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Abstract

We construct a New Keynesian Phillips Curve (NKPC) model with time varying

trend inflation to analyze the dynamics between the US inflation level and volatility.

The model involves a Calvo type pricing of firms where the firms that cannot optimize

their prices fix their prices at the previous period’s level. The extended model can

generate much richer dynamics than the conventional NKPC without any trend

inflation. Interestingly, the extended NKPC model indicates that the volatility of

US inflation is driven mainly by the level of inflation and shocks to the long-run

inflation expectations endogenously. We, further, estimate a simplified version of

our NKPC model using US quarterly inflation and labor income share data over

the period from 1960 until 2014 using Bayesian inference. The model involves time

varying trend inflation (as well as time varying level of labor income share) together

with stochastic volatility for inflation. In addition, we use survey based inflation

expectations to replace the short-run inflation expectations relaxing the rational

expectations assumption. In accordance with theoretical findings, empirical results

verify that past volatility does not have a significant impact on the level, whereas

the past level of inflation affects the volatility of the inflation.
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Özet

A.B.D. enflasyon seviyesi ile oynaklığı arasındaki dinamikleri analiz edebilmek

için zamanla değiçen enflasyon seviyesi olan Yeni Keynesyen Phillips eğrisi mod-

eli kurduk. Bu model fiyatları optimumlaştıramayan firmaların geşen dönem fiy-

atları kullandığı Calvo tipi fiyatlama işermektedir. Bu daha kapsamlı model en-

flasyon trendi işermeyen geleneksel NKPC modellerine göre daha zengin dinamikler

öretmektedir. Şaşırtıcı bir şekilde bu daha kapsamlı model A.B.D. enflasyon oy-

naklığını büyük ölşöde enflasyon seviyesi ve uzun dünem enflasyon beklentilerinde

görülen içsel şoklar tarafından yönlendirildiğini göstermektedir. Ayn zamanda 1960

ve 2014 yılları arasındaki A.B.D. çeyrek enflasyon ve çeyrek emek gelir payı verilerini

kullanarak NKPC modelimizin daha basit bir versiyonunu Bayesian ekonometrisi

çerşevesinde tahminledik. Bu model zamanla değiçen emek gelir payı seviyesi dıçında

zamanla değiçen enflasyon seviyesi ve olasılıksal enflasyon oynaklığı içermektedir.

Ayrıca rasyonel enflasyon beklentileri varsayımını zayıflatarak kısa dönem enflasyon

beklentileri yerine ankete dayalı enflasyon beklentilerini kullandık. Teorik bulgulara

uygun olarak ampirik neticeler geçmiş dönem enflasyon oynaklığının enflasyon se-

viyesi üzerinde hiç bir etkisi olmadığını ancak geçmiş enflasyon seviyesinin enflasyon

oynaklığını etkilediğini göstermektedir.
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1 Introduction

One of the central issues in macroeconomics is the dynamics of short-run inflation.

This issue is crucial for the nature of business cycles and how the monetary policy

should be conducted. To address this challenge, recently there have been numer-

ous important advances. This literature depends on early work by Fischer (1997),

Taylor (1980), Calvo (1983) and other studies that underlined sticky nominal wage

and forward looking price setting. Gali and Gertler (1999) expands this work by

putting price setting into an individual utility maximization problem. Aggregating

individual behaviours yields a relation between inflation and some measure of overall

economic activity, that is, New Keynesian Phillips Curve(NKPC). New Keynesian

Phillips Curve can be defined briefly as the dynamic inflation and economic activ-

ity relation that emerges in dynamic optimization framework populated by utility

maximizing households and profit maximizing firms and modified with some kind of

stickiness in price setting. Allowing for both nominal rigidities and market imperfec-

tions in these models alters the transmission mechanism for shocks and also provides

a more potent role for monetary and fiscal policy Regarding micro-foundations in

derivation of NKPC adds new structures on the relation and some important differ-

ences in detail.

With further improvements based on previous studies we discuss above, mod-

elling the relation between inflation and economic activity has been one of the

building blocks in policy analysis. The NKPC have become enormously important

in policy models where the NKPC has become standard approach. NKPC models

are theoretically consistent, have explicit microeconomic foundations and provide

a rigorous analytical framework for credible welfare and policy analysis. Over the

course of time there have been debates about the merits of NKPC and further re-

finements are incorporated into NKPC models. We will discuss the recent advances

occurred in both empirical and theoretical aspects of NKPC.
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2 Literature Review

As for the theoretical aspect, Gali and Gertler (1999) extends the baseline NKPC

model by allowing for the backward looking firms which set their prices according

to past period’s inflation. They develop and estimate a hybrid NKPC and showed

that both backward looking and forward looking behaviour is statistically significant.

They derive the NKPC model by log-linearising the first order conditions of maxi-

mization problems of both firms and households around zero trend inflation.However

the average inflation rates in recent years for developed countries have been positive

and not so close to zero, i.e, from the seventies onwards the average inflation rate has

varied from approximately 3% in Germany to almost 10 % in Spain, with the U.S.

around 5%. Even from this simple analysis of data, it is obvious that NKPC derived

using log-linearisation around zero steady state is ill-suited for describing economies

with high rates of inflation. Ascari (2004) shows that when trend inflation is taken

into consideration, both the long run and short run nature of NKPC models changes

dramatically. The NKPC model is very sensitive to the trend inflation level around

which log-linearisation is carried out, therefore it is not surprising that trend infla-

tion is crucial for the dynamics of log-linearised model. As a consequence, the results

obtained from a NKPC model with zero steady state inflation might be deceptive.

The other problem in theoretical aspect of NKPC is that to overcome the short-

coming of purely forward-looking versions of the NKPC which generates too lit-

tle inflation persistence, some authors add ad hoc backward-looking terms as Gali

and Gertler (1999) did. Nevertheless the models including backward-looking terms

have been criticized because these models lack a reasonable microeconomic foun-

dation. Cogley and Sbordone (2008) showed that to include the variation in the

inflation level of the model is important to explain the inflation persistence. Cogley

and Sbordone (2008) derives a version of the NKPC as a log-linear approximation

around time varying steady state inflation and demonstrates that when the inflation
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trend is modelled as time varying, a purely forward-looking model fits data very

well without requiring a backward-looking term. To derive our model we use the

micro-foundations proposed by Ascari(2004) and we treat the inflation trend as time

varying following the practice of Cogley and Sbordone(2008).

Various improvements also have taken place in econometric modelling of NKPC.

Gali and Gertler (1999) uses labor income share as a indicator of marginal cost

instead of ad hoc output gap as theory suggests and their results indicates that labor

income share is a statistically significant and quantitatively important determinant

of inflation. Following the practice which started with Gali and Gertler (1999), we

use labor income share as a proxy of real marginal cost in our empirical model.

The other discrepancy for the econometric aspect of NKPC is that the analysis

of NKPC is carried out by using the short run variations in inflation and economic

activity. Various studies demean and detrend the data before the analysis to obtain

the short run variation, see Gali and Gertler (1999); Smets and Wouters (2003);

Mavroedis (2004); DeJong and Dave (2011). However eliminating the low frequency

movements may lead to misspecification in the models, see Canova (2012). Numerous

works points out the existence of complex low frequency movements, especially in

the inflation (McConnell and Perez-Quiros, 2000; Stock and Watson, 2008; Bianchi,

2010). When we examine the non-filtered inflation data, we observe two distinct

periods in terms of the inflation trend. The inflation is much higher in the period

between the beginning of 1970s and the begining of 1980s compared to the inflation

in the latter periods. It is widely believed that this decrease in inflation is caused by

the credible monetary policy that made the inflation more stable by committing to

a nominal anchor since the early eighties, see McConnell and Perez-Quiros (2000);

Stock and Watson (2002); Ahmed et al. (2004); Stock and Watson (2007); Cecchetti

et al. (2007). Similarly, the labor income share series follows a time varying trend

which is negative and its magnitude increases in the recent periods. The reason for
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such a trend is most probably technology shocks. The importance of joint analysis

of both short and long variation in the data is emphasized by various works (Delle

Monache and Harvey, 2010; Canova 2012).

Basturk et al. (2012) shows that prior filtering of data causes misspecification

and thus deteriorates posterior inference of NKPC parameters. To address this

problem, Basturk et al. (2012) models the low and high frequency movements in the

inflation and labor income share series jointly, by expending the NKPC to allow for

analysis of non-filtered observed time series.

Following Basturk et al. (2012), we construct a NKPC model with complex time

series structures which involves time varying trends in the inflation and marginal cost

series. Besides modelling the low frequency movements we also allow high frequency

movements to change by adding stochastic volatility structure for the inflation. We

use survey based inflation expectations to replace short-run inflation expectations.

With further refinements added we investigate the relation that links the inflation

trend and volatility.

The structure of this paper is as follows: Section 3 presents different versions of

NKPC models derived treating the inflation trend differently as zero first,secondly

positive and then time varying. Section 4 provides the empirical models with sim-

plified version of NKPC equation with time varying trend inflation. Section 5 sum-

marizes the likelihood, prior and posterior sampling algorithm. Section 6 presents

the estimation results for NKPC parameters and steady state values as well as how

the relation between the inflation trend and volatility behaves. Section 6 concludes.

Appendix A provides detailed derivation of NKPC equations. In Appendix B details

on parametric structures, state space specification of our models and the sampling

algorithm are provided.
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3 The Theoretical Model

The model we use is a sticky price dynamic general equilibrium model and is based

on Calvo(1983) price setting. Moreover, the model is composed of a continuum of

infinitely-lived consumers, producers of final and and intermediate goods.

Households

The instantaneous utility function is given by

{[
bC

η−1
η + (1− b)

(
M

P

) η−1
η

] η−1
η

(1− Le)

}1−χ

/(1− χ) (1)

where C is consumption, M is money, P is price of final good, and L is labor.Household’s

problem is to maximize the expected discounted sum of instantaneous utility subject

to a series of budget constraints.

