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ABSTRACT

Vehicular Ad-Hoc Network (VANET) is a promising Intelligent Transportation

System (ITS) technology that aims to improve road tra�c conditions and safety of

passengers.

First part of our work deals with providing a realistic analysis of the VANET

topology characteristics over time and space using various key metrics of interest. In

this analysis, we integrate real-world road topology and real-time data extracted from

the Freeway Performance Measurement System (PeMS) database into a microscopic

mobility model to generate realistic tra�c �ows along the highway. Moreover, we use

a more realistic, recently proposed, obstacle-based channel model and compare the

performance of this sophisticated model to the most commonly used more simplistic

channel models including the unit disc and log-normal shadowing models. Our inves-

tigation on the key metrics reveals that both log normal and unit disc models fail to

provide realistic VANET topology characteristics. We therefore propose a matching

mechanism to tune the parameters of the lognormal model according to the vehicle

density and a correlation model to take into account the evolution of the link charac-

teristics over time. The proposed method has been demonstrated to provide a good

match with more sophisticated but computationally expensive and di�cult to imple-

ment obstacle based model and validated over the real data of two di�erent highways

in California.

Second part of our work deals with distributed algorithms for density estimation

in VANETs. Vehicle density is an important system metric used in monitoring road

tra�c conditions. Most of the existing methods for vehicular density estimation

either use infrastructure, or use local neighbor information to estimate global vehicle

density. These techniques however su�er from low reliability and limited coverage
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as well as high deployment and maintenance cost. We adapted and implemented

three fully distributed algorithms for density estimation, inspired by the mechanisms

proposed for system size estimation in peer-to-peer networks. Results show that

system size estimation technique can be used for density estimation in VANETs.

Moreover, we proposed a completely distributed algorithm CluSampling which has

been speci�cally tailored for VANETs. The extensive simulations of these algorithms

at di�erent vehicle tra�c densities and area sizes for both highways and urban areas

reveal that CluSampling is robust to changes in the network and it provides high

accuracy in least convergence time and introduces less overhead on the network and

the initiator node.



ÖZETÇE

Geçici Araç A§lar� (GAA), yol tra�k durumunu iyile³tirme ve yolcular�n güven-

li§ini sa§lama özellikleriyle ümit veren bir Ak�ll� Ta³�ma Sistemleri teknolojisidir.

Bu tez çal�³mas�n�n ilk bölümü, çe³itli temel ba³ar�m ölçütleri kullanarak GAA'lar�n

zaman ve konum tabanl� topoloji özelliklerinin gerçekçi analizinin sa§lanmas�yla ilgi-

lidir. Bu analizde, gerçek yol topolojileri ve PeMS veritaban�ndan al�nan gerçek za-

manl� veriler, otoyollarda gerçekçi tra�k ak�³lar� üretebilmek için mikroskobik hareketlilik

modeliyle birle³tirilmektedir. Ayr�ca, daha gerçekçi, yak�n zamanda önerilmi³ engel-

tabanl� kanal modeli kullan�lm�³ ve bu karma³�k sistemin ba³ar�m� en çok kullan�lan

sabit-disk ve log-normal gibi daha basit kanal modelleriyle kar³�la³t�r�lm�³t�r. Temel

ba³ar�m ölçütleri üzerindeki ara³t�rmam�z sabit-disk ve log-normal kanal modellerinin

gerçekçi GAA topoloji özellikleri sa§lamada yetersiz oldu§unu aç�§a ç�karm�³t�r. Bu

nedenle, link özelliklerinin zamana ba§l� de§i³imlerini hesaba katmak amac�yla, araç

yo§unlu§u ve bir korelasyon modeline göre log-normal modelin parametrelerini adapte

eden bir e³le³tirme mekanizmas� önermekteyiz. önerilen yöntemin karma³�k, hesaplama

aç�s�ndan pahal� ve gerçekle³tirme aç�s�ndan zor olan engel-tabanl� kanal modeliyle iyi

bir e³leme sa§lad�§� gösterilmi³ ve modelin i³levselli§i Kaliforniya'da bulunan iki farkl�

otoyoldan al�nan gerçek verilerle do§rulanm�³t�r.

Çal�³mam�z�n ikinci bölümü, GAA'larda yo§unluk hesaplamas� için da§�t�k al-

goritmalarla ilgilidir. Araç yo§unlu§u yol tra�k durumunun gözlemlenmesinde kul-

lan�lan önemli bir sistem ölçütüdür. Araç yo§unluk hesaplamas� için önerilmi³ algo-

ritmalar�n ço§u ya belli bir altyap�ya dayanmakta ya da sisteme genel araç yo§un-

lu§unu hesaplamak için yerel kom³u bilgisini kullanmaktad�r. Ancak, bu algoritmalar

yüksek yerle³tirme ve bak�m masra�ar�n�n yan� s�ra dü³ük güvenilirlik ve k�s�tl� kap-

samadan dolay� dezavantajl�d�rlar. Çal�³mam�zda, görevde³ a§larda sistem boyutunu
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hesaplamak için önerilmi³ mekanizmalardan esinlenerek üç farkl� tamamen da§�t�k

algoritma tasarlad�k. Sonuçlar�m�z sistem büyüklü§ü hesaplama tekni§i GAA'larda

tra�k yo§unlu§unu hesaplamak için de kullan�labilece§ini gösterdi. Buna ek olarak,

GAA'lar için özel olarak tasarlanm�³ tamamen da§�t�k CluSampling algoritmas�n�

önerdik. Hem otoyollarda hem de ³ehir-içi bölgelerde, farkl� bölge geni³likleri ve

tra�k yo§unluklar�nda yap�lan kapsaml� benzetimler CluSampling algoritmas�n�n a§-

daki de§i³ikliklere dayan�kl�, yüksek kesinlikte ve en az zaman gerektiren çözüm sunan

bir algoritma oldu§unu ve bunlar� sa§larken a§ ve öncü araç üzerinde daha az yük

olu³turdu§unu göstermi³tir.
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Chapter 1

INTRODUCTION

VANET is a promising Intelligent Transportation System (ITS) technology that

o�ers many applications such as safety message dissemination [1, 2, 3], dynamic route

planning [4], content distribution, gaming and entertainment [5]. The majority of

the VANET research e�ort on protocol design has relied on simulations due to the

prohibitive cost of deploying real world test-beds. Building a realistic simulation envi-

ronment for VANET is therefore essential in judging the performance of the protocols

proposed at various layers.

The �rst part of our work deals with analysis of vehicular mobility and commu-

nication channel modeling for VANET simulation. VANET simulation environment

should be realistic requiring an accurate representation of the vehicular mobility and

signal propagation among the vehicles, and also e�cient necessitating a reasonable

amount of simulation time. Realistic representation of the vehicle mobility requires

using real-world road topology, accurate microscopic mobility modeling and real-data

based tra�c demand modeling whereas a realistic representation of the signal propa-

gation among the vehicles requires reproducing the actual physical radio propagation

process for a given environment. On the other hand, an e�cient representation of the

vehicle mobility and signal propagation model requires analyzing the closeness to the

realistic representations in terms of both the key metrics summarizing the dynamics

of the VANET topology in time and space, and the runtime of the simulations. As

summarized in Table 2.1, the literature on VANET topology characteristics focuses

on realistic channel models tested on simplistic vehicle mobility models [6, 7], realis-

tic mobility models without considering realistic signal propagation models [8, 9, 10]
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or simplistic models for both vehicle mobility and communication channel [11, 12],

[13, 14, 15, 16, 17]. Moreover, these models are often compared using classical metrics

such as node degree, number of clusters, link duration and quality [11, 8, 12, 13] or

related metrics such as packet loss probability and connectivity probability [14, 15, 6]

[7, 17, 10]. They include only a small subset of important network-wide metrics sum-

marizing the state of the network such as closeness centrality measuring how long it

takes for the information to spread in a network, clustering coe�cient giving infor-

mation about the degree to which nodes tend to cluster and size of the largest group

of connected vehicles in the network [12, 9].

The goal of this part of our work is to analyze VANET topology characteristics on

a large highway section by integrating realistic microscopic mobility traces generated

using real-world road topology and real-data based tra�c demand with realistic chan-

nel models taking into account the e�ect of vehicles on the received signal power. We

compare the performance of this realistic scenario to the most commonly used more

simplistic channel models using various metrics of interest. The original contributions

of this work are listed as follows:

• We incorporate real-world road topology and real-time data from PeMS database

[18] into the microscopic mobility model provided by Simulation of Urban Mo-

bility (SUMO) [19]. PeMS database allows modeling realistic tra�c �ows on

the highway by adjusting the parameters of the SUMO simulator to match the

real data. This is the �rst work to analyze VANET topology characteristics

over a large scale highway using an open source database for measuring vehicle

tra�c and speed.

• We incorporate more realistic recently proposed obstacle-based channel model

into the analysis of VANET topology characteristics and compare its perfor-

mance to the most commonly used more simplistic channel models including

unit disc and log-normal shadow fading models. This is the �rst work to analyze

the e�ect of using the obstacle-based channel model on the VANET topology
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characteristics.

• Since it is hard to integrate the obstacle based model into the modern simula-

tors due to its high complexity and computational cost, we propose a matching

mechanism to tune the parameters of the lognormal model according to the

vehicle density and a correlation model to take into account the evolution of

the link characteristics over time. We validate the performance of the proposed

method over two di�erent highways in California. This is the �rst work to pro-

pose a method to adjust the parameters of the lognormal model and introduce

time correlation depending on the vehicle density for more realistic and e�cient

VANET simulation.

• This is the �rst work to perform an extensive analysis of the VANET topology

characteristics based on the realistic vehicle mobility and channel models. This

analysis includes not only node degree, link duration, number of clusters but also

neighbor distribution, closeness centrality, size of largest cluster and clustering

coe�cient.

The second part of our work deals with the analysis of distributed algorithms for

density estimation in VANETs. Road tra�c density estimation provides important

information in VANETs and intelligent transportation systems for road tra�c con-

trol, intelligent vehicular routing and e�cient data dissemination. Various methods

have been used in the literature to estimate vehicular density. Traditionally most

of the methods rely on building an infrastructure, such as pressure pads, inductive

loop detectors deployed under the road surface, roadside radar, infra-red counters,

cameras, or even manual counts, to measure the speed and �ow of the vehicles in

the estimation of the vehicular density. However, these techniques su�er from high

deployment cost, high rate of failures and vulnerable to single point of failure, result-

ing in high maintenance cost and limited coverage. In addition, most of the current

tra�c information system rely on a centralized communication model, where all the
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data is processed at one central location. Therefore this approach for data processing

is not suitable for an emerging self-organizing tra�c information system.

The other group of methods adopt distributed or infrastructure-free approaches

for density estimation. These approaches varies from using clustering or group based

approach [20, 21] to using local neighbor information to calculate local density which

is then used to estimate global density [22, 20, 23, 24]. These methods are suit-

able for self-organizing tra�c information system since they do not use centralized

communication model.

