
VARIABLE NEIGHBORHOOD SEARCH FOR ORDER

ACCEPTANCE AND SCHEDULING PROBLEM

by

Ayşegül Altındağ

A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Industrial Engineering

Koç University

August, 2013

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ayşegül Altındağ

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Dr. Ceyda Oğuz (Advisor)

Assist. Prof. Dr. Onur Kaya

Assoc. Prof. Dr. Kerem Bülbül

Date:

to democracy...

iii

ABSTRACT

Order acceptance is one of the important decisions to make while dealing with satisfac-

tion of customers, risk of delays and overloaded production in competitive environments. A

company can increase its profit, satisfy demands of the customers and utilize its capacity

at its best with a proper management of the incoming orders through making acceptance-

rejection decisions on the orders and simultaneously scheduling the accepted orders. This

problem is known as the order acceptance and scheduling (OAS) problem.

In this study, we examine two different OAS problems on a single machine environment.

In the first problem, each order is characterized with a processing time, a due date, a weight

and a revenue. Each accepted order which is delivered to the customer before its due date

brings maximum profit to the manufacturer. Late delivery of an order causes tardiness cost

which decreases the profit. The manufacturer can reject the order without a penalty cost.

Sometimes customers may specify deadlines for their orders. Deadlines are the preferred

latest time for the customers to accept the orders. If the completion time of an order exceeds

the deadline, the customer refuses the order and does not pay for it. Moreover, some orders

coming from the customers may be defined with release dates to be ready for the processing.

In the first problem, we ignore sequence dependent setup times (preparation time necessary

between two successive orders), deadlines and release dates. The second problem includes

these properties. The objective function for both of the problems is to maximize total profit

that is a function of total revenue and total tardiness.

We propose a Variable Neighborhood Search (VNS), which is a metaheuristic solution

approach, to solve this NP-hard problem. The VNS is developed by using two neighborhood

structures with a local search in a compact form. We analyze the performance of the VNS

for both of the problems by using a benchmark data set. We present the computational

experiments in which the VNS is compared with the most competitive metaheuristic algo-

rithms from the literature. We conclude with the insights gained regarding the strengths

and weaknesses of the proposed algorithm and that of the algorithms from the literature.

iv

ÖZET

Günümüz rekabet ortamında, bir firma için sipariş kabul etme ya da reddetme kararı

oldukça önem kazanmıştır. Bu problemin ortaya çıkmasının asıl nedeni, bir taraftan her

firmanın belirli bir üretim kapasitesinin ve kıt kaynaklarının olması diğer taraftan da sipariş

veren her müşterinin ilgili firmadan belirli bir beklentisinin olmasıdır. Bu nedenlerle, firma

özellikle çok fazla sipariş aldığı zamanlarda, gelen siparişlerin bir kısmını reddetmek du-

rumunda kalabilir. Bu noktada firmanın hangi siparişi kabul edeceğine ve kabul ettiği

siparişleri nasıl çizelgeleyeceğine dair önemli bir karar vermesi gerekmektedir. Bu prob-

lem yazında sipariş kabul etme ve çizelgeleme problemi (SKEÇ) olarak bilinir.

Bu tezde, tek makine üzerinde iki farklı SKEÇ problemi ele alınmıştır. İlk problemde

her siparişin teslim tarihi, işlem süresi ve getirisi vardır. Kabul edilen ve teslim zamanından

önce tamamlanıp, müşteriye teslim edilen her sipariş üreticiye en büyük kazancı sağlar.

Geç teslim edilen siparişler kazançta bir düşüş yaratır. Herhangi bir siparişin reddedilmesi

mümkündür ve hiçbir ek maliyet getirmez. Bazen müşteriler siparişleri için son teslim tarihi

belirleyebilirler. Son teslim tarihi bir siparişin kabul edilebilmesi için müşteri tarafından

üreticiye verilen en son zamandır. Eğer bir sipariş son teslim tarihinden sonra müşteriye

ulaştırılırsa, müşteri siparişi reddeder ve satın almaz. Ek olarak, bazı siparişler işlenmeye

başlamaya hazır olmak için serbest bırakılma zamanlarına ihtiyaç duyabilirler. İlk incelenen

problem bir siparişin son teslim tarihini, serbest bırakılma zamanını ve siparişler arasında

sıraya bağlı hazırlık sürelesini yok sayarak problemi ele alırken bu özellikler ikinci problemde

kapsanmıştır. Her iki problemin amaç fonksiyonu elde edilen kazancı en büyüklemektir.

Bu tezde, incelenen problemler için değişken komşuluklu arama (DKA) algoritması

önerilmiştir. DKA algoritması etkili yerel arama yöntemi ile iki komşuluk yapısının kul-

lanılması yoluyla geliştirilmiştir. Önerilen algoritmanın performansı, yazında bulunan sezgisel

yöntemlerle kıyaslanmıştır. SKEÇ problemine uygulanan DKA algoritmasının yazında bu-

lunan sezgisel yöntemlere göre güçlü ve zayıf yönleri verilmiştir.

v

ACKNOWLEDGMENTS

Foremost, I am heartily thankful to my advisor, Prof. Ceyda Oğuz, for her encourage-

ment; guidance and support from the initial to the final level of this thesis. She provided

valuable suggestions for believing in my abilities.

I would like to thank Assist. Prof. Onur Kaya and Assoc. Prof. Dr. Kerem Bülbül for

taking part in my thesis committee, insightful comments and hard questions.

I offer my regards and blessings to my friends Aysu, Duygu and Güneş for their unforget-

table, valuable,warm and enjoyable friendships during my master study at Koç University.

I cannot find words to express my gratitude to Serhan who gave me encouragement

during the completion of this thesis with a big patience.

I would like to thank my sister Fatma Gül, my brother Onur and my cat Behlül, my

best friends, for their help, advice and love during my life.

I also would like to acknowledge financial support from TUBITAK during my master

thesis.

My special thanks are to my parents Emine and Ismet for their endless support and love

in case of all events. To them I dedicate this thesis.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures xi

Nomenclature xii

Chapter 1: Introduction 1

Chapter 2: Literature Survey 4

2.1 Order Acceptance and Scheduling problem 4

2.1.1 OAS-1 problem . 4

2.1.2 OAS-2 problem . 7

2.2 Variable Neighborhood Search . 10

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 13

3.1 Problem Definition . 13

3.1.1 Definition for the OAS-1 problem . 14

3.1.2 Definition for the OAS-2 problem . 14

3.2 MILP Formulation for the OAS Problem . 15

3.2.1 MILP Formulation for the OAS-1 problem 15

3.2.2 MILP Formulation for the OAS-2 problem 16

Chapter 4: A Heuristic Solution Approach 19

4.1 Variable Neighborhood Search (VNS) . 19

4.2 Proposed VNS Algorithm . 20

4.2.1 Solution Representation . 20

4.2.2 Initial Solution . 20

4.2.3 Neighborhood Structure Definition and Local Search Procedure 21

vii

Chapter 5: Computational Studies 28

5.1 Data Sets . 28

5.1.1 Data Set for the OAS-1 problem . 28

5.1.2 Data Set for the OAS-2 problem . 28

5.2 Selection of the Neighborhood Structures . 29

5.3 Tuning the Parameters . 32

5.3.1 Threshold Value . 32

5.3.2 Termination criterion . 33

5.4 Results of the Computational Study . 34

5.4.1 Computational Platform . 34

5.4.2 Benchmarks . 34

5.4.3 Upper Bounds (UB) . 38

5.4.4 Performance Measures . 38

5.4.5 Results for proposed VNS algorithm 39

5.5 Analysis of the Results . 49

5.5.1 Analysis of the results for the OAS-1 problem 49

5.5.2 Analysis of the results for the OAS-2 problem 51

Chapter 6: Conclusions and Future Research 55

6.1 Conclusions . 55

6.2 Future Research . 56

Bibliography 57

Vita 59

viii

LIST OF TABLES

5.1 Preliminary test results to select neighborhood structures for the OAS-1 prob-

lem where n=50 . 30

5.2 Preliminary test results to select neighborhood structures for the OAS-2 prob-

lem where n=10 . 31

5.3 Preliminary test results to set the threshold values for the OAS-1 problem

where n = 50 . 32

5.4 Preliminary test results to set the threshold values for the OAS-2 problem

where n = 10 . 33

5.5 Performance Results of the Myopic, Genetic and VNS Algorithms for the

OAS-1 problem when n =50 . 40

5.6 Performance Results of the Myopic, Genetic and VNS Algorithms for the

OAS-1 problem when n =75 . 41

5.7 Performance Results of the Myopic, Genetic and VNS Algorithms for the

OAS-1 problem when n =100 . 42

5.8 Performance of the TS, ABC and VNS algorithms for the OAS-2 problem

when n=10 . 43

5.9 Performance of the TS, ABC and VNS algorithms for the OAS-2 problem

when n=15 . 44

5.10 Performance of the TS, ABC and VNS algorithms for the OAS-2 problem

when n=20 . 45

5.11 Performance of the TS, ABC and VNS algorithms for the OAS-2 problem

when n=25 . 46

5.12 Performance of the TS, ABC and VNS algorithms for the OAS-2 problem

when n=50 . 47

ix

5.13 Performance of the TS, ABC and VNS algorithms for the OAS-2 problem

when n=100 . 48

x

LIST OF FIGURES

5.1 Convergence of the VNS algorithm for an instance with n=50, τ = 0.3 and

Crl=0.025 . 33

5.2 Convergence of the VNS algorithm for an instance with 25 orders, τ = 0.9

and R = 0.7 . 34

xi

NOMENCLATURE

ABC Artificial Bee Colony

ATCS Apparent Tardiness Costs with Setups

B&B Branch and Bound

d-RFSB Dynamic Release First Sequence Best

GA Genetic Algorithm

GVNS General Variable Neighborhood Search

ISFAN Iterative Sequence First - Accept Next Algorithm

LP Linear Programming

m-ATCS Modified Apparent Tardiness Costs with Setups Heuristic

MILP Mixed Integer Linear Programming

MTO Make-to-order

OAS Order Acceptance and Scheduling

RLR1 Revenue-Load-Ratio1

RLR2 Revenue-Load-Ratio2

RVNS Reduced Variable Neighborhood Search

R&M Rachamadagu and Morton

SVNS Skewed Variable Neighborhood Search

SA Simulated Annealing

TS Tabu Search

TSP Travelling Salesman Problem

UB Best Upper Bound

UBLPV I Upper Bound obtained by LP Relaxation of MILP with Valid Inequalities

UBMILP MILP Upper Bound at Termination

VNDS Variable Neighborhood Decomposition Search

VNS Variable Neighborhood Search

WPST Weighted Shortest Processing Time

xii

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

In today’s competitive environment, customers show great interest in more diversified and

unique products. Furthermore, they expect on time delivery performance from manufactur-

ers. As a result, manufacturers need to satisfy the expectations of the customers to survive

in the competitive environment. Make-to-order (MTO) firms allow customers to customize

products according to their special needs. Thus, MTO firms have the capability to produce

custom-made products.

The MTO production system is faced with capacity management problems when their

resources have limited flexibility and orders coming from customers have tight delivery re-

quirements. The capacity management problems generally occur in a period of high demand

for MTO production system. In such periods, if the firm accepts all prospective orders, it

takes a significant risk in performing on-time delivery. On the other hand, refusing some

orders because of concerns about capacity results in another risk about losing customers

who can turn to other firms. Both of these situations result in loss of business and revenue.

In these circumstances, the firm should develop a decision strategy which deals with which

orders should be accepted and how these orders should be processed to use the capacity

efficiently.

Order acceptance is one of the important decisions to make while dealing with some

situations as customer satisfaction, delayed risk and production overload in competitive

environments. These situations generally arise in different MTO production systems since

they generally service customized products. A firm can increase its profit, satisfy the de-

mands of the customers and utilize its capacity at its best with a proper management of the

incoming orders through making acceptance-rejection decisions on the orders and simulta-

neously scheduling the accepted orders. This problem is known as the order acceptance and

scheduling (OAS) problem. In this thesis, we analyze the OAS problem in a single machine

Chapter 1: Introduction 2

environment under two different scenarios. The first scenario deals with a set of independent

orders characterized by due dates, maximum revenues, processing times and weights. The

weight of an order is used to denote the importance of the customer. The maximum revenue

of an order is gained if it is accepted and completed before its due date. Early delivery is not

penalized but there is a discount for tardy delivery on behalf of the customer. All orders are

available at time zero and more than one order cannot be processed on the machine at the

same time. Scheduling problems can be modeled without sequence dependent setup times,

when the assumption that the setup times are negligible in comparison to processing times

is valid. However, for some industries this assumption is not valid and they require sequence

dependent setup times when two orders are processed consequently. Some customers may

also specify deadlines for their orders. Deadline is the latest time given by the customers

to accept an order. If the completion time of an order exceeds its deadline, the customer

refuses the order and does not pay for it. The release date may also be important in some

systems. It is the time when an order arrives at the system. In the first scenario, we ignore

sequence dependent setup times, deadlines and release dates (OAS-1). The second scenario

involves the sequence dependent setup times, deadlines and release dates (OAS-2).

The three major contributions of this study are as follows:

• We propose a variable neighborhood search (VNS) algorithm to solve two OAS prob-

lems with different properties taking the success of VNS algorithm into account for

difficult optimization problems. The VNS algorithm is not used as a solution method

for the OAS problem in the literature so far. Although we observe the weaknesses

of the VNS algorithm on some benchmark instances, solving two problems with the

same method facilitates a robust algorithm.

• Using nested neighborhood structures serves searching the solution space more effec-

tively. The VNS algorithm allows searching the solutions in different search spaces.

Since this situation exploits the hidden information in the solutions, we find more

optimal solutions in the VNS algorithm than the number of optimal solutions found

in some competitive metaheuristics.

• Computational tests are utilized to select a local search procedure. We decide using

a compound move including three operators: drop, add and insert as local search

Chapter 1: Introduction 3

procedure in this study due to the best results among the tests. In the local search,

we utilize add operator both deterministically and probabilistically. In order to select

the order to be added into the sequence, we use ratio values for the deterministic case

while we employ cumulative probabilities in the probabilistic case. We claim that the

compound move is more successful as a local search according to the test results since

it is compatible with the properties of the problem and concerns the combination of

algorithm with strong specialization in intensification and diversification.

The structure of the thesis is as follows. In Chapter 2, we survey the studies related

with the OAS-1 and the OAS-2 problems. Moreover, we summarize the papers in which

VNS is used as a solution method for their problems. In Chapter 3, we give the definition

of two OAS problems formally and present the mixed integer linear programming (MILP)

formulation of the problems which are developed in Oğuz et al. (2010) and Talla Nobibon

and Leus (2011). In Chapter 4, we present the proposed VNS algorithm. We give the

computational results for the study in Chapter 5. Finally, in Chapter 6, we give conclusions

and remarks for future work.

Chapter 2: Literature Survey 4

Chapter 2

LITERATURE SURVEY

In this chapter, we survey studies related with the OAS problem. Furthermore, we point

out the differences of our problems with the related studies. We also address the studies

which use VNS algorithm in their analyses. We emphasize the success of the VNS algorithm

and give the details of the algorithms for the related studies.

2.1 Order Acceptance and Scheduling problem

Studies on OAS can be differentiated in terms of their objective function, solution methods

and problem characteristics. In this study, we investigate two different OAS problems. The

first problem is order acceptance and scheduling problem without sequence setup times,

release dates and deadlines. In the second problem, these properties are included in the

problem. In the remaining parts of the thesis, the first problem is referred to as OAS-1

problem and the second one as OAS-2 problem. In this section, we investigate the most

related papers with both of the problems.

2.1.1 OAS-1 problem

Slotnick and Morton (1995) investigate the order acceptance and scheduling problem in a

single machine environment with static arrivals, that is when all jobs available at time zero.