Firms

In the final goods market, a single final good is produced by a perfectly competitive,

representative firm. The final good is produced using a continuum of intermediate

good, Yj,t indexed by j ∈ (0, 1). Final good producers use the following technology:

Yt =

[∫ 1

0

Yt(i)
(ε−1)/εdi

](ε−1)/ε

(2)

where Yt(i) is the output of intermediate goods producer and Yt is final good output.

The demand curve for Yt(i) is given by

Yt =

(
Pt(i)

Pt

)(−1+ε)/ε

(3)
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where Pt(i) is the price of intermediate good i and Pt is the aggregate price of the

final good. The aggregate price is given by

Pt =

[∫ 1

0

Pt(i)
− 1
ε di

]−ε
(4)

In the sticky prices model, proposed by Calvo(1983), a fraction 1− θ of all firms

re-optimize their nominal prices while the remaining θ fraction of all firms do not re-

optimize their nominal prices. Following Christiano et al. (2005), firms that cannot

re-optimize set their price index to lagged inflation are as follows.

Pt(i) = πt−1Pt−1(i) (5)

where πt = Pt/Pt−1. We call this price setting ”lagged inflation indexation”. The

firm i chooses Pt(i) to maximize

max Et{
∞∑
j=0

θjγj[

(
Pt(i)

Pt+j

)
Yt+j(i)− TCi,t+j(Yt+j(i))]}

s.t. Yt+j(i) =

(
Pt(i)

Pt+j

)−ε
Yt

(6)

where γ is the discount factor and TCi is real total costs.

The optimal price fixed by re-setting firms in period t is given by

P ∗t =
ε

ε− 1

Et{
∑∞

j=0 θ
jγjMCi,t+j(Pt+j)

εYt+j}
Et{
∑∞

j=0 θ
jγj(Pt+j)ε−1Yt+j}

(7)

where MCi is real marginal cost of producer i. This equation represents the core of

sticky price models, as thoroughly explained by King and Wolman (1996).

The structure of New Keynesian Phillips Curve depend on how we treat the
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trend inflation. Analytical investigation shows that dynamic behaviour is highly

sensitive to trend inflation. We derive NKPC equations for different types of trend

inflation. We start with the well-known case where log-linearisation is taken around

the steady state with zero inflation (i.e. Π = 1). Then we derive the NKPC where

log-linearisation is taken around a steady state with trend inflation (i.e Π > 1). At

the last case, we derive a version of NKPC as a log-linear approximation around a

time-varying inflation trend. We use upper-case letters and letters with tilde for the

steady-state values and log-deviations of variables, respectively.

3.1 NKPC with zero trend inflation

The log-linearised version of (7) is

p̃∗t − p̃t = (1− θγ)Et

∞∑
j=0

(1− θγ)m̃ct+j + π̃t,t+j (8)

where π̃t,t+j = (π̃t+1 + π̃t+2 + · · · + π̃t+j) and π̃t,t = 0. The log-linearised version of

general price level equation (4) is

p̃∗t − p̃t =
θ

1− θ
π̃t (9)

We combine (8) and (9) in order to get the dynamics of inflation

π̃t = λm̃ct + γEtπ̃t+1 (10)

where λ = (1−θ)(1−θγ)
θ

. As explained by Gali and Gertler (1999), this is the so-

called ’New Keynesian Phillips Curve’. We found by iterating (10) forward that the

inflation rate today is based on the discounted sum of the future expected marginal
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costs

π̃t = λ

∞∑
j=0

γjEtmct+j (11)

When we take expected future path of the marginal costs as given, the key parameter

for the dynamics of inflation is therefore λ. Gali and Gertler (1999) propose an

empirical formulation based on (10) to explain the dynamics of inflation. Gali and

Gertler (1999) argue that such a model could explain the behaviour of U.S. inflation

in the last thirty years and estimates the structural parameters of the model.

On the contrary Ascari(2004) shows that when the trend inflation is taken into

consideration, both the long-run and short-run properties of NKPC models change

dramatically, therefore the models obtained by log-linearisation around a zero infla-

tion steady state might be misleading.

3.2 NKPC with trend inflation

The log-linearised version of (7) around a steady state with trend inflation is

p̃∗t − p̃t =Et

∞∑
j=0

(θγΠε)j(1− θγΠε){m̃ct+j + επ̃t,t+j + ỹt+j} (12)

− Et
∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t,t+j + ỹt+j}

The log-linearised version of general price level around a steady state with trend

inflation is

p̃∗t − p̃t =
θΠε−1

1− θΠε−1
πt (13)

Combining (12) and (13), we obtain a more generalized version of (10), which can
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be written as

π̃t =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + γEtπ̃t+1

+ (1− Π)γ(1− θΠε−1)

[
ỹt −

(
ε+

θΠε−1

1− θΠε−1

)
Etπ̃t+1

− (1− θγΠε−1)Et

∞∑
j=0

(θγΠε−1)j[(ε− 1)π̃t+1,t+j+1 + ỹt+j+1]

]
(14)

Setting Π = 1 results in (10). We can ignore the last additive terms, since the

gross inflation rate Π is very close to one. In that case we obtain an expression very

close to (10).

π̃t = λ̄(Π)m̃ct + γEtπt+1 and π̃t = λ̄(Π)
∞∑
j=0

γjEtmct+j (15)

where λ̄(Π) =
(

1−θΠε−1

θΠε−1

)
(1− θγΠε).

Ascari(2004) shows that the value of λ very much depends on the trend inflation

values. Even when we take a small level of inflation trend, i.e 2% annually, the value

of λ reduces by % 30 compared to a log linearisation around zero tend inflation.

Therefore for any given future expected path of marginal costs, when the trend

inflation is not considered, the dynamic response of inflation to marginal costs is

overestimated. Moreover, when trend inflation gets higher, the difference between λ

and λ̄(Π) gets bigger.

Ascari(2004) presents some important points from the analysis above. The model

shows that the log-linear approximation of dynamics of inflation around zero trend

inflation as a function of future expected path of marginal costs gets worse when

the trend inflation increases. While the log-linear approximation around zero trend

inflation simplifies the process and gives neat results, ignoring the trend inflation

may lead to misleading results.

What Ascari(2004) derived is a purely forward-looking New Keynesian Phillips
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curve (NKPC): inflation depends on the expected evolution of real marginal costs.

However, empirical evidence of significant inflation persistence can not be explained

by purely forward-looking models(e.g., see Fuhrer and Moore 1995). Accordingly,

a number of studies constructs backward-looking models by introducing some form

of price indexation to add lags of inflation to the model in order to enhance the

degree of inflation persistence in the model and provide a better fit with the data

(e.g., see Lawrence Christiano,Martin Eichenbaum and Charles Evans 2005). How-

ever these mechanisms have been criticized because they don’t have a reasonable

microeconomic foundation.

Cogley and Sbordone(2008) proposes an alternative interpretation of the ap-

parent need for a structural persistence term.They emphasized that to explain the

inflation persistence it is important to model the variation in the trend inflation.

The trend inflation gives a highly persistent component to the inflation. Cogley

and Sbordone(2008) log-linearise the equilibrium conditions of the model around a

shifting steady state with a time-varying inflation trend.

3.3 NKPC with time-varying trend inflation

We derive a NKPC model by using the same price indexation as Ascari(2004) did

and treating the trend inflation in the same way as Cogley and Sbordone(2008) did.

The resulting representation is a log-linear NKPC with time-varying coefficients.

π̃t =

(
1− θΠε−1

t

θΠε−1
t

)
(1− θγΠε

t)m̃ct + (γ − γ(1− Πt)(ε(1− θΠε−1
t ) + θΠε−1

t )Etπ̃t+1

− (1− Πt)γ(1− θΠε−1
t )Et

{ ∞∑
j=1

(θγΠε−1
t )j−1 (ỹt+j − ỹt+j−1)︸ ︷︷ ︸

g̃yt+j

+θγΠε−1
t (ε− 1)π̃t+1+j)

}

(16)
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where g̃yt+j is the log-deviation of gross growth rate from its steady state value which

is one and Π̄t is time varying inflation trend. When we take Πt as constant positive

value, (16) boils down to (14) and when we take trend inflation as one, we obtain

(10). The last infinite additive term in (16) can be considered as expectational shock,

since long-term inflation expectations and growth expectations behave as noise with

mean zero. The volatility of the error term is related to the time varying steady

state inflation, because the magnitude of this term depends on the trend inflation.

Therefore, the theory indicates that the volatility of inflation depends on the inflation

trend and shocks to the long-term inflation and growth expectation endogenously.

To further simplify (16), we linearise the coefficients around Πt = 1 using first

order Taylor approximation and we obtain

π̃t =

(
1− θ
θ

)
(1− θγ)m̃ct + γEtπ̃t+1 +

(
1− ε− θγ(1− θε)

θ
(Πt − 1)

)
m̃ct

+ (ε(1− θ) + θ)(Πt − 1)γEtπ̃t+1 + (1− θ)(Πt − 1)γEt{
∞∑
j=1

(θγ)j−1(g̃yt+j+

θγ(ε− 1))π̃t+1+j} (17)

The two additive terms in (17) gives NKPC expression obtained by log-linearisation

around zero steady state. Additionally there are two terms with time varying coef-

ficients for m̃ct and π̃t+1, respectively. The last infinite additive term can be treated

as expectational shock with volatility depending on the trend inflation, since g̃yt+j

and π̃yt+1+j are log deviations from steady state values, thus in the infinite horizon

they act as noise with mean zero as we discussed above.

Since (17) involves the infinite sum of expectations, a closed form solution only

exists when we make certain assumptions such as rational expectations. Rather than

following this practice we can model inflation expectations and growth expectations

using an unobserved component to be estimated along with other parameters(see

Basturk 2012). Specifically, let µt = Etπ̃t+1 and αt = Etg̃
y
t+1. We assume that
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inflation expectations and growth expectations are anchored around long-term ex-

pectations and deviations from this long-term expectations follow an AR(1) process

as follows

µt − Πt+1 = β(µt−1 − Πt) + επ,t

αt −Gy
t+1 = β(αt−1 −Gy

t ) + επ,t (18)

This formulation states a Bayesian learning rule for the inflation expectations in the

sense that each period when the new informations arrives, the states and expecta-

tions are updated.

