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ABSTRACT

In this thesis, our goal is to show that a local field K does not have a canonical maximal
totally ramified abelian extension. However, for a given prime element x of K, we are
going to show that a maximal totally ramified abelian extension of K, of K can be

constructed by using Lubin-Tate formal group laws.



OZET
Bu tezde, bir lokal K cisminin dogal maksimal dallanmis abelyen genislemesi olmadigini
ancak K'de verilen herhangi bir asal © elemani i¢in Lubin-Tate formal grup teorisi

kullanilarak K’nin maksimal dallanmis abelyen genislemesi K;’nin insa edilebilecegini

gosterecegiz.
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Chapter 1

INTRODUCTION

Local class field theory studies the abelian Galois extensions of a local field K.
A local field is a field that is complete with respect to a discrete valuation and
has a finite residue field. For example @Q,, the completion of Q with respect
to the p-adic metricis a local field. Vo € Q, the norm of a is |a| = p~"®
where v(a) = ¢ such that o = p°u and p does not divide p.

Local class field theory was born as a branch of class field theory which
studies the abelian extensions of global fields however, the works of F.K.
Schmidt and Chevalley shows that the results in local class field theory can
also be derived independently. Lubin and Tate showed that formal groups
over local fields can be used to derive important results in local class field
theory such as constructing totally ramified abelian extensions of a local field
which are used to prove the Artin Reciprocity Map.

In section 2, we will introduce local fields and prove Hensel’s Lemma and the
existence of Teichmiiller representatives to derive some preliminary results
on the extensions of local fields. Section 3 and 4, will give a definition
and some general properties of formal groups and Lubin-Tate formal groups,
respectively. Finally in section 5, we will construct totally ramified abelian
extensions of a local field K and show that there is no canonical maximal
totally ramified abelian extension of K.

Section 2 is based on the results of Matsumura [4] and Fesenko-Vostokov [3].



The work on sections 3, 4 and 5 are derived from Milne [2] and Iwasawa [1].



Chapter 11

PRELIMINARIES

Discrete Valuation: Let K be a field. Then vx on K is called a discrete
valuation if

(i) vg : K* — Z is a surjective homomorphism: vk (xy) = vk (z)vk(y),
Ve,y e K~

(i) vxe (2 +y) = min{uk (), vk (y)}

(iii)vg(x) =00 & =0

Multiplicative Valuation: | . |: K — R is a multiplicative valuation if
Ve,y e K

(1) |zy| = [x[y]

(i) [z + | < maz{fz], |y}

(ili) 2] =0 2 =0

The ring of integers (valuation ring) O of K, is the set of elements with
nonnegative valuation; Ox = {z € K : vg(z) > 0} = {z € K : |z| < 1}.
Observe that vk (1) = vk (1) + vk (1). So, vk (1) = 0. Notice that, Vx € K,
r ¢ O = 7' € Og. Because; v € O = vg(x) < 0.

0=uvk(1) = vg(zz™) = vg(x) + vg(z7™') = vr(z™!) >0 = 27! € Og.

Ok is a local ring. It is enough to show that the set of ideals of Ok is totally
ordered. Let I, J be any two ideals of Og. If dz € I such that x € J, then
for any nonzero y € J, xy~' € Ok. (Otherwise, x = (zy~')y € J). Then
7'y € Og and y = z(z~'y) € I. Hence J C I. From this follows that
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the set of ideals of O is totally ordered and O has unique maximal ideal,
denoted by mgk.

If u € Og is a unit in O, Then, vg(p) > 0 and vk(p™') > 0. As
0= vk(1) = v (p) + vk (p™ ), vk (p) = 0. Hence,

mg ={x € Ok : vg(x) >0} = mg = {r € Ok : |z| < 1}.

Since vk is surjective, Ing € Ok such that vg(mg) = 1. 7 is called a
uniformizer element of Of. Notice that mx is irreducible; if 7 = ab, for
some a,b € O, then 1 = vk (mg) = vg(a)vg(b). As vk(a), vk (b) > 0, either

vk (a) = 0 and a is a unit or vg(b) = 0 and b is a unit.

Remark: For any c € R, ¢ > 1, |z — y| = ¢ "%~ defines a topology on K
and a + 7% Ox where a is a representative for O /mg in O and i € Z, is a

basis of this topology.

Ok is a PI.D. Let I be an ideal of Og. Then {vk(a) : a € I} is a set
of nonnegative elements and thus, has a minimal element vk (z) for some
x € . If vg(x) =0, then x is a unit and I = Og. Otherwise, vg(x) =n >0
= vk (x) = v (mk) + vk (p), where p € Ok is a unit. So, x = wfpu. Then
I =20k = 1Ok = (7}). In particular, mg = (7k).

Let S be a set of representatives for O /my in O, with 0 € S. Every unit
1 € Ok can be uniquely written as pu = Zizo s;ms, where s; € S. As S is
a set of complete representatives, dsg € S such that u = sy (mod mg), i.e.
v (e — s9) > 0. (Notice that sy € mg as p is a unit) Similarly, 3s; € S such
that 71 (u—s¢) = s1 (mod my), i.e. vg(u—s9—ms1) > 1. So this technique

shows that for each n, 3s,, such that vg(p —sg — sy — ... —w"s,) > n. So if



ZZO smé( converges, then it converges to p. As qu(smﬂ’}(L + ...+ sn+17r}‘(+1 >
n+1, (31 simh )nen is Cauchy, hence converges to p since K is complete.
Assume that > s = Y otimk. Then, > o(si — ti)m% = 0. So,
Zizo(si — ;)% is divisible by all the powers of mx. But this is only true
when s; —t; € mg. So s; = t;, as the representative of mg in O, was chosen
to be 0.

By using this property of units in O, we are going to show that every x € K,
x can be written as ) ., s;ms uniquely. Notice that it is enough to show
x = T, where n € Z and p is a unit in Og. Assume that ©x = 7 = T2€.

Then n = vk (7hp) = vg(TRE) =m. So,m=n = 1Epu =7l = u=_.
2.1 Hensel’s Lemma and Teichmiiller Representatives

Lemma 2.2 (Hensel’s Lemma): Let K be a local field and O be its ring of
integers. Let f(X) € Og[X] and o € Og. If f(ag) € mg and f'(ag) € my,

then there exists a unique @ € O such that f(a) = 0 and a = oy (mod mg).

Proof. The idea behind the proof is defining a Cauchy sequence ag,a, ...

and converging to a root « of f with this sequence. Let ag = «g. Define

Apy1 = Ay — }c,((‘;z)). One should be careful about whether f’(a,) is invertible
or not. As f’(ag) € mg, inductively one can show that f'(a,) & mxk.

To show that (a,)ne(ny is Cauchy, we have to prove inductively:

(i) lan| <1

(if) [ f"(an)| = [f"(ao)]

(iii) | f (an)| < |f/(a0)?t*"" where t = |J|f,c((z§))||2 < 1 since f(o) € mg implies
|f(ao)| < 1 and f'(ag) & my implies | f'(ao)| = 1.