They assume that each order is associated with a weight, a processing time, a due date and

a revenue. Their objective is to maximize the total net profit. The net profit is the revenue

of each order minus the weighted lateness. Here, the lateness refers to the completion time

minus the due date. Since completion time is a time dependent variable, they successfully

present the objective of the problem with a time related penalty. They propose one optimal

and two heuristic algorithms to handle the OAS problem. They use a branch and bound

algorithm that provides bounds by a linear relaxation of the problem at each node to find

optimal solutions. They initiate their algorithms with weighted shortest processing time

Chapter 2: Literature Survey 5

(WSPT) method. The WSPT method suggests to place jobs in a sequence according to the

ratio of processing time to the weight. They sort the ratio values from the highest to the

lowest and jobs are positioned with respect to these sorted values. Since they realize that the

branch and bound algorithm has a disadvantage about searching solution space ineffectively,

they alternatively develop heuristic algorithms to solve the problem. The beam search is

one of the heuristic algorithms employed by Slotnick and Morton (1995). The beam search

provides limitations on the generation of the search space with a predetermined number of

nodes at each level in contrast with the branch and bound algorithm. The second proposed

heuristic algorithm is the myopic algorithm. Following the currently most promising path

within the search is the one of the distinctive property of the myopic algorithm. The other

important property of the myopic algorithm is the generation of a smaller tree during the

search. They measure the performance of the proposed algorithms on 400 test instances

(100 each with 12, 17, 22 and 27 orders). The optimal branch and bound algorithm is only

used to obtain optimal solutions of 12 and 17 order problems. For remaining large sized

test instances, branch and bound algorithm consumes too much time so they do not apply

the tests for them. Their computational tests show that branch and bound algorithm is

computationally very expensive to solve the OAS problem and solutions obtained from beam

search and myopic algorithm are optimal or very close to the optimal. Furthermore, the

beam search and myopic algorithm are much more effective in terms of computational time.

Ghosh (1997) proves that the problem investigated by Slotnick and Morton (1995) is NP-

hard. Then, he develops two dynamic programming algorithms for the exact solution of job

selection problem investigated by Slotnick and Morton (1995). The algorithms demonstrate

that the problem is solvable in polynomial time if either the job processing times or the job

weights for the lateness penalty are equal.

Slotnick and Morton (2007) extend their previous work and use the tardiness for the

problem instead of lateness, where tardiness is the positive part of the lateness. They

focus on the order acceptance decision with static arrivals, deterministic processing times,

customer weights and revenues. The objective is to maximize the profit which is a function

of the tardiness. Intuitively, when an order is delivered after its due date, the customer

satisfaction level has a downward trend. The tardiness represents this decrease in the

problem and depends on the completion time and the due date of an order. Slotnick

Chapter 2: Literature Survey 6

and Morton (2007) provide several solution methods, which are based on the decision of

the sequencing and accepting orders jointly. In the first part of the study, beam search,

Rachamadagu and Morton (R&M) dispatch heuristic and Montagnes method are developed

and tested with 7- job problems. Branch and bound (B&B) algorithm is also used to obtain

optimal solutions for small sized benchmark solutions. All three heuristics are shown to be

not better than the B&B algorithm. Beam search and Montagnes heuristic perform similarly

and the R&M heuristic gives the worst among three of them. Then, the performances of

Montagne and R&M are tested with 50 jobs problem. Here, the beam search is used as the

benchmark because it is not practical to find an optimal solution to problems for large sized

problems with the B&B algorithm. The results indicate that Montagne performs as well as

beam search and it is concluded that R&M is not an effective method. In the second part of

their study, Slotnick and Morton (2007) develop new methods which allow to decide jointly

accepting of the orders and sequencing them using relaxation. They observe that this new

joint approach is really stronger than the first one. They develop myopic algorithm that

performs a search with more intensive techniques for large sized problems in a fast way. The

beam search procedure runs faster than the benchmark and give low average deviations from

the optimal solutions. In addition, they develop a beam search by using Vogels method for

bounding. This method provides more qualified solutions for small sized problems. For the

larger ones, they observe that myopic heuristic definitely is faster than the benchmark and

gives comparable results with the benchmark in terms of quality.

Rom and Slotnick (2009) present a genetic and myopic algorithm for the order ac-

ceptance and scheduling problem with tardiness penalties. Their study deals with static

arrivals, deterministic processing times, customer weights and revenues associated with or-

ders. Maximization of the total revenue is the objective function and includes the tardiness

penalty. They propose a myopic algorithm as one of the solution methods in their study.

Basically, idea of the developed myopic algorithm is to use the solution of the relaxed prob-

lem with reassembling of the accepted orders in the sequence. Reassembling of the accepted

orders depends on inserting orders that are sequenced heuristically to minimize the weighted

tardiness. The second proposed algorithm is the genetic algorithm. They model the chro-

mosomes as sample solutions and use a two point crossover to generate the offspring. The

crossover is based on switching the part of the sequence randomly to generate offspring.

Chapter 2: Literature Survey 7

They use the local search procedure to improve the solutions. The local search is employed

by interchanging successively the positions of a limited number pairs of jobs randomly. They

compare the performance of the genetic algorithm with the myopic heuristic, in terms of

objective function value and computation time. They test the algorithms with the problems

including 50, 75 and 100 jobs and obtain the upper bounds with relaxation of the original

problem. They get really impressive results from the GA. The GA always dominates the

myopic algorithm in terms of the objective function value, at the cost of increased CPU

times.

Talla Nobibon and Leus (2011) approach the problem from a different angle. They handle

the problem by assuming that a firm has both planned and optional orders. Optional orders

can be accepted or rejected by the firm, but the planned orders must be processed in the

system. All jobs are available for the processing at the beginning of the planning period

and every order has a due date, a processing time, a revenue and a weight. The objective

is the maximization of the total profit. The total profit is the summation of total revenue

of the accepted orders minus the tardiness incurred for those jobs. First, they show that

a constant factor approximation algorithm cannot be developed for this problem. Then,

they model two different mixed integer linear formulations for the problem. Moreover, they

develop two B&B algorithms to find optimal solutions. One of the B&B algorithms has two

phases which work separately for selection and scheduling procedures. In contrast with the

B&B algorithm, the other procedure integrates both selection and scheduling. According

to the experimental results, the two-phase algorithm gives the best overall performance.

In the OAS problem literature, some researchers examine the OAS problems in a sin-

gle machine environment with the orders are identified by their release dates, due dates,

deadlines, processing times, sequence dependent setup times and revenues. The objective

function of the problems can be different from each other as maximization of total profit,

minimization of total weighted tardiness, and minimization of makespan. In the next sec-

tion, we focus on the related studies about the OAS-2 problem.

2.1.2 OAS-2 problem

The setup times are defined as the required time before the start of processing an order

or between processing of two orders. The setup times are not negligible in some practical

Chapter 2: Literature Survey 8

applications. Panwalkar et al. (1973) emphasize that nearly 75% of the managers face

sequence dependent setup times at least in some operations in their production system.

Allahverdi et al. (1999) present a comprehensive review of the literature on scheduling

problems with setup times. They give an effective classification for scheduling problems.

They categorize problems according to some properties which are batch and non batch,

sequence independent and sequence dependent setup. They define batch problems as the

problems which include setup when jobs in different batches are swapped and a certain

time is needed to start processing of the jobs. Properties of the sequence independent and

dependent setup time are explained in the study as follows: sequence independent setup

time depends on the current job, but sequence dependent setup time is related to both the

current job and the previous job that is executed just before the current one.

Yang and Liao (1999) focus on static and deterministic scheduling problems concerning

setup times. They classify the problems into four groups. The classes are inseparable

and sequence independent setup times, inseparable and sequence dependent setup times,

separable and sequence independent setup times, separable and sequence dependent setup

times. Yang and Liao (1999) distinguish the seperable and inseperable setups as follows:

inseparable setups which must be executed immediately before an activity starts whereas

separable setups may be executed before earlier or later than an activity.

Oğuz et al. (2010) investigate order acceptance and scheduling problems in a single ma-

chine environment where orders are characterized by their release dates, due dates, dead-

lines, processing times, weights, sequence dependent setup times and revenues. Their objec-

tive is to maximize the total profit. Total profit is defined as a function of the revenue and

the tardiness. The manufacturer obtains a revenue from an order, if the order is delivered

before its deadline. Here, the deadline is the latest time given by a customer to accept the

order. The customer rejects the order if it is delivered after its deadline, i.e, this order brings

zero revenue. A penalty occurs if processing of an order is completed after its due date. Due

date is the planned time for delivering the order to the customer. Intuitively, when an order

is delivered after its due date, the customer gets disappointed and wants to pay less than

the original revenue of an order. The manufacturer gives a discount to the customer in this

case and the discount is related with the weight of the customer and the tardiness amount.

Oğuz et al. (2010) give a mixed integer model for the problem. They test the performance of

Chapter 2: Literature Survey 9

the mixed integer programming model with randomly generated instances. In order to solve

large sized problems, they propose heuristic algorithms. Upper bounds are obtained with

linear relaxation method to measure the performance of the heuristic algorithms. In the

paper, they present three heuristic algorithms: iterative sequence first-accept next (ISFAN)

algorithm, dynamic release first-sequence best (d-RFSB) heuristic and modified apparent

tardiness cost with setups (m-ATCS) heuristic. ISFAN is an iterative heuristic method that

uses a priority rule to make acceptance and rejection decisions. In addition, a simulated an-

nealing (SA) algorithm is designed to schedule the accepted orders. Major idea of d-RFSB

is to check the feasibility of the orders according to their release dates and deadlines and to

make acceptance and sequence decisions according to a ratio of the revenue to processing

time and sequence dependent setup time. The last one, m-ATCS heuristic is very similar

to d-RFSB. It also uses a ratio to schedule the orders, where average processing time and

setup time together with due dates are used. They observe that the ISFAN algorithm is

effective for small and medium sized instances and m-ATCS outperforms other heuristics

for large sized instances.

Cesaret et al. (2012) study the same problem of Oğuz et al. (2010). They develop a tabu

search (TS) algorithm to solve the problem. Swap is the selected move operator for TS. In

the algorithm, a feasibility check procedure is required to pick and remove the non-profitable

orders from the sequence. The tabu list keeps the most recently performed move to avoid

cycling. A local search procedure is employed in the algorithm to find out improved results.

The local search is based on drop-add-insert operations and is applied to the best solution

found in the neighborhood structure. The performance of the TS algorithm is analyzed by

comparing the results with that of m-ATCS and ISFAN heuristics developed in Oğuz et al.

(2010). It is observed that the TS algorithm outperforms m-ATCS and ISFAN heuristics in

terms of solution quality and computational time.

Ling and Ying (2013) propose a new algorithm based on artificial bee colony (ABC) for

the problem investigated in Oğuz et al. (2010) and Cesaret et al. (2012). The ABC algorithm

is initiated with a population which is a combination of randomly generated solutions. They

use a permutation based representation for the solutions. The neighborhood solutions are

obtained in two phases: destruction and construction. In the destruction phase, a random

number of orders are deleted from the sequence. In contrast with the destruction phase,

Chapter 2: Literature Survey 10

the deleted orders are inserted again to the sequence in the construction phase. Reinsertion

process is made step by step and all possible positions of the remained subsequence are

tried for each order in deleted order set to generate a new solution. If the new solution is

not better than the best solution so far, another new solution is generated with a different

procedure. The procedure is a kind of crossover that uses a random substring in the best

order. If this new solution is better than the best solution so far, the solution becomes a

member of the population. A local search is applied to each generated solution. The local

search exchanges the positions of successive orders in the current sequence. A probabilistic

approach is employed in the ABC algorithm while selecting a solution from the population.

After the local search, a random part of the population is modified by this probabilistic

approach. To understand the performance of the ABC algorithm, comparisons are made

with the benchmark problems in Oğuz et al. (2010) and Cesaret et al. (2012). They observe

that the ABC algorithm outperforms the benchmarks with respect to the computational

and analytical results.

2.2 Variable Neighborhood Search

Mladenovic and Hansen (1997) claim that metaheuristics, such as SA, TS and GA, avoid

to get stuck in local optimum but these heuristics do not allow changing neighborhood

structures. They believe that this reason can be an explanation for inefficient results. They

focus on changing neighborhood structure systematically and develop a new metaheuristic

approach. They call this approach as variable neighborhood search (VNS). The idea of

VNS is to jump from one neighborhood to the next one if an improvement is not observed

in the objective function value. Mladenovic and Hansen (1997) present a basic VNS algo-

rithm including a local search procedure and test the performance of the VNS algorithm on

traveling salesman problem. They observe that the VNS algorithm is effective and can be

applicable for many combinatorial optimization problems.

Hansen and Mladenovic (2001) implement VNS algorithm on several classical combina-

torial or global optimization problems (e.g. travelling salesman problem (TSP), continuous

location-allocation problems). They observe that the basic VNS is definitely useful as a

solution method for several problems but it is inefficient to solve large sized instances. They

consider three extensions of the VNS to overcome this shortcoming. The first, reduced VNS

Chapter 2: Literature Survey 11

(RVNS) aims to reduce the most time consuming part of the basic VNS which is local search.

The solutions are selected randomly from different neighborhood structures and updated

if a better solution is obtained. The RVNS is very useful when a quick solution, which

does not have to be close to optimum, is needed. Variable neighborhood decomposition

search, VNDS, is the second proposed extension of the basic VNS. This method includes

a successive approximation decomposition method. The difference between basic VNS and

VNDS is that the local search method is not applied in VNDS within the whole solution

space. VNDS provides solving a subproblem at each iteration. Skewed variable neighbor-

hood search (SVNS) enhances exploration of far away valleys by enabling modification of

objective function value of a solution with an evaluation function.

Liu and Zhou (2012) examine a single machine rescheduling problem of minimizing

the maximum lateness under an expected arrival of new jobs. Major assumption for the

problem is that the total sequence disruption cannot be larger than a given upper limit.

Jobs have been scheduled optimally in original sequence with respect to the earliest due

date first rule. New jobs arrive together after the optimal original scheduling. All jobs

need to rescheduled after the arrival. The rescheduling objective is to find an optimal

schedule to minimize the maximum lateness over all jobs. They adopt a variant of VNS

algorithm to solve the problem and establish some dominance rules to apply the local search.

Three neighborhood structures are defined: single job insertion(insertion), insertion of two

consecutive jobs(Or Opt) and interchanging of two random jobs with reversing order of

jobs identified by them(2 Opt). If a solution obtained from the neighborhood structures

is better than the incumbent solution, the local search is employed to the solution. It is

based on interchanging adjacent or non adjacent jobs. They develop a branch and bound

algorithm with the depth-first strategy for the problem to make a comparison with the VNS

algorithm. They conduct some preliminary experiments to decide the order of neighborhood

structures in order to have the best performance. According to the results gathered from

the experiments, they choose one of the VNS algorithms with the order of neighborhood

structures as insertion-Or Opt and 2 Opt.

Kirlik and Oğuz (2012) propose a VNS algorithm to solve the single machine schedul-

ing problem for minimizing total weighted tardiness with sequence dependent setup times.

General variable neighborhood search (GVNS) is proposed to solve the problem. Different

Chapter 2: Literature Survey 12

neighborhoods and distributions, induced from different metrics are ranked and used to get

random points in the shaking step in GVNS. Three neighborhood structures are employed

swap, edge-insertion and insertion. The neighborhood structures are decided through com-

putational experiments. The GVNS is tested with benchmark problems and its effectiveness

is established.

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 13

Chapter 3

ORDER ACCEPTANCE AND SCHEDULING (OAS) PROBLEM

In this thesis, we study the order acceptance and scheduling problem in MTO systems.

In MTO systems, the production is initiated when the order arrives to the system. We

assume that there is a single machine. In the following sections, we state the properties and

the assumptions of the problem with details.

3.1 Problem Definition

The limited capacity of the companies may force the manufacturers to make a selection

among the orders coming from the customers. OAS problem is the combination of two joint

decisions of which orders should be accepted and how these orders should be scheduled.

Moreover, the following assumptions are made for the problem.

• All orders are available at time zero.

• All input data are known in advance.

• Order arrival times are deterministic.

• More than one order cannot be processed on the machine at the same time.

• The machine is always available for the processing.

• Early delivery is not penalized, but there is a discount for tardiness delivery.

• When an order starts to be executed, it cannot be interrupted before its completion.

• There is no precedence relation among the orders.

• There is no limit on the number of accepted orders.

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 14

• Holding and shipping costs are not incurred in the problem.

• The manufacturer is not punished or awarded for a rejected order.

This study examines two OAS problems on a single machine environment: OAS-1 prob-

lem and OAS-2 problem. Next subsections explain the characteristics of them.