The goal of this part of the work is to adapt fully distributed algorithms developed

for system size estimation in peer-to-peer (P2P) networks, to the infrastructure-free

vehicle density estimation in highly mobile VANET, and analyze their performance

over a wide range of scenarios including both highways and urban areas at di�erent

tra�c densities and area sizes. The main challenge of VANET is its highly dynamic

and mobile behavior compared to P2P networks where vehicles enter and leave very

quickly, and new connections are made and existing connections are broken very

often. We use a completely di�erent network size calculation technique to estimate

the density of vehicles on the road. After adapting these algorithms from P2P network

size estimation, we proposed a fully distributed infrastructure free density estimation

algorithm CluSampling specially tailored for for VANETs. The main contributions of

this work are summarized as follows:

• Three fully distributed algorithms for system size estimation, namely Sample &

Collide, Hop Sampling and Gossip-based Aggregation, have been adapted and

implemented for density estimation in VANETs for the �rst time.

• We proposed a fully distributed and self organizing vehicle density estimation

algorithm CluSampling which use network wide information using clustering

and sampling technique to estimate the density of vehicles on the road.

• CluSampling make use of simple clustering mechanism that has limited load on

the network and is robust to changes in the network.



Chapter 1: Introduction 5

• These algorithms are tested on eight di�erent tra�c scenarios for both highway

and urban areas using a realistic data-set used for microscopic vehicle mobility

and tra�c generation. We have used di�erent tra�c densities and di�erent road

sizes for the validation of the algorithms.

• To test the validity of CluSampling, we compared it with four fully distributed

algorithms previously proposed in the literature for density estimation. These

algorithms include Sample & Collide, Hop Sampling, Gossip-based Aggregation

and Local Density-based Algorithm.

• These algorithms are rigorously tested across di�erent performance metrics like

convergence time, overhead on network, percentage error and load on initiator.

The rest of the thesis is organized as follows. Chapter 2 explains the vehicular mo-

bility and communication channel modeling. Chapter 3 explains the matching mech-

anism used to tune the parameters of Log normal model. Chapter 4 explains three

fully distributed algorithms inspired from system size estimation in p2p networks. In

Chapter 5 we propose a completely distributed and infrastructure free tra�c density

estimation algorithm for Vehicular Networks. Finally, concluding remarks and future

work are given in Section 6.
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Chapter 2

VEHICULAR MOBILITY AND COMMUNICATION

CHANNEL MODELING

This chapter explains the realistic vehicular mobility and communication chan-

nel modeling. Realistic representation of the vehicle mobility requires using accurate

microscopic mobility modeling, real-world road topology and real-data based tra�c

demand modeling. For modeling communication channel modeling, we �rst describe

simplistic channel models including unit disc and log-normal shadowing models that

are commonly used in the analysis of VANET topology characteristics. We then

describe a recently proposed more realistic channel model called obstacle-based chan-

nel model that incorporates the e�ect of the moving obstacles (i.e. vehicles) on the

received signal power due to their dominating in�uence.

2.1 Related Work

2.1.1 Vehicle Mobility Models

Vehicular mobility simulators have been growing their complexity and features over

time encompassing realistic road topologies and microscopic vehicular models, where

each vehicle is represented as a separate entity and the behavior of vehicles depends

on the neighboring vehicles [25]. SUMO [19], VISSIM [26], DIVERT [27], MMTS [28]

are examples of such simulators.

The simulations are usually performed on small portions of a road with user gen-

erated tra�c �ows in these simulators and only recently have been extended to larger

areas while incorporating a realistic model for the macroscopic mobility of the vehi-

cles where the tra�c �ows are determined based on the real data. The real data used
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for this purpose in the recent studies on the analysis of VANET topology character-

istics includes mobility traces gathered through various measurement campaigns [8]

and statistics performed by the urban planning and tra�c engineering communities

[9, 10]. None of these studies however analyze VANET topology characteristics on a

large-scale highway considering real data based tra�c demand of vehicles.

2.1.2 Communication Channel Models

Realistic representation of the signal propagation among vehicles requires reproducing

the actual physical radio propagation process for a given environment based on the

ray-tracing method [29, 6]. Ray-tracing approach generates the complex impulse

response of the channel by determining possible paths or rays from the transmitter

to the receiver according to the rules of geometrical optics. Such a model however

is impractical since it requires a detailed description of the site-speci�c propagation

environment.

Stochastic models on the other hand determine the physical parameters of the

vehicular channel in a completely stochastic manner without presuming any under-

lying geometry [30]. The distance-dependent path loss, large scale and small scale

fading distribution are the parameters to be estimated in these stochastic models as a

result of extensive measurement campaigns. The path loss represents the local aver-

age received signal power relative to the transmit power as a function of the distance

between the transmitter and receiver. The path loss exponent of n = 1.8 − 2.7 was

observed on highways in [31, 32, 33, 34]. The large-scale fading models the e�ect of

the surrounding obstacles on the mean signal attenuation at a given distance. The

surrounding obstacles may be mobile (e.g. other vehicles), or static (e.g. buildings in

urban environments). Most of the channel modeling activities aim at averaging the

additional attenuation due to these obstacles resulting in a log-normal distribution

around the mean received signal power [34, 35]. Although some of these models es-

timate di�erent values for the variance of this large-scale fading distribution at high

and low tra�c densities [35], only recently a mechanism for incorporating the e�ect
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of vehicles and static obstacles on the received signal power has been proposed in [36]

and [37] respectively. Finally, the small-scale fading models the e�ect of the reception

of multiple replica of the transmitted signal at the receiver. Various distributions have

been proposed for small-scale fading including Rice [38], Nakagami [34] and Weibull

[39, 35] distributions.

Although the signal propagation has great impact on the performance of the com-

munication protocols, most of the recent work on the analysis of VANET topology

characteristics are using unit disc as the signal propagation model, where the vehicles

can communicate with each other if they are within a threshold distance and cannot

communicate otherwise [11, 12, 8, 13, 14, 15, 16, 9, 10]. Although more recently such

analysis employs more sophisticated stochastic signal propagation models including

both large-scale fading [13, 15, 17] and small-scale fading [14, 17], none of these models

incorporate the e�ect of the vehicles on the signal propagation.
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2.2 Vehicle Mobility Model

Realistic representation of the vehicle mobility requires using accurate microscopic

mobility modeling, real-world road topology and real-data based tra�c demand mod-

eling. The input and parameters of the microscopic mobility simulator are determined

based on the real tra�c �ow and speed values measured by the road sensors deployed

along the highway as detailed next.

2.2.1 Microscopic Mobility Modeling

SUMO [19] is used to simulate the microscopic mobility of vehicles. SUMO, generated

by the German Aerospace Center, is an open-source, space-continuous, discrete-time

tra�c simulator capable of modeling the behavior of individual drivers. The path

of each driver is determined based on the origin/destination matrix provided as an

input to the simulator. The movement of each driver is implemented using the sur-

rounding vehicles via Krauss' car-following model that regulates its acceleration and

Krajzewicz's lane-changing model that regulates its overtaking decisions [43]. The

parameters of the simulator that determine the driver's acceleration and overtaking

decisions include the distance to the leading vehicle, the traveling speed, the acceler-

ation and deceleration pro�les, and dimension of the vehicles.

2.2.2 Tra�c Demand Modeling

PeMS collects historical and real-time data from highways in the State of California

with the goal of providing a comprehensive assessment of highway performance [18].

PeMS was developed by the Department of Electrical Engineering and Computer

Sciences at University of California Berkeley, in co-operation with the California De-

partment of Transportation, California Partners for Advanced Transit and Highways,

and Berkeley Transportation Systems. The �ow and speed data are collected in real

time from over 25,000 individual road sensors located over all major metropolitan ar-

eas in the state of California. The sampling period of the �ow and speed data ranges
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from 30 seconds to 5 minutes. We used road I-880S in Alameda County, Bay Area,

California for our simulation. Fig. 2.1 shows the road sensors located on I-880S.

Figure 2.1: Road sensors located on I-880S in Alameda County, Bay Area, California

2.2.3 Realistic Mobility Generation

The �rst step in generating the realistic mobility model is to determine the input of

SUMO based on the real-data based vehicular tra�c �ows over the road. The input

of SUMO including the number of vehicles injected at each entry of the highway (the

starting point of the vehicle) and the probability that each vehicle leaves the highway

from the exits (destination of vehicles) is determined such that the expected num-

ber of vehicles passing through each road sensor location in the simulation closely

matches the �ow measured at that sensor on the actual road. However, matching the

tra�c �ow in the simulation to that of the PeMS database does not guarantee that

the average speed of the vehicles in the simulation also matches the speed measured

through PeMS. Therefore, the second step in generating realistic mobility model is to

determine the parameters of SUMO such that the average speeds of vehicles deter-

mined by the simulation and PeMS agree with each other. The parameters of SUMO

adjusted for this purpose include the distance to the leading vehicle, the initial speed,
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the acceleration and deceleration pro�les.

Figs. 2.2 and 2.3 show the �ow and speed of vehicles recorded from the simulation

and PeMS database. The data from 419 road sensors on highway I880-S, as shown

in Fig. 2.1, are extracted for both high tra�c density, i.e. at 18 : 00, and low tra�c

density, i.e. at 01 : 00. As shown in the �gures, once the system stabilizes at around

10-th minute, both the �ow and speed from simulation and PeMS database agree

with each other.
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Figure 2.2: Flow of vehicles extracted from the PeMS database and obtained from the simulation
at low and high vehicle tra�c density.

2.3 Vehicular Channel Models

In this section, we will �rst describe simplistic channel models including unit disc

and log-normal shadowing models that are commonly used in the analysis of VANET

topology characteristics. We will then describe a recently proposed more realistic

channel model called obstacle-based channel model that incorporates the e�ect of the

moving obstacles (i.e. vehicles) on the received signal power due to their dominating

in�uence as illustrated in [36]. The obstacle-based model has not been used before in

the VANET topology analysis.
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Figure 2.3: Speed of vehicles extracted from the PeMS database and obtained from the simulation
at low and high vehicle tra�c density.

2.3.1 Unit Disc Model

In the unit disc model, the vehicles can communicate with each other if they are

within a threshold distance and cannot communicate otherwise. This model is widely

used in the analysis of the VANET topology characteristics due to its simplicity

[11, 12, 8, 13, 14, 15, 16, 9]. However, the sharp cut-o� at the threshold distance not

only fails to capture the random noise that can make even nearby nodes unreachable

but also does not take into account the e�ect of obstacles on the received signal

strength.