These 3 properties can be proven inductively by using the identities:

(a) Let f(X) =0 b; X" Then f(X+Y) = by+b1 (X +Y)+...4+b,(X+Y)™.
If we rearrange this sum, we get f(X +Y) = S0 b X" + (30 ib XYY +
g(X,Y)Y? where g(X,Y) € Og[X,Y], ie (X +Y) = f(X) + f((X)Y +
g(X, Y)Y

M) F(X) = f(Y) = 0i(X = V) + bo(X2 = Y?) + ... +b,(X" = Y"). So
f(X) = f(Y)=(X =Y)h(X,Y) where h(X,Y) € Ox[X,Y].

The properties (i), (ii) and (iii) will give that (a,)nen is Cauchy:

lam — an| = |am — am_1 + oo + apg1 — ay

IN

maz{|am, — Gm-1l, -, |ans1 — anl|}
|f(am-1)]| If(an)|}
a7 1)
[ (ao) >

i—1
t2

max{

IN

IA

for some m — 1 > i > n. Since t < 1, (a,)nen is Cauchy, because K is
complete, it is convergent. Let lim, ,»a, = a. So by (i), |a| < 1, ie.
o € Og. Letting n — oo in (iii), [f(a)] < |f/(ao)?t*" = |f(a)| = 0.

Next step is to show o = ap (mod mg). We will show a,, = ay (mod my)
inductively and then let n — oo.

Forn=1a —ay=a; —ag = }f((;oo)). As f(ag) € mg and f'(ap) € my,
}f((;?)) € mg, i.e. a3 = o (mod mg).




For any n > 1, we have

| f(an)] _ | f(an)]

|an+1 — a,nI = ‘f/<an)| - |f’(a0)’ by (Z’L)
< 1)l < | (o)t = lf’““'%
/(o]
= | [ ()]

SO, Api1 — ay € Mk, 1.6, |apy — ay| < 1.

Rewriting a, 11 — a as an41 — a, + a, — @, we get a1 — o < mazx{|an —
an|, lan, — al}. By induction hypothesis, |a, — | < 1. We also showed
|api1 — a,| < 1. Hence, |a,i1 — a| < 1,ie. apy —a € mg.

Uniqueness of a: Assume that 35 € Ok such that f(5) = 0 and 5 = ap

(mod mg). Let 5 = a+h for some h € Ok. As f—ay € mg and a—ag € my,
f—a € mg. So | —al <1. Now,

0= f(B)= fla+h)=fla)+ f'(a)h+zh* = f'(a)h+ zh? for some z € Ok
by the identity (a).

If h # 0, then f'(a) = —zh.

= |f'(a)] = | —zh] < |h] = |8 —a] < 1. But if we let n — oo in (ii),
| ()] = |f'(ao)] = |f'(aw0)] = 1. So, we have a contradiction. Thus, h = 0
and = a. O

Example: Let K = Qq; and f(X) = X? — 5. Then f has a root
ag = 4 € Z/11Z and f'(4) = 8 # 0 € Z/11Z. So, by Hensel’s lemma,
we can lift ag = 4 to an « € Zy; such that f(a) =0 and a = o (mod 11).
We know that o = 4 + a111 + a211? 4+ .... We want to find aq, as,.... Ob-
serve that f(a) = 0 & 11% | f(a), Vk € N. In order this to be true,



11" | f(4 +a;11 + ... + a,_ 111" 1) ¥n € N. So, one can find the value of
a,_1’s by applying this formula for each n.

Hensel’s Lemma can be used to prove the existence of Teichmiiller represen-
tatives.

Let o € k* and a € Ok such that @ = a. If a satisfies X97! — 1, then a is
said to be a Teichmiiller representative of a.

Teichmiiller representatives are in bijection with k. Since X! —1 splits into
q — 1 distinct linear factors in £*, we can apply Hensel’s Lemma. So, for
each distinct root oy € k>, there exists an a of X97! — 1 in O such that
a = ap (mod my).

Note that the map a — « (mod mg) gives a multiplicative group homo-
morphism between the Teichmiiller representatives and k*. So, Teichmiiller

representatives and k* are isomorphic.

Lemma 2.3: O ~ k* @(1 + mg)

Proof. Let ¢ : O — k* map a to a (mod mg). Then kerp = 1+ m.
Consider the exact sequence

0= 1+ mg — O - k* — 0. Let T C Ok be the set of Teichmiiller
representatives. As T ~ k> with given isomorphism above, dg : £* — T such
that ¢ o g = id. Hence, the exact sequence splits and Oy ~ k* @(1 + mx)

follows.

2.2 Extensions of Local Fields

Let L be a finite separable extension of the local field K. Then vg extends
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uniquely to L such that Va € L, v(a) = va(NL/K(a)) and L is
complete with respect to vy, [3, pg 41, 42|. f := f(L/K, vy) is the inertia
degree of L/K and f = [ky, : k] where kj, is the residue field of L. Let 7 be a
prime element of L. Observe that vk (< mx >) is a subgroup of vy (< 7 >).
lup(< 7 >) 1 vk (< T >)] = e(L/K, v) is called the ramification index of
L/K. Let e := e(L/K,vy). In general ef < [L : K] = n, however, in our
case, when L is complete, ef = n, [3, pg. 40].

If E is an infinite extension of K, it may not be local. Since vg extends
uniquely to each finite subextension of E over K it also extends to E, but it
may not be discrete. Yet, a local ring and its maximal ideal can be defined
as Op = UOp, mg = Umy, where K C L C E and L/K is finite. By checking
their valuations, it is easy to see that Vo, 5 € Op, a+ 3, af € Og. So Og is
indeed a ring. Let E/K be Galois. Define a topology on Gal(E/K)=G such
that for any 0 € G, Br(o) = {7 € G : 7|y = 0|} where K C L C E and
L /K is finite, are the open balls of this topology. We claim that { B (0)}seq
forms a basis for this topology. Let ¢ € G. Then by definition, ¢ € B (o).
Let Br(0), Bp(t) € {BL(0)}sec and 6 € Br(c) N Bp(1). Consider Brp(9).
(Note that [L : K| < oo and [F : K| < oo gives that [LF : K] < c0) Let
A € Brp(d). Then App = d|pr by definition. So, |, = 4|, = o[ and
Ar =0|p = 7|p. Hence A € B(0) N Bp(7). Therefore, { B (0)}sec forms a
basis.

Observe that if ¢ is the identity map, then Bp(:) = Gal(E/L). Also, if
L=K(ay,ag,...,a), then 7 € B(0) & 7(a;) = o), 1 <i<n.

If E/K is finite, for any o € Gal(E/K), Bg(c) = {o}. So, the topology on
Gal(E/K) is discrete. However, if E/K is infinite, this is not the case.



Theorem 2.4: Gal(E/K) is compact.

