorithm [17].

In the Capacitated Arc Routing Problem (CARP), each arc has a nonnegative weight,

and all arcs must be traversed exactly once in order to fulfill the demand of arcs by a fleet

of identical capacitated vehicles based at the depot node. The aim is to minimize the total

traversal time. CARP is NP -hard [19]. The Capacitated Chinese Postman Problem (CCPP)

is a CARP for which all of the arcs in the graph have to be traversed by capacitated vehicles

exactly once. There exists a (32 − ε) - approximation algorithm [19]. If the arcs have the

same demand values (which is equal to 1) on a linear graph and vehicles have the same

capacity, this cost minimization problem can be solved to optimality by a polynomial-time

algorithm [5, 8]. Moreover, if the arc demands are identical and the graph is cyclic, then

the problem can be solved in O(|V |) time, where V is the node set of the input graph [5].

If there is a fleet of identical vehicles, say K vehicles, then the problem of finding K

tours such that all the edges are covered in a graph with minimum total cost is called K-

CPP. If K-CPP is defined on totally undirected or totally directed networks, then there

exist polynomial-time algorithms for these problems [5]. On mixed but even graphs K-CPP

still can be solved in polynomial time [29]. However, if the input graph is mixed or windy,

then K-CPP for those specifications is NP -hard [29]. An overview of these problems can

be seen in Table 2.1.

Arc routing problems in which the timing of the arc traversals is of interest have been

recently studied in the literature and there are few of them. Similar to our study, arrival
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time at an arc is considered in [36] as well. In [36], different types of cost functions exist

depending on the purpose of traversing an arc: service time and traversal time. Service time

is a linear function of time. Different than our study, multiple closed walks are considered,

and there is a given required set of arcs which have to be traversed. The objective is to

minimize the sum of the service and the traversal time.

Objective type of our problem is Min-Max. Therefore, it is useful to analyze problems

which have the same objective type. Min-Max versions of arc routing problems are used

widely for real life applications. Minimizing the longest tour length when there are K -

vehicles or K -tours traversing edges of a graph is crucial for some real life situations such as

responding to earthquakes and floods. Min-Max K-CPP on an undirected graph is NP -hard

[17], and there exists a (2− 1
K) - approximation algorithm [17]. Min-Max K-CPP and Min-

Max K-WRPP have been studied recently [1, 6]. For the Min-Max K-CPP on an undirected

graph, a branch-and-cut algorithm [1] and a tabu search method are developed [2]. For the

Min-Max K-RPP on an undirected graph, there exists a 7-approximation algorithm [4].

However, the problem in [4] is a different version of Min-Max K-RPP in which the routes

do not start in a specified node but just any node.

2.2 Related Work: Upgrading and Road Maintenance Problems

In the disaster context, recently, there have been studies on upgrading the road network

or improving accessibility after a disaster. Some of them do not have routing perspective.

Instead, they focus on selection of road segments which are to be upgraded or repaired.

One such study is by Duque and Sörensen [14]. They investigate the case where there is a

budget constraint, and there are a number of non-operative roads which need to be repaired

after a disaster situation. Moreover, they assign weights to the rural towns depending on

the importance of the towns. Their objective is to minimize the weighted sum of time to

travel from each rural town to its closest regional center [14]. There is no routing decision,

but finding the roads to be repaired in order to have shortest paths between node pairs.

Another study is by Campbell et al. [9], which focuses on determining the number of edges

to be upgraded before a catastrophe while minimizing the maximum travel time between

any source-terminal/origin-destination (s-t) pair. They use heuristic methods to solve the

problem.

Yan and Shih [39] address the scheduling of roadway repair operations in an emergency
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situation. In their problem some road segments cannot be repaired after a specific time point

due to the importance of different repair points. There may be a time limit for repairing

some repair points; therefore those have to be scheduled to be repaired before the other

repair points. Time windows should be imposed. Moreover, there are supply points from

which relief distribution is started. The areas, which are defined as demand points, have

to receive a minimum required amount of relief items. Relief distribution cannot continue

through an arc if that arc is not repaired before. The objectives are to minimize the time

needed for emergency repair at all repair points and for sending relief supplies to all demand

points. They define a time-space network. A multi-objective, multi-commodity network flow

model is constructed, and a heuristic method is developed.

Vishwanath and Peeta [37] study a network design problem which is named as Mul-

ticommodity Maximal Covering Network Design Problem. They focus on selecting critical

routes to retrofit in preparation for earthquake response, defining a two-objective integer

programming model. Given a budget and disconnected O-D pairs, the problem is to select

edges to retrofit to minimize total travel time between O-D pairs over selected routes and

to maximize total population covered by the routes. An edge can be used in a route only if

it is retrofitted. Cost of retrofitting cannot exceed the budget. They solve this model with

branch-and-cut module of CPLEX on a case study.

Snow removal or disposal is another research area which includes arc routing and road

maintenance. There is a four part survey by Perrier et al. [30, 31, 32, 33] which presents

different types of problems related to winter road maintenance. The last two parts of this

survey give solution methods on vehicle routing, depot location for spreading and snow

plowing operations and fleet sizing problems. Input graphs in winter road maintenance

problems can be undirected, directed or mixed, and all the road segments must be serviced.

The service involves snow removal or salting the roads. Different types of cost are assigned

to the roads: servicing, deadheading a serviced road, deadheading a non-serviced road. The

objective is minimizing the total length traveled.

There are also studies which are not in disaster context but focus on road upgrading. In

[35], a rural road network design problem is presented for a disconnected graph where the

objective is to maximize route efficiency and to maximize road connectivity in all seasons

among villages at a region while allocating a fixed budget among a number of possible

road projects. They optimize the weighted combination of traffic flow volume served by

upgraded roads and weighted traveled distance associated with those traffic volumes. This
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problem is defined on an undirected graph, and the roads to be upgraded are not selected

in advance. It finds the shortest paths between villages and ensures connectivity among

them. A metaheuristic method is applied in order to solve the problem in an efficient time.

Another study on upgrading arcs is [12]. It focuses on a version of the Minimum Cost Flow

Problem which can also be used in telecommunication networks. A directed graph with arc

costs and capacities is given. Their aim is: Given an upgrade budget and an amount of

data that should be sent from supply points to demand points, find an optimum upgrading

strategy and optimum routing of the flow such that flow cost on the upgraded network is as

small as possible. Upgrading strategy, which is mentioned here, is to lower the cost of flow

on arcs by investing on them. They propose a polynomial time approximation algorithm

for this upgrading problem.

2.3 Comparison of K-ARCP with the Literature

Our problem, K-ARCP, differs from the problems explained above in several ways. In K-

ARCP ”connectivity” is the main concern. Most of the other studies do not aim to ensure

strong connectivity of the network. It is similar to Min-Max K-RPP, but in our study, the

set of required arcs are not known in advance and there is no requirement for the walks

to be closed. Min-Max K-WRPP is similar to K-ARCP in terms of objective type. Both

problems have Min-Max type of objective. However, in K-ARCP the graph is not windy,

it is directed. Moreover, in K-ARCP, after one traversal of a blocked arc, the cost changes.

In the Min-Max K-WRPP, the graph is undirected, and costs of an edge in both directions

are not the same. In [14], similar to this study, accessibility of a network after a disaster

situation is aimed. However they minimize the weighted sum of time to travel from each

rural town to its closest regional center with a budget constraint for upgrading arcs. The

objective differs from our study. Our study is similar to Campbell et al.’s study [9] in terms

of its objective since both have a Min-Max type of objective. However, in our study, instead

of a pre-disaster situation, a post-disaster case is examined and thus, instead of upgrading

the roads we focus on unblocking them after a disaster situation. Moreover, different than

Campbell et al.’s study [9], routing of multiple vehicles is implemented in this study. This

study is different because the main concern is to route a set of vehicles in order to ensure

connectivity of the whole network after a disaster situation. Edges which are required

to be unblocked for connectivity are not known in advance. Consequently, determination
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of required arcs to be unblocked in a post-disaster situation requires an efficient network

design.

The problem defined in [37] is similar to the K-ARCP in terms of disaster context, but

they focus on connectivity of some O-D pairs and coverage of population but not on arc

routing. Similar to our study, the arcs to be upgraded are not known in advance. Moreover,

there is a budget limit. In [12], there is also a budget limit which makes it different than

our problem and their objective is to minimize the flow cost. As we mentioned before, our

problem has a Min-Max type of objective and aims strong connectivity of the network.

In [30, 31, 32, 33], similar to our study, there are different types of costs assigned to a

road segment; however, different than ours, all the roads have to be serviced/traversed.

Another difference of this problem from the others given above is that, it has a scheduling

perspective as well. If a vehicle arrives at a node incident to a blocked arc, it may have

to wait for another vehicle to unblock that arc. This situation arises when more than one

vehicle arrive at the same blocked arc in close times. As a result, we need to consider time

of arrival of a vehicle at a node incident to an arc every time it is traversed. Therefore,

scheduling is another concern in this study. In [39], similar to our study, scheduling aspect

is discussed but they consider repairing all road segments which are damaged.

Various performance metrics have been analyzed for post-disaster rehabilitation opera-

tions. Performance measures can consist of a single metric or they can be a combination.

In our study minimizing the maximum traversal and unblocking time is the performance

measure. Chang and Nojima [10] evaluate the performance by considering network coverage

and transport accessibility. They assume that after a disaster, network links are damaged

and this disrupts the accessibility of some areas due to the closed roads. The performance

measures that they describe include total length of open network, total distance-based ac-

cessibility and areal distance-based accessibility. The first one reflects the length of the

network that is open to traffic at any point at a time t, and is defined as a ratio to the

pre-disaster length open. The second measure is based on minimum network travel dis-

tances and takes into account the extent and the location of the damage. It attempts to

measure changes in accessibility at all nodes of the network. Areal distance-based accessi-

bility pertains to system performance or accessibility from the point of view of subareas.

With these measures, they evaluate the transportation performance. They focus on rail and

highway transportation systems which are affected in an earthquake. Another study which

suggests performance measurements is done by Chen and Tzeng [11]. According to them,
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minimizing road-network reconstruction time and traffic congestion in the reconstruction

period can be performance measures. Their objectives are to minimize the travel time of

travelers during reconstruction period, to minimize the total working time and to minimize

the idle time between work-troops which reconstruct the damaged roads. In this study they

do not mention about any disconnectedness of the graph.
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PROBLEM NAME CLASS APPROXIMATION FACTOR

CHINESE POSTMAN PROBLEM(CPP):
CPP on Totally Undirected Graphs P [15]
CPP on Totally Directed Graphs P [15]
CPP on Mixed but Even Graphs P [15]

CPP on Windy Graphs (Windy Postman Problem-WPP) NP-hard [7] 2 [38]
CPP on Windy but Eulerian Graphs P [38]

Mixed CPP NP-hard [28] 4
3 [25]

CAPACITATED CPP: NP-hard [19] 3
2 − ε [19]

K-CPP:
K-CPP on Totally Undirected Graphs P [5]
K-CPP on Totally Directed Graphs P [5]
K-CPP on Mixed but Even Graphs P [29]

K-CPP on Mixed Graphs NP-hard [29]
K-CPP on Windy Graphs NP-hard [29]

HIERARCHICAL CPP: NP-hard [13]

RURAL POSTMAN PROBLEM(RPP):
RPP on Undirected Graphs NP-hard [24]
RPP on Directed Graphs NP-hard [24]

RPP with Costs Satisfying Triangular Inequality 3
2 [16]

CAPACITATED ARC ROUTING PROBLEM(CARP): NP-hard [19]

STACKER CRANE PROBLEM(SCP): NP-hard [17] 9
5 [17]

Min-Max K-CPP on Undirected Graphs NP-hard [17] 2− 1
K [17]

Min-Max K-CPP on Windy Graphs NP-hard [29]
Min-Max K-RPP on Undirected Graphs NP-hard 7 [4]

Table 2.1: Routing Problems and Their Computational Complexities
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Chapter 3

COMPLEXITY ANALYSIS

The problem defined in this thesis, namely K-ARCP is new to the arc routing literature.

Therefore, we first analyze the computational complexity of K-ARCP.

Theorem 1. K-ARCP is NP-hard even when a single vehicle exists.

Proof. In order to prove this theorem, we consider another NP-hard problem, Rural Postman

Problem (RPP). We reduce RPP to K-ARCP

Definition 1. Undirected Rural Postman Problem (RPP):

Let G = (V,E) be an undirected graph, where V is the vertex set, E is the edge set, cij

(≥ 0) is the cost of traversing edge (i, j) ∈ E and R ⊆ E is the set of required edges. The

RPP is to determine a least cost closed walk starting from and ending at a depot, traversing

each edge of R at least once.

The RPP is known to be NP-hard [24]. Now let us consider K-ARCP :

Definition 2. Arc Routing for Connectivity Problem with K Vehicles (K-ARCP):

Let H = (N,A) be a directed strongly connected graph, where N is the vertex set, A

is the arc set, B ⊆ A is the set of blocked arcs. The graph induced by A\B is disconnected

(in the strong sense). cij is the traversal time on an open arc (i, j) ∈ A and bij (≥ 0) is

the time of unblocking edge (i, j) ∈ B in addition to traversal time cij . K(≥ 1) is the

number of vehicles, d(k) is the depot of vehicle k. K-ARCP is to determine K walks each

one starting from its depot, traversing some of the blocked arcs in B to unblock them at

the first traversal in order to connect the network. A walk may also include open arcs.