2.3.2 Classical Log-Normal Shadowing Model

In the classical log-normal shadowing model, rather than calculating the additional

attenuation due to each obstacle between the transmitter and receiver, the probabilis-

tic distribution of the additional attenuation is modeled with a log-normal probability

density function resulting in the following formulation for the received signal power

[34, 35]:

Prx(d) = P0 − 10n log10

d

d0
+N (2.1)
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where d is the distance between the transmitter and the receiver, d0 is the reference

distance, Prx(d) is the received signal power at distance d (in dBm), P0 is the received

signal power at the reference distance d0 (in dBm) , n is the path loss exponent and N

is zero mean Gaussian random variable with variance σ2. A vehicle can communicate

with another vehicle if Prx is greater than a certain threshold value [15]. Note that the

log-normal shadowing model reduces to the unit disc model if σ = 0. The parameters

of the log-normal model is chosen such that the mean transmission range is equal to the

threshold distance in the unit disc model to have a fair comparison. The parameters

n and σ of the model are chosen based on the channel measurement results reported

in [31, 32, 33, 34, 35]: n = 2.5, σ = 5.5dB.

2.3.3 Obstacle-Based Channel Model

In the obstacle-based channel models, algorithms to incorporate the e�ect of the

surrounding obstacles such as other vehicles, walls and buildings on the received signal

strength have been proposed [35, 36] rather than modeling the average additional

attenuation due to these obstacles by a stochastic large-scale fading model. Usually

there are a few buildings around the highway, mostly far from the vehicles. That

is why, in this study, we only consider the impact of the surrounding vehicles as

obstacles. Since the additional obstacles can only further reduce the probability of

the line-of-sight (LOS) between the transmitter and receiver vehicles, this approach

gives a best case analysis for the probability of LOS as stated in [36].

Figure 2.4: Determining the vehicles potentially obstructing the LOS between vehicles i and j

The algorithm proposed and validated in [36] is implemented for calculating the

additional attenuation due to the vehicles. This algorithm consists of three main parts:
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First, the vehicles potentially obstructing the LOS between the transmitter vehicle

i and receiver vehicle j are determined (getPotentialObs(i, j)): If the distance from

the center of the vehicle to the LOS line between vehicles i and j is less than half the

width of the vehicle, the vehicle is considered as a potential obstacle as illustrated in

Fig. 2.4 (Line 1 of Algorithm 1).

Algorithm 1 Obstacle Based Model: Calculation of the additional attenuation be-
tween vehicles i and j due to surrounding vehicles as obstacles

1: [PotentialObs] = getPotentialObs(i, j)
2: if size([PotentialObs]) 6= 0 then
3: [ObsV eh] = getLOSobs([PotentialObs])
4: if size([ObsV eh]) 6= 0 then
5: addAttenuation = calAttenuation([ObsV eh])
6: else

7: addAttenuation = 0
8: end if

9: else

10: addAttenuation = 0
11: end if

Figure 2.5: Determining the vehicles that obstruct the LOS between vehicles i and j (For simplicity,
vehicle antenna heights (ha) are not shown).

Second, the vehicles that obstruct the LOS between vehicles i and j are cho-

sen from the set of the potential obstructing vehicles identi�ed in the previous step

(getLOSobs([PotentialObs])): From the electromagnetic wave propagation perspec-

tive, the LOS is not guaranteed with the existence of the visual sight line between the

transmitter and receiver. Any vehicle that obstructs the Fresnel ellipsoid might a�ect

the transmitted signal. The e�ective height of the LOS line that connects vehicles i

and j at the potential obstacle vehicle location when we use the �rst Fresnel ellipsoid
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is given by

h = (hj − hi)
dobs
d

+ hi − 0.6rf + ha (2.2)

where hi and hj are the heights of the transmitter vehicle i and receiver vehicle j

respectively, dobs is the distance between the transmitter and the obstacle, d is distance

between the transmitter and receiver, ha is the height of the vehicle antennas, and rf

is the radius for the �rst Fresnel zone ellipsoid which is given by

rf =

√
λdobs(d− dobs)

d
(2.3)

with λ denoting the wavelength. Fig. 2.5 illustrates these parameters. If the height

of each potentially obstructing vehicle is known beforehand, the vehicle will obstruct

the LOS between the transmitter and receiver if h is greater than its height. Based on

the assumption that the vehicle heights follow a normal distribution as also assumed

in [36], the probability of the LOS for the link between vehicles i and j is calculated

as

Pr(LOS|hi, hj) = 1−Q(
h− µ
σ

) (2.4)

where µ and σ are the mean and standard deviation of the height of the obstacle

vehicle (Line 3 of Algorithm 1).

Third, the additional attenuation in the received signal power is calculated for the

LOS obstructing vehicles determined in the previous step (calAttenuation([ObsV ehicles])).

The existing models to calculate the attenuation are empirical and vary from opti-

mistic [44] to pessimistic approximations [45, 46]. To calculate the additional at-

tenuation, we used the ITU-R method based on the multiple knife edge model [47]

as suggested in [36]. In this model, a complete pro�le is created for all the LOS

obstructing vehicles, and the signal attenuation is calculated based on the vehicle

height, distance from the transmitting vehicle, wavelength of electromagnetic waves

and position of the vehicles (Line 5 of Algorithm 1).
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2.4 Performance Metrics

The performance metrics are used in the comparison of di�erent signal propagation

models. For the formal de�nition of these metrics, we represent the vehicular network

topology at time t by a graph G(t) = (V,E(t)) where V is the set of vehicles and

E(t) ⊂ V × V are the (undirected) edges representing the wireless communication

links between the vehicles.

2.4.1 Node Degree

Node degree of a vehicle is de�ned as the number of neighboring vehicles it can

communicate with. Let us denote the set of neighbors of vehicle i at time t by Ni(t)

such that Ni(t) = {j|(i, j) ∈ E(t)}. The degree of node i is then formulated as

di(t) = |Ni(t)|. Node degree measures the density of the network from the physical

connectivity point of view.

2.4.2 Neighbor Distance Distribution

Neighbor distance distribution is de�ned as the distribution of the distance of the

neighbors of the vehicles in the network. Let us denote the set of neighbors at distance

d away from vehicle i at time t byNi(t, d) such thatNi(t, d) = {j|(i, j) ∈ E(t), dij = d}

where dij is the distance between vehicles i and j. The neighbor distance dis-

tribution as a function of the distance d denoted by f(d) is then formulated as

f(d) = 1
NT

∑T
t=1

∑N
i=1 |Ni(t, d)| where N = |V | is the total number of vehicles in

the network and T is the total simulation time. Neighbor distance distribution mea-

sures the distribution of the communicating nodes over space.

2.4.3 Link Duration

Link duration is de�ned as the time span between the instants at which the commu-

nication link between two vehicles is established and lost. Let us denote the times

when the link between vehicles i and j is established and broken by t0 and tf respec-
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tively such that (i, j) /∈ E(t0 − ε), (i, j) /∈ E(tf + ε) for arbitrarily small ε > 0 and

(i, j) ∈ E(τ), ∀τ ∈ [t0, tf ]. Then the duration of the link between vehicles i and j

denoted by lij is formulated as lij = tf − t0. Link duration measures how stable a

connection is over time.

2.4.4 Closeness Centrality

Closeness centrality is de�ned as the inverse of the sum of the distances to all other

nodes in the network. Formally, the closeness centrality denoted by CCi(t) is formu-

lated as

CCi(t) =
1∑

j∈[1,N ],j 6=i dij
(2.5)

More central nodes have a lower value for the total distance to all other nodes thus

higher value for closeness centrality. Closeness centrality measures how long it will

take information to spread from a given vehicle to other vehicles in the network.

2.4.5 Number of Clusters

Number of clusters is de�ned as the number of co-existent, non-connected groups of

nodes at a given instant. We de�ne cluster as a connected group of vehicles within

which there exists a path between any pair of nodes. Formally, let us denote the

existence of a path between vehicles i and j at time t by the binary variable pij(t)

such that pij(t) takes value 1 if (i, j) ∈ E(t) or there exists k for which (i, k) ∈ E(t)

and pkj(t) = 1, and value 0 otherwise. Let us also de�ne the cluster in which vehicle

i is located at time t as Ci(t) = i ∪ {j|pij(t) = 1}. The set of unique clusters in the

network at time t is formulated as

C(t) = {Ci(t)|Ci(t) ∩ Ck(t) = ∅,∀k ∈ [1, i− 1]} (2.6)

The number of clusters denoted by c(t) is then equal to |C(t)|. Number of clus-

ters measures the degree of fragmentation in the network in terms of the number of

mutually isolated groups of vehicles.
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2.4.6 Size of the Largest Cluster

Size of the largest cluster is de�ned as the number of nodes in the largest cluster of

the network. Formally, the size of the largest cluster denoted by cmax(t) is formulated

as cmax(t) = maxi∈[1,N ] |Ci(t)|.

2.4.7 Clustering coe�cient

Clustering coe�cient is de�ned as the ratio of the number of links within a cluster

to the maximum number of links that could exist within a cluster. Let us denote the

set of links within cluster Ci(t) by ECi
(t) = {(i, j)|(i, j) ∈ E(t); i, j ∈ Ci(t)}. The

clustering coe�cient of the same cluster denoted by kCi
(t) is then formulated as

kCi
(t) =

|ECi
(t)|

|Ci(t)|(|Ci(t)| − 1)
(2.7)

Clustering coe�cient measures the degree of connectivity of the vehicles within a

cluster. Note that the clustering coe�cient has a maximum value 1 if the cluster is a

clique.
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Chapter 3

MATCHED LOG-NORMAL SHADOWING MODEL &

PERFORMANCE ANALYSIS

In this chapter, we propose a matching mechanism to tune the parameters of Log-

normal shadowing model such that the performance metrics summarizing the link

characteristics over space agree with those of the obstacle-based model.

3.1 Matched Log-normal shadowing model

The classical log-normal shadowing model is based on specifying the probabilistic

distribution of the additional attenuation due to the vehicles instead of calculating

the attenuation due to each obstacle separately. The runtime of the simulations using

this model therefore is reasonable. However, the parameters of this model, including

the path loss exponent and the standard deviation of the Gaussian distribution, are

�xed independent of the density of the surrounding vehicles leading to unrealistic

simulations.

The obstacle-based channel model, on the other hand, incorporates the e�ect

of each vehicle on the received signal strength separately. However, the accurate

representation of the channel comes at the cost of high complexity and computational

burden preventing the integration into the network simulators. Fig. 3.1 shows the

average runtime of the analysis of the performance metrics based on the 1800 sec

simulation of the scenario where the vehicles are generated using the real data at

di�erent tra�c densities and communicating with mean transmission range of 500 m

under unit disc, classical log-normal and obstacle-based channel models denoted by

Unit, LogC and Obs respectively. We observe that the average runtime of the obstacle-

based model is about 100 times more than that of the unit disc and classical log-normal
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models.
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Figure 3.1: Average runtime of the analysis of the performance metrics based on the 1800 sec
simulation of the scenario where the vehicles are generated using the real data at di�erent tra�c
densities and communicating with mean transmission range of 500 m under di�erent channel models.