Proof. Consider the map ¢ : Gal(E/K) — IIGal(L/K) given by o — (o|L)
where £ O L O K and L/K is finite. Since £ = UL, kerp = {1}, i.e. ¢ is
injective. Observe that the topology on [1Gal(L/K) is the product topology
of discrete topologies. Since a discrete topology is compact if and only if it is
finite, each Gal(L/K) is compact. By Tychonoff, [IGal(L/K) is compact. As
any closed subset of a compact space is compact, if p(Gal(E/K)) is closed
and ¢! is continuous, then Gal(E/K) would be compact.

¢(Gal(FE/K)) is closed: If (¢|r) is not in the image of Gal(E/K), then 30|
and o|r» such that L' C L” and (o|pn)|r # o|p .

Let U = Uy pvGal(L/K) @{o|} @{clr}. U is open in IIGal(L/K)
and U N p(Gal(E/K)) = 0. Hence p(Gal(E/K)) is closed.

¢! is continuous: Let By (o) be an open subset of Gal(E/K). Then 7 €

Br(o) if and only if () = o(a;),1 < i < n where L = K(ay, a9, ..., ).
So ¢ maps By (o) to IS, such that S, = Bp(o) where F' = K(o,,...,q4,),
{aiy, ooy au, } € {aa, ..., a, }, on finitely many terms and S, = Gal(L/K) on
infinitely many terms. Thus, ¢ is an open mapping and ¢! is continuous.

From this follows, Gal(E/K) is compact.
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2.2.1 Unramified Extensions

Let L/K be a finite extension of degree n. If [k, : k] = n, then L/K is un-
ramified. As [k : k] =n, e(L/K,v.) = 1. So, vy(7k) = vr(7r). Hence, one
can say that L/K is unramified if and only if a prime element of K remains
prime in L.

Unramified extensions can be characterized through the following lemma:

Lemma 2.5: Let L/K be a finite, Galois extension. L/K is unramified
< Gal(L/K) ~ Gal(kp/k).

Proof. Since k is a finite field , it is perfect. i.e. kp is separable. Also, ky /k
is a finite field extension, say of degree n. Then, kj, is the splitting field of
the polynomial X9 — X. Hence, k1 /k is Galois.

If Gal(L/K) ~ Gal(kp/k), then |Gal(L/K)| = |Gal(kr/k)|. Hence [L : K] =
|kr @ k], i.e. L/K is unramified.

If L/K is unramified, then consider the map ¢ : Gal(L/K) — Gal(ky/k)
given by ¢ — & where (%) = o(z). It is easy to see that ¢ is well- defined
and a homomorphism. ¢ is surjective, since each @ maps « to a distinct con-
jugate of o and these distinct conjugates lift to a distinct § € L by Hensel’s
Lemma. In other words, for each & € Gal(ky/k), 30 € Gal(L/K) such that
o maps [ to its distinct conjugates.

As|Gal(L/K)| = |Gal(kg/k)|, surjectivity implies injectivity. Hence, Gal(L/K) ~
Gal(kp/k). O

Remark: Composite of two finite unramified extensions is unramified.

Let L/K, L'/K be finite and unramified. Let k= k(@) for some @ € kp .

11



By lemma 2.4, @ can be lift to some a« € L' and L' = K(«a), LL' =

0. Let g(X) = Irr(a, L) and g(X) = a,X™ + ... + ao. Then vy (a) =
vr((—=1)"ap) > 0, thus vg(ag) > 0. Hence g(X) € OL[X] [3, pg

L(«) follows. Observe that a € O C O since @ # 0. So vy (a) >

1
FLL/Lyvp, 1)
37]. So it makes sense to talk about g(X) € k[X]. g is irreducible in ki,

since g is irreducible in Or. So deg(g) = deg(g), i.e. LL'/L is unramified.
As both LL'/L, L/K is unramified, LL'/K is unramified.
Therefore, one can define a maximal unramified extension K*" of K as the

union of unramified extensions of finite degree. The lemma below will show

that K% C K,

Lemma 2.6: For any local field K and positive integer n, there exists a
unique unramified extension L of degree n over K, which is Galois with cyclic

Galois group.

Proof. We know that the elements of k are the roots of X7 — X. Since
k is a finite field, it has a unique extension F;» of degree n which is the
splitting field of X¢" — X. Let g(X) be the minimal polynomial of a primitive
(¢" — 1)st of unity over k. As g is separable, we can lift g(X) to a g(X) €
K[X]. Note that g is irreducible and separable since g is. Let L be the
splitting field of g(X) over K. Then L/K is Galois and [L : K| = deg(g) =
deg(g) = n. So [k : k] < n. However, by construction F,» C kjp, ie.
[k : k] > n. Therefore, [k, : k] = n and L/K is unramified of degree n. By
lemma 2.4, Gal(L/K) ~ Gal(kr/k). Since, Gal(ky/k) is cyclic, generated
by the Frobenius map ¢(x) = 2%, Gal(L/K) is cyclic and the automorphism

o € Gal(L/K) such that o(z) = 29 (mod my) for all x € L, generates the

12



Gal(L/K) and is denoted by Froby k.

Now let L/K and L'/K be two distinct unramified extensions of degree n.
Then LL'/K is unramified and so, Gal(LL'/K) is expected to be cyclic as
proven above. However, LL'/K is unramified implies that LL'/(L N L') is
unramified. Let [L : LN L] = m. Then [L': LN L' = m and Gal(L/(L N
L)) ~Z/mZ ~ Gal(L/(L N L")). Therefore, Gal(LL' /(LN L") ~ Z/mZ &
Z/mZ, which is not cyclic. Hence there is a unique unramified extension

L/K of degree n. O

Let K,/K be the unique unramified extension of degree n. Then K" =
UK. Frobenius automorphism extends to K" and can be identified as
the image of generators of Gal(K,/K) = Z/nZ. Hence Gal(K" /K) is the

profinite completion of Z:

Gal(K"" /K) = lim Gal(K, /K).

2.2.2 Ramified Extensions

If [k : k] = 1, then L/K is totally ramifed. Let L/K be Galois and I,, =
{o € Gal(L/K) : vp(x —ox) > n+1,Vz € L}. Our claim is that [, is
a subgroup of Gal(L/K). As vi(x — x) = oo, identity map is in I,. Let
o €I, Then vy (v —ox) >n+1. ie x—ox € m}™. Aso € Gal(L/K),

o7tz —x € o7 tmitt = mitt. Therefore 07! € I,,. Let 0,7 € I,. Then

orr — 1 = o(tx —x) + ox —x € mjt.

So I, is indeed a subgroup of
Gal(L/K). These subgroups are called higher ramification groups. Observe

that Gal(L/K) 2 Ip 2 11 O ...

13



Let ¢ : Gal(L/K) — Gal(ky/k) such that ¢(c) — & where 3(Z) = o(z).

Consider the exact sequence
0— Iy — Gal(L/K) — Gal(kr/k) — 0.

Notice that o € ker¢ < oxr =z (mod my) < v(z —ox) > 1 & o € I,
So, Gal(L/K)/Iy ~ Gal(kr/k). Notice that, L/K is unramified if and only if
Iy = {1} and L/K is totally ramified if and only if Iy = Gal(L/K). In general,
if Ly is the largest unramified subextension of L/K, then Gal(L/Ly) ~ I.

