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ABSTRACT

Wilkinson studied the distance from a square matrix with distinct eigenvalues to the

set of defective matrices in 1960s due to its connection with the sensitivity of eigenvalues.

Malyshev derived a singular value optimization characterization for the distance. Recently,

Alam and Bora established that the distance to defectiveness from a matrix corresponds to

the smallest ε such that two components of the ε-pseudospectrum of the matrix coalesce.

Our main aim is to generalize this relation between the distance to defectiveness and the

pseudospectra. First we attempt to relate the algebraic characterization of Malyshev and

geometric characterization of Alam and Bora. Then we focus on the main theme of this

thesis, the distance to the set of matrices with a multiple eigenvalue of prescribed algebraic

multiplicity, which we call generalized Wilkinson distance, and its geometric characteriza-

tion in terms of pseudospectra. We introduce the generalized pseudospectrum as the set

comprised of eigenvalues of prescribed multiplicity of all matrices within a given neighbor-

hood. As a generalization of the work of Alam and Bora, we derive an upper bound for the

generalized Wilkinson distance in terms of the coalescence of components of the generalized

pseudospectra.
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ÖZETÇE

Wilkinson çoklu özdeğere sahip olmayan bir matristen çoklu özdeğere sahip matrisler

kümesine uzaklığı, uzaklığın özdeğerlerin duyarlılığı ile ilintili olması yüzünden, 1960’ların

sonunda çalıştı. Malyshev uzaklık için bir tekil değeri karakterizasyonu geliştirdi. Yakın

zamanda Alam ve Bora uzaklığın ε yaklaşık spektrumunun bileşenlerinin birbirine değdiği

en ufak ε değerine karşılık geldiğini kanıtladı. Ana amacımız uzaklık ile yaklaşık spektrum

arasındaki bu ilintiyi genellemek. Önce Malyshev’in cebirsel karakterizasyonu ile Alam ve

Bora’nin geometrik karakterizasyonunu ilişkilendirmeye çalışıyoruz. Sonra bu tezin ana

teması üzerine yoğunlaşıyoruz, genelleşmiş Wilkinson uzaklığı diye adlandırdığımız, ver-

ilen bir çokluk değerine sahip bir özdeğeri olan matrisler kümesine uzaklık ve bu uzaklığın

yaklaşık spektrum cinsinden geometrik karakterizasyonu. Genelleşmiş yaklaşık spektrumu,

verilen bir komşulukta bulunan bütün matrislerin verilen çokluk değerine sahip özdeğerler

kümesi olarak tanımlıyoruz. Alam ve Bora’nın çalışmasının bir genellemesi olarak, genelleşmiş

Wilkinson uzaklığı için genelleşmiş yaklaşık spektrumunun bileşenleri cinsinden bir üst sınır

çıkarımı sunuyoruz.
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Chapter 1

INTRODUCTION

In this thesis, we consider the distance from a matrix to the set of matrices with multiple

eigenvalues, which we call the Wilkinson distance. The connection of this distance with

the ε-pseudospectrum of the matrix, the set comprised of the eigenvalues of all matrices

within an ε-neighborhood of the matrix, has been a debated topic after a conjecture by

Demmel [5]. It has been recently established [2] that the distance is the smallest ε such

that at least two components of the ε-pseudospectrum of the matrix coalesce. Both the

Wilkinson distance and the ε-pseudospectrum have been of interest to the numerical analysts

due to their relation with the sensitivity of the eigenvalues. Our main concern in this thesis

is to generalize the discovered connection between these two quantities, in particular we

attempt to answer the following question: “is it possible to deduce a nearest matrix with

a multiple eigenvalue of prescribed algebraic multiplicity from a given matrix based on the

ε-pseudospectrum or a generalization of the ε-pseudospectrum?” In this chapter, we give

a background to help us understand the notions in the thesis and a brief history of the

problem of finding the Wilkinson distance.

1.1 Background

1.1.1 ε-Pseudospectra

For given A ∈ Cn×n and ε > 0, we define the ε-pseudospectrum of A as [17]

Λε(A) := {z ∈ C | ∃∆A ∈ Cn×n with ‖∆A‖2 ≤ ε s.t. z is an eigenvalue of A+ ∆A},

that is the set of all complex numbers which can be induced as eigenvalues by perturbations

∆A with ‖∆A‖2 ≤ ε. Here and elsewhere ‖ · ‖2 denotes the matrix 2-norm (or `2 norm)

induced by the Euclidean norm on Cn. Note that for ε = 0, this set is the spectrum of A,
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denoted by Λ(A), which is the set of eigenvalues of A.

We know that if λ is an eigenvalue of A, rank(A − λI) ≤ n − 1. So we can also define

Λε(A) as follows:

Λε(A) := {z ∈ C | ∃∆A ∈ Cn×n s.t. ‖∆A‖2 ≤ ε and rank(A+ ∆A− zI) ≤ n− 1}.

It follows that a matrix closest to A with respect to the 2-norm and Frobenius norm with λ

as an eigenvalue is located at a distance equal to the smallest singular value of A− λI due

to Eckart-Young Theorem (see Theorem 1.1.3), i.e,

min{‖∆A‖2 | ∆A ∈ Cn×n s.t. rank(A+ ∆A− λI) ≤ n− 1} = σn(A− λI)

where σn denotes the smallest singular value of A−λI. (Singular values are defined and dis-

cussed in the next subsection.) So for the 2-norm and Frobenius norm, it is straightforward

to deduce that

Λε(A) = {z ∈ C | σn(A− zI) ≤ ε}. (1.1.1)

Now to understand the connection between the Wilkinson distance, W (A), and the

ε-pseudospectrum of A, for a given eigenvalue λ of A, we define

∆λ = {z ∈ C | ∃∆A with ‖∆A‖2 ≤ ε s.t. λ̃∆A(1) = z} (1.1.2)

where λ̃∆A : [0, 1] → C given by λ̃∆A(t) := λ(A + t∆A) is any continuous curve with

λ(A + t∆A) denoting an eigenvalue of A + t∆A such that λ(A) = λ. Here ∆λ is called a

component of Λε(A). For sufficiently small value of ε, Λε(A) has n disjoint components. As

ε grows gradually, these components of Λε(A) coalesce.
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Figure 1.1: The ε-pseudospectra of the 6× 6 Dramadah matrix D

Example: Consider a 6× 6 Dramadah matrix

D =



1 1 0 1 0 0

0 1 1 0 1 0

0 0 1 1 0 1

1 0 0 1 1 0

1 1 0 0 1 1

0 1 1 0 0 1


with six distinct eigenvalues. In Figure 1.1, the set Λε for various ε are plotted for the

6 × 6 matrix D. As you can see, for smaller ε, Λε(D) has 6 disjoint components and for

ε = 0.0664, two components coalesce at the red square.

Now we define an important quantity associated with the pseudospectra, which later

will be shown to be equal to the Wilkinson distance,

C(A) = inf{ε | at least two components of Λε(A) coalesce}

= inf{ε | # of disjoint components of Λε(A) ≤ n− 1}.
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In Figure 1.1, the Wilkinson distance ε = 0.0664 is the smallest ε such that two components

of Λε(A) coalesce. Furthermore, the coalescence point z∗ = 1.3778 marked with the red

square is the multiple eigenvalue of a nearest matrix. Later, we will prove that these

observations hold for any matrix.

1.1.2 Singular Value Decomposition

We reserve this subsection for singular values, emphasizing their geometric meaning, and

presenting their connections with the distance to the set of matrices with prescribed rank.

We conclude the subsection by summarizing some of the analytical properties of singular

values.

Definition 1.1.1. For a matrix A ∈ Cm×n, a nonnegative scalar σ is called a singular

value of A, if there exist unit vectors u ∈ Cm and v ∈ Cn such that

Av = σu and u∗A = σv∗. (1.1.3)

The vectors u, v are called a left singular vector and a right singular vector associated

with σ, respectively.

Definition 1.1.2. A singular value decomposition (SVD) of a matrix A ∈ Cm×n is of

the form

A = UΣV ∗

where U ∈ Cm×m, V ∈ Cn×n are unitary and Σ ∈ Rm×n is diagonal.

Every matrix A has a singular value decomposition [16]. For simplicity let us suppose

that the factor Σ in a singular value decomposition has distinct entries along its diagonal.

Then the singular value decomposition becomes unique up to unit complex scalings on the

columns U and V [16]. Furthermore, It is apparent from the singular value decomposition

that

AV = UΣ and U∗A = ΣV ∗

leading to Avj = σjuj and u∗jA = σjv
∗
j where uj and vj are the jth columns of U and V ,

σj is the (j, j)-entry of Σ. Thus the diagonal entries of Σ are the singular values of A. The

corresponding left and right singular vectors are given by the corresponding columns U and
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V . These observations hold in the more general setting, when the diagonal entries of Σ

repeat, with the exception that the uniqueness of the factors U and V in the singular value

decomposition becomes more intricate [7].

The geometric interpretation of an SVD is that the image of the unit sphere in the

n-dimensional space under an m×n matrix is an ellipsoid in the m-dimensional space. For

simplicity consider a matrix A ∈ R2×2 with an SVD

A =
[
u1 u2

] σ1 0

0 σ2

 v∗1

v∗2

 = σ1u1v
∗
1 + σ2u2v

∗
2.

Let S be the unit circle defined as

S = {α1v1 + α2v2 ∈ R2×2 | α1, α2 ∈ R s.t. α2
1 + α2

2 = 1}.

