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ABSTRACT

Vehicular Ad-Hoc Network (VANET) is a promising Intelligent Transportation
System (ITS) technology that aims to improve road traffic conditions and safety of
passengers.

First part of our work deals with providing a realistic analysis of the VANET
topology characteristics over time and space using various key metrics of interest. In
this analysis, we integrate real-world road topology and real-time data extracted from
the Freeway Performance Measurement System (PeMS) database into a microscopic
mobility model to generate realistic traffic flows along the highway. Moreover, we use
a more realistic, recently proposed, obstacle-based channel model and compare the
performance of this sophisticated model to the most commonly used more simplistic
channel models including the unit disc and log-normal shadowing models. Our inves-
tigation on the key metrics reveals that both log normal and unit disc models fail to
provide realistic VANET topology characteristics. We therefore propose a matching
mechanism to tune the parameters of the lognormal model according to the vehicle
density and a correlation model to take into account the evolution of the link charac-
teristics over time. The proposed method has been demonstrated to provide a good
match with more sophisticated but computationally expensive and difficult to imple-
ment obstacle based model and validated over the real data of two different highways
in California.

Second part of our work deals with distributed algorithms for density estimation
in VANETs. Vehicle density is an important system metric used in monitoring road
traffic conditions. Most of the existing methods for vehicular density estimation
either use infrastructure, or use local neighbor information to estimate global vehicle

density. These techniques however suffer from low reliability and limited coverage
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as well as high deployment and maintenance cost. We adapted and implemented
three fully distributed algorithms for density estimation, inspired by the mechanisms
proposed for system size estimation in peer-to-peer networks. Results show that
system size estimation technique can be used for density estimation in VANETS.
Moreover, we proposed a completely distributed algorithm CluSampling which has
been specifically tailored for VANETs. The extensive simulations of these algorithms
at different vehicle traffic densities and area sizes for both highways and urban areas
reveal that CluSampling is robust to changes in the network and it provides high
accuracy in least convergence time and introduces less overhead on the network and

the initiator node.



OZETCE

Gegici Arag Aglarn (GAA), yol trafik durumunu iyilestirme ve yolcularin giiven-
ligini saglama oOzellikleriyle iimit veren bir Akillh Tagima Sistemleri teknolojisidir.

Bu tez calismasinin ilk boliimii, ¢esitli temel bagarim o6lgiitleri kullanarak GAA’larin
zaman ve konum tabanli topoloji 6zelliklerinin gercekci analizinin saglanmasiyla ilgi-
lidir. Bu analizde, gercek yol topolojileri ve PeMS veritabanindan alinan gercek za-
manlh veriler, otoyollarda gercekci trafik akiglar iiretebilmek icin mikroskobik hareketlilik
modeliyle birlegtirilmektedir. Ayrica, daha gercekgi, yakin zamanda Onerilmig engel-
tabanh kanal modeli kullanilmig ve bu karmagik sistemin bagarimi en ¢ok kullanilan
sabit-disk ve log-normal gibi daha basit kanal modelleriyle karsilagtirilmigtir. Temel
bagarim olclitleri iizerindeki arastirmamiz sabit-disk ve log-normal kanal modellerinin
gercekci GAA topoloji ozellikleri saglamada yetersiz oldugunu agiga c¢ikarmigtir. Bu
nedenle, link 6zelliklerinin zamana baglh degigimlerini hesaba katmak amaciyla, arag
yogunlugu ve bir korelasyon modeline gére log-normal modelin parametrelerini adapte
eden bir eglegtirme mekanizmasi 6nermekteyiz. onerilen yontemin karmagik, hesaplama
acisindan pahali ve gergeklestirme agisindan zor olan engel-tabanl kanal modeliyle iyi
bir egleme sagladigi gosterilmis ve modelin iglevselligi Kaliforniya’da bulunan iki farklh
otoyoldan alinan gercek verilerle dogrulanmigtir.

Caligmamizin ikinci boliimii, GAA’larda yogunluk hesaplamast icin dagitik al-
goritmalarla ilgilidir. Ara¢ yogunlugu yol trafik durumunun gézlemlenmesinde kul-
lanilan 6nemli bir sistem oOlciitiidiir. Arac¢ yogunluk hesaplamasi icin onerilmis algo-
ritmalarin ¢ogu ya belli bir altyapiya dayanmakta ya da sisteme genel arag yogun-
lugunu hesaplamak igin yerel komgu bilgisini kullanmaktadir. Ancak, bu algoritmalar
yiiksek yerlegtirme ve bakim masraflarinin yani sira diigiik giivenilirlik ve kisith kap-

samadan dolay1 dezavantajhidirlar. Caligmamizda, gorevdes aglarda sistem boyutunu
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hesaplamak icin Onerilmis mekanizmalardan esinlenerek {i¢ farkli tamamen dagitik
algoritma tasarladik. Sonuclarimiz sistem biiyiikliigii hesaplama teknigi GAA’larda
trafik yogunlugunu hesaplamak icin de kullanilabilecegini gosterdi. Buna ek olarak,
GAA’lar icin 6zel olarak tasarlanmig tamamen dagitik CluSampling algoritmasini
onerdik. Hem otoyollarda hem de sehir-i¢i bolgelerde, farkli bolge genislikleri ve
trafik yogunluklarinda yapilan kapsamli benzetimler CluSampling algoritmasinin ag-
daki degisikliklere dayanikli, yiiksek kesinlikte ve en az zaman gerektiren ¢6ziim sunan
bir algoritma oldugunu ve bunlari1 saglarken ag ve oncii arag ilizerinde daha az yiik

olugturdugunu gostermigtir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

VANET is a promising Intelligent Transportation System (ITS) technology that
offers many applications such as safety message dissemination [1, 2, 3], dynamic route
planning [4], content distribution, gaming and entertainment [5]. The majority of
the VANET research effort on protocol design has relied on simulations due to the
prohibitive cost of deploying real world test-beds. Building a realistic simulation envi-
ronment for VANET is therefore essential in judging the performance of the protocols

proposed at various layers.

The first part of our work deals with analysis of vehicular mobility and commu-
nication channel modeling for VANET simulation. VANET simulation environment
should be realistic requiring an accurate representation of the vehicular mobility and
signal propagation among the vehicles, and also efficient necessitating a reasonable
amount of simulation time. Realistic representation of the vehicle mobility requires
using real-world road topology, accurate microscopic mobility modeling and real-data
based traffic demand modeling whereas a realistic representation of the signal propa-
gation among the vehicles requires reproducing the actual physical radio propagation
process for a given environment. On the other hand, an efficient representation of the
vehicle mobility and signal propagation model requires analyzing the closeness to the
realistic representations in terms of both the key metrics summarizing the dynamics
of the VANET topology in time and space, and the runtime of the simulations. As
summarized in Table 2.1, the literature on VANET topology characteristics focuses
on realistic channel models tested on simplistic vehicle mobility models [6, 7], realis-

tic mobility models without considering realistic signal propagation models [8, 9, 10|
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or simplistic models for both vehicle mobility and communication channel [11, 12],
[13, 14, 15, 16, 17]. Moreover, these models are often compared using classical metrics
such as node degree, number of clusters, link duration and quality [11, 8, 12, 13| or
related metrics such as packet loss probability and connectivity probability [14, 15, 6|
[7, 17, 10]. They include only a small subset of important network-wide metrics sum-
marizing the state of the network such as closeness centrality measuring how long it
takes for the information to spread in a network, clustering coefficient giving infor-
mation about the degree to which nodes tend to cluster and size of the largest group
of connected vehicles in the network [12, 9].

The goal of this part of our work is to analyze VANET topology characteristics on
a large highway section by integrating realistic microscopic mobility traces generated
using real-world road topology and real-data based traffic demand with realistic chan-
nel models taking into account the effect of vehicles on the received signal power. We
compare the performance of this realistic scenario to the most commonly used more
simplistic channel models using various metrics of interest. The original contributions

of this work are listed as follows:

e We incorporate real-world road topology and real-time data from PeMS database
[18] into the microscopic mobility model provided by Simulation of Urban Mo-
bility (SUMO) [19]. PeMS database allows modeling realistic traffic flows on
the highway by adjusting the parameters of the SUMO simulator to match the
real data. This is the first work to analyze VANET topology characteristics
over a large scale highway using an open source database for measuring vehicle

traffic and speed.

e We incorporate more realistic recently proposed obstacle-based channel model
into the analysis of VANET topology characteristics and compare its perfor-
mance to the most commonly used more simplistic channel models including
unit disc and log-normal shadow fading models. This is the first work to analyze

the effect of using the obstacle-based channel model on the VANET topology
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characteristics.

e Since it is hard to integrate the obstacle based model into the modern simula-
tors due to its high complexity and computational cost, we propose a matching
mechanism to tune the parameters of the lognormal model according to the
vehicle density and a correlation model to take into account the evolution of
the link characteristics over time. We validate the performance of the proposed
method over two different highways in California. This is the first work to pro-
pose a method to adjust the parameters of the lognormal model and introduce
time correlation depending on the vehicle density for more realistic and efficient

VANET simulation.

e This is the first work to perform an extensive analysis of the VANET topology
characteristics based on the realistic vehicle mobility and channel models. This
analysis includes not only node degree, link duration, number of clusters but also
neighbor distribution, closeness centrality, size of largest cluster and clustering

coeflicient.

The second part of our work deals with the analysis of distributed algorithms for
density estimation in VANETs. Road traffic density estimation provides important
information in VANETs and intelligent transportation systems for road traffic con-
trol, intelligent vehicular routing and efficient data dissemination. Various methods
have been used in the literature to estimate vehicular density. Traditionally most
of the methods rely on building an infrastructure, such as pressure pads, inductive
loop detectors deployed under the road surface, roadside radar, infra-red counters,
cameras, or even manual counts, to measure the speed and flow of the vehicles in
the estimation of the vehicular density. However, these techniques suffer from high
deployment cost, high rate of failures and vulnerable to single point of failure, result-
ing in high maintenance cost and limited coverage. In addition, most of the current

traffic information system rely on a centralized communication model, where all the
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data is processed at one central location. Therefore this approach for data processing
is not suitable for an emerging self-organizing traffic information system.

The other group of methods adopt distributed or infrastructure-free approaches
for density estimation. These approaches varies from using clustering or group based
approach |20, 21] to using local neighbor information to calculate local density which
is then used to estimate global density [22, 20, 23, 24]. These methods are suit-
able for self-organizing traffic information system since they do not use centralized
communication model.