K-ARCP is to minimize the travel time of the longest walk among the K walks, so that the

resulting graph is strongly connected.

For this proof, a special case is analyzed. We consider the case where there is one

vehicle and one depot. We call this problem Arc Routing for Connectivity Problem (ARCP).
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We take an instance I of RPP and construct an instance II of ARCP by a polynomial

transformation τ between them.

Definition 3. Transformation τ :

We define a directed and strongly connected graph H from G as follows. We replace

every edge (i, j) in E\R with two arcs in both directions with traversal times cij . We take

G = (V,E), delete the edges in the set R and for each (i, j) ∈ R add three new nodes i′, j′

and p. We define blocked arcs (i, i′), (i′, i), (j, j′), (j′, j) all with traversing and additional

unblocking time of 0. Moreover, between i and j, new blocked arcs , (i, p), (p, i), (j, p),

(p, j) with traversal and additional unblocking time
cij
2 and 0 are defined.

In order to transform a closed walk in I to an open walk in II, we add a dummy depot

d′ which is connected to the original depot d of I in the ARCP instance with two arcs in

both directions, one of them is blocked. Traversal and additional unblocking time on this

blocked arc from d to d′ is zero. The arc (d′, d) which is not blocked has a high traversal

time, say M. By assigning a high traversal time to this arc, we enforce the vehicle to visit

d′ last. The vehicle, located at d, first traverses other arcs in its walk, then, to ensure a

strongly connected graph it visits d′ as the last node in its walk. It does not visit it in the

early stages of its walk because then it will continue its walk to connect the remaining nodes

by traversing the arc (d′, d) which increases the objective value highly.

Instances I, II and the transformation is illustrated in Figure 3.1.

Lemma 1. Transformation τ from I to II runs in polynomial time in terms of the size of

the instance I of RPP.

Proof. For every edge in set R in I, we delete one edge and add three nodes and eight arcs.

Moreover, for the depot node, one dummy depot and two arcs are added. The edges which

are not required to be traversed are doubled into arcs.

Now, we need to show that we can obtain an optimal solution to I when ARCP is solved

on II. The nodes i′, j′, p and d′ need to be visited in order to make the graph strongly

connected. No matter from which direction the vehicle comes (from i to j or from j to i),

it unblocks the arcs (i, i′) and (j, j′) to reach i′ or j′. Due to the definition of ARCP, for

connectivity, arcs (i′, i) and (j′, j) have to be unblocked as well. Moreover, node p has to be

connected to the network and unblocking one arc going out of node p and one arc coming

into it is sufficient in order to ensure strong connectivity of p to the network. Possible routes
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for the arc segment which corresponds to a required edge can be i− i′ − i− p− j − j′ − j
or i − i′ − i − p − i... − j − j′ − j and the reverse. In all cases travel time of these route

segments is cij . If the vehicle needs to pass through nodes i and j, it does not visit i′ and j′

not to increase its travel time unnecessarily. These route segments can be converted to the

edge (i, j) in the RPP. Consequently, the required edge (i, j) is traversed. In each traversal

of (i, p) and (j, p) (or reverse) together, the cost of the required edge, cij , is paid. Since

the vehicle starts its walk in d and visit d′ as the last stop for connectivity purpose, the

resulting walk can be transformed to a closed walk starting and ending in the depot node

d by omitting the dummy node d′ and the corresponding arcs. At the end, the solution of

RPP on I is reached by solving ARCP on II.

Since RPP is NP-hard and τ runs in polynomial time, the ARCP with one vehicle and

one depot is at least as hard as the RPP. Since K-ARCP with one vehicle and one depot is

NP-hard, a more general version with multiple vehicles and depots is NP-hard as well.

Figure 3.1: Instance I, Instance II and Transformation
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Chapter 4

PROBLEM ANALYSIS AND MATHEMATICAL MODEL

This chapter presents a mathematical programming formulation of K-ARCP and two

relaxation models. We also provide the formulation for ARCP.

Some properties of a feasible solution of K-ARCP are given below:

1. It is necessary that a subset R of B of arcs is unblocked.

2. A feasible solution consists of at most K walks, and each starts from a depot. Without

loss of generality, each walk contains at least one required blocked arc.

3. Each walk may be open.

4. In order to ensure connectivity of the graph, total number of blocked arcs, which are

unblocked in cutsets of all components (C), has to be greater than or equal to 2(|Q|−
1). Otherwise, connectivity cannot be ensured. In other words, in each component’s

cutset, at least two arcs which are in opposite directions must be unblocked. This

property is explained in Proposition 1 in Section 4.1.18. This property is necessary

for a solution to be feasible, but it is not sufficient for optimality.

5. Every component is visited by at least one vehicle at least once.

6. If a vehicle starts a walk, it must unblock at least one blocked arc in C. If it does not

start a walk, there is no arc which is unblocked by that vehicle. It unblocks at least

|R′| arcs, where |R′| is the number of times that the vehicle leaves its depot.

7. If more than one vehicle arrive at a blocked arc in close times, one of them unblocks

the arc and others may have to wait until the arc becomes unblocked. Therefore, a

waiting time may occur for the vehicles which do not unblock the arc.

K-ARCP does not have a simple formulation due to the following properties. These

issues direct us to add time related variables and constraints.
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1. Ensuring connectivity of components by cutset inequalities requires subset enumera-

tion. For every subset of components, one incoming and one outgoing arc from that

subset must be unblocked. With a large size data, enumeration makes the problem

difficult to solve.

2. When a vehicle traverses an arc that was blocked before but was unblocked by another

vehicle traversing that arc, we need to make sure that the timing of the traversals is

correct. That is, a vehicle may traverse an arc after it is unblocked. Therefore, it

may need to wait until the other vehicle completes the unblocking operation.

3. The vehicles may traverse an arc more than once, hence we need to keep track of

the arrival time of a vehicle to the arc each time the arc is traversed. To calculate

this value, we also need to know the preceding arc and how many times it has been

traversed. Number of traversal of an arc is bounded by the number of components.

Since a vehicle traverses an arc it connects a component by going through that arc.

4.1 Modeling Approach and Mathematical Models

Let G = (V,A) be a directed and simple graph, where V is the vertex set, A is the arc set,

B ⊆ A is the set of blocked arcs such that the graph G = (V,A\B) is disconnected. Q where

|Q| ≥ 2 denotes the set of disconnected components of the graph G. In addition, bij ≥ 0

is the additional time of unblocking arc (i, j) ∈ B, cij is the traversal time on an open arc

(i, j) ∈ A and K > 1 is the number of vehicles. When a blocked arc (i, j) is traversed for

the first time, it is unblocked with additional time of unblocking bij and becomes open for

later use. If a vehicle waits at an arc, its waiting time is wkij . This waiting time depends

on arrival times of vehicle k and the other vehicle which has arrived at (i, j) before k, and

unblocking time of arc (i, j). A subset of vertices contains depots and each vehicle k is

positioned at a depot vertex. We assume that K > 1 and there is at least one depot. The

walks k = 1, 2, ...,K start at a depot vertex and may traverse some blocked arcs to unblock

it for connectivity purpose.

In order to ensure connectivity and continuity of walks, we define flow variables fkij for

each vehicle and for each arc that the vehicle passes through. For each depot, there is an

amount of supply depending on the number of nodes which are visited by the vehicles of

that depot. Similarly for each component there is a demand so that each component can
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receive flow and the graph becomes connected at the end. Then, to prevent flows on an arc

which is not traversed, we relate flow variables with xkij which shows the number of times an

arc (i, j) is traversed by vehicle k. Flow variables are defined as real numbers, however due

to unimodularity property, they take integer values because flow variables in the constraints

have integer constants. Moreover, we add a dummy sink node and force each vehicle end its

tour at this sink node (n+ 1). For connectivity, we define subset enumeration constraints.

In cutset of each subset of components, some arcs must be unblocked. The details can be

seen in the upcoming paragraphs.

Decision variables, which are described below, are the same for all of the models and

thus we give them at the beginning of this section.
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Sets, Indices and Input Parameters

k : Index of the vehicles

K : Number of vehicles

i, j, g, h : Indices of the vertices

n+ 1 : Index of the dummy sink node

V : Set of vertices: 1, ..., n

A : Set of arcs

B : Set of blocked arcs

d : Index for the depots

D : Set of depot nodes, (D ⊆ V )

Pd : Set of vehicles which are initially positioned in depot d

q : Index of the components

Q : Set of disconnected components

QD : Set of components which include at least one depot

S : Set of all subsets of components within which the nodes are strongly connected

s : Index for elements of S

Y + : Set of all subsets of components which require at least one outgoing arc

but no incoming arc to be unblocked in order to be strongly connected

to the remaining graph

Y − : Set of all subsets of components which require at least one incoming arc

but no outgoing arc to be unblocked in order to be strongly connected

to the remaining graph

y : Index for elements of Y + ∪ Y −

p, p′, p′′ : Indices that show how many times an arc is traversed, p, p′, p′′ = 1, ..., P

Fq : Set of vehicles (fleet) which are initially positioned in component q

Vq : Set of vertices in component q ∈ Q (Vq ⊆ V )

C : Union of cutset arcs of Vq for all q ∈ Q, C : δ+(q) ∪ δ−(q)

M : A nonnegative scalar with large enough value
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Decision Variables

xkij : number of times that vehicle k traverses arc (i, j) ∈ A

zkij : binary variable indicating if blocked arc (i, j) ∈ B is unblocked by vehicle k

fkij : flow variable of vehicle k on arc (i, j) ∈ A

vki : number of times vehicle k visits node i ∈ V

uk,pij : binary variable indicating if arc (i, j) ∈ A is traversed by vehicle k for the pth time

uk,p
′,p

ijg : binary variable indicating if arc (i, j) ∈ A is traversed by vehicle k for the p′th time

and the next arc to be traversed is (j, g) ∈ A and it is traversed for the pth time

tk,p
′,p

ijg : time at which vehicle k visits node j while traversing arc (j, g) ∈ A

for the pth time immediately after traversing arc (i, j) ∈ A for the p′th time

(tk,p
′,p

ijg = 0, if uk,p
′,p

ijg = 0)

wk,pij : waiting time of vehicle k on its pth traversal of arc (i, j) ∈ B (wk,pij = 0 for p > 1)

The mixed integer programming (MIP) model for K-ARCP determines K open walks

such that the disconnected components in the network are connected after unblocking a

subset of the blocked arcs. The model is formulated for the multi-depot and K vehicles-

case, where K > 1. The K walks altogether traverse a subset of the arcs in B, say R, so

that the graph G′ = (V,A\B ∪ R) is connected. We name the model that solves K-ARCP

as MIP1 and it gives a strongly connected graph and walks that are synchronized.

Before presenting MIP1, we explain the objective functions and constraints group by

group.

4.1.1 Objective Function of MIP1

Constraints (4.1) represent the objective function which includes waiting times of vehicles

at blocked arcs. Since, waiting can occur for a vehicle only in its first traversal of a blocked

arc, p, the index for traversal time, takes the value of 1.
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Minimize y

subject to∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈B

bijz
k
ij +

∑
(i,j)∈B

wk,1ij ≤ y, ∀k = 1, 2, . . . ,K (4.1)

4.1.2 Vehicle Balance Equations

Constraints (4.2)-(4.6) are vehicle balance equations. Constraints (4.2) ensure that each

vehicle starts the tour at a depot vertex where it is positioned. In constraints (4.3), for

the depot nodes, the equation is written for the vehicles which are not positioned in that

specific depot. (4.4) balances arrivals and departures for a node i which is not a depot.

(4.5) forces every walk to end in the sink node. There is only one visit to the sink node

and no return. The latter case is satisfied by the constraints (4.6). A vehicle leaves the

depot and its component, and does not return there if it will not visit another disconnected

component through its own component.