Then the image of S under the matrix A is

AS = {A(α1v1 + α2v2) ∈ R2×2 | α1, α2 ∈ R s.t. α2
1 + α2

2 = 1}

= {α1Av1 + α2Av2 ∈ R2×2 | α1, α2 ∈ R s.t. α2
1 + α2

2 = 1}

= {α1σ1u1 + α2σ2u2 ∈ R2×2 | α1, α2 ∈ R s.t. α2
1 + α2

2 = 1}.

Letting β1 = α1σ1 and β2 = α2σ2 we have

AS = {β1u1 + β2u2 ∈ R2×2 | β1, β2 ∈ R s.t.
β2

1

σ2
1

+
β2

2

σ2
2

= 1}

is an ellipse with semi-axes σ1u1, σ2u2.

Let A ∈ Cm×n be a rank k matrix with an SVD of the form A = UΣV ∗ where

Σ=diag(σ1, σ2, . . . , σk, 0, 0, . . . , 0). Then A can be decomposed into a sum of k rank one

matrices:

A =

k∑
j=1

σjujv
∗
j .

Now, for any 0 ≤ r ≤ k, consider the sum of k − r rank one matrices

∆A∗ =
k∑

j=r+1

−σjujv∗j .
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Then we have rank(A + ∆A∗) = r, furthermore ‖∆A∗‖2 = σr+1(A). Here and throughout

the text σj(A) denotes the jth largest singular value of A. The following theorem is a

fundamental result concerning the singular values of A with numerous applications in fields

such as data compression, signal processing and statistics.

Theorem 1.1.3. (Eckart-Young) Let A = UΣV ∗ = Udiag(σ1, σ2, . . . , σk, 0, 0, . . . , 0)V ∗ ∈

Cm×n be a singular value decomposition. Then for any integer r with 0 ≤ r ≤ k,

min{‖∆A‖2 | rank(A+ ∆A) ≤ r} = ‖∆A∗‖ = σr+1(A).

In particular, if A is a full rank n×n matrix, then for r = n− 1 the distance above reduces

to the distance to the singularity given by σn(A).

Analyticity of Singular Values

Throughout this thesis, analyticity of a singular value function plays an important role. A

characterization of singular values is that they are the nonnegative eigenvalues of the matrix

 0 A

A∗ 0


. Indeed, let A = UΣV ∗ be a singular value decomposition. Then,

 0 A

A∗ 0

 =

 0 UΣV ∗

V Σ∗U∗ 0

 =

 U 0

0 V

 0 Σ

Σ∗ 0

 U∗ 0

0 V ∗


= Q

 0 Σ

Σ∗ 0

Q∗

where Q =

 U 0

0 V

, we see that the matrix

 0 A

A∗ 0

 is similar to

 0 Σ

Σ∗ 0

 and

thus they have the same eigenvalues. The eigenvalues of the latter are the square roots of

the diagonal elements of Σ∗Σ. This characterization and the following theorem shows the

existence of analytic singular value decomposition for an arbitrary analytic matrix-valued

function.
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Theorem 1.1.4. (Rellich [14]) Let A(t) : R → Cn×n be an analytic Hermition matrix-

valued function. Then A(t) has the decomposition

A(t) = Q(t)Λ(t)Q(t)∗

where Q(t) : R → Cn×n is a unitary analytic matrix-valued function and Λ(t) : R → Cn×n

is a diagonal analytic matrix-valued function.

In [1], by applying the theorem above to the matrix-valued function

 0 A(t)

A(t)∗ 0

, the

following result is deduced.

Theorem 1.1.5. Consider an analytic matrix-valued function A(t) : R → Cn×n. There

exists a decomposition

A(t) = U(t)Σ(t)V (t)∗

where U(t), V (t) : R → Cn×n are unitary analytic matrix-valued functions and Σ(t) : R →

Cn×n is diagonal (with possibly negative entries on diagonal) and analytic at all t.

The diagonal entries of Σ(t) above can be viewed as unsorted and signed (possibly

negative) singular values of A(t). Thus it follows from the theorem above that σi(t) −

ith largest singular value of A(t)− is analytic provided that it is simple and non-zero.

Furthermore, for simple and non-zero σi(t), denoting the corresponding pair of left and

right singular vectors satisfying (1.1.3) with ui(t), vi(t), it can be shown that [11]

dσi(t)

dt
= <

(
ui(t)

∗dA(t)

dt
vi(t)

)
. (1.1.4)

1.1.3 Sylvester Equation

In this thesis, the dimensions of the solution spaces of certain Slyvester equations play key

roles. Here, we will briefly discuss a Slyvester equation. Also we will define the Kronecker

product and vectorization operator that help us to improve our understanding of the solution

space.

Definition 1.1.6. The Sylvester equation is

AX −XB = 0 (1.1.5)
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where A ∈ Cm×m, B ∈ Cn×n are given square matrices and X ∈ Cm×n is an unknown

rectangular matrix. The associated Sylvester operator is S : Cm×n → Cm×n defined by

S(X) = AX −XB.

Note that the solution set of the Sylvester equation is the same as the Kernel(S). The

notions of Kronecker product and vec (vectorization) operator are helpful in identifying the

solution set of the Sylvester equation.

Definition 1.1.7. Let A be an m×n matrix and B be a p× q matrix. Then the Kronecker

product A⊗B of A and B is the mp× nq block matrix defined as

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .

Two important properties of the Kronecker product [8] that we will refer are as follows:

(i) (A⊗B)(C ⊗D) = AC ⊗BD

(ii) (A⊗B)−1 = A−1 ⊗B−1

Definition 1.1.8. The linear operator vec: Cm×n → Cmn converts a matrix into a column

vector, i.e., for any A ∈ Cm×n,

vec(A) = [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T ∈ Cmn.

The vectorization is frequently used in association with the Kronecker product to express

the matrix associated with the linear map X 7→ AXC explicitly, in particular,

vec(AXC) = (CT ⊗A)vec(X) (1.1.6)

for matrices A,X,C (real or complex) of dimension k × l, l ×m and m× n respectively.

Now using the Kronecker product and vec operator, we can express the Sylvester equa-
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tion (1.1.5) as a linear equation of the form

(Im ⊗A−BT ⊗ In)vec(X) = 0. (1.1.7)

Let A = PJP−1 and BT = QKQ−1 be the Jordan canonical forms of A and BT . Then by

properties (i), (ii)

Im ⊗A−BT ⊗ In = Im ⊗ (PJP−1)− (QKQ−1)⊗ In

= (Q⊗ P )(Im ⊗ J)(Q−1 ⊗ P−1)− (Q⊗ P )(K ⊗ In)(Q−1 ⊗ P−1)

= (Q⊗ P )(Im ⊗ J −K ⊗ In)(Q−1 ⊗ P−1).

If we take vec(X̃) = (Q−1 ⊗ P−1)vec(X), then equation (1.1.7) is equivalent to

(Im ⊗ J −K ⊗ In)vec(X̃) = 0.

Let λi’s and µj ’s be the eigenvalues of A and B respectively. Then Im ⊗ J − K ⊗ In is

an upper triangular matrix with diagonal elements λi − µj . So if there exists i and j such

that λi = µj , then the system (1.1.5) has a non-trivial solution. Indeed the system has a

non-trivial solution if and only if A and B have a common eigenvalues.

The following theorem concerns the dimension of the solution space for the system (1.1.5)

and the proof of the theorem can be found in [6].

Theorem 1.1.9. Let A ∈ Cm×m and B ∈ Cn×n and suppose that µ1, . . . , µl are common

eigenvalues of A and B. Then the dimension of the solution space for the Sylvester equation

AX −XB = 0 is

dim{X ∈ Cm×n : AX −XB = 0} =
l∑

j=1

lj∑
i=1

l̃j∑
q=1

min(cj,i, pj,q)

where cj,1, . . . , cj,lj and pj,1, . . . , pj,l̃j are the sizes of the Jordan blocks of A and B

associated with µj respectively.
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1.1.4 The Conditioning of Eigenvalues

Let f : X → Y be a problem from a normed input vector space X to a normed output

vector space Y . The condition number of f at x ∈ X, denoted by κ, measures how much

the output can change for a small change in the input, formally defined as

κ = lim
δ→0+

sup
‖δx‖≤δ

‖f(x+ δx)− f(x)‖
‖δx‖

.

If the condition number of f is large, the problem is called ill-conditioned, otherwise it is

called well-conditioned.

Let A ∈ Cn×n be a matrix and λ ∈ C be an eigenvalue of A with the corresponding

eigenvector v ∈ Cn. The problem we consider here is how a small perturbation in the

matrix A changes the eigenvalue λ. For a small perturbation δA, is the eigenvalue of A+δA

close to λ or is it not? And the condition number of λ is a measure of sensitivity of λ to

these perturbations. A small condition number implies an insensitive eigenvalue and such

an eigenvalue is called well-conditioned. A sensitive eigenvalue has large condition number

and is called ill-conditioned. In this section, we will give the condition number of a simple

eigenvalue, i.e., an eigenvalue with algebraic multiplicity one.

Now assume that λ is a simple eigenvalue of A ∈ Cn×n with unit right and left eigen-

vectors x, y ∈ Cn, respectively. Also assume that the input matrix space is equipped with

the 2-norm. For ε > 0, consider the matrix

A(ε) = A+ ε∆A

with ‖∆A‖2 = 1. Let λ(ε) be the eigenvalue of A(ε) with the associated right eigenvector

x(ε):

(A+ ε∆A)x(ε) = λ(ε)x(ε). (1.1.8)

Note that due to the simplicity assumption on λ the eigenvalue λ(ε) is differentiable at

ε = 0, and the condition number of λ(ε) at ε = 0 reduces to
∣∣dλ
dε (0)

∣∣. Thus differentiating

the equation (1.1.8) w.r.t. ε and setting ε = 0 yield

A
dx(0)

dε
+ ∆A · x =

dλ(0)

dε
x+ λ

dx

dε
(0).
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Multiplying both sides by y∗ from left gives

dλ(0)

dε
=
y∗∆Ax

y∗x
.