The goal of this part of the work is to adapt fully distributed algorithms developed
for system size estimation in peer-to-peer (P2P) networks, to the infrastructure-free
vehicle density estimation in highly mobile VANET, and analyze their performance
over a wide range of scenarios including both highways and urban areas at different
traffic densities and area sizes. The main challenge of VANET is its highly dynamic
and mobile behavior compared to P2P networks where vehicles enter and leave very
quickly, and new connections are made and existing connections are broken very
often. We use a completely different network size calculation technique to estimate
the density of vehicles on the road. After adapting these algorithms from P2P network
size estimation, we proposed a fully distributed infrastructure free density estimation
algorithm CluSampling specially tailored for for VANETs. The main contributions of

this work are summarized as follows:

e Three fully distributed algorithms for system size estimation, namely Sample &
Collide, Hop Sampling and Gossip-based Aggregation, have been adapted and
implemented for density estimation in VANETSs for the first time.

e We proposed a fully distributed and self organizing vehicle density estimation
algorithm CluSampling which use network wide information using clustering

and sampling technique to estimate the density of vehicles on the road.

o CluSampling make use of simple clustering mechanism that has limited load on

the network and is robust to changes in the network.
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e These algorithms are tested on eight different traffic scenarios for both highway
and urban areas using a realistic data-set used for microscopic vehicle mobility
and traffic generation. We have used different traffic densities and different road

sizes for the validation of the algorithms.

e To test the validity of CluSampling, we compared it with four fully distributed
algorithms previously proposed in the literature for density estimation. These
algorithms include Sample & Collide, Hop Sampling, Gossip-based Aggregation
and Local Density-based Algorithm.

e These algorithms are rigorously tested across different performance metrics like

convergence time, overhead on network, percentage error and load on initiator.

The rest of the thesis is organized as follows. Chapter 2 explains the vehicular mo-
bility and communication channel modeling. Chapter 3 explains the matching mech-
anism used to tune the parameters of Log normal model. Chapter 4 explains three
fully distributed algorithms inspired from system size estimation in p2p networks. In
Chapter 5 we propose a completely distributed and infrastructure free traffic density
estimation algorithm for Vehicular Networks. Finally, concluding remarks and future

work are given in Section 6.
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Chapter 2

VEHICULAR MOBILITY AND COMMUNICATION
CHANNEL MODELING

This chapter explains the realistic vehicular mobility and communication chan-
nel modeling. Realistic representation of the vehicle mobility requires using accurate
microscopic mobility modeling, real-world road topology and real-data based traffic
demand modeling. For modeling communication channel modeling, we first describe
simplistic channel models including unit disc and log-normal shadowing models that
are commonly used in the analysis of VANET topology characteristics. We then
describe a recently proposed more realistic channel model called obstacle-based chan-
nel model that incorporates the effect of the moving obstacles (i.e. vehicles) on the

received signal power due to their dominating influence.

2.1 Related Work

2.1.1 Vehicle Mobility Models

Vehicular mobility simulators have been growing their complexity and features over
time encompassing realistic road topologies and microscopic vehicular models, where
each vehicle is represented as a separate entity and the behavior of vehicles depends
on the neighboring vehicles [25]. SUMO [19], VISSIM [26], DIVERT [27], MMTS [28]
are examples of such simulators.

The simulations are usually performed on small portions of a road with user gen-
erated traffic flows in these simulators and only recently have been extended to larger
areas while incorporating a realistic model for the macroscopic mobility of the vehi-

cles where the traffic flows are determined based on the real data. The real data used
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for this purpose in the recent studies on the analysis of VANET topology character-
istics includes mobility traces gathered through various measurement campaigns |8|
and statistics performed by the urban planning and traffic engineering communities
[9, 10]. None of these studies however analyze VANET topology characteristics on a

large-scale highway considering real data based traffic demand of vehicles.

2.1.2 Communication Channel Models

Realistic representation of the signal propagation among vehicles requires reproducing
the actual physical radio propagation process for a given environment based on the
ray-tracing method [29, 6]. Ray-tracing approach generates the complex impulse
response of the channel by determining possible paths or rays from the transmitter
to the receiver according to the rules of geometrical optics. Such a model however
is impractical since it requires a detailed description of the site-specific propagation
environment.

Stochastic models on the other hand determine the physical parameters of the
vehicular channel in a completely stochastic manner without presuming any under-
lying geometry [30]. The distance-dependent path loss, large scale and small scale
fading distribution are the parameters to be estimated in these stochastic models as a
result of extensive measurement campaigns. The path loss represents the local aver-
age received signal power relative to the transmit power as a function of the distance
between the transmitter and receiver. The path loss exponent of n = 1.8 — 2.7 was
observed on highways in [31, 32, 33, 34]|. The large-scale fading models the effect of
the surrounding obstacles on the mean signal attenuation at a given distance. The
surrounding obstacles may be mobile (e.g. other vehicles), or static (e.g. buildings in
urban environments). Most of the channel modeling activities aim at averaging the
additional attenuation due to these obstacles resulting in a log-normal distribution
around the mean received signal power [34, 35]. Although some of these models es-
timate different values for the variance of this large-scale fading distribution at high

and low traffic densities [35], only recently a mechanism for incorporating the effect
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of vehicles and static obstacles on the received signal power has been proposed in [36|
and [37] respectively. Finally, the small-scale fading models the effect of the reception
of multiple replica of the transmitted signal at the receiver. Various distributions have
been proposed for small-scale fading including Rice [38], Nakagami [34] and Weibull
[39, 35] distributions.

Although the signal propagation has great impact on the performance of the com-
munication protocols, most of the recent work on the analysis of VANET topology
characteristics are using unit disc as the signal propagation model, where the vehicles
can communicate with each other if they are within a threshold distance and cannot
communicate otherwise [11, 12, 8, 13, 14, 15, 16, 9, 10]. Although more recently such
analysis employs more sophisticated stochastic signal propagation models including
both large-scale fading [13, 15, 17] and small-scale fading [14, 17|, none of these models

incorporate the effect of the vehicles on the signal propagation.



Chapter 2: Vehicular Mobility and Communication Channel Modeling

ueqanqgng
PPOIN | ‘“AemySry
Aeop ‘orer A1oAtep xR g | || 109l01g NI-AATHA oyyer) peod o1dodsomdIN | Aex  omJ, ‘NS yun ‘ueqan [o1]
Surpey yred-nmp
oryer AIoAIPp jo¥oRJ posn aseqejep oON o1jeI) prod d1dodSOIIN | ‘SUIMOpRYS [RULIOU-S07] ueqin) [21]
TeAlojul rensgor e ye
TOTYNLIISIP SSO] 10xoRd posn oseqejep oN | poduelre sopou yiim A3ojodoy urey)) punoid Ler omJ, ueqin (2]
Ay puis-uejjeue Spow
-Op PUo-0)-pud 9FeIOAY ‘Oryel SSO[ Jo¥oR] posn oseqejep ON | U0 [OPOJN  IOALI(  JuSIPIU] PpoAltop-SumeI)-Aey ueqin [9]
JIDIOJO
-00 SULILYSN])) ‘SI8)SNd Jo "ON ‘A[erjue)) [17]
‘I9jowRl(] ‘UOIIRIND MUIT ‘90I30p OPON | Posn ejep dyjel) youmy orye) 01dodsoIdtur Juade-1y A o8Ip YT ueqrn l6]
SI99SN[D JO "ON pasn aseqejep oN [PPOIN ueljRyURIA 28Ip JIun) ueqan [91]
A1 Surmopeys
-iqeqoxd £j1aryosuuo)) ‘Ariqeqord ssaody posn oseqelep oN pojerouad AJuropuey] | [RULIOU-Z0T] ‘OSIP JIu[) Aemydryg [e1]
OjeI) [RdI 10§
aseqeIRp OU ‘JInjyued Surpe weaory] ‘Sut
Aynqiqeqoad uorydedar joxped | pue urreg jo  depy ogery pPpow-HMu d1dodsoIdIy | -peq YSoidey] osip yun urqIn) [#1]
Surmo
DIJRI) [RAI 10] oSR(RIRD -peys [euLIou-gor] ‘OsIp
UoTYRIND YUIT ‘92189p 9poN | Ou ‘0110J Jo A3 Jo deyy ojer) peod o1dodsoIdIy | U -Isen) ‘osIp U} ueqin [eT]
[0F] streys£g woty
-eqr0dsuely, Jo 9)nIISuy
ooedsoroy ueuor) Aq
90130p opON ‘s199snD Jo "ON | 19seje(] dauSo[0)SVIV.IL o1yeI) peold 21dodsoIdIN JSIp J1un) ueqin 8]
uonnqruisp [PPOIN oAl
A)SULp IRNOIYDA ‘JUSIDIPA0D I9)SN() ‘1) URSI[PJUT ‘UOTJOTN OYFRL], P[] ‘Ue) ueq
-sno Jo "ON ‘09I80p opoN ‘uoljeInp MUl posn oseqejep oN | -jeyue]y ‘UOIjO]N Poodg jue)suo)) o8Ip J1up) | -1 AJISOIN [z1]
pus-uejyequey uo ppour Liq SOIN
o) Surfest-ol YUIT ‘UoryeInp MUl posn aseqejep ON | -OW OIJel) Pase( ejewojny Ie[nfp)) | pue §OT YIM ISIp U ueqin [17]
AqoN
RLIIILI) 9OURBWLIOLIDJ | 9[JIYdA 0] 9seqele( AN[IQOIAl S[OIYdA [ePOIAl [ouuey) | A3ojodog, BERt |

STLANVA Ul sonsuejoereyd £3010doT, U0 IO pare[oy :I°Z 9[qel




Chapter 2: Vehicular Mobility and Communication Channel Modeling 10

2.2 Vehicle Mobility Model

Realistic representation of the vehicle mobility requires using accurate microscopic
mobility modeling, real-world road topology and real-data based traffic demand mod-
eling. The input and parameters of the microscopic mobility simulator are determined
based on the real traffic flow and speed values measured by the road sensors deployed

along the highway as detailed next.

2.2.1 Microscopic Mobility Modeling

SUMO [19] is used to simulate the microscopic mobility of vehicles. SUMO, generated
by the German Aerospace Center, is an open-source, space-continuous, discrete-time
traffic simulator capable of modeling the behavior of individual drivers. The path
of each driver is determined based on the origin/destination matrix provided as an
input to the simulator. The movement of each driver is implemented using the sur-
rounding vehicles via Krauss’ car-following model that regulates its acceleration and
Krajzewicz’s lane-changing model that regulates its overtaking decisions [43]. The
parameters of the simulator that determine the driver’s acceleration and overtaking
decisions include the distance to the leading vehicle, the traveling speed, the acceler-

ation and deceleration profiles, and dimension of the vehicles.

2.2.2  Traffic Demand Modeling

PeMS collects historical and real-time data from highways in the State of California
with the goal of providing a comprehensive assessment of highway performance [18].
PeMS was developed by the Department of Electrical Engineering and Computer
Sciences at University of California Berkeley, in co-operation with the California De-
partment of Transportation, California Partners for Advanced Transit and Highways,
and Berkeley Transportation Systems. The flow and speed data are collected in real
time from over 25,000 individual road sensors located over all major metropolitan ar-

eas in the state of California. The sampling period of the flow and speed data ranges
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from 30 seconds to 5 minutes. We used road [-880S in Alameda County, Bay Area,

California for our simulation. Fig. 2.1 shows the road sensors located on 1-880S.
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Figure 2.1: Road sensors located on I-880S in Alameda County, Bay Area, California

2.2.83 Realistic Mobility Generation

The first step in generating the realistic mobility model is to determine the input of
SUMO based on the real-data based vehicular traffic flows over the road. The input
of SUMO including the number of vehicles injected at each entry of the highway (the
starting point of the vehicle) and the probability that each vehicle leaves the highway
from the exits (destination of vehicles) is determined such that the expected num-
ber of vehicles passing through each road sensor location in the simulation closely
matches the flow measured at that sensor on the actual road. However, matching the
traffic flow in the simulation to that of the PeMS database does not guarantee that
the average speed of the vehicles in the simulation also matches the speed measured
through PeMS. Therefore, the second step in generating realistic mobility model is to
determine the parameters of SUMO such that the average speeds of vehicles deter-
mined by the simulation and PeMS agree with each other. The parameters of SUMO

adjusted for this purpose include the distance to the leading vehicle, the initial speed,
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the acceleration and deceleration profiles.