Specifying expectations as in (18), the model becomes

π̃t =

((
1− θ
θ

)
(1− θγ) +

(
1− ε− θγ(1− θε)

θ
(Πt − 1)

))
m̃ct

+

(
γ + (Πt − 1)γ

(
1− (ε− 1)(θ − 1)

(
θγ

1− θγβ

)))
Etπ̃t+1

−
(

(θ − 1)(Πt − 1)γ

(
θγ

1− θγβ

))
Ẽtg

y
t+1 (19)

(19) can be estimated, since both inflation expectations and growth expectations

data is available from University of Michigan Research Center which provide quar-

terly one year ahead inflation and growth expectations . This implies that the infla-

tion expectations are anchored around the survey values, see Roberts (1995,1997);

Del Negro and Schorfeider (2012) for a similar approach).

Cogley and Sbordone(2008) showed that backward looking component is not

needed to model inflation dynamics once variation in trend inflation is taken into

account by deriving a version of the NKPC as an approximate equilibrium condition

around a time-varying inflation trend and estimating with an unrestricted VAR.
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In our empirical analysis we estimate a simplified version of our NKPC model

(17) using Bayesian inference. We use a state space framework at which variation in

trend inflation is taken into account, also stochastic volatility for inflation. Posterior

results are obtained using a simulation based on Bayesian approach.
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4 The Empirical Model

We first evaluate the data features for the empirical application. For the empirical

analysis, we take into consideration U.S. inflation and real marginal cost series over

the period from the first quarter of 1960 until first quarter of 2012. Inflation is

computed as the growth rate of the implicit GDP deflator and for the real marginal

cost series we use labor share in non-farm business sector. Also we use inflation

expectation survey data for the expectation of the next period inflation and we

denote it as πSt .

Gali and Gerler(1999) showed why labor income share is a good proxy for real

marginal cost. Let At denote technology, Kt capital, and Nt labor. Then output Yt

is given by

Yt = AtK
αk
t Nαn

t (20)

Real marginal cost series is then given by the ratio of real wage to the marginal

product of labor.

MCt = (Wt/Pt)(∂Yt/∂Nt) (21)

Hence, given (20) we have

MCt =
Zt
αn

(22)

where Zt ≡ WtNt/PtYt is labor income share. Therefore for the log-deviations of

labor income share and marginal cost, we have

m̃ct = z̃t (23)
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For the empirical case, π̃t and z̃t can be interpreted as the transitory compo-

nents of inflation and marginal cost, in deviation from long-term components. The

observed non-filtered inflation and labor income share can be decomposed into per-

manent and transitory components in a straightforward way as

πt = π̃t + Πt

zt = z̃t + Zt (24)

where Πt and Zt are permanent components of inflation and marginal cost series,

i.e, the steady state values of the series.

The structural form representation for the basic NKPC model for filtered data

is given as

π̃t = λz̃t + γ Et(π̃t+1)︸ ︷︷ ︸
πSt −Πt

+ε1,t (25)

z̃t = φ1z̃t−1 + φ2z̃t−2 + φ3π̃t−1 + φ4π̃t−2 + φ5π̃
S
t−1 + φ6π̃

S
t−2 + ε2,t (26)

Et(π̃t+1)︸ ︷︷ ︸
πSt −Πt

= ψ1z̃t−1 + ψ2z̃t−2 + ψ3π̃t−1 + ψ4π̃t−2 + ψ5π̃
S
t−1 + ψ6π̃

S
t−2 + ε3,t (27)

where (ε1,t, ε2,t, ε3,t)
′ ∼ NID(0,Σ)

The non-filtered series of U.S inflation, inflations expectations and labor income

share is displayed in Figure 2. From Figure 2 we observe two important facts. First

there are different periods with different patterns in the inflation series. The period

between the beginning of 1970s and the beginning of 1980s has much higher inflation

compared to the rest of series. Existing evidence shows that the decline in level and

volatility is due to credible monetary policy that stabilized inflationary expectations

at a low level via commitment to a nominal anchor since the early eighties, see

McConnell and Perez-Quiros(2000); Stock and Watson (2002); Ahmed et al. (2004);
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Stock and Watson (2007); Cecchetti et al.(2007).

There are two ways to model this changing behaviour of the series. One way is to

assign different levels to different periods, i.e, there can be level shifts in the fourth

quarter of 1967 and the first quarter of 1983, that is, a higher level is assigned to

the period between the fourth quarter of 1967 and the first quarter of 1983 and a

lower level is assigned to the remaining periods, see Basturk et. al. (2012). In that

way, it is possible to model this changing behaviour of the series to allow for regime

changes in parameters to explain the change in the structure of the series, see Cogley

and Sargent (2005); Canova and Gambetti(2006); Kim and Nelson (2006); Sims and

Zha(2006); Cogley and Sbordone(2008), among others. In our case we assume that

the level shifts occur in each time period continuously. Then we can model the time

varying inflation level with a random walk process for the level of inflation as follows

Πt = Πt−1 + η1,t (28)

where η1,t ∼ NID(0, σ2
η1)

The real marginal cost series is analysed in Figure 2. For a visual inspection, we

also put a changing trend extracted using the Hodrick-Prescott (HP) filter (Hodrick

and Prescott, 1997). Unlike the inflation series we can not spot discrete changes

during the sample period for the labor income share series. Instead the labor income

share data follows a continuously changing pattern around a negative trend which

can be explained with technology shocks. We use local linear trend model to allow

for a changing trend because the magnitude of labor income share gets amplified in

the second part of sample period

Zt+1 = µz,t + Zt + η2,t+1

µz,t+1 = µz,t + η2,t+1 (29)
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where see Durbin and Koopman(2001) for details. It is possible to obtain many

types of filters by changing the configuration of local linear trend model used for

detrending, see see Delle Monache and Harvey (2011), see also Canova (2012) for a

similar specification in the more general context of DSGE models. When σ2
η3 = 0,

the level of labor income share follows a random walk with drift, µz,t. When σ2
η2 = 0,

a deterministic trend is obtained. On the other hand setting σ2
η2 = 0 and taking

σ2
η3 as positive generates an integrated random walk process which can approximate

many different types of nonlinear trends including the Hodrick-Prescott (HP) filter.

The NKPC model in (6) using (24), (28) and (29) takes the following form

πt − Πt = λt(mct −MCt) + γt(π
S
t − Πt) + ε1,t,

zt − Zt = φ1(zt−1 − Zt−1) + φ2(zt−2 − Zt−2) + φ3(πt−1 − Πt−1)

+ φ4(πt−2 − Πt−2) + φ5(πSt−1 − Πt−1) + φ6(πSt−2 − Πt−2) + ε2,t,

πSt − Πt = ψ1(zt−1 − Zt−1) + ψ2(zt−2 − Zt−2) + ψ3(πt−1 − Πt−1)

+ ψ4(πt−2 − Πt−2) + φ5(πSt−1 − Πt−1) + ψ6(πSt−2 − Πt−2) + ε3,t,

Πt+1 = Πt + η1,t+1

Zt+1 = µz,t + Zt + η2,t+1

µz,t+1 = µz,t + η3,t+1 (30)

where (ε1,t, ε2,t, ε3,t)
′ ∼ NID

(
0,

(
σ2
ε1 ρ1σε1σε2 ρ2σε1σε3

ρ1σε1σε2 σ2
ε2 ρ3σε2σε3

ρ2σε1σε3 ρ3σε2σε3 σ2
ε3

))
,

(η1,t, η2,t, η3,t)
′ ∼ NID

(
0,

(
σ2
η1 0 0

0 σ2
η2 0

0 0 σ2
η3

))
and the residuals (ε1,t, ε2,t, ε3,t)

′ and (η1,t, η2,t, η3,t)
′

are independent for all t.

Adding Stochastic Volatility

A further refinement in the NKPC model can be done allowing for time de-

pendency in residual variances. This modification is particularly necessary for the
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inflation series, since the volatility of this series changes over time considerably, e.g.

Stock and Watson(2007) for a reduced form model with a stochastic volatility com-

ponent. To incorporate stochastic volatility for the inflation level into the NKPC

model, we add the following state equation to the system

ht+1 = ht + η4,t+1, η4,t+1 ∼ NID(0, σ2
η4) (31)

where the error term of the first equation in (31) has a time-varying variance

σ2
ε1,t

= exp(ht/2). We follow the practice of Stock and Watson(2007) by setting the

value of σ2
η4 prior to analysis to facilitate estimation. We assume σ2

η4 = 0.5, which

seems to work well for the U.S. inflation series, see Basturk et. al. (2012).

Then we make another modification to the model to investigate the dynamics

between US inflation and volatility. We change the state equations for inflation trend

and volatility a little bit as follows

Πt+1 = Πt + τhht + η1,t+1

ht+1 = ht + τπΠt + η4,t+1 (32)

where (η1,t, η4,t)
′ ∼ NID

(
0,
(

σ2
η1 ρ4ση1ση4

ρ4ση1ση4 σ2
η4

))
. We put additional terms involving

ht and Πt to state equations for inflation level and stochastic volatility, respectively.

With these refinement the model takes following form,
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πt − Πt = λ(mct −MCt) + γ(πSt − Πt) + ε1,t,

zt − Zt = φ1(zt−1 − Zt−1) + φ2(zt−2 − Zt−2) + φ3(πt−1 − Πt−1)

+ φ4(πt−2 − Πt−2) + φ5(πSt−1 − Πt−1) + φ6(πSt−2 − Πt−2) + ε2,t,

πSt − Πt = ψ1(zt−1 − Zt−1) + ψ2(zt−2 − Zt−2) + ψ3(πt−1 − Πt−1)

+ ψ4(πt−2 − Πt−2) + φ5(πSt−1 − Πt−1) + ψ6(πSt−2 − Πt−2) + ε3,t,

Πt+1 = Πt + τhht + η1,t+1

Zt+1 = µz,t + Zt + η2,t+1

µz,t+1 = µz,t + η3,t+1

ht+1 = ht + τπΠt + η4,t+1 (33)

where (ε1,t, ε2,t, ε3,t)
′ ∼ NID

(
0,

(
σ2
ε1 ρ1σε1σε2 ρ2σε1σε3

ρ1σε1σε2 σ2
ε2 ρ3σε2σε3

ρ2σε1σε3 ρ3σε2σε3 σ2
ε3

))
,

(η1,t, η2,t, η3,t)
′ ∼ NID

(
0,

(
σ2
η1 0 0

0 σ2
η2 0

0 0 σ2
η3

))
and (η1,t, η4,t)

′ ∼ NID
(

0,
(

σ2
η1 ρ4ση1ση4

ρ4ση1ση4 σ2
η4

))
.