Using submultiplicative property (i.e., ‖CD‖ ≤ ‖C‖‖D‖) of the 2-norm, we get

∣∣∣∣dλ(0)

dε

∣∣∣∣ ≤ 1

|y∗x|
.

Indeed, there exists a ∆A = yx∗ so that the above inequality becomes an equality. Thus,

if these two vectors x and y are almost orthogonal, the eigenvalue λ turns out to be ill-

conditioned. So the quantity

κ =
1

|y∗x|

can be taken as the condition number of a simple eigenvalue λ. All of the above arguments

can be summarized as a theorem:

Theorem 1.1.10. Let A ∈ Cn×n and λ, x, y be a simple eigenvalue and its associated unit

right and left eigenvectors,respectively. For ε > 0, let A(ε) = A + ε∆A with ‖∆A‖2 = 1.

Then, if λ(ε) denote the differentiable eigenvalue of A(ε) such that λ(0) = λ, we have

∣∣∣∣dλ(0)

dε

∣∣∣∣ ≤ 1

|y∗x|
.

Note that if A is normal matrix, i.e., AA∗ = A∗A, then the left and right eigenvectors y

and x coincide, yielding κ(λ) = 1
‖x‖ = 1. So for normal matrices, the eigenvalue problem is

always well-conditioned.

1.2 History

Given A ∈ Cnxn with simple eigenvalues, consider the quantity

W (A) = inf{‖∆A‖2 | A+ ∆A is defective}.

This quantity is called “the Wilkinson Distance”. By a defective matrix, we mean that

it does not have n linearly independent eigenvectors, i.e, it is not diagonalizable. Such a

matrix has a Jordan block of size at least 2 in its Jordan canonical form. An eigenvalue
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corresponding to such a Jordan block is called defective, as its algebraic multiplicity is

greater than its geometric multiplicity. By a multiple eigenvalue we mean that its algebraic

multiplicity is greater than one. A multiple eigenvalue does not have to be defective. But the

distance to the set of matrices with a defective eigenvalue is the same as the distance to the

set of matrices with a multiple eigenvalue, since there exist arbitrarily small perturbations

to a matrix with a non-defective multiple eigenvalue making the eigenvalue defective. Thus

W (A) can alternatively be defined as

W (A) = inf{‖∆A‖2 | ∃λ s.t. A+ ∆A has λ as a defective eigenvalue}.

= inf{‖∆A‖2 | ∃λ s.t. A+ ∆A has λ as a multiple eigenvalue}.

The interest in the distance W (A) goes back to 1960s. In his book [18], Wilkinson

defined the condition number of a simple eigenvalue λ as cond(λ) = 1
|y∗x| , where y, x are

unit left and right eigenvectors corresponding to λ, i.e, Ax = λx and y∗A = λy∗. Note that

if λ is a defective eigenvalue, then there exists a pair of left and right eigenvectors y and x

associated with it such that y∗x = 0. Wilkinson stated that such an eigenvalue is regarded

as ill-conditioned. But he also observed that even if the eigenvalues are well-seperated from

each other, thus not defective, they can still be very ill-conditioned. To illustrate this,

Wilkinson considered the following matrices:

A =



20 20

19 20

. . .

2 20

1


and A(ε) =



20 20

19 20

. . .

2 20

ε 1


.

He calculated that for ε = 7.8 · 10−14, the matrix A(ε) has λ = 10.5 as a defective multiple

eigenvalue. Based on these type of observations, he suspected that any matrix with an

ill-conditioned eigenvalue - possibly away from the other eigenvalues - might be close to a

defective matrix.

In [15], Axel Ruhe proved Wilkinson’s conjecture, that is even if a matrix A with an

ill-conditioned eigenvalue has well-seperated eigenvalues, it is close to a one having multiple
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eigenvalues. He gave the estimate

W (A) ≤ n

4
max
i,j
i 6=j

|λi − λj | tan θ

where λ1, λ2, . . . , λn are the eigenvalues of A, the angle θ is such that sin θ ≤ mink |y∗kxk|
1

n−1

for k = 1, . . . , n, and yk, xk are unit left, right eigenvectors associated with λk.

After Ruhe has shown that Wilkinson’s conjecture is true, Wilkinson made a detailed

study of the distance W (A) in [19,20]. He found a perturbation matrix that makes a simple

eigenvalue λ a double eigenvalue keeping one of the left eigenvector x or the right eigenvector

y fixed. This yields a bound sharper than that of Ruhe. Wilkinson’s perturbation is given

by

∆A =
(cond(λ)y − x)x∗(A− λI)∥∥∥y − x

cond(λ)

∥∥∥2 ,

and satisfies

W (A) ≤ ‖∆A‖ ≤
‖A‖2√

cond(λ)2 − 1
,

where cond(λ) = 1
|y∗x| .

In his Ph.D. thesis [5], Demmel introduced the quantities: diss(σ1, σ2, region) and

diss(σ1, σ2, path), where σ1, σ2 form a partition of A’s spectrum into disjoint subsets. The

former quantity is defined to be the smallest ε such that the associated pseudospectral com-

ponents σ1(ε), σ2(ε) containing σ1, σ2, respectively coalesce. To be formal, each of σi(ε) for

i = 1, 2, is the union of the components ∆λik
containing the eigenvalue λik for k = 1, . . . , `

where {λi1 , . . . , λi`} = σi and ∆λik
is defined as in equation (1.1.2). The second quantity is

defined as the norm of the smallest perturbation ∆A to A that makes an eigenvalue λ1 ∈ σ1

coalesce with λ2 ∈ σ2 to cause a double eigenvalue, that is there exist two continuous eigen-

value functions λ1(∆), λ2(∆) corresponding to two of the eigenvalues of A + ∆ such that

λ1(∆A) = λ2(∆A) whereas λ1(0) = λ1 ∈ σ1, λ2(0) = λ2 ∈ σ2.

If we take the minimum of these quantities over all partitions, diss(σ1, σ2, path) cor-

responds to W (A) and diss(σ1, σ2, region) corresponds to C(A). Demmel observed that

for all norms W (A) ≥ C(A), since for any perturbation ∆A of norm W (A) such that

A+ ∆A has a multiple eigenvalue the following holds: there exist two continuous functions
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λ1, λ2 : [0, 1]→ C satisfying

(i) λ1(t), λ2(t) are eigenvalues of A + t∆A such that λ1(t) ∈ σ1(ε) and λ2(t) ∈ σ2(ε) for

all t ∈ [0, 1] and ε = W (A)

(ii) λ1(1) = λ2(1).

He also indicated it is an interesting open question as to whether the equality W (A) = C(A)

holds in the case of the 2-norm.

Wilkinson originally considered the distance to a nearest defective matrix from the view-

point of its relation with the sensitivity of eigenvalues. But later in [21], like Demmel,

Wilkinson discussed the notion of pseudospectra under the name “fundamental domain”,

denoted by D(ε). For any norm, he defined D(ε) as the set of complex numbers satisfying∥∥(A− zI)−1
∥∥−1 ≤ ε. With respect to the 2-norm, since

∥∥(A− zI)−1
∥∥

2
= σ1

(
(A− zI)−1

)
= 1/σn(A− zI),

this identifies all z which can be induced from A as eigenvalues by perturbations ∆A with

‖∆A‖2 ≤ ε. Thus this is nothing but the ε-pseudospectrum of A. He observed that when

ε is sufficiently small and A ∈ Cn×n has distinct eigenvalues, D(ε) consists of n isolated

domains, each containing one of the eigenvalues of A. In [21], his basic interest was to find

the smallest value of ε for which two of these domains coalesces . His observation was that

if z̃ is a point of coalescence of two components of D(ε), then there exist perturbations

∆A1,∆A2 such that

(i) ‖∆A1‖ = ‖∆A2‖ = ε

(ii) z̃ is an eigenvalue of A+ ∆A1 and A+ ∆A2.

Note that W (A) = C(A) implies that two eigenvalues must travel to the same coalescence

point under the same perturbation. This initiated a further investigation into the relation

between W (A) and C(A). Wilkinson shed light into this relation by showing W (A) > C(A)

on certain examples for the ∞-norm and also hinted that the equality might hold for the

2-norm.
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At the end of 1990s, Malyshev made an important contribution to the problem of char-

acterizing W (A). He derived the characterization

W (A) = inf
z∈C

sup
γ≥0

σ2n−1

 A− zI γI

0 A− zI


when W (A) is defined in terms of the 2-norm [12]. He did not even attempt to relate W (A)

with the pseudospectra. His characterization was purely algebraic. Inspired by the work of

Malyshev, this yielded derivations of the singular value characterizations for the distance

from a linear matrix pencil of the form L : C → Cn×n, L(λ) = A0 + λA1 to a nearest

matrix pencil in 2-norm that has specified eigenvalues, and the distance in 2-norm from a

matrix polynomial P : C→ Cn×n, P (λ) = λmj=0λ
jAj to a nearest polynomial with specified

eigenvalues [9, 10].

