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ABSTRACT 

 

In this thesis, our goal is to show that a local field K does not have a canonical maximal 

totally ramified abelian extension. However, for a given  prime element π of K, we are 

going to show that a maximal totally ramified abelian extension of Kπ of K can be 

constructed by using Lubin-Tate formal group laws. 
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ÖZET 

Bu tezde, bir lokal K cisminin doğal maksimal dallanmış abelyen genişlemesi olmadığını 

ancak K'de verilen herhangi bir asal π elemanı için Lubin-Tate formal grup teorisi 

kullanılarak K’nin maksimal dallanmış abelyen genişlemesi Kπ’nin inşa edilebileceğini 

göstereceğiz. 
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Chapter I

INTRODUCTION

Local class field theory studies the abelian Galois extensions of a local field K.

A local field is a field that is complete with respect to a discrete valuation and

has a finite residue field. For example Qp, the completion of Q with respect

to the p-adic metricis a local field. ∀α ∈ Q, the norm of α is |α| = p−v(α)

where v(α) = c such that α = pcµ and p does not divide µ.

Local class field theory was born as a branch of class field theory which

studies the abelian extensions of global fields however, the works of F.K.

Schmidt and Chevalley shows that the results in local class field theory can

also be derived independently. Lubin and Tate showed that formal groups

over local fields can be used to derive important results in local class field

theory such as constructing totally ramified abelian extensions of a local field

which are used to prove the Artin Reciprocity Map.

In section 2, we will introduce local fields and prove Hensel’s Lemma and the

existence of Teichmüller representatives to derive some preliminary results

on the extensions of local fields. Section 3 and 4, will give a definition

and some general properties of formal groups and Lubin-Tate formal groups,

respectively. Finally in section 5, we will construct totally ramified abelian

extensions of a local field K and show that there is no canonical maximal

totally ramified abelian extension of K.

Section 2 is based on the results of Matsumura [4] and Fesenko-Vostokov [3].
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The work on sections 3, 4 and 5 are derived from Milne [2] and Iwasawa [1].
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Chapter II

PRELIMINARIES

Discrete Valuation: Let K be a field. Then vK on K is called a discrete

valuation if

(i) vK : K× → Z is a surjective homomorphism: vK(xy) = vK(x)vK(y),

∀x, y ∈ K×

(ii)vK(x+ y) ≥ min{vK(x), vK(y)}

(iii)vK(x) =∞ ⇔ x = 0

Multiplicative Valuation: | . | : K → R≥0 is a multiplicative valuation if

∀x, y ∈ K

(i) |xy| = |x||y|

(ii) |x+ y| ≤ max{|x|, |y|}

(iii) |x| = 0 ⇔ x = 0

The ring of integers (valuation ring) OK of K, is the set of elements with

nonnegative valuation; OK = {x ∈ K : vK(x) ≥ 0} = {x ∈ K : |x| ≤ 1}.

Observe that vK(1) = vK(1) + vK(1). So, vK(1) = 0. Notice that, ∀x ∈ K,

x 6∈ OK ⇒ x−1 ∈ OK . Because; x 6∈ OK ⇒ vK(x) < 0.

0 = vK(1) = vK(xx−1) = vK(x) + vK(x−1) ⇒ vK(x−1) > 0 ⇒ x−1 ∈ OK .

OK is a local ring. It is enough to show that the set of ideals of OK is totally

ordered. Let I, J be any two ideals of OK . If ∃x ∈ I such that x 6∈ J , then

for any nonzero y ∈ J , xy−1 6∈ OK . (Otherwise, x = (xy−1)y ∈ J). Then

x−1y ∈ OK and y = x(x−1y) ∈ I. Hence J ⊆ I. From this follows that
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the set of ideals of OK is totally ordered and OK has unique maximal ideal,

denoted by mK .

If µ ∈ OK is a unit in OK , Then, vK(µ) ≥ 0 and vK(µ−1) ≥ 0. As

0 = vK(1) = vK(µ) + vK(µ−1), vK(µ) = 0. Hence,

mK = {x ∈ OK : vK(x) > 0} = mK = {x ∈ OK : |x| ≤ 1}.

Since vK is surjective, ∃πK ∈ OK such that vK(πK) = 1. πK is called a

uniformizer element of OK . Notice that πK is irreducible; if πK = ab, for

some a, b ∈ OK , then 1 = vK(πK) = vK(a)vK(b). As vK(a), vK(b) ≥ 0, either

vK(a) = 0 and a is a unit or vK(b) = 0 and b is a unit.

Remark: For any c ∈ R, c > 1, |x− y| = c−vK(x−y) defines a topology on K

and a+ πiKOK where a is a representative for OK/mK in OK and i ∈ Z, is a

basis of this topology.

OK is a P.I.D. Let I be an ideal of OK . Then {vK(a) : a ∈ I} is a set

of nonnegative elements and thus, has a minimal element vK(x) for some

x ∈ I. If vK(x) = 0, then x is a unit and I = OK . Otherwise, vK(x) = n > 0

⇒ vK(x) = vK(πnK) + vK(µ), where µ ∈ OK is a unit. So, x = πnKµ. Then

I = xOK = πnKOK = (πnK). In particular, mK = (πK).

Let S be a set of representatives for OK/mK in OK , with 0 ∈ S. Every unit

µ ∈ OK can be uniquely written as µ =
∑

i≥0 siπ
i
K , where si ∈ S. As S is

a set of complete representatives, ∃s0 ∈ S such that µ ≡ s0 (mod mK), i.e.

vK(µ− s0) > 0. (Notice that s0 6∈ mK as µ is a unit) Similarly, ∃s1 ∈ S such

that π−1(µ−s0) ≡ s1 (mod mK), i.e. vK(µ−s0−πs1) > 1. So this technique

shows that for each n, ∃sn such that vK(µ− s0− πs1− ...− πnsn) > n. So if
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∑∞
i=0 siπ

i
K converges, then it converges to µ. As vK(smπ

m
K + ...+ sn+1π

n+1
K ≥

n+ 1, (
∑n

i=0 siπ
i
K)n∈N is Cauchy, hence converges to µ since K is complete.

Assume that
∑

i≥0 siπ
i
K =

∑
i≥0 tiπ

i
K . Then,

∑
i≥0(si − ti)π

i
K = 0. So,∑

i≥0(si − ti)πiK is divisible by all the powers of πK . But this is only true

when si − ti ∈ mK . So si = ti, as the representative of mK in Ok was chosen

to be 0.

By using this property of units in OK , we are going to show that every x ∈ K,

x can be written as
∑

i∈Z siπ
i
K uniquely. Notice that it is enough to show

x = πnKµ, where n ∈ Z and µ is a unit in OK . Assume that x = πnKµ = πmKξ.

Then n = vK(πnKµ) = vK(πmKξ) = m. So, m = n⇒ πnKµ = πnKξ ⇒ µ = ξ.

2.1 Hensel’s Lemma and Teichmüller Representatives

Lemma 2.2 (Hensel’s Lemma): Let K be a local field and OK be its ring of

integers. Let f(X) ∈ OK [X] and α0 ∈ OK . If f(α0) ∈ mK and f ′(α0) 6∈ mK ,

then there exists a unique α ∈ OK such that f(α) = 0 and α ≡ α0 (mod mK).

Proof. The idea behind the proof is defining a Cauchy sequence a0, a1, ...

and converging to a root α of f with this sequence. Let a0 = α0. Define

an+1 = an − f(an)
f ′(an)

. One should be careful about whether f ′(an) is invertible

or not. As f ′(α0) 6∈ mK , inductively one can show that f ′(an) 6∈ mK .

To show that (an)n∈(N) is Cauchy, we have to prove inductively:

(i) |an| ≤ 1

(ii) |f ′(an)| = |f ′(a0)|

(iii)|f(an)| ≤ |f ′(a0)|2t2
n−1

where t = |f(α0)|
|f ′(α0)|2 < 1 since f(α0) ∈ mK implies

|f(α0)| < 1 and f ′(α0) 6∈ mK implies |f ′(α0)| = 1.
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These 3 properties can be proven inductively by using the identities:

(a) Let f(X) =
∑n

i=0 biX
i. Then f(X+Y ) = b0+b1(X+Y )+...+bn(X+Y )n.