The NKPC equation (17) we derived as log-linearisation around zero trend infla-

tion also indicates that the parameters λ and γ also should be time varying, because

in the explicit form they involve time varying trend inflation. We assume these pa-

rameters as constant to get better identification for the volatility, because for this

study volatility is of primary importance.
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5 Bayesian Inference

In this section we give summary of Bayesian inference algorithm for the NKPC

models which are obtained by the product of the likelihood function and the prior

distribution for the parameters. The likelihood functions of the NKPC models are

multivariate normal densities, because we assume that errors have normal distribu-

tions. We presents details on how the prior distributions are determined and the

posterior sampler in this section. More details are presented in Appendix B.

How to determine prior distributions in the NKPC models is crucial because the

likelihood of NKPC is often flat(see Kleibergen and Mavroeidis(2011)). One way

to deal with this difficulty is to set prior distributions of parameters as informative.

However, this may deteriorates posterior inference of parameters. Therefore we use

flat prior distributions for parameters and we assign informative prior distributions

to the observation variances.

For the parameters of the NKPC model, we use independent flat prior distribu-

tions on restricted regions. The range of these regions are based on the underlying

economic theory. We determine the intervals for parameters γ and λ as the unit

interval. For the states we use a diagonal covariance matrix with an uninforma-

tive prior distribution implying that the shocks to the long-run inflation and real

marginal cost are independent.

Posterior distributions are obtained as the product of the prior distributions and

the likelihood function. Because the number and the location of structural breaks are

unknown the likelihood function is hard to tract. Therefore, we construct a MCMC

algorithm to sample from the full conditional posterior distributions. Specifically,

we use Gibbs sampling. Gibbs sampling steps are based on Kim and Nelson(1999);

Gerlach et al.(2000); Cakmakli et al. (2011). Details of MCMC algorithm are given

in appendix B.
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6 Posterior Evidence

In this section we present posterior evidence on dynamics between the U.S.inflation

level and volatility. We estimate two NKPC models, where the first model uses

set of equations in (30) with stochastic volatility. The second model is the one at

which we included refinements (32) to explain the link between the inflation level

and volatility.

We display the estimation results for the model (30) in Table 1 and the distri-

bution of parameters in Figure 2.

Table 1: Estimation Results of Parameters for standard NKPC model

γ φ1 φ2 φ3 φ4

0.1493 (0.0127) 0.7284 (0.0117) 0.2075 (0.0141) 0.2853 (0.1639) -0.6180 (0.1364)

λ ψ1 ψ2 ψ3 ψ4

0.0621 (0.0012) 0.0094 (0.0015) -0.0046 (0.0014) 0.0812 (0.0319) -0.2278 (0.0169 )

φ5 ψ5 φ6 ψ6

0.1672 (0.1993) 0.6153(0.0162) 0.0648(0.1064) 0.3332(0.0131)

ρ1 ρ2 ρ3

-0.0189 (0.0055) -0.8889 (0.0067) 0.0057(0.0036)

Note: The table presents posterior means and standard deviations (in parentheses) of
parameters for standard New Keynesian Phillips Curve(NKPC) models estimated for
quarterly inflation and real marginal cost over the period from the first quarter of 1960
and the first quarter of 2012. γ is the coefficient of inflation expectations in (30). λ
is the slope of the Phillips Curve. φ1, φ2, φ3, φ4, φ5 and φ6 are the parameters for the
equation of labor income share in the second line of (30). ψ1, ψ2, ψ3, ψ4, ψ5 and ψ6 are
the parameters for the equation of inflation expectation survey data in the third line
of (30). ρ1, ρ2 and ρ3 are the correlation coefficients between residuals ε1 and ε2, ε1
and ε3, ε2 and ε3, respectively.

The slope of Phillips curve is estimated approximately as 0.06 that implies an

almost flat curve(see e.g. Gali and Gertler (1999); Gali et al. (2005)). The coeffi-
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cient of the inflation expectation, γ is much lower than the estimates obtained with

conventional methods, which is above 0.9 in most of cases. There are two reasons for

this finding. First some of its effect is captured by the inflation trend, so the effect

of the parameter γ is alleviated. The another reason is that conventional analysis

replaces inflation expectation of the next period by the nest period’s inflation based

on the rational expectational hypothesis, but on the contrary we use survey based

inflation expectations to replace the short-run inflation expectations relaxing the

rational expectations assumption.

Figure 3 shows the estimated levels for inflation and marginal cost and the volatil-

ity of inflation. Estimated inflation level nicely track the observed inflation. One

reason for this feature is that the uncertainty of the estimated inflation decreases

as part of the uncertainty is reflected in the stochastic volatility process. In other

words, a stochastic volatility structure captures part of the inflation uncertainty.

The second panel in Figure 3 presents the estimated results for the real marginal

cost. The most prominent feature is the smoothness of estimated result. Marginal

cost series follows a slightly nonlinear trend during the sample period.

The last panel in Figure 4 presents the estimated inflation volatilities for the

NKPC model (30) with stochastic volatility. The stochastic volatility pattern in

the figure explains nicely the findings on Great Moderation, which accompanies

the decline of the volatility of many U.S. macroeconomic series, see McConell and

Perez-Quiros (2000) among others. The period before the beginning of 1980s has

high inflation levels with a high volatility, whereas inflation becomes more stable in

the second half of the sample period. The decline in inflation volatility after 1980s

is related to credible monetary policy that stabilized inflationary expectations at a

low level via commitment to a nominal anchor since the early eighties, see Stock and

Watson (2002); Ahmed et al. (2004); Stock and Watson (2007). This period of low

volatility is followed by a period with high volatility after 2005 and during recent
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financial crisis.

We display estimation results for the NKPC model (33) in Table 2 and distribu-

tions of parameters in Figure 4.

Table 2: Estimation Results of Parameters for NKPC model with volatility and level
refinements

γ φ1 φ2 φ3 φ4

0.1272 (0.0097) 0.7126 (0.0093) 0.1990 (0.0102) 0.1562 (0.2400) -0.1674 (0.2043)

λ ψ1 ψ2 ψ3 ψ4

0.0667 (0.0012) 0.0172 (0.0012) -0.0019 (0.0013) -0.0547 (0.0254) -0.1766 (0.0254 )

φ5 ψ5 φ6 ψ6 ρ1

0.1540 (0.1511) 0.6761 (0.0231) -0.0661 (0.1499) 0.2653 (0.0236) 0.020 (0.0055)

ρ2 ρ3 τh τπ ρ4

-0.8914 (0.0039) 0.0027(0.001) -0.0005 (0.0001) 0.0609 (0.0022) 0.0002 (0.0001)

Note: The table presents posterior means and standard deviations (in parentheses) of
parameters for the NKPC model which allows for the effect of volatility and level to
each other.

The estimates for parameters λ, γ, φ1, φ2, φ3, φ4, φ5, φ6, ψ1, ψ2, ψ3, ψ4, ψ5 and ψ6

are approximately equal to estimates of the first NKPC model. The interesting point

here is the estimates of coefficients of inflation level and volatility in the inflation

level and volatility state equations, respectively. The coefficient τh is estimated very

close to zero which indicates that the inflation volatility does not have any effect on

the inflation level. On the contrary the coefficient is estimated as 0.0609. This result

shows that inflation level has a significant effect on the inflation volatility, i.e. , when

the quarterly inflation increases by %2 percent, the volatility increases by 0.12 which

is a considerable increase for the volatility. Therefore, empirical results indicates that

the past volatility does not have significant impact on the level, whereas the past

level of inflation affects the volatility of inflation.
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Figure 5 shows the estimated levels for inflation, marginal cost and the inflation

volatility.Similar results are obtained compared to the previous model. Estimated

inflation level and labor income share level nicely tracks the inflation and labor

income share, respectively. The estimated level for labor income share is smooth

and approximately linear. The estimated volatility also shows clearly the effect of

inflation level on the inflation volatility. In the period from the begining of 1970s to

the beginning of 1980s where the inflation level is higher compared to the remaining

parts, the volatility is also estimated higher in reference to the rest.
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Figure 5: Inflation with its trend, labor income share with its trend and volatility
of inflation over first quarter of 1960 to the first quarter 2014
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7 Conclusion

How we understand monetary policy and its macroeconomic effects has developed

substantially owing to the various works done in this literature. The NKPC is an

important part of macroeconomic models which is essential for policy analysis. One

of the most productive areas in macroeconomic research is New Keynesian Phillips

Curves(NKPC). Over time the NKPC models improved and new features are added

in order to fit the model to the data better. Following the changes occurred in this

area, we derived three different NKPC equations which are NKPC with zero trend

inflation, NKPC with trend inflation and NKPC with time varying trend inflation.

These models are based on Calvo type pricing where the firms that cannot optimize

their prices fix their prices at the previous period’s level. We analyzed the dynamics

between the U.S. inflation level and volatility using the NKPC model we derived as

log-linearisation around time varying steady state inflation. The extendend NKPC

shows that the volatility of U.S is guided mainly by inflation volatility and shock to

expectations of inflation.