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 1, ∀d ∈ D, ∀k ∈ Pd (4.2)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 0, ∀d ∈ D, ∀k 6∈ Pd (4.3)

∑
j∈V ∪{(n+1)}

(xkij − xkji) = 0, ∀k = 1, 2, . . . ,K, ∀i ∈ V \D (4.4)

∑
j∈V

xkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.5)

xk(n+1)i = 0, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.6)

4.1.3 Constraints Which Relate Variables xkij and zkij

Constraints (4.7) show for a blocked arc that, if it is unblocked then it is also traversed. We

assume a blocked arc becomes open in both directions whenever a vehicle unblocks it in one

direction. This assumption can be meaningful because in disaster situations, roads have to

be used in both directions in order to reach disastrous area and deliver aid. Constraints
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(4.8) prevent the vehicles traversing a blocked arc if it is not unblocked. If an arc (i, j) is

unblocked, it can be traversed by the same vehicle at most 2(|Q| − 1) times. In the worst

case, if there is one vehicle to connect all graph, it connects one component each time it

traverses the same arc by unblocking one arc going out of the subset of component and one

arc coming into it. Therefore we multiply this value by 2. Except the component that it

is deployed, there are |Q| − 1 components in total to be connected, thus the scalar in this

constraint takes the value of 2(|Q| − 1). Constraints (4.9) and (4.10) show that if a vehicle

starts a walk, it must unblock at least one blocked arc in C. If it does not start a walk,

there is no arc which is unblocked by that vehicle. It unblocks at least |R′| arcs, where |R′|
is the number of times that the vehicle leaves its depot. In the worst case (assuming that

there is only one vehicle), the maximum number of arcs that a vehicle can unblock each

time it leaves its depot is 2(|Q| − 1) to make the graph strongly connected.

xkij ≥ zkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.7)

xkij ≤ 2(|Q| − 1)
K∑
k′=1

zk
′
ij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.8)

∑
j∈V

xkdj ≤
∑

(i,j)∈C

zkij , ∀d ∈ D, ∀k ∈ Pd (4.9)

∑
(i,j)∈C

zkij ≤ 2(|Q| − 1)
∑
j∈V

xkdj , ∀d ∈ D, ∀k ∈ Pd (4.10)

4.1.4 Flow Balance Equations

In order to ensure connectivity of the nodes in walks, we define flow variables fkij for each

vehicle and for each arc that it passes through. For depot vertices, the net flow into a depot

vertex is the total number of visits to all vertices except the depot. For the other vertices, it

is equal to the number of visits to the corresponding node. In other words, a vehicle leaves

one unit of flow each time it visits a node. Similar to (4.3), the depot nodes are considered

separately. Constraints (4.14) ensure that walks end in sink node by sending one unit of

flow to the sink node. (4.15) prevent backward flow from the sink node to any other node.
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∑
j:(i,j)∈A,{i,j}∈V ∪{(n+1)}

(fkij − fkji) = −vki ,

∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} \D (4.11)∑
j∈V ∪{(n+1)}

(fkdj − fkjd) =
∑

i∈V ∪{(n+1)}\{d}

vki , ∀k ∈ Pd, ∀d ∈ D (4.12)

∑
j:(d,j)∈A,{i,j}∈V ∪{(n+1)}

(fkdj − fkjd) = −vkd , ∀d ∈ D, ∀k 6∈ Pd (4.13)

fk(n+1)j = 0, ∀j ∈ V, ∀k = 1, 2, . . . ,K (4.14)∑
j∈V

fkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.15)

4.1.5 Constraints Which Relate Variables fkij and xkij

Constraints (4.16) do not allow flow on an arc unless it is traversed. Constraints (4.17) show

that if an arc is traversed, then there must be a positive amount of flow passing through it.

fkij ≤Mxkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.16)

fkij ≥ xkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.17)

4.1.6 Constraints Which Relate Variables xkij and vki

Constraints (4.18) relate the variables xkij and vki so that vki counts the number of visits to

node i by vehicle k. A vertex is visited if and only if an arc entering that vertex is traversed.

∑
j:(i,j)∈A

xkji = vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} (4.18)

4.1.7 Component Connectivity Constraints

(4.19) and (4.20) ensure that in cutsets of every subset of components in set S, at least one

arc into and one arc out of the subset is unblocked. Similarly, with constraints (4.21) and
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(4.22), for connectivity of the components in sets Y + and Y −, at least one arc into and one

arc out of the subset is unblocked. As a result, the graph becomes strongly connected.

K∑
k=1

∑
(i,j)∈δ+(s)

zkij ≥ 1, ∀s ⊂ S (4.19)

K∑
k=1

∑
(i,j)∈δ−(s)

zkij ≥ 1, ∀s ⊂ S (4.20)

K∑
k=1

∑
(i,j)∈δ+(y)

zkij ≥ 1, ∀y ⊂ Y + (4.21)

K∑
k=1

∑
(i,j)∈δ−(y)

zkij ≥ 1, ∀y ⊂ Y − (4.22)

4.1.8 Constraints Which Initialize Time Variables tk,p
′,p

ijg

Time is 0 at the depot nodes. The following constraints initialize the time.

tk,1,1dij = 0, ∀(d, i) ∈ A, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K, ∀d ∈ D (4.23)

4.1.9 Constraints Which Calculate Time of Arrival at an Arc

The following constraints calculate the arrival time of a vehicle at an arc after traversing

another arc. If the vehicle is traversing a blocked arc, it may arrive at the next arc after

unblocking the current arc or after waiting until it is unblocked by another vehicle. If the

current arc is not a blocked arc, the vehicle traverses the arc with corresponding traversal

time and arrives at the next arc.

tk,1,pijg ≥ t
k,p′,1
hij + wk,1ij + bijz

k
ij + ciju

k,p′,1
hij −M(1− uk,p

′,1
hij ),

∀(i, j) ∈ B, ∀(h, i) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′,= 1, . . . , P (4.24)

tk,p
′,p

ijg ≥ tk,p
′′,p′

hij + ciju
k,p′′,p′

hij −M(1− uk,p
′′,p′

hij ), ∀(i, j) ∈ A, ∀(h, i) ∈ A,

∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′, p′′ = 1, . . . , P, ∀p′ = 1, . . . , P, (4.25)
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4.1.10 Constraints Required for Calculation of Waiting Time

Waiting time variables wk,pij are defined only for the blocked arcs and for the first time

of traversal by a vehicle. If a blocked arc is being traversed more than once, it has been

unblocked before and no waiting occurs. Constraints (4.26) state that, if two vehicles k and

l arrive at a blocked arc one after another, one of them unblocks and the other may have

to wait until it becomes unblocked.

tl,p
′,1

hij + wl,1ij ≥ t
k,p,1
hij + bijz

k
ij + ciju

k,p,1
hij −M(1− uk,p,1hij ),

∀(i, j) ∈ B, ∀(h, i) ∈ A, ∀k, l = 1, 2, . . . ,K, ∀p, p′,= 1, . . . , P (4.26)

wk,pij = 0 ∀(i, j) ∈ B, ∀k = 1, 2, . . . ,K, ∀p = 2, . . . , P (4.27)

4.1.11 Constraints Which Relate Variables tk,pij with uk,pij

Constraints (4.28) prevent time variables taking positive value unless an arc is traversed for

the pth (and p′th) time.

tk,p
′,p

ijg ≤Muk,p
′,p

ijg , ∀(i, j) ∈ A, ∀(j, g) ∈ A,

∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P (4.28)

4.1.12 Constraints Which Identify Precedence Between Variables tk,p
′,p

ijg

The following constraints imply that time increases as the number of traversal at an arc

increases.

tk,p
′,p

ijg ≥ tk,p
′,(p−1)

ijg , ∀(i, j) ∈ A, ∀(j, g) ∈ A,

∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P (4.29)

4.1.13 Constraints Which Relate Variables uk,pij with xkij and zkij

The following constraints define the binary variables uk,pij . As a vehicle traverses an arc

more than once, summation of variables uk,pij over p is equal to the total number of traversal
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of the arc (i, j). If a blocked arc is unblocked by a vehicle, this means, it is the first time of

the vehicle traversing that arc.

P∑
p=1

uk,pij = xkij , ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K (4.30)

uk,1ij ≥ z
k
ij , ∀(i, j) ∈ B, ∀k = 1, 2, . . . ,K (4.31)

4.1.14 Constraints Which Relate Variables uk,p
′,p

ijg with uk,pij

These constraints relate the variables uk,p
′,p

ijg with uk,pij .

uk,p
′,p

ijg ≤ uk,p
′

ij , ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P (4.32)

uk,p
′,p

ijg ≤ uk,pjg , ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P (4.33)

4.1.15 Constraints Which Define the Variables

Constraints (4.34) - (4.36) are integrality constraints whereas constraints (4.37) are binary

constraints. Constraints (4.38)-(4.40) state that flow variables and time variables are non-

negative real numbers. Finally, (4.41) and (4.42) assign variables uk,pij and uk,p
′,p

ijg binary

numbers.

xkij , x
k
ji ∈ Z+, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V (4.34)

xki(n+1) ∈ Z+, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.35)

vki ∈ Z+, ∀k = 1, 2, . . . ,K, ∀i ∈ V (4.36)

zkij ∈ B, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.37)

fkij , f
k
ji ∈ R+, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K (4.38)

tk,p
′,p

ijg ∈ R+, ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, 2, . . . , P (4.39)

wk,pij ∈ R+, ∀(i, j) ∈ B, ∀k = 1, 2, . . . ,K, p = 1 (4.40)

uk,p
′,p

ijg ∈ B, ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, 2, . . . , P (4.41)

uk,pij ∈ B, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K, ∀p = 1, 2, . . . , P (4.42)
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The following mathematical formulation finds the optimal routes for vehicles and mini-

mizes the maximum tour length among K vehicles. As a result the graph is connected and

no vehicle can traverse an arc before it is unblocked.

MIP Model of K-ARCP: MIP1

Minimize y

subject to∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈B

bijz
k
ij +

∑
(i,j)∈B

wk,1ij ≤ y, ∀k = 1, 2, . . . ,K (4.43)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 1, ∀d ∈ D, ∀k ∈ Pd (4.44)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 0, ∀d ∈ D, ∀k 6∈ Pd (4.45)

∑
j∈V ∪{(n+1)}

(xkij − xkji) = 0, ∀k = 1, 2, . . . ,K, ∀i ∈ V \D (4.46)

∑
j∈V

xkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.47)

xk(n+1)i = 0, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.48)

xkij ≥ zkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.49)

xkij ≤ 2(|Q| − 1)
K∑
k′=1

zk
′
ij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.50)

∑
j∈V

xkdj ≤
∑

(i,j)∈C

zkij , ∀d ∈ D, ∀k ∈ Pd (4.51)

∑
(i,j)∈C

zkij ≤ 2(|Q| − 1)
∑
j∈V

xkdj , ∀d ∈ D, ∀k ∈ Pd (4.52)

∑
j:(i,j)∈A,{i,j}∈V ∪{(n+1)}

(fkij − fkji) = −vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} \D

(4.53)∑
j∈V ∪{(n+1)}

(fkdj − fkjd) =
∑

i∈V ∪{(n+1)}\{d}

vki , ∀k ∈ Pd, ∀d ∈ D (4.54)

∑
j:(d,j)∈A,{i,j}∈V ∪{(n+1)}

(fkdj − fkjd) = −vkd , ∀d ∈ D, ∀k 6∈ Pd (4.55)

fkij ≤Mxkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.56)
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fkij ≥ xkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.57)

fk(n+1)j = 0, ∀j ∈ V, ∀k = 1, 2, . . . ,K (4.58)∑
j∈V

fkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.59)

∑
j:(i,j)∈A

xkji = vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} (4.60)

K∑
k=1

∑
(i,j)∈δ+(s)

zkij ≥ 1, ∀s ⊂ S (4.61)

K∑
k=1

∑
(i,j)∈δ−(s)

zkij ≥ 1, ∀s ⊂ S (4.62)

K∑
k=1

∑
(i,j)∈δ+(y)

zkij ≥ 1, ∀y ⊂ Y + (4.63)

K∑
k=1

∑
(i,j)∈δ−(y)

zkij ≥ 1, ∀y ⊂ Y − (4.64)

tk,1,1dij = 0, ∀(d, i) ∈ A, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K, ∀d ∈ D (4.65)

tk,1,pijg ≥ t
k,p′,1
hij + wk,1ij + bijz

k
ij + ciju

k,p′,1
hij −M(1− uk,p

′,1
hij ),

∀(i, j) ∈ B, ∀(h, i) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′,= 1, . . . , P (4.66)

tk,p
′,p

ijg ≥ tk,p
′′,p′

hij + ciju
k,p′′,p′

hij −M(1− uk,p
′′,p′

hij ), ∀(i, j) ∈ A, ∀(h, i) ∈ A,

∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′, p′′ = 1, . . . , P, ∀p′ = 1, . . . , P, (4.67)

tl,p
′,1

hij + wl,1ij ≥ t
k,p,1
hij + bijz

k
ij + ciju

k,p,1
hij −M(1− uk,p,1hij ),

∀(i, j) ∈ B, ∀(h, i) ∈ A, ∀k, l = 1, 2, . . . ,K, ∀p, p′,= 1, . . . , P (4.68)

wk,pij = 0 ∀(i, j) ∈ B, ∀k = 1, 2, . . . ,K, ∀p = 2, . . . , P (4.69)

tk,p
′,p

ijg ≤Muk,p
′,p

ijg , ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P

(4.70)

tk,p
′,p

ijg ≥ tk,p
′,(p−1)

ijg , ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P

(4.71)

P∑
p=1

uk,pij = xkij , ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K (4.72)

uk,1ij ≥ z
k
ij , ∀(i, j) ∈ B, ∀k = 1, 2, . . . ,K (4.73)
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uk,p
′,p

ijg ≤ uk,p
′

ij , ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P (4.74)

uk,p
′,p

ijg ≤ uk,pjg , ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, . . . , P (4.75)

xkij , x
k
ji ∈ Z+, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V (4.76)

xki(n+1) ∈ Z+, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.77)

vki ∈ Z+, ∀k = 1, 2, . . . ,K, ∀i ∈ V (4.78)

zkij ∈ B, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.79)

fkij , f
k
ji ∈ R+, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K (4.80)

tk,p
′,p

ijg ∈ R+, ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, 2, . . . , P (4.81)

wk,pij ∈ R+, ∀(i, j) ∈ B, ∀k = 1, 2, . . . ,K, p = 1 (4.82)

uk,p
′,p

ijg ∈ B, ∀(i, j) ∈ A, ∀(j, g) ∈ A, ∀k = 1, 2, . . . ,K, ∀p, p′ = 1, 2, . . . , P (4.83)

uk,pij ∈ B, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K, ∀p = 1, 2, . . . , P (4.84)

4.1.16 The Single Vehicle Case (ARCP) and Its Mathematical Model

In this thesis, as a special case of K-ARCP, we analyze the single vehicle case in which the

vehicle is positioned in a depot d. The single vehicle problem, ARCP, is easier to solve

because there is no requirement to consider the arrival time of the vehicle. Clearly, since

there is only one vehicle, it will unblock necessary arcs without waiting for an other vehicle

to unblock. Connectivity constraints are not necessary for every subset of components,

unblocking one arc incoming and one arc outgoing in each component’s cutset is sufficient

for strong connectivity. No subtour or subgraph of components will be in the optimal

solution, because we ensure connectivity of the walk by sending flow. Besides connectivity

and time related constraints and variables, some other constraints are not necessary as well.