If we rearrange this sum, we get f(X + Y ) =
∑n

i=0 biX
i + (

∑n−1
i=1 ibiX

i)Y +

g(X, Y )Y 2 where g(X, Y ) ∈ OK [X, Y ], i.e f(X + Y ) = f(X) + f ′(X)Y +

g(X, Y )Y 2.

(b)f(X) − f(Y ) = b1(X − Y ) + b2(X
2 − Y 2) + ... + bn(Xn − Y n). So

f(X)− f(Y ) = (X − Y )h(X, Y ) where h(X, Y ) ∈ OK [X, Y ].

The properties (i), (ii) and (iii) will give that (an)n∈N is Cauchy:

|am − an| = |am − am−1 + ...+ an+1 − an|

≤ max{|am − am−1|, ..., |an+1 − an|}

= max{ |f(am−1)|
|f ′(am−1)|

, ...,
|f(an)|
|f ′(an)

}

≤ |f ′(a0)|t2
i−1

≤ t2
i−1

for some m − 1 ≥ i ≥ n. Since t < 1, (an)n∈N is Cauchy, because K is

complete, it is convergent. Let limn→∞ an = α. So by (i), |α| ≤ 1, i.e.

α ∈ OK . Letting n→∞ in (iii), |f(α)| ≤ |f ′(a0)|2t2
n−1 ⇒ |f(α)| = 0.

Next step is to show α ≡ α0 (mod mK). We will show an ≡ α0 (mod mK)

inductively and then let n→∞.

For n = 1, a1 − α0 = a1 − a0 = −f(a0)
f ′(a0)

. As f(a0) ∈ mK and f ′(a0) 6∈ mK ,

−f(a0)
f ′(a0)

∈ mK , i.e. a1 ≡ α0 (mod mK).
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For any n ≥ 1, we have

|an+1 − an| =
|f(an)|
|f ′(an)|

=
|f(an)|
|f ′(a0)|

by (ii)

≤ |f ′(a0)|t2
n−1 ≤ |f ′(a0)|t = |f ′(α0)|

|f(α0)|
|f ′(α0)|2

≤ |f(α0|
|f ′(α0)|

So, an+1 − an ∈ mK , i.e. |an+1 − an| < 1.

Rewriting an+1 − α as an+1 − an + an − α, we get |an+1 − α| ≤ max{|an+1 −

an|, |an − α|}. By induction hypothesis, |an − α| < 1. We also showed

|an+1 − an| < 1. Hence, |an+1 − α| < 1, i.e. an+1 − α ∈ mK .

Uniqueness of α: Assume that ∃β ∈ OK such that f(β) = 0 and β ≡ α0

(mod mK). Let β = α+h for some h ∈ OK . As β−α0 ∈ mK and α−α0 ∈ mK ,

β − α ∈ mK . So |β − α| < 1. Now,

0 = f(β) = f(α+ h) = f(α) + f ′(α)h+ zh2 = f ′(α)h+ zh2 for some z ∈ OK

by the identity (a).

If h 6= 0, then f ′(α) = −zh.

⇒ |f ′(α)| = | − zh| ≤ |h| = |β − α| < 1. But if we let n → ∞ in (ii),

|f ′(α)| = |f ′(a0)| = |f ′(α0)| = 1. So, we have a contradiction. Thus, h = 0

and β = α.

Example: Let K = Q11 and f(X) = X2 − 5. Then f has a root

α0 = 4 ∈ Z/11Z and f ′(4) = 8 6= 0 ∈ Z/11Z. So, by Hensel’s lemma,

we can lift α0 = 4 to an α ∈ Z11 such that f(α) = 0 and α ≡ α0 (mod 11).

We know that α = 4 + a111 + a2112 + .... We want to find a1, a2, .... Ob-

serve that f(α) = 0 ⇔ 11k | f(α), ∀k ∈ N. In order this to be true,

7



11n | f(4 + a111 + ... + an−111n−1) ∀n ∈ N. So, one can find the value of

an−1’s by applying this formula for each n.

Hensel’s Lemma can be used to prove the existence of Teichmüller represen-

tatives.

Let α ∈ k× and a ∈ OK such that ā = α. If a satisfies Xq−1 − 1, then a is

said to be a Teichmüller representative of α.

Teichmüller representatives are in bijection with k. Since Xq−1−1 splits into

q − 1 distinct linear factors in k×, we can apply Hensel’s Lemma. So, for

each distinct root α0 ∈ k×, there exists an α of Xq−1 − 1 in OK such that

α ≡ α0 (mod mK).

Note that the map α 7→ α (mod mK) gives a multiplicative group homo-

morphism between the Teichmüller representatives and k×. So, Teichmüller

representatives and k× are isomorphic.

Lemma 2.3: O×K ' k×
⊕

(1 + mK)

Proof. Let ϕ : O×K � k× map α to α (mod mK). Then kerϕ = 1 + mK .

Consider the exact sequence

0 → 1 + mK ↪→ O×K � k× → 0. Let T ⊆ OK be the set of Teichmüller

representatives. As T ' k× with given isomorphism above, ∃g : k× → T such

that ϕ ◦ g = id. Hence, the exact sequence splits and O×K ' k×
⊕

(1 + mK)

follows.

2.2 Extensions of Local Fields

Let L be a finite separable extension of the local field K. Then vK extends
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uniquely to L such that ∀α ∈ L, vL(α) = 1
f(L/K,vL)

vK(NL/K(α)) and L is

complete with respect to vL, [3, pg 41, 42]. f := f(L/K, vL) is the inertia

degree of L/K and f = [kL : k] where kL is the residue field of L. Let πL be a

prime element of L. Observe that vK(< πK >) is a subgroup of vL(< πL >).

[vL(< πL >) : vK(< πK >)] = e(L/K, vL) is called the ramification index of

L/K. Let e := e(L/K, vL). In general ef ≤ [L : K] = n, however, in our

case, when L is complete, ef = n, [3, pg. 40].

If E is an infinite extension of K, it may not be local. Since vK extends

uniquely to each finite subextension of E over K, it also extends to E, but it

may not be discrete. Yet, a local ring and its maximal ideal can be defined

as OE = ∪OL, mE = ∪mL where K ⊆ L ⊆ E and L/K is finite. By checking

their valuations, it is easy to see that ∀α, β ∈ OE, α+β, αβ ∈ OE. So OE is

indeed a ring. Let E/K be Galois. Define a topology on Gal(E/K)=G such

that for any σ ∈ G, BL(σ) = {τ ∈ G : τ |L = σ|L} where K ⊆ L ⊆ E and

L/K is finite, are the open balls of this topology. We claim that {BL(σ)}σ∈G
forms a basis for this topology. Let σ ∈ G. Then by definition, σ ∈ BL(σ).

Let BL(σ), BF (τ) ∈ {BL(σ)}σ∈G and δ ∈ BL(σ) ∩ BF (τ). Consider BLF (δ).

(Note that [L : K] ≤ ∞ and [F : K] ≤ ∞ gives that [LF : K] ≤ ∞) Let

λ ∈ BLF (δ). Then λ|LF = δ|LF by definition. So, λ|L = δ|L = σ|L and

λ|F = δ|F = τ |F . Hence λ ∈ BL(σ)∩BF (τ). Therefore, {BL(σ)}σ∈G forms a

basis.

Observe that if ι is the identity map, then BL(ι) = Gal(E/L). Also, if

L = K(α1, α2, ..., αn), then τ ∈ BL(σ)⇔ τ(αi) = σ(αi), 1 ≤ i ≤ n.

If E/K is finite, for any σ ∈ Gal(E/K), BE(σ) = {σ}. So, the topology on

Gal(E/K) is discrete. However, if E/K is infinite, this is not the case.

9



Theorem 2.4: Gal(E/K) is compact.

Proof. Consider the map ϕ : Gal(E/K) → ΠGal(L/K) given by σ 7→ (σ|L)

where E ⊇ L ⊇ K and L/K is finite. Since E = ∪L, kerϕ = {ι}, i.e. ϕ is

injective. Observe that the topology on ΠGal(L/K) is the product topology

of discrete topologies. Since a discrete topology is compact if and only if it is

finite, each Gal(L/K) is compact. By Tychonoff, ΠGal(L/K) is compact. As

any closed subset of a compact space is compact, if ϕ(Gal(E/K)) is closed

and ϕ−1 is continuous, then Gal(E/K) would be compact.

ϕ(Gal(E/K)) is closed: If (σ|L) is not in the image of Gal(E/K), then ∃σ|L′

and σ|L′′ such that L′ ⊆ L′′ and (σ|L′′)|L′ 6= σ|L′ .