In this section, we propose a matching mechanism to tune the parameters of the

lognormal model such that the performance metrics summarizing the link character-

istics over space agree with those of the obstacle-based model (Section 3.1.1). We also

introduce a correlation model to take into account the evolution of the link charac-

teristics over time and propose a mechanism to tune the parameters of this model to

match the performance metrics summarizing the time characteristics of the links to

those of the obstacle-based model (Section 3.1.2). The resulting matched log-normal

model provides performance close to the obstacle-based model at much lower compu-

tational cost and implementation complexity allowing its integration into the network

simulators.

3.1.1 Matching Parameters of Log-normal Model

The parameters of the log-normal model that need to be matched for the spatial

evolution of the link characteristics include the path loss exponent and standard

deviation of the Gaussian random variable.
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Algorithm 2 Matching Parameters of Log Normal Shadowing Model
Input: nV alues, σV alues
Output: nm, σm

1: NDObs = cdfND(ObsModel);
2: Errormin =∞;
3: for all nV alues do
4: for all σV alues do
5: NDLog = cdfND(LogModel, n, σ) ;
6: Error = Diff(NDObs, NDLog) ;
7: if Error < Errormin then
8: Errormin = Error;
9: nm = n;
10: σm = σ;
11: end if

12: end for

13: end for

Our matching algorithm to tune these path loss exponent and standard deviation

parameters is given in Algorithm 2. The inputs of the algorithm are the set of possible

values for the path loss exponent and standard deviation denoted by nV alues and

σV alues respectively. The outputs of the algorithm are the values for the path loss

exponent and standard deviation that provide the best match to the obstacle based

model denoted by nm and σm respectively.

The algorithm starts by extracting the cumulative distribution function (cdf) of

the node degree metric for the obstacle-based model by using function cdfND with the

parameter ObsModel representing obstacle-based model and storing the resulting cdf

in the variable NDObs, and initializing minimum error to in�nity by using variable

Errormin (Lines 1 − 2). The algorithm then computes the cdf of the node degree

metric of the log-normal model, represented by LogModel, and storing the resulting

cdf in the variable NDLog for every possible value of the path loss exponent and

standard deviation, stored in the variables n and σ respectively in each iteration (Lines

3−5). The di�erence between the cdf of the obstacle-based and log-normal models is

then calculated by using Kolmogorov-Smirnov statistic de�ned as supx|NDObs(x)−

NDLog(x)| in the function calledDiff (Line 6). The values of the path loss exponent
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and standard deviation that provide the minimum di�erence are then selected to

provide the best match to the obstacle based model (Lines 7− 11).

The reason for choosing the cdf of the node degree in the matching algorithm is

that node degree is a measure of the spatial distribution of the nodes in the network.

The above process is repeated for the neighbor distance distribution metric to validate

the values nm and σm. The matching of the remaining performance metrics are

justi�ed in Section 3.2.

3.1.2 Matching Time Correlation

The instances of the Gaussian variable used in the classical log-normal model are cal-

culated independently at each time step of the simulation resulting in zero correlation

of the link characteristics over time. The obstacle-based model on the other hand

provides the time correlation of the link characteristics implicitly due to the slow

changes in the relative locations of the obstacles between the transmitter and receiver

vehicles. We therefore extend the classical log-normal model to include a correlation

model taking into account the temporal evolution of the link characteristics.

We used Gudmunson model with exponential correlation function for this work

[48]. This model has been previously used for spatially correlated processes [49, 50].

However, as described in [51], this model can also be used for time correlation. The

model describes the correlation of the shadowing process at time di�erence ∆t by

R(∆t) = σ2. exp(−α∆t)

where σ is the standard deviation of the Gaussian variable at each time instant, and

α is the correlation factor.

The matching algorithm to tune the value of the correlation factor is given in

Algorithm 3. The inputs of the algorithm are the values of the path loss exponent

and standard deviation providing the best match with the spatial link characteristics

of the obstacle-based model, i.e. nm and σm respectively, and the set of possible values
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Algorithm 3 Matching Correlation Factor for Log Normal Shadowing Model
Input: nm, σm, αV alues
Output: αm

1: LDObs = cdfLD(ObsModel);
2: Errormin =∞;
3: for all αV alues do
4: LDLog = cdfLD(LogModel, nm, σm, α)
5: Error = Diff(LDObs, LDLog)
6: if Error < Errormin then
7: Errormin = Error;
8: αm = α;
9: end if

10: end for

for the correlation factor denoted by αV alues. The output of the algorithm is the

value of the correlation factor that provides the best match with the temporal link

characteristics of the obstacle-based model denoted by αm.

The algorithm starts by determining the cdf of the link duration metric for the

obstacle based model by using function cdfLD and storing the resulting cdf in the

variable LDObs, and initializing minimum error to in�nity (Lines 1− 2). The reason

for choosing the cdf of the link duration is that link duration is a measure of the

stability of the links over time. The algorithm continues by computing the cdf of the

link duration metric of the log-normal model with the matched parameters nm and

σm, and every possible value of the correlation factor stored in the variable α, and

storing the resulting cdf in the variable LDLog in each iteration (Lines 3 − 4). The

di�erence between the cdf of the link duration of the log-normal and obstacle-based

models is then calculated by using Kolmogorov-Smirnov statistics in the function

Diff (Line 5). The value of the correlation factor giving the minimum di�erence is

selected as the best match value σm (Lines 6− 9).

3.2 Simulation Results

The goal of the simulations is to compare the e�ect of di�erent channel models includ-

ing the unit disc, classical log-normal fading, obstacle-based and matched log-normal



Chapter 3: Matched Log-normal Shadowing Model & Performance Analysis 25

channel models on the topology characteristics of VANET located on a large-scale

highway by comparing the node degree, neighbor distance distribution, link duration,

closeness centrality, number of clusters, size of the largest cluster and clustering co-

e�cient metrics of the resulting communication graphs as explained in Section 2.4.

In all the �gures in this section, the unit disc, classical log-normal, matched log-

normal and obstacle-based channel models are denoted by Unit, LogC , LogM and

Obs respectively, and R refers to the mean transmission range of vehicles.

The topology of the VANET is obtained by using the accurate microscopic mobility

modeling of SUMO while determining its input and parameters based on the PeMS

database as explained and validated in detail in Section 2.2. The �ow and speed data

of 419 road sensors on highway I880-S as shown in Fig. 2.1 at both high tra�c density,

i.e. 121 vehicles/km at 18 : 00, and low tra�c density, i.e. 11 vehicles/km at 01 : 00,

are used for this purpose. The performance metrics are extracted after the system

stabilizes around the 10-th minute as illustrated in Figs. 2.2 and 2.3. The vehicle

mobility output of SUMO is then input to MATLAB where the channel models are

implemented and the performance metrics are derived and plotted.
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Figure 3.2: Neighbor distance distribution for a) low density and b) high density networks at 500 m
transmission range.

Figs. 3.2 a) and b) show the neighbor distance distribution for low and high

density networks respectively. The matched log-normal model follows the obstacle-
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based model closely. The di�erence between the obstacle-based model and commonly

used unit disc and classical log-normal fading models on the other hand increases as

the vehicle density increases and the transmission range becomes greater than 100 m.

To elaborate on the e�ect of this di�erent behavior in the performance metrics, we

therefore plot the rest of the graphs at transmission ranges of 100 m and 500 m for

both low and high vehicle tra�c densities.
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Figure 3.3: Cdf of the node degree metric for di�erent channel models and transmission ranges in
a) low density and b) high density networks

Figs. 3.3 a) and b) show the cdf of the node degree metric for di�erent channel

models and transmission ranges in low and high density network respectively. All

channel models generate the node degree distribution very close to each other at low

transmission range for both low and high density networks. As the transmission range

and the density of the network increase, the discrepancy between the obstacle based

model and unit disc and classical log-normal fading models increases as expected from

the di�erence observed in the neighbor distance distribution. The matched log-normal

model on the other hand still agrees with the obstacle-based model for all scenarios.

Figs. 3.4 a) and b) show the cdf of the link duration metric for di�erent channel

models and transmission ranges in low and high density network respectively. The

link duration for obstacle based model is smaller than that of the unit disc model

and larger than that of the lognormal model. The main reason is that the nodes
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Figure 3.4: Cdf of the link duration metric for di�erent channel models and transmission ranges
in a) low density and b) high density networks

can always communicate with each other within a threshold distance for the unit

disc model creating high correlation of the connectivity behavior over time so much

higher link duration. On the other hand, the connections between the vehicles are

determined probabilistically for the lognormal model where the probability is chosen

independently in each step creating low correlation of the connectivity behavior so

much lower link duration. The link duration for the obstacle based model is closer to

the unit disc model at low transmission range and closer to the lognormal model at

high transmission range meaning the correlation of the connectivity behavior decreases

as the transmission range increases in the obstacle-based model. The link duration of

the matched log-normal model again is very close to that of the obstacle-based model

under all conditions.

Fig. 3.5 shows the cdf of the number of clusters metric for di�erent channel mod-

els and transmission ranges in low density network. Since the number of clusters is

very low for high density networks when the transmission range is between 100 m

and 500 m, we did not include a separate graph for the high density network. The

distributions of the number of clusters based on the unit disc and obstacle based

models are very close to each other. The main reason for this similarity even at dif-

ferent transmission ranges is that the vehicle which acts as an obstacle between two
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Figure 3.5: Cdf of the number of clusters metric for di�erent channel models and transmission
ranges in low density network

vehicles also acts at the same time as a bridge between them resulting in an indi-

rect connection through the obstructing vehicle. The vehicles are directly connected

when unit-disc model is used whereas they are connected through the obstacles in

the obstacle-based model, resulting in the same number of vehicles within clusters.

The number of clusters of the matched log-normal model is also close to that of the

obstacle-based model with a slight di�erence resulting from not including the spatial

correlation of the Gaussian variables in the log-normal model. However, the classical

log normal model does not provide a good matching to the obstacle-based model.

Figs. 3.6 a) and b) show the cdf of the size of the largest cluster for di�erent

channel models and transmission ranges in low and high density network respectively.

Similar to the behavior of the number of clusters metric, the size of the largest cluster

for unit disc and matched log-normal model is very close to that of the obstacle-based

model whereas the largest cluster size is very di�erent for classical log-normal and

obstacle-based models.

Figs. 3.7 a) and b) show the cdf of the clustering coe�cient metric for di�erent

channel models and transmission ranges in low and high density network respectively.

Although the unit disc and obstacle-based models agree with each other in the number
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Figure 3.6: Cdf of the size of largest cluster metric for di�erent channel models and transmission
ranges in a) low density and b) high density networks
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Figure 3.7: Cdf of the clustering coe�cient metric for di�erent channel models and transmission
ranges in a) low density and b) high density networks

of clusters and size of largest cluster metrics, we observe that their performance is very

di�erent when the clustering coe�cient is considered. The reason is that the clustering

coe�cient provides the degree of connectivity of the vehicles within a cluster, which

di�erentiates between the direct connectivity and the connection through the obstacles

unlike the number of clusters and size of largest cluster metrics. The matched log-

normal model on the other hand again agrees with the obstacle-based model in the

clustering coe�cient metric unlike the classical log-normal model.