Figs. 2.2 and 2.3 show the flow and speed of vehicles recorded from the simulation
and PeMS database. The data from 419 road sensors on highway I880-S, as shown
in Fig. 2.1, are extracted for both high traffic density, i.e. at 18 : 00, and low traffic
density, i.e. at 01 : 00. As shown in the figures, once the system stabilizes at around
10-th minute, both the flow and speed from simulation and PeMS database agree

with each other.
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Figure 2.2: Flow of vehicles extracted from the PeMS database and obtained from the simulation
at low and high vehicle traffic density.

2.3 Vehicular Channel Models

In this section, we will first describe simplistic channel models including unit disc
and log-normal shadowing models that are commonly used in the analysis of VANET
topology characteristics. We will then describe a recently proposed more realistic
channel model called obstacle-based channel model that incorporates the effect of the
moving obstacles (i.e. vehicles) on the received signal power due to their dominating
influence as illustrated in [36]. The obstacle-based model has not been used before in

the VANET topology analysis.
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Figure 2.3: Speed of vehicles extracted from the PeMS database and obtained from the simulation
at low and high vehicle traffic density.

2.8.1 Uniat Disc Model

In the unit disc model, the vehicles can communicate with each other if they are
within a threshold distance and cannot communicate otherwise. This model is widely
used in the analysis of the VANET topology characteristics due to its simplicity
[11, 12, 8, 13, 14, 15, 16, 9]. However, the sharp cut-off at the threshold distance not
only fails to capture the random noise that can make even nearby nodes unreachable
but also does not take into account the effect of obstacles on the received signal

strength.

2.58.2  Classical Log-Normal Shadowing Model

In the classical log-normal shadowing model, rather than calculating the additional
attenuation due to each obstacle between the transmitter and receiver, the probabilis-
tic distribution of the additional attenuation is modeled with a log-normal probability
density function resulting in the following formulation for the received signal power
[34, 35]:

P,.(d) = Py — 10nlog,, d% +N (2.1)
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where d is the distance between the transmitter and the receiver, dj is the reference
distance, P,,(d) is the received signal power at distance d (in dBm), P, is the received
signal power at the reference distance dy (in dBm) , n is the path loss exponent and N
is zero mean Gaussian random variable with variance o2. A vehicle can communicate
with another vehicle if P,, is greater than a certain threshold value [15]. Note that the
log-normal shadowing model reduces to the unit disc model if 0 = 0. The parameters
of the log-normal model is chosen such that the mean transmission range is equal to the
threshold distance in the unit disc model to have a fair comparison. The parameters
n and o of the model are chosen based on the channel measurement results reported

in [31, 32, 33, 34, 35]: n = 2.5, 0 = 5.5dB.

2.8.8 Obstacle-Based Channel Model

In the obstacle-based channel models, algorithms to incorporate the effect of the
surrounding obstacles such as other vehicles, walls and buildings on the received signal
strength have been proposed [35, 36| rather than modeling the average additional
attenuation due to these obstacles by a stochastic large-scale fading model. Usually
there are a few buildings around the highway, mostly far from the vehicles. That
is why, in this study, we only consider the impact of the surrounding vehicles as
obstacles. Since the additional obstacles can only further reduce the probability of
the line-of-sight (LOS) between the transmitter and receiver vehicles, this approach

gives a best case analysis for the probability of LOS as stated in [36].

Potential Obstacle T\

ﬁ
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distance from LOS

Figure 2.4: Determining the vehicles potentially obstructing the LOS between vehicles i and j

The algorithm proposed and validated in [36] is implemented for calculating the

additional attenuation due to the vehicles. This algorithm consists of three main parts:
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First, the vehicles potentially obstructing the LOS between the transmitter vehicle
i and receiver vehicle j are determined (getPotentialObs(i, j)): If the distance from
the center of the vehicle to the LOS line between vehicles ¢ and j is less than half the
width of the vehicle, the vehicle is considered as a potential obstacle as illustrated in

Fig. 2.4 (Line 1 of Algorithm 1).

Algorithm 1 Obstacle Based Model: Calculation of the additional attenuation be-
tween vehicles ¢ and 7 due to surrounding vehicles as obstacles

1: [PotentialObs| = get PotentialObs(i, j)
2: if size([PotentialObs]) # 0 then

3: [ObsV eh] = get LOSobs([PotentialObs])

4: if size([ObsVeh]) # 0 then

5: addAttenuation = cal Attenuation([ObsV eh))
6: else

7 addAttenuation = 0

8: end if

9: else
10: addAttenuation = 0
11: end if

60% of first
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A A

> d
dobs

Figure 2.5: Determining the vehicles that obstruct the LOS between vehicles i and j (For simplicity,
vehicle antenna heights (h,) are not shown).

Second, the vehicles that obstruct the LOS between vehicles ¢ and j are cho-
sen from the set of the potential obstructing vehicles identified in the previous step
(get LOSobs([PotentialObs])): From the electromagnetic wave propagation perspec-
tive, the LOS is not guaranteed with the existence of the visual sight line between the
transmitter and receiver. Any vehicle that obstructs the Fresnel ellipsoid might affect
the transmitted signal. The effective height of the LOS line that connects vehicles ¢

and j at the potential obstacle vehicle location when we use the first Fresnel ellipsoid
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is given by

do S
h = (h] — hz)Tb + hl — 067’f + ha (22)

where h; and h; are the heights of the transmitter vehicle ¢ and receiver vehicle j
respectively, d,ps is the distance between the transmitter and the obstacle, d is distance
between the transmitter and receiver, h, is the height of the vehicle antennas, and r

is the radius for the first Fresnel zone ellipsoid which is given by

)\dobs(d - dobs)
ry =y Ml 23)

with A denoting the wavelength. Fig. 2.5 illustrates these parameters. If the height
of each potentially obstructing vehicle is known beforehand, the vehicle will obstruct
the LOS between the transmitter and receiver if h is greater than its height. Based on
the assumption that the vehicle heights follow a normal distribution as also assumed
in [36], the probability of the LOS for the link between vehicles i and j is calculated

as
h—p
)

g

(2.4)

where 1 and o are the mean and standard deviation of the height of the obstacle

vehicle (Line 3 of Algorithm 1).

Third, the additional attenuation in the received signal power is calculated for the
LOS obstructing vehicles determined in the previous step (cal Attenuation([ObsV ehicles])).
The existing models to calculate the attenuation are empirical and vary from opti-
mistic [44] to pessimistic approximations [45, 46]. To calculate the additional at-
tenuation, we used the ITU-R method based on the multiple knife edge model [47]
as suggested in [36]. In this model, a complete profile is created for all the LOS
obstructing vehicles, and the signal attenuation is calculated based on the vehicle
height, distance from the transmitting vehicle, wavelength of electromagnetic waves

and position of the vehicles (Line 5 of Algorithm 1).
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2.4 Performance Metrics

The performance metrics are used in the comparison of different signal propagation
models. For the formal definition of these metrics, we represent the vehicular network
topology at time ¢ by a graph G(t) = (V, E(t)) where V is the set of vehicles and
E(t) C V x V are the (undirected) edges representing the wireless communication

links between the vehicles.

2.4.1 Node Degree

Node degree of a vehicle is defined as the number of neighboring vehicles it can
communicate with. Let us denote the set of neighbors of vehicle ¢ at time ¢ by V;(?)
such that N;(t) = {j|(¢,j) € E(t)}. The degree of node ¢ is then formulated as
d;(t) = |N;i(t)|. Node degree measures the density of the network from the physical

connectivity point of view.

2.4.2 Neighbor Distance Distribution

Neighbor distance distribution is defined as the distribution of the distance of the
neighbors of the vehicles in the network. Let us denote the set of neighbors at distance
d away from vehicle i at time ¢t by N;(t, d) such that N;(¢,d) = {j|(i,j) € E(t),d;; = d}
where d;; is the distance between vehicles ¢ and j. The neighbor distance dis-
tribution as a function of the distance d denoted by f(d) is then formulated as
fld) = 5 S SN INi(t,d)| where N = [V| is the total number of vehicles in
the network and 7' is the total simulation time. Neighbor distance distribution mea-

sures the distribution of the communicating nodes over space.

2.4.8 Link Duration

Link duration is defined as the time span between the instants at which the commu-
nication link between two vehicles is established and lost. Let us denote the times

when the link between vehicles 7 and j is established and broken by ¢y and ¢; respec-
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tively such that (i,7) ¢ E(to —€), (i,7) ¢ E(ty + €) for arbitrarily small € > 0 and
(i,7) € E(1), VT € [to,ts]. Then the duration of the link between vehicles ¢ and j
denoted by [;; is formulated as l;; = t; — ¢p. Link duration measures how stable a

connection is over time.

2.4.4 Closeness Centrality

Closeness centrality is defined as the inverse of the sum of the distances to all other
nodes in the network. Formally, the closeness centrality denoted by C'C;(t) is formu-

lated as
1

CCi(t) = (2.5)

2 jen N i i
More central nodes have a lower value for the total distance to all other nodes thus
higher value for closeness centrality. Closeness centrality measures how long it will

take information to spread from a given vehicle to other vehicles in the network.

2.4.5 Number of Clusters

Number of clusters is defined as the number of co-existent, non-connected groups of
nodes at a given instant. We define cluster as a connected group of vehicles within
which there exists a path between any pair of nodes. Formally, let us denote the
existence of a path between vehicles ¢ and j at time ¢ by the binary variable p;;(t)
such that p;;(t) takes value 1 if (i,5) € E(t) or there exists k for which (¢,k) € E(t)
and p;(t) = 1, and value 0 otherwise. Let us also define the cluster in which vehicle
i is located at time ¢ as C;(t) = ¢ U {j|pi;(t) = 1}. The set of unique clusters in the

network at time ¢ is formulated as
C(t) ={C;(t)|Ci(t) N Cr(t) =0, Vk € [1,1 — 1]} (2.6)

The number of clusters denoted by c(t) is then equal to |C(t)]. Number of clus-
ters measures the degree of fragmentation in the network in terms of the number of

mutually isolated groups of vehicles.
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2.4.6 Size of the Largest Cluster

Size of the largest cluster is defined as the number of nodes in the largest cluster of

the network. Formally, the size of the largest cluster denoted by cyax(t) is formulated

as Cmax(t) = maxepn |Ci(1)]-

2.4.7 Clustering coefficient

Clustering coefficient is defined as the ratio of the number of links within a cluster
to the maximum number of links that could exist within a cluster. Let us denote the
set of links within cluster C;(t) by F¢,(t) = {(i,7)|(,7) € E(t);i,57 € Ci(t)}. The

clustering coefficient of the same cluster denoted by k¢, (¢) is then formulated as

‘Eci (t)|

Fe ) = e

(2.7)

Clustering coefficient measures the degree of connectivity of the vehicles within a
cluster. Note that the clustering coefficient has a maximum value 1 if the cluster is a

clique.
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Chapter 3

MATCHED LOG-NORMAL SHADOWING MODEL &
PERFORMANCE ANALYSIS

In this chapter, we propose a matching mechanism to tune the parameters of Log-
normal shadowing model such that the performance metrics summarizing the link

characteristics over space agree with those of the obstacle-based model.