Lemma 2.7: Let L/K be totally ramified and let 7, € L be a prime el-
ement. Then the group I, = {0 € Gal(L/K) : v(omy —mp) >n+ 1}

Proof. Observe that if o € I,, then vy (czx—z) > n+1, VY € L, in particular
for v = 7. So, I, C {0 € Gal(L/K) : v(om, — L) > n+ 1}

We know that z € L can be written uniquely as z = >_._, a;w% where a;’s are

i€z
chosen from a set of representatives of k; in Op. So, these representatives
can be chosen as Teichmiiller representatives, as,...,a,. As L/K is totally
ramified, k;, and k are the same field. Therefore, these a;’s are actually in
Ok and are fixed by any o € Gal(L/K).

Now let 7 € {0 € Gal(L/K) : v(omp, — 7)) > n+1}. If Vo € L,
vp(te—2x) > v (tmp—mp), then I, O {0 € Gal(L/K) : vy (om,—my) > n+1}.
Observe that, 7o — 2 € my, since L/K is totaly ramified, i.e Gal(L/K) = I
and 7 € Iy. So vp(Ta—x) = vp(T(X,cp aimh) =D icq aimy)) = v (X ey ai(TimL—
mi)) > 1. Therefore, for ¢ < 0, a; = 0 and vp(rx — x) = v (77 —

7TL) + ’UL(CLl + CLQ(T’/TL — 7TL) + ) Since a; + CLQ(TWL — 7TL) + ... € OL,

14



vp(te —x) > v (tmp — 7).

Hence, 7 € I,,. ]

Lemma 2.8: Let L be a finite Galois extension of K. If the residue field
of L has order ¢, then [Iy : I1] | (¢ — 1) and [I, : I41] | ¢ for n > 1.
Furthermore, for large enough m, I, = 1 for all n > m and I; has p-power

order.

Proof. Let mp, be a prime element of L. We claim that there is a homomor-
phism ¢ : Iy — Of /(1 + my) = k* given by o — Z*L and kery contains I;.
Observe that omy and 77, has the same valuation as ¢ € Gal(L/K). Thus,
ok is a unit.

Let o, 7 € Iy. Then

oOTy, oTy,
—) = — d
7( - ) — (mod my,)
T(omr) _ oTL (mod my)
TTI, Ty,
TOTY, — T OTp, (mod mL)
T, mwr T

So, p(10) = p(1)p(0), i.e. p is a homomorphism.
Now, we want to show that kero 2 I;. If o € I, then onr, = 7, (mod m?).
This gives that °Z& = 1 (mod my). Hence o € kery. From this follows,

In/I = OF /(1 + my) ~ k*. Hence [Iy : I1] | (¢ — 1).

Now consider the map A : 14+ m} — kp(= Or/my) given by 1+ 7" — p. A
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is a homomorphism since,

M+ m) (14 m50)) = AL+ et v + )
= p+v+aipw=p+v (mod mp), i.e
MA+7pp)(L+77v) = p+v

= M1+47ip) + A1 +77v).

Observe that 1 + 7y € kerA & p € mp < 1+ 7tu € 1+ m}t. So,
kerA =1+ mi™ and (1 +m3)/(1+ m}t) ~ ky, follows.

Consider the map ¢ : I, — (1 + m})/(1 + m}™) given by o TLo ¢
is a homomorphism and ker¢ 2O I, (the proof is same as n=0 case).
Therefore, I, /I, 1 = (1+m}) /(1 +m}*h) ~ kp and [I,, : I,41] | ¢ follows.
As every element of k; has p-power order, so do the elements of I,,/1,.1. In
particular, as [Is : I1] | |I1], p | |11].- By Cauchy’s theorem, I; has an element
of order p.

Let Lo be the maximal unramified subextension of L/K. Then L/Lg is to-
tally ramified. By Lemma 2.7, the n'* ramification group of Gal(L/Ly) = G
coincides with the set {o¢ € G : o, — 7, > n+1}. Let n > maz{oc € G :

vp(omy —m)}. Then I, = {1}. O
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Chapter 111

FORMAL GROUP LAWS

Let A be a commutative ring with unity. A formal power series with coeffi-

cients in A is an infinite sequence

f:(CLOaa17"')7 aieA, 1 €N

Formal power series with coefficients in A forms a commutative ring and is

denoted by A[[X]]. Addition and multiplication are defined in the usual way:

(ao,al, ) + (bo,bl, ) = (CL() + bo,CLl + bl, )

(ao, ai, )(bo, bl, ) = (Co, C1, )

n

where ¢, = E a;by_;

1=0

One may think of formal power series without the notion of convergence. So,
in contrast to power series, we are not allowed to substitute a value o € A
into f(X) € A[[X]] because f(«) is an infinite sum which has a definite value
when it is convergent. As an immediate result of this is that the composition

f(g(X)) only makes sense when ¢g(X) € A[[X]].
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Definition: A commutative formal group law is a power series F' € A[[X, Y]]

such that

(i) F(X,Y)=F(Y,X)
(i) F(X,0)=X and F(0,Y) =Y
(iii) F(F(X,Y),Z) = F(X,F(Y,Z))

Notice that (ii) implies that F has no constant term, so (iii) makes sense.
Property (ii) can also be interpreted as F(X,Y) = X + Y (mod deg.2) [2,
pg 16-17]

Now, our goal is to show that XA[[X]] is a commutative group with the oper-
ation F'(X,Y) := X+rY. Observe that (i) gives commutativity, (ii) identity
and (iii) associativity. So if f[X] € X A[[X]] has an inverse in XA[[X]], we're
done. To show that inverses exist, it is enough to prove that X is invertible
in XA[[X]]. Because if ip(X) € X A[[X]] is the inverse of X, then ip(f(X))is
the inverse of f(X) € X A[[X]]

Lemma 3.1: There is a unique ip(X) € X A[[X]] such that F(X,ip(X)) =
0.

Proof. As F(X,Y) = X +Y 437, o, a; X'Y7, F contains no higher order
terms in only one variable. So one can construct ip(X) inductively such that
F(X,h,(X)) =0 (mod deg. n+1) where ip(X) = h,(X) (mod deg. n+1).
If F(X,h,(X)) =0 (mod deg. n + 1), since h,, is unique, one can uniquely
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define h,11(X) = h,(X) + b, 1 X" and F(X, h,41) =0 (mod deg. n + 1).
Clearly, hy(X) = —X + a1 X? (since F(X,hy) = X + (—X + anX?) +
a1 X (=X + a1 X?) =0 (mod deg. 3)) and the rest follows.

So, (X A[[X]], +r) is an abelian group.

Let F(X, Y) and G(X, Y) be two commutative formal group laws over
A. Then f(X) € XA[[X]] is a group homomorphism if f(X +rpY) =
f(X) +¢ f(Y), written as f : FF — G. In other words, f : F — G is a
homomorphism if and only if fo FF'= G o f.
If there exist a g(X) € X A[[X]] such that ¢ : G — F and fog=go f =X,
then f is an isomorphism. A homomorphism f : F' — F' is called an endo-

morphism.