For instance, constraints (4.9) and (4.10) are not required, since there is no other vehicle

which needs to unblock a road in order to start a walk. In the single vehicle case, all the

constraints which are multiplied as many as the number of vehicles are written according

to the single vehicle case. The mathematical formulation for ARCP is given below.

Decision Variables

xij : number of times that the vehicle traverses arc (i, j)
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zij : binary variable indicating if blocked arc (i, j) is unblocked

fij : flow variable on arc (i, j)

vi : number of times the vehicle visits node i

MIP Model of ARCP

Minimize
∑

(i,j)∈A

cijxij +
∑

(i,j)∈B

bijzij

subject to∑
j∈V ∪{(n+1)}

(xdj − xjd) = 1, d ∈ D (4.85)

∑
j∈V ∪{(n+1)}

(xij − xji) = 0, ∀i ∈ V \D (4.86)

∑
j∈V

xj(n+1) = 1 (4.87)

x(n+1)i = 0, ∀i ∈ V (4.88)

xij ≥ zij , ∀(i, j) ∈ B (4.89)

xij ≤ 2(|Q| − 1)zij , ∀(i, j) ∈ B (4.90)∑
j:(i,j)∈A,{i,j}∈V ∪{(n+1)}

(fij − fji) = −vi, ∀i ∈ V ∪ {(n+ 1)} \D (4.91)

∑
j∈V ∪{(n+1)}

(fdj − fjd) =
∑

i∈V ∪{(n+1)}\{d}

vi, d ∈ D (4.92)

fij ≤Mxij , ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.93)

fij ≥ xij , ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.94)

f(n+1)j = 0, ∀j ∈ V (4.95)∑
j∈V

fj(n+1) = 1 (4.96)

∑
(i,j)∈δ+(q)

zij ≥ 1, ∀q ⊂ Q (4.97)

∑
(i,j)∈δ−(q)

zij ≥ 1, ∀q ⊂ Q (4.98)

xij , xji ∈ Z+, ∀(i, j) ∈ A, {i, j} ∈ V (4.99)
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xi(n+1) ∈ Z+, ∀i ∈ V (4.100)

vi ∈ Z+, ∀i ∈ V (4.101)

zij ∈ B, ∀(i, j) ∈ B (4.102)

fij , fji ∈ R+, ∀(i, j) ∈ A (4.103)

4.1.17 Relaxations of MIP1

We again consider the multi-vehicle problem and provide the formulations of MIP2 and

MIP3 which are relaxed versions of MIP1.

MIP2 This is a relaxed model which results in a connected graph but walks may not have

the correct timing in terms of unblocking time of the blocked arcs. In this model, we

do not include time related constraints. Hence time related variables tk,pij , wk,pij , uk,pij

are not defined but we add connectivity constraints.

As an example of a connected but unsynchronized solution obtained from MIP2, we

can consider the 74 node data in Chapter 5. If we solve a three-component, three-

depot and three-vehicle instance by using MIP2 we obtain the following walks for

each vehicle:

23-21-20-19-16-10-16; 15-74-16-10-16; 32-29-68-65-68. In the first and the second walk

there are common blocked roads (16,10) and (10,16). In the solution of MIP2, vehicle

1 unblocks (16,10) and vehicle 2 unblocks (10,16). Vehicle 2 arrives at (10,16) after

traversing (16,10) assuming that it is unblocked before. Similarly, vehicle 1 traverses

(10,16) assuming that it is unblocked before. Note that (10,16) can be unblocked after

vehicle 2 traverses (16,10) which has to be unblocked by vehicle 1. As a result, vehicles

traverse arcs with no information about time of unblocking processes of blocked arcs.

Relaxed Model of K-ARCP: MIP2

Minimize y

subject to∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈B

bijz
k
ij ≤ y, ∀k = 1, 2, . . . ,K (4.104)
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∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 1, ∀d ∈ D, ∀k ∈ Pd (4.105)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 0, ∀d ∈ D, ∀k 6∈ Pd (4.106)

∑
j∈V ∪{(n+1)}

(xkij − xkji) = 0, ∀k = 1, 2, . . . ,K, ∀i ∈ V \D (4.107)

∑
j∈V

xkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.108)

xk(n+1)i = 0, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.109)

xkij ≥ zkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.110)

xkij ≤ 2(|Q| − 1)

K∑
k′=1

zk
′
ij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.111)

∑
j∈V

xkdj ≤
∑

(i,j)∈C

zkij , ∀d ∈ D, ∀k ∈ Pd (4.112)

∑
(i,j)∈C

zkij ≤ 2(|Q| − 1)
∑
j∈V

xkdj , ∀d ∈ D, ∀k ∈ Pd (4.113)

∑
j:(i,j)∈A,{i,j}∈V ∪{(n+1)}

(fkij − fkji) = −vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} \D

(4.114)∑
j∈V ∪{(n+1)}

(fkdj − fkjd) =
∑

i∈V ∪{(n+1)}\{d}

vki , ∀k ∈ Pd, ∀d ∈ D (4.115)

∑
j:(d,j)∈A,{i,j}∈V ∪{(n+1)}

(fkdj − fkjd) = −vkd , ∀d ∈ D, ∀k 6∈ Pd (4.116)

fkij ≤Mxkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.117)

fkij ≥ xkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.118)

fk(n+1)j = 0, ∀j ∈ V, ∀k = 1, 2, . . . ,K (4.119)∑
j∈V

fkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.120)

∑
j:(i,j)∈A

xkji = vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} (4.121)

K∑
k=1

∑
(i,j)∈δ+(s)

zkij ≥ 1, ∀s ⊂ S (4.122)
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K∑
k=1

∑
(i,j)∈δ−(s)

zkij ≥ 1, ∀s ⊂ S (4.123)

K∑
k=1

∑
(i,j)∈δ+(y)

zkij ≥ 1, ∀y ⊂ Y + (4.124)

K∑
k=1

∑
(i,j)∈δ−(y)

zkij ≥ 1, ∀y ⊂ Y − (4.125)

xkij , x
k
ji ∈ Z+, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V (4.126)

xki(n+1) ∈ Z+, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.127)

vki ∈ Z+, ∀k = 1, 2, . . . ,K, ∀i ∈ V (4.128)

zkij ∈ B, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.129)

fkij , f
k
ji ∈ R+, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K (4.130)

MIP3 This is a relaxation of MIP2 which may result in a disconnected graph with walks

that may not have the correct timing in terms of unblocking time of the blocked arcs.

In this model, we do not include time related and connectivity constraints. Hence

variables tk,pij , wk,pij , uk,pij are not defined. We add only one constraint (which is given

in the following paragraphs as constraint (4.131)) to force the vehicles unblock some

arcs. In order to show a disconnected and unsynchronized solution, a small example is

given in Figure 4.1. In this graph, the solution of relaxed model MIP3 is disconnected.

There are two depots, at node 1 and node 5, each with one vehicle; and there are five

nodes each representing a component. Objective value is 6 hours and the walks are

v1 − v2 − v3 and v5 − v4 which gives two disconnected subgraphs.

The following constraints (4.131) show that the number of arcs which are unblocked

must be at least 2(|Q| − 1). This is required for the relaxed model MIP3, otherwise the

objective value is zero due to lack of a constraint forcing the vehicles traversing the arcs.

K∑
k=1

∑
(i,j)∈C

zkij ≥ 2(|Q| − 1) (4.131)
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Figure 4.1: An instance which has a disconnected graph in the optimal solution of
MIP3

Proposition 1. In any optimal solution of the K-ARCP when there is more than one

vehicle and |Q| disconnected components (|Q| > 1), in cutsets of the components, in total,

there are at least 2(|Q| − 1) arcs which are unblocked. Furthermore, there are instances

in which any optimal solution may unblock more than 2(|Q| − 1) arcs in the component

cutsets.

Proof. The need for at least 2(|Q| − 1) arcs follows from strong connectivity. To show more

than 2(|Q| − 1) arcs may be unblocked, we present the following instance. There are four

components, one depot and two vehicles. The graph is shown in Figure 4.2. Dashed arcs

show the blocked arcs. d represents the depot vertex, unblocking and traversal times are

shown beside the blocked arcs. M is a large value representing a high traversal time on an

arc. In the optimal solution, vehicle 1 follows d−v5−v6−v7−v8−v7−v6−v5 and vehicle 2

follows d−v1−v2−v3−v4−v3. Arcs (v5, v6), (v7, v8), (v8, v7), (v6, v5), (v1, v2), (v3, v4), (v4, v3)

are unblocked. If vehicle 2 does not unblock arc (v1, v2), in order to connect v4 to the net-

work, it has to go through the arc with large cost, M. Such a solution would be suboptimal.

As a result, the number of arcs which are unblocked is seven and greater than 2(|Q| − 1)

which is six.
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Figure 4.2: Four Components and a Single Depot Case

With this example we prove that the number of arcs which are unblocked can be larger

than 2(|Q| − 1) in a unique optimal solution. As a result of Proposition 1, we cannot write

constraints (4.131) as equality.

The following mathematical formulation is the relaxed model MIP3 which finds the

routes for vehicles and minimizes the maximum tour length among K vehicles. The resulting

graph may be disconnected and the routes are not synchronized.

Relaxed Model of K-ARCP: MIP3

Minimize y

subject to∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈B

bijz
k
ij ≤ y, ∀k = 1, 2, . . . ,K (4.132)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 1, ∀d ∈ D, ∀k ∈ Pd (4.133)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 0, ∀d ∈ D, ∀k 6∈ Pd (4.134)

∑
j∈V ∪{(n+1)}

(xkij − xkji) = 0, ∀k = 1, 2, . . . ,K, ∀i ∈ V \D (4.135)

∑
j∈V

xkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.136)

xk(n+1)i = 0, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.137)
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xkij ≥ zkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.138)

xkij ≤ 2(|Q| − 1)
K∑
k′=1

zk
′
ij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.139)

∑
j∈V

xkdj ≤
∑

(i,j)∈C

zkij , ∀d ∈ D, ∀k ∈ Pd (4.140)

∑
(i,j)∈C

zkij ≤ 2(|Q| − 1)
∑
j∈V

xkdj , ∀d ∈ D, ∀k ∈ Pd (4.141)

∑
j:(i,j)∈A,{i,j}∈V ∪{(n+1)}

(fkij − fkji) = −vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} \D

(4.142)∑
j∈V ∪{(n+1)}

(fkdj − fkjd) =
∑

i∈V ∪{(n+1)}\{d}

vki , ∀k ∈ Pd, ∀d ∈ D (4.143)

∑
j:(d,j)∈A,{i,j}∈V ∪{(n+1)}

(fkdj − fkjd) = −vkd , ∀d ∈ D, ∀k 6∈ Pd (4.144)

fkij ≤Mxkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.145)

fkij ≥ xkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (4.146)

fk(n+1)j = 0, ∀j ∈ V, ∀k = 1, 2, . . . ,K (4.147)∑
j∈V

fkj(n+1) = 1, ∀k = 1, 2, . . . ,K (4.148)

∑
j:(i,j)∈A

xkji = vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} (4.149)

K∑
k=1

∑
(i,j)∈C

zkij ≥ 2(|Q| − 1) (4.150)

xkij , x
k
ji ∈ Z+, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V (4.151)

xki(n+1) ∈ Z+, ∀i ∈ V, ∀k = 1, 2, . . . ,K (4.152)

vki ∈ Z+, ∀k = 1, 2, . . . ,K, ∀i ∈ V (4.153)

zkij ∈ B, ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (4.154)

fkij , f
k
ji ∈ R+, ∀(i, j) ∈ A, ∀k = 1, 2, . . . ,K (4.155)
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Chapter 5

DATA ACQUISITION AND GENERATION

For computational experiments, we constructed a network of Istanbul which is obtained

by considering province centers and real road distances. By using Google Maps, we iden-

tified strategically important locations such as province centers, and provinces which have

hospitals, disaster coordination centers, ports, airports, bus terminals, bridges. Some of

these locations are used also as depots. Possible depot points are given in Table 5.1. De-

pot points are determined according to the locations related to highway maintenance, the

locations which may have machinery e.g. cranes, trucks. There are 74 nodes including 38

province centers, 34 populated districts (See Figure 5.1). In total there are 358 links (716

arcs) (See Figure 5.2). Arcs are created according to the neighborhood relation between

nodes. Since the network is for transportation purposes it is crucial to find the real dis-

tances between nodes. The road distances can be seen in Appendix A, these distances are

symmetric, that is, the travel times are the same for both directions for a pair of nodes.