Let U = ΠL6=L′,L′′Gal(L/K)
⊕
{σ|L′}

⊕
{σ|L′′}. U is open in ΠGal(L/K)

and U ∩ ϕ(Gal(E/K)) = ∅. Hence ϕ(Gal(E/K)) is closed.

ϕ−1 is continuous: Let BL(σ) be an open subset of Gal(E/K). Then τ ∈

BL(σ) if and only if τ(αi) = σ(αi), 1 ≤ i ≤ n where L = K(α1, α2, ..., αn).

So ϕ maps BL(σ) to ΠSσ such that Sσ = BF (σ) where F = K(αi1 , ..., αik),

{αi1 , ..., αik} ⊆ {α1, ..., αn}, on finitely many terms and Sσ = Gal(L/K) on

infinitely many terms. Thus, ϕ is an open mapping and ϕ−1 is continuous.

From this follows, Gal(E/K) is compact.
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2.2.1 Unramified Extensions

Let L/K be a finite extension of degree n. If [kL : k] = n, then L/K is un-

ramified. As [kL : k] = n, e(L/K, vL) = 1. So, vL(πK) = vL(πL). Hence, one

can say that L/K is unramified if and only if a prime element of K remains

prime in L.

Unramified extensions can be characterized through the following lemma:

Lemma 2.5: Let L/K be a finite, Galois extension. L/K is unramified

⇔ Gal(L/K) ' Gal(kL/k).

Proof. Since k is a finite field , it is perfect. i.e. kL is separable. Also, kL/k

is a finite field extension, say of degree n. Then, kL is the splitting field of

the polynomial Xqn −X. Hence, kL/k is Galois.

If Gal(L/K) ' Gal(kL/k), then |Gal(L/K)| = |Gal(kL/k)|. Hence [L : K] =

[kL : k], i.e. L/K is unramified.

If L/K is unramified, then consider the map φ : Gal(L/K) → Gal(kL/k)

given by σ → σ̄ where σ(x) = σ(x). It is easy to see that φ is well- defined

and a homomorphism. φ is surjective, since each σ maps α to a distinct con-

jugate of α and these distinct conjugates lift to a distinct β ∈ L by Hensel’s

Lemma. In other words, for each σ ∈ Gal(kL/k), ∃σ ∈ Gal(L/K) such that

σ maps β to its distinct conjugates.

As |Gal(L/K)| = |Gal(kL/k)|, surjectivity implies injectivity. Hence, Gal(L/K) '

Gal(kL/k).

Remark: Composite of two finite unramified extensions is unramified.

Let L/K, L′/K be finite and unramified. Let kL′ = k(α) for some α ∈ kL′ .
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By lemma 2.4, α can be lift to some α ∈ L′ and L′ = K(α), LL′ =

L(α) follows. Observe that α ∈ OL′ ⊆ OLL′ since α 6= 0. So vLL′(α) ≥

0. Let g(X) = Irr(α,L) and g(X) = anX
n + ... + a0. Then vLL′(α) =

1
f(LL′/L,vLL′ )

vL((−1)na0) ≥ 0, thus vL(a0) ≥ 0. Hence g(X) ∈ OL[X] [3, pg

37]. So it makes sense to talk about g(X) ∈ kL[X]. g is irreducible in kL

since g is irreducible in OL. So deg(g) = deg(g), i.e. LL′/L is unramified.

As both LL′/L, L/K is unramified, LL′/K is unramified.

Therefore, one can define a maximal unramified extension Kur of K as the

union of unramified extensions of finite degree. The lemma below will show

that Kur ⊆ Kab.

Lemma 2.6: For any local field K and positive integer n, there exists a

unique unramified extension L of degree n over K, which is Galois with cyclic

Galois group.

Proof. We know that the elements of k are the roots of Xq − X. Since

k is a finite field, it has a unique extension Fqn of degree n which is the

splitting field of Xqn−X. Let ḡ(X) be the minimal polynomial of a primitive

(qn − 1)st of unity over k. As ḡ is separable, we can lift ḡ(X) to a g(X) ∈

K[X]. Note that g is irreducible and separable since ḡ is. Let L be the

splitting field of g(X) over K. Then L/K is Galois and [L : K] = deg(g) =

deg(ḡ) = n. So [kL : k] ≤ n. However, by construction Fqn ⊆ kL, i.e.

[kL : k] ≥ n. Therefore, [kL : k] = n and L/K is unramified of degree n. By

lemma 2.4, Gal(L/K) ' Gal(kL/k). Since, Gal(kL/k) is cyclic, generated

by the Frobenius map ϕ(x) = xq, Gal(L/K) is cyclic and the automorphism

σ ∈ Gal(L/K) such that σ(x) ≡ xq (mod mL) for all x ∈ L, generates the
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Gal(L/K) and is denoted by FrobL/K .

Now let L/K and L′/K be two distinct unramified extensions of degree n.

Then LL′/K is unramified and so, Gal(LL′/K) is expected to be cyclic as

proven above. However, LL′/K is unramified implies that LL′/(L ∩ L′) is

unramified. Let [L : L ∩ L′] = m. Then [L′ : L ∩ L′] = m and Gal(L/(L ∩

L′)) ' Z/mZ ' Gal(L/(L ∩ L′)). Therefore, Gal(LL′/(L ∩ L′)) ' Z/mZ⊕

Z/mZ, which is not cyclic. Hence there is a unique unramified extension

L/K of degree n.

Let Kn/K be the unique unramified extension of degree n. Then Kur =

∪Kn. Frobenius automorphism extends to Kur and can be identified as

the image of generators of Gal(Kn/K) = Z/nZ. Hence Gal(Kur/K) is the

profinite completion of Z:

Gal(Kur/K) = lim←−Gal(Kn/K).

2.2.2 Ramified Extensions

If [kL : k] = 1, then L/K is totally ramifed. Let L/K be Galois and In =

{σ ∈ Gal(L/K) : vL(x − σx) ≥ n + 1,∀x ∈ L}. Our claim is that In is

a subgroup of Gal(L/K). As vL(x − x) = ∞, identity map is in In. Let

σ ∈ In. Then vL(x − σx) ≥ n + 1. i.e. x − σx ∈ mn+1
L . As σ ∈ Gal(L/K),

σ−1x − x ∈ σ−1mn+1
L = mn+1

L . Therefore σ−1 ∈ In. Let σ, τ ∈ In. Then

στx − x = σ(τx − x) + σx − x ∈ mn+1
L . So In is indeed a subgroup of

Gal(L/K). These subgroups are called higher ramification groups. Observe

that Gal(L/K) ⊇ I0 ⊇ I1 ⊇ ...
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Let φ : Gal(L/K) � Gal(kL/k) such that φ(σ) 7→ σ where σ(x) = σ(x).

Consider the exact sequence

0→ I0 → Gal(L/K)→ Gal(kL/k)→ 0.

Notice that σ ∈ kerφ ⇔ σx ≡ x (mod mL) ⇔ vL(x − σx) ≥ 1 ⇔ σ ∈ I0.

So, Gal(L/K)/I0 ' Gal(kL/k). Notice that, L/K is unramified if and only if

I0 = {1} and L/K is totally ramified if and only if I0 = Gal(L/K). In general,

if L0 is the largest unramified subextension of L/K, then Gal(L/L0) ' I0.

Lemma 2.7: Let L/K be totally ramified and let πL ∈ L be a prime el-

ement. Then the group In = {σ ∈ Gal(L/K) : vL(σπL − πL) ≥ n+ 1}

Proof. Observe that if σ ∈ In, then vL(σx−x) ≥ n+1, ∀x ∈ L, in particular

for x = πL. So, In ⊆ {σ ∈ Gal(L/K) : vL(σπL − πL) ≥ n+ 1}.

We know that x ∈ L can be written uniquely as x =
∑

i∈Z aiπ
i
L where ai’s are

chosen from a set of representatives of kL in OL. So, these representatives

can be chosen as Teichmüller representatives, a1, ..., aq. As L/K is totally

ramified, kL and k are the same field. Therefore, these ai’s are actually in

OK and are fixed by any σ ∈ Gal(L/K).

Now let τ ∈ {σ ∈ Gal(L/K) : vL(σπL − πL) ≥ n + 1}. If ∀x ∈ L,

vL(τx−x) ≥ vL(τπL−πL), then In ⊇ {σ ∈ Gal(L/K) : vL(σπL−πL) ≥ n+1}.