In the empirical part we estimated a simplified version of our NKPC model with

time varying inflation trend using US quarterly inflation and labor income share

data over the period between the first quarter of 1960 until the first quarter of

2014 using Bayesian inference. The model includes both time varying level of labor

income share and stochastic volatility besides time varying inflation trend. Also we

used inflation expectation survey data instead expectation of next period inflation

relaxing the rational expectation model. By adding some refinements to this model

we checked how the link between inflation volatility and level works. As our findings

in theoretical part showed, the empirical results indicates that empirical results verify

that past volatility does not have a significant impact on the level, whereas the past

level of inflation affects the volatility of the inflation.
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Appendix

A Derivation of NKPC equations

A.1 Derivation of NKPC with zero trend inflation

Suppose that there is a monopolistic competition with continuum of intermediate

goods producers i ∈ [0, 1] and the constant returns to scale production function

of each firm is given by Yt(i) = AtKt(i)
(1−σ)Lt(i)

σ .All the firms face same de-

mand function Ct(i) = (Pt(i)
Pt

)−εCt and the aggregate price level is given by Pt =

(
∫ 1

0
Pt(i)

1−εdi)1/(1−ε).

We assume Calvo price setting which means that at each time period t, (1 − θ)

fraction of firms can reoptimize their prices while θ fraction of firms cannot change

the prices. Let S(t) be the set of firms that are not re-optimizing their prices at time

t.Assume that all the firms that re-optimize will choose the same price P ∗t From the

definition of the aggregate price level, we can write;

Pt = [

∫
S(t)

Pt−1(i)1−εdi+ (1− θ)(P ∗t )1−ε]
1

1−ε (34)

= [θP 1−ε
t−1 + (1− θ)(P ∗t )1−ε]

1
1−ε (35)

We will log-linearize equation(35). We define log-linearized series x̃t around its

steady state X as;

x̃t ≡ lnXt − lnX
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Rearranging, we can solve this for Xt:

Xt = Xex̃t (36)

First order Taylor approximation of ex̃t around x̃t = 0 is given below

x̃t ≈ e0 + e0(x̃t − 0) = 1 + x̃t

Therefore, equation (36) becomes

Xt = X(1 + x̃t)

To log-linearize equation (35), first write each variable component of equation

(35) as;

Pt = Pep̃t

Pt−1 = P−1e
p̃t−1

P ∗t = P ∗ep̃
∗
t

Rearrange equation (35) and substitute the above equalities;

P 1−ε
t = θP 1−ε

t−1 + (1− θ)(P ∗t )1−ε (37)

P 1−εe(1−ε)p̃t = θP 1−ε
−1 e

(1−ε)p̃t−1 + (1− θ)P ∗1−εe(1−ε)p̃∗t

P 1−ε[1 + (1− ε)p̃t] = θP 1−ε
−1 [1 + (1− ε)p̃t−1] + (1− θ)P ∗1−ε[1 + (1− ε)p̃∗t ]

P 1−ε + P 1−ε(1− ε)p̃t = θP 1−ε
−1 + θP 1−ε

−1 (1− ε)p̃t−1 + (1− θ)P ∗1−ε + (1− θ)P ∗1−ε(1− ε)p̃∗t

Using the steady state expression of equation (37) P 1−ε = θP 1−ε
−1 +(1−θ)(P ∗)1−ε,
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the equality P = P−1 = P ∗ at the steady state and simplifying;

P 1−ε(1− ε)p̃t = θP 1−ε
−1 (1− ε)p̃t−1 + (1− θ)P ∗1−ε(1− ε)p̃∗t

p̃t = θp̃t−1 + (1− θ)p̃∗t (38)

The intermediate goods firms that reset prices at time t tries to find the P ∗t

that maximizes the expected sum of discounted real profits subject to the demand

function

max Et{
∞∑
j=0

θjγj[

(
P ∗t
Pt+j

)
Yt+j(i)− TCi,t+j(Yt+j(i))]}

s.t. Yt+j(i) =

(
P ∗t
Pt+j

)−ε
Yt

(39)

where γ is stochastic discount factor and TCi is real total costs.

Inserting the constraint into the objective function, we can write the optimization

problem as;

max Et{
∞∑
j=0

θjγj[

(
P ∗t
Pt+j

)(
P ∗t
Pt+j

)−ε
Yt − TCi,t+j(

(
P ∗t
Pt+j

)−ε
Yt)]}

FOC with respect to P ∗t is;

Et{
∞∑
j=0

θjγj(1− ε)
(
P ∗t
Pt+j

)−ε
1

Pt+j
Yt+j} = Et{

∞∑
j=0

θjγjMCi,t+j(−ε)(
(
P ∗t
Pt+j

)−ε
1

Pt+j
Yt+j)}

Rearranging the terms will give the optimum price;

P ∗t =
ε

ε− 1

Et{
∑∞

j=0 θ
jγjMCi,t+j(Pt+j)

εYt+j}
Et{
∑∞

j=0 θ
jγj(Pt+j)ε−1Yt+j}

(40)
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Now, rearrange this by dividing both sides by Pt:

P ∗t
Pt

=
ε

ε− 1

Et{
∑∞

j=0 θ
jγjMCi,t+j

(
Pt+j
Pt

)ε
Yt+j}

Et{
∑∞

j=0 θ
jγj
(
Pt+j
Pt

)ε−1

Yt+j}

P ∗t
Pt

=
ε

ε− 1

Et{
∑∞

j=0 θ
jγjMCi,t+j(Πt,t+j)

εYt+j}
Et{
∑∞

j=0 θ
jγj(Πt,t+j)ε−1Yt+j}

(41)

P ∗t
Pt

=
ε

ε− 1

Et{
∑∞

j=0 θ
jγjMCi,t+j(Πt+1 × Πt+2 × · · · × Πt+j)

εYt+j}
Et{
∑∞

j=0 θ
jγj(Πt+1 × Πt+2 × · · · × Πt+j)ε−1Yt+j}

where
Pt+j
Pt

= Πt,t+j = Πt+1 × Πt+2 × · · · × Πt+j

Log-Linearization of the Variables

Assuming that at steady state, the real variables MC and Y are constant and the

nominal variable inflation grow at constant rate Π , the expression for the steady

state of equation (41) is given below. We will, for the time being, assume zero steady

state inflation, i.e. Pi = 1, and log-linearize equation (41) around this steady state.

P ∗

P
=

ε

ε− 1

∑∞
j=0 θ

jγjMCi(Π)εY∑∞
j=0 θ

jγj(Π)ε−1Y

P ∗

P
=

ε

ε− 1
MCi (42)

Then, rewrite the individual components of (41) as follows;
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P ∗t = P ∗ep̃
∗
t

Pt = Pep̃t

MCi,t+j = MCie
m̃ct+j

Yt+j = Y eỹt+j

Πt,t+j = Πjeπ̃t,t+j

and substitute back in (41) to get;

P ∗ep̃
∗
t

Pep̃t
=

ε

ε− 1
MCi

Et{
∑∞

j=0(θγ)jem̃ct+jΠjεeεπ̃t,t+jY eỹt+j}
Et{
∑∞

j=0(θγ)jΠj(ε−1)e(ε−1)π̃t,t+jY eỹt+j}
(43)

Simplifying this term using the steady state expression in (42) where we impose

zero steady state assumption (Π = 1), we have;

ep̃
∗
t

ep̃t
=
Et{
∑∞

j=0(θγ)jem̃ct+jeεπ̃t,t+jeỹt+j}
Et{
∑∞

j=0(θγ)je(ε−1)π̃t,t+jeỹt+j}
(44)

Now, using the approximation ex ≈ x+ 1 to rewrite once more the equation (44)

and rearranging;

1 =
Et{
∑∞

j=0(θγ)j(1 + m̃ct+j)(1 + επ̃t,t+j)(1 + ỹt+j)}
Et{
∑∞

j=0(θγ)j(1 + (ε− 1)π̃t,t+j)(1 + ỹt+j)}
(1 + p̃∗t )

(1 + p̃t)

44



Rearranging further

Et

∞∑
j=0

(θγ)j{1 + (ε− 1)π̃t,t+j + ỹt+j + p̃∗t} = Et

∞∑
j=0

(θγ)j{1 + m̃ct+j + επ̃t,t+j + ỹt+j + p̃t}

Et

∞∑
j=0

(θγ)j{p̃∗t − p̃t} = Et

∞∑
j=0

(θγ)j{m̃ct+j + π̃t,t+j}

{p̃∗t − p̃t} = (1− θγ)Et

∞∑
j=0

(θγ)j{m̃ct+j + π̃t,t+j}

p̃∗t = (1− θγ)Et

∞∑
j=0

(θγ)j{m̃ct+j + π̃t,t+j}+ p̃t

where π̃t,t+j = (π̃t+1 + π̃t+2 + · · ·+ π̃t+j) and π̃t,t = 0. Now, extend the summation;

p̃∗t = (1− θγ)Et{m̃ct + π̃t,t︸︷︷︸
0

+θγ[m̃ct+1 + π̃t,t+1︸ ︷︷ ︸
π̃t+1

] + (θγ)2[m̃ct+2 + π̃t,t+2︸ ︷︷ ︸
π̃t+1+π̃t+2

] + . . .}+ p̃t

= (1− θγ)Et{m̃ct + θγ[m̃ct+1 + π̃t+1︸︷︷︸
p̃t+1
p̃t

] + (θγ)2[m̃ct+2 + π̃t+1︸︷︷︸
p̃t+1
p̃t

+ π̃t+2︸︷︷︸
p̃t+2
p̃t+1

] + . . .}+ p̃t

= (1− θγ)Et{m̃ct + θγ[lnmct+1 − lnmc+ ln pt+1 − ln pt − ln p+ ln p]

+ (θγ)2[lnmct+2 − lnmc+ ln pt+1 − ln pt − ln p+ ln p+ ln pt+2 − ln pt+1 − ln p+ ln p] + . . .}+ p̃t

= (1− θγ)Et{m̃ct + θγ[lnmcNt+1 − lnmcN − ln pt + ln p]

+ (θγ)2[lnmcNt+2 − lnmcN − ln pt + ln p] + . . .}+ p̃t

= (1− θγ)Et{lnmct − lnmc+ θγ[m̃cNt+1 − ln pt + ln p] + (θγ)2[m̃cNt+2 − ln pt + ln p] + . . .}+ p̃t

where mcNt+1 denotes nominal marginal cost and we have used the equality x̃t =

lnXt − lnX at several places. Now, adding to and subtracting from the expression
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inside the expectations operator the term (ln pt− ln p) and rearranging;

p̃∗t = (1− θγ)Et{lnmct − lnmc+ θγ[m̃cNt+1 − ln pt + ln p]

+ (θγ)2[m̃cNt+2 − ln pt + ln p] + . . .+ (ln pt − ln p)− (ln pt − ln p)}+ p̃t

= (1− θγ)Et{lnmct − lnmc+ ln pt − ln p− (ln pt − ln p)[1 + θγ + (θγ)2 + . . .]