Finally, in [2] Alam and Bora affirmatively proved that the equality W (A) = C(A) holds

with respect to the 2-norm. A brief summary of their approach is as follows. For a matrix

A ∈ Cn×n with n distinct eigenvalues, recall that the ε-pseudospectrum of A with respect

to the 2-norm can be characterized as

Λε(A) = {z ∈ C | σn(A− zI) ≤ ε}.

For sufficiently small ε, Λε(A) has n connected components. Let z be any boundary point

of Λε(A), i.e, σn(A − zI) = ε, and u, v be a consistent pair of unit left and right singular

vectors associated with σn(A− zI). Then the perturbation ∆A = −εuv∗ achieves the task

of making z an eigenvalue of A+ ∆A with left and right eigenvectors u and v, respectively.

Indeed,

(A+ ∆A− zI)v = (A− zI)v + ∆Av = εu− εuv∗v = εu− εu = 0,

u∗(A+ ∆A− zI) = u∗(A− zI) + u∗∆A = εv∗ − εu∗uv∗ = εv∗ − εv∗ = 0.

Now, let z̃ be a coalescence point of two distinct components of Λε̃(A), where ε̃ = σn(A −

z̃I) = C(A). The remarkable observation by Alam and Bora is that if the multiplicty

of σn(A − z̃I) is one, then z̃ is a differentiable saddle point of the singular value function

σn(A−zI). The differentiability of σn(A−zI) at z̃, and the formula (1.1.4) for the derivatives

of singular value functions yield ũ∗ṽ = 0, where ũ, ṽ are left and right singular vectors
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associated with σn(A − z̃I). It follows that the perturbation ∆A = −ε̃ũṽ∗ makes z̃ an

eigenvalue of A+ ∆A with a pair of orthogonal left and right eigenvectors, namely ũ and ṽ,

respectively. This means that z̃ is a defective multiple eigenvalue (follows immediately from

Jordan canonical form). Moreover, we have ‖∆A‖2 = ε̃. This implies that W (A) ≤ C(A).

If σn(A − z̃I) has multiplicity two or greater (thus σn(A − zI) is not differentiable at z̃)

with left singular vectors u1, u2 and right singular vectors v1, v2 associated with it, then

the perturbation ∆A = −ε̃
[
u1 u2

] [
v1 v2

]∗
makes z̃ an eigenvalue of A + ∆A with

geometric multiplicity at least 2, and note that again ‖∆A‖2 = ε̃. So in both cases we have

W (A) ≤ C(A).

In [20], Wilkinson also discussed the distance to a nearest matrix that has an eigenvalue

of prescribed albegraic multiplicity. The distance is generalized for any r ≥ 2 and a given

matrix A ∈ Cn×n, as

Wr(A) = inf{‖∆A‖2 | (A+∆A) has an eigenvalue with algebraic multiplicity ≥ r}. (1.2.1)

Wilkinson argued that Wr(A) can be considerably greater than W (A) for r ≥ 3 by giving

numerical examples. Later Mengi derived the singular value characterization [13]

Wr(A) = inf
z∈C

(
f r(z) := sup

γ∈Cr(r−1)/2

fr(z, γ)

)
(1.2.2)

where

fr(z, γ) := σnr−r+1 (A(z, γ)) with A(z, γ) :=



A− zI γ1,2I γ1,rI

0 A− zI γ2,rI

. . .

A− zI γr−1,rI

0 0 A− zI



and γ :=
[
γ1,2 . . . γr−1,r

]T
. He conjectured the generalizations of the arguments re-

garding the relations between W (A) and C(A). He defined, for r ≥ 2, the ε-pseudospectrum
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of order r − 1 as

Λε,r−1(A) := {z ∈ C | ∃∆A s.t. ‖∆A‖2 ≤ ε and rank(A+ ∆A− zI)r−1 ≤ n− r + 1}.

(1.2.3)

Note that the condition rank(A+∆A−zI)r−1 ≤ n− r+1 is equivalent to (A+∆A) having

z as an eigenvalue of algebraic multiplicity r− 1. He claimed that Wr(A) and Λε,r−1(A) are

related. We will discuss this in the third chapter.

1.3 Problem Definition, Contributions and Outline

In the previous section, we reported on how the various authors treated the problem of

characterizing the distance to a nearest defective matrix W (A). With respect to the 2-

norm, we gave the singular value characterization of W (A) and using the pseudospectral

approach, we concluded that W (A) is the smallest ε such that two components of Λε(A)

coalesce. Now for a given matrix A ∈ Cn×n and r ∈ [2, n], consider the distance Wr(A) as

defined in (1.2.1). The problem we consider here is the connection between Wr(A) and the

ε-pseudospectrum of A. We might be tempted to think

Wr(A) = inf{ε | number of components of Λε(A) ≤ n− r + 1}.

But Λε(A) turns out to be irrelevant to Wr(A) for r ≥ 2. Consider the 4× 4 smoke matrix

with

S =


i 1 0 0

0 −1 1 0

0 0 −i 1

1 0 0 1


four distinct eigenvalues. In Figure 1.2, the outermost curve is the boundary of Λε(S)

for ε = W3(S) = 0.6672. All components coalesce for this ε value. The blue asteriks

representing the eigenvalue of a nearest matrix with multiplicity three is strictly inside

Λε(S) for ε = W3(S) and not on the boundary.

The generalized ε-pseudospectrum Λε,r−1(A) of order r−1 of A defined as in (1.2.3) turns

out to be more relevant to Wr(A). The distance Wr(A) has the singular value characteriza-
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Figure 1.2: The ε-pseudospectra of the 4× 4 smoke matrix S

tion (1.2.2) as discussed in the previous section, where the inner problem f r(z) corresponds

to the distance to a nearest matrix with z as an eigenvalue of algebraic multiplicity at least

r. This leads us to

Λε,r−1(A) =
{
z ∈ C | f r−1(z) ≤ ε

}
,

which can be considered as a generalization of the singular value characterization (1.1.1)

for the ordinary ε-pseudospectrum of A. We conjecture that

Wr(A) = Cr−1(A) := inf{ε | two components of Λε,r−1(A) coalesce}.

Alternatively we could pose Cr−1(A) as

Cr−1(A) = inf{ε | ∃z∗ s.t. f r−1(z∗) = ε and z∗ is a saddle point}.

The proof of the inequality Wr(A) ≥ Cr−1(A) appears to be problematic (unlike the case

r = 2). For this one needs to develop an understanding of the components of Λε,r(A). The

set Λε(A) has a component around each one of the eigenvalues of A. A natural question is

what is the generalization of this fact for Λε,r(A), that is what is located at the center of
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each component of Λε,r(A)? In this direction we claim the following.

Conjecture 1. If z∗ is a local minimum of of f r(z), then z∗ is a saddle point of f r−1(z).

According to the conjecture each component of Λε,r(A) forms around a saddle point of

f r−1(z). For instance for r = 2 each component forms around a saddle point of f(z) =

σn(A− zI).

Suppose that z∗ is a global minimizer of f r(z) such that Wr(A) = f r(z∗) = ε. Then

according to Conjecture 1, z∗ is a saddle point of f r−1(z). Consequently, as Cr−1(A) is the

smallest saddle point of f r−1(z), we have

Cr−1(A) ≤ f r−1(z∗) ≤ f r(z∗) = Wr(A).

1.3.1 Contributions

Now consider Conjecture 1 for the case r = 2, in which case the conjecture takes the form

if z∗ is a local minimum of of f2(z) = supγ≥0 σ2n−1

 A− zI γI

0 A− zI

, then z∗ is a

saddle point of f1(z) = σn(A−zI). The first contribution of this thesis is that we will prove

that Conjecture 1 typically holds for the case r = 2 and when the supremum is attained at

γ = 0. It reveals a connection between the purely algebraic characterization of Malyshev

and geometric characterization of Alam and Bora.

The second contribution is the generalization of the work of Alam and Bora for Λr−1(A).

This establishes the inequality Wr(A) ≤ Cr−1(A). In particular, suppose that z∗ is a

coalescence point of two components of Λε,r−1(A) satisying ε = f r−1(z∗) = Cr−1(A) and

f r−1(z) is differentiable at z∗. Then we construct a perturbation ∆A∗ with ‖∆A∗‖2 =

Cr−1(A) such that z∗ is an eigenvalue of A+∆A∗ with algebraic multiplicity at least r. This

implies Wr(A) ≤ Cr−1(A). We prove this under mild multiplicity and linear independence

assumptions.

1.3.2 Outline

This thesis is organized as follows. In Chapter 2, we prove Conjecture 1 for r = 2, and for

a z such that the supremum of f2(z, γ) over all γ is attained at γ = 0. This attainment

property at γ = 0 is true for each global minimizer z∗ of f2(z), and we believe it remains to
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be true for each local minimizer as well. This attainment property turns out be equivalent to

the property that the left and right singular vectors u and v of σn(A− z∗I) are orthogonal

(Lemma 2.0.4), which typically implies that z∗ is a saddle point of f(z) = σn(A − zI)

(Theorem 2.0.8). In Chapter 3, we give the details of the proof of the inequality Wr+1(A) ≤

Cr(A). Under mild multiplicity and linear independence assumptions, first we construct

a perturbation of norm Cr(A) that achieves the task of making a coalescence point z∗ an

eigenvalue with algebraic multiplicity at least r (Theorem 3.0.9). Second, we exploit the

orthogonality relations among block components of left and right singular vectors of f r(z∗)

(Theorem 3.0.10). Then using the orthogonality results we conclude that z∗ is indeed

an eigenvalue of the perturbed matrix with algebraic multiplicity r + 1 (Theorem 3.0.12),

which establishes the inequality. In Conclusion, we briefly list some open problems based

on the observations from the previous chapters, and a possible outline towards a solution

of Conjecture 1.