Example: Let F(X,Y) = X +Y + XY and f(X) = 1+ X)P—-1. It
is easy to see that f(X +rY) = f(X) +r f(Y). So, f is an endomorphism.

Lemma 3.2:
(i) (Hom(F,G),+¢) is a subgroup of XA[[X]].
(i) (End(F),+r,o) is a ring.

Proof. (i) As Hom(F,G) is a subset of XA[[X]], it is already commutative
and associative. So it is enough to prove that Hom(F,G) is closed and
Vf e Hom(F,G), igo f € Hom(F,G).

Let f, g€ Hom(F,G) and h = f +¢c g. Then h(X +rY) = f(X +rY) +¢
g X +rY). As f,g € Hom(F,G) and Hom(F,G) is commutative and asso-
ciative, (X +pY) = (f(X) +¢ 9(X)) +c (f(Y) +c 9(Y)) = h(X) +c h(Y).
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Therefore, h € Hom(F,G).

Let f € Hom(F,G). We want to show that (igof)oF = Go(igof). But first,
we need to show igoG = Goig and Vf, g, h € XA[[X]], fo(goh) = (fog)oh.
G(G,Goig) = GX,)Y) ¢ (ic(X) +cic(Y)) = (X +¢ Y) +¢ (ic(X) +c
ic(Y)) = (X +¢ic(X)) +¢ (Y +gic(Y)) = 046 0 = 0. As G(G,ic o G) is
also 0 and the inverse is unique, ig o G = G o ig.

If f,g and h € XA[[X]], then (fg)oh = (foh)(goh). Then for any n € N,
frog={(fog)". For f(X)=X",(fog)oh=(goh)"= fo(goh). So, if
f(X) =>_,51a, X", then both are equal to ) -, an(goh)".

Thus, Go (igo f) = (Goig)o f = (igoG)o f =igo(Gof) =igo(foF) =
(igo f)oF.

Hence, (Hom(F,G),+¢) is a subgroup of XA[[X]].

(ii) In (i), we showed that (End(F),+r)) is an abelian group and o is asso-
ciative. So, we only need to prove that o is distributive.
Let f, g and h € End(F). fo(g+rh) = fo(F(g(X),h(Y)) = F(g(X),h(Y))o
fF=F(fog(X),foh(Y))=(fog)(X)4r (foh)(Y). Thus o is distributive
over +p.
Hence (End(F),+p,o) is a ring.

O

Now, let A = Ok and F € A[[X, Y]] be a commutative formal group law.
Let F(X,Y) = X +Y 437, ., a;; X'Y7. Observe that for any, z, y € my, as
i, j — 00, F(x,y) converges to an element x +ry € my. Therefore, (my,+r)

is a commutative group.

20



Example: Let F(X,Y) = X +Y + XY and f(X) = 1+ X)P—1. It
is easy to see that the map a — a + 1, from (mg,+r) to (1 + myg,.) is an

isomorphism and the below diagram commutes:

m;, —— My,

a—a+1 a—a-+1

a — aP

1+ my 1+ mp
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Chapter IV

LUBIN TATE FORMAL GROUPS

For a given prime elemenet m € K, let F, denote the set of power series
f(X) € Ok|[X]] such that:

(i) f(X)=7X (mod deg.2)

(i) (X) = X (mod )

where ¢ is the number of elements in the residue field k of K.

Example: f(X)=7X + X%isin F}.

Lemma 4.1: Let f,g € F; and let ¢1(X;, Xo, ..., X)) € Ok|[[ X1, Xo, ..., X4]]
be a linear form. Then there is a unique ¢ € Ok[[X1, Xo, ..., X,,]] such that:
() 6= ér (mod deg. 2)

(i) f(O(X1s .o Xn)) = @(9(X1), -, (X))

Proof. We are going to construct ¢ inductively such that Vn € N, ¢ =
¢n (mod deg. n + 1) where each ¢, is unique and satisfies (i) and (ii)
(mod deg. n + 1).

For n = 1, our candidate is ¢; because of the uniqueness.

Let ¢1(Xq,.... Xpn) = a1 X5 + ... + a, X, for ay,...;a, € Og. (i) &1 = ¢
(mod deg. 2)

(i) f(d1( Xy, .o, Xi)) = 701(X, oo, X)) = 7@y Xy + ... + 0, X,,) (mod deg. 2)
61(g((X1), .o, 9(Xp)) =11 (7 X, ..., 1Xp) = (a1 X+ +a, X™) (mod deg. 2)
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So fo¢y = ¢10g (mod deg. 2).

Let ¢, be unique and satisfies (i) and (ii) (mod deg. n + 1). Define ¢, 1 =
¢n + h where h € Og[[ X1, ..., X,,]] is homogeneous of degree n + 1. (Notice
that since ¢, is unique there is no other candidate for ¢,,.;) Then

foou1 = fo(dn+h)=nd,+7h=fodp,+ mh (mod deg. n + 2) and
G109 = (pp+h)og=¢,09+hog=g¢,o0g+h(g(X1),...9(X,)) =
bpnog+h(rXi,..,7X,) = d,0g+ 7" h (mod deg. n + 2)

We want to check that if such h exists, i.e we want that h € Og[[ X1, ..., X,]].
Observe that (ii) is satisfied if fog¢, —¢,0g = (7" —7)h (mod deg. n+2).
Since f(X) = ¢g(X) = X? (mod 7) and charK=p (¢ =p"), fo ¢, — P09 =
(D (X1, .oy X0)T = On (XY, ..., X9) =0 (mod 7), i.e. 7 divides fo ¢, —d,0g.
Also, 7™ — 1 is a unit in Og. Therefore such h exists over O and our con-
struction of ¢, is valid. Hence, there is a unique ¢ € Og[[X1, ..., X,,]] which

satisfies (i) and (ii). O

Theorem 4.2: For each f € F there exists a unique commutative formal

group law F; with coefficients in Ok such that f € End(Fy).

Proof. By lemma 4.1, Vf € F,, 3F; € Og|[[X,Y]] such that Fy(X,Y) =
X +Y (mod deg. 2) and fo Fy = Fro f. So it is enough to show Fy is a
commutative formal group law.

1) Fp(X,Y) = Fp(Y,X): Let G(X,Y) = F¢(Y,X). Then G(X,Y) = X +
Y = Fy(Y, X) (mod deg. 2).

Also, [ o G(X,Y) = fo Fy(Y,X) = Fy(Y,X) o J = Fy(f(¥), f(X)) =
G(f(X), f(Y)) = G(X,Y) o f So both G(X,Y) = F¢(Y, X) and F¢(X,Y)
satisfies the two conditions. By uniqueness, F¢(X,Y) = F¢(Y, X)
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(i) Fp(X,0) = X and Ff(0,Y) =Y: As Fp(X,Y) = X +Y (mod deg. 2)
and fo Fy = Frof, Fy(X,0) = X and Fy(0,Y) =Y. (It is mentioned in

chapter 3 that these two conditions are same).