3.1 Matched Log-normal shadowing model

The classical log-normal shadowing model is based on specifying the probabilistic
distribution of the additional attenuation due to the vehicles instead of calculating
the attenuation due to each obstacle separately. The runtime of the simulations using
this model therefore is reasonable. However, the parameters of this model, including
the path loss exponent and the standard deviation of the Gaussian distribution, are
fixed independent of the density of the surrounding vehicles leading to unrealistic
simulations.

The obstacle-based channel model, on the other hand, incorporates the effect
of each vehicle on the received signal strength separately. However, the accurate
representation of the channel comes at the cost of high complexity and computational
burden preventing the integration into the network simulators. Fig. 3.1 shows the
average runtime of the analysis of the performance metrics based on the 1800 sec
simulation of the scenario where the vehicles are generated using the real data at
different traffic densities and communicating with mean transmission range of 500 m
under unit disc, classical log-normal and obstacle-based channel models denoted by
Unit, Logc and Obs respectively. We observe that the average runtime of the obstacle-

based model is about 100 times more than that of the unit disc and classical log-normal
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models.
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Figure 3.1: Average runtime of the analysis of the performance metrics based on the 1800 sec
simulation of the scenario where the vehicles are generated using the real data at different traffic
densities and communicating with mean transmission range of 500 m under different channel models.

In this section, we propose a matching mechanism to tune the parameters of the
lognormal model such that the performance metrics summarizing the link character-
istics over space agree with those of the obstacle-based model (Section 3.1.1). We also
introduce a correlation model to take into account the evolution of the link charac-
teristics over time and propose a mechanism to tune the parameters of this model to
match the performance metrics summarizing the time characteristics of the links to
those of the obstacle-based model (Section 3.1.2). The resulting matched log-normal
model provides performance close to the obstacle-based model at much lower compu-
tational cost and implementation complexity allowing its integration into the network

simulators.

3.1.1 Matching Parameters of Log-normal Model

The parameters of the log-normal model that need to be matched for the spatial
evolution of the link characteristics include the path loss exponent and standard

deviation of the Gaussian random variable.
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Algorithm 2 Matching Parameters of Log Normal Shadowing Model
Input: nValues,cValues
Output: n,,, o,

1: NDObs = cdf ND(ObsModel);
2: Erroryi, = 00;

3: for all nValues do

4: for all oValues do

5: NDLog = cdf ND(LogModel,n, o) ;
6: Error = Dif f(NDObs, NDLog) ;
7: if Error < Error,, then
8: Erroryi, = Error;
9: Ny = N;

10: Om = 0,

11: end if

12: end for

13: end for

Our matching algorithm to tune these path loss exponent and standard deviation
parameters is given in Algorithm 2. The inputs of the algorithm are the set of possible
values for the path loss exponent and standard deviation denoted by nValues and
oValues respectively. The outputs of the algorithm are the values for the path loss
exponent and standard deviation that provide the best match to the obstacle based

model denoted by n,, and o, respectively.

The algorithm starts by extracting the cumulative distribution function (cdf) of
the node degree metric for the obstacle-based model by using function cdf N D with the
parameter ObsM odel representing obstacle-based model and storing the resulting cdf
in the variable NDObs, and initializing minimum error to infinity by using variable
Errory, (Lines 1 — 2). The algorithm then computes the cdf of the node degree
metric of the log-normal model, represented by LogM odel, and storing the resulting
cdf in the variable NDLog for every possible value of the path loss exponent and
standard deviation, stored in the variables n and o respectively in each iteration (Lines
3 —5). The difference between the cdf of the obstacle-based and log-normal models is
then calculated by using Kolmogorov-Smirnov statistic defined as sup,|N DObs(z) —
ND Log(z)| in the function called Dif f (Line 6). The values of the path loss exponent
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and standard deviation that provide the minimum difference are then selected to

provide the best match to the obstacle based model (Lines 7 — 11).

The reason for choosing the cdf of the node degree in the matching algorithm is
that node degree is a measure of the spatial distribution of the nodes in the network.
The above process is repeated for the neighbor distance distribution metric to validate
the values n,, and o,,. The matching of the remaining performance metrics are

justified in Section 3.2.

3.1.2 Matching Time Correlation

The instances of the Gaussian variable used in the classical log-normal model are cal-
culated independently at each time step of the simulation resulting in zero correlation
of the link characteristics over time. The obstacle-based model on the other hand
provides the time correlation of the link characteristics implicitly due to the slow
changes in the relative locations of the obstacles between the transmitter and receiver
vehicles. We therefore extend the classical log-normal model to include a correlation
model taking into account the temporal evolution of the link characteristics.

We used Gudmunson model with exponential correlation function for this work
[48]. This model has been previously used for spatially correlated processes [49, 50].
However, as described in [51], this model can also be used for time correlation. The

model describes the correlation of the shadowing process at time difference At by
R(At) = 0®. exp(—aAt)

where o is the standard deviation of the Gaussian variable at each time instant, and
« is the correlation factor.

The matching algorithm to tune the value of the correlation factor is given in
Algorithm 3. The inputs of the algorithm are the values of the path loss exponent
and standard deviation providing the best match with the spatial link characteristics

of the obstacle-based model, i.e. n,, and o, respectively, and the set of possible values
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Algorithm 3 Matching Correlation Factor for Log Normal Shadowing Model
Input: n,,, o, aValues
Output: o,

1: LDObs = cdf LD(ObsM odel);

2: Erroryi, = 00;

3: for all aValues do

4: LDLog = cdf LD(LogModel, ny,, o, @)

5: Error = Dif f(LDObs, LD Log)
6: if Error < Errory, then
7: Errory, = Error;
8: Oy, = Q
9: end if
10: end for

for the correlation factor denoted by aValues. The output of the algorithm is the
value of the correlation factor that provides the best match with the temporal link
characteristics of the obstacle-based model denoted by ay,.

The algorithm starts by determining the cdf of the link duration metric for the
obstacle based model by using function cdf LD and storing the resulting cdf in the
variable LDObs, and initializing minimum error to infinity (Lines 1 —2). The reason
for choosing the cdf of the link duration is that link duration is a measure of the
stability of the links over time. The algorithm continues by computing the cdf of the
link duration metric of the log-normal model with the matched parameters n,, and
om, and every possible value of the correlation factor stored in the variable «, and
storing the resulting cdf in the variable LD Log in each iteration (Lines 3 — 4). The
difference between the cdf of the link duration of the log-normal and obstacle-based
models is then calculated by using Kolmogorov-Smirnov statistics in the function
Diff (Line 5). The value of the correlation factor giving the minimum difference is

selected as the best match value o, (Lines 6 — 9).

3.2 Simulation Results

The goal of the simulations is to compare the effect of different channel models includ-

ing the unit disc, classical log-normal fading, obstacle-based and matched log-normal
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channel models on the topology characteristics of VANET located on a large-scale
highway by comparing the node degree, neighbor distance distribution, link duration,
closeness centrality, number of clusters, size of the largest cluster and clustering co-
efficient metrics of the resulting communication graphs as explained in Section 2.4.
In all the figures in this section, the unit disc, classical log-normal, matched log-
normal and obstacle-based channel models are denoted by Unit, Logc, Logy and
Obs respectively, and R refers to the mean transmission range of vehicles.

The topology of the VANET is obtained by using the accurate microscopic mobility
modeling of SUMO while determining its input and parameters based on the PeMS
database as explained and validated in detail in Section 2.2. The flow and speed data
of 419 road sensors on highway I880-S as shown in Fig. 2.1 at both high traffic density,
i.e. 121 vehicles/km at 18 : 00, and low traffic density, i.e. 11 vehicles/km at 01 : 00,
are used for this purpose. The performance metrics are extracted after the system
stabilizes around the 10-th minute as illustrated in Figs. 2.2 and 2.3. The vehicle
mobility output of SUMO is then input to MATLAB where the channel models are

implemented and the performance metrics are derived and plotted.

a) b)
30 900 T
Unit 800} Unit
25 Logy, | 1 Log,,
- - -Log, il
3 8 [ Obs
o o
= =
© ©
> >
k<] k]
o <]
z zZ
O 1 1 1 1 1 . 0 L L L L ! T I
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Distance of neighbours (m) Distance of neighbours (m)

Figure 3.2: Neighbor distance distribution for a) low density and b) high density networks at 500 m
transmission range.

Figs. 3.2 a) and b) show the neighbor distance distribution for low and high

density networks respectively. The matched log-normal model follows the obstacle-
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based model closely. The difference between the obstacle-based model and commonly
used unit disc and classical log-normal fading models on the other hand increases as
the vehicle density increases and the transmission range becomes greater than 100 m.
To elaborate on the effect of this different behavior in the performance metrics, we
therefore plot the rest of the graphs at transmission ranges of 100 m and 500 m for

both low and high vehicle traffic densities.

*
o ol 2=
g BB A A% 0° |
g o
PR Ao
o N
AL AA o°
© [ —o—unitR=100m | { A ¢ [—e—unitR=100m |
S 0 Unit,R=500m LDL A 0+ Unit,R=500m
_ 1 0.5 : _ g
LogM,R_100m o 4 g 6 LogM,R_1OOm
Log,,R=500m| - 0.4 o AA o Log,,R=500m| 7
_A_LOQC,R:‘lOOm i 03h 4 ° _A_LOQC’R=100m i
& X
A Log,,R=500m| | oal A9 A Log,R=500m | |
—&— Obs,R=100m ’ = A° —&— Obs,R=100m
; @ Obs,R=500m | - 011 o A 6’6 @ Obs,R=500m | ]
®
: ‘ ‘ 0 : ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 10 20 30 40 50 60 70 80
Node Degree Node Degree

Figure 3.3: Cdf of the node degree metric for different channel models and transmission ranges in
a) low density and b) high density networks

Figs. 3.3 a) and b) show the cdf of the node degree metric for different channel
models and transmission ranges in low and high density network respectively. All
channel models generate the node degree distribution very close to each other at low
transmission range for both low and high density networks. As the transmission range
and the density of the network increase, the discrepancy between the obstacle based
model and unit disc and classical log-normal fading models increases as expected from
the difference observed in the neighbor distance distribution. The matched log-normal
model on the other hand still agrees with the obstacle-based model for all scenarios.

Figs. 3.4 a) and b) show the cdf of the link duration metric for different channel
models and transmission ranges in low and high density network respectively. The
link duration for obstacle based model is smaller than that of the unit disc model

and larger than that of the lognormal model. The main reason is that the nodes
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Figure 3.4: Cdf of the link duration metric for different channel models and transmission ranges
in a) low density and b) high density networks

can always communicate with each other within a threshold distance for the unit
disc model creating high correlation of the connectivity behavior over time so much
higher link duration. On the other hand, the connections between the vehicles are
determined probabilistically for the lognormal model where the probability is chosen
independently in each step creating low correlation of the connectivity behavior so
much lower link duration. The link duration for the obstacle based model is closer to
the unit disc model at low transmission range and closer to the lognormal model at
high transmission range meaning the correlation of the connectivity behavior decreases
as the transmission range increases in the obstacle-based model. The link duration of
the matched log-normal model again is very close to that of the obstacle-based model

under all conditions.