Observe that, τx− x ∈ mL since L/K is totaly ramified, i.e Gal(L/K) = I0

and τ ∈ I0. So vL(τx−x) = vL(τ(
∑

i∈Z aiπ
i
L)−

∑
i∈Z aiπ

i
L)) = vL(

∑
i∈z ai(τ

iπL−

πiL)) ≥ 1. Therefore, for i ≤ 0, ai = 0 and vL(τx − x) = vL(τπL −

πL) + vL(a1 + a2(τπL − πL) + ...). Since a1 + a2(τπL − πL) + ... ∈ OL,
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vL(τx− x) ≥ vL(τπL − πL).

Hence, τ ∈ In.

Lemma 2.8: Let L be a finite Galois extension of K. If the residue field

of L has order q′, then [I0 : I1] | (q′ − 1) and [In : In+1] | q′ for n ≥ 1.

Furthermore, for large enough m, In = 1 for all n > m and I1 has p-power

order.

Proof. Let πL be a prime element of L. We claim that there is a homomor-

phism ϕ : I0 → O×L/(1 + mL) ' k× given by σ → σπL
πL

and kerϕ contains I1.

Observe that σπL and πL has the same valuation as σ ∈ Gal(L/K). Thus,

σπL
πL

is a unit.

Let σ, τ ∈ I0. Then

τ(
σπL
πL

) ≡ σπL
πL

(mod mL)

τ(σπL)

τπL
≡ σπL

πL
(mod mL)

τσπL
πL

≡ τπL
πL

.
σπL
πL

(mod mL)

So, ϕ(τσ) = ϕ(τ)ϕ(σ), i.e. ϕ is a homomorphism.

Now, we want to show that kerϕ ⊇ I1. If σ ∈ I1, then σπL ≡ πL (mod m2
L).

This gives that σπL
πL
≡ 1 (mod mL). Hence σ ∈ kerϕ. From this follows,

I0/I1 ↪→ O×L/(1 + mL) ' k×. Hence [I0 : I1] | (q′ − 1).

Now consider the map λ : 1 +mn
L � kL(= OL/mL) given by 1 + πnµ 7→ µ. λ

15



is a homomorphism since,

λ((1 + πnLµ)(1 + πnLν)) = λ(1 + πnL(µ+ ν + πnLµν))

= µ+ ν + πnLµν ≡ µ+ ν (mod mL), i.e

λ((1 + πnLµ)(1 + πnLν)) = µ+ ν

= λ(1 + πnLµ) + λ(1 + πnLν).

Observe that 1 + πnLµ ∈ kerλ ⇔ µ ∈ mL ⇔ 1 + πnLµ ∈ 1 + mn+1
L . So,

kerλ = 1 + mn+1
L and (1 + mn

L)/(1 + mn+1
L ) ' kL follows.

Consider the map φ : In → (1 + mn
L)/(1 + mn+1

L ) given by σ 7→ σπL
πL

. φ

is a homomorphism and kerφ ⊇ In+1 (the proof is same as n=0 case).

Therefore, In/In+1 ↪→ (1 + mn
L)/(1 + mn+1

L ) ' kL and [In : In+1] | q′ follows.

As every element of kL has p-power order, so do the elements of In/In+1. In

particular, as [I2 : I1] | |I1|, p | |I1|. By Cauchy’s theorem, I1 has an element

of order p.

Let L0 be the maximal unramified subextension of L/K. Then L/L0 is to-

tally ramified. By Lemma 2.7, the nth ramification group of Gal(L/L0) = G

coincides with the set {σ ∈ G : σπL − πL ≥ n + 1}. Let n > max{σ ∈ G :

vL(σπL − πL)}. Then In = {1}.
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Chapter III

FORMAL GROUP LAWS

Let A be a commutative ring with unity. A formal power series with coeffi-

cients in A is an infinite sequence

f = (a0, a1, ...), ai ∈ A, i ∈ N

Formal power series with coefficients in A forms a commutative ring and is

denoted by A[[X]]. Addition and multiplication are defined in the usual way:

(a0, a1, ...) + (b0, b1, ...) = (a0 + b0, a1 + b1, ...)

(a0, a1, ...)(b0, b1, ...) = (c0, c1, ...)

where cn =
n∑
i=0

aibn−i

One may think of formal power series without the notion of convergence. So,

in contrast to power series, we are not allowed to substitute a value α ∈ A

into f(X) ∈ A[[X]] because f(α) is an infinite sum which has a definite value

when it is convergent. As an immediate result of this is that the composition

f(g(X)) only makes sense when g(X) ∈ A[[X]].
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Definition: A commutative formal group law is a power series F ∈ A[[X, Y ]]

such that

(i) F (X, Y ) = F (Y,X)

(ii) F (X, 0) = X and F (0, Y ) = Y

(iii) F (F (X, Y ), Z) = F (X,F (Y, Z))

Notice that (ii) implies that F has no constant term, so (iii) makes sense.

Property (ii) can also be interpreted as F (X, Y ) ≡ X + Y (mod deg.2) [2,

pg 16-17]

Now, our goal is to show that XA[[X]] is a commutative group with the oper-

ation F (X, Y ) := X+F Y . Observe that (i) gives commutativity, (ii) identity

and (iii) associativity. So if f [X] ∈ XA[[X]] has an inverse in XA[[X]], we’re

done. To show that inverses exist, it is enough to prove that X is invertible

in XA[[X]]. Because if iF (X) ∈ XA[[X]] is the inverse of X, then iF (f(X))is

the inverse of f(X) ∈ XA[[X]]

Lemma 3.1: There is a unique iF (X) ∈ XA[[X]] such that F (X, iF (X)) =

0.

Proof. As F (X, Y ) = X + Y +
∑

i,j≥1 aijX
iY j, F contains no higher order

terms in only one variable. So one can construct iF (X) inductively such that

F (X, hn(X)) ≡ 0 (mod deg. n+ 1) where iF (X) ≡ hn(X) (mod deg. n+ 1).

If F (X, hn(X)) ≡ 0 (mod deg. n + 1), since hn is unique, one can uniquely
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define hn+1(X) = hn(X) + bn+1X
n+1 and F (X, hn+1) ≡ 0 (mod deg. n+ 1).

Clearly, h2(X) = −X + a11X
2 (since F (X, h2) ≡ X + (−X + a11X

2) +

a11X(−X + a11X
2) ≡ 0 (mod deg. 3)) and the rest follows.

So, (XA[[X]],+F ) is an abelian group.

Let F(X, Y) and G(X, Y) be two commutative formal group laws over

A. Then f(X) ∈ XA[[X]] is a group homomorphism if f(X +F Y ) =

f(X) +G f(Y ), written as f : F → G. In other words, f : F → G is a

homomorphism if and only if f ◦ F = G ◦ f .

If there exist a g(X) ∈ XA[[X]] such that g : G→ F and f ◦ g = g ◦ f = X,

then f is an isomorphism. A homomorphism f : F → F is called an endo-

morphism.

Example: Let F (X, Y ) = X + Y + XY and f(X) = (1 + X)p − 1. It

is easy to see that f(X +F Y ) = f(X) +F f(Y ). So, f is an endomorphism.

Lemma 3.2:

(i) (Hom(F,G),+G) is a subgroup of XA[[X]].

(ii) (End(F ),+F , ◦) is a ring.

Proof. (i) As Hom(F,G) is a subset of XA[[X]], it is already commutative

and associative. So it is enough to prove that Hom(F,G) is closed and

∀f ∈ Hom(F,G), iG ◦ f ∈ Hom(F,G).

Let f, g ∈ Hom(F,G) and h = f +G g. Then h(X +F Y ) = f(X +F Y ) +G

g(X +F Y ). As f, g ∈ Hom(F,G) and Hom(F,G) is commutative and asso-

ciative, h(X +F Y ) = (f(X) +G g(X)) +G (f(Y ) +G g(Y )) = h(X) +G h(Y ).
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Therefore, h ∈ Hom(F,G).

Let f ∈ Hom(F,G). We want to show that (iG◦f)◦F = G◦(iG◦f). But first,

we need to show iG◦G = G◦iG and ∀f, g, h ∈ XA[[X]], f ◦(g◦h) = (f ◦g)◦h.