3.1.1 Definition for the OAS-1 problem

Each incoming order i is characterized with a processing time pi, a due date di, a weight wi,

and a maximum revenue ei. Processing time is the required time for an order to be executed

on the machine. The date which the order is promised to the customer is represented with

a due date. An order i can be delivered after its due date, but the order i becomes tardy

in this case. Otherwise, when the tardiness of an order is zero, the manufacturer obtains

the maximum revenue from the order. If the manufacturer faces tardiness, she needs to

pay a penalty cost for each time unit beyond its due date. The penalty is constructed by

incurring wi which is related with the importance of the corresponded customer. Tardiness

is observed if an order is delivered after its due date, i.e. Ti = wi max{0, (Ci − di)}, where

Ci is the completion time of order i. The profit is a function of the revenue and the weighted

tardiness. The objective is to maximize the total profit, i.e.

max

n∑
i=1

Ii[ei − wiTi]

where i is the index for orders J1, . . . , Jn, Ii is a binary variable to represent whether order

i is accepted or not.

3.1.2 Definition for the OAS-2 problem

OAS-2 problem involves release dates, sequence dependent setup times and deadlines. The

earliest time at when order i starts its processing is termed as release date of order i, ri.

Sequence-dependent setup time, sji, is used when order j is immediately executed after

order i in the processing sequence. The setup times do not need to be symmetric which

means that sij does not have to be equal to sji. In addition, if an order i is the first in the

sequence, s0i denotes the setup time for order i to start processing. The earliest completion

time of an order i can be expressed as the summation of release date, sequence dependent

setup time and processing time of an order i. If an order is completed after its deadline,

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 15

d̄i, the customer refuses the order and does not pay for the order. The customer pays a

discounted amount for her order when she receives the order after exceeding its due date.

Total profit generated from order i is calculated by considering the revenue and the tardiness

of order i which is the same with the OAS-1 problem.

3.2 MILP Formulation for the OAS Problem

We present the MILP formulation for the OAS-1 problem and the OAS-2 problem in this

section.

3.2.1 MILP Formulation for the OAS-1 problem

Talla Nobibon and Leus (2011) present an assignment formulation for the OAS problem.

They consider the OAS problem with both planned and optional orders. We use their

formulation as the MILP formulation of the OAS-1 problem with some modifications since

only optional orders are available in the OAS-1 problem. Talla Nobibon and Leus (2011)

define three binary decision values. First one, yiε{0, 1}(iεN), where N is the set for the

incoming orders, is denoted to demonstrate that whether order i is accepted or not. It

becomes 1, when order i is accepted and otherwise get a value of 0. The second decision

variable xitε{0, 1}(iεN, tε{1, . . . , n}) equals to 1, if the order i is accepted and executed at

the tth position in the sequence, and 0 otherwise. The last decision variable zji where i, jεN

and i 6= j becomes 1, if both order i and j are accepted and order j is processed just before

order i, else zji takes the value of 0. The tardiness of order i is represented by Ti where iεN

and it should be noted that Ti ≥ 0. This situation is ensured with the following definition

Ti = wi max{0, (Ci − di)}, where Ci is the completion time of order i.

The modified MILP formulation for the OAS-1 problem is given below.

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 16

MILP for the OAS-1 problem:

max

n∑
i=1

(Qiyi − wiTi) (3.1)

s.t.

yi =
n∑

t=1

xit ∀iεN (3.2)

n∑
t=1

xit ≤ 1 t = 1, ..., n (3.3)

zji ≤ yi andzji ≤ yj i, jεN, i 6= j (3.4)∑
q<t

xjq +
∑
q≥t

xiq ≤ 1 + zji i, jεN, t = 2, ..., n, i 6= j (3.5)

Ti ≥
n∑

j=1

pjzji + piyi − di i, jεN (3.6)

Ti ≥ 0 iεN (3.7)

yi ∈ {0, 1}, zji ∈ {0, 1}, xit ∈ {0, 1} t = 1, ..., n, i, jεN (3.8)

Constraint (3.2) demonstrates that an accepted order can be scheduled at exactly one

position. It is ensured that each position can have at most one order with constraint set

(3.3). Constraint (3.4) guarantees that when zji becomes 1, both order i and order j

are accepted. Constraint set (3.5) enables that when order i is accepted and order j is

executed before order i, zji becomes 1. The value of Ti is represented by constraint (3.6)

and constraint (3.7) makes sure that the value of Ti cannot be negative. Constraint (3.8) is

given to define three binary variables in the formulation.

3.2.2 MILP Formulation for the OAS-2 problem

In this section, we present the MILP formulation for the OAS-2 problem, which was given

by Oğuz et al. (2010).

Two sets of binary decision values are defined, Ii and yij in the MILP formulation where

i and j indicate the index for the orders (i, j = 1, ..., n) in the incoming order set N . Ii is

used to represent whether order i is accepted or not by the firm and it equals to 1, if order i is

accepted, otherwise it becomes 0. The second binary decision value, yij , in the formulation

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 17

is used to define the orders which are processed consecutively. If order i is executed before

order j, yij becomes zero, else it takes 1. There are also two dummy orders to represent the

first and the last position of the sequence as order 0 and order n+ 1. Order 0 is processed

in the first position while order n+ 1 is executed in the last position of the sequence. The

MILP formulation developed by Oğuz et al. (2010) is given below. We should note that

objective function is the same for both the OAS-1 problem and the OAS-2 problem.

MILP for the OAS-2 problem:

max
n∑

i=1

(Qiyi − wiTi) (3.9)

s.t.
n+1∑

j=1,j 6=i

yij = Ii ∀i = 0, ..., n (3.10)

n∑
j=0,j 6=i

yji = Ii ∀i = 1, ..., n+ 1 (3.11)

Ci + (sij + pj)× yij + d̄i × (yij − 1) ≤ Cj ∀i = 0, ..., n, ∀j = 1, ..., n+ 1, i 6= j (3.12)

(rj + pj)× Ij + sij × yij ≤ Cj ∀i = 0, ..., n, ∀j = 1, ..., n+ 1, i 6= j (3.13)

Ti ≥ Ci − di ∀i = 0, ..., n+ 1 (3.14)

Ci ≤ d̄i × Ii ∀i = 0, ..., n+ 1 (3.15)

Ti ≤ (d̄i − di)× Ii ∀i = 0, ..., n+ 1 (3.16)

Ti ≥ 0 ∀i = 0, ..., n+ 1 (3.17)

Ri ≤ ei × Ii − Ti × wi ∀i = 1, ..., n (3.18)

Ri ≥ 0 ∀i = 1, ..., n (3.19)

C0 = 0, Cn+1 = max
i=1,...,n

{d̄i}, ∀i = 1, ..., n (3.20)

I0 = 1, In+1 = 1 (3.21)

Ii ∈ {0, 1}, yij ∈ {0, 1} ∀i = 1, ..., n (3.22)

Constraint set (3.10) and (3.11) ensure that if an order is processed on the machine

(not in the first or the last position in the sequence), the order has one preceding and one

succeeding order. Constraint set (3.12) guarantees that if order i is processed before order

Chapter 3: Order Acceptance and Scheduling (OAS) Problem 18

j, the completion time of the order j, Cj , cannot be smaller than the summation of the

completion time of order i, the processing time of order j with the setup time between i

and j. In contrast, when order i is not executed before order j, the same constraint enforces

that Ci cannot be greater than its deadline plus a non-negative term. Constraint set (3.13)

sets that if order j is accepted, Cj should take the value at least the summation of its

release time and its processing time, and if order i is followed by order j, the setup time

between i and j should be added to this summation. The tardiness value of each order is

defined with the constraint sets (3.14)-(3.17). In the problem, a customer refuses to pay for

the order when the order is delivered after its deadline. In the formulation, this situation

is given in constraint set (3.15). Constraint sets (3.18) and (3.19) calculate the revenue

gained from the order i when the order i is accepted with a tardiness of Ti. This case is

observed when an order is completed after its due date but before its deadline. Constraint

set (3.20) explains the completion times of the dummy orders. Constraint set (3.21) ensures

that dummy orders are accepted. Finally, constraint set (3.22) is used to define two binary

variables.

Chapter 4: A Heuristic Solution Approach 19

Chapter 4

A HEURISTIC SOLUTION APPROACH

In this thesis, we investigate two OAS problems: OAS-1 and OAS-2. These two problems

cannot be solved with an exact algorithm in a reasonable computational time since they are

NP-hard problems.

We observe from the literature that the GA is very successful to solve the OAS-1 prob-

lem. Furthermore, the TS and the ABC algorithms are very efficient to handle the OAS-2

problem. VNS algorithm is not used to solve the OAS problem in the literature so far.

However, it is very effective to solve total tardiness scheduling problems with sequence de-

pendent setup times. Since systematic change of neighborhoods in the search space can be

an efficient approach to solve the OAS problems. We were motivated to develop a VNS

algorithm as a solution method in this thesis. Following sections give the details of the VNS

algorithm.

4.1 Variable Neighborhood Search (VNS)

Mladenovic and Hansen (1997) analyze properties of the general metaheuristics. They state

that although general metaheuristics are very successful, they employ just one neighbor-

hood structure. By observing that changing neighborhood structure in a path can be an

efficient way to obtain improved results, they develop a new metaheuristic and name it as

variable neighborhood search. VNS is a trajectory based metaheuristic and works with the

systematic change of neighborhood structures within the search. VNS algorithm is sum-

marized as follows. In the algorithm, there is a finite set of predetermined neighborhood

structures. The algorithm starts with an initial solution. It visits the first neighborhood

structure to generate a new solution. Then, a local search procedure is applied to the so-

lution. Aim of the local search is to get a local optimum solution by using the gathered

search knowledge and narrower solution subspace. Then, obtained local optimum solution

Chapter 4: A Heuristic Solution Approach 20

is compared with the incumbent solution. If the local optimum solution is better than the

incumbent solution, we continue the search in the first neighborhood. Otherwise, we visit

the next neighborhood structure. In the next neighborhood structure, a new solution is

generated. The local search procedure is employed again. If an improvement is observed,

we visit the first neighborhood structure, else we move to the next neighborhood structure.

This procedure is repeated until a termination criteria is met.

This is the basic definition for VNS algorithm. In the rest of this chapter, the details of

the proposed VNS algorithm is elaborated.

4.2 Proposed VNS Algorithm

The papers studied by Mladenovic and Hansen (1997), Hansen and Mladenovic (2001), Liu

and Zhou (2012) and Kirlik and Oğuz (2012) prove the success of the VNS algorithm on NP-

hard problems. They provide insights about how we can conceptualize the VNS algorithm

with respect to properties of the OAS problem.

4.2.1 Solution Representation

We use the same representation for both the OAS-1 problem and the OAS-2 problem. We

employ a representation which is based on the indication of the position of order i in the

sequence with the corresponding ith entry of a vector. Furthermore, if order i is not accepted,

the entry value is represented with zero in the vector. We explain the representation with

the following example which considers a problem with 10 orders (n = 10) where order

i = 1, . . . , 10. The vector with the values such that [3 0 5 0 0 1 2 4 0 0] means that order

1 is executed in the third position whereas order 2 is rejected. Furthermore, order 3 is put

into operation at the fifth position. Since the entry values are zero in the vector, order 4,

order 5, order 9 and order 10 are rejected orders by the firm. Order 6 is processed order in

the first position of the sequence. Order 6 is followed by order 7. Finally, order 8, the last

positive entry in the vector, is executed at the fourth position on the machine.

4.2.2 Initial Solution

We employ a greedy rule to acquire an initial solution for the OAS-1 problem and the OAS-

2 problem in the study, but the employed greedy rule is not the same for the problems.

Chapter 4: A Heuristic Solution Approach 21

These rules are described below for the OAS-1 problem and the OAS-2 problem. The initial

feasible solution is represented with s0 in both of the problems.

Initial solution for the OAS-1 problem

For the OAS-1 problem, each order is defined with a processing time, a revenue, a due

date and a weight. The greedy rule is based on the processing time and the revenue of an

order. Basically, it calculates the ratio of the revenue of an order to its processing time.

The reason to employ the rule is to give a priority in the sequence to orders which bring

more revenue while consuming less time to be processed. After the calculation of the ratio

of revenue to processing time of each order i, Revenue-load ratio (RLR), RLR1i = ei/pi,

the ratio values are sorted from the highest to the lowest. The orders are positioned in the

sequence with respect to the corresponded ratio values. A feasibility check is utilized to

delete non-profit orders whose tardiness values are greater than the revenues. For example

consider a problem with n = 10, the initial sequence is generated with the greedy rule as [9

4 5 3 10 1 6 7 2 8]. If order 2, order 4 and order 5 are non-profit orders. In this situation,

we redesign the sequence by deleting these orders as [7 0 3 0 0 1 4 5 2 6] to have a feasible

solution.

Initial solution for the OAS-2 problem

We use the same greedy rule for the OAS-2 problem with the study of Cesaret et al. (2012).

This rule depends on the revenue, the processing time and the sequence dependent setup

time of each order. It is determined for order i with RLR1i = ei/(pi + saverage,i), where

saverage,i = (s0,i + s1,i + ... + sn,i)/(n + 1). They sort ratio values in decreasing order to

give priority to orders with a higher revenue and which consume less time to complete its

processing with the effect of average dependent setup time. The orders are executed in the

order determined by the ratio values. Next, a feasibility check is made as in OAS-1 problem

for OAS-2 problem to remove non-profit orders from the sequence.

4.2.3 Neighborhood Structure Definition and Local Search Procedure

One of the most important step while generating a VNS algorithm is to decide on neigh-

borhood structures and the local search procedure. We conduct preliminary tests to make

Chapter 4: A Heuristic Solution Approach 22

this decision. Details of the preliminary tests are presented in Section 5.2. We employ

two neighborhood structures for VNS algorithm: swap and reverse order. The local search

procedure relies on a compound move that is the combination of three move operators:

drop-add-insert. We use the same neighborhood structure and the local search procedure

for both the OAS-1 problem and the OAS-2 problem. In the following, we provide the

details of the neighborhood structures and the local search procedure.

First Neighborhood Structure: Swap

Selection of the neighborhood structures depends on the efficiency of the operator in the

problem. The first neighborhood structure employed for the VNS algorithm is the swap

operator. We yield a new solution from the current one, s, by swapping two entries of

the solution vector randomly. This move allows us alternatively to change the positions of

orders from both of the accepted orders in the sequence and to exchange one of the accepted

order with a rejected order in the sequence. Furthermore, we keep the number of accepted

orders the same in the sequence in this move. For example, if the current solution is [7 0 3

2 0 0 4 5 1 6], the accepted orders in sequence is 9− 4− 3− 7− 8− 10− 1 and the rejected

orders are 2, 5, 6. If we pick the order 3 and 9 for swap operator, randomly, we switch the

positions of order 3 and order 9 in the sequence and new solution becomes [7 0 1 2 0 0 4 5 3

6] with the new sequence 3− 4− 9− 7− 8− 10− 1. Alternatively, one selected order can be

from the accepted set, while the other one can be from the rejected order set as for example

orders 2 and 7. In this case, the new solution is [7 4 1 2 0 0 0 5 3 6] and it corresponds

to the sequence 3 − 4 − 9 − 2 − 8 − 10 − 1. This move enables us to change the accepted

orders while keeping number of accepted orders the same. We realize that selection of two

rejected orders for swap from the sequence can cause a cycling problem. Hence, we do not

switch two rejected orders to avoid cycling.

New schedule generated by the swap operator can be infeasible since changing the posi-

tions of the orders can affect the completion time of the orders in the sequence. We utilize

the feasibility check for the new solution by deleting non-profit orders from the sequence.

We observe that the number of accepted orders can change with respect to the feasibility

check.

Chapter 4: A Heuristic Solution Approach 23

Second Neighborhood Structure: Reverse Order

Neighborhood structures used in the VNS algorithm should be nested while enlarging the

search space. Hence, the second neighborhood structure, reverse order, is a good comple-

ment for the swap operator. It involves the selection of two accepted orders or one accepted

order and one rejected order from the sequence randomly and the subsequence identified

by these orders is reversed. For example, if we have a solution as [7 0 3 2 0 0 4 5 1 6],

its processing sequence is 9 − 4 − 3 − 7 − 8 − 10 − 1 with the rejected orders 2, 5 and 6.

Randomly, orders 4 and 9 are selected and the new solution is generated as [7 0 3 1 5 4

0 0 2 6] by reversing the orders in the subsequence identified by the selected orders. New

solution corresponds to a new sequence as 4− 9− 3− 5− 6− 10− 1. Alternatively, we can

select one accepted order and one rejected order from the sequence as order 2 and 10 from

the solution [7 0 3 2 0 0 4 5 1 6]. We obtain a new solution as [7 6 1 5 4 0 0 2 3 0] whose

sequence is 3 − 8 − 9 − 5 − 4 − 2 − 1. We observe from two examples that reverse order

keeps the number of accepted orders the same in the sequence but it causes changing the

members of the accepted order set. The feasibility check mechanism should be applied to

the new solution generated by the reverse order as it can change the completion time of the

orders in the sequence. After getting a new solution at each neighborhood structure, the

local search procedure is employed to search improved solutions in a narrowed space.