+ θγm̃cNt+1 + (θγ)2m̃cNt+2 + . . .}+ p̃t

= (1− θγ)Et{−(ln pt − ln p)
1

1− θγ
+ m̃cNt + θγm̃cNt+1 + (θγ)2m̃cNt+2 + . . .}+ p̃t

p̃∗t = (1− θγ)Et

∞∑
j=0

(θγ)jm̃cNt+j (45)

= (1− θγ)m̃cNt + (θγ)(1− θγ)
(
Etm̃c

N
t+1 + Etθγm̃c

N
t+2 + . . .

)
(46)

Now, iterate (45) by one period and take expectations to get;

Etp̃
∗
t+1 = Et[(1− θγ)Et+1

∞∑
j=0

(θγ)jm̃cNt+1+j]

Using the law of iterated expectations, this is equal to;

Etp̃
∗
t+1 = (1− θγ)

∞∑
j=0

(θγ)jEtm̃c
N
t+1+j

= (1− θγ)
(
Etm̃c

N
t+1 + θγEtm̃c

N
t+2 + . . .

)
(47)

Using (47), (46) is equal to;

p̃∗t = (1− θγ)m̃cNt + θγEtp̃
∗
t+1 (48)
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From equation (38), we have

p̃∗t =
1

1− θ
(p̃t − θp̃t−1) (49)

Etp̃
∗
t+1 =

1

1− θ
Et(p̃t+1 − θp̃t) (50)

Now, using (49) and (50) in (48) and further rearranging;

1

1− θ
(p̃t − θp̃t−1) = (1− θγ)m̃cNt + θγ

1

1− θ
Et(p̃t+1 − θp̃t)

(p̃t − θp̃t−1) = (1− θ)(1− θγ)m̃cNt + θγEt(p̃t+1 − θp̃t)

Now, add θp̃t − p̃t to both sides of the equation;

θ (p̃t − p̃t−1)︸ ︷︷ ︸
π̃t

= (1− θ)(1− θγ)m̃cNt + θγEt(p̃t+1 − θp̃t) + θp̃t − p̃t

= (1− θ)(1− θγ)m̃cNt + θγEtp̃t+1 − γθ2p̃t + θp̃t − p̃t

Adding to and subtracting from the right hand side of the equation γθEtpt in

order to get rid of the terms involving p̃t;

θπ̃t = (1− θ)(1− θγ)m̃cNt + θγEt(p̃t+1 − θp̃t)︸ ︷︷ ︸
Etπ̃t+1

− γθ2p̃t + θp̃t − p̃t + γθp̃t︸ ︷︷ ︸
−(γθ2−γθ−θ+1)p̃t

θπ̃t = (1− θ)(1− θγ)m̃cNt + γθEtπ̃t+1 − (1− θ)(1− γθ)p̃t

π̃t =
(1− θ)(1− θγ)

θ
m̃ct + γEtπ̃t+1

π̃t = λm̃ct + γEtπ̃t+1 (51)

47



A.2 Derivation of NKPC with trend inflation

Since we have the same optimization problem given in (39), the optimal price is

given by the equation (40). When we divide equation (40) by Pt and rerrange it, we

obtain equation (41)

Log-Linearization of the Variables

At this case, we do not assume zero steady state inflation, on the contrary the steady

state inflation is greater than zero,that is, Π > 1. The steady state of equation (41)

for positive inflation is given below.

P ∗

P
=

ε

ε− 1

∑∞
j=0 θ

jγjMCi(Π)jεY∑∞
j=0 θ

jγj(Π)j(ε−1)Y

P ∗

P
=

ε

ε− 1
MCi

1− θγΠε−1

1− θγΠε
(52)

For the summations in (52), it must be that θγΠε < 1

Now we will loglinearize (41) around the steady state equation (52). First we

rewrite components of (41) as follows

P ∗t = P ∗ep̃
∗
t

Pt = Pep̃t

MCi,t+j = MCie
m̃ct+j

Yt+j = Y eỹt+j

Πt,t+j = Πjeπ̃t,t+j
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and substitute back in (41);

P ∗ep̃
∗
t

Pep̃t
=

ε

ε− 1
MCi

Et{
∑∞

j=0(θγ)jem̃ct+jΠjεeεπ̃t,t+jY eỹt+j}
Et{
∑∞

j=0(θγ)jΠj(ε−1)e(ε−1)π̃t,t+jY eỹt+j}
(53)

When we simplify this term using steady state equation (52), we have;

ep̃
∗
t

ep̃t
1− θγΠε−1

1− θγΠε
=
Et{
∑∞

j=0(θγΠε)jem̃ct+jeεπ̃t,t+jeỹt+j}
Et{
∑∞

j=0(θγΠε−1)je(ε−1)π̃t,t+jeỹt+j}
(54)

Now using the approximation ex ≈ x+ 1 and rearranging;

1− θγΠε−1

1− θγΠε
=
Et{
∑∞

j=0(θγΠε)j(1 + m̃ct+j)(1 + επ̃t,t+j)(1 + ỹt+j)}
Et{
∑∞

j=0(θγΠε−1)j(1 + (ε− 1)π̃t,t+j)(1 + ỹt+j)}
(1 + p̃∗t )

(1 + p̃t)

Rearranging further;

(1− θγΠε−1)Et

∞∑
j=0

(θγΠε−1)j{1 + (ε− 1)π̃t,t+j + ỹt+j + p̃∗t}

= (1− θγΠε)Et

∞∑
j=0

(θγΠε)j{1 + m̃ct+j + επ̃t,t+j + ỹt+j + p̃t}

p̃∗t − p̃t =Et

∞∑
j=0

(θγΠε)j(1− θγΠε){m̃ct+j + επ̃t,t+j + ỹt+j} (55)

− Et
∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t,t+j + ỹt+j}

Calvo Equation:LogLinearization

The aggregate price level is given by the equation (37).The steady state equation of

(37) is given below.

P 1−ε = θP 1−ε
−1 + (1− θ)(P ∗)1−ε (56)
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Individual components of equation (37) can be rewritten as follows

Pt = Pep̃t

Pt−1 = P−1e
p̃t−1

P ∗t = P ∗ep̃
∗
t

We know the relationship between P and P−1 which is P = ΠP−1. Using that, we

can solve for P ∗ in the equation (56).

P ∗ =

(
Π1−ε − θ

1− θ

)1/(1−ε)

P−1 (57)

Now we will log-linearize the equation (37) around the steady state equation (56).

P 1−εe(1−ε)p̃t = θP 1−ε
−1 e

(1−ε)p̃t−1 + (1− θ)P ∗1−εe(1−ε)p̃∗t

Using approximation ex ≈ 1 + x and the steady state equation (56);

P 1−ε[1 + (1− ε)p̃t] = θP 1−ε
−1 [1 + (1− ε)p̃t−1] + (1− θ)P ∗1−ε[1 + (1− ε)p̃∗t ]

P 1−ε + P 1−ε(1− ε)p̃t = θP 1−ε
−1 + θP 1−ε

−1 (1− ε)p̃t−1 + (1− θ)P ∗1−ε + (1− θ)P ∗1−ε(1− ε)p̃∗t

P 1−εp̃t = θP 1−ε
−1 p̃t−1 + (1− θ)P ∗1−εp̃∗t (58)
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Substituting (57) into the equation (58) and using P = ΠP−1, we have;

P 1−ε
−1 Π1−εp̃t = θP 1−ε

−1 p̃t−1 + (1− θ)

((
Π1−ε − θ

1− θ

)1/(1−ε)

P−1

)1−ε

p̃∗t

Π1−εp̃t = θp̃t−1 + (Π1−ε − θ)p̃∗t

(Π1−ε − θ)p̃t + θp̃t = θp̃t−1 + (Π1−ε − θ)p̃∗t

(Π1−ε − θ)(p̃∗t − p̃t) = θ(p̃t − p̃t−1︸ ︷︷ ︸
πt

)

p̃∗t − p̃t = θ(p̃t − p̃t−1)/(1/Πε−1 − θ)

p̃∗t − p̃t =
θΠε−1

1− θΠε−1
πt (59)

Derivation of NKPC

Combining the equation (55) with the equation (59);

θΠε−1

1− θΠε−1
πt =Et

∞∑
j=0

(θγΠε)j(1− θγΠε){1 + m̃ct+j + επ̃t,t+j + ỹt+j + p̃t}

− Et
∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t,t+j + ỹt+j}
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πt =
1− θΠε−1

θΠε−1
{Et

∞∑
j=0

(θγΠε)j(1− θγΠε){m̃ct+j + επ̃t,t+j + ỹt+j}

− Et
∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t,t+j + ỹt+j}} (60)

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct +

(
1− θΠε−1

θΠε−1

)
(1− θγΠε − (1− θγΠε−1))ỹt

+
1− θΠε−1

θΠε−1
{Et

∞∑
j=1

(θγΠε)j(1− θγΠε){m̃ct+j + επ̃t,t+j + ỹt+j}

− Et
∞∑
j=1

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t,t+j + ỹt+j}}

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + (1− Π)γ(1− θΠε−1)ỹt

+
1− θΠε−1

θΠε−1
{Et

∞∑
j=0

(θγΠε)j+1(1− θγΠε){m̃ct+j+1 + επ̃t,t+j+1 + ỹt+j+1}

− Et
∞∑
j=0

(θγΠε−1)j+1(1− θγΠε−1){(ε− 1)π̃t,t+j+1 + ỹt+j+1}}

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + (1− Π)γ(1− θΠε−1)ỹt

+
1− θΠε−1

θΠε−1
{Et

∞∑
j=0

(θγΠε)j+1(1− θγΠε){m̃ct+j+1 + επ̃t,t+j+1 − επ̃t+1 + επ̃t+1 + ỹt+j+1}

− Et
∞∑
j=0

(θγΠε−1)j+1(1− θγΠε−1){(ε− 1)π̃t,t+j+1 − (ε− 1)π̃t+1 + (ε− 1)π̃t+1 + ỹt+j+1}}

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + γEtπ̃t+1 + (1− Π)γ(1− θΠε−1)[ỹt − εEtπ̃t+1]− γθΠε−1Etπ̃t+1