G(G,G ◦ iG) = G(X, Y ) +G (iG(X) +G iG(Y )) = (X +G Y ) +G (iG(X) +G

iG(Y )) = (X +G iG(X)) +G (Y +G iG(Y )) = 0 +G 0 = 0. As G(G, iG ◦G) is

also 0 and the inverse is unique, iG ◦G = G ◦ iG.

If f, g and h ∈ XA[[X]], then (fg) ◦ h = (f ◦ h)(g ◦ h). Then for any n ∈ N,

fn ◦ g = (f ◦ g)n. For f(X) = Xn, (f ◦ g) ◦ h = (g ◦ h)n = f ◦ (g ◦ h). So, if

f(X) =
∑

n≥1 anX
n, then both are equal to

∑
n≥1 an(g ◦ h)n.

Thus, G ◦ (iG ◦ f) = (G ◦ iG) ◦ f = (iG ◦G) ◦ f = iG ◦ (G ◦ f) = iG ◦ (f ◦F ) =

(iG ◦ f) ◦ F .

Hence, (Hom(F,G),+G) is a subgroup of XA[[X]].

(ii) In (i), we showed that (End(F ),+F )) is an abelian group and ◦ is asso-

ciative. So, we only need to prove that ◦ is distributive.

Let f, g and h ∈ End(F ). f◦(g+Fh) = f◦(F (g(X), h(Y )) = F (g(X), h(Y ))◦

f = F (f ◦ g(X), f ◦ h(Y )) = (f ◦ g)(X) +F (f ◦ h)(Y ). Thus ◦ is distributive

over +F .

Hence (End(F ),+F , ◦) is a ring.

Now, let A = OK and F ∈ A[[X, Y ]] be a commutative formal group law.

Let F (X, Y ) = X+Y +
∑

i,j≥1 aijX
iY j. Observe that for any, x, y ∈ mL, as

i, j →∞, F(x,y) converges to an element x+F y ∈ mL. Therefore, (mL,+F )

is a commutative group.
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Example: Let F (X, Y ) = X + Y + XY and f(X) = (1 + X)p − 1. It

is easy to see that the map a 7→ a + 1, from (mL,+F ) to (1 + mL, .) is an

isomorphism and the below diagram commutes:

mL

1 + mL

mL

1 + mL

a→ a+ 1

f

a→ ap

a→ a+ 1
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Chapter IV

LUBIN TATE FORMAL GROUPS

For a given prime elemenet π ∈ K, let Fπ denote the set of power series

f(X) ∈ OK [[X]] such that:

(i) f(X) ≡ πX (mod deg.2)

(ii) f(X) ≡ Xq (mod π)

where q is the number of elements in the residue field k of K.

Example: f(X) = πX +Xq is in Fπ.

Lemma 4.1: Let f, g ∈ Fπ and let φ1(X1, X2, ..., Xn) ∈ OK [[X1, X2, ..., Xn]]

be a linear form. Then there is a unique φ ∈ OK [[X1, X2, ..., Xn]] such that:

(i) φ ≡ φ1 (mod deg. 2)

(ii) f(φ(X1, ..., Xn)) = φ(g(X1), ..., g(Xn)).

Proof. We are going to construct φ inductively such that ∀n ∈ N, φ ≡

φn (mod deg. n + 1) where each φn is unique and satisfies (i) and (ii)

(mod deg. n+ 1).

For n = 1, our candidate is φ1 because of the uniqueness.

Let φ1(X1, ..., Xn) = a1X1 + ... + anXn for a1, ..., an ∈ OK . (i) φ1 ≡ φ1

(mod deg. 2)

(ii)f(φ1(X1, ..., Xn)) ≡ πφ1(X1, ..., Xn) ≡ π(a1X1 + ...+ anXn) (mod deg. 2)

φ1(g((X1), ..., g(Xn)) ≡ πφ1(πX1, ..., πXn) ≡ π(a1X1+...+anX
n) (mod deg. 2)
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So f ◦ φ1 ≡ φ1 ◦ g (mod deg. 2).

Let φn be unique and satisfies (i) and (ii) (mod deg. n+ 1). Define φn+1 =

φn + h where h ∈ OK [[X1, ..., Xn]] is homogeneous of degree n + 1. (Notice

that since φn is unique there is no other candidate for φn+1) Then

f ◦ φn+1 ≡ f ◦ (φn + h) ≡ πφn + πh ≡ f ◦ φn + πh (mod deg. n + 2) and

φn+1 ◦ g ≡ (φn + h) ◦ g ≡ φn ◦ g + h ◦ g ≡ φn ◦ g + h(g(X1), ..., g(Xn)) ≡

φn ◦ g + h(πX1, ..., πXn) ≡ φn ◦ g + πn+1h (mod deg. n+ 2)

We want to check that if such h exists, i.e we want that h ∈ OK [[X1, ..., Xn]].

Observe that (ii) is satisfied if f ◦φn−φn ◦g ≡ (πn+1−π)h (mod deg. n+2).

Since f(X) ≡ g(X) ≡ Xq (mod π) and charK=p (q = pr), f ◦ φn − φn ◦ g ≡

(φn(X1, ..., Xn)q − φn(Xq
1 , ..., X

q
n) ≡ 0 (mod π), i.e. π divides f ◦ φn− φn ◦ g.

Also, πn − 1 is a unit in OK . Therefore such h exists over OK and our con-

struction of φn+1 is valid. Hence, there is a unique φ ∈ OK [[X1, ..., Xn]] which

satisfies (i) and (ii).

Theorem 4.2: For each f ∈ Fπ there exists a unique commutative formal

group law Ff with coefficients in OK such that f ∈ End(Ff ).

Proof. By lemma 4.1, ∀f ∈ Fπ, ∃Ff ∈ OK [[X, Y ]] such that Ff (X, Y ) ≡

X + Y (mod deg. 2) and f ◦ Ff = Ff ◦ f . So it is enough to show Ff is a

commutative formal group law.

(i)Ff (X, Y ) = Ff (Y,X): Let G(X, Y ) = Ff (Y,X). Then G(X, Y ) ≡ X +

Y ≡ Ff (Y,X) (mod deg. 2).

Also, f ◦ G(X, Y ) = f ◦ Ff (Y,X) = Ff (Y,X) ◦ f = Ff (f(Y ), f(X)) =

G(f(X), f(Y )) = G(X, Y ) ◦ f So both G(X, Y ) = Ff (Y,X) and Ff (X, Y )

satisfies the two conditions. By uniqueness, Ff (X, Y ) = Ff (Y,X)
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(ii)Ff (X, 0) = X and Ff (0, Y ) = Y : As Ff (X, Y ) ≡ X + Y (mod deg. 2)

and f ◦ Ff = Ff ◦ f , Ff (X, 0) = X and Ff (0, Y ) = Y . (It is mentioned in

chapter 3 that these two conditions are same).

(iii)Ff (Ff (X, Y ), Z) = Ff (X,Ff (Y, Z)):

Ff (Ff (X, Y ), Z) ≡ X + Y + Z ≡ Ff (X,Ff (Y, Z) (mod deg. 2).

f ◦ Ff (X,Ff (Y, Z)) = Ff (f(X), f ◦ Ff (Y, Z)) = Ff (f(X), Ff (Y, Z) ◦ f) =

Ff (X,Ff (Y, Z)) ◦ f . and

f ◦ Ff (X,Ff (Y, Z)) = Ff (f(X), f ◦ Ff (Y, Z)) = Ff (f(X), Ff (Y, Z) ◦ f) =

Ff (X,Ff (Y, Z))◦f . So, again by uniqueness, Ff (Ff (X, Y ), Z) = Ff (X,Ff (Y, Z)).

Let f ∈ Fπ and Ff be the Lubin-Tate formal group law given by theorem

4.2. Let a ∈ OK . Then, there exists a unique [a]f ∈ OK [[X]] such that

(i) [a]f ≡ aX (mod deg. 2)

(ii)f ◦ [a]f = [a]f ◦ f

Notice that [π]f = f .

Theorem 4.3: For each a ∈ OK , [a]f ∈ End(Ff ). Furthermore, OK can be

embedded into End(Ff ) with the map a 7→ [a]f .

Proof. Let a ∈ OK . We want to show that [a]f ◦ Ff = Ff ◦ [a]f .

(i) [a]f ◦Ff ≡ aX+aY (mod deg. 2) and Ff ◦ [a]f ≡ aX+aY (mod deg. 2).