Chapter 2: Centers of Components of Second Order Pseudospectra 21

Chapter 2

CENTERS OF COMPONENTS OF SECOND ORDER

PSEUDOSPECTRA

In the first chapter, we mentioned that many authors have studied the problem of char-

acterizing the distance from an n×n matrix A to the set of defective matrices. There were

several approaches to this question. Wilkinson and Ruhe have worked on the relationship

between this distance and the conditioning of eigenvalues [15, 19, 20]. Later Demmel and

Wilkinson have approached the problem by considering the coalescence of the components

of the pseudospectrum [5,21]. Malyshev contributed to the problem by deriving a singular

value characterization for the distance [12]. Later we discussed how Alam&Bora proved the

equality W (A) = C(A) using the pseudospectral approach [2].

In this chapter, we will attempt to relate the results due to Malyshev, and Alam&Bora.

The former was a purely algebraic characterization of the distance to matrices with multiple

eigenvalues (or equivalently the distance to the set of defective matrices), while the latter

was a geometric characterization. We are able to partly solve the following conjecture.

Conjecture 2. Let g(z) = supγ≥0 σ2n−1

 A− zI γI

0 A− zI

. Then if z∗ /∈ Λ(A) is

a local minimizer of g(z) where σn(A − z∗) is simple, then z∗ is a saddle point or a local

maximizer of the function f(z) = σn(A− zI).

Based on numerical evidence and intuition from maximum modulus principle, we believe

that the local maximizers of f(z) = σn(A−zI) can occur only at a point z̃ such that σn(A−

z̃I) is not simple. But a proof of this is open at the moment. A significant consequence

of Conjecture 2 is that each component of Λε,2(A) is centered around a saddle point of

f(z) = σn(A − zI) where two components of Λε(A) coalesce or otherwise around a local

maximizer of f(z) = σn(A − zI). These remarks are illustrated in Figure 2.1 on a 6 × 6

matrix; the components of Λε(A) are centered around the eigenvalue of A (which are the

only local minimizer of f(z) = σn(A−zI); see Corollary 2.0.7 below), while the components
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Figure 2.1: The pseudospectra of a 6× 6 smoke matrix A is illustrated. The components of
Λε(A) for ε = W (A) (whose boundaries are represented by solid green curves) are centered
around the eigenvalues of A marked with black dots. On the other hand, the components
of Λε,2(A) (whose boundaries are represented by dotted red curves) are centered around the
coalescence points of the components of Λε(A).

of Λε,2(A) are centered around the coalescence points of the components of Λε(A) (which

are the global minimizers of g(z)).

The rest of this section is devoted to a partial solution of Conjecture 2. Consider the

singular value function h(γ) = σ2n−1

 A− zI γI

0 A− zI

 for a fixed z ∈ C, that is

continuous and symmetric, i.e, h(γ) = h(−γ). In [12], Malyshev has shown that h(γ)

possesses a number of remarkable properties helpful to enlighten Conjecture 2.

Lemma 2.0.1. h(γ)→ 0 as |γ| → ∞.

Note that due to the continuity of h(γ), Lemma 2.0.1 implies that if we take the supremum
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of h(γ) over γ, then it must be attained at a finite value. In addition to Lemma 2.0.1,

another important property shown by Malyshev is the following result.

Lemma 2.0.2. Let h(γ) = σ2n−1

 A− zI γI

0 A− zI

 6≡ 0. Then either h(γ) has no

local extrema on (0,∞) or it has only one, which is a global maximum.

Denoting a global minimizer of g(z) with z∗∗, it can be easily verified that g(z∗∗) is

attained at γ = 0. Indeed we have g(z∗∗) = W (A) = σn(A− z∗∗I), where the first equality

is due to Malyshev [12], and the second equality is due to Alam and Bora [2], which means

g(z∗∗) is attained at γ = 0. We will prove Conjecture 2 for any z∗ such that g(z∗) is attained

at γ = 0. Here is a brief outline of the proof.

(1) g(z∗) is attained at γ = 0 if and only if

u∗v = 0 (2.0.1)

where u, v are left and right singular vectors associated with σn(A− z∗I).

(2) Equation (2.0.1) implies z∗ is a saddle point of the function σn(A − zI) or a local

maximizer.

Step (1) is involved and relies on the following lemma for recognizing multiple eigenval-

ues. Here we benefit from the assumptions that z∗ /∈ Λ(A) and σn(A−z∗I) is simple, which

ensures that σn(A− zI) is differentiable at z∗.

Lemma 2.0.3. Let A ∈ Cn×n be a matrix with an eigenvalue λ with an associated pair of

left and right eigenvectors u, v ∈ Cn such that u∗v = 0. Then the eigenvalue λ is multiple.

Lemma 2.0.4. Let z∗ /∈ Λ(A) be a point such that σn(A−z∗I) is simple. Then the following

are equivalent:

(i) supγ σ2n−1

 A− z∗I γI

0 A− z∗I

 is attained at γ = 0.

(ii) u∗v = 0, where u, v are left and right singular vectors associated with f(z∗).

Proof. First suppose that u∗v = 0. If we set ∆A = −f(z∗)uv
∗, then we have
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• (A+ ∆A− z∗I)v = (A− z∗I)v + ∆Av = f(z∗)u− f(z∗)u = 0

• u∗(A+ ∆A− z∗I) = u∗(A− z∗) + u∗∆A = f(z∗)v
∗ − f(z∗)v

∗ = 0

That is u and v are left and right eigenvectors of A+ ∆A corresponding to the eigenvalue

z∗. Thus Lemma 2.0.3 implies that z∗ is multiple. Moreover we have ‖∆A‖ = f(z∗). This

means that

sup
γ

σ2n−1

 A− z∗I γI

0 A− z∗I

 = W (A, z∗)

≤ f(z∗)

= σn(A− z∗I) = σ2n−1

 A− z∗I 0

0 A− z∗I

 .

Thus the supremum is attained at γ = 0.

Conversely suppose that (i) holds. Consider, the analytic matrix function

F (γ) =

 A− z∗I γI

0 A− z∗I

 .
for γ near 0. Let us focus on the analytic SVD of F (γ) [1]

F (γ) = Ũ(γ)Σ̃(γ)Ṽ (γ)∗

where Ũ(γ) =
[
ũ1(γ) ũ2(γ) . . . ũ2n(γ)

]
, Ṽ (γ) =

[
ṽ1(γ) ṽ2(γ) . . . ṽ2n(γ)

]
are

analytic unitary matrix functions and Σ̃(γ) = diag(σ̃1(γ), σ̃2(γ), . . . , σ̃2n(γ)) is an analytic

diagonal matrix function. The assumption that σn(A− z∗I) is simple implies

σ̃2n(0) = σ̃2n−1(0) = σn(A− z∗I) < σn−1(A− z∗I) = σ̃2n−2(0) = σ̃2n−3(0) ≤ σ̃j(0)

for each j = 1, . . . , 2n−4. Due to the continuity of the singular values σ̃j(γ) for j = 1, . . . , 2n

there exists a neighborhood Γ of 0 such that σ̃2n(γ) < σ̃j(γ) and σ̃2n−1(γ) < σ̃j(γ) for all

γ ∈ Γ and for each j = 1, . . . , 2n− 2. Let ũ2n−1(γ), ṽ2n−1(γ), ũ2n(γ), ṽ2n(γ) be unit analytic

consistent pair of left and right singular vectors of F (γ) associated with σ̃2n−1(γ), σ̃2n(γ).
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As σ̃2n−1(0) = σ̃2n(0) = σn(A− z∗I), we get that

ũ2n−1(0) =

 k1u

l1u

 , ũ2n(0) =

 k2u

l2u



for some k1, k2, l1, l2 such that

 k1 k2

l1 l2

 is unitary. Define the scalars α and β satisfying

 α

β

 =

 k∗1 l∗1

k∗2 l∗2

 1

v∗u

 1√
1 + |v∗u|2

. (2.0.2)

Notice that |α|2 + |β|2 = 1

Now let us define two analytic vector functions x(γ) = αṽ2n−1(γ) + βṽ2n(γ) and y(γ) =

αũ2n−1(γ) + βũ2n(γ). These vector functions satisfy the following properties:

(i) x(γ)∗x(γ) = (α∗ṽ2n−1(γ)∗ + β∗ṽ2n(γ)∗)(αṽ2n−1(γ) + βṽ2n(γ)) = |α|2 + |β|2 = 1 for all

γ ∈ Γ

(ii) F (γ)x(γ) = ασ̃2n−1(γ)ũ2n−1(γ) + βσ̃2n(γ)ũ2n(γ) for all γ ∈ Γ

(iii) ‖F (γ)x(γ)‖2 = |α|2 σ̃2n−1(γ)2+|β|2 σ̃2n(γ)2 ≤ (|α|2+|β|2)σn(A−z∗I)2 = σn(A−z∗I)2

for all γ ∈ Γ

(iv) F (0)x(0) = σn(A− z∗I)y(0) and F (0)∗y(0) = σn(A− z∗I)x(0)

(v) ‖F (0)x(0)‖ = σn(A− z∗I)

Properties (iii) and (v) together imply that the analytic function g(γ) = ‖F (γ)x(γ)‖2 has

a local maximum at γ = 0.
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Differentiating g(γ) = ‖F (γ)x(γ)‖2 = x(γ)∗F (γ)∗F (γ)x(γ) at γ = 0, we obtain

d(x(γ)∗F (γ)∗F (γ)x(γ))

dγ

∣∣∣∣
γ=0

=
dx(γ)∗

dγ

∣∣∣∣
γ=0

F (0)∗F (0)x(0) + x(0)∗
dF (γ)∗

dγ

∣∣∣∣
γ=0

F (0)x(0)

+ x(0)∗F (0)∗
dF (γ)

dγ

∣∣∣∣
γ=0

x(0) + x(0)∗F (0)∗F (0)
dx(γ)

dγ

∣∣∣∣
γ=0

.