Fig. 3.5 shows the cdf of the number of clusters metric for different channel mod-
els and transmission ranges in low density network. Since the number of clusters is
very low for high density networks when the transmission range is between 100 m
and 500 m, we did not include a separate graph for the high density network. The
distributions of the number of clusters based on the unit disc and obstacle based
models are very close to each other. The main reason for this similarity even at dif-

ferent transmission ranges is that the vehicle which acts as an obstacle between two
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Figure 3.5: Cdf of the number of clusters metric for different channel models and transmission
ranges in low density network

vehicles also acts at the same time as a bridge between them resulting in an indi-
rect connection through the obstructing vehicle. The vehicles are directly connected
when unit-disc model is used whereas they are connected through the obstacles in
the obstacle-based model, resulting in the same number of vehicles within clusters.
The number of clusters of the matched log-normal model is also close to that of the
obstacle-based model with a slight difference resulting from not including the spatial
correlation of the Gaussian variables in the log-normal model. However, the classical

log normal model does not provide a good matching to the obstacle-based model.

Figs. 3.6 a) and b) show the cdf of the size of the largest cluster for different
channel models and transmission ranges in low and high density network respectively.
Similar to the behavior of the number of clusters metric, the size of the largest cluster
for unit disc and matched log-normal model is very close to that of the obstacle-based
model whereas the largest cluster size is very different for classical log-normal and

obstacle-based models.
Figs. 3.7 a) and b) show the cdf of the clustering coefficient metric for different
channel models and transmission ranges in low and high density network respectively.

Although the unit disc and obstacle-based models agree with each other in the number
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Figure 3.6: Cdf of the size of largest cluster metric for different channel models and transmission
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Figure 3.7: Cdf of the clustering coefficient metric for different channel models and transmission
ranges in a) low density and b) high density networks

of clusters and size of largest cluster metrics, we observe that their performance is very

different when the clustering coefficient is considered. The reason is that the clustering

coefficient provides the degree of connectivity of the vehicles within a cluster, which

differentiates between the direct connectivity and the connection through the obstacles

unlike the number of clusters and size of largest cluster metrics. The matched log-

normal model on the other hand again agrees with the obstacle-based model in the

clustering coefficient metric unlike the classical log-normal model.

Figs. 3.8 a) and b) show the cdf of the closeness centrality metric for different
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Figure 3.8: Cdf of the closeness centrality metric for different channel models and transmission
ranges in a) low density and b) high density networks

channel models and transmission ranges in low and high density network respectively.
Again, the matched log normal model provide very close performance to the obstacle

based model unlike the classical log normal model.

3.3 Validation of Results

To validate the proposed matched log-normal model, we have extended the simulations
for various vehicle traffic densities and an additional highway road I5-S near Los
Angeles, California, and checked the agreement of the resulting matched parameters
including path loss exponent, standard deviation and correlation factor for matched
lognormal model on I5-S and I-880S highway roads. The I5-S road is very different
from the [-880S road with much higher vehicle traffic density due to the proximity to
Los Angeles, higher number of lanes and intersections. The realistic mobility over the
I5-S road is generated by determining the input and parameters of the microscopic
mobility simulator SUMO based on the flow and speed information provided by the
PeMS database as explained in detail in Section 2.2. The vehicle mobility output of
SUMO is then input to MATLAB where the values of the path loss exponent, standard
deviation and correlation factor that provide the best match to the obstacle-based

model are determined.
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traffic densities and transmission ranges.

Figs. 3.9, 3.10 and 3.11 show the matched path loss exponent, standard deviation
and correlation factor values respectively for I880-5 and I5-S highway roads at different
vehicle traffic densities and transmission ranges. We observe that the matched values
of these parameters are consistent across different highways and different vehicle traffic

densities.
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Chapter 4

USING SYSTEM SIZE ESTIMATION IN P2P NETWORKS
FOR DENSITY ESTIMATION IN VANETS

In this chapter, we adapted and implemented three fully distributed infrastructure
free road traffic density estimation algorithms inspired from system size estimation

techniques used in P2P networks.

4.1 Related Work

The existing methods for density estimation in VANETSs can be broadly divided into
two main categories: (1) Infrastructure-based and (2) Infrastructure-free. A summary
of these methods are given in Table 4.1.

In the infrastructure-based methods, dedicated infrastructure such as loop detec-
tors, roadside sensors or cameras are used to determine the presence of the vehicles
on the road [52, 53, 54]. Road side camera images are used for traffic monitoring
and density estimation in [52|. Using Kalman filter-based background estimation, the
difference between the incoming image and the calculated background is used to mark
vehicles and then to estimate the density of vehicles on the road. A similar approach
using data fusion has been proposed in [53] in which the flow measured from video
cameras on the road and travel time measured from GPS are used to estimate the
density of vehicles. A neural network technique is applied on the data collected using
video monitoring system to estimate the density of vehicles in [54].

In the infrastructure-free methods, vehicles co-operate with each other to estimate
the size of the network. A probe vehicle uses information of number of its neighbors to
calculate the local density, which is then used to estimate the global density, assum-

ing that the inter-vehicular spacing is exponentially distributed in [22|. This work
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Table 4.1: Related Work on Vehicle Density Estimation in VANETs

Ref | Infrastruct Category | Method used
ture used
[52] Yes Centralized| Road-side camera images using Kalman filtering
54 Yes Centralized| Neural networks
53 Yes Centralized| Capturing road video using cameras and applying Kalman filtering
22 No Distributed| Local density used to estimate global density
20 No Clustering | Extension of [22] by using clusters
21 No Distributed| Group formation
55 No Distributed| Traffic-flow model using vehicle’s speed and flow
56 No Distributed| Random sampling of vehicles
23 No Distributed| Vehicle’s speed and acceleration information
[57] No Distributed| Fluid dynamics and car follow model

has been extended with a clustering approach [20] where the cluster heads gather
information about the cluster members which is then used to estimate the global
density. A fully distributed grouping approach is used for density estimation in [21]
where group leader computes vehicle density and disseminates this information among
other members of the group. In [55], a relationship between speed, flow and density
is used to estimate local density using traffic-flow model. A similar approach is used
in [23] where vehicle tracks its own speed and acceleration patterns to estimate the
local density. In [56], vehicles are uniformly sampled from a road section, and their
neighbor information is then used to estimate the density. Fluid dynamics and car

follow models are utilized to estimate the vehicle density in |57].

In this work, we propose fully distributed and infrastructure-free mechanisms for
the density estimation in VANETs. Unlike previous distributed approaches which
either use group formation [21], or rely on vehicle speed and flow information to
calculate density of vehicles, we use network size information (i.e. number of vehicles
in a particular geographical location) to estimate the density of vehicles on road. To
the best of our knowledge, network size estimation approach has not been previously

applied to VANETSs for density estimation.
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4.2 Density Estimation Algorithms

Inspired by the mechanisms for system size estimation in P2P networks, we adapted
and implemented three fully distributed algorithms, namely Sample & Collide, Hop
Sampling and Gossip-based Aggregation, for vehicular density estimation. The algo-
rithms are used in calculating the number of vehicles within a particular geographical
region specified by the Global Positioning System (GPS) coordinates. Once we cal-
culate the network size (number of vehicles) within a particular geographical region,
we divide the network size by the length of the roads in that area to estimate the

density of vehicles. Details of the algorithms are given next.

4.2.1 Sample € Collide

Sample & Collide algorithm is based on uniformly sampling the nodes from a popu-
lation, and then estimating the system size depending on how many samples of the
nodes are collected, before an already sampled node is re-selected [58|.

The approach is built upon the inverted birthday parador. According to the in-
verted birthday paradox, in a room of 57 or more people, the probability of two people
having the same birthday is at least 99%. We can calculate the probability p(V, K)
of at least two people having birthday on the same date in a group of K people for N
= 365 days. Sample & Collide is built on inverting such evaluations. We determine
the number of people X (V) that needs to be sampled, one at a time, until two people
share the same birthday. It turns out that for large N, value of X (V) converges
to v2N. In the vehicle density estimation, the number of days corresponds to the
number of nodes in the network, and sample of people having the same birthday cor-
responds to the number of the nodes selected until two samples coincide. The number
of samples that are obtained before this happens gives the estimate for the number
of nodes N, where N = X?/2.

The accuracy of the algorithm relies heavily on the sampling technique used.
Sampling technique of Sample & Collide is asymptotically unbiased in contrast to the

previously proposed sampling techniques in graphs with heterogeneous node degrees
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[58]|. The unbiased sampling of Sample & Collide proceeds as follows.

e An initiator node sets timer 7" to some predefined value (7" > 0) in the sampling

message, and sends the message to one of its neighboring nodes.

e Upon receiving a sampling message, a node ¢ does the following operations. It
picks a random number U uniformly distributed between [0, 1]. Tt then decre-
ments T by log(1/U)/d; (i.e. T < T— log(1/U)/d;), where d; is the degree
of the current node 7. If the updated value T" < 0, then the current node i is
selected as the sampled node. Otherwise, it forwards the updated timer value T
to one of its neighbors selected uniformly at random, and the sampling process

continues.

e Samples are collected by the initiator node until a node, which has already been
sampled, is re-selected. Initiator node counts the number of samples C' obtained
before the same node is re-selected. Estimated value for the number of nodes is

given by N = C?/2.

e To improve the accuracy of the algorithm, the fixed control parameter L is
used. Initiator node picks an integer L > 0 and starts the sampling process.
The process is continued until L collisions occur, i.e. same nodes are re-selected
L times. The initiator node counts the number of samples C}, obtained until
L collisions occur. Using inverted birthday paradox, size of the network (i.e.

number of vehicles) can then be estimated as N = C1?/2L [58].

Once we calculate size of network, we estimate the density of vehicles D, within area
of size a by D, = N/l,, where N is the number of vehicles on road, and [, is the total
length of road within area of size a. As explained in the algorithm, we introduced fixed
control parameter L in our implementation to improve the accuracy and performance
of the algorithm for dynamic networks like VANETs.

The value of T should also be carefully selected so that there is negligible bias in
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selecting the samples from the pool of nodes [58]. If a high T" value is selected by the
initiator node, the system becomes more asymptotically unbiased while increasing the

communication overhead.

4.2.2  Hop Sampling

Hop Sampling algorithm is based on the principle of probabilistic polling [59]. The
initiator node spreads a message to all the nodes in the network using gossiping. The
nodes reply back to the initiator probabilistically depending on their distance from
it. Based on the replies that the initiator node gets from other nodes in the network,

it estimates the size of the network. The algorithm works as follows.

e The hopCount value is initialized to zero by the initiator, and the message is

sent to the neighboring nodes of the initiator.

e Upon receiving a gossip message, a node checks if it has previously received that
gossip message. If the node has not received the gossip message, it saves the
value for hopCount. Otherwise, the node compares the newly received hopCount
value with stored value of hopCount. If the new value is less than the stored
value, the node replaces old hopCount value with the new value, and forwards
the message to its neighboring nodes with hop Count value equal to hopCount+1.
Otherwise, the node ignores the message. Minimum value of hopCount received

by node represents the distance of the node from the initiator node.

e Depending on the distance of the node from the initiator, each node probabilisti-
cally replies back to the initiator. This is to save the initiator node from massive
flood of incoming messages. Message is sent back with probability 1 if hopCount
< minHopsReporting, and with probability 1/gossipTohorCount—minHopsReporting

otherwise, where minHopsReporting and gossipTo are system parameters and

their values are set by the initiator node.
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e Upon receiving the messages from the nodes, the initiator node calculates the
size of the network depending on the responses it gets back from the nodes at
different distances. For instance, if the value of minHopsReporting and gossipTo
is set to 2, only 1/2%72 fraction of the total nodes (i.e. 25%) at distance 4 hops,

will reply to the initiator node.