Travel times are determined by using road distances which are calculated by using Google

Maps. We assumed on the average 50km/h fixed speed for vehicles and converted road

distances to time measure by dividing distance by speed.
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Province Node

Disaster Coordination Center Kaǧıthane 23
General Directorate of Highways (GDH) Division of Machinery Supply Maltepe 29

GDH Division of Road Maintenance and Repair Kartal 32
GDH Division of Road Maintenance and Repair Edirnekapı/Eyüp 15

GDH Regional Division of Maintenance and Operations Kavacık 27
GDH Regional Division of Maintenance and Operations Kurtköy/Pendik 36

General Directorate of Highways (GDH) Kaǧıthane 23

İstanbul Metropolitan Municipality Fatih 19

İstanbul Metropolitan Municipality-Additional Building Merter/Güngören 17

Table 5.1: Possible Depot Locations
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Figure 5.1: Nodes on Istanbul Map from Google Earth
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Figure 5.2: The Network Representing the Main Roads of İstanbul
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The scenarios that have different sets of blocked roads are generated by referring to

the latest earthquake risk map of Istanbul which is reported by The Japan International

Cooperation Agency (JICA) and Istanbul Metropolitan Municipality in a study in 2002

[22] (See Figure 5.3). Roads are classified into three, based on the earthquake risk map:

High Risk Roads-the bottom part on Figure 5.3 (See Table B.1 in Appendix B for high risk

roads), Low Risk Roads-the second block from the bottom on Figure 5.3 (See Table B.2 in

Appendix B for low risk roads) and the remaining ones-the remaining two blocks on the top

on Figure 5.3.
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Figure 5.3: Earthquake Risk Map of Istanbul
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Ten different scenarios are created on the whole network. More roads are picked to be

blocked in high risk area than in low risk area, but within each risk area blocked roads

are selected randomly. As a result some disconnected components are formed. In order

to see the effect of the number of components on the computational performance, number

of disconnected components varies between 3-6. Number of disconnected components and

number of blocked roads in each scenario are given in Table 5.2.

Scenarios
(S)

Number
of
Blocked
Arcs
(|B|)

Number
of
Com-
po-
nents
(|Q|)

1 30 3
2 32 3
3 40 4
4 44 3
5 54 4
6 60 4
7 74 5
8 80 6
9 80 6
10 82 5

Table 5.2: Scenarios

After a disaster, every road segment gets affected in a different degree. For each scenario,

two time levels are considered here for unblocking time (bij), which represents a high and

low level of damage. All unblocking times are proportional to the length of the arcs, thereby

are proportional to traversal time. In high unblocking time case, unblocking operations take

longer time than those in low unblocking time case, due to a higher level of damage. For

these two cases, with different ratios, blocked roads are classified into three: High damage,

medium damage, low damage. In two cases, distribution of these roads differ. A road can

be either a high damage, a medium damage or a low damage road. In high unblocking time

case, there are more number of high damage roads, and less number of low damage roads.
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Similarly, in low unblocking time case, there are more number of low damage roads and less

number of high damage roads. For example, in a scenario with high unblocking time input,

60% of the blocked arcs have high damage, while 10% of the blocked arcs have low damage.

We set the ratios of roads in each cases as those listed in Table 5.3. Then, for each type

of road, a parameter α is defined and it is multiplied by the traversal time. As a result

the unblocking times (bij) are formed. Parameter α which has a uniform distribution, takes

values between (10, 50), (5, 10) and (2, 5) depending on the degree of damage on the roads.

Value of α is high for the high damage roads, low for the low damage roads and moderate

for the remaining. Table 5.3 shows the classification of roads according to damage level and

values of α.

High Unblocking Time Low Unblocking Time

High
damage

Medium
damage

Low
damage

High
damage

Medium
damage

Low
damage

Prob. 0.6 0.3 0.1 0.1 0.3 0.6

α Uniform
(10,50)

Uniform
(5,10)

Uniform
(2,5)

Uniform
(10,50)

Uniform
(5,10)

Uniform
(2,5)

Table 5.3: Damage Level, Probabilities, α, Classification of Blocked Roads
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Chapter 6

COMPUTATIONAL EXPERIMENTS AND RESULTS

MIP1 contains time constraints and connectivity constraints which require enumeration

of all subsets of components. Due to size of the data, solving the model MIP1 takes a

long time. Even solving MIP2 is hard, but since this is a more relaxed model, runtime

performance of the model is expected to be better. The main purpose of this study is to

find the action routes for vehicles quickly, so that after a disaster the blocked roads can be

opened as fast as possible. For this reason, instead of analyzing computational results of

MIP1, this thesis focuses on the relaxed but computationally faster model MIP2.

Moreover, the model for single vehicle case gives feasible solution. There are no waiting

time and synchronization issues between the vehicles, thus optimal solution can be obtained

by solving single vehicle single depot formulation. Therefore, we investigate the single vehicle

case, then relaxations are investigated for multi vehicle case.

In order to evaluate computational performance, we used GAMS 24.0 and a 64-bit, 2

processors, Intel Xeon CPU E5-2643, 3.30 GHz, 32 GB RAM operating system for the

experiments. CPLEX 12.5 was employed to solve the models with options threads 0, paral-

lelmode 1 turned on. By this setting, CPLEX is run as a multi-threaded application. One

hour (3600 s) of time limit is set.

The objectives of the models in this study are to minimize the total travel time for single

vehicle case, to minimize the longest travel time for multi vehicle case and the computational

objective is to maximize the lower bound and runtime of the model.

In this thesis, effect of the following issues on computational performance is analyzed for

single vehicle case: Degree of Damage, Location of the Depot. Moreover,for multi vehicle

case, we analyze the effect of the following issues on computational performance of the

models MIP2 and MIP3 : Degree of Damage, Number of Vehicles and Number of Depots.
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6.1 Single Vehicle Case (ARCP)

For a single vehicle, single depot case, first, effect of damage level; then effect of location of

depot on the computational performance are analyzed.

6.1.1 Effect of Degree of Damage (Effect of bij Values on the Solution)

Two damage levels are used when the depot node is 23, and there is only one vehicle deployed

in the depot. The results can be seen in Table 6.1. All scenarios can be solved to optimality

in a short time (at most 114 seconds). On average, low unblocking time case gives 23%

higher runtime.

High Unblocking Time Low Unblocking Time

S |B| |Q| Obj.
(hr)

Gap
(%)

Time
(s)

Obj.
(hr)

Gap
(%)

Time
(s)

1 30 3 4.46 0 39 2.51 0 30
2 32 3 2.96 0 8 2.4 0 10
3 40 4 8.5 0 8 5.13 0 9
4 44 3 6.4 0 6 3.42 0 9
5 54 4 3.34 0 8 2.66 0 8
6 60 4 6.09 0 13 3.43 0 9
7 74 5 7.3 0 50 5.49 0 114
8 80 6 11.16 0 27 5.93 0 27
9 80 6 9.05 0 23 5.87 0 17
10 82 5 8.2 0 14 3.51 0 21

AVERAGE 6.75 0 20 4.04 0 26

Table 6.1: Effect of Degree of Damage and Computational Results - Single Vehicle
Case

6.1.2 Effect of Location of the Depot on the Solution

In order to evaluate the effect of the location of the depot on the computational performance,

we picked different nodes as the depot and solved the model with high unblocking time.

Nodes 15, 23, 27, 29 and 32 are picked randomly as depots among the potential depots.

Nodes 15 and 23 are located in European side of Istanbul, whereas nodes 27, 19 and 32 are

in Asian side.
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Table 6.2 shows the result for all scenarios. All scenarios are solved to optimality within

the time limit. Objective value does not change much as the depot changes. For the single

vehicle case, choosing node 29 as the depot seems rational since it gives a better solution

in terms of objective value and runtime. The reason of this performance may be due to

the location of the depot and layout of the network. The network has a rectangular shape

and node 29 resides on bottom-right of it. Node 32 has a similar setting as well. The other

depots are in a more central position with respect to layout of the network. Starting from

the edges and connecting the components may result in a shorter travel time. However,

starting from a central location may result traversals back and forth to the component in

the center. Therefore, the travel time may be longer.

6.2 Multiple Vehicle Case (K-ARCP)

6.2.1 Effect of Degree of Damage (Effect of bij Values on the Solution)

As explained in the previous chapter, two different damage levels are considered: high

and low unblocking time. In order to see the effect of damage level on the gap between

lower bound and objective values, and on runtime we solve the MIP2 and MIP3 on 10

different scenarios. One of the nodes, that is node 23, is picked as the depot according to its

strategic importance on road clearance and maintenance operations. There are two vehicles

positioned in the depot. For each scenario, both cases with high and low unblocking time

are examined. The results can be seen in Tables 6.3 and 6.4. As the number of components

and blocked arcs increase, effect of damage level on runtime can be seen more clearly. As

the level of damage decreases, solution time increases. On average, lower unblocking time

results in a lower objective value, but the decision of arcs to unblock gets more difficult due

to low unblocking time and runtime increases. There are instances which cannot be solved

without gap by using model MIP2 within time limit of 3600 s. When we increase the time

limit to 21600 s. the gap becomes zero for the instances which cannot be solved within 3600

s. Only one instance (Scenario 9, low unblocking time) has 3% gap even after 21600 s. time

limit. On the other hand, the more relaxed model MIP3 solves all in one hour with no gap.

If we check the solutions found by model MIP2 with both high and low unblocking time

settings, we observe that except five instances out of 20 instances are solved to optimality.

The walks of these solutions can be seen in Appendix C. The graphs in these solutions
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Depot ID: 15 Depot ID: 23

S Obj.
(hr)

Gap
(%)

Time
(s)

Obj.
(hr)

Gap
(%)

Time
(s)

1 4.3 0 10 4.46 0 39
2 2.8 0 6 2.96 0 8
3 8.59 0 8 8.5 0 8
4 6.22 0 6 6.4 0 6
5 3.15 0 6 3.34 0 8
6 5.91 0 9 6.09 0 13
7 7.16 0 22 7.3 0 50
8 11.08 0 29 11.16 0 27
9 8.86 0 13 9.05 0 23
10 8.15 0 11 8.2 0 14

AVR. 6.62 0 12 6.75 0 20

Depot ID: 27 Depot ID: 29

S Obj.
(hr)

Gap
(%)

Time
(s)

Obj.
(hr)

Gap
(%)

Time
(s)

1 4.5 0 15 4.01 0 6
2 3.15 0 9 2.74 0 5
3 8.57 0 8 8.37 0 8
4 7.69 0 12 7.01 0 6
5 3.51 0 8 3.01 0 6
6 6.25 0 15 6.05 0 8
7 7.38 0 32 6.46 0 8
8 11.16 0 39 10.41 0 11
9 9.28 0 13 8.82 0 11
10 8.2 0 14 7.81 0 9

AVR. 6.97 0 17 6.47 0 8

Depot ID: 32
S Obj.

(hr)
Gap
(%)

Time
(s)

1 4.14 0 7
2 2.87 0 6
3 8.5 0 8
4 7.14 0 6
5 3.14 0 6
6 5.92 0 19
7 6.33 0 9
8 10.28 0 12
9 9.01 0 18
10 8.41 0 11
AVR. 6.58 0 11

Table 6.2: Effect of Location of the Depot on the Solution-Single Vehicle Case
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are strongly connected and there is no situation which requires waiting time of any vehicle.

When we check one of the infeasible solutions, we can see that the infeasible solution can be

fixed by adding waiting times but the objective value increases. Some blocked arcs should be

unblocked by a vehicle before another vehicle traverses it. In an infeasible solution of MIP2,

this point is ignored and an arc is traversed by a vehicle although it is not unblocked by

another vehicle. We can describe how we fix an infeasible solution on Scenario 4 with high

damage level which can be seen below. Equality sign (=) shows the arcs which are unblocked

by the corresponding vehicle. The others are the ones which are not blocked in the disaster

situation. Both vehicles arrive at node 41 at the same time but the infeasible solutions

shows that the arc (41 − 11) is unblocked by Vehicle 1 and Vehicle 2 traverses it without

any waiting although the arc is not unblocked yet. Therefore, Vehicle 2 should wait for 0.5

hour until (41−11) is unblocked by Vehicle 1. Similarly, when the traversal, unblocking and

waiting times are calculated, it is seen that Vehicle 1 should wait for Vehicle 2 until Vehicle

2 unblocks (11− 41). Vehicle 1 also should wait at node 6 for Vehicle 2 unblocking (6− 5).

As a result, the objective increases from 3.91 to 5.7 but the solution becomes feasible. The

other infeasible solutions can be fixed as well in a similar way. These results will give us an

upper bound for the objective value. Feasible solutions can be seen in Appendix C. Note

that in Scenario 3, low unblocking time feasible solution does not have any waiting time.

By allowing the first arriving vehicle to unblock a blocked arc sometimes eliminates waiting

times, as it can be seen in this instance. Moreover, Table 6.5 shows the lower bounds (LB)

obtained from MIP2 for each scenario with a single depot and two vehicles. The upper

bound (UB) is the solution of MIP2 in cases where the gap is zero and in the other cases,

a feasible solution is obtained from MIP2 solution by inserting waiting times. The upper

bound refers to these solutions. For these solution the gap between lower bound and upper

bound is also given.