Figs. 3.8 a) and b) show the cdf of the closeness centrality metric for di�erent
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Figure 3.8: Cdf of the closeness centrality metric for di�erent channel models and transmission
ranges in a) low density and b) high density networks

channel models and transmission ranges in low and high density network respectively.

Again, the matched log normal model provide very close performance to the obstacle

based model unlike the classical log normal model.

3.3 Validation of Results

To validate the proposed matched log-normal model, we have extended the simulations

for various vehicle tra�c densities and an additional highway road I5-S near Los

Angeles, California, and checked the agreement of the resulting matched parameters

including path loss exponent, standard deviation and correlation factor for matched

lognormal model on I5-S and I-880S highway roads. The I5-S road is very di�erent

from the I-880S road with much higher vehicle tra�c density due to the proximity to

Los Angeles, higher number of lanes and intersections. The realistic mobility over the

I5-S road is generated by determining the input and parameters of the microscopic

mobility simulator SUMO based on the �ow and speed information provided by the

PeMS database as explained in detail in Section 2.2. The vehicle mobility output of

SUMO is then input to MATLAB where the values of the path loss exponent, standard

deviation and correlation factor that provide the best match to the obstacle-based

model are determined.
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Figure 3.9: Matched path loss exponent for I880-S and I5-S highway roads at di�erent vehicle
tra�c densities and transmission ranges.

Figs. 3.9, 3.10 and 3.11 show the matched path loss exponent, standard deviation

and correlation factor values respectively for I880-S and I5-S highway roads at di�erent

vehicle tra�c densities and transmission ranges. We observe that the matched values

of these parameters are consistent across di�erent highways and di�erent vehicle tra�c

densities.
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Figure 3.10: Matched standard deviation for I880-S and I5-S highway roads at di�erent vehicle
tra�c densities and transmission ranges.
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Chapter 4

USING SYSTEM SIZE ESTIMATION IN P2P NETWORKS

FOR DENSITY ESTIMATION IN VANETS

In this chapter, we adapted and implemented three fully distributed infrastructure

free road tra�c density estimation algorithms inspired from system size estimation

techniques used in P2P networks.

4.1 Related Work

The existing methods for density estimation in VANETs can be broadly divided into

two main categories: (1) Infrastructure-based and (2) Infrastructure-free. A summary

of these methods are given in Table 4.1.

In the infrastructure-based methods, dedicated infrastructure such as loop detec-

tors, roadside sensors or cameras are used to determine the presence of the vehicles

on the road [52, 53, 54]. Road side camera images are used for tra�c monitoring

and density estimation in [52]. Using Kalman �lter-based background estimation, the

di�erence between the incoming image and the calculated background is used to mark

vehicles and then to estimate the density of vehicles on the road. A similar approach

using data fusion has been proposed in [53] in which the �ow measured from video

cameras on the road and travel time measured from GPS are used to estimate the

density of vehicles. A neural network technique is applied on the data collected using

video monitoring system to estimate the density of vehicles in [54].

In the infrastructure-free methods, vehicles co-operate with each other to estimate

the size of the network. A probe vehicle uses information of number of its neighbors to

calculate the local density, which is then used to estimate the global density, assum-

ing that the inter-vehicular spacing is exponentially distributed in [22]. This work
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Table 4.1: Related Work on Vehicle Density Estimation in VANETs

Ref Infrastruc-

ture used

Category Method used

[52] Yes Centralized Road-side camera images using Kalman �ltering
[54] Yes Centralized Neural networks
[53] Yes Centralized Capturing road video using cameras and applying Kalman �ltering
[22] No Distributed Local density used to estimate global density
[20] No Clustering Extension of [22] by using clusters
[21] No Distributed Group formation
[55] No Distributed Tra�c-�ow model using vehicle's speed and �ow
[56] No Distributed Random sampling of vehicles
[23] No Distributed Vehicle's speed and acceleration information
[57] No Distributed Fluid dynamics and car follow model

has been extended with a clustering approach [20] where the cluster heads gather

information about the cluster members which is then used to estimate the global

density. A fully distributed grouping approach is used for density estimation in [21]

where group leader computes vehicle density and disseminates this information among

other members of the group. In [55], a relationship between speed, �ow and density

is used to estimate local density using tra�c-�ow model. A similar approach is used

in [23] where vehicle tracks its own speed and acceleration patterns to estimate the

local density. In [56], vehicles are uniformly sampled from a road section, and their

neighbor information is then used to estimate the density. Fluid dynamics and car

follow models are utilized to estimate the vehicle density in [57].

In this work, we propose fully distributed and infrastructure-free mechanisms for

the density estimation in VANETs. Unlike previous distributed approaches which

either use group formation [21], or rely on vehicle speed and �ow information to

calculate density of vehicles, we use network size information (i.e. number of vehicles

in a particular geographical location) to estimate the density of vehicles on road. To

the best of our knowledge, network size estimation approach has not been previously

applied to VANETs for density estimation.
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4.2 Density Estimation Algorithms

Inspired by the mechanisms for system size estimation in P2P networks, we adapted

and implemented three fully distributed algorithms, namely Sample & Collide, Hop

Sampling and Gossip-based Aggregation, for vehicular density estimation. The algo-

rithms are used in calculating the number of vehicles within a particular geographical

region speci�ed by the Global Positioning System (GPS) coordinates. Once we cal-

culate the network size (number of vehicles) within a particular geographical region,

we divide the network size by the length of the roads in that area to estimate the

density of vehicles. Details of the algorithms are given next.

4.2.1 Sample & Collide

Sample & Collide algorithm is based on uniformly sampling the nodes from a popu-

lation, and then estimating the system size depending on how many samples of the

nodes are collected, before an already sampled node is re-selected [58].

The approach is built upon the inverted birthday paradox. According to the in-

verted birthday paradox, in a room of 57 or more people, the probability of two people

having the same birthday is at least 99%. We can calculate the probability p(N,K)

of at least two people having birthday on the same date in a group of K people for N

= 365 days. Sample & Collide is built on inverting such evaluations. We determine

the number of people X(N) that needs to be sampled, one at a time, until two people

share the same birthday. It turns out that for large N , value of X(N) converges

to
√

2N . In the vehicle density estimation, the number of days corresponds to the

number of nodes in the network, and sample of people having the same birthday cor-

responds to the number of the nodes selected until two samples coincide. The number

of samples that are obtained before this happens gives the estimate for the number

of nodes N , where N = X2/2.

The accuracy of the algorithm relies heavily on the sampling technique used.

Sampling technique of Sample & Collide is asymptotically unbiased in contrast to the

previously proposed sampling techniques in graphs with heterogeneous node degrees



Chapter 4: Using System Size estimation in P2P networks for Density Estimation in

VANETs 36

[58]. The unbiased sampling of Sample & Collide proceeds as follows.

• An initiator node sets timer T to some prede�ned value (T > 0) in the sampling

message, and sends the message to one of its neighboring nodes.

• Upon receiving a sampling message, a node i does the following operations. It

picks a random number U uniformly distributed between [0, 1]. It then decre-

ments T by log(1/U)/di (i.e. T ← T− log(1/U)/di), where di is the degree

of the current node i. If the updated value T ≤ 0, then the current node i is

selected as the sampled node. Otherwise, it forwards the updated timer value T

to one of its neighbors selected uniformly at random, and the sampling process

continues.

• Samples are collected by the initiator node until a node, which has already been

sampled, is re-selected. Initiator node counts the number of samples C obtained

before the same node is re-selected. Estimated value for the number of nodes is

given by N = C2/2.

• To improve the accuracy of the algorithm, the �xed control parameter L is

used. Initiator node picks an integer L > 0 and starts the sampling process.

The process is continued until L collisions occur, i.e. same nodes are re-selected

L times. The initiator node counts the number of samples CL obtained until

L collisions occur. Using inverted birthday paradox, size of the network (i.e.

number of vehicles) can then be estimated as N = CL
2/2L [58].

Once we calculate size of network, we estimate the density of vehicles Da within area

of size a by Da = N/la, where N is the number of vehicles on road, and la is the total

length of road within area of size a. As explained in the algorithm, we introduced �xed

control parameter L in our implementation to improve the accuracy and performance

of the algorithm for dynamic networks like VANETs.

The value of T should also be carefully selected so that there is negligible bias in
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selecting the samples from the pool of nodes [58]. If a high T value is selected by the

initiator node, the system becomes more asymptotically unbiased while increasing the

communication overhead.

4.2.2 Hop Sampling

Hop Sampling algorithm is based on the principle of probabilistic polling [59]. The

initiator node spreads a message to all the nodes in the network using gossiping. The

nodes reply back to the initiator probabilistically depending on their distance from

it. Based on the replies that the initiator node gets from other nodes in the network,

it estimates the size of the network. The algorithm works as follows.

• The hopCount value is initialized to zero by the initiator, and the message is

sent to the neighboring nodes of the initiator.

• Upon receiving a gossip message, a node checks if it has previously received that

gossip message. If the node has not received the gossip message, it saves the

value for hopCount. Otherwise, the node compares the newly received hopCount

value with stored value of hopCount. If the new value is less than the stored

value, the node replaces old hopCount value with the new value, and forwards

the message to its neighboring nodes with hopCount value equal to hopCount+1.

Otherwise, the node ignores the message. Minimum value of hopCount received

by node represents the distance of the node from the initiator node.

• Depending on the distance of the node from the initiator, each node probabilisti-

cally replies back to the initiator. This is to save the initiator node from massive

�ood of incoming messages. Message is sent back with probability 1 if hopCount

< minHopsReporting, and with probability 1/gossipTohopCount−minHopsReporting

otherwise, where minHopsReporting and gossipTo are system parameters and

their values are set by the initiator node.
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• Upon receiving the messages from the nodes, the initiator node calculates the

size of the network depending on the responses it gets back from the nodes at

di�erent distances. For instance, if the value of minHopsReporting and gossipTo

is set to 2, only 1/24−2 fraction of the total nodes (i.e. 25%) at distance 4 hops,

will reply to the initiator node.

In our simulations, the values of minHopsReporting and gossipTo are set to 2.

Density of vehicles Da within area of size a is then obtained by Da = N/la, where N

is the number of vehicles on the road, and la is the total length of the road within

area of size a.

4.2.3 Gossip-based Aggregation

Gossip-based aggregation algorithm has been proposed for large-scale overlay net-

works, where each peer periodically exchanges information with one of its neighbours

picked at random to estimate the size of the network [60]. In this study, gossip-based

aggregation algorithm has been adapted for dynamic VANETs. In the algorithm, if

one node in the system holds weight value equal to 1, and rest of the nodes hold

weight value equal to 0, then the average of the weight values in the system would be

1/N , where N is the size of the network. The algorithm works as follows.

• Initiator node samples K vehicles at random.

• These K vehicles then initialize their weight values to 1 and all other nodes in

the system initialize their weight to 0. K nodes then start gossiping with one

of their neighbors selected randomly.