(i) Fp(Fr(X,Y), Z) = Fr (X, Fy (Y, 2)):

FrFr(X,Y),Z)= X +Y + Z = Fy(X, F;(Y, Z) (mod deg. 2).

o F(X,Fy(Y,2)) = Fy(f(X), [ o Fy(Y,Z)) = Fy(f(X), Fy(Y,Z) o f) =
Fr(X, Fy(Y, Z)) o f. and

o Fp(X, Fy(Y,2)) = Fy(f(X), [ o Fy(Y,Z)) = Fy(f(X), Fy(Y,Z) o f) =
Fy(X,F;(Y,Z))of. So, again by uniqueness, Fy(Fy(X,Y), Z) = Fy(X, Fy(Y, Z)).

Let f € F; and F be the Lubin-Tate formal group law given by theorem
4.2. Let a € Ok. Then, there exists a unique [a]; € Ok[[X]] such that
(i) [a]f = aX (mod deg. 2)
(i) f o laly = [a]s o f
Notice that [7]; = f.

Theorem 4.3: For each a € Ok, [a]f € End(Fy). Furthermore, Ok can be
embedded into End(Fy) with the map a — [a];.

Proof. Let a € Og. We want to show that [a]; o Fy = Fy o [a];.

(i) [a]fo Ff = aX +aY (mod deg. 2) and Frolalf = aX +aY (mod deg. 2).
(i) fo(lalyo Fy) = (folaly) o Fy=lalyo(foFy)=(lalyoFy)of
fo(Fyolalg) = (foFy)elals = Fyo(folaly) = Fro(lalgo f) = (Fyolals)o f.
Since both [a]fo Fy and Fyola]f satisfies the conditions (i) and (ii), by unique-

ness, [a]f o Fy = Fy o [aly.
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Let ¢ : Ox — End(Fy) given by the map a — [a];.

¢ is a ring homomorphism, i.e. [a]; o [b]; = p(a)p(b) = p(ab) = [ab]; and

[aly + [0f = @(a)p(b) = p(a+b) = [a + bl;
(i) [a]f o [b]f = abX = [ab]; (mod deg. 2)

(i) (laly o [b]y) o f = laly o ([bly o f) = [aly(of o [b]y) = ([aly o f) o [b]; =
fo(lalyofbly) and [ab] o f = f o [ab];. By uniqueness, (a)p(b) = p(ab).
i) [aly +[b]; =aX +bX = (a+b)X = [a+b]; (mod deg. 2)

aly + [b]y) o f = laly o f + [bly o f (since f,[a]s,[b]; € End(Fy) and
End(Ff),+p,0) is a ring) = foals + fo [blf = fo ([alf + [b]f). Also,
[a+blpof=folatd.

So, p(a+b) = p(a) + ¢(b). Hence ¢ is a ring homomorphism.

¢ is injective: if a # b, then by condition 1, [a]; # [b]f.

Therefore, a — [a]; gives an injective ring homomorphism from Of to

End(Fy). 0

More generally, if f,g € F; and a € Og, then there exists a unique
la]y € Ok[[X]] such that
(i) [a]y,r = aX (mod deg. 2)
(i) g o [algs = [algso f
Observe that [a], fo Fy = aX +aY = F,o[als, (mod deg. 2). Also
g o (lalgs o Fy) = (golalgs) o Fy = ([algs o f) o Fy = lalgs o (f o Fy) =
[alg.g o (Fo f) = (agso Fy)o fand
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(Fyolalgs) o f = Fyollalgyof) = Fyo(golags) = (Fyog)olasy =
(g0 Fy)olalgs=go(Fyolalgy).

Hence by uniqueness, [a], ;o Fy = F, 0 [al, ¢, 1.e. [aly s € Hom(Fy, F).
Similarly, one can show that [ab], ; = [a]n4 0 [b].f-

Theorem 4.4: For any f,g € F,, Fy ~ I, as formal Og-modules.

Proof. Let p be a unit in Og. Then X = [1];; = [u]sy 0 [0 g So,

(W]t : Fr — Fy is an isomorphism. O

This isomorphism implies that the choice of f € F is not important.
Definition: A formal Og-module A is a commutative formal group law F
and an injective ring homomorphism O — End(Fy), a — |al;.

Note that (my,+y) is an abelian group for a finite extension L/K.
By the uniqueness idea in lemma 4.1, it can be shown that (mg,+¢) has a
Og-module structure with scalar multiplication a.z = [a](x), Va € Ok and

Vx € my.
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Chapter V

CONSTRUCTING ABELIAN EXTENSIONS

As we introduce Lubin-Tate formal groups, we are ready to give a construc-
tion of totally ramified abelian extensions of a local field K.

Let m € K be a prime element and f € F,. We know that the choice of f is
not important. Let Ay = m§, = {o € K°} | |a| < 1}. Note that Vo, 8 € Ay,
F¢(o, B) = a+p [ converges to an element in Ay and Ay has an Og-module
structure with scalar multiplication a.x = [a]¢(z).

Let Af, be the subset of Ay such that Voo € Ay, a € Ay, if and only if
[7"]5(a) = 0.

Ay, is a submodule of Ay.
Let o, B € Ayy,. Then [7"]p(a +5 ip, (8)) = [7"];(Fy(a, ip(B)). As [7"]; €

End(Fy), [7"];(Fy(a, ir(8)) = Fy([7"] (), [7"]1(ir (8)) = Fr (0, [7"]1(ir, (8))) =
(7 (ir, (B)) = ip, ([7"]£(B)) = O (since ip, also in End(Fy), which is proven

in lemma 3.2)

So Ay, is a subgroup, hence a submodule of Ay.

Proposition 5.1: The Og-module Ay, is isomorphic to Ok /(7"). Hence,
End(Ayf,) ~ Ok /(™) and Aut(Ay,) >~ (Og /(7).

Proof. Let h : Fy — Fj be an isomorphism. Then the diagram below com-
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mutes and h induces an isomorphism of Ok modules Ay — A,.

a— Fy(a,0)
Ay Fy
a — h(a) h

a— Fy(a,0)

g

So the choice of f is not important. Let f(X) = 7X + X9 Observe that
£ has finitely many roots. So, A #n is finitely generated. Also, Vo € Ay,
7".a = 0. Thus, Ay, is a torsion-module. Since Ok is a PID, we can apply
the structure theorem of finitely generated torsion-modules over a PID to
Apy:

App = Ok /(7))@ Ok /(7®2) P ... B Ok /(7¥), dy < ... < d,

Observe that f(X) = X(m + X% !) and ¢g(X) = 7 + X9 is an Eisenstein
polynomial. Let L be the splitting field of f. If « is a nonzero root of f, then
9(X) = Irr(a, K), thus v, (o) = va(NL/K(a)) = va(NL/K(W)) >
0. So all the roots of f lie in A;. Hence, for n = 1, A, has q elements and

by the structure theorem Ay =~ Ok /(7).