Vehicle 1 23− 49− 18− 13− 12− 41 = 11− 41− 9− 8− 6− 5 = 3

Vehicle 2 23− 49− 18− 13− 12− 41− 11 = 41− 9− 8− 6 = 5

To compare two relaxed models in high and low unblocking time cases, see Table 6.6

and 6.7. MIP3 is better in runtime but it may result in disconnected and unsynchronized

walks. On average, it is around 40% less than the lower bound which is obtained by solving

MIP2 (41% less for high unblocking time, 45% for low unblocking time). We calculate this

value by using the following formula:
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High Unblocking Time Low Unblocking Time

S |B| |Q| Obj.
(hr)

LB Gap
(%)

Time
(s)

Obj.
(hr)

LB Gap
(%)

Time
(s)

1 30 3 2.49 2.49 0 866 1.09 1.09 0 37
2 32 3 1.47 1.47 0 9 1.37 1.37 0 34
3 40 4 4.93 4.93 0 9192 3.01 3.01 0 349
4 44 3 3.91 3.91 0 40 2.39 2.39 0 5
5 54 4 1.71 1.71 0 9 1.5 1.5 0 15
6 60 4 3.42 3.42 0 128 1.82 1.82 0 131
7 74 5 3.46 3.46 0 79 2.72 2.72 0 6673
8 80 6 5.49 5.49 0 590 3.19 3.19 0 16863
9 80 6 4.81 4.81 0 1684 3.42 3.32 2.9 21600
10 82 5 4.25 4.25 0 89 1.93 1.93 0 118

AVERAGE 3.59 3.59 0 1269 2.24 2.23 0.29 4583

Table 6.3: Effect of Degree of Damage and Computational Results - MIP2 (two
vehicles, single depot)

High Unblocking Time Low Unblocking Time

S |B| |Q| Obj.
(hr)

LB Gap
(%)

Time
(s)

Obj.
(hr)

LB Gap
(%)

Time
(s)

1 30 3 1.64 1.64 0 7 1.07 1.07 0 27
2 32 3 1.37 1.37 0 7 0.91 0.91 0 15
3 40 4 3.37 3.37 0 7 1.67 1.67 0 18
4 44 3 1.52 1.52 0 6 1 1 0 36
5 54 4 1 1 0 7 0.42 0.42 0 7
6 60 4 1.74 1.74 0 9 1.47 1.47 0 35
7 74 5 2.34 2.34 0 16 1.54 1.54 0 62
8 80 6 2.74 2.74 0 9 1.06 1.06 0 9
9 80 6 2.63 2.63 0 57 2.14 2.14 0 19
10 82 5 2.94 2.94 0 63 0.99 0.99 0 6

AVERAGE 2.13 2.13 0 18.8 1.23 1.23 0 24

Table 6.4: Effect of Degree of Damage and Computational Results - MIP3 (two
vehicles, single depot)
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S Unblocking
Time

LB UB Gap
(%)

1
High 2.49 2.49 0
Low 1.09 1.09 0

2
High 1.47 1.47 0
Low 1.37 1.37 0

3
High 4.93 5.54 12
Low 3.01 3.86 28

4
High 3.91 5.7 46
Low 2.39 3.61 51

5
High 1.71 1.71 0
Low 1.5 1.5 0

6
High 3.42 3.42 0
Low 1.82 1.82 0

7
High 3.46 3.46 0
Low 2.72 3 10

8
High 5.49 5.49 0
Low 3.19 3.19 0

9
High 4.81 4.81 0
Low 2,9 2,9 0

10
High 4.25 4.25 0
Low 1.93 1.93 0

AVERAGE 2.89 3.13 7,39

Table 6.5: Lower Bound obtained from MIP2 and Upper Bound obtained by making
MIP2 solution feasible in Scenarios 3, 4, 7 (two vehicles, single depot)
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(LBMIP2 − LBMIP3)

LBMIP2

× 100

MIP2 MIP3

S Obj.
(hr)

LB Gap
(%)

Time
(s)

Obj.
(hr)

LB Gap
(%)

Time
(s)

1 2.49 2.49 0 866 1.64 1.64 0 7
2 1.47 1.47 0 9 1.37 1.37 0 7
3 4.93 4.93 0 9192 3.37 3.37 0 7
4 3.91 3.91 0 40 1.52 1.52 0 6
5 1.71 1.71 0 9 1 1 0 7
6 3.42 3.42 0 128 1.74 1.74 0 9
7 3.46 3.46 0 79 2.34 2.34 0 16
8 5.49 5.49 0 590 2.74 2.74 0 9
9 4.81 4.81 0 1684 2.63 2.63 0 57
10 4.25 4.25 0 89 2.58 2.58 0 63

AVR. 3.59 3.59 0 1269 2.13 2.13 0 19

Table 6.6: Comparison of Relaxed Models MIP2 and MIP3 - High Unblocking Time

Since on average, high unblocking time cases result in lower runtime, in order to have

solvable cases for the difficult instances, in the upcoming sections we use high unblocking

time.

6.2.2 Effect of the Number of Vehicles on Computational Performance

In order to investigate the effect of the number of vehicles (K) on computational perfor-

mance, we select a distinguished vertex as the depot and increase the number of vehicles

which are deployed at this depot one by one. For the relaxed model MIP2, as the num-

ber of vehicles increases, runtime and gap between lower bound and the objective usually

increase. Although there are scenarios which can be solved with zero gap, many of the

scenarios cannot reach the zero gap within the time limit of one hour. As the number of

vehicles increases, objective value decreases. Doubling the number of vehicles when there

is one vehicle, reduces the value of the objective function by approximately 50% at each

scenario. However, the improvement in the objective value stops at some point. For some
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MIP2 MIP3

S Obj.
(hr)

LB Gap
(%)

Time
(s)

Obj.
(hr)

LB Gap
(%)

Time
(s)

1 1.09 1.09 0 37 1.07 1.07 0 27
2 1.37 1.37 0 34 0.91 0.91 0 15
3 3.01 3.01 0 349 1.67 1.67 0 18
4 2.39 2.39 0 5 1 1 0 36
5 1.5 1.5 0 15 0.42 0.42 0 7
6 1.82 1.82 0 131 1.47 1.47 0 35
7 2.72 2.72 0 6673 1.54 1.54 0 62
8 3.19 3.19 0 16863 1.06 1.06 0 9
9 3.42 3.18 2.9 21600 2.14 2.14 0 19
10 1.93 1.93 0 118 0.99 0.99 0 6

AVR. 2.24 2.23 0.29 4583 1.22 1.22 0 24

Table 6.7: Comparison of Relaxed Models MIP2 and MIP3 - Low Unblocking Time

scenarios, after |Q| − 1 vehicles there is no improvement on the objective, whereas for some

scenarios improvement stops after |Q|+ 1 vehicles. We can suggest that, minimum |Q| − 1

vehicles can be utilized for unblocking operations. We can comment that, approximately

one vehicle is assigned for connecting one component. Upper limit for this number is |Q|+1.

Computational results of all scenarios until the improvement in the objective stops can be

seen in Tables 6.8 and 6.9.

We solve the second relaxed model MIP3 for the same scenarios as well. Since MIP3 is

a more relaxed model than MIP2, the average values for runtime, lower bound and gap are

smaller. Similar to the result of MIP2, minimum |Q| − 1 vehicles can be sufficient. Upper

limit for the number of vehicles for model MIP3 is Q. After Q vehicles, for some scenarios,

there is no improvement in the objective value. The results can be seen in Tables 6.10 and

6.11.

6.2.3 Effect of the Number of Depots on Computational Performance

In this part, we investigate the effect of the number of depots (|D|) on the computational

performance. For each scenario, we start with one depot with one vehicle, then increase

the number of depots till |D| = |Q|. For multi-depot cases, one vehicle is deployed in each

depot. In one-depot case, the depot is located in Europe side of Istanbul. Additional depot
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S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

1 3

1 4.46 4.46 0 39
2 2.49 2.49 0 866
3 1.69 1.69 0 449
4 1.69 1.39 17.75 3600

2 3

1 2.96 2.96 0 8
2 1.47 1.47 0 9
3 1.37 1.37 0 921
4 1.05 1.05 0 119
5 1.05 0.98 6.29 3600

3 4

1 8.5 8.5 0 8
2 4.93 4.83 1.97 3600
3 3.78 3.78 0 828
4 3.16 2.46 22.15 3600
5 2.68 1.87 30.15 3600
6 2.68 1.54 42.54 3600

4 3

1 6.4 6.4 0 6
2 3.91 3.91 0 40
3 3.29 3.29 0 290
4 3.29 2.44 25.74 3600

5 4

1 3.34 3.34 0 8
2 1.71 1.71 0 9
3 1.49 1.49 0 514
4 1.28 1.28 0 206
5 1.28 1.19 7.27 3600

Table 6.8: Effect of the Number of Vehicles on Computational Performance - MIP2
(cont’d)
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S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

6 4

1 6.09 6.09 0 13
2 3.42 3.42 0 128
3 2.28 2.28 0 909
4 2.22 2.12 4.5 3600
5 2.22 1.3 41.44 3600

7 5

1 7.3 7.3 0 50
2 3.46 3.46 0 79
3 2.62 2.62 0 3385
4 2.34 1.93 17.73 3600
5 2.11 1.67 20.66 3600
6 1.99 1.99 0 548
7 1.99 0.96 51.78 3600

8 6

1 11.16 11.16 0 27
2 5.49 5.49 0 590
3 4.07 3.66 10.18 3600
4 3.38 2.59 23.51 3600
5 2.75 2.12 22.89 3600
6 2.56 2.32 9.38 3600
7 2.42 1.35 44.21 3600
8 2.42 1.38 43.03 3600

9 6

1 9.05 9.05 0 23
2 4.81 4.81 0 1684
3 3.61 3.16 12.4 3600
4 3.04 2.23 26.49 3600
5 2.41 2.26 6.22 3600
6 2.41 1.48 38.65 3600

10 5

1 8.2 8.2 0 14
2 4.25 4.25 0 89
3 3.25 2.91 10.46 3600
4 2.54 2.24 11.64 3600
5 2.31 2.31 0 2540
6 2.31 2.31 0 1572

AVERAGE 3.4 3.15 9.8 1893

Table 6.9: Effect of the Number of Vehicles on Computational Performance - MIP2
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S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

1 3

1 2.9 2.9 0 5
2 1.64 1.64 0 7
3 1.64 1.64 0 238

2 3

1 2.6 2.6 0 5
2 1.37 1.37 0 7
3 1.37 1.22 11.08 3600

3 4

1 8.39 8.39 0 24
2 3.37 3.37 0 7
3 1.7 1.7 0 7
4 1.7 1.7 0 14

4 3

1 3.5 3.5 0 5
2 1.52 1.52 0 6
3 1.52 1.48 2.63 3600

5 4

1 2.14 2.14 0 6
2 1 1 0 7
3 0.74 0.74 0 9
4 0.72 0.72 0 1699
5 0.72 0.51 28.77 3600

Table 6.10: Effect of the Number of Vehicles on Computational Performance - MIP3
(cont’d)
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S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

6 4

1 4.32 4.32 0 5
2 1.74 1.74 0 9
3 1 1 0 15
4 1 0.96 4 3600

7 5

1 5.01 5.01 0 11
2 2.34 2.34 0 16
3 1.84 1.73 5.97 3600
4 1.19 1.19 0 158
5 1.19 0.87 26.74 3600

8 6

1 5.68 5.68 0 7
2 2.74 2.74 0 9
3 2.2 1.99 10.04 3600
4 1.66 1.58 5.07 3600
5 1.18 1.18 0 98
6 1.18 0.9 23.31 3600

9 6

1 5.13 5.13 0 5
2 2.63 2.63 0 57
3 2.06 1.74 15.69 3600
4 1.55 1.28 17.33 3600
5 1.18 1.01 14.58 3600
6 1.01 0.77 23.53 3600
7 1.01 0.68 32.81 3600

10 5

1 6.22 6.22 0 8
2 2.94 2.94 0 63
3 2.18 2.18 0 3281
4 1.14 1.14 0 19
5 1.14 1.14 0 276

AVERAGE 2.24 2.18 4.92 1256

Table 6.11: Effect of the Number of Vehicles on Computational Performance - MIP3
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in the two-depot case is located in the Asian side of Istanbul. As we increase the number

of depots, we pick them from different sides of the city in order to reduce the effect of the

depots’ locations. For example, for the four depot case, we pick two depots from the Asian

and the European sides. Moreover, in each scenario we try to choose the depots from those

listed in Table 5.1 to be located in different components. Table 6.12 shows the depots which

are used in each scenario.