Local Search Procedure: Compound move

The neighborhood structures do not allow changing the number of the accepted orders in

the sequence, but they provide regeneration of accepted order set. After generation of a

new solution, we check feasibility of the solution. We may delete one or more orders from

the solution to get a feasible solution. This situation can cause to converge a local optimum

solution. The local search is necessary to escape from local optimum solution. Compound

move is selected as the local search procedure for the algorithm. It relies on iterative drop-

add-insert operations which is similar to the local search in the study of Cesaret et al.

(2012). The local search procedure is initiated from a random solution generated in the

neighborhood structure for the proposed VNS algorithm. We explain the compound move

operator of the local search procedure below.

Drop operation: Aim of this operation is to remove an order from the current sequence.

Chapter 4: A Heuristic Solution Approach 24

We drop the order with respect to the characteristics of the orders by using different ways

for the OAS-1 problem and the OAS-2 problem. Order which brings less revenue but

consumes a large amount of time while processing is removed from the sequence for the

OAS-1 problem. We assign a ratio value for each accepted order as RLR2i = ei/pi and

drop the order i with the minimum RLR2i value.

In the OAS-2 problem, we drop order i which is executed immediately after order j and

has the minimum RLR2i where RLR2i = ei/(pi + sji). A new sequence is generated when

an order is removed from the sequence. An example is given as follows. If the the current

solution is [7 0 3 2 0 0 4 5 1 6], whose processing sequence is 9− 4− 3− 7− 8− 10− 1 with

the rejected orders 2, 5, 6. If order 7 is selected from the sequence with respect to minimum

RLR2 value, we remove order 7 from the sequence. This corresponds to a new solution as

[6 0 3 2 0 0 0 4 1 5], whose processing sequence is 9− 4− 3− 8− 10− 1.

Add and Insert operations: We calculate RLR1 values for all rejected orders. RLR1

values are sorted from the highest to the lowest to obtain a set (SortReject) with rejected

orders. Add operation is applied to all rejected orders in this set. We select the first order in

the set which has maximum RLR1 value to be added. After this selection, insertion move is

utilized. In order to obtain a new solution, we try all possible positions in the sequence and

decide the best position which brings the maximum profit when inserted. This procedure

is called as insertion. Here, we make a decision to continue add and insertion operations

according to the new solution. If the objective function value of the new solution is 0.998

times greater than the incumbent solution, we continue add and insertion operators with

the following way. We constitute a probability based selection method to decide the next

order to be added. RLR1 values are used to generate a probability distribution. We

calculate cumulative probability values based on the distribution. A random number is

generated and the interval corresponds to this random number is determined by checking

cumulative probabilities to detect the order to be added. We insert the selected order to its

best position. If the corresponding solution gives a total profit which is greater than 0.998

times the incumbent solution, we keep the solution and continue add-insertion procedure.

Otherwise, we select the next order from the SortReject to be added and we repeat the

procedure until all rejected orders are tried to be added. We pick the solution which gives

the maximum profit as local optimum solution.

Chapter 4: A Heuristic Solution Approach 25

For example, as given above we have the new solution [6 0 3 2 0 0 0 4 1 5], whose

processing sequence is 9−4−3−8−10−1 after dropping order 7. We generate SortReject

set from this sequence. In the example, the rejected orders are order 2, order 5, order 6 and

order 7. We calculate the RLR1 value for each rejected order. Suppose that RLR12=5.47,

RLR15=10.5, RLR16=7.12 and RLR17=0.43. We sort RLR1 values from the highest to

the lowest as RLR15, RLR16, RLR12 and RLR17. We get a SortReject set with the orders

the sorted according to RLR1 values which is SortReject={5, 2, 6, 7} for this example.

We select order 5 to be added since it is the first member of the SortReject set. Here, the

insertion procedure starts. We find the best position for order 5 in the sequence. Assume

that, the best position is determined as the third position in the sequence to be inserted. New

solution becomes [7 0 4 2 3 0 0 5 1 6], whose processing sequence is 9−4−5−3−8−10−1. If

this solution brings a profit value which is 0.998 times greater than the incumbent solution,

we keep the solution and continue add and insertion operators for this sequence. Herein,

we continue the addition of orders by a probabilistic method. We construct cumulative

probabilities using RLR1 of orders. Then, we create a random number and we decide the

order to be added by checking in which interval this random number fits. For example, order

2 is selected to be added. Then, we insert the order to its best position by trying all possible

positions in the sequence. If the objective function value of the new sequence is not 0.998

times greater than the incumbent solution, we continue with the the next rejected order

from SortReject set (we continue with order 6 for this example) and repeat the procedure.

The local search is ended when we try the addition of all orders in SortReject set to the

sequence. We pick the solution with the maximum total profit obtained from the local

search procedure.

During the local search, new solutions are checked for the feasibility. The compound

move can cause deleting the orders while adding more than one order to keep feasibility. We

note that the compound move allows to change both the accepted and the rejected orders.

We now present the pseudo code of the VNS algorithm.

Chapter 4: A Heuristic Solution Approach 26

Notation

kmax: maximum number of neighborhood structures

s0: the initial solution

s: the current solution

f(s): objective function value of s

s∗: the best known solution

N(s): the neighborhood of s

s′: random solution from the kth neighborhood structure (Nk(s))

sinserted: solution generated after the insertion

s′′: local optimum solution obtained from s′

max(sinserted): maximum value among the sinserted

CumProb: generated cumulative probability array

SortReject: sorted rejected orders array with respect to RLR1 values

reject: rejected order array

Chapter 4: A Heuristic Solution Approach 27

Algorithm 1 VNS algorithm for the OAS-1 problem and the OAS-2 problem

Require: pi, di, ei, wi, n, kmax (for OAS-1)
Require: ri, pi, sij , di, d̄i, ei, wi, n, kmax (for OAS-2)
1: Generate s0, s← s0, f(s∗)← f(s)
2: k ← 1
3: while termination criterion is not met do
4: while k ≤ kmax do
5: Generate s′ from Nk(s)

. LOCAL SEARCH PART begins
6: Select the order with the minimum RLR2 to be dropped from s′

7: Find reject for s′

8: for f :1 to size of reject do
9: slocal(f)← s′

10: Calculate RLR1 for each order i ∈ reject
11: Generate SortReject set
12: Find the selected order to be added from the f th member of SortReject
13: Set l = 1 . INSERTION PROCEDURE STARTS
14: for l ≤ n do
15: Insert selected order to lth position
16: Set inserted solution as s′inserted(l)
17: l++
18: end for
19: sinserted ← max(s′inserted)
20: if f(sinserted) ≥ 0.998f(s∗) then
21: slocal(f)← sinserted

22: Update f(s∗), s∗

23: keepinsertion = 1
24: else
25: keepinsertion = 0
26: end if . INSERTION PROCEDURE ENDS
27: while keepinsertion = 1 do
28: Calculate RLR1 for each order i ∈ reject from slocal(f)
29: Construct CumProb for all orders proportional to their RLR1
30: Find the order to be inserted from reject randomly
31: Repeat INSERTION PROCEDURE
32: end while
33: end for
34: Generate s′′ from max(slocal)

. LOCAL SEARCH PART ends
35: if f(s′′) ≥ f(s∗) then
36: Update s∗, s
37: k = 1
38: else
39: k = k + 1
40: end if
41: end while
42: end while

Chapter 5: Computational Studies 28

Chapter 5

COMPUTATIONAL STUDIES

We test the performance of the VNS algorithm computationally. In this chapter, we

present the details of the computational studies with the results. In Section 5.1, we de-

scribe the data set employed for the computational studies. In Section 5.2, we give the

preliminary tests which are used to determine the neighborhood structures of the VNS al-

gorithm described in Section 4.2.3. Tuning the parameters is explained in Section 5.3. In

Section 5.4, we present the computational results. In Section 5.5, we analyze and discuss

the results.

5.1 Data Sets

5.1.1 Data Set for the OAS-1 problem

For the OAS-1 problem, we use the data set generated by Rom and Slotnick (2009). Pro-

cessing times and weights were created from a uniform distribution in the range of (0,1).

Due dates were also drawn from a uniform distribution, but they were set according to the

processing time values . The revenue values were produced from a log normal distribution

which was obtained by the utilization of the normal distribution with mean zero and stan-

dard deviation one. They used the tardiness factor τ which was adjusted to 0.3, 2.0, 3.0

to generate the due dates. Moreover, they generated the revenue values for the half of the

instances in correlation (Crl) with due dates and the remaining half was drawn without

correlation. Hence, they gathered six data sets with different properties. There were three

different sizes for the problems (n = 50, 75, 100) with six data sets which summed up to 360

instances. We use these 360 instances to test the VNS algorithm for the OAS-1 problem.

5.1.2 Data Set for the OAS-2 problem

In order to test the performance of the VNS algorithm on the OAS-2 problem, we use test

instances generated by Cesaret et al. (2012). They generated processing times and revenues

Chapter 5: Computational Studies 29

by using the discrete uniform distribution on the interval [0,20]. The remaining properties of

the data generated by Cesaret et al. (2012) are as follows. Release dates were drawn on the

interval [0, τ pT], where pT was the total processing time of all orders while setup times were

drawn on the interval [1,10] from the discrete uniform distribution. Due dates were obtained

with the following formula di = ri + max
j=0,1,...,n

sji + max{slack, pi}, where slack was drawn

from a discrete uniform distribution in the range [pT (1−τ−R/2), pT (1−τ+R/2)]. Deadlines

were generated with the formula as d̄i = di + Rpi. Moreover, they employed the tardiness

factor τ and the due date range R which took five different values: 0.1, 0.3, 0.5, 0.7, 0.9 for

the test instances. 10 problem instances were created for each combination of τ and R

values. They used six different sizes for the number of orders (n = 10, 15, 20, 25, 50, 100).

Hence, they totally obtained 1500 instances. We use these 1500 instances to test the VNS

algorithm for the OAS-2 problem.

5.2 Selection of the Neighborhood Structures

The major parts for developing the VNS algorithm are the definition of the neighborhood

structures in their best order and finding an intelligent local search procedure. We conduct

preliminary tests in which we vary the neighborhood structures and type of the local search

procedure, including TS and SA. We design the tests as follows. For the neighborhood struc-

tures, we use swap, reverse order and compound move operator in different combinations.

Definitions of the swap, the reverse order and the compound move operators were already

given in Section 4.2.3. We employ two types of local search procedure: Local search-1 and

Local search-2. Local search-1 improves the solutions from a random solution by utilizing

pairwise interchange for the adjacent orders in the sequence. We perform local search-2 to

a random solution obtained in the neighborhood by applying the compound move. When

the compound move is employed in the algorithm as one of the neighborhood structures,

TS is included in the move for some tests. TS keeps the most recent inserted orders to

avoid cycling. We use SA with a constant temperature to make decision about moving to

next neighborhood structure for some tests. For the OAS-1 problem, we use the data set

described in Section 5.1.1 with n=50 for all preliminary tests. We perform the preliminary

tests for the OAS-2 problem by using the data set explained in Section 5.1.1 with n=10.

The results for preliminary tests are given in Tables 5.1 and 5.2 in terms of the solution

Chapter 5: Computational Studies 30

quality for the OAS-1 problem and the OAS-2 problem, respectively. We use the average

percentage deviation (Avg.Dev) from the upper bound values as a performance measure.

We show the calculation of average percentage deviation in Equation 5.1. We explain the

upper bounds in Section 5.4.3.

Table 5.1: Preliminary test results to select neighborhood structures for the OAS-1 problem
where n=50

Test Number Neighborhood Structures Local Search TS SA Avg. Dev. (%)

Test1 Compound Move-Swap Local search-1 No No 2.335

Test2 Compound Move-Swap Local search-1 Yes No 2.002

Test3 Compound Move-Swap Local search-1 No Yes 2.346

Test4 Compound Move-Swap Local search-1 Yes Yes 2.231

Test5 Swap-Compound Move Local search-1 No No 2.530

Test6 Swap-Compound Move Local search-1 Yes No 2.126

Test7 Swap-Compound Move Local search-1 No Yes 2.234

Test8 Swap-Compound Move Local search-1 Yes Yes 2.329

Test9 Compound Move-Swap-Reverse order Local search-1 No No 0.829

Test10 Compound Move-Swap-Reverse order Local search-1 Yes No 0.661

Test11 Compound Move-Swap-Reverse order Local search-1 No Yes 0.987

Test12 Compound Move-Swap-Reverse order Local search-1 Yes Yes 0.837

Test13 Compound Move-Reverse order-Swap Local search-1 No No 1.187

Test14 Compound Move-Reverse order-Swap Local search-1 Yes No 1.063

Test15 Compound Move-Reverse order-Swap Local search-1 No Yes 1.228

Test16 Compound Move-Reverse order-Swap Local search-1 Yes Yes 1.007

Test17 Swap-Compound Move-Reverse order Local search-1 No No 0.945

Test18 Swap-Compound Move-Reverse order Local search-1 Yes No 0.895

Test19 Swap-Compound Move-Reverse order Local search-1 No Yes 1.012

Test20 Swap-Compound Move-Reverse order Local search-1 Yes Yes 1.122

Test21 Swap-Reverse order-Compound Move Local search-1 No No 1.213

Test22 Swap-Reverse order-Compound Move Local search-1 Yes No 1.130

Test23 Swap-Reverse order-Compound Move Local search-1 No Yes 1.318

Test24 Swap-Reverse order-Compound Move Local search-1 Yes Yes 1.234

Test25 Reverse order-Compound Move-Swap Local search-1 No No 1.413

Test26 Reverse order-Compound Move-Swap Local search-1 Yes No 1.338

Test27 Reverse order-Compound Move-Swap Local search-1 No Yes 1.531

Test28 Reverse order-Compound Move-Swap Local search-1 Yes Yes 1.538

Test29 Reverse order-Swap-Compound Move Local search-1 No No 1.430

Test30 Reverse order-Swap-Compound Move Local search-1 Yes No 1.331

Test31 Reverse order-Swap-Compound Move Local search-1 No Yes 1.667

Test32 Reverse order-Swap-Compound Move Local search-1 Yes Yes 1.632

Test33 Swap-Reverse order Local search-1 No No 2.058

Test34 Swap-Reverse order Local search-1 Yes No 1.843

Test35 Swap-Reverse order Local search-1 No Yes 2.214

Test36 Swap-Reverse order Local search-1 Yes Yes 2.131

Test37 Swap-Reverse order Local search-2 No No 0.503

Test38 Swap-Reverse order Local search-2 No Yes 0.953

Test39 Reverse order-Swap Local search-1 No No 2.281

Test40 Reverse order-Swap Local search-1 Yes No 2.031

Test41 Reverse order-Swap Local search-1 No Yes 2.255

Test42 Reverse order-Swap Local search-1 Yes Yes 2.539

Test43 Reverse order-Swap Local search-2 No No 0.928

Test44 Reverse order-Swap Local search-2 No Yes 1.231

Chapter 5: Computational Studies 31

We select the tests which give better solutions in Table 5.1 and perform the selected

preliminary tests on the OAS-2 problem. The results are given below.