• At each prede�ned cycle, the nodes which have previously received a gossip

message, randomly select one of their neighboring nodes, to exchange the values

of their weights. These nodes then update their weight by the average of their
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current weight and the weight of their neighbor as

weight← weightcurrentNode + weightneighborNode
2

• The gossiping is repeated for a certain number of gossipRounds until the value

of the weight of the nodes converges. The size of the network is then estimated

at each node by using equation N = K
weight

.

One of the drawbacks of using gossip-based aggregation algorithm in dynamic net-

works is that if the nodes leave the network during the initial phase of the algorithm

after receiving the gossip message, the accuracy of the algorithm decreases signi�-

cantly. To make the algorithm perform better in dynamic situations, we introduced

the scheme of initiating the algorithm by selecting K distinct vehicles at random, in-

stead of widely used approach of running the algorithm with one initiator. Sampling

technique we used for selecting K vehicles at random by the initiator is similar to the

technique used for Sample & Collide. The initiator sets timer T to some prede�ned

value (T > 0) and sends message to one of its neighbors. A node i, after receiving

the message, decrements T by log(1/U)/di (i.e. T ← T− log(1/U)/di), where di is

the degree of node i and U is uniformly distributed random number between [0, 1].

If T ≤ 0, current node is selected as one of the K nodes to start the gossip algo-

rithm. This process is repeated K times to select K initiator nodes for gossip based

algorithm.

The density of the vehicles Da within area of size a is then obtained by Da = N/la,

where N is the number of vehicles on the road, and la is the total length of road within

area of size a.
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Table 4.2: Parameters for Highway and Urban Scenarios

Length of Density No. of Average Maximum Acce-
roads (km) Vehicles Speed Speed leration

(km/h) (km/h) (m/s2)

High- Small (2km) & Low 903 104 120 2

way Big (11.5km) High 4436 102 120 2

Small (1.8km) & Low 1566 52 60 2
Urban

Big (12.9km) High 4666 47 60 2

Figure 4.1: Road Maps: a) Highway: Big Area (Red Line- 11.5 km of road), Small area (Blue Box-
2 km of road) b) Urban: Big Area (Red Lines- 12.9 km of road), Small area (Blue Box- 1.8 km of
road)

4.3 Simulation & Results

4.3.1 Simulation Environment

For realistic analysis of the proposed algorithms, we used a rational representation

of vehicle mobility based on the accurate microscopic mobility modeling, real-world

road topology and real-data based tra�c demand modeling for both highway and

urban environments. SUMO (Simulation of Urban Mobility) [18] is used to simulate

the microscopic mobility of vehicles. SUMO is an open-source, space-continuous,

discrete-time tra�c simulator developed by the German Aerospace Center, capable
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of modeling the behavior of individual drivers. The path of each driver is determined

based on the origin/destination matrix provided as an input to the simulator. The

input of SUMO is determined for di�erent scenarios at low and high density in small

and big areas for both highway and urban environments as detailed next.

Highway Simulation

We used Performance Measurement System (PeMS) data to create realistic vehicle

simulation for the highway. PeMS is developed by the department of Electrical Engi-

neering and Computer Science at the University of California Berkeley in co-operation

with the California Department of Transportation, California Partners for Advanced

Transit and Highways, and Berkeley Transportation Systems [18]. The data is col-

lected in real time from over 25,000 individual detectors. The system is deployed

over all major metropolitan areas of the state of California. PeMS data provides

information about the �ow, speed and occupancy of the road. These data are then

input to SUMO for a realistic �ow of vehicles. For the purpose of our simulations,

we downloaded the data of 419 road sensors at highway I880-S in Alameda County

for both high tra�c density, i.e. at 18 : 00, and low tra�c density, i.e. 01 : 00, as

shown in Fig. 4.1-a. The tra�c density algorithms are then tested for small area (2

km road) and large area (11.5 km road) for both low and high density tra�c. Other

simulation parameters are given in Table 4.2.

Urban Simulation

We used one of the urban areas in Islamabad, Pakistan shown in Fig. 4.1-b. There

are two types of tra�c generated for Urban area.

• TransitV ehicles: The destination of the vehicles is not inside the area that is

vehicles pass through this area.

• ArrivalV ehicles: The destination of the vehicles is inside the area. Vehicles

enter the area and then after reaching their destination they stop and leave the
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network.

Vehicles entering the network follow Poisson distribution which is considered as

a realistic model [61]. Vehicles randomly select a starting point and a destination.

Destination can lie either within the area of interest (ArrivalV ehicles) or outside the

area (TransitV ehicles). The vehicular density algorithms are then tested for small

area (1.8 km of road in blue box, Fig. 4.1-b) and big areas (12.9 km of road, red lines,

Fig. 4.1-b) for both low and high density tra�c. Simulation parameters are given in

Table 4.2.

4.3.2 Performance Metrics

The following performance metrics are used in the comparison of the density estima-

tion algorithms:

Density Estimation is de�ned as the vehicular density estimated by the algorithm.

Convergence Time is de�ned as the time duration between the starting time and

the convergence time of the algorithm.

Overhead is de�ned as the total number of messages transmitted over the network

during the execution of the algorithm until it converges.

Error Ratio is de�ned as the ratio of the di�erence between an estimated value

V alueestimated and the actual value V alueactual

ErrorRatio =
|V alueestimated − V alueactual|

V alueactual

Load on initiator is de�ned as the ratio of the total number of messages sent or

received by the initiator (Messagesinitiator) to the total number of messages sent over

the network (Messagesnetwork)

Loadinitiator =
Messagesinitiator
Messagesnetwork

In our simulations, Sample & Colide algorithm parameters T and L are set to 5
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and 50 respectively, the minHopsReporting parameter of Hop Sampling is set to 2,

and K and T parameters of Gossip-based Aggregation are set to 10 and 5 respectively.

Figure 4.2: Density Estimation-Highway Scenarios a) Small Area-Low Density b) Small Area-High
Density c) Big Area-Low Density d) Big Area-High Density

4.3.3 Simulation Results

Figs. 4.2 and 4.3 show the estimated density values over time for the algorithms

and the actual density at both low and high density tra�c for di�erent area sizes

of highway and urban environment respectively. The density estimation of the Hop

Sampling is very close to the actual value for both small and large areas of the urban

road, and small areas of the highway. The main reason why the density estimation
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Figure 4.3: Density Estimation-Urban Scenarios a) Small Area-Low Density b) Small Area-High
Density c) Big Area-Low Density d) Big Area-High Density

is not very close to the actual value for Hop Sampling algorithm in large areas of the

highway is that the accuracy of this algorithm decreases as the distance (the number

of hops between the initiator vehicle and other vehicles) increases. Since we have

a long stretch of straight highway, the vehicle at one end of the highway is farther

away from the vehicles at the other end of the highway when compared to the urban

scenario where there is a network of roads with multiple paths between the initiator

vehicle and other vehicles which decreases the hop count values. Sample & Collide

and Gossip-based aggregation perform worse than Hop Sampling because in a highly

dynamic network like VANETs, connections are continuously made and broken, and

vehicles are frequently entering and leaving the network. In Sample & Collide, when
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Figure 4.4: Convergence Time: Total time needed for the algorithms to converge for (a) Highway
and (b) Urban scenarios

Figure 4.5: Overhead: Total number of messages sent for (a) Highway and (b) Urban scenarios

a vehicle which has already been sampled before leaves the network, the probability

of selecting a sampled vehicle again decreases. Results for Sample & Collide in Fig.

4.2-b) and 4.3-b) are not included because in small area with high vehicle density, the

sampled vehicle leave the network more quickly thus the algorithm converges in a very

long time with inaccurate results. High mobility has a similar e�ect on Gossip-based

aggregation. When a vehicle which is part of gossiping leaves the network, important

information is lost with the vehicle. The average weight of the system, which should
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Figure 4.6: Error Ratio: (a) Highway (b) Urban scenarios

be equal to K, becomes less than K thus the estimated value is always more than

the actual value. However, Hop Sampling is the most suitable algorithm in terms of

accurately estimating the vehicle density.

Fig. 4.4 shows the convergence time of the algorithms under all the tra�c sce-

narios. Hop Sampling takes the least amount of time to converge when compared to

other algorithms, with convergence time usually less than 10 seconds.

Fig. 4.5 shows the overhead of di�erent algorithms under all the tra�c scenarios.

Hop Sampling has the least overhead on the network followed by Sample & Collide

and Gossip-based aggregation algorithms.

Fig. 4.6 shows the error ratio of the algorithms under all the tra�c scenarios.

Hop Sampling has the least error ratio except for Highway big area scenarios where

the distance or the number of hops between the initiator and other vehicles increases,

thus decreasing the e�cient of the algorithm.

Fig. 4.7 shows the load on the initiator for running the density algorithms. Hop

Sampling has the highest load on the initiator because once the initiator starts the

algorithm, all the nodes reply back to the initiator with some probability. Thus, the

initiator has to constantly receive messages from other nodes to accurately estimate

the size of the network.
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From the results, it can be concluded that the Hop Sampling performs better than the

other algorithms for density estimation under di�erent tra�c scenarios. Hop Sampling

provides the highest accuracy with the least overhead and convergence time. However,

this comes at the cost of higher load on the initiator.

Figure 4.7: Load on the initiator: Highway and Urban scenarios
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Chapter 5

CLUSAMPLING: DISTRIBUTED ALGORITHM FOR

DENSITY ESTIMATION

In this chapter, we propose a completely distributed and infrastructure free density

estimation algorithm CluSampling speci�cally tailored for highly dynamic vehicular

networks.

5.1 Related Work

The existing methods for density estimation in VANETs can be broadly divided into

two main categories: (1) Infrastructure-based and (2) Infrastructure-free. A summary

of these methods are given in Table 5.1.

In the infrastructure-based methods, dedicated infrastructure such as loop detec-

tors, roadside sensors or cameras are used to determine the presence of the vehicles

on the road [52, 54, 53]. Road side camera images are used for tra�c monitoring

and density estimation in [52]. Using Kalman �lter-based background estimation, the

di�erence between the incoming image and the calculated background is used to mark

vehicles and then to estimate the density of vehicles on the road. A similar approach

using data fusion has been proposed in [53] in which the �ow measured from video

cameras on the road and travel time measured from GPS are used to estimate the

density of vehicles. A neural network technique is applied on the data collected us-

ing video monitoring system to estimate the density of vehicles in [54]. A modi�ed

extended Kalman �lter-based approach for density estimation is presented in [62]. In

[63], commulative road acoustics were used in estimating road tra�c density and the

impact of noise on the estimation. In [64], Lagrangian state estimator-based approach

for density estimation has been proposed. The main drawback of such infrastructure-
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based approach is that it needs large investment from government and other agencies

to build, maintain and manage a huge infrastructure. Infrastructure based approach

is rigid, di�cult to maintain and upgrade, and the information is also limited to only

those roads where infrastructure is deployed.