In our simulations, the values of minHopsReporting and gossipTo are set to 2.
Density of vehicles D, within area of size a is then obtained by D, = N/I,, where N
is the number of vehicles on the road, and [, is the total length of the road within

area of size a.

4.2.8  Gossip-based Aggregation

Gossip-based aggregation algorithm has been proposed for large-scale overlay net-
works, where each peer periodically exchanges information with one of its neighbours
picked at random to estimate the size of the network [60|. In this study, gossip-based
aggregation algorithm has been adapted for dynamic VANETs. In the algorithm, if
one node in the system holds weight value equal to 1, and rest of the nodes hold
weight value equal to 0, then the average of the weight values in the system would be

1/N, where N is the size of the network. The algorithm works as follows.

e Initiator node samples K vehicles at random.

e These K vehicles then initialize their weight values to 1 and all other nodes in
the system initialize their weight to 0. K nodes then start gossiping with one

of their neighbors selected randomly.

e At each predefined cycle, the nodes which have previously received a gossip
message, randomly select one of their neighboring nodes, to exchange the values

of their weights. These nodes then update their weight by the average of their
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current weight and the weight of their neighbor as

weightcurrentNode + weightneighborNode

weight <— 5

e The gossiping is repeated for a certain number of gossipRounds until the value

of the weight of the nodes converges. The size of the network is then estimated

K

at each node by using equation N = Teight-

One of the drawbacks of using gossip-based aggregation algorithm in dynamic net-
works is that if the nodes leave the network during the initial phase of the algorithm
after receiving the gossip message, the accuracy of the algorithm decreases signifi-
cantly. To make the algorithm perform better in dynamic situations, we introduced
the scheme of initiating the algorithm by selecting K distinct vehicles at random, in-
stead of widely used approach of running the algorithm with one initiator. Sampling
technique we used for selecting K vehicles at random by the initiator is similar to the
technique used for Sample € Collide. The initiator sets timer 7' to some predefined
value (T" > 0) and sends message to one of its neighbors. A node i, after receiving
the message, decrements T' by log(1/U)/d; (i.e. T <« T— log(1/U)/d;), where d; is
the degree of node ¢ and U is uniformly distributed random number between [0, 1].
If T < 0, current node is selected as one of the K nodes to start the gossip algo-
rithm. This process is repeated K times to select K initiator nodes for gossip based

algorithm.

The density of the vehicles D, within area of size a is then obtained by D, = N/l,,
where N is the number of vehicles on the road, and [, is the total length of road within

area of size a.
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Table 4.2: Parameters for Highway and Urban Scenarios

Length of Density | No. of | Average | Maximum | Acce-

roads (km) Vehicles | Speed Speed | leration

(km/h) | (km/h) | (m/s?)
High- | Small (2km) & Low 903 104 120 2
way | Big (11.5km) | High | 4436 102 120 2
Small (1.8km) & | Low 1566 52 60 2

Urban . .

Big (12.9km) | High | 4666 47 60 2

Figure 4.1: Road Maps: a) Highway: Big Area (Red Line- 11.5 km of road), Small area (Blue Box-
2 km of road) b) Urban: Big Area (Red Lines- 12.9 km of road), Small area (Blue Box- 1.8 km of
road)

4.3 Simulation & Results

4.3.1  Simulation Environment

For realistic analysis of the proposed algorithms, we used a rational representation
of vehicle mobility based on the accurate microscopic mobility modeling, real-world
road topology and real-data based traffic demand modeling for both highway and
urban environments. SUMO (Simulation of Urban Mobility) [18] is used to simulate
the microscopic mobility of vehicles. SUMO is an open-source, space-continuous,

discrete-time traffic simulator developed by the German Aerospace Center, capable
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of modeling the behavior of individual drivers. The path of each driver is determined
based on the origin/destination matrix provided as an input to the simulator. The
input of SUMO is determined for different scenarios at low and high density in small

and big areas for both highway and urban environments as detailed next.

Highway Simulation

We used Performance Measurement System (PeMS) data to create realistic vehicle
simulation for the highway. PeMS is developed by the department of Electrical Engi-
neering and Computer Science at the University of California Berkeley in co-operation
with the California Department of Transportation, California Partners for Advanced
Transit and Highways, and Berkeley Transportation Systems [18]. The data is col-
lected in real time from over 25,000 individual detectors. The system is deployed
over all major metropolitan areas of the state of California. PeMS data provides
information about the flow, speed and occupancy of the road. These data are then
input to SUMO for a realistic flow of vehicles. For the purpose of our simulations,
we downloaded the data of 419 road sensors at highway I880-S in Alameda County
for both high traffic density, i.e. at 18 : 00, and low traffic density, i.e. 01 : 00, as
shown in Fig. 4.1-a. The traffic density algorithms are then tested for small area (2
km road) and large area (11.5 km road) for both low and high density traffic. Other

simulation parameters are given in Table 4.2.

Urban Simulation
We used one of the urban areas in Islamabad, Pakistan shown in Fig. 4.1-b. There

are two types of traffic generated for Urban area.

o TransitVehicles: The destination of the vehicles is not inside the area that is

vehicles pass through this area.

o ArrivalVehicles: The destination of the vehicles is inside the area. Vehicles

enter the area and then after reaching their destination they stop and leave the
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network.

Vehicles entering the network follow Poisson distribution which is considered as
a realistic model [61]. Vehicles randomly select a starting point and a destination.
Destination can lie either within the area of interest (ArrivalVehicles) or outside the
area (TransitVehicles). The vehicular density algorithms are then tested for small
area (1.8 km of road in blue box, Fig. 4.1-b) and big areas (12.9 km of road, red lines,
Fig. 4.1-b) for both low and high density traffic. Simulation parameters are given in
Table 4.2.

4.8.2  Performance Metrics

The following performance metrics are used in the comparison of the density estima-
tion algorithms:

Density Estimation is defined as the vehicular density estimated by the algorithm.

Convergence Time is defined as the time duration between the starting time and
the convergence time of the algorithm.

Querhead is defined as the total number of messages transmitted over the network
during the execution of the algorithm until it converges.

Error Ratio is defined as the ratio of the difference between an estimated value

Valuegstimatea and the actual value Value,ciyal

‘ Valueestimated - Valueactual

ErrorRatio =
Valueactual

Load on initiator is defined as the ratio of the total number of messages sent or
received by the initiator (M essagesinitiator) t0 the total number of messages sent over

the network (Messages,etwork)

Messagesinitiator

Loadinitiator = M
€55AgESpetwork

In our simulations, Sample € Colide algorithm parameters T and L are set to 5
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and 50 respectively, the minHopsReporting parameter of Hop Sampling is set to 2,

and K and T parameters of Gossip-based Aggregation are set to 10 and 5 respectively.
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Figure 4.2: Density Estimation-Highway Scenarios a) Small Area-Low Density b) Small Area-High
Density c¢) Big Area-Low Density d) Big Area-High Density

4.3.3  Simulation Results

Figs. 4.2 and 4.3 show the estimated density values over time for the algorithms

and the actual density at both low and high density traffic for different area sizes

of highway and urban environment respectively. The density estimation of the Hop

Sampling is very close to the actual value for both small and large areas of the urban

road, and small areas of the highway. The main reason why the density estimation
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Figure 4.3: Density Estimation-Urban Scenarios a) Small Area-Low Density b) Small Area-High
Density c) Big Area-Low Density d) Big Area-High Density

is not very close to the actual value for Hop Sampling algorithm in large areas of the
highway is that the accuracy of this algorithm decreases as the distance (the number
of hops between the initiator vehicle and other vehicles) increases. Since we have
a long stretch of straight highway, the vehicle at one end of the highway is farther
away from the vehicles at the other end of the highway when compared to the urban
scenario where there is a network of roads with multiple paths between the initiator
vehicle and other vehicles which decreases the hop count values. Sample & Collide
and Gossip-based aggregation perform worse than Hop Sampling because in a highly
dynamic network like VANETS, connections are continuously made and broken, and

vehicles are frequently entering and leaving the network. In Sample & Collide, when
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Figure 4.4: Convergence Time: Total time needed for the algorithms to converge for (a) Highway
and (b) Urban scenarios
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Figure 4.5: Overhead: Total number of messages sent for (a) Highway and (b) Urban scenarios

a vehicle which has already been sampled before leaves the network, the probability
of selecting a sampled vehicle again decreases. Results for Sample & Collide in Fig.
4.2-b) and 4.3-b) are not included because in small area with high vehicle density, the
sampled vehicle leave the network more quickly thus the algorithm converges in a very
long time with inaccurate results. High mobility has a similar effect on Gossip-based
aggregation. When a vehicle which is part of gossiping leaves the network, important

information is lost with the vehicle. The average weight of the system, which should
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Figure 4.6: Error Ratio: (a) Highway (b) Urban scenarios

be equal to K, becomes less than K thus the estimated value is always more than
the actual value. However, Hop Sampling is the most suitable algorithm in terms of
accurately estimating the vehicle density.

Fig. 4.4 shows the convergence time of the algorithms under all the traffic sce-
narios. Hop Sampling takes the least amount of time to converge when compared to
other algorithms, with convergence time usually less than 10 seconds.

Fig. 4.5 shows the overhead of different algorithms under all the traffic scenarios.
Hop Sampling has the least overhead on the network followed by Sample & Collide
and Gossip-based aggregation algorithms.

Fig. 4.6 shows the error ratio of the algorithms under all the traffic scenarios.
Hop Sampling has the least error ratio except for Highway big area scenarios where
the distance or the number of hops between the initiator and other vehicles increases,
thus decreasing the efficient of the algorithm.

Fig. 4.7 shows the load on the initiator for running the density algorithms. Hop
Sampling has the highest load on the initiator because once the initiator starts the
algorithm, all the nodes reply back to the initiator with some probability. Thus, the
initiator has to constantly receive messages from other nodes to accurately estimate

the size of the network.
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From the results, it can be concluded that the Hop Sampling performs better than the
other algorithms for density estimation under different traffic scenarios. Hop Sampling
provides the highest accuracy with the least overhead and convergence time. However,

this comes at the cost of higher load on the initiator.

I HopSampling
[ Gossip
08[ | ] sample&Coliide

0.6

0.4}

Load on initiator

0.2}

Highway Urban

Figure 4.7: Load on the initiator: Highway and Urban scenarios
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Chapter 5

CruSampring: DISTRIBUTED ALGORITHM FOR
DENSITY ESTIMATION

In this chapter, we propose a completely distributed and infrastructure free density
estimation algorithm CluSampling specifically tailored for highly dynamic vehicular

networks.

5.1 Related Work

The existing methods for density estimation in VANETs can be broadly divided into
two main categories: (1) Infrastructure-based and (2) Infrastructure-free. A summary
of these methods are given in Table 5.1.