Table 5.2: Preliminary test results to select neighborhood structures for the OAS-2 problem
where n=10

Test Number Neighborhood Structures Local Search TS SA Avg. Dev. (%)

Test9 Compound Move-Swap-Reverse order Local search-1 No No 0.522

Test10 Compound Move-Swap-Reverse order Local search-1 Yes No 0.534

Test11 Compound Move-Swap-Reverse order Local search-1 No Yes 0.538

Test12 Compound Move-Swap-Reverse order Local search-1 Yes Yes 0.550

Test13 Compound Move-Reverse order-Swap Local search-1 No No 0.838

Test14 Compound Move-Reverse order-Swap Local search-1 Yes No 0.830

Test15 Compound Move-Reverse order-Swap Local search-1 No Yes 0.862

Test16 Compound Move-Reverse order-Swap Local search-1 Yes Yes 0.833

Test17 Swap-Compound Move-Reverse order Local search-1 No No 0.945

Test18 Swap-Compound Move-Reverse order Local search-1 Yes No 0.995

Test19 Swap-Compound Move-Reverse order Local search-1 No Yes 0.912

Test20 Swap-Compound Move-Reverse order Local search-1 Yes Yes 0.952

Test21 Swap-Reverse order-Compound Move Local search-1 Yes Yes 1.013

Test22 Swap-Reverse order-Compound Move Local search-1 Yes No 1.030

Test23 Swap-Reverse order-Compound Move Local search-1 No Yes 1.018

Test24 Swap-Reverse order-Compound Move Local search-1 Yes Yes 1.034

Test37 Swap-Reverse order Local search-2 No No 0.136

Test38 Swap-Reverse order Local search-2 No Yes 0.483

Test43 Reverse order-Swap Local search-2 No No 0.428

Test44 Reverse order-Swap Local search-2 No Yes 0.631

According to the results given in Tables 5.1 and 5.2, we observe that the best performance

is obtained when test37 is employed. Hence, we decide the neighborhood structures as the

following. The first structure is swap and it is followed by reverse order with the selection

of the compound move as a local search. The running times for each VNS algorithm are not

reported in details here. It is due to that the majority of the instances are finished in similar

times. After deciding neighborhood structures, we set the parameters of the algorithm to

improve the results.

Chapter 5: Computational Studies 32

5.3 Tuning the Parameters

In this section, we set the parameters to obtain the best performance of the VNS algorithm

with respect to the neighborhood structures and the local search procedure determined in

Section 5.2. These parameters are threshold value and termination criterion.

5.3.1 Threshold Value

In a VNS algorithm, the local search procedure may result in getting stuck in a local

optimum solution. In our algorithm, we decide to employ the compound move described

in Section 4.2.3 as the local search procedure. We design to have a threshold value for

accepting inferior solutions in the local search procedure to avoid from being trapped in a

local optimum solution. In order to choose the neighborhood structures and the local search

procedure in Section 5.2, we employ the threshold value as 0.998 in the preliminary tests.

To tune the threshold value, we test the values 0.997, 0.998, 0.999 and 1.000 on the same

data sets used in Section 5.2 for the OAS-1 problem and the OAS-2 problem. Tables 5.3

and 5.4 show the performance results with threshold values for the OAS-1 problem and the

OAS-2 problem, respectively. We set the improvement threshold value to 0.998 based on

the results for both of the problems.

Table 5.3: Preliminary test results to set the threshold values for the OAS-1 problem where
n = 50

n Threshold value Avg.Dev. (%)

50 0.997 0.552

50 0.998 0.503

50 0.999 0.738

50 1.000 0.847

Chapter 5: Computational Studies 33

Table 5.4: Preliminary test results to set the threshold values for the OAS-2 problem where
n = 10

n Threshold value Avg.Dev. (%)

10 0.997 0.154

10 0.998 0.136

10 0.999 0.262

10 1.000 0.383

5.3.2 Termination criterion

The algorithm is run for the preliminary tests given in Section 5.3.1 and Section 5.2 until a

certain number of iterations. We decide to use the number of solutions without improvement

generated as a termination criterion since it is more efficient. We set a counter in the

algorithm to determine the number of the solutions without improvement. We need to

set a number for the termination criterion with respect to the convergence behavior of

the algorithm. Values between 300 and 2000 are tested. 750 and 1250 are selected as the

number of non improving solutions for the OAS-1 problem and OAS-2 problem. We give two

examples to visualize how the convergence is acquired for the OAS-1 and OAS-2 problems

in Figure 5.1 and Figure 5.2, respectively.

Figure 5.1: Convergence of the VNS algorithm for an instance with n=50, τ = 0.3 and
Crl=0.025

Chapter 5: Computational Studies 34

Figure 5.2: Convergence of the VNS algorithm for an instance with 25 orders, τ = 0.9 and
R = 0.7

5.4 Results of the Computational Study

After determining the best settings for the VNS algorithm, we perform a computational

study which compares the VNS algorithm with the benchmarks.

5.4.1 Computational Platform

We conduct all the experiments on a computer with an Intel(R) Core(TM) processor, 2.50

GHz speed and 4GB of RAM. The VNS algorithm is coded in MATLAB R2010b.

5.4.2 Benchmarks

We use different heuristic algorithms from the literature as a benchmark to compare the

performance of the VNS algorithm. We use the myopic and the genetic algorithm presented

by Rom and Slotnick (2009) as benchmark for the OAS-1 problem. For the OAS-2 problem,

the benchmarks are the tabu search studied by Cesaret et al. (2012) and artificial bee colony

Chapter 5: Computational Studies 35

developed by Ling and Ying (2013). We explain the properties of the benchmarks in the

following.

Myopic Algorithm: It is a heuristic method based on the reassembling the accepted

orders of the relaxation solution. Myopic algorithm is initiated by the calculation of the

profit when all orders are placed in their original position. Each job is separated into joblets

with respect to unit processing time, the weights and revenues after initiating. Joblets are

assigned to unit duration time buckets to find an optimal sequence for the relaxed problem.

The optimal sequence is searched by maximizing the return of accepting or rejecting each

joblet. At least %75 of the joblets are accepted in the relaxed solution. Reassembling

orders are sorted ascendantly with respect to the value obtained by the subtraction of the

processing time from the completion time to modify the sequence. Remaining orders are

sequenced after previously accepted orders with the heuristic described by Mohan et al.

(1983) and Morton et al. (1993). The myopic algorithm is coded in FORTRAN 90 and run

on a Gateway computer with an Intel Pentium M 1.6 GHz processor. Its performance is

evaluated by the test problems generated by Rom and Slotnick (2009).

Genetic Algorithm (GA): GA is a population based heuristic method. GA is initiated

with a population including random solutions. Each order in the solution is evaluated

sequentially as follows. Return of each order to the sequence is checked and if this order

increases the profit, it is added to the sequence until the end of the sequence is reached.

The initial population is obtained by the evaluation of each solution. Then, GA starts the

generation of the next population. All the solutions are sorted with respect to descending

order of their profit value. Solutions whose profit values are within %10 of profit of the

best solution so far are kept and sorted in descending order in the population. For the

remaining solutions, each profit value is modified with the following formula: ModProfit =

(Profit − Rand × 0.05 × BestV
GenNum), where ModProfit is the modified profit value of the

solution, Profit is the original profit value of the solution, Rand is the random number

drawn from uniform distribution (0, 1), BestV is the best profit found so far and GenNum is

the number of this generation. The remaining solutions are sorted as regarding ModProfit

values in decreasing order in the population. Two point crossover operation is performed

between the better and worse half of the population. Two numbers are randomly picked

between 1 and N to determine two positions in the sequence. If the first random number is

Chapter 5: Computational Studies 36

greater than the second one, the outer parts of the sequence identified by these numbers are

switched and new offspring is generated. Else, the offspring is generated by interchanging

orders between two numbers. Generated offspring does not have to be feasible so they

are converted to feasible solutions. When two generated solutions have the same value, the

algorithm performs a mutation with a probability on one of them to eliminate the duplication

by interchanging randomly two successive orders. The GA employs a local search to improve

the solutions generated. The local search procedure utilizes interchanging successively order

pairs. Best solutions are kept and the search continues until a certain number of iterations

are performed. The GA is coded in FORTRAN 90 and run on a Gateway computer with

an Intel Pentium M 1.6 GHz processor. Its performance is evaluated by the test problems

generated by Rom and Slotnick (2009). The GA becomes the state of the art for the OAS-1

problem with respect to the achieved results.

Tabu Search (TS): TS algorithm starts with a greedy rule based on the processing

time, dependent sequence setup time and revenue of an order. The greedy rule utilizes the

calculation of Revenue − loadratio for each order i, RLR1i = ei/(pi + saverage,i), where

saverage,i = (s0,i + s1,i + ... + sn,i)/(n + 1). Initial sequence is obtained by locating the

orders into the corresponding positions to the sorted RLR1i values from the highest to the

lowest. Non-profitable orders are deleted from the initial sequence to have a feasible solution.

After the generation of the initial feasible solution, the algorithm starts. Neighborhood

solutions are produced by swap operator. This operator enables interchanging positions of

two accepted orders or one accepted order with one rejected order to generate solutions in

the search space. The best solution is determined in the search space. In the tabu list, the

swapped pairs provide the best solution are kept and they become tabu during the tabu

tenure. A local search procedure is employed starting from the best solution. In the local

search procedure, an iteratively drop-add-insert operations are performed. It is explained

as follows. An order with the minimum RLR2i value is dropped from the sequence where

RLR2i = ei/(pi +sji). Then, a probability distribution is constructed for all rejected orders

in the sequence to detect the order to be added. The probability distribution is deal with

RLR1i values which becomes the selection of the orders with higher RLR1 values more

likely as in roulette wheel selection procedure. After the selection of the order to be added,

the order is inserted to the position in which it generates a profit 0.998 times greater than

Chapter 5: Computational Studies 37

the profit of best solution found so far. Add-insertion procedure is applied in all rejected

orders. The best solution is updated and recorded. The algorithm is repeated until the

generation of predetermined number of solutions without improvement. The TS algorithm

is coded in C by using a workstation with a 3.00 GHz Intel Xeon processor and 4 GB of

RAM. Cesaret et al. (2012) test the TS algorithm with data sets created by them. The TS

algorithm is competitive improvement heuristic for the OAS-2 problem with respect to the

gathered results.

Artificial Bee Colony (ABC): ABC is a population based heuristic algorithm. The initial

population is generated randomly. After the generation of the initial solution, the algorithm

begins. The following procedure is repeated until a limit which is the number trials without

improvement. First, the algorithm generates solutions in the neighborhood close the their

current position as the following. The neighborhood solutions are found in two phases: the

destruction and construction. Predefined number of orders is selected randomly and deleted

from the sequence in the destruction phase. Deleted orders are added to a new sequence

with respect to the selected order in the destruction phase. In the construction phase, the

deleted orders are reinserted sequentially by trying all possible positions to find the best

position. Then, a local search procedure is applied to improve the solutions by iteratively

exchanging successive orders in the solution. If the improved solution is better than the

best solution found so far, it becomes a member of the new population. Otherwise, a new

solution is generated by employing a crossover operator. A substring from the best solution

is taken randomly for the crossover. A proto-child is created by copying the substring into

its corresponding positions. A second parent is selected randomly. Some orders which are

already in the substring from the second parent are deleted for the feasibility. An offspring is

created by placing the orders into unfixed positions from left to right according to the order

of the sequence. If the solution of the offspring is better than a threshold value, it is employed

as a member of the new population. Otherwise, the local search procedure is applied to

improve the solution. After the local search, the best solution is selected among the solutions

generated by the destruction and construction phases and the crossover operator as a new

member of the population. Some members of the new population are changed with respect

to a determined probability by applying the destruction and construction phases, if an

improvement is observed. The best solutions are recorded. The ABC algorithm is coded

Chapter 5: Computational Studies 38

with C language and run on a PC with an Intel Premium 4, 3.0 GHz CPU and 4 GB of

RAM. The performance of the ABC algorithm is evaluated with the study done by Cesaret

et al. (2012). The ABC algorithm becomes the state of the art for the OAS-2 problem.

5.4.3 Upper Bounds (UB)

Since the OAS problem is NP-hard, solving large sized test instances to optimality in a rea-

sonable time is very difficult. To measure the effectiveness of the proposed VNS algorithm,

UB values are obtained from the studies presented by Rom and Slotnick (2009) and Cesaret

et al. (2012) for the OAS-1 problem and the OAS-2 problem, respectively.

Upper Bound for the OAS-1 problem: An assignment algorithm is applied to a unit

processing time relaxation of the problem to find UB. Rom and Slotnick (2009) observe in

their study that the determined UB values are really tight.

Upper Bound for the OAS-2 problem: Cesaret et al. (2012) obtain the UB values as the

best of two upper bounds. The first one, UBLPV I , is obtained by linear programming relax-

ation of MILP with valid inequalities which are proposed by Oğuz et al. (2010). UBMILP

is the second upper bound and is found by solving the MILP in a predetermined time.

5.4.4 Performance Measures

We need performance measures to compare the results obtained from the VNS algorithm

with the benchmarks. We define the percentage deviations, run times and number of optimal

solutions which are used to present the computational results.

Percentage Deviations: We compare the average (Avg.Dev.), minimum (Min. Dev.) and

maximum (Max.Dev) percentage deviation from the UB. Equation 5.1 is used to calculate

the average percentage deviation. In Equation 5.1, n is the problem size and objective

represents the objective function value for the proposed algorithm.

(
1

n
×

n∑
i=1

UB − objective
UB

)× 100 (5.1)

Run Times: We report run times on the average in seconds to see the efficiency of the

algorithms.

Number of optimal solutions: We report number of optimal solutions found (# of optimal

Chapter 5: Computational Studies 39

solutions) to measure the solution quality from another dimension.

5.4.5 Results for proposed VNS algorithm

We perform a computational study which compares the proposed VNS algorithm with

the benchmarks given in Section 5.4.2 for the OAS-1 problem and the OAS-2 problem.

The results of the OAS-1 problem are tabulated in Tables 5.5, 5.6 and 5.7 for n =50, 75

and 100, respectively. Tables 5.8 - 5.13 present the results for the OAS-2 problem with

n = 10, 15, 20, 25, 50 and 100, respectively.

Chapter 5: Computational Studies 40

T
a
b

le
5.

5
:

P
er

fo
rm

a
n
ce

R
es

u
lt

s
o
f

th
e

M
yo

p
ic

,
G

en
et

ic
an

d
V

N
S

A
lg

or
it

h
m

s
fo

r
th

e
O

A
S

-1
p

ro
b

le
m

w
h

en
n

=
5
0

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

5
0

M
y
o
p
ic

G
en

et
ic

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
C
rl

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
y
o
p
ic

G
A

V
N
S

M
y
o
p
ic

G
A

V
N
S

0
.3

0
.0
2
5

1
.1
0
4

0
.3
3
3

0
.0
0
0

0
.6
8
5

0
.0
5
9

0
.0
0
0

0
.6
8
5

0
.0
9
3

0
.0
0
0

2
1
1

1
1

2
.9
6

1
0
.8
8

1
6
5
.7
1

0
.3

-0
.2
1
3

2
.6
4
7

0
.2
9
5

0
.0
0
0

1
.0
5
1

0
.1
1
2

0
.0
0
0

1
.0
5
1

0
.2
0
5

0
.0
0
0

5
1
0

1
0

4
.0
7

1
0
.7
4

1
2
2
.4
7

2
.0

0
.0
0
7

2
.3
9
8

0
.2
9
8

0
.0
0
0

1
.2
7
3

0
.1
4
6

0
.0
0
0

1
.2
7
3

0
.2
0
7

0
.0
0
0

6
1
0

1
0

4
.6
9

1
1
.1
9

1
7
2
.5
6

2
.0

-0
.1
6
1

2
.5
5
8

0
.5
8
8

0
.0
1
1

1
.1
3
7

0
.3
1
3

0
.0
0
1

1
.8
3
7

0
.9
4
6

0
.3
6
9

0
0

0
3
.2
4

1
8
.5
0

1
8
1
.6
2

3
.0

0
.0
0
9

4
.0
7
6

0
.8
9
3

0
.0
0
4

3
.0
1
0

0
.5
2
7

0
.0
0
0

3
.0
5
3

0
.8
1
4

0
.0
5
1

0
1

0
4
.1
9

2
0
.1
8

1
9
6
.6
1

3
.0

-0
.2
4
3

5
.8
6
9

0
.9
8
8

0
.0
5
4

1
.3
9
7

0
.4
3
2

0
.0
2
1

1
.4
4
5

0
.7
2
9

0
.0
2
1

0
0

0
5
.2
5

2
2
.8
4

1
9
5
.7
0

A
v
g
.

3
.1
0
9

0
.5
6
6

0
.0
2
2

1
.4
2
6

0
.2
6
5

0
.0
0
4

1
.5
5
8

0
.4
9
9

0
.0
7
4

2
.1
7

5
.3
3

5
.1
6

4
.0
7

1
5
.7
2

1
7
2
.4
3

T
o
ta
l

1
3

3
2

3
1

Chapter 5: Computational Studies 41

T
a
b

le
5.