Assume that proposition 5.1 is true for n. Let ¢ : Ay, 41 — Ay, given by

a — m.a. We want to show that ¢ is surjective.

Let 8 € As,,. Consider the polynomial f(X)— 8 =7X — X?— . Then any
root £ of this polynomial has a positive valuation. So, all roots of f(X) — /8

1S in Af.
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Observe that if f(§) — 8 = 0, then f(§) € Ay, ie. 7. f(§) = 0, thus
7€) = 0. So, £ € Appir, 1e VB € Apyy, 3E € Agpqr such that ¢(€) = 6.
Therefore, ¢ : Appp1 — Ay, is surjective and kerg = {a € Ajppq | a0 =

0} = As;. Consider the exact sequence:
0—=Ap1 = Appp1 = App, =0

By induction hypothesis, A, ~ Or/(7"). So, |Af.| = ¢". Since, Af, =~
Apmir/Apas [Apnpal = ¢" Then Agiq =~ O /(7") @ Ok /() or Mgy =
Ok /(7"1). The only way 7™ maps Ay,41 to O /(7") is if Ay,41 contains
Ok /(7" ) as its subgroup. Hence, Af,.; is isomorphic to O /(7"*).
End(Agp) = O /(7™ and Aut(Ag,) =~ (Ok/(7"1))* follows.

[

Lemma 5.2: Let F' € Og[[Xy,..., X,]] and L/K be finite, Galois with
Gal(L/K) = G. Then, Yoy, ...,ap, € my, and Yo € G:

oF(ay,....a,) = Floay, ...,oa,).

Proof. 1f F is a polynomial, since o fixes K, the equality holds. Otherwise, let
F = F;, (mod deg. k+1). As |oa| = |a|, Yo € G, ¢ is continuous, so it pre-
serves limits, i.e. if limy_, o g = «, then limy_,o oy = o(limg_, ) = oa.
So, oF(ay,....ap) = olimg_o Fr(ag,...,) = limg oo oF(aq, ..., ) =

limg_yo0 Fr(oaq, ...,00,) = F(oay, ...,o0,). O

In particular Gal(L/K) act as an Ox-module isomorphism on Ay,. Let
K, = K[A;,] be the subfield of K* generated by Ay, over K. Note that for

a given prime element 7 € K, Ay ~ A, as Og-modules, Vf, g € F. Hence
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K, is independent of the choice of f. Observe that K, is the splitting field
of f*, thus K, , /K is Galois.

Theorem 5.3:

(i) For eachn, K., is totally ramified of degree (q—1)g"".
(it) The action of Ok on Ay, defines an isomorphism (O /(1"))* = Gal(Ky .,/ K).

(i4i) For each n, wis a norm from K, to K.

Proof. As the choice of f is not important, let f(X) = 7X + X% and oy be
a nonzero root of f. Construct a sequence of roots as, ..., o, such that «; is
a root of f(X) — a;_1. Since f(az) —a; =0, fP(ay) = f(ay) = 0. So ay
is a root of f and f(ay) # 0 since «; is nonzero. Inductively, it can be
shown that each o is a root of f® and is not a root of f~1. Consider the

sequence of fields:

K C Kla;] C ... € Klay,] C K[ALN]

(1)

The idea is to show K|oy]/K and for each i, K[a;]/ K |c;_1] are totally rami-
fied. Observe that «; is the root of the Eisentein polynomial g(X) = m+X7!.
So, [K[ai] : K| = g — 1. Since the norm of a; over K is 7, vgfq,j(c1) > 0.
Hence, a; € mgiq,)- We claim that (a;) = mgla,). Observe that 7 = —ai™!
S0, V() (7) = (¢ — 1)Vk|ay)(01). If Jov € mkia,) such that mgp,) = («), then
Vkan) (@) < Vk[ay)(0r) () and vgpa,)(T) = nga,) (o) where ¢ —1 < n by (*).

But, n = e(Ko1]/K, vk[a,]) < ¢—1. So, ¢—1 = n and vga,) (1) = Vfa,)(@).
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Therefore, mgia,] = (a1).

As Vg(a] (1) = (¢ = Dogp(ar) and mga,) = (@), e(Kla]/K, vga,) =
q—1=[K[oq] : K], thus K[o;]/K is totally ramified.

We want to show that f(X) — «;_; is the irreducible polynomial of «;
over K[a; 1]. Just like in the case ¢ = 1,by comparing valuations, one
can prove inductively that mgp, = () and [Koy] @ Klosi]] = ¢ =
e(K[oy]/K[oi-1], vk[a,)). Hence, f(X)— a;_ is Eisenstein over K[o;_1]) and
K[o;]/ Kov1] is totally ramified. From this follows, K |o;]/K is totally ram-
ified and [K[Af,] : K] > (¢—1)¢" ' (1).

By definition, K[A;,] is the splitting field of f. As Ay, = {a € A; | fuy(a)} =
0, Gal(K[As,]/K) maps Ay, to itself. Therefore, |Gal(K[Ay,]/K)| < |Aut(Ag,)|
=[Ok /(m"))] = ¢" — ¢"7" = (¢ = 1)g"~", thus [K[As,] : K] < (¢ — 1)g"™
(2). By (1) and (2), [K[As,) : K] = (¢—1)¢" " So, K[A;,] = K[a,], hence
K[A;,]/K is totally ramified of degree (¢ — 1)¢" .

(i)
By proposition 5.1, Aut(Ay,) ~ (Ox /(7™))*, thus Gal(K[Af,]/K) ~ (Og/(7"))".

(iii)
Observe that «, is a root of (f(;()) o f1) = 4 4 X D" € O [X].
Since, [K[on] : K] = (g— 1), F(X) = Irr(an, K). Hence Nija,y/sc(an) =

(=)D"=
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O

Let Kr = UKy . Then Gal(K/K) = lim Gal(K,/K) = lim((Ox /(7"))*) =
Oj. Recall that if f € F; and f’ € F,/ are isomorphic then they induce an
Ok-module isomorphism between Af, and Ay ,. Thus, K., ~ K., and
K, ~ K,,. However, in general this is not the case. If 7 and 7’ are distinct

prime elements of K, then K, = K, if and only if 7 = 7’ (mod m").

Lemma 5.4: Let 7, 7’ be prime elements of K and let f € F,and f' € Fy
be power series in 5? Let ¢ € @[[Xl,...,Xn]] be a linear form such
that 7'¢(Xq, ..., X)) = m¢¥(X1,...,X,,). Then there exists a unique power
series p(Xy,...,X,) € @[[Xl,...,Xn]] such that p = ¢ (mod deg. 2) and
frop=p?of.

This lemma is proven in [1, pg. 47-49]. Observe that if we replace K with
an unramified extension K, /K of degree n, then lemma 5.4 will still hold

since completeness is the only thing we need in the proof, [1, pg. 49].

Lemma 5.5: For each 1 € 1+ mj, there exists a n € Oj such that

np = @(n).