+
1− θΠε−1

θΠε−1
{Et

∞∑
j=0

(θγΠε)j(θγΠε)(1− θγΠε){m̃ct+j+1 + ε (π̃t,t+j+1 − π̃t+1)︸ ︷︷ ︸
π̃t+1,t+j+1

+ỹt+j+1}

− Et
∞∑
j=0

(θγΠε−1)j(θγΠε−1)(1− θγΠε−1){(ε− 1) (π̃t,t+j+1 − π̃t+1)︸ ︷︷ ︸
π̃t+1,t+j+1

+ỹt+j+1}}

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + γEtπ̃t+1 + (1− Π)γ(1− θΠε−1)[ỹt − εEtπ̃t+1]− γθΠε−1Etπ̃t+1

+
1− θΠε−1

θΠε−1
(θγΠε){Et

∞∑
j=0

(θγΠε)j(1− θγΠε){m̃ct+j+1 + επ̃t+1,t+j+1 + ỹt+j+1}

− Et
∞∑
j=0

(θγΠε−1)jΠ−1(1− θγΠε−1){(ε− 1)π̃t+1,t+j+1 + ỹt+j+1}}

(61)
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πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + γEtπ̃t+1 + (1− Π)γ(1− θΠε−1)[ỹt − εEtπ̃t+1]− γθΠε−1Etπ̃t+1

+
1− θΠε−1

θΠε−1
(θγΠε){Et

∞∑
j=0

(θγΠε)j(1− θγΠε){m̃ct+j+1 + επ̃t+1,t+j+1 + ỹt+j+1}

− Et
∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t+1,t+j+1 + ỹt+j+1}}

+
1− θΠε−1

θΠε−1
(θγΠε)(1− Π−1)Et

∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t+1,t+j+1 + ỹt+j+1}

(62)

When we iterate (60) by one period and take expectation, we have

Etπt+1 =
1− θΠε−1

θΠε−1
{Et

∞∑
j=0

(θγΠε)j(1− θγΠε){m̃ct+1+j + επ̃t+1,t+1+j + ỹt+1+j}

− Et
∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t+1,t+1+j + ỹt+1+j} (63)

Using (63) in the equation (62);

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + γEtπ̃t+1 + (1− Π)γ(1− θΠε−1)[ỹt − εEtπ̃t+1]− γθΠε−1Etπ̃t+1

+ (θγΠε)Etπ̃t+1

+
1− θΠε−1

θΠε−1
(θγΠε)(1− Π−1)Et

∞∑
j=0

(θγΠε−1)j(1− θγΠε−1){(ε− 1)π̃t+1,t+j+1 + ỹt+j+1}

πt =

(
1− θΠε−1

θΠε−1

)
(1− θγΠε)m̃ct + γEtπ̃t+1

+ (1− Π)γ(1− θΠε−1)

[
ỹt −

(
ε+

θΠε−1

1− θΠε−1

)
Etπ̃t+1

− (1− θγΠε−1)Et

∞∑
j=0

(θγΠε−1)j[(ε− 1)π̃t+1,t+j+1 + ỹt+j+1]

]
(64)
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A.3 Derivation of NKPC with time varying trend inflation

Log-linear approximation of aggregate prices

To derive NKPC with time varying trend inflation, we use the model in Ascari(2004).

We begin with the definition of aggregate price level;

P 1−ε
t = θP 1−ε

t−1 + (1− θ)(P ∗t )1−ε (65)

We first divide (65) by Pt to have

1 = θ(Π−1
t )

1−ε
+ (1− θ)x1−ε

t (66)

where xt ≡ P ∗t /Pt is the optimizing firms’ relative price. We also define the

stationary variables Π̃t = Πt/Π̄t and x̃t = xt/x̄t where a bar over a variable indicates

its steady state value.

Then we transform (66) to express it in terms of the stationary variables defined

previously.

1 = θΠ̃ε−1
t Π̄ε−1

t + (1− θ)x̃1−ε
t x̄1−ε

t (67)

In steady state Π̃t = 1 and x̃t = 1 and (66) defines x̄t.

x̄t =

[
1− θΠ̄ε−1

t

1− θ

] 1
1−ε

(68)

Defining hat variables x̂t ≡ ln x̃t and π̂t ≡ ln Π̃t ≡ ln(Πt/Π̄t) ≡ πt − π̄t, the
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log-linear approximation of (67) around its steady state is:

0 = θΠ̄ε−1
t π̂t − (1− θ)x̄1−ε

t x̂t (69)

After substituting x̄t from (38), (39) becomes

0 = θΠ̄ε−1
t π̂t − (1− θΠ̄ε−1

t )x̂t (70)

This equation gives a solution for x̂t:

x̂t =
1

ϕ0t

π̂t (71)

where we set ϕ0t =
1−θΠ̄ε−1

t

θΠ̄ε−1
t

Log-linear approximation of firm’s FOC

We start with definition of optimum price obtained from firm’s problem.

P ∗t =
ε

ε− 1

Et{
∑∞

j=0 θ
jγjMCi,t+j

(
Pt+j
π̄t,t+j

)ε
Yt+j}

Et{
∑∞

j=0 θ
jγj
(
Pt+j
π̄t,t+j

)ε−1

Yt+j}
≡ Ct
Dt

(72)

We can express C and D in recursive form

Ct =
ε

ε− 1
MCtP

ε
t Yt + θγEt(Ct+1); (73)
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and

Dt = P ε−1
t Yt + θγEt(Dt+1); (74)

Deflating appropriately (73) and (74) we obtain

C̃t ≡
Ct
YtP ε

t

=
ε

ε− 1
MCt + θγEt(C̃t+1g

y
t+1Πε

t+1); (75)

D̃t ≡
Dt

YtP
ε−1
t

= 1 + θγEt(D̃t+1g
y
t+1Πε−1

t+1); (76)

where gyt+1 = Yt+1/Yt.

C̃t

D̃t

=
P ∗t
Pt

= xt (77)

From (75) and (76) evaluated at steady state we can solve for

C̄t =
ε
ε−1

M̄Ct

1− θγḡyΠ̄ε
t

(78)

D̄t =
1

1− θγḡyΠ̄ε−1
t

(79)

To derive a log-linear approximation of (45), we first define Ĉt = ln C̃t
C̄t

, D̂t = ln D̃t
D̄t

and m̂ct = ln MCt
M̄Ct

and then derive

Ĉt = (1− ϕ2t)m̂ct + ϕ2tEt[ĝ
y
t+1 + επ̂t+1] + ϕ2tEtC̃t+1 (80)
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and

D̂t = ϕ1tEt[ĝ
y
t+1 + (ε− 1)π̂t+1] + ϕ1tEtD̃t+1 (81)

where

ϕ1t = θγḡyΠ̄ε−1
t

ϕ2t = θγḡyΠ̄ε
t

The log-linearization of (45) is then:

x̂t = Ĉt − D̂t (82)

From this equality we can solve for π̂t using (71):

π̂t = ϕ0tx̂t (83)

By some manipulations on expressions (83), (80) and (81) we obtain following two

equations:

π̂t = ϕ0t(1− ϕ2t)m̂ct + ϕ0tϕ2tEt(π̂t+1) + ϕ2tEtπ̂t+1 + ϕ0t

(
ϕ2t − ϕ1t

ϕ1t

)
D̂t (84)

D̂t = ϕ1tEt(ĝ
y
t+1) + ϕ1tEt((ε− 1)π̂t+1) + ϕ1tEtD̃t+1 (85)

Finally we expand forward second equation, substitute it into the first and we

obtain:

π̂t = ϕ0t(1− ϕ2t)m̂ct + (1 + ϕ0t)(ϕ2t)Et(π̂t+1) + ϕ0t(ϕ2t − ϕ1t)(ε− 1)Etπ̂t+1+ (86)

[Et

∞∑
j=0

ϕ0t(ϕ2t − ϕ1t)ϕ
j
1tĝ

y
t+1+j] + [Et

∞∑
j=1

ϕ0t(ϕ2t − ϕ1t)(ε− 1)ϕj1tπ̂t+1+j]
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Rearranging the terms;

π̂t =

(
1− θΠ̄ε−1

t

θΠ̄ε−1
t

)
(1− θγḡyΠ̄ε

t)m̂ct + γḡyEtπ̂t+1 − ε(1− Π̄t)(1− θΠ̄ε−1
t )γḡyEtπ̂t+1

(87)

− (1− Π̄t)θΠ̄
ε−1
t γḡyEtπ̂t+1 − (1− Π̄t)γḡ

y(1− θΠ̄ε−1
t )Et

{ ∞∑
j=1

(θγḡyΠ̄ε−1
t )j−1(ĝyt+j

+ θγḡyΠ̄ε−1
t (ε− 1)π̂t+1+j)

}

We take ḡy as one, so NKPC becomes as follows

π̃t =

(
1− θΠε−1

t

θΠε−1
t

)
(1− θγΠε

t)m̃ct + (γ − γ(1− Πt)(ε(1− θΠε−1
t ) + θΠε−1

t )Etπ̃t+1

− (1− Πt)γ(1− θΠε−1
t )Et

{ ∞∑
j=1

(θγΠε−1
t )j−1 (ỹt+j − ỹt+j−1)︸ ︷︷ ︸

g̃yt+j

+θγΠε−1
t (ε− 1)π̃t+1+j)

}

(88)

Linearising the coefficients around Π̄t = 1 using first order Taylor approximation,

we obtain;