6
:

P
er

fo
rm

a
n
ce

R
es

u
lt

s
o
f

th
e

M
yo

p
ic

,
G

en
et

ic
an

d
V

N
S

A
lg

or
it

h
m

s
fo

r
th

e
O

A
S

-1
p

ro
b

le
m

w
h

en
n

=
7
5

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

7
5

M
y
o
p
ic

G
en

et
ic

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
C
rl

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
y
o
p
ic

G
A

V
N
S

M
y
o
p
ic

G
A

V
N
S

0
.3

-0
.0
1
6

1
.5
7
0

0
.3
5
5

0
.0
0
0

0
.5
2
6

0
.0
9
0

0
.0
0
0

2
.9
5
1

0
.5
7
3

0
.0
0
0

1
8

4
8
.1
4

2
4
.5
1

2
2
8
.4
2

0
.3

-0
.1
6
8

1
.9
3
4

0
.3
3
8

0
.0
0
0

1
.1
5
1

0
.1
7
5

0
.0
0
0

2
.5
0
0

0
.4
6
0

0
.0
0
0

2
6

2
1
6
.5
8

2
0
.6
7

2
5
3
.1
1

2
.0

0
.0
3
4

6
.7
1
5

1
.2
4
7

0
.0
7
0

1
.6
3
2

0
.6
1
2

0
.0
3
7

4
.1
1
1

1
.0
5
9

0
.0
9
3

0
0

0
9
.8
1

6
7
.6
8

2
7
9
.1
6

2
.0

-0
.1
9
1

4
.1
2
7

1
.9
0
3

0
.1
0
3

2
.6
1
4

0
.9
3
8

0
.0
4
7

4
.4
3
3

1
.7
7
1

0
.0
7
7

0
0

0
1
3
.9
4

6
3
.5
5

2
8
4
.2
3

3
.0

-0
.0
0
5

6
.4
0
8

1
.4
0
5

0
.0
7
1

1
.4
0
6

0
.5
3
5

0
.0
3
2

5
.8
8
7

1
.9
4
4

0
.1
0
4

0
0

0
9
.3
0

5
2
.3
2

2
3
4
.1
3

3
.0

-0
.1
6
7

9
.6
2
8

2
.9
2
3

0
.0
7
7

1
2
.7
9
9

1
.2
8
0

0
.0
2
6

5
.6
0
5

2
.2
4
5

0
.0
5
0

0
0

0
1
4
.9
0

5
6
.2
9

3
0
1
.1
4

A
v
g
.

5
.0
6
4

1
.3
6
2

0
.0
5
4

1
.6
8
8

0
.6
0
5

0
.0
2
4

4
.2
4
8

1
.3
4
2

0
.0
5
4

0
.5
0

2
.3
3

1
.0
0

1
2
.1
1

4
7
.5
0

2
6
3
.3
7

T
o
ta
l

3
1
4

6

Chapter 5: Computational Studies 42

T
a
b

le
5.

7
:

P
er

fo
rm

a
n

ce
R

es
u

lt
s

o
f

th
e

M
yo

p
ic

,
G

en
et

ic
an

d
V

N
S

A
lg

or
it

h
m

s
fo

r
th

e
O

A
S

-1
p

ro
b

le
m

w
h

en
n

=
1
0
0

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

1
0
0

M
y
o
p
ic

G
en

et
ic

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
C
rl

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
y
o
p
ic

G
A

V
N
S

M
y
o
p
ic

G
A

V
N
S

0
.3

-0
.0
1
1

1
.5
0
1

0
.4
5
1

0
.0
0
0

1
.1
2
4

0
.1
9
9

0
.0
0
0

1
.5
0
1

0
.3
6
2

0
.0
0
0

2
9

3
1
9
.8
5

5
5
.3
7

5
2
5
.2
3

0
.3

-0
.2
1
9

1
.6
8
4

0
.3
6
6

0
.0
0
0

1
.4
1
1

0
.1
9
4

0
.0
0
0

1
.6
8
4

0
.3
2
6

0
.0
0
0

2
7

2
3
8
.7
4

4
6
.5
7

5
8
6
.4
0

2
.0

0
.0
2
1

3
.0
6
4

1
.0
0
9

0
.0
4
2

1
.5
0
3

0
.6
5
1

0
.0
7
4

3
.0
6
4

1
.0
0
9

0
.0
3
7

0
0

0
2
2
.2
2

1
1
9
.2
1

4
9
0
.5
5

2
.0

-0
.1
3
3

8
.3
5
4

2
.3
5
7

0
.1
3
4

1
.9
5
6

0
.9
3
6

0
.0
6
9

8
.3
5
4

2
.3
5
7

0
.1
3
4

0
0

0
3
3
.8
7

1
3
2
.4
3

5
5
0
.4
5

3
.0

-0
.0
3
4

4
.1
0
0

1
.6
7
5

0
.1
0
6

2
.2
5
9

0
.8
5
3

0
.0
2
3

4
.1
0
0

1
.6
7
5

0
.1
0
6

0
0

0
2
3
.9
0

1
3
7
.1
6

5
8
6
.2
3

3
.0

-0
.1
8
7

7
.7
5
7

2
.6
0
8

0
.0
8
5

2
.4
2
1

1
.0
5
5

0
.0
2
7

7
.5
7
7

2
.6
0
8

0
.0
8
5

0
0

0
3
3
.4
1

1
1
6
.5
4

5
1
1
.1
2

A
v
g
.

4
.4
1
0

1
.4
1
1

0
.1
0
8

1
.7
7
9

0
.6
4
8

0
.0
3
2

4
.4
1
0

1
.3
9
0

0
.1
0
8

0
.6
7

2
.6
7

0
.8
3

2
8
.6
6

1
0
1
.2
1

5
4
1
.6
6

T
o
ta
l

4
1
6

5

Chapter 5: Computational Studies 43

T
a
b

le
5.

8
:

P
er

fo
rm

a
n

ce
of

th
e

T
S

,
A

B
C

an
d

V
N

S
al

go
ri

th
m

s
fo

r
th

e
O

A
S

-2
p

ro
b

le
m

w
h

en
n

=
1
0

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

1
0

T
S

A
B
C

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

T
S

A
B
C

V
N
S

T
S

A
B
C

V
N
S

0
.1

0
.1

3
1

0
0

0
0

2
0

0
6

1
0

7
0
.0
0

0
.0
2

4
5
.1
1

0
.3

3
1

0
2

0
0

2
0

0
5

9
8

0
.0
0

0
.0
2

4
3
.0
8

0
.5

8
1

0
6

1
0

6
1

0
8

9
8

0
.0
0

0
.0
2

4
0
.3
4

0
.7

3
0

0
0

0
0

3
0

0
8

1
0

9
0
.0
1

0
.0
3

3
5
.2
0

0
.9

1
0

0
0

0
0

3
1

0
7

1
0

7
0
.0
0

0
.0
2

4
2
.2
1

0
.3

0
.1

2
0

0
0

0
0

0
0

0
9

1
0

1
0

0
.0
0

0
.0
2

4
0
.1
2

0
.3

2
1

0
0

0
0

2
0

0
6

1
0

9
0
.0
0

0
.0
2

4
5
.0
7

0
.5

0
0

0
2

0
0

3
0

0
6

9
9

0
.0
1

0
.0
3

4
1
.2
3

0
.7

2
1

0
0

0
0

1
0

0
6

1
0

9
0
.0
0

0
.0
2

4
5
.3
5

0
.9

2
0

0
0

0
0

0
0

0
4

1
0

9
0
.0
0

0
.0
2

3
2
.1
8

0
.5

0
.1

6
1

0
0

0
0

0
0

0
9

1
0

1
0

0
.0
0

0
.0
3

3
9
.3
2

0
.3

5
1

0
0

0
0

0
0

0
8

1
0

1
0

0
.0
0

0
.0
2

4
5
.1
7

0
.5

0
0

0
0

0
0

0
0

0
9

1
0

9
0
.0
0

0
.0
2

4
7
.1
2

0
.7

2
0

0
0

0
0

2
0

0
4

1
0

1
0

0
.0
0

0
.0
3

3
5
.4
5

0
.9

0
0

0
0

0
0

0
0

0
7

1
0

1
0

0
.0
0

0
.0
3

3
7
.5
0

0
.7

0
.1

4
0

0
0

0
0

0
0

0
9

1
0

1
0

0
.0
0

0
.0
3

3
8
.1
2

0
.3

0
0

0
0

0
0

0
0

0
1
0

1
0

1
0

0
.0
0

0
.0
2

3
5
.5
2

0
.5

1
0

0
0

0
0

0
0

0
9

1
0

1
0

0
.0
0

0
.0
3

3
7
.2
9

0
.7

0
0

0
0

0
0

0
0

0
8

1
0

1
0

0
.0
0

0
.0
3

4
5
.2
9

0
.9

4
0

0
0

0
0

0
0

0
6

1
0

1
0

0
.0
0

0
.0
3

4
1
.5
3

0
.9

0
.1

0
0

0
0

0
0

0
0

0
1
0

1
0

1
0

0
.0
0

0
.0
3

3
3
.4
6

0
.3

0
0

0
0

0
0

0
0

0
9

1
0

1
0

0
.0
0

0
.0
3

3
7
.2
6

0
.5

0
0

0
0

0
0

0
0

0
8

1
0

1
0

0
.0
0

0
.0
3

3
4
.3
1

0
.7

0
0

0
0

0
0

0
0

0
9

1
0

1
0

0
.0
0

0
.0
0

2
9
.1
2

0
.9

0
0

0
0

0
0

0
0

0
8

1
0

1
0

0
.0
0

0
.0
3

3
5
.4
9

A
v
g
.

2
0

0
0

0
0

1
0

0
7
.5
2

9
.8
8

9
.3
6

0
.0
0

0
.0
2

3
9
.2
8

T
o
ta
l

1
8
8

2
4
7

2
3
4

Chapter 5: Computational Studies 44

T
a
b

le
5.

9
:

P
er

fo
rm

a
n

ce
of

th
e

T
S

,
A

B
C

an
d

V
N

S
al

go
ri

th
m

s
fo

r
th

e
O

A
S

-2
p

ro
b

le
m

w
h

en
n

=
1
5

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

1
5

T
S

A
B
C

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

T
S

A
B
C

V
N
S

T
S

A
B
C

V
N
S

0
.1

0
.1

4
3

1
4

2
0

4
3

1
0

1
0

0
.0
4

0
.0
4

8
1
.1
2

0
.3

8
3

0
7

3
1

8
4

1
1

0
0

0
.0
1

0
.0
3

8
2
.3
9

0
.5

4
2

0
4

2
0

4
2

1
1

1
0

0
.0
1

0
.0
4

8
0
.3
8

0
.7

4
2

0
4

1
0

4
2

0
1

5
1

0
.0
1

0
.0
3

8
3
.4
9

0
.9

6
1

0
6

1
0

6
1

0
4

5
5

0
.0
1

0
.0
4

8
2
.5
5

0
.3

0
.1

8
4

3
6

3
0

7
5

3
0

1
0

0
.0
1

0
.0
4

8
0
.4
3

0
.3

1
1

5
2

1
1

4
1

1
1

4
0

0
0

0
0
.0
1

0
.0
4

8
8
.1
1

0
.5

8
5

1
8

4
1

8
4

1
0

0
0

0
.0
1

0
.0
3

8
4
.2
5

0
.7

8
4

2
8

3
1

8
4

1
0

0
0

0
.0
1

0
.0
4

8
1
.3
2

0
.9

7
4

0
7

3
0

7
3

0
2

2
2

0
.0
1

0
.0
4

8
3
.3
5

0
.5

0
.1

1
3

7
2

1
3

7
2

1
3

8
2

0
0

0
0
.0
1

0
.0
4

7
9
.2
3

0
.3

1
4

8
4

1
4

8
4

1
4

7
3

0
0

0
0
.0
1

0
.0
5

8
5
.1
1

0
.5

1
5

9
6

1
5

9
4

1
5

9
5

0
0

0
0
.0
1

0
.0
4

8
2
.1
9

0
.7

1
1

6
1

1
1

6
0

1
1

6
1

0
0

0
0
.0
1

0
.0
5

8
6
.5
8

0
.9

1
8

6
0

1
8

6
0

1
8

6
0

1
1

1
0
.0
1

0
.0
5

8
8
.1
2

0
.7

0
.1

4
1

0
2

0
0

2
1

0
7

9
6

0
.0
1

0
.0
4

7
9
.3
3

0
.3

3
1

0
0

0
0

0
0

0
7

1
0

8
0
.0
1

0
.0
5

8
1
.2
4

0
.5

2
0

0
0

0
0

1
0

0
7

1
0

7
0
.0
1

0
.0
5

7
7
.4
6

0
.7

8
2

0
8

1
0

8
1

0
3

6
5

0
.0
1

0
.0
5

8
1
.4
4

0
.9

0
0

0
0

0
0

1
0

0
9

8
7

0
.0
1

0
.0
5

8
0
.5
3

0
.9

0
.1

3
0

0
0

0
0

3
0

0
9

1
0

9
0
.0
1

0
.0
5

8
0
.1
1

0
.3

5
0

0
0

0
0

0
0

0
9

9
1
0

0
.0
1

0
.0
6

8
2
.3
4

0
.5

0
0

0
0

0
0

0
0

0
1
0

8
1
0

0
.0
1

0
.0
5

8
4
.1
3

0
.7

0
0

0
0

0
0

1
0

0
1
0

7
9

0
.0
1

0
.0
5

7
9
.3
4

0
.9

0
0

0
0

0
0

0
0

0
1
0

8
1
0

0
.0
1

0
.0
5

8
1
.4
5

A
v
g
.

7
3

1
6

3
1

7
3

1
3
.6
4

4
.0
4

3
.6
0

0
.0
1

0
.0
4

8
2
.2
4

T
o
ta
l

9
1

1
0
1

9
0

Chapter 5: Computational Studies 45

T
ab

le
5
.1

0
:

P
er

fo
rm

a
n
ce

of
th

e
T

S
,

A
B

C
an

d
V

N
S

al
go

ri
th

m
s

fo
r

th
e

O
A

S
-2

p
ro

b
le

m
w

h
en

n
=

2
0

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

2
0

T
S

A
B
C

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

T
S

A
B
C

V
N
S

T
S

A
B
C

V
N
S

0
.1

0
.1

5
3

1
4

2
0

5
3

0
0

2
0

0
.1
0

0
.0
6

1
3
4
.5
6

0
.3

5
3

1
2

2
1

5
4

1
0

0
0

0
.0
4

0
.0
6

1
3
6
.8
7

0
.5

3
2

1
3

1
0

4
2

1
0

1
0

0
.0
3

0
.0
5

1
2
8
.3
9

0
.7

2
1

0
1

0
0

1
0

0
5

6
6

0
.0
4

0
.0
5

1
2
5
.8
9

0
.9

4
1

0
6

3
1

4
1

0
3

7
5

0
.0
3

0
.0
7

1
2
2
.5
6

0
.3

0
.1

8
5

2
7

4
2

9
5

2
0

0
0

0
.0
3

0
.0
7

1
2
8
.1
0

0
.3

6
5

3
6

4
1

7
4

2
0

0
0

0
.0
4

0
.0
7

1
1
8
.3
9

0
.5

8
5

2
6

4
1

7
5

2
0

0
0

0
.0
3

0
.0
7

1
1
5
.7
2

0
.7

7
3

1
7

2
1

8
3

1
0

1
0

0
.0
4

0
.0
7

1
2
7
.9
4

0
.9

5
2

0
5

2
0

7
3

0
2

2
0

0
.0
4

0
.0
8

1
2
5
.0
1

0
.5

0
.1

8
6

4
6

5
2

7
6

4
0

0
0

0
.0
3

0
.0
8

1
3
5
.7
7

0
.3

9
6

3
9

5
1

1
2

7
2

0
0

0
0
.0
7

0
.0
7

1
2
4
.3
4

0
.5

1
0

7
3

9
5

2
1
0

7
4

0
0

0
0
.0
4

0
.0
9

1
2
3
.6
4

0
.7

1
1

5
1

1
1

5
1

1
1

5
1

0
0

0
0
.0
3

0
.0
9

1
2
5
.9
1

0
.9

1
1

6
0

1
1

6
0

1
1

6
0

1
1

1
0
.0
5

0
.0
7

1
3
5
.6
7

0
.7

0
.1

1
5

1
0

5
1
4

9
5

1
3

1
0

5
0

0
0

0
.0
5

0
.0
9

1
3
4
.7
3

0
.3

1
4

9
6

1
3

8
6

1
2

9
6

0
0

0
0
.0
4

0
.1
0

1
4
1
.2
9

0
.5

2
0

9
0

2
0

9
0

2
0

9
0

2
1

2
0
.0
4

0
.0
9

1
2
7
.9
1

0
.7

1
2

7
0

1
2

6
0

1
3

7
0

3
2

1
0
.0
7

0
.1
0

1
1
8
.5
8

0
.9

1
3

8
0

1
3

8
0

1
2

7
0

1
0

0
0
.0
4

0
.0
8

1
3
4
.3
9

0
.9

0
.1

1
0

0
0

0
0

1
0

0
0

1
0

8
0
.0
6

0
.1
1

1
4
0
.0
1

0
.3

1
0

0
1

0
0

3
0

0
8

8
8

0
.0
3

0
.1
2

1
3
5
.4
5

0
.5

1
0

0
1

0
0

2
0

0
8

7
8

0
.0
3

0
.1
1

1
3
9
.5
8

0
.7

2
0

0
0

0
0

3
2

0
8

6
5

0
.0
3

0
.1
0

1
4
4
.3
4

0
.9

1
3

2
0

1
3

1
0

1
3

2
0

6
4

3
0
.0
3

0
.1
1

1
1
5
.8
3

A
v
g
.