(ii) f ◦ ([a]f ◦ Ff ) = (f ◦ [a]f ) ◦ Ff = [a]f ◦ (f ◦ Ff ) = ([a]f ◦ Ff ) ◦ f

f ◦(Ff ◦ [a]f ) = (f ◦Ff )◦ [a]f = Ff ◦(f ◦ [a]f ) = Ff ◦([a]f ◦f) = (Ff ◦ [a]f )◦f .

Since both [a]f ◦Ff and Ff ◦[a]f satisfies the conditions (i) and (ii), by unique-

ness, [a]f ◦ Ff = Ff ◦ [a]f .
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Let ϕ : OK → End(Ff ) given by the map a 7→ [a]f .

ϕ is a ring homomorphism, i.e. [a]f ◦ [b]f = ϕ(a)ϕ(b) = ϕ(ab) = [ab]f and

[a]f + [b]f = ϕ(a)ϕ(b) = ϕ(a+ b) = [a+ b]f

(i) [a]f ◦ [b]f ≡ abX ≡ [ab]f (mod deg. 2)

(ii) ([a]f ◦ [b]f ) ◦ f = [a]f ◦ ([b]f ◦ f) = [a]f (◦f ◦ [b]f ) = ([a]f ◦ f) ◦ [b]f =

f ◦ ([a]f ◦ [b]f ) and [ab]f ◦ f = f ◦ [ab]f . By uniqueness, ϕ(a)ϕ(b) = ϕ(ab).

(i) [a]f + [b]f ≡ aX + bX ≡ (a+ b)X ≡ [a+ b]f (mod deg. 2)

(ii) ([a]f + [b]f ) ◦ f = [a]f ◦ f + [b]f ◦ f (since f, [a]f , [b]f ∈ End(Ff ) and

(End(Ff ),+F , ◦) is a ring) = f ◦ [a]f + f ◦ [b]f = f ◦ ([a]f + [b]f ). Also,

[a+ b]f ◦ f = f ◦ [a+ b]f .

So, ϕ(a+ b) = ϕ(a) + ϕ(b). Hence ϕ is a ring homomorphism.

ϕ is injective: if a 6= b, then by condition 1, [a]f 6= [b]f .

Therefore, a 7→ [a]f gives an injective ring homomorphism from OK to

End(Ff ).

More generally, if f, g ∈ Fπ and a ∈ OK , then there exists a unique

[a]g,f ∈ OK [[X]] such that

(i) [a]g,f ≡ aX (mod deg. 2)

(ii) g ◦ [a]g,f = [a]g,f ◦ f

Observe that [a]g,f ◦ Ff ≡ aX + aY ≡ Fg ◦ [a]f,g (mod deg. 2). Also

g ◦ ([a]g,f ◦ Ff ) = (g ◦ [a]g,f ) ◦ Ff = ([a]g,f ◦ f) ◦ Ff = [a]g,f ◦ (f ◦ Ff ) =

[a]g,f ◦ (Ff ◦ f) = (ag,f ◦ Ff ) ◦ f and
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(Fg ◦ [a]g,f ) ◦ f = Fg ◦ ([a]g,f ◦ f) = Fg ◦ (g ◦ [a]g,f ) = (Fg ◦ g) ◦ [a]g,f =

(g ◦ Fg) ◦ [a]g,f = g ◦ (Fg ◦ [a]g,f ).

Hence by uniqueness, [a]g,f ◦ Ff = Fg ◦ [a]g,f , i.e. [a]g,f ∈ Hom(Ff , Fg).

Similarly, one can show that [ab]h,f = [a]h,g ◦ [b]g,f .

Theorem 4.4: For any f, g ∈ Fπ, Ff ' Fg as formal OK-modules.

Proof. Let µ be a unit in OK . Then X = [1]f,f = [µ]f,g ◦ [µ−1]g,f . So,

[µ]f,g : Ff → Fg is an isomorphism.

This isomorphism implies that the choice of f ∈ Fπ is not important.

Definition: A formal OK-module A is a commutative formal group law Ff

and an injective ring homomorphism OK ↪→ End(Ff ), a 7→ [a]f .

Note that (mL,+f ) is an abelian group for a finite extension L/K.

By the uniqueness idea in lemma 4.1, it can be shown that (mL,+f ) has a

OK-module structure with scalar multiplication a.x = [a]f (x), ∀a ∈ OK and

∀x ∈ mL.
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Chapter V

CONSTRUCTING ABELIAN EXTENSIONS

As we introduce Lubin-Tate formal groups, we are ready to give a construc-

tion of totally ramified abelian extensions of a local field K.

Let π ∈ K be a prime element and f ∈ Fπ. We know that the choice of f is

not important. Let Λf = ms
K = {α ∈ Ks} | |α| < 1}. Note that ∀α, β ∈ Λf ,

Ff (α, β) = α+F β converges to an element in Λf and Λf has an OK-module

structure with scalar multiplication a.x = [a]f (x).

Let Λf,n be the subset of Λf such that ∀α ∈ Λf , α ∈ Λf,n if and only if

[πn]f (α) = 0.

Λf,n is a submodule of Λf .

Let α, β ∈ Λf,n. Then [πn]f (α +f iFf
(β)) = [πn]f (Ff (α, iFf

(β)). As [πn]f ∈

End(Ff ), [πn]f (Ff (α, iFf
(β)) = Ff ([π

n]f (α), [πn]f (iFf
(β))) = Ff (0, [πn]f (iFf

(β))) =

[πn]f (iFf
(β)) = iFf

([πn]f (β)) = 0 (since iFf
also in End(Ff ), which is proven

in lemma 3.2)

So Λf,n is a subgroup, hence a submodule of Λf .

Proposition 5.1: The OK-module Λf,n is isomorphic to OK/(π
n). Hence,

End(Λf,n) ' OK/(π
n) and Aut(Λf,n) ' (OK/(π

n))x.

Proof. Let h : Ff → Fg be an isomorphism. Then the diagram below com-
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mutes and h induces an isomorphism of OK modules Λf → Λg.

Λf

Λg

Ff

Fg

a ↪→ Ff (a, 0)

a→ h(a)

a ↪→ Fg(a, 0)

h

So the choice of f is not important. Let f(X) = πX + Xq. Observe that

f (n) has finitely many roots. So, Λf,n is finitely generated. Also, ∀α ∈ Λf,n,

πn.α = 0. Thus, Λf,n is a torsion-module. Since OK is a PID, we can apply

the structure theorem of finitely generated torsion-modules over a PID to

Λf,n:

Λf,n ' OK/(π
d1)

⊕
OK/(π

d2)
⊕

...
⊕

OK/(π
dn), d1 ≤ ... ≤ dn

Observe that f(X) = X(π + Xq−1) and g(X) = π + Xq−1 is an Eisenstein

polynomial. Let L be the splitting field of f. If α is a nonzero root of f, then

g(X) = Irr(α,K), thus vL(α) = 1
f(L/K,vL)

vK(NL/K(α)) = 1
f(L/K,vL)

vK(NL/K(π)) >

0. So all the roots of f lie in Λf . Hence, for n = 1, Λf,n has q elements and

by the structure theorem Λf,1 ' OK/(π).

Assume that proposition 5.1 is true for n. Let ϕ : Λf,n+1 → Λf,n given by

α 7→ π.α. We want to show that ϕ is surjective.

Let β ∈ Λf,n. Consider the polynomial f(X)− β = πX −Xq − β. Then any

root ξ of this polynomial has a positive valuation. So, all roots of f(X)− β

is in Λf .
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Observe that if f(ξ) − β = 0, then f(ξ) ∈ Λf,n, i.e. πn.f(ξ) = 0, thus

fn+1(ξ) = 0. So, ξ ∈ Λf,n+1, i.e ∀β ∈ Λf,n, ∃ξ ∈ Λf,n+1 such that ϕ(ξ) = β.

Therefore, ϕ : Λf,n+1 → Λf,n is surjective and kerϕ = {α ∈ Λf,n+1 | π.α =

0} = Λf,1. Consider the exact sequence:

0→ Λf,1 → Λf,n+1 → Λf,n → 0

By induction hypothesis, Λf,n ' OK/(π
n). So, |Λf,n| = qn. Since, Λf,n '

Λf,n+1/Λf,1, |Λf,n+1| = qn+1. Then Λf,n+1 ' OK/(π
n)

⊕
OK/(π) or Λf,n+1 '

OK/(π
n+1). The only way π maps Λf,n+1 to OK/(π

n) is if Λf,n+1 contains

OK/(π
n+1) as its subgroup. Hence, Λf,n+1 is isomorphic to OK/(π

n+1).