In the infrastructure-based methods, dedicated infrastructure such as loop detec-
tors, roadside sensors or cameras are used to determine the presence of the vehicles
on the road [52, 54, 53]. Road side camera images are used for traffic monitoring
and density estimation in [52|. Using Kalman filter-based background estimation, the
difference between the incoming image and the calculated background is used to mark
vehicles and then to estimate the density of vehicles on the road. A similar approach
using data fusion has been proposed in [53] in which the flow measured from video
cameras on the road and travel time measured from GPS are used to estimate the
density of vehicles. A neural network technique is applied on the data collected us-
ing video monitoring system to estimate the density of vehicles in [54]. A modified
extended Kalman filter-based approach for density estimation is presented in [62]. In
[63], commulative road acoustics were used in estimating road traffic density and the
impact of noise on the estimation. In [64], Lagrangian state estimator-based approach

for density estimation has been proposed. The main drawback of such infrastructure-
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based approach is that it needs large investment from government and other agencies
to build, maintain and manage a huge infrastructure. Infrastructure based approach
is rigid, difficult to maintain and upgrade, and the information is also limited to only

those roads where infrastructure is deployed.

In the infrastructure-free methods, vehicles co-operate with each other to estimate
the size of the network. Vehicles communicate with each other and share information
to compute the density vehicles on the road. Different approaches have been proposed
in the literature. In [22, 20, 23, 24|, a probe vehicle uses local information from its
neighbors to calculate the local density which in then used to give an estimate for
global density. [22, 20, 24] assumes that inter-vehicular distances are exponentially
distributed and based on this property, global vehicle density can be estimated using
the local density information. However, their validation in based on simplistic vehicle
mobility scenarios where traffic is randomly generated [20, 24| or vehicles move in

free-flow condition independent of other vehicles around it [22, 20].

In [21], location based grouping scheme is used for density estimation. Vehicles are
divided into groups with a group leader. Group leader is responsible for collecting in-
formation for its group and calculate the density of vehicles in a group. This approach
suffers from the overhead of group formation. It also requires that the group size is
fixed making it unsuitable for scenarios where vehicles density changes frequently over

time.

Previous work also has limited focus on a realistic traffic scenario for both vehicle
mobility and road traffic conditions which can have a great impact on the performance
of the proposed algorithms. In [21], only city traffic conditions are taken into account
and simulation is performed on a small straight road section of 2500m. In |20, 55, 57|,
only highway scenarios are used for simulation. In [57] a straight one way and single
lane highway road is used for simulation. In [56], both highway and urban scenarios
are used but validation of algorithm is limited to highway of size 2000m and small
urban road with only one intersection. In [22, 20, 57, 24|, realistic vehicular mobility

is not taken into account while computing the road traffic.
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It is also important that the validity of an algorithms is done using different
performance metrics. In [20], mean of 10,000 trials and in [22], mean of 100,000 trials
is used to calculate the mean absolute error without giving any information about
the deviation in the computed results. In [57], only density information is used for
comparison without giving any information about the error, convergence time and
overhead of the proposed algorithm.

In [65] three fully distributed algorithms inspired from system size estimation
techniques from peer-to-peer networks has been used. Algorithms are validated using
realistic mobility at different traffic densities and area sizes for both highway and
urban scenario.

In this work, we propose fully distributed and infrastructure-free algorithm CluSam-
pling for the density estimation in VANETs. Unlike previous distributed approaches
which either use local information [22, 20, 23, 24|, or rely on vehicle speed, acceler-
ation and flow information to calculate density of vehicles [55, 23, 57|, CluSampling
use network wide information using clustering and sampling technique to estimate the
density of vehicles on the road. We have also rigorously validated algorithm across
Highway and Urban scenarios using a realistic data-set used for microscopic vehicle
mobility and traffic generation. We have used different traffic densities and different
road sizes for the validation of the algorithm. We compared CluSampling with pre-
viously proposed four fully distributed algorithms and tested these algorithms across
different performance metrics like convergence time, overhead on network, percentage

error and load on initiator.
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5.2 CluSampling

CluSampling is a fully distributed infrastructure-free algorithm to estimate the density
of vehicles using Clustering and Sampling technique. Algorithm can be divided into
two main parts: Clustering and Sampling. During Clustering, vehicles in the network
are divided into geographical clusters based on the density of vehicles on the road.
Once the clustering is completed and a cluster head is selected, each vehicle become
member of a cluster depending on its geographical location. Within each cluster,
Sampling technique is used to estimate the density of vehicles on the road. Small
fraction of vehicles reply to cluster head with information about the local density of
vehicles on the road which is then used to estimate the global density.

For ease of description, we assume that each vehicle in the network is equipped
with communication device (IEEE 802.11p interface) and a global positioning system
device. Target area is defined as the geographical region where we are interested in
estimating the vehicle traffic density. We assume that each vehicle has complete map

of the road within the target area and has a nominal transmission range R.

== = = =~ =~ =~
| (w1 D D @D | (ZB D | \‘\
[ \
‘:\ Cluster ﬁ | \‘ | |
’ 1)e ‘ . |
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(=) i) o
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Figure 5.1: Vehicles grouped into clusters

5.2.1 Clustering

Fig.5.1 shows an example of the vehicles grouped into different clusters. The density
algorithm is started by a probe vehicle which is interested in estimating the density

of vehicle in the target area. The algorithm is explained below:
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Algorithm 4 Calculating Total Number of Clusters

IHPUt: T7 VZm'obey R

Output: C

1: Nerrobe = QEtNeighbors(%robea R)7

2: Lprobe = getRoadLength(Vprobe, R);
. _ Negprobe .

3: Olocal = RoadLengthy,ope

4 Nestimate = Olocal X LTargetArea;

5: if Nestimate < T then

6: Cc=1;

7: else

8: C — Nestjiﬂmate;

9: end if

e Probe vehicle is responsible for dividing the target area into clusters. Cluster

size is determined depending on the estimate for the number of vehicles within
the cluster. Algo.4 shows how the total number of clusters for a target area is
determined. The input to the algorithms are 7', Vp, 0 and R, where T' is the
threshold for the total number of vehicles that can be part of cluster, Vi, ope is
the probe vehicle and R is the transmission range of the vehicles in the cluster.
Since probe vehicle has limited knowledge about the number of vehicles in the
target area, it uses its local density (line 1-4 in Algo.4) to postulate the number
of vehicles within the target area. Probe vehicle V... determines total number

of cluster C as shown in line 5-9.

Once C' is calculated by probe vehicle, it uses this information to divide area
into different regions such that the total estimated number of vehicles within a
cluster is approximately equal to threshold 7. Load on the cluster head can be

managed by changing the value of threshold T

Once the target area is divided into different clusters, probe vehicle broadcasts

the coordinates of the center of the each cluster to all the nodes in the network.

Each vehicle calculates its distance from the cluster centers and becomes mem-

ber of the cluster whose center is closest to the vehicle.
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e Vehicle which is closest to the cluster center is selected as cluster head as shown

in Fig.5.1. We assume that each vehicle has information about the locations of
all its neighboring vehicles. This information can be exploited by vehicles to
select a cluster head as shown in Algo.5. Input to the algorithm are N, and
Clenter Which is the total number of vehicles in a cluster and the cluster center
coordinates respectively. For all the vehicles in the network, if distance of vehicle
V; to the cluster center D ..., is less than all its neighbors, it broadcasts message
containing information about its coordinates to all the nodes in the network,
asking to become the cluster head. Other vehicles on receiving the message
compares their distance to cluster center with distance of the vehicle V;. If a
vehicle is closer to cluster center compared with V;, it sends Con flict Message
to the V;. If V; do not receive any ConflictMessage within a certain time

period t, it is selected as cluster head.

Algorithm 5 Selecting Cluster Head in a Cluster

Input: N, Ceenter
OUtPUt: VCluHead

10:

: for V;=1:N.do

Deenter = CalDiS(Ccenter);

D.Negeenter = CalDisNeg(Ceenter);

if Deenter < min(D'Negcenter) then
BroadCast M sg(Deenter);

end if

Wait(t);

if ReceiveConflictMessage = False then
Vewnead = Vi;

end if

11: end for

5.2.2  Sampling

Sampling process is started by cluster head. Cluster head broadcasts starter message

to all the nodes within a cluster. Each node replies back to the cluster head with
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a small probability p, independent of other vehicles, sending information about its
local density oj..q;. A vehicle calculate its local density as 0jcq = %, where N and
L are total number of vehicles and total length of road within its transmission range

respectively.

59.2.8  Density Fstimation

Z?:l gj

Cluster head estimates the density of vehicles within a cluster as oguster = ==,

where o; and n are the local density of i;, vehicle and the total number of vehicles
that reply to cluster head respectively.

Cluster head sends information about density of vehicles within a cluster o.yster
to the probe vehicle. Probe vehicle calculate global density as oo = ECC:TIU,

where o, and C' are the density of vehicles in ¢, cluster and total number of clusters

respectively.

5.3 Comparison Algorithms

To compare CluSampling with other density estimation algorithms, we implemented
algorithms from two different categories of traffic density estimation i.e. using system
size to estimate density of vehicles and using local neighbor information to estimate

global density.

5.3.1 System Size for Global Vehicle Density Estimation

Inspired by the mechanisms for system size estimation in P2P networks, we imple-
mented three fully distributed algorithms, namely Sample & Collide, Hop Sampling
and Gossip-based Aggregation, for vehicular density estimation [65]. The algorithms
are used in calculating the number of vehicles within a particular geographical region
specified by the Global Positioning System (GPS) coordinates. Once we calculate the
network size (number of vehicles) within a particular geographical region, we divide
the network size by the length of the roads in that area to estimate the density of

vehicles. Details of the algorithms are given next.
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Sample € Collide

Sample & Collide algorithm is based on uniformly sampling the nodes from a popu-
lation, and then estimating the system size depending on how many samples of the
nodes are collected, before an already sampled node is re-selected [58].

The approach is built upon the inverted birthday paradoxr. The detail of this

algorithm has been previously explained in section 4.2.1.

Hop Sampling

Hop Sampling algorithm is based on the principle of probabilistic polling [59]. The
initiator node spreads a message to all the nodes in the network using gossiping. The
nodes reply back to the initiator probabilistically depending on their distance from
it. Based on the replies that the initiator node gets from other nodes in the network,
it estimates the size of the network. The detail of this algorithm has been previously

explained in section 4.2.2.

Gossip-based Aggregation

Gossip-based aggregation algorithm has been proposed for large-scale overlay net-
works, where each peer periodically exchanges information with one of its neighbours
picked at random to estimate the size of the network [60]. In this study, gossip-based
aggregation algorithm has been adapted for dynamic VANETs. The detail of this

algorithm has been previously explained in section 4.2.3.

5.3.2  Local Information for Global Vehicle Density Estimation

In local information based density estimation algorithms, probe vehicle use local in-
formation to give an estimate for the global density. This approach has been exten-
sively used for density estimation is VANETS [22, 20, 23, 24|. We implemented Two-
Hop-Neighbor Scheme for density estimation proposed in [20]. In Two-Hop-Neighbor

Scheme, probe vehicle not only uses its neighbors information, but also takes into ac-
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count the number of neighbors of its neighboring vehicles when estimating the density
of vehicles on the road.