8
4

1
7

4
1

8
4

1
1
.8
8

2
.3
2

1
.8
8

0
.0
4

0
.0
7

1
2
9
.6
4

T
o
ta
l

4
7

5
8

4
7

Chapter 5: Computational Studies 46

T
ab

le
5
.1

1
:

P
er

fo
rm

a
n
ce

of
th

e
T

S
,

A
B

C
an

d
V

N
S

al
go

ri
th

m
s

fo
r

th
e

O
A

S
-2

p
ro

b
le

m
w

h
en

n
=

2
5

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

2
5

T
S

A
B
C

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

T
S

A
B
C

V
N
S

T
S

A
B
C

V
N
S

0
.1

0
.1

6
4

1
4

3
1

5
3

2
0

0
0

0
.0
8

0
.0
9

2
1
1
.0
9

0
.3

6
3

2
6

2
1

5
3

2
0

0
0

0
.0
6

0
.0
9

2
2
9
.4
5

0
.5

4
2

1
2

1
0

4
2

1
0

1
0

0
.0
6

0
.0
8

2
1
9
.3
4

0
.7

4
1

0
3

1
0

3
1

0
4

6
4

0
.0
6

0
.1
0

2
2
3
.0
1

0
.9

2
1

0
2

0
0

3
1

0
4

7
4

0
.0
5

0
.1
0

2
2
1
.9
8

0
.3

0
.1

5
4

2
5

3
1

4
4

3
0

0
0

0
.1
0

0
.1
1

2
0
5
.9
0

0
.3

7
5

3
6

3
1

7
5

3
0

0
0

0
.0
9

0
.1
0

2
1
9
.7
9

0
.5

6
3

2
5

2
2

5
2

1
0

0
0

0
.0
8

0
.1
2

2
2
1
.8
0

0
.7

6
2

1
5

2
1

6
3

2
0

0
0

0
.0
8

0
.1
2

2
3
4
.6
7

0
.9

4
2

0
3

1
0

4
2

0
2

2
1

0
.0
7

0
.1
2

2
1
0
.4
0

0
.7

0
.1

7
6

3
7

5
3

7
5

3
0

0
0

0
.0
7

0
.1
2

2
0
4
.0
9

0
.3

9
5

3
7

4
3

8
5

3
0

0
0

0
.0
8

0
.1
2

2
2
8
.3
0

0
.5

8
5

2
6

4
2

9
4

1
0

0
0

0
.0
9

0
.1
6

2
4
5
.5
4

0
.7

1
1

6
2

1
2

3
0

9
5

2
0

3
0

0
.0
8

0
.1
9

2
6
3
.5
8

0
.9

7
4

1
7

3
1

7
4

1
0

0
0

0
.0
8

0
.1
1

2
0
6
.4
5

0
.7

0
.1

1
8

9
3

1
6

8
1

1
7

8
2

0
0

0
0
.0
6

0
.1
4

2
1
0
.4
9

0
.3

1
4

1
0

7
1
2

9
5

1
5

9
6

0
0

0
0
.0
8

0
.1
1

2
1
9
.8
8

0
.5

1
5

1
2

7
1
4

1
0

5
1
4

1
1

6
0

0
0

0
.0
8

0
.1
8

2
1
5
.6
1

0
.7

1
4

8
2

1
2

7
2

1
3

8
2

0
0

0
0
.0
7

0
.1
5

2
5
1
.6
5

0
.9

1
5

1
0

3
1
4

8
0

1
4

9
1

0
1

0
0
.0
8

0
.1
5

2
3
9
.1
0

0
.9

0
.1

6
1

0
5

1
0

5
1

0
5

8
6

0
.0
6

0
.1
8

2
3
0
.1
7

0
.3

0
0

0
1

0
0

1
0

0
8

6
7

0
.0
6

0
.1
7

2
1
5
.5
0

0
.5

1
2

4
0

1
2

3
0

1
2

3
0

3
3

5
0
.0
7

0
.1
9

2
4
4
.5
8

0
.7

2
5

8
0

2
1

7
0

2
2

7
0

4
4

5
0
.0
8

0
.1
6

2
2
4
.6
6

0
.9

2
2

7
0

1
9

6
0

2
1

6
0

4
2

3
0
.0
9

0
.1
7

2
0
1
.5
1

A
v
g
.

9
5

2
8

4
1

9
4

1
1
.3
6

1
.7
2

1
.4
0

0
.0
7

0
.1
3

2
2
3
.9
4

T
o
ta
l

3
4

4
3

3
5

Chapter 5: Computational Studies 47

T
ab

le
5
.1

2
:

P
er

fo
rm

a
n
ce

of
th

e
T

S
,

A
B

C
an

d
V

N
S

al
go

ri
th

m
s

fo
r

th
e

O
A

S
-2

p
ro

b
le

m
w

h
en

n
=

5
0

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

5
0

T
S

A
B
C

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

T
S

A
B
C

V
N
S

T
S

A
B
C

V
N
S

0
.1

0
.1

3
2

1
3

2
1

3
2

1
0

0
0

1
.1
9

0
.6
8

5
1
8
.1
8

0
.3

4
2

1
2

2
1

4
3

1
0

0
0

0
.9
8

0
.6
0

6
0
3
.5
5

0
.5

2
2

1
2

1
0

2
2

1
0

0
0

0
.8
9

0
.8
0

6
1
9
.6
8

0
.7

1
6

3
0

1
6

2
0

1
7

2
0

1
4

1
0
.5
8

0
.7
3

6
7
2
.1
9

0
.9

2
1

0
0

0
0

1
0

0
2

1
0

3
0
.4
6

1
.1
4

6
4
2
.6
6

0
.3

0
.1

3
3

2
4

3
2

4
4

3
0

0
0

1
.6
1

0
.6
9

6
1
5
.8
1

0
.3

5
4

3
4

3
2

5
4

2
0

0
0

0
.0
9

0
.1
0

6
4
1
.8
0

0
.5

5
3

1
4

2
1

5
2

1
0

0
0

0
.0
8

0
.1
2

6
0
8
.0
7

0
.7

3
1

0
2

1
0

3
1

0
1

1
1

0
.0
8

0
.1
2

6
2
1
.1
3

0
.9

3
1

0
2

1
0

2
1

0
0

3
0

0
.0
7

0
.1
2

6
1
0
.8
9

0
.7

0
.1

5
4

3
4

3
2

6
3

2
0

0
0

1
.3
6

0
.6
4

6
2
9
.2
2

0
.3

8
6

3
6

4
3

6
5

3
0

0
0

1
.1
8

0
.4
8

6
3
0
.5
5

0
.5

8
4

2
7

4
2

8
4

2
0

0
0

1
.3
5

0
.7
7

6
5
4
.0
8

0
.7

5
3

2
4

2
1

5
2

1
0

0
0

1
.2
2

1
.0
2

6
8
9
.8
0

0
.9

6
4

2
4

2
1

6
3

2
0

0
0

1
.1
6

0
.7
2

6
2
2
.1
3

0
.7

0
.1

9
7

4
6

5
3

7
6

4
0

0
0

1
.4
4

0
.9
7

6
9
0
.0
4

0
.3

9
6

4
6

4
5

8
4

5
0

0
0

1
.5
2

0
.9
5

6
1
9
.2
3

0
.5

1
3

9
7

1
1

7
5

1
4

1
0

7
0

0
0

1
.5
9

0
.9
4

6
7
9
.9
0

0
.7

1
8

9
2

1
5

8
2

1
6

8
3

0
0

0
1
.2
7

0
.9
5

6
5
1
.8
5

0
.9

1
8

1
1

6
1
4

8
4

1
7

1
1

5
0

0
0

1
.1
5

1
.0
9

6
2
8
.1
9

0
.9

0
.1

1
8

1
3

8
1
7

1
1

7
1
8

1
2

7
0

0
0

1
.2
5

1
.4
8

6
8
9
.1
0

0
.3

2
3

1
7

1
3

1
8

1
4

9
2
1

1
7

9
0

0
0

1
.2
6

1
.3
2

7
0
1
.6
7

0
.5

2
3

1
7

1
0

1
7

1
3

3
2
1

1
6

7
0

0
0

1
.4
2

1
.1
9

6
5
5
.1
5

0
.7

2
1

1
6

1
1

1
8

1
2

6
1
9

1
5

4
0

0
0

1
.4
3

1
.2
4

7
2
4
.1
6

0
.9

1
9

1
6

1
1

1
6

1
2

1
0

1
9

1
6

4
0

0
0

1
.3
7

1
.0
3

7
8
1
.2
1

A
v
g
.

1
0

7
5

8
5

3
9

7
3

0
.1
6

0
.7
2

0
.2
4

1
.1
9

0
.8
9

6
2
0
.0
6

T
o
ta
l

4
1
8

5

Chapter 5: Computational Studies 48

T
ab

le
5
.1

3
:

P
er

fo
rm

a
n

ce
of

th
e

T
S

,
A

B
C

an
d

V
N

S
al

go
ri

th
m

s
fo

r
th

e
O

A
S

-2
p

ro
b

le
m

w
h

en
n

=
1
0
0

%
D
ev
ia
ti
o
n
s
fr
o
m
U
B

n
=

1
0
0

T
S

A
B
C

V
N
S

#
o
f
o
p
ti
m
a
l
so
lu
ti
o
n
s

R
u
n
T
im

es

τ
R

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

M
a
x

A
v
g
.

M
in

T
S

A
B
C

V
N
S

T
S

A
B
C

V
N
S

0
.1

0
.1

3
2

1
2

2
1

3
2

1
0

0
0

1
6
.7
6

3
.9
8

1
0
3
4
.3
2

0
.3

3
2

2
2

1
1

3
1

1
0

0
0

1
7
.2
6

8
.2
2

1
0
9
0
.5
5

0
.5

3
1

0
1

1
0

2
1

0
0

0
0

1
0
.8
7

7
.6
1

1
0
5
5
.1
1

0
.7

1
0

0
0

0
0

1
0

0
1

6
1

6
.2
1

6
.2
5

1
0
7
2
.1
9

0
.9

1
0

0
0

0
0

1
0

0
4

1
0

4
3
.5
3

9
.0
8

1
0
4
2
.6
6

0
.3

0
.1

4
3

1
3

2
1

4
3

2
0

0
0

2
2
.3
7

4
.8
9

1
0
3
8
.7
1

0
.3

5
3

2
4

2
5

3
3

2
0

0
0

2
0
.1
0

5
.2
9

9
4
9
.0
4

0
.5

4
2

1
2

2
1

4
2

1
0

0
0

1
6
.7
7

4
.8
8

1
0
1
0
.1
1

0
.7

3
2

0
1

1
0

3
1

0
0

1
0

9
.4
8

6
.1
6

1
9
8
1
.5
6

0
.9

2
1

0
1

0
0

1
1

0
0

4
0

7
.5
8

8
.5
9

1
0
6
0
.0
1

0
.7

0
.1

5
4

2
4

3
3

6
3

2
0

0
0

2
5
.9
6

5
.2
7

1
1
3
9
.2
2

0
.3

6
4

3
4

3
2

7
3

2
0

0
0

2
8
.8
7

6
.9
4

1
0
3
0
.5
1

0
.5

5
4

3
4

3
2

5
3

2
0

0
0

2
0
.5
6

5
.8
6

9
5
4
.0
8

0
.7

4
3

2
3

2
1

4
2

1
0

0
0

1
5
.5
7

6
.5
7

1
1
2
9
.3
7

0
.9

5
2

1
3

1
1

5
2

2
0

0
0

1
2
.1
5

6
.7
6

1
1
2
2
.9
1

0
.7

0
.1

6
5

3
5

4
3

6
4

3
0

0
0

3
3
.6
0

6
.0
4

1
0
9
5
.1
2

0
.3

1
1

7
4

7
5

2
1
0

7
5

0
0

0
2
6
.6
2

6
.2
5

1
1
7
5
.2
6

0
.5

1
3

6
4

1
2

5
3

1
3

6
3

0
0

0
2
2
.3
0

6
.7
7

1
0
7
9
.4
5

0
.7

1
3

7
3

7
5

3
1
1

7
3

0
0

0
2
6
.3
6

6
.7
8

1
0
4
5
.3
8

0
.9

1
3

8
5

8
6

4
1
3

9
5

0
0

0
1
7
.8
4

7
.4
2

1
0
5
8
.6
7

0
.9

0
.1

1
2

9
7

9
7

5
1
2

9
8

0
0

0
1
9
.1
3

1
3
.6
3

1
1
9
9
.6
2

0
.3

2
3

1
5

9
1
2

9
5

2
1

1
6

1
1

0
0

0
2
6
.3
2

9
.8
2

1
2
3
4
.2
3

0
.5

1
8

1
6

1
3

1
7

1
2

9
1
7

1
4

1
2

0
0

0
2
1
.5
1

6
.4
6

1
1
5
5
.5
6

0
.7

2
0

1
6

1
1

1
3

1
1

8
1
7

1
4

1
1

0
0

0
2
2
.7
0

7
.5
2

1
2
1
5
.3
0

0
.9

2
2

1
6

1
2

1
7

1
1

4
1
9

1
6

1
3

0
0

0
1
7
.4
8

8
.6
1

1
3
2
6
.2
7

A
v
g
.

8
6

4
6

4
2

7
6

4
0
.2
0

0
.8
4

0
.2
4

1
9
.1
3

7
.0
3

1
0
8
8
.2
1

T
o
ta
l

5
2
1

5

Chapter 5: Computational Studies 49

5.5 Analysis of the Results

In this section, we summarize the results of our computational experiments, which are

presented in Tables 5.5-5.13 for the OAS-1 and OAS-2 problem, and analyze them. Although

the proposed VNS algorithm is run on a similar computer with the computers used in

benchmarks, the run time may vary due to programming languages. Hence, in this section

the run times are not reported for comparison purposes.

5.5.1 Analysis of the results for the OAS-1 problem

Comparison of the VNS algorithm with the Myopic Algorithm

Table 5.5 displays the results of the VNS and the myopic algorithm for the data set

n = 50. The average run time for the VNS algorithm is 172.43 seconds. We observe that the

VNS achieves 0.499 % deviation on the average whereas the myopic algorithm gives 0.566%

deviation. The VNS also outperforms the myopic algorithm with respect to the number of

optimal solutions found. Although the myopic algorithm finds the optimal solution in 13

out of 100 instances, the VNS algorithm improves this result by finding optimal solution in

31 out of 100 instances.

The results of the VNS and the myopic algorithm for n = 75 are tabulated in Table

5.6. The VNS algorithm gives the results in 263.37 seconds on the average. Although

average deviation values are very close to each other (1.342% for the VNS and 1.362% for

the myopic algorithm), the VNS is more effective than the myopic algorithm according to

the number of optimal solutions found. The VNS algorithm finds the optimal solution in 6

out of 100 instances whereas the myopic algorithm finds the optimal solution in only 3 out

of 100 instances.

Table 5.7 contains the result of the VNS and the myopic algorithm for n = 100. The VNS

runs in 541.66 seconds on the average. When the problem size gets larger, the performance

of both the VNS and the myopic algorithm get worse which is an expected case because

the problem gets harder. We see that the myopic algorithm gives 1.411% deviation on

the average. Similarly, the VNS algorithm gives 1.390% deviation from the UB. The VNS

algorithm is still better in terms of the number of optimal solutions found. While the myopic

algorithm finds 4 optimal solutions out of 100 instances, the VNS finds 5 optimal solutions

out of 100 instances.