S 1 depot 2 depots 3 depots 4 depots 5 depots 6 depots

1 23 15,32 15,32,23 - - -
2 23 15,32 15,32,23 - - -
3 23 15,32 15,32,17 15,32,17,36 - -
4 23 15,32 15,32,23 - - -
5 23 15,32 15,32,17 15,32,17,36 - -
6 23 15,32 15,32,19 15,32,19,36 - -
7 23 15,32 15,32,23 15,32,23,27 15,32,23,27,36 -
8 23 15,32 15,32,17 15,32,17,36 15,32,17,36,19 15,32,17,36,19,23
9 23 15,32 15,32,17 15,32,17,36 15,32,17,36,19 15,32,17,36,19,23
10 23 15,32 15,32,19 15,32,19,29 15,32,19,29,23 -

Table 6.12: Depot Nodes Which Are Used In Each Scenario

If we solve the relaxed model MIP2 for all scenarios, we see that objective value decreases

as the number of depots increases. At the same time, usually, the gap between lower bound

and the objective value and run time increases. However, if we analyze in terms of runtime,

we observe that less number of depots does not always give better runtime. Location of

depots which are utilized is also important. A reasonable approach for selecting depots can

be choosing the ones which has more blocked edges or disconnected components around.

Table 6.13 shows, for each scenario, the effect of the number of depots on computational

performance.

When we solve MIP3, we observe a similar trend in the results. Objective value decreases

as the number of depots increases. Since it is a more relaxed model than MIP2 and easier

to solve, we do not observe any gap between lower bound and the objective value except

some scenarios. Moreover, on the average, MIP3 gives lower values for the measures than

MIP2. Table 6.14 shows the results for MIP3.

Furthermore, if we compare effect of the number of vehicles and effect of the number of
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S |Q| |D| Obj.(hr) LB Gap(%) Time(s)

1 3
1 4.46 4.46 0 39
2 2.32 2.32 0 20
3 1.53 1.53 0 37

2 3
1 2.96 2.96 0 8
2 1.31 1.31 0 7
3 0.98 0.98 0 8

3 4

1 8.5 8.5 0 8
2 4.89 4.89 0 135
3 3.49 3.49 0 199
4 3.14 3.06 2.51 3600

4 3
1 6.4 6.4 0 6
2 4.06 4.06 0 33
3 3.22 3.13 2.8 3600

5 4

1 3.34 3.34 0 8
2 1.43 1.43 0 8
3 1.37 1.37 0 29
4 0.89 0.89 0 8

6 4

1 6.09 6.09 0 13
2 2.96 2.96 0 9
3 2.11 2.11 0 24
4 1.76 1.66 5.57 3600

7 5

1 7.3 7.3 0 50
2 3.12 3.12 0 15
3 2.49 2.38 4.28 3600
4 1.97 1.61 18.22 3600
5 1.68 1.44 14.29 3600

8 6

1 11.16 11.16 0 27
2 5.27 5.27 0 39
3 3.65 3.65 0 410
4 3.04 2.73 10.33 3600
5 2.57 2.17 15.46 3600
6 2.09 1.84 11.9 3600

9 6

1 9.05 9.05 0 23
2 4.44 4.44 0 141
3 3.37 3.26 3.32 3600
4 2.35 2.35 0 232
5 2.16 1.91 11.54 3600
6 2.12 1.58 25.47 3600

10 5

1 8.2 8.2 0 14
2 4.63 4.63 0 255
3 3.2 3.2 0 1365
4 2.56 2.41 5.9 3600
5 2.11 2.11 0 242

AVERAGE 3.62 3.55 3.06 1168

Table 6.13: Effect of the Number of Depots on Computational Performance(K = |D|,
one vehicle at each depot) - MIP2
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S |Q| |D| Obj. (hr) LB Gap
(%)

Time (s)

1 3
1 2.9 2.9 0 5
2 1.73 1.73 0 11
3 1.32 1.32 0 9

2 3
1 2.6 2.6 0 5
2 1.31 1.31 0 6
3 0.98 0.98 0 17

3 4

1 8.39 8.39 0 24
2 3.46 3.46 0 9
3 1.92 1.92 0 6
4 1.79 1.79 0 88

4 3
1 3.5 3.5 0 5
2 2.17 2.17 0 22
3 1.52 1.52 0 34

5 4

1 2.14 2.14 0 6
2 1.37 1.37 0 11
3 1 1 0 23
4 0.86 0.86 0 26

6 4

1 4.32 4.32 0 5
2 2.1 2.1 0 26
3 1.56 1.56 0 35
4 1.56 1.56 0 3251

7 5

1 5.01 5.01 0 11
2 2.68 2.68 0 13
3 1.84 1.84 0 71
4 1.44 1.44 0 681
5 1.38 1.18 14.49 3600

8 6

1 5.68 5.68 0 7
2 3.05 3.05 0 15
3 2.09 2.09 0 26
4 1.94 1.94 0 156
5 1.5 1.49 0.4 3600
6 1.18 1.18 0 182

9 6

1 5.13 5.13 0 5
2 2.97 2.97 0 316
3 1.92 1.92 0 511
4 1.84 1.84 0 3064
5 1.37 1.37 0 546
6 1.08 1.08 0 2533

10 5

1 6.22 6.22 0 8
2 3.55 3.55 0 1729
3 2.09 2.09 0 993
4 1.98 1.98 0 2041
5 1.69 1.69 0 2456

AVERAGE 2.47 2.46 0.35 610

Table 6.14: Effect of the Number of Depots on Computational Performance(K = |D|,
one vehicle at each depot) - MIP3
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depots on the relaxed model MIP3, we see that utilizing more vehicles at a single depot is

more difficult to solve than using more depots each with a single vehicle. Consider Scenario

9 with 6 components and 80 initially blocked edges. If we solve MIP3 with single depot

and increase the number of vehicles, 5 of 7 instances cannot be solved to optimality within

the time limit. When there are multiple depots, only one of 6 instances cannot be solved in

one hour. These results can be seen in Table 6.15 and Table 6.16.

S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

9 6

1 5.13 5.13 0 5
2 2.63 2.63 0 57
3 2.06 1.74 15.69 3600
4 1.55 1.28 17.33 3600
5 1.18 1.01 14.58 3600
6 1.01 0.77 23.53 3600
7 1.01 0.68 32.81 3600

Table 6.15: Effect of the Number of Vehicles on Computational Performance - MIP3,
Scenario 9

S |Q| |D| Obj.
(hr)

Gap
(%)

Time
(s)

9 6

1 5.13 0 5
2 2.97 0 316
3 1.92 0 511
4 1.84 0 3064
5 1.37 0 546
6 1.08 0 2533

Table 6.16: Effect of the Number of Depots on Computational Performance(K = |D|,
one vehicle at each depot) - MIP3, Scenario 9

Moreover, for a further analysis, we consider MIP2 for Scenario 9 with different number

of vehicles and depots and increase the time limit from 3600 s. (1 hour) to 21600 s. (6 hours)

for the instances which cannot be solved without gap in one hour. Table 6.17 and Table

6.18 show the results. Among these instances, only five out of 13 instances give a feasible
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solution. As the number of vehicles and depots increase solutions become infeasible due to

the blocked arcs which are traversed by more than one vehicle. The model MIP2 cannot

make the walks synchronized with the correct timing. If we consider the gap between lower

bound and the objective, although gap values decrease, some instances still cannot be solved

with no gap within six hours. For example, for a larger number of vehicles, increasing the

time limit to 21600 s. is not enough to solve the model without any gap. Those instances

with 3, 4, 5 and 6 vehicles still have gap. For a larger number of depots, increasing the time

limit works for zero gap. Only one instance which has six depots cannot be solved in 21600

s.

S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

9
6

1 9.05 9.05 0 23
2 4.81 4.81 0 1684
3 3.61 3.16 9.4 21600
4 3.04 2.23 23.1 21600
5 2.41 2.26 6.22 21600
6 2.41 1.48 35.41 21600

Table 6.17: Effect of the Number of Vehicles on Computational Performance - MIP2,
Scenario 9

S |Q| K Obj.
(hr)

LB Gap
(%)

Time
(s)

9 6

1 9.05 9.05 0 23
2 4.44 4.44 0 141
3 3.37 3.37 0 8348
4 2.35 2.35 0 232
5 2.16 2.16 0 14692
6 2.12 1.96 7.68 21600

Table 6.18: Effect of the Number of Depots on Computational Performance(K = |D|,
one vehicle at each depot) - MIP2, Scenario 9
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Chapter 7

CONCLUSIONS

In this thesis, we study the Arc Routing for Connectivity Problem which is new to the

Arc Routing Literature. Considering a post-disaster situation, we use a Min-Max type of

objective with multiple vehicles and depots. As a special case, we investigate the single

vehicle single depot case. Unblocking some of the blocked roads by vehicles, the aim is to

make the disconnected graph strongly connected in shortest time. The vehicles leave their

depots and unblock some roads with an unblocking time which is spent only for the first

time the blocked road is traversed. We show that the problem is NP-hard even for single

vehicle-single depot case. We develop an MIP formulation and solve it for the single vehicle

case in computational tests. The arc routing part of the problem is handled by sending

flows. To the best of our knowledge, this is new in the arc routing literature. For the

multi-vehicle cases, due to the difficulty of solving the model on large instances, two relaxed

models are presented and are solved with various number of vehicles and depots.

As the testing data, Istanbul Highway Map is used. Ten different scenarios are con-

structed. Two levels of damage is defined and unblocking times are calculated accordingly.

Some illustrative numerical examples are presented. For the valid and relaxed models, we

observe that high unblocking time cases are easier to solve than low unblocking time cases.

For a special case with a single vehicle, effect of location of depot on the objective value, the

gap and runtime is investigated. Changing the location of depot does not affect the objec-

tive value and runtime much. For the relaxed models, the effects of number of vehicles and

number of depots on solution quality are observed. More vehicles mean longer runtime and

improvement on the objective value is limited by the number of vehicles. Desired number

of vehicles for a low objective value is between |Q|−1 and |Q|+1 for MIP2, between |Q|−1

and |Q| for MIP3. Another observation of this study is that increasing the number of depots

always improves the objective value, however it usually worsens the runtime. Moreover, we

see that assigning more vehicles to a single depot is more difficult to solve than assigning a
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single vehicle to multiple depots.

This line of research can be extended in several directions in future research. Undirected

version of this problem can be analyzed. Moreover, the model MIP1 can be improved in

order to make it a more efficient model. A heuristic method which uses the result of MIP2

and transforms it to synchronized walks can be developed. However, when the number of

vehicles increases MIP2 (even MIP3 ) cannot be solved to optimality. Another way to solve

K-ARCP can be a 2-phase method which first solves the Minimum Spanning Tree Problem

on the induced graph which has the components represented by single nodes. By doing

so, the arcs which have to be unblocked in cutsets of components can be identified. Then,

on the induced graph, Min-Max RPP where the set R consists of the arcs in the solution

of Minimum Spanning Tree Problem can be solved. Moreover, partitioning the graph and

solving the K-ARCP with one vehicle for each partition can be another extension of this

thesis, because it can be solved in very short time. Note that the partitioning should be

done carefully. Moreover, we assumed that the vehicles are homogeneous, but in some cases,

vehicles can be non-homogeneous, i.e. different types of damage may require a different

method to clear the road. In such a case, for each vehicle, a set of blocked arcs it can

unblock can be defined. In the formulation, this can be handled with an easy modification.
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Appendix A