In the infrastructure-free methods, vehicles co-operate with each other to estimate

the size of the network. Vehicles communicate with each other and share information

to compute the density vehicles on the road. Di�erent approaches have been proposed

in the literature. In [22, 20, 23, 24], a probe vehicle uses local information from its

neighbors to calculate the local density which in then used to give an estimate for

global density. [22, 20, 24] assumes that inter-vehicular distances are exponentially

distributed and based on this property, global vehicle density can be estimated using

the local density information. However, their validation in based on simplistic vehicle

mobility scenarios where tra�c is randomly generated [20, 24] or vehicles move in

free-�ow condition independent of other vehicles around it [22, 20].

In [21], location based grouping scheme is used for density estimation. Vehicles are

divided into groups with a group leader. Group leader is responsible for collecting in-

formation for its group and calculate the density of vehicles in a group. This approach

su�ers from the overhead of group formation. It also requires that the group size is

�xed making it unsuitable for scenarios where vehicles density changes frequently over

time.

Previous work also has limited focus on a realistic tra�c scenario for both vehicle

mobility and road tra�c conditions which can have a great impact on the performance

of the proposed algorithms. In [21], only city tra�c conditions are taken into account

and simulation is performed on a small straight road section of 2500m. In [20, 55, 57],

only highway scenarios are used for simulation. In [57] a straight one way and single

lane highway road is used for simulation. In [56], both highway and urban scenarios

are used but validation of algorithm is limited to highway of size 2000m and small

urban road with only one intersection. In [22, 20, 57, 24], realistic vehicular mobility

is not taken into account while computing the road tra�c.
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It is also important that the validity of an algorithms is done using di�erent

performance metrics. In [20], mean of 10,000 trials and in [22], mean of 100,000 trials

is used to calculate the mean absolute error without giving any information about

the deviation in the computed results. In [57], only density information is used for

comparison without giving any information about the error, convergence time and

overhead of the proposed algorithm.

In [65] three fully distributed algorithms inspired from system size estimation

techniques from peer-to-peer networks has been used. Algorithms are validated using

realistic mobility at di�erent tra�c densities and area sizes for both highway and

urban scenario.

In this work, we propose fully distributed and infrastructure-free algorithm CluSam-

pling for the density estimation in VANETs. Unlike previous distributed approaches

which either use local information [22, 20, 23, 24], or rely on vehicle speed, acceler-

ation and �ow information to calculate density of vehicles [55, 23, 57], CluSampling

use network wide information using clustering and sampling technique to estimate the

density of vehicles on the road. We have also rigorously validated algorithm across

Highway and Urban scenarios using a realistic data-set used for microscopic vehicle

mobility and tra�c generation. We have used di�erent tra�c densities and di�erent

road sizes for the validation of the algorithm. We compared CluSampling with pre-

viously proposed four fully distributed algorithms and tested these algorithms across

di�erent performance metrics like convergence time, overhead on network, percentage

error and load on initiator.
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5.2 CluSampling

CluSampling is a fully distributed infrastructure-free algorithm to estimate the density

of vehicles using Clustering and Sampling technique. Algorithm can be divided into

two main parts: Clustering and Sampling. During Clustering, vehicles in the network

are divided into geographical clusters based on the density of vehicles on the road.

Once the clustering is completed and a cluster head is selected, each vehicle become

member of a cluster depending on its geographical location. Within each cluster,

Sampling technique is used to estimate the density of vehicles on the road. Small

fraction of vehicles reply to cluster head with information about the local density of

vehicles on the road which is then used to estimate the global density.

For ease of description, we assume that each vehicle in the network is equipped

with communication device (IEEE 802.11p interface) and a global positioning system

device. Target area is de�ned as the geographical region where we are interested in

estimating the vehicle tra�c density. We assume that each vehicle has complete map

of the road within the target area and has a nominal transmission range R.

Figure 5.1: Vehicles grouped into clusters

5.2.1 Clustering

Fig.5.1 shows an example of the vehicles grouped into di�erent clusters. The density

algorithm is started by a probe vehicle which is interested in estimating the density

of vehicle in the target area. The algorithm is explained below:
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Algorithm 4 Calculating Total Number of Clusters
Input: T, Vprobe, R
Output: C

1: Negprobe = getNeighbors(Vprobe, R);
2: Lprobe = getRoadLength(Vprobe, R);

3: σlocal =
Negprobe

RoadLengthprobe
;

4: Nestimate = σlocal × LTargetArea;
5: if Nestimate ≤ T then

6: C = 1;
7: else

8: C = Nestimate
T ;

9: end if

• Probe vehicle is responsible for dividing the target area into clusters. Cluster

size is determined depending on the estimate for the number of vehicles within

the cluster. Algo.4 shows how the total number of clusters for a target area is

determined. The input to the algorithms are T , Vprobe and R, where T is the

threshold for the total number of vehicles that can be part of cluster, Vprobe is

the probe vehicle and R is the transmission range of the vehicles in the cluster.

Since probe vehicle has limited knowledge about the number of vehicles in the

target area, it uses its local density (line 1-4 in Algo.4) to postulate the number

of vehicles within the target area. Probe vehicle Vprobe determines total number

of cluster C as shown in line 5-9.

• Once C is calculated by probe vehicle, it uses this information to divide area

into di�erent regions such that the total estimated number of vehicles within a

cluster is approximately equal to threshold T . Load on the cluster head can be

managed by changing the value of threshold T .

• Once the target area is divided into di�erent clusters, probe vehicle broadcasts

the coordinates of the center of the each cluster to all the nodes in the network.

• Each vehicle calculates its distance from the cluster centers and becomes mem-

ber of the cluster whose center is closest to the vehicle.
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• Vehicle which is closest to the cluster center is selected as cluster head as shown

in Fig.5.1. We assume that each vehicle has information about the locations of

all its neighboring vehicles. This information can be exploited by vehicles to

select a cluster head as shown in Algo.5. Input to the algorithm are Nc and

Ccenter which is the total number of vehicles in a cluster and the cluster center

coordinates respectively. For all the vehicles in the network, if distance of vehicle

Vi to the cluster centerDcenter is less than all its neighbors, it broadcasts message

containing information about its coordinates to all the nodes in the network,

asking to become the cluster head. Other vehicles on receiving the message

compares their distance to cluster center with distance of the vehicle Vi. If a

vehicle is closer to cluster center compared with Vi, it sends ConflictMessage

to the Vi. If Vi do not receive any ConflictMessage within a certain time

period t, it is selected as cluster head.

Algorithm 5 Selecting Cluster Head in a Cluster
Input: Nc, Ccenter
Output: VCluHead

1: for Vi = 1 : Nc do

2: Dcenter = CalDis(Ccenter);
3: D.Negcenter = CalDisNeg(Ccenter);
4: if Dcenter ≤ min(D.Negcenter) then
5: BroadCastMsg(Dcenter);
6: end if

7: Wait(t);
8: if ReceiveConflictMessage = False then
9: VCluHead = Vi;
10: end if

11: end for

5.2.2 Sampling

Sampling process is started by cluster head. Cluster head broadcasts starter message

to all the nodes within a cluster. Each node replies back to the cluster head with
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a small probability p, independent of other vehicles, sending information about its

local density σlocal. A vehicle calculate its local density as σlocal = N
L
, where N and

L are total number of vehicles and total length of road within its transmission range

respectively.

5.2.3 Density Estimation

Cluster head estimates the density of vehicles within a cluster as σcluster =
∑n

i=1 σi
n

,

where σi and n are the local density of ith vehicle and the total number of vehicles

that reply to cluster head respectively.

Cluster head sends information about density of vehicles within a cluster σcluster

to the probe vehicle. Probe vehicle calculate global density as σglobal =
∑C

c=1 σc
C

,

where σc and C are the density of vehicles in cth cluster and total number of clusters

respectively.

5.3 Comparison Algorithms

To compare CluSampling with other density estimation algorithms, we implemented

algorithms from two di�erent categories of tra�c density estimation i.e. using system

size to estimate density of vehicles and using local neighbor information to estimate

global density.

5.3.1 System Size for Global Vehicle Density Estimation

Inspired by the mechanisms for system size estimation in P2P networks, we imple-

mented three fully distributed algorithms, namely Sample & Collide, Hop Sampling

and Gossip-based Aggregation, for vehicular density estimation [65]. The algorithms

are used in calculating the number of vehicles within a particular geographical region

speci�ed by the Global Positioning System (GPS) coordinates. Once we calculate the

network size (number of vehicles) within a particular geographical region, we divide

the network size by the length of the roads in that area to estimate the density of

vehicles. Details of the algorithms are given next.
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Sample & Collide

Sample & Collide algorithm is based on uniformly sampling the nodes from a popu-

lation, and then estimating the system size depending on how many samples of the

nodes are collected, before an already sampled node is re-selected [58].

The approach is built upon the inverted birthday paradox. The detail of this

algorithm has been previously explained in section 4.2.1.

Hop Sampling

Hop Sampling algorithm is based on the principle of probabilistic polling [59]. The

initiator node spreads a message to all the nodes in the network using gossiping. The

nodes reply back to the initiator probabilistically depending on their distance from

it. Based on the replies that the initiator node gets from other nodes in the network,

it estimates the size of the network. The detail of this algorithm has been previously

explained in section 4.2.2.

Gossip-based Aggregation

Gossip-based aggregation algorithm has been proposed for large-scale overlay net-

works, where each peer periodically exchanges information with one of its neighbours

picked at random to estimate the size of the network [60]. In this study, gossip-based

aggregation algorithm has been adapted for dynamic VANETs. The detail of this

algorithm has been previously explained in section 4.2.3.

5.3.2 Local Information for Global Vehicle Density Estimation

In local information based density estimation algorithms, probe vehicle use local in-

formation to give an estimate for the global density. This approach has been exten-

sively used for density estimation is VANETs [22, 20, 23, 24]. We implemented Two-

Hop-Neighbor Scheme for density estimation proposed in [20]. In Two-Hop-Neighbor

Scheme, probe vehicle not only uses its neighbors information, but also takes into ac-
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count the number of neighbors of its neighboring vehicles when estimating the density

of vehicles on the road.

Lets consider probe vehicle P and the vehicle U , where U is the farthest vehicle

within the transmission range of P as shown in Fig.5.2. R is the transmission range of

the vehicles and Xu is the distance of U from P . It is important to note that we only

consider neighbors which are behind the probe vehicle and their relative positions can

be obtained using positioning techniques. Lets Np be the number of neighbors behind

vehicle P and Nu be the number of neighbors behind vehicle U . Thus from Fig.5.2,

it can be seen that total number of vehicles are Np +Nu within the distance of length

Xu +R. Thus density is calculated as σ =
Nu +Np

Xu +R
.