(2.0.3)

Using property (iv), equation (2.0.3) becomes

d(x(γ)∗F (γ)∗F (γ)x(γ))

dγ

∣∣∣∣
γ=0

= (σn(A− z∗I))2

(
dx(γ)∗

dγ

∣∣∣∣
γ=0

x(0) + x(0)∗
dx(γ)

dγ

∣∣∣∣
γ=0

)

+ σn(A− z∗I)

(
x(0)∗

dF (γ)∗

dγ

∣∣∣∣
γ=0

y(0) + y(0)∗
dF (γ)

dγ

∣∣∣∣
γ=0

x(0)

)
.

(2.0.4)

Furthermore, as x(γ)∗x(γ) = 1,

dx(γ)∗x(γ)

dγ

∣∣∣∣
γ=0

=
dx(γ)∗

dγ

∣∣∣∣
γ=0

x(0) + x(0)∗
dx(γ)

dγ

∣∣∣∣
γ=0

= 0. (2.0.5)

From equation (2.0.2), the vector function x(γ) at γ = 0 is given by

x(0) = αṽ2n−1(0) + βṽ2n(0) = α

 k1v

l1v

 + β

 k2v

l2v

 =

 (αk1 + βk2)v

(αl1 + βl2)v


=

1√
1 + |v∗u|2

 v

(v∗u)v

 .

Similarly y(0) = 1√
1+|v∗u|2

 u

(v∗u)u

 . So we have

x(0)∗
dF (γ)∗

dγ

∣∣∣∣
γ=0

y(0) = y(0)∗
dF (γ)

dγ

∣∣∣∣
γ=0

x(0) =
|v∗u|2

1 + |v∗u|2
. (2.0.6)
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Employing equations (2.0.5) and (2.0.6) in (2.0.4), and employing the fact that γ = 0 is a

local maximum, we have

d(x(γ)∗F (γ)∗F (γ)x(γ))

dγ

∣∣∣∣
γ=0

= 2σn(A− z∗I)
|v∗u|2

1 + |v∗u|2
= 0.

This implies v∗u = 0 as desired.

Step (2) is a simple consequence of the fact that the only minimizers of f(z) = σn(A−zI)

are the eigenvalues of A, which follows from the maximum modulus principle [4].

Theorem 2.0.5 (Maximum Modulus Principle). Let f : C→ C be an analytic function on

a connected open subset U of C. If there is a point z0 ∈ U satisfying |f(z0)| ≥ |f(z)| for all

z in a neighborhood of z0, then f is constant on U .

Theorem 2.0.6. Let A(z) : C → Cn×n be an analytic matrix function on an open subset

U of C. Then, either ‖A(z)‖ is constant on a neighborhood of some z̃ ∈ U , or otherwise

‖A(z)‖ does not have any local maximizer in U .

Proof. Suppose ‖A(z)‖ has a local maximizer z∗ ∈ U . There exists unit vectors u, v ∈ Cn

such that

|u∗A(z∗)v| = ‖A(z∗)‖ ≥ ‖A(z)‖ ≥ |u∗A(z)v|. (2.0.7)

for all z in a neighborhood N ⊂ U of z∗. But w(z) = u∗A(z)v is analytic, and the above

relations would imply that |w(z∗)| ≥ |w(z)| for all z ∈ N . It follows from the maximum

modulus principle that w(z) is constant on U , which in turn would mean that ‖A(z)‖ is

constant on N from (2.0.7).

Corollary 2.0.7. The eigenvalues of the matrix A are the only local minimizers of the

function f(z) = σn(A− zI).

Proof. Noting that σn(A− zI) = 1/‖(A− zI)−1‖, and applying Theorem 2.0.6 with A(z) =

(A− zI)−1, we deduce that any z /∈ Λ(A) cannot be a local maximizer of ‖(A− zI)−1‖, and

thus cannot be a local minimizer of σn(A − zI). (Note that none of the analytic singular

values of (A− zI) is constant, since they all blow up as z →∞. Thus ‖A− zI‖ cannot be

constant either.)
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Corollary 2.0.8. Let z∗ /∈ Λ(A) be such that σn(A − z∗I) is simple, and u, v be left and

right singular vectors of A− z∗I corresponding to σn(A− z∗I) such that u∗v = 0. Then z∗

is a saddle point of the function f(z) = σn(A− zI) or a local maximizer.

Proof. Since the function σn(A− zI) is nonzero and simple at z∗, it is (real) analytic at z∗

with respect to real and imaginary parts of z disjointly; indeed

dσn(A− zI)

d<z
∣∣
z=z∗

= −<(u∗v) = 0 and
dσn(A− zI)

d=z
∣∣
z=z∗

= =(u∗v) = 0

i.e., z∗ is a critical point of σn(A − zI). Moreover, as only local minimizers of σn(A − zI)

are the eigenvalues of A, we deduce that z∗ is either a saddle point or a local maximizer of

σn(A− zI).
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Chapter 3

COALESCENCE POINTS OF COMPONENTS OF HIGHER ORDER

PSEUDOSPECTRA

In the first chapter, we discussed the connection between the Wilkinson distance W (A),

and the ε-pseudospectrum Λε(A), and characterized as the smallest ε so that Λε(A) has

n− 1 or fewer components. Thus, W (A) is the smallest ε so that two components of Λε(A)

coalesce. Moreover, the point of coalescence z∗ ∈ C for ε = W (A) is the multiple eigenvalue

of a nearest matrix.

In this chapter we consider the following generalization of the Wilkinson distance for a

given matrix A ∈ Cn×n and an integer r ∈ [2, n].

Wr(A) = inf{‖∆A‖2 | (A+ ∆A) has an eigenvalue with algebraic multiplicity ≥ r}.

Inspired by the work of Malyshev [12], for the special case r = 2, Mengi [13] established

that

Wr(A) = inf
z∈C

(
f r(z) := sup

γ∈Cr(r−1)/2

fr(z, γ)

)
where

fr(z, γ) := σnr−r+1 (A(z, γ)) with A(z, γ) :=



A− zI γ1,2I γ1,rI

0 A− zI γ2,rI

. . .

A− zI γr−1,rI

0 0 A− zI



and γ :=
[
γ1,2 . . . γr−1,r

]T
. The value of f r(z) for a fixed z ∈ C corresponds to the

distance from A to the nearest matrix with z as an eigenvalue with algebraic multiplicity

at least equal to r.

In the first chapter, we mentioned that Λε(A) turns out to be irrelevant to Wr(A) for
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r > 2; we provided an example illustrating this. To be relevant, we defined the generalized

ε-pseudospectrum of order r as

Λε,r(A) := {z ∈ C | ∃∆A s.t. ‖∆A‖2 ≤ ε and rank(A+ ∆A− zI)r−1 ≤ n− r + 1}

=
{
z ∈ C | f r(z) ≤ ε

}
.

We conjecture that

Wr+1(A) = Cr(A) := inf{ε | two components of Λε,r(A) coalesce}.

The following example illustrates our conjecture for r = 2.

Example:

Consider the 6× 6 Dramadah matrix

D =



1 1 0 1 0 0

0 1 1 0 1 0

0 0 1 1 0 1

1 0 0 1 1 0

1 1 0 0 1 1

0 1 1 0 0 1


with six distinct eigenvalues. A plot of Λε,2(D) for the Dramadah matrix is provided in

Figure 3.1 for various ε. The inner-most curve represents the boundary of Λε,2(D) for

ε = W3(D). Remarkably two components of Λε,2(D) coalesce for ε = W3(D) at λ∗∗ = 0.8413

(marked with a red square in the figure), which is the eigenvalue with algebraic multiplicity

three of a nearest matrix.

Remember that denoting a consistent pair of unit left and right singular vectors associ-

ated with σn(A−zI) = ε with u and v, respectively, the rank one perturbation ∆A = −εuv∗

with ‖∆A‖ = ε makes z an eigenvalue of A + ∆A with u and v as the associated left and

right eigenvectors. Moreover, a coalescence point z∗ of Λε(A) is a saddle point of σn(A−zI).

If σn(A− zI) is differentiable at z∗ (i.e., σn(A− zI) is simple), we have u∗v = 0. It follows

that z∗ is an eigenvalue of A + ∆A with a pair of orthogonal left and right eigenvectors

meaning z∗ is indeed a defective multiple eigenvalue. This implies W (A) ≤ C(A), provided
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Figure 3.1: The ε-pseudospectra of the 6× 6 Dramadah matrix of order two are shown for
various ε. The blue squares represent the eigenvalues of the matrix, whereas the black and
red squares correspond to the nearest multiple eigenvalue and the eigenvalue of algebraic
multiplicity three, respectively, under smallest perturbation possible.
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σn(A− zI) is differentiable at the smallest saddle point z∗.