Lets consider probe vehicle P and the vehicle U, where U is the farthest vehicle
within the transmission range of P as shown in Fig.5.2. R is the transmission range of
the vehicles and X, is the distance of U from P. It is important to note that we only
consider neighbors which are behind the probe vehicle and their relative positions can
be obtained using positioning techniques. Lets IV, be the number of neighbors behind
vehicle P and N, be the number of neighbors behind vehicle U. Thus from Fig.5.2,

it can be seen that total number of vehicles are N, + N, within the distance of length

N, + N,
X, + R. Thus density is calculated as 0 = ——2.
us density i u o X. TR
R I
R T U P
T <eei [TID oo [T [TID=>
Xu !
' ' R

Figure 5.2: Two-Hop-Neighbor Scheme: Using local density to estimate global density

Table 5.2: Parameters for Highway and Urban Scenarios

Length of Density | No. of | Average | Maximum | Acce-

roads (km) Vehicles | Speed Speed | leration

(km/h) | (km/h) | (m/s®)
High- | Small (2km) & | Low 903 104 120 2
way | Big (11.5km) | High | 4436 102 120 2
Small (1.8km) & | Tow | 1566 52 60 2

Urban . .

Big (12.9km) High 4666 47 60 2

5.4 Simulation Environment

For realistic analysis of the proposed algorithm, we used a rational representation

of vehicle mobility based on the accurate microscopic mobility modeling, real-world
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Figure 5.3: Road Maps: a) Highway: Big Area (Red Line- 11.5 km of road), Small area (Blue Box-
2 km of road) b) Urban: Big Area (Red Lines- 12.9 km of road), Small area (Blue Box- 1.8 km of
road)

road topology and real-data based traffic demand modeling for both highway and
urban environments. SUMO (Simulation of Urban Mobility) [19] is used to simulate
the microscopic mobility of vehicles. SUMO is an open-source, space-continuous,
discrete-time traffic simulator developed by the German Aerospace Center, capable
of modeling the behavior of individual drivers. The path of each driver is determined
based on the origin/destination matrix provided as an input to the simulator. The
input of SUMO is determined for different scenarios at low and high density in small

and big areas for both highway and urban environments as detailed next.

5.4.1  Highway Simulation

We used Performance Measurement System (PeMS) data to create realistic vehicle
simulation for the highway. PeMS is developed by the department of Electrical Engi-
neering and Computer Science at the University of California Berkeley in co-operation
with the California Department of Transportation, California Partners for Advanced
Transit and Highways, and Berkeley Transportation Systems [18]. The data is col-

lected in real time from over 25,000 individual detectors. The system is deployed
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over all major metropolitan areas of the state of California. PeMS data provides
information about the flow, speed and occupancy of the road. These data are then
input to SUMO for a realistic flow of vehicles. For the purpose of our simulations,
we downloaded the data of 419 road sensors at highway I880-S in Alameda County
for both high traffic density, i.e. at 18 : 00, and low traffic density, i.e. 01 : 00, as
shown in Fig. 5.3-a. The traffic density algorithms are then tested for small area (2
km road) and large area (11.5 km road) for both low and high density traffic. Other

simulation parameters are given in Table 5.2.

5.4.2  Urban Simulation

We used one of the urban areas in Islamabad, Pakistan shown in Fig. 5.3-b. There

are two types of traffic generated for Urban area.

o TransitVehicles: The destination of the vehicles is not inside the area that is

vehicles pass through this area.

o ArrivalVehicles: The destination of the vehicles is inside the area. Vehicles
enter the area and then after reaching their destination they stop and leave the

network.

Vehicles entering the network follow Poisson distribution which is considered as
a realistic model [61]. Vehicles randomly select a starting point and a destination.
Destination can lie either within the area of interest (ArrivalVehicles) or outside the
area (TransitVehicles). The vehicular density algorithms are then tested for small
area (1.8 km of road in blue box, Fig. 5.3-b) and big areas (12.9 km of road, red lines,
Fig. 5.3-b) for both low and high density traffic. Simulation parameters are given in
Table 5.2.

5.4.8 Performance Metrics

The following performance metrics are used in the comparison of the density estima-

tion algorithms:
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Figure 5.4: Density Estimation-Highway Scenarios a) Small Area-Low Density b) Small Area-High
Density c) Big Area-Low Density d) Big Area-High Density

Density Estimation

is the vehicular density estimated by the algorithm.

Convergence Time

is the time duration between the starting time and the convergence time of the algo-

rithm.

Overhead

is the total number of messages transmitted over the network during the execution of

the algorithm until it converges.
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Percentage Error
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5.5 Simulation Results
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Figure 5.6: Convergence Time: Total time needed for the algorithms to converge for (a) Highway
and (b) Urban scenarios
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Figure 5.7: Overhead: Total number of messages sent for (a) Highway and (b) Urban scenarios

Figs. 5.4 and 5.5 show the estimated density values over time for the algorithms
and the actual density at both low and high density traffic for different area sizes of
highway and urban environment respectively.

Sample € Collide and Gossip-based aggregation perform worst when compared
with other algorithms because in a highly dynamic network like VANETS, connections
are continuously made and broken, and vehicles are frequently entering and leaving the

network. In Sample & Collide, when a vehicle which has already been sampled before
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Figure 5.8: Percentage Error: (a) Highway and (b) Urban scenarios

leaves the network, the probability of selecting a sampled vehicle again decreases.
Results for Sample & Collide in Fig. 5.4-b) and 5.5-b) are not included because
in small area with high vehicle density, the sampled vehicle leave the network more
quickly thus the algorithm convergence time is high with inaccurate results. High
mobility has a similar effect on Gossip-based aggregation. When a vehicle which is
part of gossiping leaves the network, important information is lost with the vehicle.
The average weight of the system, which should be equal to K, becomes less than K
thus the estimated value is always more than the actual value.

The density estimation by Hop Sampling is very close to the actual value for both
small and large areas of the urban road, and small areas of the highway. However, it
does not perform good in large areas of highway. The main reason why the density
estimation is not very close to the actual value for Hop Sampling algorithm in large
areas of the highway is that the accuracy of this algorithm decreases as the distance
(i.e. number of hops between the initiator vehicle and other vehicles) increases. Since
we have a long stretch of straight highway, the vehicle at one end of the highway is
farther away from the vehicles at the other end of the highway when compared to
the urban scenario where there is a network of roads with multiple paths between the
initiator vehicle and other vehicles which decreases the hop count values.

Local Density based algorithm performs better only in the high density highway

scenario and low density small highway. It performs better since in high density high-
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way scenario, vehicles are more uniformly distributed since roads are straight and
there are no obstacles that disrupts the uniformity of traffic on the road. Thus local
density gives a good estimate for global density. However when the density of vehicles
on the road is low and its big area, vehicles are not uniformly distributed thus giving
inaccurate results. In urban scenario, Local Density based algorithm completely fails
to get accurate estimation for vehicle density. This is because in Urban scenario, ve-
hicles are not uniformly distributed because of obstacles and different traffic densities
at different roads at the intersections of the roads. This disrupts the uniform flow of

traffic and local density fails to predict the global density of vehicles on the road.

CluSampling performs the best in different traffic scenarios for both highway and
urban roads. This is because CluSampling is more robust and mobility of vehicles has
limited effect on the performance of the algorithm. Clustering divides the target area
into smaller manageable cluster and thus density can be more accurately estimated
for each cluster. Since cluster size is determined by the number of vehicles on the
road, different traffic densities have limited effect on performance of the algorithm.
Large number of vehicles mean more clusters thus dividing the tasks into smaller

manageable clusters.

Fig. 5.6 shows the convergence time of the algorithms under all the traffic scenar-
ios. CluSampling, Hop Sampling and Local Density takes the least amount of time
to converge when compared to other algorithms, with convergence time usually less

than 10 seconds.

Fig. 5.7 shows the overhead of different algorithms under all the traffic scenarios.
CluSampling, Hop Sampling and Local Density has the least overhead on the network
followed by Sample & Collide and Gossip-based aggregation algorithms.

Fig. 5.8 shows the percentage error of the algorithms under all the traffic scenarios.
CluSampling has small percentage error in all traffic scenarios and its is usually below
10%. HopSampling also has low percentage error but for Highway big area scenarios
where the distance or the number of hops between the initiator and other vehicles

increases, efficiency of the algorithm decreases drastically. Local Based algorithm also
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gives poor results for Urban roads and low density big highway road.

Fig. 5.9 shows the load on the initiator for running the density algorithms. Hop
Sampling has the highest load on the initiator because once the initiator starts the
algorithm, all the nodes reply back to the initiator with some probability. Thus, the
initiator has to constantly receive messages from other nodes to accurately estimate
the size of the network. However, other algorithms has limited load on the initiator
vehicle.

From the results, it can be concluded that the CluSampling performs better than
the other algorithms for density estimation under different traffic scenarios. CluSam-
pling provides good accuracy and has less overhead, convergence time and load on

the initiator or probe vehicle.
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Chapter 6

CONCLUSION

In the first part of our work, we analyze the spatial and temporal evolution of the
VANET topology characteristics by using both realistic large-scale mobility traces
and realistic channel models. The realistic large-scale mobility traces are obtained
by using accurate microscopic mobility modeling of SUMO, determining its input
and parameters based on the vehicle flow and speed data extracted using the PeMS
database. The realistic channel model is obtained by implementing a recently pro-
posed obstacle-based channel model that takes all the vehicles around the transmitter
and receiver into account in determining the received signal strength. The perfor-
mance of the obstacle-based model is compared to the most commonly used more
simplistic channel models including unit disc and log-normal shadowing models. The
extensive investigation of the system metrics regarding the link characteristics over
both time and space including node degree, neighbor distance distribution, number
of clusters and link duration reveals that tuning the parameters appropriately and in-
troducing time correlation for the Gaussian random variable in the log-normal model
provides a good match with the more sophisticated and computationally expensive
obstacle based model. We validate the consistency of the values of these parameters

for various vehicle traffic densities over two different highways in California.

In the second part of our work, we first propose and analyze fully distributed and
infrastructure-free mechanisms for vehicle density estimation in vehicular ad hoc net-
works. Inspired by the mechanisms for the system size estimation in P2P networks, we
adapted and implemented three fully distributed algorithms, namely Sample & Col-
lide, Hop Sampling and Gossip-based Aggregation for VANETs. We also proposed a

fully distributed infrastructure free density estimation algorithm CluSampling espe-
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cially tailored for VANETSs. These algorithms are then analyzed rigorously for validity
and performance over eight traffic scenarios, including low and high density traffic, for
different sizes of highway and urban environments, based on a realistic representation
of the vehicle mobility, using accurate microscopic mobility modeling, real-world road
topology and real-data based traffic demand modeling. The analysis demonstrates
that CluSampling is more robust to changes in the network and provides high ac-
curacy in least convergence time and introduces less overhead on the network and
the initiator node. The good performance of these algorithms supports the usage
of distributed approach in the density estimation in VANETS, instead of using in-
frastructure based solutions that suffers from limited coverage, high deployment and
maintenance cost.

Future work for mobility and channel modeling can extend current work to realistic
simulation model and matching mechanism for urban traffic scenarios. For density
estimation, future work can involve incorporating the effect of background traffic on
the efficiency of the algorithm. The tradeoff between the accuracy of estimation and

the network load can be investigated.
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