π̃t =

(
1− θ
θ

)
(1− θγ)m̃ct + γEtπ̃t+1 +

(
1− ε− θγ(1− θε)

θ
(Πt − 1)

)
m̃ct

+ (ε(1− θ) + θ)(Πt − 1)γEtπ̃t+1 + (1− θ)(Πt − 1)γEt{
∞∑
j=1

(θγ)j−1(g̃yt+j+

θγ(ε− 1))π̃t+1+j} (89)

We assume µt = Etπt+1, αt = Etgt+1 and the following partial adjustment mech-

anisms
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µt − Πt+1 = β(µt−1 − Πt) + επ,t

αt −Gy
t+1 = β(αt−1 −Gy

t ) + επ,t (90)

Specifying expectations as in (90) the model becomes,

π̃t =

((
1− θ
θ

)
(1− θγ) +

(
1− ε− θγ(1− θε)

θ
(Πt − 1)

))
m̃ct

+

(
γ + (Πt − 1)γ

(
1− (ε− 1)(θ − 1)

(
θγ

1− θγβ

)))
Etπ̃t+1

−
(

(θ − 1)(Πt − 1)γ

(
θγ

1− θγβ

))
Ẽtg

y
t+1 (91)
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B Bayesian inference of the NKPC models

Yt = HXt +BUt + εt, εt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I) (92)

where

Yt =


πt

mct

πSt

 , Xt = (Πt,MCt, µmc,t,MCt−1,MCt−2,Πt−1,Πt−2)′, Ut =



πSt

mct

mct−1

mct−2

πt−1

πt−2



H =


(1− γ) −λ 0 0 0 0 0

0 1 0 −φ1 −φ2 −(ψ3 + ψ5) −(φ4 + φ6)

1 0 0 −ψ1 −ψ2 −(ψ3 + ψ5) −(ψ4 + ψ6)

 ,

B =


γ λ 0 0 0 0 0 0

0 0 φ1 φ2 φ3 φ5 φ5 φ6

0 0 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

 , ηt =


η1,t

η2,t

η3,t



Qt =


σ2
ε1,t ρ1σε1,tσε2 ρ2σε1,tσε3

ρ1σε1,tσε2 σ2
ε2 ρ3σε2σε3

ρ2σε1,tσε3 ρ3σε2σε3 σ2
ε3

 , F =



1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0



, Rt =



ση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0

0 0 0

0 0 0


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This section provides the MCMC algorithm for the posterior inference of the NKPC

model. Specifically, we use a Gibbs sampler (see Geman and Geman, 1984; Tanner

and Wong, 1987). The NKPC model in (30) can be transformed into the state-

space form as above. Once the state space form of the model is determined as

in (22) standard Bayesian techniques in state-space models can be applied. Let

Y1:T = (Y1, Y2, ...., YT )′, X1:T = (X1, X2, ...., XT )′, U1:T = (U1, U2, ...., UT )′,σ2
ε1,1:T =

(σ2
ε1,1
, σ2

ε1,2
, ...., σ2

ε1,T
)′ and θ = (φ1, φ2, φ3, φ4, φ5, φ6, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, γ, λ) For the

NKPC model (30), the simulation scheme is as follows

1. Initialize the parameters by drawing θ,ht, Qt and Rt using prior distributions.

Initialize m = 1.

2. Sample Xm
t from p(Xt|Y1:T , h1:T , U1:T , R1:T , Q1:T ) for t = 1, 2...T

3. Sample θm from p(θ|Y1:T , X
m
1:T , U1:T , R1:T , Q1:T )

4. Sample hmt from p(ht|Y1:T , X
m
1:T , θ

m, U1:T , R1:T , Q1:T , σ
2,m−1
η4 ) for t = 1, 2...T

5. Sample σ2,m
ηi from p(σ2

ηi|Xm
1:T , h

m
1:T ) for i = 1, 2, 3, 4

6. Sample ρmi from p(ρi|Xm
1:T , h

m
t , Y1:T , U1:T , θ

m) for i = 1, 2, 3

7. Sample σ2,m
ε2 and σ2,m

ε3 from p(σ2
ε2, σ

2
ε3|Xm

1:T , h
m
t , Y1:T , U1:T , θ

m)

8. Set m = m+ 1, repeat (2)− (8) until m = M

Steps (3)-(5) are common to many models in the Bayesian state-space framework,

see for example Kim and Nelson (1999); Gerlach et al. (2000).

Sampling of θ

Conditional on the states Πt, Zt and ht for t = 1, 2, .....T , redefining the variables

such that π̃t = πt−Πt,z̃t = zt−Zt and εt = εt/exp(ht/2), the measurement equation
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can be written as

π̃t = λz̃t + γ(πSt − Πt) + ε1,t (93)

z̃t = φ1z̃t−1 + φ2z̃t−2 + φ3π̃t−1 + φ4π̃t−2 + φ5π̃
S
t−1 + φ6π̃

S
t−2 + ε2,t (94)

(πSt − Πt) = ψ1z̃t−1 + ψ2z̃t−2 + ψ3π̃t−1 + ψ4π̃t−2 + ψ5π̃
S
t−1 + ψ6π̃

S
t−2 + ε3,t (95)

Posterior distributions of the parameters under flat priors are non-standard since

z̃t term is also on the right hand side of (23). We therefore use two Metropo-

lis Hastings steps to sample these parameters(Metropolis et al., 1953; Hastings,

1970). First step is to sample γ and λ jointly and the other step is to sample

φ1, φ2, φ3, φ4, φ5, φ6, ψ1, ψ2, ψ3, ψ4, ψ5 and ψ6 jointly. For both Metropolis Hastings

we use multivariate studentd-t density as candidate density and actual posterior

distributions are derived using flat priors for all parameters.

Sampling of states, Xt

Conditional on the remaining model parameters, X0:T can be drawn using standard

Bayesian inference. This includes implementation of the Kalman first and a simula-

tion smoother using the filtered values for drawing smoothed states as in Carter and

Kohn (1994) and Frhwirth-Schnatter (1994). We start the recursion for t = 1, ....T
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Prediction

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +R′tRt

ηt|t−1 = yt −HXt|t− 1−BUt

ft|t−1 = HPt|t−1H
′ +Qt (96)

Updating

Xt|t = Xt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′f ′t|t−1

where Kt = Pt|t−1H
′f ′t|t−1 is the Kalman Gain

and store Xt|t and Pt|t. The last filtered state XT |T and its covariance matrix PT |T

correspond to the smoothed estimates of the mean and the covariance matrix of

states for period T. After having saved all the filtered values, simulation smoother

does the following recursions for t = T − 1, ....1

Smoothing

Xt|t,X∗t+1
= Xt|t + Pt|tF

∗′(F ∗Pt|tF
∗′ +R∗

′

t+1R
∗
t+1)−1(X∗t+1 − F ∗Xt|t)

Pt|t,X∗t+1
= Pt|t − Pt|tF ∗

′
(F ∗Pt|tF

∗′ +R∗
′

t+1R
∗
t+1)−1F ∗Pt|t

where X∗t+1, F
∗, R∗ are the parts of Xt+1|t+1, F, R which correspond to positive def-

inite part of R. Intuitively, the simulation smoother updates the state values us-

ing the same fundamentals as in Kalman filter, where at each step filtered values

are updated using the smoothed values obtained from backward recursion. In or-

der to update the initial states, using the state equation X0|t,X∗1 = F−1(X1) and
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P0|t,X∗1 = F−1(P1 + R′1R1)F ′−1 can be written for the first observation. Given the

mean Xt|t,X∗t+1
and the covariance matrix Pt|t,X∗t+1

, samples of states can be drawn

from Xt ∼ N(Xt|t,X∗t+1
, Pt|t,X∗t+1

) for t = 0, ...., T

Sampling of inflation volatilities, ht

Conditional on the remaining model parameters, drawing h0:T can be implemented

using standard Bayesian inference as in the case of Xt. One important difference,

however, is the logarithmic transformation of the variance in (31). As the trans-

formation affects the error structure, the square of which follows a χ2 distribution,

the system is not Gaussian but has a log-χ2 distribution. regarding the properties

of log-χ2 distribution, Kim et al. (1998) and Omori et al. (2007) approximate this

distribution using mixture of Gaussian distributions. Hence, conditional on these

mixture components the system is kept as Gaussian allowing for standard inference

outlined above. For details, see Omori et al. (2007).

Sampling of state error variances, σ2
η

Using standard results form a linear regression model with a conjugate prior for the

variances in (30), it follows that the conditional posterior distribution of σ2
ηi, with

i = 1, 2, 3, 4 is an inverted χ2 distribution with scale parameter Φηi +
∑T

t=1 η
2
i,t and

with T + υηi degrees of freedom for i = 1, 2, 3, 4 where Φηi and υηi are the scale and

degrees of freedom parameters of the prior density.
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Sampling of marginal cost variance, inflation expectation sur-

vey variance and correlation coefficients

First, we decompose the Qt in the following form

Qt =


σε1,t 0 0

0 σε2 0

0 0 σε3




1 ρ1 ρ2

ρ1 1 ρ3

ρ2 ρ3 1



σε1,t 0 0

0 σε2 0

0 0 σε3

 (97)

For all covariance matrices, the transformation above is possible. Then, all param-

eters in Qt, σε1,t, σε2, σε3, ρ1, ρ2 and ρ3 are estimated separately. σε1,t is estimated

using estimated values of ht. Similar to the estimation of state error variances, σε2

and σε3 are estimated using inverse-Wishart posterior distribution under conjugate

priors. To estimate ρ1, ρ2 and ρ3 we use griddy Gibbs sampler by setting up a grid

in the interval ρ ∈ (−1, 1) based on the precision we desire about value of ρ1, ρ2 and

ρ3.

For the NKPC model (33), the bayesian inference structure is almost same as the

inference structure of the model (30). One difference is that for the state equations

of h and Πt the terms,τhht and τπ are added as constants. τh and τπ are estimated

jointly using multivariate student-t distribution with flat priors. Inflation level error

variance, volatility error variance and the correlation coefficient betwwen inflation

level and volatility are also estimated jointly using inverse-Wishart distribution.
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