Figure 5.2: Two-Hop-Neighbor Scheme: Using local density to estimate global density

Table 5.2: Parameters for Highway and Urban Scenarios

Length of Density No. of Average Maximum Acce-
roads (km) Vehicles Speed Speed leration

(km/h) (km/h) (m/s2)

High- Small (2km) & Low 903 104 120 2

way Big (11.5km) High 4436 102 120 2

Small (1.8km) & Low 1566 52 60 2
Urban

Big (12.9km) High 4666 47 60 2

5.4 Simulation Environment

For realistic analysis of the proposed algorithm, we used a rational representation

of vehicle mobility based on the accurate microscopic mobility modeling, real-world
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Figure 5.3: Road Maps: a) Highway: Big Area (Red Line- 11.5 km of road), Small area (Blue Box-
2 km of road) b) Urban: Big Area (Red Lines- 12.9 km of road), Small area (Blue Box- 1.8 km of
road)

road topology and real-data based tra�c demand modeling for both highway and

urban environments. SUMO (Simulation of Urban Mobility) [19] is used to simulate

the microscopic mobility of vehicles. SUMO is an open-source, space-continuous,

discrete-time tra�c simulator developed by the German Aerospace Center, capable

of modeling the behavior of individual drivers. The path of each driver is determined

based on the origin/destination matrix provided as an input to the simulator. The

input of SUMO is determined for di�erent scenarios at low and high density in small

and big areas for both highway and urban environments as detailed next.

5.4.1 Highway Simulation

We used Performance Measurement System (PeMS) data to create realistic vehicle

simulation for the highway. PeMS is developed by the department of Electrical Engi-

neering and Computer Science at the University of California Berkeley in co-operation

with the California Department of Transportation, California Partners for Advanced

Transit and Highways, and Berkeley Transportation Systems [18]. The data is col-

lected in real time from over 25,000 individual detectors. The system is deployed
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over all major metropolitan areas of the state of California. PeMS data provides

information about the �ow, speed and occupancy of the road. These data are then

input to SUMO for a realistic �ow of vehicles. For the purpose of our simulations,

we downloaded the data of 419 road sensors at highway I880-S in Alameda County

for both high tra�c density, i.e. at 18 : 00, and low tra�c density, i.e. 01 : 00, as

shown in Fig. 5.3-a. The tra�c density algorithms are then tested for small area (2

km road) and large area (11.5 km road) for both low and high density tra�c. Other

simulation parameters are given in Table 5.2.

5.4.2 Urban Simulation

We used one of the urban areas in Islamabad, Pakistan shown in Fig. 5.3-b. There

are two types of tra�c generated for Urban area.

• TransitV ehicles: The destination of the vehicles is not inside the area that is

vehicles pass through this area.

• ArrivalV ehicles: The destination of the vehicles is inside the area. Vehicles

enter the area and then after reaching their destination they stop and leave the

network.

Vehicles entering the network follow Poisson distribution which is considered as

a realistic model [61]. Vehicles randomly select a starting point and a destination.

Destination can lie either within the area of interest (ArrivalV ehicles) or outside the

area (TransitV ehicles). The vehicular density algorithms are then tested for small

area (1.8 km of road in blue box, Fig. 5.3-b) and big areas (12.9 km of road, red lines,

Fig. 5.3-b) for both low and high density tra�c. Simulation parameters are given in

Table 5.2.

5.4.3 Performance Metrics

The following performance metrics are used in the comparison of the density estima-

tion algorithms:
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Figure 5.4: Density Estimation-Highway Scenarios a) Small Area-Low Density b) Small Area-High
Density c) Big Area-Low Density d) Big Area-High Density

Density Estimation

is the vehicular density estimated by the algorithm.

Convergence Time

is the time duration between the starting time and the convergence time of the algo-

rithm.

Overhead

is the total number of messages transmitted over the network during the execution of

the algorithm until it converges.
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Figure 5.5: Density Estimation-Urban Scenarios a) Small Area-Low Density b) Small Area-High
Density c) Big Area-Low Density d) Big Area-High Density

Percentage Error

is the percentage error of the di�erence between an estimated value V alueestimated and

the actual value V alueactual

PercentageError =
|V alueestimated − V alueactual|

V alueactual
× 100%

Load on Initiator

is the ratio of the total number of messages sent or received by the initiator (Messagesinitiator)

to the total number of messages sent over the network (Messagesnetwork)

Loadinitiator =
Messagesinitiator
Messagesnetwork
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5.5 Simulation Results
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Figure 5.6: Convergence Time: Total time needed for the algorithms to converge for (a) Highway
and (b) Urban scenarios
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Figure 5.7: Overhead: Total number of messages sent for (a) Highway and (b) Urban scenarios

Figs. 5.4 and 5.5 show the estimated density values over time for the algorithms

and the actual density at both low and high density tra�c for di�erent area sizes of

highway and urban environment respectively.

Sample & Collide and Gossip-based aggregation perform worst when compared

with other algorithms because in a highly dynamic network like VANETs, connections

are continuously made and broken, and vehicles are frequently entering and leaving the

network. In Sample & Collide, when a vehicle which has already been sampled before
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Figure 5.8: Percentage Error: (a) Highway and (b) Urban scenarios

leaves the network, the probability of selecting a sampled vehicle again decreases.

Results for Sample & Collide in Fig. 5.4-b) and 5.5-b) are not included because

in small area with high vehicle density, the sampled vehicle leave the network more

quickly thus the algorithm convergence time is high with inaccurate results. High

mobility has a similar e�ect on Gossip-based aggregation. When a vehicle which is

part of gossiping leaves the network, important information is lost with the vehicle.

The average weight of the system, which should be equal to K, becomes less than K

thus the estimated value is always more than the actual value.

The density estimation by Hop Sampling is very close to the actual value for both

small and large areas of the urban road, and small areas of the highway. However, it

does not perform good in large areas of highway. The main reason why the density

estimation is not very close to the actual value for Hop Sampling algorithm in large

areas of the highway is that the accuracy of this algorithm decreases as the distance

(i.e. number of hops between the initiator vehicle and other vehicles) increases. Since

we have a long stretch of straight highway, the vehicle at one end of the highway is

farther away from the vehicles at the other end of the highway when compared to

the urban scenario where there is a network of roads with multiple paths between the

initiator vehicle and other vehicles which decreases the hop count values.

Local Density based algorithm performs better only in the high density highway

scenario and low density small highway. It performs better since in high density high-
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way scenario, vehicles are more uniformly distributed since roads are straight and

there are no obstacles that disrupts the uniformity of tra�c on the road. Thus local

density gives a good estimate for global density. However when the density of vehicles

on the road is low and its big area, vehicles are not uniformly distributed thus giving

inaccurate results. In urban scenario, Local Density based algorithm completely fails

to get accurate estimation for vehicle density. This is because in Urban scenario, ve-

hicles are not uniformly distributed because of obstacles and di�erent tra�c densities

at di�erent roads at the intersections of the roads. This disrupts the uniform �ow of

tra�c and local density fails to predict the global density of vehicles on the road.

CluSampling performs the best in di�erent tra�c scenarios for both highway and

urban roads. This is because CluSampling is more robust and mobility of vehicles has

limited e�ect on the performance of the algorithm. Clustering divides the target area

into smaller manageable cluster and thus density can be more accurately estimated

for each cluster. Since cluster size is determined by the number of vehicles on the

road, di�erent tra�c densities have limited e�ect on performance of the algorithm.

Large number of vehicles mean more clusters thus dividing the tasks into smaller

manageable clusters.

Fig. 5.6 shows the convergence time of the algorithms under all the tra�c scenar-

ios. CluSampling, Hop Sampling and Local Density takes the least amount of time

to converge when compared to other algorithms, with convergence time usually less

than 10 seconds.

Fig. 5.7 shows the overhead of di�erent algorithms under all the tra�c scenarios.

CluSampling, Hop Sampling and Local Density has the least overhead on the network

followed by Sample & Collide and Gossip-based aggregation algorithms.

Fig. 5.8 shows the percentage error of the algorithms under all the tra�c scenarios.

CluSampling has small percentage error in all tra�c scenarios and its is usually below

10%. HopSampling also has low percentage error but for Highway big area scenarios

where the distance or the number of hops between the initiator and other vehicles

increases, e�ciency of the algorithm decreases drastically. Local Based algorithm also
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gives poor results for Urban roads and low density big highway road.

Fig. 5.9 shows the load on the initiator for running the density algorithms. Hop

Sampling has the highest load on the initiator because once the initiator starts the

algorithm, all the nodes reply back to the initiator with some probability. Thus, the

initiator has to constantly receive messages from other nodes to accurately estimate

the size of the network. However, other algorithms has limited load on the initiator

vehicle.

From the results, it can be concluded that the CluSampling performs better than

the other algorithms for density estimation under di�erent tra�c scenarios. CluSam-

pling provides good accuracy and has less overhead, convergence time and load on

the initiator or probe vehicle.
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Chapter 6

CONCLUSION

In the �rst part of our work, we analyze the spatial and temporal evolution of the

VANET topology characteristics by using both realistic large-scale mobility traces

and realistic channel models. The realistic large-scale mobility traces are obtained

by using accurate microscopic mobility modeling of SUMO, determining its input

and parameters based on the vehicle �ow and speed data extracted using the PeMS

database. The realistic channel model is obtained by implementing a recently pro-

posed obstacle-based channel model that takes all the vehicles around the transmitter

and receiver into account in determining the received signal strength. The perfor-

mance of the obstacle-based model is compared to the most commonly used more

simplistic channel models including unit disc and log-normal shadowing models. The

extensive investigation of the system metrics regarding the link characteristics over

both time and space including node degree, neighbor distance distribution, number

of clusters and link duration reveals that tuning the parameters appropriately and in-

troducing time correlation for the Gaussian random variable in the log-normal model

provides a good match with the more sophisticated and computationally expensive

obstacle based model. We validate the consistency of the values of these parameters

for various vehicle tra�c densities over two di�erent highways in California.

In the second part of our work, we �rst propose and analyze fully distributed and

infrastructure-free mechanisms for vehicle density estimation in vehicular ad hoc net-

works. Inspired by the mechanisms for the system size estimation in P2P networks, we

adapted and implemented three fully distributed algorithms, namely Sample & Col-

lide, Hop Sampling and Gossip-based Aggregation for VANETs. We also proposed a

fully distributed infrastructure free density estimation algorithm CluSampling espe-
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cially tailored for VANETs. These algorithms are then analyzed rigorously for validity

and performance over eight tra�c scenarios, including low and high density tra�c, for

di�erent sizes of highway and urban environments, based on a realistic representation

of the vehicle mobility, using accurate microscopic mobility modeling, real-world road

topology and real-data based tra�c demand modeling. The analysis demonstrates

that CluSampling is more robust to changes in the network and provides high ac-

curacy in least convergence time and introduces less overhead on the network and

the initiator node. The good performance of these algorithms supports the usage

of distributed approach in the density estimation in VANETs, instead of using in-

frastructure based solutions that su�ers from limited coverage, high deployment and

maintenance cost.

Future work for mobility and channel modeling can extend current work to realistic

simulation model and matching mechanism for urban tra�c scenarios. For density

estimation, future work can involve incorporating the e�ect of background tra�c on

the e�ciency of the algorithm. The tradeo� between the accuracy of estimation and

the network load can be investigated.
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