In this chapter, we generalize these observations for Λε,r(A) under mild assumptions to

prove the inequality Wr+1(A) ≤ Cr(A). In this respect note that, if we have a coalescence

point z∗ of two components of Λε,r(A), then

(1) there exists a rank r perturbation ∆A with ‖∆A‖2 = ε such that z∗ is an eigenvalue

of A+ ∆A with algebraic multiplicity r or greater,

(2) z∗ is a saddle point of f r(z) under linear independence and multiplicity assumptions

stated below.

Assumptions

Let z∗ be a point of coalescence of two components of Λε,r(A) and U, V ∈ Cn×r be such

that u = vec(U) and v = vec(V ) consist of a pair of unit left and right singular vectors

associated with the singular value

f r(z∗) = σnr−r+1 (A(z∗, γ∗)) = sup
γ

σnr−r+1 (A(z∗, γ)) .

Note that supγ σnr−r+1 (A(z∗, γ)) is guaranteed to be attained, since σnr−r+1 (A(z∗, γ))

decays to zero as any of the components of γ goes to infinity in modulus [10]. Throughout

this chapter the arguments hold under the following mild assumptions.

• (linear independence assumption) rank(U) = r (equivalently rank(V ) = r).

• (multiplicity assumption) Multiplicity of f r(z∗) = σnr−r+1 (A(z∗, γ∗)) is one.

Note that under the multiplicity assumption, we have the equality U∗U = V ∗V [13]. The

next theorem not only shows the existence of a rank r perturbation matrix ∆A that induce

z∗ as an eigenvalue of A+ ∆A with algebraic multiplicity r or greater but also identifies the

left and right generalized eigenspaces of A+ ∆A associated with z∗.

Theorem 3.0.9. Suppose that the linear independence and multiplicity assumptions hold.

Then the perturbation ∆A = −f r(z∗)UV + satisfies the following:

(i) ‖∆A‖2 = f r(z∗),
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(ii) z∗ is an eigenvalue of A+ ∆A with algebraic multiplicity at least r,

(iii) (A+ ∆A− z∗I)rvj = 0 for j = 1, . . . , r where vj is the jth column of V , and

(iv) u∗j (A+ ∆A− z∗I)r = 0 for j = 1, . . . , r where uj is the jth column of U .

Above V + denotes the Monroe-Penrose pseudoinverse of V .

Proof. Suppose that U, V satisfy the equation U∗U = V ∗V . Then

∥∥UV +
∥∥

2
= supx∈Cn,x 6=0

‖UV +x‖
2

‖x‖2
= supx∈Cn,x 6=0

√
x∗(V +)∗U∗UV +x

‖x‖2

= supx∈Cn,x 6=0

√
x∗(V +)∗V ∗V V +x

‖x‖2
= supx∈Cn,x 6=0

‖V V +x‖
2

‖x‖2
= ‖V V +‖2 .

Note that V V + is an orthogonal projector onto Col(V ) and so ‖V V +‖ = 1. Thus we have

‖UV +‖ = 1 yielding

‖∆A‖2 =
∥∥−f r(z∗)UV +

∥∥
2

= f r(z∗)
∥∥UV +

∥∥
2

= f r(z∗).

Next we will establish (iii). We have, as f r(z∗) is a singular value ofA(z∗, γ∗) with associated

left singular vector u = vec(U) and right singular vector v = vec(V ),

A(z∗, γ∗)v = f r(z∗)u and A(z∗, γ∗)
∗u = f r(z∗)v. (3.0.1)

Noting that A(z∗, γ∗) = I ⊗ A − C(z∗, γ∗)
T ⊗ I, and using equation (1.1.6), we can write

the first equation as a matrix equation of the form

AV − V C(z∗, γ∗) = f r(z∗)U

where

C(z∗, γ∗) =



z∗ 0 0

−γ1,2 z∗
. . .

z∗

−γ1,r −γr−1,r z∗


.
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Due to the linear independence assumption, i.e, rank(V ) = r, we have V +V = I. This

yields

AV − V C(z∗, γ∗) = f r(z∗)UV
+V = −∆AV =⇒ (A+ ∆A)V − V C(z∗, γ∗) = 0.

Using again vec operator, we obtain



A+ ∆A− z∗I γ1,2I γ1,rI

0 A+ ∆A− z∗I γ2,rI

. . .

A+ ∆A− z∗I γr−1,rI

0 0 A+ ∆A− z∗I


v = 0. (3.0.2)

An implication of the last equation is

(A+ ∆A− z∗I)rvj = 0, j = 1, . . . , r (3.0.3)

where vj denotes the jth column of V . Indeed, equation (3.0.3) can be shown using induc-

tion. For the base case j = r, we obtain, from the last block row of equation (3.0.2),

(A+ ∆A− z∗I)vr = 0.

Now as the inductive hypothesis assume that for l = j + 1, . . . , r

(A+ ∆A− z∗I)r−l+1vl = 0.
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From the jth block row of (3.0.1), we have

(A+ ∆A− z∗I)vj +

r∑
l=j+1

γl,jvl = 0 =⇒

(A+ ∆A− z∗I)r−j+1vj +
r∑

l=j+1

γl,j(A+ ∆A− z∗I)r−jvl = 0 =⇒

(A+ ∆A− z∗I)r−j+1vj +
r∑

l=j+1

γl,j(A+ ∆A− z∗I)l−j−1(A+ ∆A− z∗I)r−l+1vl = 0 =⇒

(A+ ∆A− z∗I)r−j+1vj = 0.

as desired. Above we used the inductive hypothesis in the second to last equality. This

completes the proof of (iii).

Similarly, by writing the second equation in (3.0.1) in matrix form we have

A∗U − UC∗(z∗, γ) = f r(z∗)V,

or equivalently (
A− f r(z∗)(V U+)∗

)∗
U − UC∗(z∗, γ) = 0.

Due to the property U∗U = V ∗V we have −f r(z∗)(V U+)∗ = −f r(z∗)UV + = ∆A. By

expressing the last matrix equation in the vector form we deduce



A+ ∆A− z∗I γ1,2I γ1,rI

0 A+ ∆A− z∗I γ2,rI

. . .

A+ ∆A− z∗I γr−1,rI

0 0 A+ ∆A− z∗I



∗

u = 0,

which yields, by a similar reasoning above,

u∗j (A+ ∆A− z∗I)r = 0, j = 1, . . . , r (3.0.4)
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completing the proof of (iv). Finally, equation (3.0.3) implies that

dim Null(A+ ∆A− z∗I)r ≥ r,

or equivalently rank(A+ ∆A− z∗)r ≤ n− r proving (ii).

Remember that for any matrix function F : R → Cn×n depending on a parameter

analytically each singular value σj is analytic at a given point as long as it is non-zero and

its multiplicity is one. In this case the derivative is given by

dσj(ω̃)

dω
= <

(
U∗j

dF(ω̃)

dω
Vj
)

(3.0.5)

where Uj ,Vj denote a consistent pair of unit left and right singular vectors associated with

σj(ω̃).

Theorem 3.0.10. Under the linear independence and multiplicity assumptions, we have

u∗i vj = 0 i = 1, . . . , r, j = i, . . . , r.

Proof. We view fr(z∗, γ) as a mapping Rr(r−1) → R by decomposing each complex pa-

rameter γij contained in γ into its real and imaginary parts <γij and =γij . Due to the

multiplicity assumption, fr(z∗, γ) is analytic with respect to the real and imaginary parts

at γ∗. By an application of the formula (3.0.5) we obtain

∂fr(z∗, γ∗)

∂<γij
= <(u∗i vj) and

∂fr(z∗, γ∗)

∂=γij
= −=(u∗i vj).

Since γ∗ is a local maximizer of fr(z∗, γ), all of these partial derivatives must vanish yielding

u∗i vj = 0 i = 1, . . . , r, j = i+ 1, . . . , r.

A consequence of the multiplicity assumption is the differentiability, indeed analyticity,

of f r(z) at z∗ [3, Proposition 4.12]. Its derivatives are given by

∂f r(z∗)

∂<z
= <

(
u∗
∂A(z∗, γ∗)

∂<z
v

)
= −<(u∗v)
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and
∂f r(z∗)

∂=z
= <

(
u∗
∂A(z∗, γ∗)

∂=z
v

)
= =(u∗v).

Since z∗ is a saddle point of f r(z), the derivatives above yield

u∗v =

r∑
j=1

u∗jvj = 0. (3.0.6)

Now, for j = 1, . . . , r, define the functions

f
(j)
r (z) := sup

γ
σnr−r+1

(
A(j)(z, γ)

)
with

A(j)(z, γ) :=



A− z∗I γ1,2I γ1,rI

0 A− z∗I γ2,rI

. . .

A− zI︸ ︷︷ ︸
(j,j) block

. . .

A− z∗I γr−1,rI

0 0 A− z∗I



.

Note that under the multiplicity and linear independence assumptions the functions f
(j)
r

for j = 1, . . . , r correspond to the same distance function. To see this, let C(j)(z, γ) be the

same as C(z∗, γ) except its entry at position (j, j) is z. By applying the vec operator to

both sides of

(A+ ∆A)X −XC(j)(z, γ) = 0 (3.0.7)
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and exploiting the Kronecker product identity (1.1.6), we obtain

A(j)(∆A, z, γ)x =

A+ ∆A− z∗I γ1,2I γ1,rI

0 A+ ∆A− z∗I γ2,rI

. . .

A+ ∆A− zI︸ ︷︷ ︸
(j,j) block

. . .