ROAD DISTANCES

Table A.1: Road Distances

Origin Node Destination Node Distance (km)
1 2 39.0
1 3 39.0
2 1 39.0
2 3 18.0
2 4 45.0
3 1 39.0
3 2 18.0
3 5 12.0
3 6 12.0
3 39 11.0
4 2 45.0
4 7 25.0
4 39 30.0
5 3 12.0
5 6 9.5
5 8 11.0
5 39 9.5
6 3 12.0
6 5 9.5
6 7 5.5
6 8 10.0
6 39 4.0
6 42 18.0
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Origin Node Destination Node Distance (km)
7 4 25.0
7 6 5.5
7 14 26.0
7 39 7.0
7 42 10.0
7 43 19.0
8 5 11.0
8 6 10.0
8 9 9.0
8 40 12.0
9 8 9.0
9 11 6.0
9 40 8.0
9 41 3.0
9 42 14.0
9 43 11.0
10 11 5.0
10 12 7.0
10 16 3.5
10 17 5.0
10 45 3.5
10 46 4.5
11 9 6.0
11 10 5.0
11 12 6.5
11 17 5.0
11 40 8.0
11 41 5.0
11 45 3.5
12 10 7.0
12 11 6.5
12 13 3.0
12 17 4.5
12 41 5.0
12 43 10.0
12 47 12.0
13 12 3.0
13 14 11.0
13 18 8.5
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Origin Node Destination Node Distance (km)
13 43 11.0
13 47 8.0
14 7 26.0
14 13 11.0
14 18 10.0
14 43 13.0
15 18 2.5
15 21 7.5
15 44 3.0
15 48 1.6
15 49 4.5
15 74 2.0
16 10 3.5
16 17 4.5
16 19 6.5
16 44 9.0
16 46 1.9
16 74 7.5
17 10 5.0
17 11 5.0
17 12 4.5
17 16 4.5
17 41 11.0
17 44 4.5
17 47 7.0
17 74 7.0
18 13 8.5
18 14 10.0
18 15 2.5
18 44 3.0
18 47 8.0
18 48 1.9
18 49 4.5
19 16 6.5
19 20 3.0
19 72 3.0
19 73 3.0
19 74 3.0
20 19 3.0
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Origin Node Destination Node Distance (km)
20 21 5.0
20 22 4.0
20 53 1.8
20 55 1.6
20 72 1.8
21 15 7.5
21 20 5.0
21 23 3.0
21 49 5.5
21 50 2.0
21 51 2.5
21 52 2.5
21 54 2.5
21 55 3.5
21 59 3.5
22 20 4.0
22 26 9.5
22 54 2.0
22 55 4.0
22 56 3.0
23 21 3.0
23 49 5.0
23 50 1.2
23 61 5.5
24 60 8.0
24 61 11.0
24 62 10.0
25 30 7.5
25 64 6.5
25 66 10.0
25 68 10.0
25 69 3.5
26 22 9.5
26 67 3.0
26 69 5.0
26 70 2.5
27 28 6.5
27 38 6.5
27 70 10.0
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Origin Node Destination Node Distance (km)
28 27 6.5
28 31 17.0
28 35 21.0
28 70 17.0
29 32 6.5
29 65 5.0
29 66 8.0
29 68 6.5
30 25 7.5
30 31 5.0
30 34 28.0
30 66 4.0
30 67 5.5
30 71 15.0
31 28 17.0
31 30 5.0
31 34 16.0
31 35 9.5
31 67 4.5
31 69 5.0
32 29 6.5
32 33 16.0
32 36 4.5
32 71 13.0
33 32 16.0
33 34 5.0
33 36 13.0
33 63 7.5
33 71 5.0
34 30 28.0
34 31 16.0
34 33 5.0
34 35 7.0
34 71 5.0
35 28 21.0
35 31 9.5
35 34 7.0
36 32 4.5
36 33 13.0
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Origin Node Destination Node Distance (km)
36 37 11.0
36 63 8.0
37 36 11.0
37 63 13.0
38 27 6.5
38 57 0.5
38 58 1.7
38 62 4.0
39 3 11.0
39 4 30.0
39 5 9.5
39 6 4.0
39 7 7.0
40 8 12.0
40 9 8.0
40 11 8.0
40 41 8.5
40 45 4.0
41 9 3.0
41 11 5.0
41 12 5.0
41 17 11.0
41 40 8.5
41 42 8.0
41 43 5.5
42 6 18.0
42 7 10.0
42 9 14.0
42 41 8.0
42 43 2.5
43 7 19.0
43 9 11.0
43 12 10.0
43 13 11.0
43 14 13.0
43 41 5.5
43 42 2.5
44 15 3.0
44 16 9.0
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Origin Node Destination Node Distance (km)
44 17 4.5
44 18 3.0
44 46 7.0
44 47 5.0
44 48 2.5
44 74 3.5
45 10 3.5
45 11 3.5
45 40 4.0
46 10 4.5
46 16 1.9
46 44 7.0
46 73 7.0
46 74 7.0
47 12 12.0
47 13 8.0
47 17 7.0
47 18 8.0
47 44 5.0
48 15 1.6
48 18 1.9
48 44 2.5
48 49 4.5
49 15 4.5
49 18 4.5
49 21 5.5
49 23 5.0
49 48 4.5
50 21 2.0
50 23 1.2
50 51 2.5
50 59 3.5
50 61 6.0
51 21 2.5
51 50 2.5
51 52 1.5
51 59 2.5
52 21 2.5
52 51 1.5
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Origin Node Destination Node Distance (km)
52 54 3.0
52 56 2.5
52 59 1.9
53 20 1.8
53 54 4.0
53 55 2.5
54 21 2.5
54 22 2.0
54 52 3.0
54 53 4.0
54 55 3.0
55 20 1.6
55 21 3.5
55 22 4.0
55 53 2.5
55 54 3.0
56 22 3.0
56 52 2.5
56 57 3.5
57 38 0.5
57 56 3.5
57 58 2.5
57 59 3.0
58 38 1.7
58 57 2.5
58 59 1.5
58 62 6.0
59 21 3.5
59 50 3.5
59 51 2.5
59 52 1.9
59 57 3.0
59 58 1.5
59 60 6.0
59 61 7.0
59 62 8.0
60 24 8.0
60 59 6.0
60 61 3.0
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Origin Node Destination Node Distance (km)
60 62 4.0
61 23 5.5
61 24 11.0
61 50 6.0
61 59 7.0
61 60 3.0
62 24 10.0
62 38 4.0
62 58 6.0
62 59 8.0
62 60 4.0
63 33 7.5
63 36 8.0
63 37 13.0
64 25 6.5
64 65 5.5
64 66 6.0
64 68 4.5
64 69 6.0
65 29 5.0
65 64 5.5
65 68 2.0
66 25 10.0
66 29 8.0
66 30 4.0
66 64 6.0
66 68 3.5
66 69 7.5
67 26 3.0
67 30 5.5
67 31 4.5
67 69 3.5
67 70 2.0
68 29 6.5
68 64 4.5
68 65 2.0
68 66 3.5
69 25 3.5
69 26 5.0
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Origin Node Destination Node Distance (km)
69 31 5.0
69 64 6.0
69 66 7.5
69 67 3.5
70 26 2.5
70 27 10.0
70 28 17.0
70 67 2.0
71 30 15.0
71 32 13.0
71 33 5.0
71 34 5.0
72 19 3.0
72 20 1.8
72 73 1.3
73 19 3.0
73 46 7.0
73 72 1.3
74 15 2.0
74 16 7.5
74 17 7.0
74 19 3.0
74 44 3.5
74 46 7.0
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Appendix B

HIGH RISK AND LOW RISK ROADS

EUROPE ASIA

i j i j

3 5 25 30
5 8 25 69
8 9 25 64
8 40 25 66
9 11 29 32
9 40 30 71
10 11 32 33
10 17 32 36
10 16 32 71
10 46 33 36
16 46 33 63
16 19 36 63
16 74 36 37
19 73 37 63
19 72 64 68
19 20 64 65
20 22 64 66
40 45 64 69
40 11 65 68
45 10 65 29
72 20 66 29
72 73 66 30

66 69
68 66
68 29
71 33

Table B.1: High Risk Roads
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EUROPE ASIA

i j i j i j i j i j i j i j

1 3 13 47 21 50 43 41 52 51 61 24 26 67
1 2 13 18 23 61 43 9 52 56 61 60 26 69
2 4 14 13 23 50 44 16 53 55 61 59 27 28
2 3 14 18 23 21 44 74 53 54 62 24 27 70
3 39 15 74 38 27 44 15 53 20 62 58 28 31
4 7 15 21 38 57 44 48 54 52 62 38 28 35
4 39 15 49 39 7 47 44 54 22 74 19 31 35
6 7 17 16 39 6 47 18 55 22 74 46 31 30
6 42 17 74 39 5 47 48 55 54 31 69
6 5 17 44 41 40 47 12 55 20 31 34
6 8 17 47 41 11 48 15 56 22 34 33
6 3 17 16 41 12 48 49 57 56 34 71
7 42 18 49 41 17 48 18 58 57 34 30
7 43 18 44 41 9 49 23 58 38 35 34
7 14 20 55 42 41 49 21 59 57 67 31
11 17 21 20 42 43 50 51 59 60 67 30
12 11 21 55 42 9 50 59 59 62 67 69
12 10 21 54 43 14 50 61 59 58 70 28
12 17 21 52 43 12 51 59 60 24 70 67
13 12 21 51 43 13 52 59 60 62 70 26

Table B.2: Low Risk Roads
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Appendix C

MIP2 SOLUTIONS OF ALL SCENARIOS WITH HIGH

AND LOW UNBLOCKING TIMES

High Unblocking Time (1depot, 2vehicles)

Scenario 1:

23− 21− 20− 19− 16− 10− 45− 40 = 9 = 40

23− 21− 54− 22− 26− 69− 25− 64 = 68 = 64− 69− 25

Scenario 2:

23− 21− 20− 19− 16 = 10 = 16

23− 21− 55− 22− 26− 69− 66− 68 = 65 = 68

Scenario 3:

Infeasible Solution:

23− 49− 48− 44− 17− 12− 41− 9− 40− 8 = 5 = 8

23−21−54−22−26−69 = 25 = 69−26−22−55−20−19−74−17−12−41−9−40 = 8

Feasible Solution (with waiting times):

23− 49− 48− 44− 17− 12− 41− 9− 40 = 8 = 5 = 8

23− 21− 54− 22− 26− 69 = 25 = 69− 26− 22− 55− 20− 19− 74− 17− 12− 41−
9− 40− (0.13hr)− 8

Scenario 4:

Infeasible Solution:

23− 49− 18− 13− 12− 41 = 11− 41− 9− 8− 6− 5 = 3

23− 49− 18− 13− 12− 41− 11 = 41− 9− 8− 6 = 5

Feasible Solution (with waiting times):

23− 49− 18− 13− 12− 41 = 11− (0.6hr)− 41− 9− 8− 6− (2.27hr)− 5 = 3

23− 49− 18− 13− 12− 41− (0.5hr)− 11 = 41− 9− 8− 6 = 5

Scenario 5:

23− 21− 54− 22− 26− 69− 25 = 66 = 25
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23− 21− 20− 19− 73 = 72 = 73− 46 = 16 = 46

Scenario 6:

23− 21− 54− 22− 26− 67− 31− 34 = 33 = 34

23− 49− 48− 44− 17− 11− 10 = 46 = 10− 12− 41 = 9 = 41

Scenario 7:

23− 21− 54− 22− 26 = 69 = 31− 34− 71− 32 = 36 = 32

23− 21− 20− 19− 16 = 10 = 16− 17− 12− 43− 42− 7− 39 = 5 = 39

Scenario 8:

23− 49− 48− 44− 17− 10− 45 = 40− 8 = 6 = 3 = 6

23− 21− 20 = 19 = 20− 22− 26− 69− 64− 65 = 68 = 65− 29− 32 = 36 = 32

Scenario 9:

23− 21− 54− 22− 26− 69− 66− 29 = 32 = 36− 63 = 33

23−21−20 = 19−72 = 73−46−16−17 = 11 = 17−44−15−21−54−22−26−69−25 =

64 = 25

Scenario 10:

23− 21− 54− 22− 26 = 69− 25 = 66 = 30

23− 21− 15− 74 = 19 = 74− 17− 12− 43− 9− 40− 45 = 10 = 45− 40

Low Unblocking Time (1depot, 2vehicles)

Scenario 1:

23− 21− 54− 22− 26− 69− 64− 65 = 68 = 65

23− 49− 48− 44− 17− 11 = 9 = 41

Scenario 2:

23− 21− 15− 74− 16 = 10 = 16

23− 21− 54− 22− 26− 69− 64− 68 = 65 = 68

Scenario 3:

Infeasible Solution:

23−50−21−54−22−26−69 = 25 = 69−26−22−55−20−19−16−10−45 = 40 = 8

23− 21− 20− 19− 16− 10− 45− 40− 8 = 5 = 8

Feasible Solution:

23−50−21−54−22−26−69 = 25 = 69−26−22−55−20−19−16−10−45−40−8

23− 21− 20− 19− 16− 10− 45 = 40 = 8 = 5 = 8

Scenario 4:
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Infeasible Solution:

23− 21− 20− 72− 73− 46− 10 = 45− 40− 8− 6− 5 = 6

23− 21− 20− 72− 73− 46 = 10− 45− 40− 8− 6 = 5

Feasible Solution (with waiting times):

23− 21− 20− 72− 73− 46− (0.36)− 10 = 45− 40− 8− 6− (0.79hr)− 5 = 6

23− 21− 20− 72− 73− 46 = 10− 45− 40− 8− 6 = 5

Scenario 5:

23− 21− 54− 22− 26− 67− 31 = 30 = 31

23− 21− 54− 55− 20 = 72 = 19− 74− 15− 18− 48− 44− 46 = 16 = 46

Scenario 6:

23− 21− 54− 22− 26− 67− 30− 71 = 33 = 71− 33

23− 21− 55− 20− 19 = 16− 46 = 44− 17− 11 = 45 = 11

Scenario 7:

Infeasible Solution:

23− 21− 20− 19− 16− 10 = 16− 19− 20− 22− 26 = 69− 66 = 68− 29− 32 = 36 = 32

23− 21− 20− 19− 16 = 10− 16− 19− 16− 17− 12− 43− 42− 7− 39 = 3 = 39

Feasible Solution (with waiting times):

23 − 21 − 20 − 19 − 16 − (0.21hr) − 10 − (0.14) − 16 − 19 − 20 − 22 − 26 = 69 − 66 =

68− 29− 32 = 36 = 32

23− 21− 20− 19− 16 = 10 = 16− 19− 16− 17− 12− 43− 42− 7− 39 = 3 = 39

Scenario 8:

23 − 49 − 15 = 21 − 20 = 19 = 74 − 15 − 21 − 54 − 22 − 26 − 69 − 64 − 65 = 68 =

65− 29− 32 = 36 = 32

23− 49− 48− 44− 17− 11 = 40− 8 = 6 = 3 = 6

Scenario 9:

23− 21− 20− 19 = 20− 22− 26− 67− 30− 71 = 32 = 36 = 33

23−49−15−44−17 = 11 = 17−44−15−21−20 = 19−20−22−26−69−25 = 64 = 25

Scenario 10:

23− 21− 20− 72 = 73 = 72− 20− 21− 15− 44− 17 = 11 = 17

23− 21− 54− 22− 26 = 69 = 67− 30 = 66 = 68
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