Chapter 5: Computational Studies 50

The reasons for the success of the VNS on the myopic algorithm can be twofold:

• The nature of the VNS allows changing the neighborhood structures which facilitates

searching the solutions in different spaces.

• The myopic algorithm solves the OAS-1 problem in two steps: determination of the

accepted orders from the relaxation of the problems and reassembling the accepted

orders, respectively, whereas the VNS algorithm handles the problem by considering

both acceptance and sequencing decisions simultaneously.

Comparison of the VNS algorithm with the GA

Table 5.5 shows that the VNS algorithm is competitive with the GA in terms of the

number of optimal solutions achieved by finding 31 optimal solutions out of 100 instances,

while the GA finds 32 optimal solutions out of 100 instances for the data set n = 50.

However, we see from the same table that the GA gets a better performance by giving

0.265% deviation, since the VNS gives 0.499% deviation.

Table 5.6 reports the results of the VNS and the GA applied on the data set n = 75.

The GA outperforms the VNS algorithm in terms of both average deviation and the number

of optimal solutions found. The GA finds 14 optimal solutions out of 100 instances with

0.605% average deviation whereas the VNS algorithm finds 6 optimal solutions out of 100

instances with 1.342% average deviation.

For n=100, we observe a similar performance for the VNS algorithm in Table 5.7. The

VNS algorithm finds the optimal solution in 5 out of 100 instances and gives 1.390% devi-

ation on the average. However, the GA still outperforms the VNS by finding the optimal

solution in 16 out of 100 instances and gives 0.605% deviation on the average. We observe

that when the problem size increases, the performances of both the VNS algorithm and the

GA decrease since the difficulty of the problem increases with respect to its size.

We present the findings about the comparison of the VNS algorithm with the GA as

follows. The GA is a population based metaheuristic method. It can use the possibility

of recombining several solutions into a new one by achieving search space diversification.

However, the VNS provides changing the search space, if an improvement is not observed

during the search. This situation can lead getting stuck in local optimum solution for some

instances solved in the VNS algorithm.

Chapter 5: Computational Studies 51

Effect of parameters τ and Crl on the test instances for the OAS-1 problem

For the OAS-1 problem, we use six data sets created with different tardiness factors which

are set to 0.3, 2.0 and 3.0 and the generated revenues for the half of the problems correlating

with due date and revenue, and for the other half, revenues are inversely correlated with each

due date for each other. The value of τ implies the tightness of the due dates. When the τ

value increases, the tightness of the corresponded due date also increases. We observe from

Tables 5.5-5.7 that the VNS algorithm generally performs worse, when the τ value rises.

The problem is more difficult with tighter due dates. This is an expected case since orders

with tighter due dates are more difficult to meet than loose due dates. The performance

of the VNS shows a similar pattern for the instances generated with correlation and no

correlation so we cannot get an idea about the hardness of the problem with respect to

correlation property.

5.5.2 Analysis of the results for the OAS-2 problem

Comparison of the VNS algorithm with the TS algorithm

Table 5.8 reports the results for the VNS and the TS algorithms for the data test n = 10.

The VNS algorithm runs in 39.28 seconds to solve the instances with n = 10. Although

both the VNS and the TS algorithms give 0% deviation on the average (it implies that the

gathered solutions are very close to the optimal values), the VNS algorithm outperforms the

TS algorithm in terms of the number of the optimal solutions found. The VNS algorithm

obtains 234 optimal solutions out of 250 instances, while TS algorithm finds 188 optimal

solutions.

From the Table 5.9, we see that the VNS and the TS algorithms perform similarly in

terms of the average deviation and the number of solutions found for the data set n = 15.

Both the VNS and the TS algorithms give 3% deviation on the average. The TS algorithm

finds the optimal solution in 91 out of 250 instances whereas the VNS algorithm finds 90

optimal solutions. The VNS algorithm gives the solutions of the instances for the data set

in 82.24 seconds on the average.

For the data set n = 20, we observe the same performance for the VNS and the TS

algorithms. Both algorithms find the optimal solution in 47 out of 250 instances and produce

a deviation of 3% on the average as can be seen from Table 5.10. The average time for the

Chapter 5: Computational Studies 52

VNS algorithm to find the solutions is 129.64 seconds.

For n = 25, the VNS algorithm runs in 223.94 seconds. We see from Table 5.11 that it

gives 4% deviation on the average while finding 35 optimal solutions out of 250 instances.

In contrast, the TS gives a higher percentage deviation (5%) than the VNS while obtaining

34 optimal solutions out of 250 instances.

When the problem size increases to 50, the VNS algorithm runs in 620.06 seconds on

the average. From Table 5.12, we observe that the VNS and the TS algorithms show the

same performance in terms of average deviation. Both of them achieve 7% deviation on

the average. Although TS finds the optimal solution in 4 out of 250 instances, the VNS

algorithm outperforms the TS algorithm by obtaining 5 optimal solutions.

When n=100, performance of the VNS and the TS algorithms are not different. We

observe from Table 5.13 that the VNS and the TS algorithms obtain 5 optimal solutions

out of 250 test instances. Furthermore, both of the algorithms perform 6% deviation on the

average. In order to obtain the results, the VNS runs in 1088.21 seconds on the average.

The results presented above indicate that the VNS algorithm is competitive with the

TS algorithm and outperforms the TS results when n equals 10, 25 and 50 in terms of the

number of optimal solutions found. They generally show the same performance on the

average deviation. Moreover, when the problem size is increased, both of the algorithm do

worse since the complexity of the problem increases with its size. The major differences

between the TS and the VNS algorithms to explain the success of the VNS algorithm are as

follows. The VNS algorithm uses an additional move operator: reverse order and employed

local search procedure starting from a random solution in a given neighborhood. These

properties may help finding optimal solutions through the search which are not reachable

in the search space of the TS algorithm.

Comparison of the VNS algorithm with the ABC algorithm

From Table 5.8, we see that the ABC algorithm dominates the VNS algorithm in terms of

the number of optimal solutions obtained for the data set n = 10. The ABC algorithm finds

247 optimal solutions out of 250 instances, while the VNS obtains 247 optimal solutions.

However, they show the same performance by achieving 0% on the average deviation.

For n = 15, the ABC algorithm still outperforms the VNS algorithm with respect to the

Chapter 5: Computational Studies 53

number of optimal solutions found. We see from Table 5.9 that the VNS finds 90 optimal

solutions out of 250 instances whereas the ABC finds the optimal solution in 101 out of

250 instances. They are still comparable since both algorithms give 3% deviation on the

average.

Table 5.10 reports the results obtained from data set n = 20 for both the VNS and

the ABC algorithms. We see that the VNS and the ABC algorithms give the same average

deviation (4%) for the data set n = 20, even though the ABC obtains more optimal solutions

than the VNS algorithm. The VNS algorithm finds 47 optimal solutions out of 250 instances

whereas the ABC algorithm finds 58 optimal solutions.

From Table 5.11, we observe that the VNS algorithm finds 35 optimal solutions out of

250 instances, while the ABC finds 43 optimal solutions out of 250 instances. The average

deviation is still 4% for both of the algorithms, although the problem size is increased to 25

from 20.

When there are 50 incoming orders, the ABC algorithm starts dominating the VNS

algorithm in terms of the optimal solution and the average deviation. According to the

results given in Table 5.12, the ABC algorithm achieves to find the optimal solution in

18 out of 250 instances and gives 4% deviation on the average whereas the VNS gives 7%

deviation on the average by finding the optimal solution in 5 out of 250 instances.

We observe from Table 5.13 that the solution quality of the ABC algorithm is still better

than that of the VNS algorithm by finding a greater number of optimal solutions and less

deviation on the average. The ABC algorithm gives only 4% deviation on the average by

obtaining 21 optimal solutions, while the VNS gives 6% on the average by obtaining 5

optimal solutions.

We make some inferences from the results explained above. They are given below.

• The range for the average deviation obtained by the VNS algorithm is between 0%-

7% and this value is between 0%- 5% for the ABC algorithm. This case indicates

that although the ABC algorithm outperforms the VNS algorithm, the proposed VNS

algorithm is robust and has an acceptable variation in solution quality as the ABC

algorithm.

• The reason for the ABC algorithm dominates the VNS algorithm is probably that the

Chapter 5: Computational Studies 54

ABC algorithm applies combination of swap and insertion operators simultaneously

and iteratively, while the VNS applies the swap and reverse order separately. Although

changing neighborhood structures enable diversification mechanism by searching the

solutions in different search spaces, the gathered solutions from the VNS algorithm

may be far from the optimal solutions for some instances.

• Notably, both of the ABC algorithm and the GA algorithm which dominate the pro-

posed VNS algorithm for the OAS problems are population based and include crossover

operators. We infer that more diversification can be included in the VNS algorithm

to improve its efficiency, since population based algorithms on the OAS problem are

more successful.

Effect of parameters τ and R on test instances

When τ gets larger, the release dates are generated on a wider interval and tightness

of the due date values increase. R indicates the tightness of the deadlines with respect

to the due dates. If R increases, the difference between the deadline and the due date

increases. The performance of the algorithm is very changeable according to increasing of

R values with a constant τ . Similarly, changing τ values with a constant R value does not

effect the performance of the algorithm in a pattern. We observe from the results given in

Tables 5.8-5.13 that varying τ and R values does not give an idea about the hardness of the

problem.

Chapter 6: Conclusions and Future Research 55

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

In this thesis, we study two order acceptance and scheduling problems on a single machine:

OAS-1 and OAS-2. We differentiate the problems with respect to the properties of the

incoming orders. Each order is defined with a weight, a processing time, a revenue and a

due date for the OAS-1 problem whereas an order has additional properties in the OAS-2

problem which are the sequence dependent setup time, the release date and the deadline.

Tardiness is included in both of the problems. An order becomes a tardy order if it is

delivered to the customer after its due date and the manufacturer gives a discount for the

tardy order on behalf of the customer. Moreover, if the customer specifies a deadline for

the order as in the OAS-2 problem, she refuses the order and does not pay for the order

which is completed after its deadline. The objective of the problems is to maximize the

total profit. The profit is a function of the total revenues and total weighted tardiness.

We propose a competitive improvement heuristic to solve the problems since they are

strongly NP-hard. Namely, the proposed heuristic is variable neighborhood search (VNS).

The proposed VNS gives acceptable results for both of the problems. We understand that

the proposed VNS is a flexible algorithm which can be applicable to different problems.

We conduct preliminary tests to decide on the parameters of the algorithm. We decide to

develop the VNS with two neighborhood structures and an intelligent local search procedure

according to the results of the preliminary tests. We explain the possible reasons why the

preliminary test gives its best with the corresponded structure as follows. The first neigh-

borhood structure, swap, provides a random exchange by changing both the set of accepted

orders and their sequence. The second neighborhood structure, reverse order, enables swap-

ping of two random orders in which the positions of all orders between swapped ones are

reversed to have a new schedule. Randomness provides diversification to the algorithm.

In contrast, intensification behavior is observed in the algorithm while making a decision

Chapter 6: Conclusions and Future Research 56

about moving to the next neighborhood structure. We move to the next neighborhood

structure with a deterministic way in which we change the neighborhood structure if we

have a better solution than the incumbent. The local search provides a compound move

which is the combination of three moves: drop, add and insert. It starts to search from

a random solution in the neighborhood structures. When we apply swap or reverse order

operations, the completion time of the orders, hence the tardiness and the revenue of the

order can be affected due to the release date, the sequence dependent setup time, the due

dates and the deadline therefore a feasibility check is required after each modification to

the current solution. The feasibility check enables deleting some orders from the sequence.

Deleting the orders is critical to vary the number of accepted orders in the current sequence.

This deletion can cause to converge a local optimum solution. The local search procedure

provides a compact form to overcome this situation. The number of the accepted orders can

be changed due to the local search since it continues adding the orders if an improvement is

observed in the solution, while the move operators do not provide a change in the number of

accepted orders. Moreover, we use a threshold value to accept an inferior solution through

the search which enables generation of diversified solutions.

We compare the performance of the VNS algorithm with the myopic and the genetic

algorithm (GA) for the OAS-1 problem and with the tabu search (TS) and the artificial bee

colony (ABC) optimization for the OAS-2 problem. While the VNS algorithm is competitive

with the myopic and the TS algorithm, the ABC and the GA outperforms the VNS.

We observe that the proposed VNS is a trajectory based algorithm which may cause

missing some parts of the search space. However both of the GA and the ABC algorithms are

population based metaheuristics involving crossover and probably overcome this problem.

6.2 Future Research

The following recommendations are made for the future search. An additional efficient

metaheuristic can be developed for these problems. We infer from Section 5.5 that the VNS

can be strengthened with a population based heuristic. The GA including the VNS as a

move operator can be future search directions.

Furthermore, different neighborhood structures can be developed to improve the success

of the VNS algorithm for OAS problems.

Chapter 6: Conclusions and Future Research 57

BIBLIOGRAPHY

A. Allahverdi, J.N.D. Gupta, and T. Aldowaisan. A review of scheduling research involving

setup considerations. Omega, International Journal of Management Science, 27:219–239,

1999.

B. Cesaret, C. Oğuz, and F. S. Salman. A tabu search algorithm for order acceptance and

scheduling. Computers and Operations Research, 39:1197–1205, 2012.

J.B. Ghosh. Job selection in a heavily loaded shop. Computers Operational Research, 24:

141–145, 1997.

P. Hansen and N. Mladenovic. Variable neighborhood search: Principles and applications.

European Journal of Operation Research, 130:449–467, 2001.

G. Kirlik and C. Oğuz. A variable neighborhood search for minimizing total weighted

tardiness with sequence dependent setup times on a single machine. Computers and

Operations Research, 39:1506–1520, 2012.

S.W. Ling and K.C. Ying. Increasing the total net revenue for single machine order ac-

ceptance and scheduling problems using an artificial bee colony algorithm. Operational

Research Society, 64:293–311, 2013.

L. Liu and H. Zhou. Applying variable neighborhood search to the single-machine maximum

lateness rescheduling problem. Electronic Notes in Discrete Mathematics, 39:107–114,

2012.

N. Mladenovic and P. Hansen. Variable neighborhood search. Computers Operational

Research, 17:52–67, 1997.

R. Mohan, V. Rachamadugu, and T.E. Morton. Myopic heuristics for the weighted tardiness

problem on identical parallel machines. Computers and Operations Research, 10:83–109,

1983.

Chapter 6: Conclusions and Future Research 58

T.E. Morton, R.V. Rachamadugu, and A. Vepsalainen. Accurate myopic heuristics for

tardiness scheduling. University of Michigan. Graduate School of Business Administration,

1993.

C. Oğuz, F.S. Salman, and Z.B. Yalcin. Order acceptance and scheduling decisions in

make-to-order systems. International Journal of Production Economics, 125(1):200–211,

2010.

S. Panwalkar, R. Dudek, and M. Smith. The lessons of flow shop scheduling research.

Symposium on the theory of scheduling and its applications, 7:29–38, 1973.

W.A. Rom and S.A. Slotnick. Order acceptance using genetic algorithms. Computers and

Operations Research, 36:1758–1767, 2009.

S.A. Slotnick and T.E. Morton. Selecting jobs for a heavily loaded shop with lateness

penalties. Computers Operational Research, 23:131–140, 1995.

S.A. Slotnick and T.E. Morton. Order acceptance with weighted tardiness. Computers and

Operations Research, 34:3029–3042, 2007.

F. Talla Nobibon and R. Leus. Exact algorithms for a generalization of the order acceptance

and scheduling problem in a single machine environment. Computers and Operations

Research, 38:367–378, 2011.

W.H. Yang and C.J. Liao. Survey of scheduling involving setup times. International Journal

of Systems Science, 30(2):143–155, 1999.

Vita 59

VITA

Ayşegül Altındağ was born in Uşak, Turkey on May 26, 1988. She graduated from Uşak

Science High School in 2006. She received his B.Sc. degree with double major in Chemical

Engineering and in Systems Engineering from Yeditepe University, Istanbul,Turkey in 2011.

Same year, she became M.Sc. student in Industrial Engineering at Koç University. She

has recently presented this study for the workshop CSW 2013 in Istanbul, Turkey and the

conference MAPSP 2013 in Nancy, France. Next year, she will be a PDEng at Eindhoven

University of Technology in Eindhoven, Netherlands.