A+ ∆A− z∗I γr−1,rI

0 0 A+ ∆A− z∗I



x = 0,

where x = vec(X). Thus the solution space of the Slyvester equation (3.0.7) and null space

of A(j)(∆A, z, γ) have the same dimension for all γ. We can indeed define f
(j)
r (z) as [13]

f
(j)
r (z) = inf

{
‖∆A‖2 | rank(A(j)(∆A, z, γ)) ≤ nr − r + 1 ∀γ ∈ G(j)(z)

}
= inf

{
‖∆A‖2 | dim Null(A(j)(∆A, z, γ)) ≥ r ∀γ ∈ G(j)(z)

}
= inf

{
‖∆A‖2 | dim Kernel

(
X 7→ (A+ ∆A)X −XC(j)(z, γ)

)
≥ r ∀γ ∈ G(j)(z)

}
where G(j)(z) denotes the set of (generic) γ values such that C(j)(z, γ) has full Jordan blocks.

Now for each γ ∈ G(j)(z) ∩ G(k)(z), the matrices C(j)(z, γ) and C(k)(z, γ) have the same

eigenvalues and the same Jordan canonical form, so Theorem 1.1.9 implies

dim Kernel
(
X 7→ (A+ ∆A)X −XC(j)(z, γ)

)
= dim Kernel

(
X 7→ (A+ ∆A)X −XC(k)(z, γ)

)
for all ∆A. Thus, f

(j)
r (z) = f

(k)
r (z). Again the multiplicity assumption ensures the differ-

entiability of the functions f
(j)
r (z) at z∗. Now applications of the formula (3.0.5) yield

∂f
(j)
r (z)

∂<z
= −<(u∗jvj) = −<(u∗kvk) =

∂f
(k)
r (z)

∂<z

and
∂f

(j)
r (z)

∂=z
= =(u∗jvj) = =(u∗kvk) =

∂f
(k)
r (z)

∂=z
,
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consequently u∗jvj = u∗kvk for all j, k. By combining this with (3.0.6) we conclude with

u∗jvj = 0, j = 1, . . . , r.

completing proof.

We have shown that the algebraic multiplicity of a saddle point z∗ of f r(z) as an eigen-

value of A+ ∆A is at least r (Theorem 3.0.9). Further can be inferred about the algebraic

multiplicity of z∗ by exploiting the orthogonality relations deduced in the previous theo-

rem among the block components of u and v, which happen to compromise bases for the

generalized eigenspaces of A+ ∆A associated with z∗ by Theorem 3.0.9.

Lemma 3.0.11. Let A ∈ Cn×n and z be an eigenvalue of A such that

rank(A− zI)r ≤ n− r

(i.e., the algebraic multiplicity of z is at least r). Suppose also that {V1, . . . ,Vr} is a linearly

independent set in Cn and U1 ∈ Cn and satisfy

(1) (A− zI)rVj = 0 j = 1, . . . , r

(2) U∗1 (A− zI)r = 0, and

(3) U∗1Vj = 0 j = 1, . . . , r.

Then A has z as an eigenvalue of algebraic multiplicity at least r + 1.

Proof. Let A = PJP−1 be the Jordan canonical form such that

J =

 Jz

J̃


where Jz is of size r× r, and consist of the Jordan blocks associated with the eigenvalue z.

Note that U1,V1, . . . ,Vr are the generalized left eigenvector and right eigenvectors associated
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with z, respectively. Also, note that

(A− zI)r = P (J − zI)rP−1 with (J − zI)r =

 0

(J̃ − zI)r
.


From (2),

U∗1 (A− zI)r = 0 =⇒ U∗1PP−1(A− zI)rP = 0 =⇒ U∗1P (J − zI)r = 0. (3.0.8)

Let x∗ = U∗1P . Then from (3) we deduce that for j = 1, . . . , r,

U∗1Vj = 0 =⇒ U∗1PP−1Vj = 0 =⇒ x∗ej = 0

yielding that the first r entries of the vector x is 0, i.e, x∗ = [ 0 x̃∗ ], where x̃ ∈ Cn−r.

Using equation (3.0.8), we get

[ 0 x̃∗ ](J − zI)r = [ 0 x̃∗ ]

 0

(J̃ − zI)r

 = 0

yielding x̃∗(J̃ − zI)r = 0. Thus z is an eigenvalue of J̃ showing that z is an eigenvalue of J

of algebraic multiplicity at least r + 1. The same is, therefore, true for A.

Applying the previous lemma to the eigenvalue z∗ of A + ∆A, and parts (iii)-(iv) of

Theorem 3.0.9 we deduce the following.

Theorem 3.0.12. The scalar z∗ is an eigenvalue of A+ ∆A with algebraic multiplicity at

least r + 1.

The significance of the theorem above to establish the connection between Cr(A) and

Wr+1(A) is as follows. Suppose that the function f r(z) is differentiable at the point of

coalescence z∗ of the components of Λε,r(A) for ε = Cr(A). (The differentiability of f r(z)

at z∗ is ensured for instance by the multiplicity assumption.) Then the argument above

establishes the existence of a perturbation ∆A with norm ‖∆A‖2 = Cr(A) = f r(z∗) such

that z∗ is an eigenvalue of A+ ∆A with algebraic multiplicity at least r+ 1. Consequently,

Wr+1(A) ≤ Cr(A).
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Chapter 4

CONCLUSION

We studied the Wilkinson distance of a matrix A, which is the 2-norm of the smallest

perturbation ∆A so that A + ∆A has a multiple eigenvalue. Malyshev derived a singular

value optimization characterization of the distance. Alam&Bora showed that the distance

is the smallest ε such that the number of connected components of the ε-pseudospectrum

of A is at most n− 1. Chapter 2 builds a connection between the works done by Malyshev

and Alam&Bora. Chapter 3 is dedicated to generalize the observations of Alam&Bora.

In the second chapter, we partly prove Conjecture 1 for r = 2, suggesting how the

conjecture should be approached for an arbitrary r. We prove that the attainment of the

supremum f2(z∗) = supγ f2(z, γ) at γ = 0 (where f r(z) and fr(z, γ) are as defined in

(1.2.2)) is equivalent to the orthogonality of left and right singular vectors of σn(A− z∗I).

This usually means that z∗ is a saddle point of the function f(z) = σn(A − zI). Thus, at

the centers of the components of the second order pseudospectra Λε,2(A) there usually lie

coalescence points of the components of the ordinary pseudospectra Λε(A).

In the third chapter, we establish the inequality Wr+1(A) ≤ Cr(A) for r ≥ 2 under

the multiplicity and linear independence assumptions. We first provide a perturbation

that induces an eigenvalue with algebraic multiplicity r at a coalescence point z∗ of two

components of a generalized pseudospectrum of order r. We next demonstrate that the block

components of the left and right singular vectors corresponding to f r(z∗) are orthogonal,

which implies that z∗ is indeed an eigenvalue of algebraic multiplicity at least r + 1 of the

perturbed matrix. This yields the desired inequality Wr+1(A) ≤ Cr(A).

4.1 Open Problems

4.1.1 Conjecture 1 for r ≥ 2

In section 1.3, we stated that our main problem is to show that the equality Wr+1(A) =

Cr(A) holds for r ≥ 2. In Chapter 3, we proved the inequality Wr+1(A) ≤ Cr(A). A proof
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of the other direction, Wr+1(A) ≥ Cr(A), is an open problem. The solution of Conjecture 1

would lead us to the other direction, and this may be achieved by following the steps below:

(1) f r(z) has a local minimum at z∗ =⇒ f r(z∗) is attained at γ1r = γ2r = · · · = γr−1,r = 0.

(2) f r(z∗) is attained at γ1r = γ2r = · · · = γr−1,r = 0 if and only if

u∗1v1 = u∗1v2 = · · · = u∗1vr = 0 (4.1.1)

where u1, v1, . . . , vr are columns of U, V and u = vec(U), v = vec(V ) consist of a pair

of unit left and right singular vectors associated with the singular value f r(z∗).

(3) Equation (4.1.1) implies that z∗ is a saddle point of the function f r−1(z).

Note that the steps are the generalization of the ones for the case r = 2.

4.1.2 Multiplicity and Linear Independence Assumptions

The results in the third chapter are proved under the multiplicity and linear independence

assumptions. Numerical experiments suggest that our results may hold even if these as-

sumptions are not satisfied. Here we provide an example for which the multiplicity and

linear independence assumptions are not satisfied. Consider the diagonal matrix

A =


2 0 0

0 1 0

0 0 3

 .

In Figure 4.1, the boundaries of Λε(A) and Λε,2(A) are plotted for ε = W3(A) = 0.7070.

Remarkably two components of Λε,2(A) coalesce at z∗ = 2, which is the eigenvalue with alge-

braic multiplicity three of a nearest matrix. For this example we have C2(A) = W3(A) con-

firming our conjecture. For the coalescence point z∗ = 2, we observe that f3(z∗) is attained

at γ∗ = [ 0.0926− 0.0526i −0.6023− 0.3396i 0.0890− 0.0534i ]T , and that the multiplic-

ity of f3(z∗) at this optimal γ is 3, indeed σ5 (A(z∗, γ∗)) = σ6 (A(z∗, γ∗)) = σ7 (A(z∗, γ∗)) =

0.7070. Hence the multiplicity condition at the optimal γ is violated. Moreover all three

pairs of singular vectors corresponding to 0.7070 violate the linear independence assumption.
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Figure 4.1: The sets Λε(A) (solid curve) and Λε,2(A) (dotted curve) for ε = W3(A) = 0.7070
are illustrated for a 3× 3 diagonal matrix A.

But our main result in the third chapter is still true. So the inequality Wr+1(A) ≤ Cr(A)

may hold regardless of these assumptions.
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