End(Λf,n) ' OK/(π
n+1) and Aut(Λf,n) ' (OK/(π

n+1))x follows.

Lemma 5.2: Let F ∈ OK [[X1, ..., Xn]] and L/K be finite, Galois with

Gal(L/K) = G. Then, ∀α1, ..., αn ∈ mL and ∀σ ∈ G:

σF (α1, ..., αn) = F (σα1, ..., σαn).

Proof. If F is a polynomial, since σ fixes K, the equality holds. Otherwise, let

F ≡ Fk (mod deg. k + 1). As |σα| = |α|, ∀σ ∈ G, σ is continuous, so it pre-

serves limits, i.e. if limk→∞ αk = α, then limk→∞ σαk = σ(limk→∞ αk) = σα.

So, σF (α1, ..., αn) = σ limk→∞ Fk(α1, ..., αn) = limk→∞ σFk(α1, ..., αn) =

limk→∞ Fk(σα1, ..., σαn) = F (σα1, ..., σαn).

In particular Gal(L/K) act as an OK-module isomorphism on Λf,n. Let

Kπ,n = K[Λf,n] be the subfield of Ks generated by Λf,n over K. Note that for

a given prime element π ∈ K, Λf ' Λg as OK-modules, ∀f, g ∈ Fπ. Hence
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Kπ,n is independent of the choice of f. Observe that Kπ,n is the splitting field

of fn, thus Kπ,n/K is Galois.

Theorem 5.3:

(i) For each n, Kπ,n is totally ramified of degree (q − 1)qn−1.

(ii) The action of OK on Λf,n defines an isomorphism (OK/(π
n))x → Gal(Kπ,n/K).

(iii) For each n, π is a norm from Kπ,n to K.

Proof. As the choice of f is not important, let f(X) = πX + Xq and α1 be

a nonzero root of f. Construct a sequence of roots α2, ..., αn such that αi is

a root of f(X) − αi−1. Since f(α2) − α1 = 0, f (2)(α2) = f(α1) = 0. So α2

is a root of f (2) and f(α2) 6= 0 since α1 is nonzero. Inductively, it can be

shown that each αi is a root of f (i) and is not a root of f (i−1). Consider the

sequence of fields:

K ⊆ K[α1] ⊆ ... ⊆ K[αn] ⊆ K[Λf,n]

(i)

The idea is to show K[α1]/K and for each i, K[αi]/K[αi−1] are totally rami-

fied. Observe that α1 is the root of the Eisentein polynomial g(X) = π+Xq−1.

So, [K[α1] : K] = q − 1. Since the norm of α1 over K is π, vK[α1](α1) > 0.

Hence, α1 ∈ mK[α1]. We claim that (α1) = mK[α1]. Observe that π = −αq−11 .

So, vK[α1](π) = (q−1)vK[α1](α1). If ∃α ∈ mK[α1] such that mK[α1] = (α), then

vK[α1](α) ≤ vK[α1](α1) (*) and vK[α1](π) = nvK[α1](α) where q− 1 ≤ n by (*).

But, n = e(K[α1]/K, vK[α1]) ≤ q−1. So, q−1 = n and vK[α1](α1) = vK[α1](α).
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Therefore, mK[α1] = (α1).

As vK[α1](π) = (q − 1)vK[α1](α1) and mK[α1] = (α1), e(K[α1]/K, vK[α1]) =

q − 1 = [K[α1] : K], thus K[α1]/K is totally ramified.

We want to show that f(X) − αi−1 is the irreducible polynomial of αi

over K[αi−1]. Just like in the case i = 1,by comparing valuations, one

can prove inductively that mK[αi] = (αi) and [K[αi] : K[αi−1]] = q =

e(K[αi]/K[αi−1], vK[αi]). Hence, f(X)−αi−1 is Eisenstein over K[αi−1]) and

K[αi]/K[αi−1] is totally ramified. From this follows, K[αi]/K is totally ram-

ified and [K[Λf,n] : K] ≥ (q − 1)qn−1 (1).

By definition, K[Λf,n] is the splitting field of f (n). As Λf,n = {α ∈ Λf | f(n)(α)} =

0, Gal(K[Λf,n]/K) maps Λf,n to itself. Therefore, |Gal(K[Λf,n]/K)| ≤ |Aut(Λf,n)|

=|(OK/(π
n))| = qn − qn−1 = (q − 1)qn−1, thus [K[Λf,n] : K] ≤ (q − 1)qn−1

(2). By (1) and (2), [K[Λf,n] : K] = (q− 1)qn−1. So, K[Λf,n] = K[αn], hence

K[Λf,n]/K is totally ramified of degree (q − 1)qn−1.

(ii)

By proposition 5.1, Aut(Λf,n) ' (OK/(π
n))x, thusGal(K[Λf,n]/K) ' (OK/(π

n))x.

(iii)

Observe that αn is a root of (f(X)
X

) ◦ f (n−1) = π + ... + X(q−1)qn−1 ∈ OK [X].

Since, [K[αn] : K] = (q−1)qn−1, f(X) = Irr(αn, K). Hence NK[αn]/K(αn) =

(−1)(q−1)q
n−1
π = π.
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LetKπ = ∪Kπ,n. ThenGal(Kπ/K) = lim←−Gal(Kπ,n/K) = lim←−((OK/(π
n))×) =

O×K . Recall that if f ∈ Fπ and f ′ ∈ Fπ′ are isomorphic then they induce an

OK-module isomorphism between Λf,n and Λf ′,n. Thus, Kπ,n ' Kπ′,n and

Kπ ' Kπ′ . However, in general this is not the case. If π and π′ are distinct

prime elements of K, then Kπ,n = Kπ′,n if and only if π ≡ π′ (mod mn).

Lemma 5.4: Let π, π′ be prime elements of K̂ur and let f ∈ Fπ and f ′ ∈ Fπ′

be power series in Ôur
K . Let φ ∈ Ôur

K [[X1, ..., Xn]] be a linear form such

that π′φ(X1, ..., Xn) = πφϕ(X1, ..., Xn). Then there exists a unique power

series ρ(X1, ..., Xn) ∈ Ôur
K [[X1, ..., Xn]] such that ρ ≡ φ (mod deg. 2) and

f ′ ◦ ρ = ρϕ ◦ f .

This lemma is proven in [1, pg. 47-49]. Observe that if we replace K̂ur with

an unramified extension Kn/K of degree n, then lemma 5.4 will still hold

since completeness is the only thing we need in the proof, [1, pg. 49].

Lemma 5.5: For each µ ∈ 1 + mn
K , there exists a η ∈ Os

K such that

ηµ = ϕ(η).

Proof. The idea is to recursively construct an η ∈ Os
K satisfying ηµ = ϕ(η).

Let µ = 1 + πnζ and η = 1 + πξ such that

ϕ(η)
η

= 1+ϕ(πnξ)
1+πnξ

≡ 1 + ϕ(πξ) − πξ (mod πn+1). Hence, we wish to solve

the equation ϕ(πnξ) − πnξ ≡ πnζ (mod πn+1). Let ϕ(πn) = πnθ. Then,

the above equation becomes πnθϕ(ξ) − πnξ − πnζ ≡ 0 (mod πn+1). After

reducing πn, we get θϕ(ξ) − ξ − ζ ≡ θξq − ξ − ζ ≡ 0 (mod π). As ζ ∈ OK ,
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vk(ζ) ≥ 0. Since a root of the polynomial θXq−X−ζ exists in Os
K , ∃η ∈ Os

K

such that ηµ ≡ ϕ(η) (mod πn+1).

Proposition 5.6: Let π ≡ π′ (mod mn). Then, Kπ,n = Kπ′,n.

Proof. Let f ′ ∈ Fπ′ , f ∈ Fπ and α′ ∈ Λf ′,n. Let η be as in lemma 5.5. Then

by lemma 5.4, ∃ρ(X) ∈ OK [[X]] such that ρ(X) ≡ ηX (mod deg. 2) and

f ′ ◦ ρ = ρϕ ◦ f . Observe that ρ ◦ Ff ≡ Ff ′ ◦ ρ ≡ η(X + Y ) (mod deg. 2).