Proof. The idea is to recursively construct an n € O3 satisfying nu = ¢(n).
Let p =1+ "¢ and n = 1 + 7€ such that

@ — %ﬁ? = 1+ ¢(r€) — 7€ (mod 7™*1). Hence, we wish to solve
the equation ¢(7"¢) — "¢ = 7°¢ (mod 7). Let o(n™) = 7. Then,

the above equation becomes m0p(¢) — "¢ — "¢ = 0 (mod "), After

reducing 7", we get () =& — (=01 — & —( =0 (mod 7). As ¢ € O,

32



ve(¢) > 0. Since a root of the polynomial §X9— X —( exists in O3, In € O3
such that nu = p(n) (mod 7™ *1). O

Proposition 5.6: Let 7 = 7' (mod m"). Then, K, = K. .

Proof. Let f' € Fr, f € Fr and o € Ap,,. Let n be as in lemma 5.5. Then
by lemma 5.4, Ip(X) € Og[[X]] such that p(X) = nX (mod deg. 2) and
f'op=p¥of. Observe that po Fy = Frrop =n(X +Y) (mod deg. 2).
Also, as Fy € Ok[[X]], ¢ fixes the coefficients of Fy, thus f' o (Ff o p) =
Fyo(flop) = Ffo(p?of) = (Fpop)of. Similatly, f'o(poFy) =
(pfof)oFy=(p*olFs)of=(p?oFf)of=(poFy)?of. By uniqueness
condition in lemma 5.4, po Fy = Fy 0 p, i.e. p € Hom(Fy, Fyr).

Observe that f™ o p = p#" o f™. Thus, f'™(p(a)) = 0 if and only if
f™(a) = 0. Hence, Ay, = p(Asn). So, 3a € Ay, such that p(a) = o
Note that f/(X) = 7’X (mod deg. 2) and f'¢ = f', since f'(X) € Og[[X]].
Our claim is that p maps [7']; to f’. In other words, we want to show

po[r']; = f"op, thus we are going to use the uniqueness of p.

(i) po[n]lf=nn'X = f'op (mod deg. 2).
(i) fo(poln]y) = (pPoflolnly = (p7elnlf)of = (poln]f)?of, as
[7']s € Ok[[X]]. Similarly, f" o (f"0p) = f%o(p?of)=(fop)?of.

Hence, p o [7']f = f' o p. Recall that 7’ = pm, thus [7']; = [u]s o [7];.
So, polulpoln]y = poln]y = fop = p?of = p?olnr|s. Therefore,
poluly=p*.

Consider the map A : (Og)* — (Og/(7™))* given by a — « (mod 7"). So,
kerA = 1+ m} and (Og)*/1+ m} ~ (Og/(n"))* =~ Aut(As,). So, since
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€ 1+ ml, [u]f acts trivially on Ag,, and thus, p(@)? = p(a), Yo € Ag,,.

As K N Ky, = K, Frobgu /g can be extended to an automorphism ¢
of K¥ K., = L, such that L¥ = K, ,. Since Va € K., p*(a) = p(a),
o fixes p(a) = . Therefore, K/, C K, ,. For, u=', one can show that
Ky p 2 Ky Hence, Ky, = Koy ]

This proposition also gives that, K,/K and K, /K are not isomorphic
if 7 #£ 7’ (mod m}) for some n € N. However, we are going to show that
the choice of 7 is unimportant for L, = K*".K, over K*". In other words,
K does not have a canonical maximal totally ramified abelian extension but
K" does.

Since K" N K, = K, Gal(L,) = Gal(K*" /| K) x Gal(K,/K). Now consider

the homomorphism

br : K* = Gal(Ly/K) ~ Gal(K" /K) x Gal(K,/K)

pr" (FTObnv [“_1]f)

Our goal is to show that the extensions K*".K,, are independent of the
choice of m. To prove this, we need to show that F and Fy are isomor-
phic over OF’, and thus, A, are isomorphic Ay, as OF-modules. Note
that K" is not complete in general, so power series evaluated at m"" may
not converge. Therefore, we are going to work over K instead. Since any
o € Gal(K" /K) preserves the valuation, ¢ is an isometry, i.e. it is continu-

ous. So it can be extended to [/(“\T
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Lemma 5.7: Jp € @[[X]] such that

i) p(X) =nX (mod deg. 2) for some unit 7

(

(i) p? = po[u]s where p(n) = pn

(ili) po Fy = Fpop

(iv) polals = [a]p o p for all a € Ok, which is an immediate result of (iii)

and proposition 4.3.

Since 1 is a unit, by (i) and (iii), Fy ~ Fy over K. So, I/(E".Kﬂ,n ~
Kur K, and thus, the choice of 7 is unimportant for L, = Kur K, and
Wﬂ = Kﬁﬂ-l follows.

Lemma 5.8: Let E be an algebraic extension of K in K* and E be its

completion. Then K*N E=E.

Proof. Let 0 € Gal(K*/FE). Then o fixes E. But we know that o is continu-
ous since it preserves valuations. So by continuity, o also fixes K*N E. Then

K*NECE. But K*NEDFE, thus, K*NE = E. O
Theorem 5.9: L, and ¢, is independent of the choice of .

Proof. Recall that p(As,) = Ap . So,
K [Ap) = K [p(Ag0)] € K [Aga] = K*7[p7 (Apr)] © K [A,)

Hence, [?“\T[Af/,n] = I/(E’[Af,n]. If we apply lemma 5.7 to K" [Ay,] and
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KW[Af,nL
KAy ] VK = K" [Ap ], KA, 0 K® = K" [Ay,)]
Therefore, Ly = K" [Ap ] = K" [Af,] = L.

To show that ¢, is independent of the choice of m, we are going to show
that ¢.(7') = ¢ (n'). So, for any uniformizers 7,7, w € K, ¢ (n") =
O (1) = ¢m(') and ¢, = ¢ follows since K* is generated by the set of
uniformizers.

Recall that ¢, : K* — Gal(K"" /K) x Gal(K,/K) given by the map 7" +—
(", [17]s). So, both ¢, (7") and ¢ (7') induce p on K", thus we only need
to check the automorphism they give on K,. Note that ¢ (7') = [171]p
is the identity on K. So we want to show that ¢,(n’) is the identity on
K. Let f € F, and f' € F. Recall that 3p(X) € O@]] such that p :
Fy — Fy is an isomorphism over Kv and p(Agn) = Apy. So, to show that
¢ (7") is the identity on K./, we need to prove that ¢,(p(a)) = p(a), for all
a € Ay, for all n. We know that ¢.(m) = (¢, [171) and ¢ (p) = (id, [ ]¢)
on Gal(K"/K) x Gal(K,/K). Since both ¢,(7) and ¢,(u) preserves the

valuation on K", they are continuous and can be extended to K* . Since,

7 = pm, ¢x (1) = ¢x(pt)x () and p(X) € O, by lemma 5.5,

Or (1) (p()) = Ox(p)dn(m)(p(a)) = (¢x(7)(p)) (b (1)(a))

= p*([u"]s(a)) = p(a)
Hence, ¢ (") = ¢ (') and ¢, is independent of the choice of 7.
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