Also, as Ff ′ ∈ OK [[X]], ϕ fixes the coefficients of Ff ′ , thus f ′ ◦ (Ff ′ ◦ ρ) =

Ff ′ ◦ (f ′ ◦ ρ) = Fϕ
f ′ ◦ (ρϕ ◦ f) = (Ff ′ ◦ ρ)ϕ ◦ f . Similarly, f ′ ◦ (ρ ◦ Ff ) =

(ρϕ ◦ f) ◦ Ff = (ρϕ ◦ Ff ) ◦ f = (ρϕ ◦ Fϕ
f ) ◦ f = (ρ ◦ Ff )ϕ ◦ f . By uniqueness

condition in lemma 5.4, ρ ◦ Ff = Ff ′ ◦ ρ, i.e. ρ ∈ Hom(Ff , Ff ′).

Observe that f ′(n) ◦ ρ = ρϕ
n ◦ f (n). Thus, f ′(n)(ρ(α)) = 0 if and only if

f (n)(α) = 0. Hence, Λf ′,n = ρ(Λf,n). So, ∃α ∈ Λf,n such that ρ(α) = α′.

Note that f ′(X) ≡ π′X (mod deg. 2) and f ′ϕ = f ′, since f ′(X) ∈ OK [[X]].

Our claim is that ρ maps [π′]f to f ′. In other words, we want to show

ρ ◦ [π′]f = f ′ ◦ ρ, thus we are going to use the uniqueness of ρ.

(i) ρ ◦ [π′]f ≡ ηπ′X ≡ f ′ ◦ ρ (mod deg. 2).

(ii) f ′ ◦ (ρ ◦ [π′]f ) = (ρϕ ◦ f) ◦ [π′]f = (ρϕ ◦ [π′]f ) ◦ f = (ρ ◦ [π′]f )
ϕ ◦ f , as

[π′]f ∈ OK [[X]]. Similarly, f ′ ◦ (f ′ ◦ ρ) = f ′ϕ ◦ (ρϕ ◦ f) = (f ′ ◦ ρ)ϕ ◦ f .

Hence, ρ ◦ [π′]f = f ′ ◦ ρ. Recall that π′ = µπ, thus [π′]f = [µ]f ◦ [π]f .

So, ρ ◦ [µ]f ◦ [π]f = ρ ◦ [π′]f = f ′ ◦ ρ = ρϕ ◦ f = ρϕ ◦ [π]f . Therefore,

ρ ◦ [µ]f = ρϕ.

Consider the map λ : (OK)× � (OK/(π
n))× given by α 7→ α (mod πn). So,

kerλ = 1 + mn
K and (OK)×/1 + mn

K ' (OK/(π
n))× ' Aut(Λf,n). So, since
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µ ∈ 1 + mn
K , [µ]f acts trivially on Λf,n and thus, ρ(α)ϕ = ρ(α), ∀α ∈ Λf,n.

As Kur ∩ Kπ,n = K, FrobKur/K can be extended to an automorphism ϕ

of Kur.Kπ,n = Ln such that Lϕ = Kπ,n. Since ∀α ∈ Kπ,n, ρϕ(α) = ρ(α),

ϕ fixes ρ(α) = α′. Therefore, Kπ′,n ⊆ Kπ,n. For, µ−1, one can show that

Kπ′,n ⊇ Kπ,n. Hence, Kπ′,n = Kπ,n.

This proposition also gives that, Kπ/K and Kπ′/K are not isomorphic

if π 6≡ π′ (mod mn
K) for some n ∈ N. However, we are going to show that

the choice of π is unimportant for Lπ = Kur.Kπ over Kur. In other words,

K does not have a canonical maximal totally ramified abelian extension but

Kur does.

Since Kur ∩Kπ = K, Gal(Lπ) = Gal(Kur/K)×Gal(Kπ/K). Now consider

the homomorphism

φπ : Kx → Gal(Lπ/K) ' Gal(Kur/K)×Gal(Kπ/K)

µπn 7→ (Frobn, [µ−1]f )

Our goal is to show that the extensions Kur.Kπ,n are independent of the

choice of π. To prove this, we need to show that Ff and Ff ′ are isomor-

phic over Our
K , and thus, Λf,n are isomorphic Λf ′,n as Our

K -modules. Note

that Kur is not complete in general, so power series evaluated at mur may

not converge. Therefore, we are going to work over K̂ur instead. Since any

σ ∈ Gal(Kur/K) preserves the valuation, σ is an isometry, i.e. it is continu-

ous. So it can be extended to K̂ur.
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Lemma 5.7: ∃ρ ∈ Ôur
K [[X]] such that

(i) ρ(X) ≡ ηX (mod deg. 2) for some unit η

(ii) ρϕ = ρ ◦ [µ]f where ϕ(η) = µη

(iii) ρ ◦ Ff = Ff ′ ◦ ρ

(iv) ρ ◦ [a]f = [a]f ′ ◦ ρ for all a ∈ OK , which is an immediate result of (iii)

and proposition 4.3.

Since η is a unit, by (i) and (iii), Ff ' Ff ′ over K̂ur. So, K̂ur.Kπ,n '

K̂ur.Kπ′,n and thus, the choice of π is unimportant for Lπ = K̂ur.Kπ and

K̂ur.Kπ = K̂ur.Kπ′ follows.

Lemma 5.8: Let E be an algebraic extension of K in Ks and Ê be its

completion. Then Ks ∩ Ê = E.

Proof. Let σ ∈ Gal(Ks/E). Then σ fixes E. But we know that σ is continu-

ous since it preserves valuations. So by continuity, σ also fixes Ks∩ Ê. Then

Ks ∩ Ê ⊆ E. But Ks ∩ Ê ⊇ E, thus, Ks ∩ Ê = E.

Theorem 5.9: Lπ and φπ is independent of the choice of π.

Proof. Recall that ρ(Λf,n) = Λf ′,n. So,

K̂ur[Λf ′,n] = K̂ur[ρ(Λf,n)] ⊆ K̂ur[Λf,n] = K̂ur[ρ−1(Λf ′,n)] ⊆ K̂ur[Λf,n]

Hence, K̂ur[Λf ′,n] = K̂ur[Λf,n]. If we apply lemma 5.7 to Kur[Λf ′,n] and
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Kur[Λf,n],

K̂ur[Λf ′,n] ∩Ks = Kur[Λf ′,n], K̂ur[Λf,n] ∩Ks = Kur[Λf,n]

Therefore, Lπ′ = Kur[Λf ′,n] = Kur[Λf,n] = Lπ.

To show that φπ is independent of the choice of π, we are going to show

that φπ(π′) = φπ′(π
′). So, for any uniformizers π, π′, $ ∈ K, φπ(π′) =

φπ′(π
′) = φ$(π′) and φπ = φ$ follows since K× is generated by the set of

uniformizers.

Recall that φπ : K× → Gal(Kur/K)×Gal(Kπ/K) given by the map πnµ 7→

(ϕn, [µ−1]f ). So, both φπ(π′) and φπ′(π
′) induce ϕ on Kur, thus we only need

to check the automorphism they give on Kπ′ . Note that φπ′(π
′) = [1−1]f ′

is the identity on Kπ′ . So we want to show that φπ(π′) is the identity on

Kπ′ . Let f ∈ Fπ and f ′ ∈ Fπ′ . Recall that ∃ρ(X) ∈ Ôur
K [[X]] such that ρ :

Ff → Ff ′ is an isomorphism over K̂ur and ρ(Λf,n) = Λf ′,n. So, to show that

φπ(π′) is the identity on Kπ′ , we need to prove that φπ(ρ(α)) = ρ(α), for all

α ∈ Λf,n for all n. We know that φπ(π) = (ϕ, [1−1]f ) and φπ(µ) = (id, [µ−1]f )

on Gal(Kur/K) × Gal(Kπ/K). Since both φπ(π) and φπ(µ) preserves the

valuation on Kur, they are continuous and can be extended to K̂ur. Since,

π′ = µπ, φπ(π′) = φπ(µ)φπ(π) and ρ(X) ∈ Ôur
K , by lemma 5.5,

φπ(π′)(ρ(α)) = φπ(µ)φπ(π)(ρ(α)) = (φπ(π)(ρ))(φπ(µ)(α))

= ρϕ([µ−1]f (α)) = ρ(α)

Hence, φπ(π′) = φπ′(π
′) and φπ is independent of the choice of π.
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