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ABSTRACT 

In thesis research, we consider the multi-product lot streaming (MPLS) problem with 

equal and consistent sublots in multi-machine flow shops (MMFS) with objective of 

minimizing the makespan. We firstly introduce various types of scheduling problems and 

provide detailed background information and literature review on lot streaming problems 

with equal and consistent sublots. Then we develop two heuristic procedures for equal and 

consistent sublot sized MPLS problems respectively.  

First heuristic approach that we develop for MPLS problem with equal sublots in 

MMFS (heuristic RO) is a constructive procedure, which has many distinguishing 

characteristics. Its fast and easy construction method of initial lot sequence lets tabu search 

algorithm start with a better initial solution in contrast with random initial solutions. 

Moreover, we utilize the concept of “Interior Lots” in order to restrict the insertion of a 

given lot into first position. We also provide a proof of the claim, which supports the use of 

“Interior Lot” concept in both of the heuristics. Second heuristic approach (heuristic RO-C) 

deals with the MPLS problem with consistent sublots in MMFS. In compliance with the 

different characteristics of the problem we develop an additional tabu search algorithm in 

order to generate better initial sublot size matrix. 

Finally we present comparative results of experimental studies for both heuristics. We 

show that solution qualities of both heuristics that we develop are better than or equal to 

those obtained by the heuristic and exact methods that we choose to compare with. 

Proposed heuristics have considerable contributions to MPLS literature due to their 

unique ordering and tie breaking rules for sorting bottleneck dominant and reversely 

bottleneck dominant lots, utilization of interior lot concept in several steps of heuristics and 

solution quality with respect to similar studies from the literature. 

Keywords: Lot Streaming, Equal Sublot, Consistent Sublot, Bottleneck Dominance, 

Interior Lots, Tabu Search, Run-in Time, Run-out Time 
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ÖZET 

Bu proje kapsamında, çok makineli akış tipi üretim sistemleri için çok ürünlü kafile 

bölme ve kaydırma problemlerine (ÇÜ-KBK problemleri) sezgisel çözüm yaklaşımları 

geliştirilmiştir. Amaç fonksiyonu olarak tüm ürünlerin bitiş zamanını en küçükleme 

fonksiyonu kullanılmıştır. İlk olarak, literatürde ÇÜ-KBK problemlerinin eşit ve tutarlı alt 

kafile problemleri üzerine yazılmış makaleler incelenmiş ve ÇÜ-KBK problemlerinin daha 

anlaşılır olması için gerekli arka plan bilgileri sağlanmıştır. Daha sonra, proje kapsamında 

eşit ve tutarlı alt kafileli ÇÜ-KBK problemlerine çözüm yaklaşımı getiren iki sezgisel 

(Sezgisel RO ve Sezgisel RO - Tutarlı) detaylı olarak anlatılmıştır. Aynı problem türlerine 

çözüm getiren literatürden seçilmiş farklı çözüm yaklaşımlarıyla karşılaştırmalı sonuç 

analizlerine yer verilmiştir. Sonuç analizleri göstermektedir ki, proje kapsamında 

geliştirilen sezgisel yaklaşımlar karşılaştırıldıkları çözüm yöntemlerine yakın ya da daha iyi 

sonuçlar verebilmektedirler. Ayrıca, sezgisel yaklaşımların oluşturulmasında kullanılan “İç 

kafile” kavramını destekleyici olarak sunulan bir savın ispatı da araştırma içerisinde yer 

almaktadır. 

Geliştirilen sezgiseller, darboğaz ve tersten darboğaz egemen kafileleri sıralamada ve 

eşitlik bozmadaki farklı yaklaşımları, iç kafile kavramını sezgisellerin ve tabu arama 

metodunun farklı yerlerinde kullanmaları ve karşılaştırıldıkları çözüm yöntemlerine yakın 

ya da daha iyi sonuçlar vermeleriyle ÇÜ-KBK literatürüne katkı sağlamaktadırlar. 

Anahtar Kelimeler: Kafile Bölme ve Kaydırma, Eşit Alt Kafile, Tutarlı Alt Kafile, 

Darboğaz Egemenliği, İç Kafile, Tabu Arama, Giriş Zamanı, Çıkış Zamanı 
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Chapter 1 

 

INTRODUCTION 

 

 

Current global competition and industrial restructure leads to better production 

scheduling and faster responses for changing market needs. Thus, accelerated yet 

sustainable scheduling of production processes becomes a key issue for flow shop 

manufacturing systems. One of the many approaches to deal with this challenging matter is 

the concept of lot streaming. 

1.1. Multi Stage Scheduling Problems 

Multi stage scheduling problems can be studied in three general environments: Job 

shop, permutation flow shop and hybrid flow shop scheduling.  

For the job shop scheduling problems, any processing order of the jobs on the machines 

is allowed. Moreover, the operations must be processed in a given order on the machines 

for each job; however this order may be different depending on the jobs. For instance, a job 

may require multiple processing on a particular machine. In the case of open shop problem 

which is a type of job shop scheduling when the processing order is arbitrary, every 

operation is assigned to a given machine; however they have the freedom to select the order 

of the operations of each job on the given machine. The solution to this type of scheduling 

problem comprises total order of operations of a job as well as total order of operations on 

a machine. 
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For the permutation flow shop problems, the processing of every job must be completed 

on machines in a fixed order. Moreover, the processing order of the jobs on the machines is 

the same for every machine. Therefore, the number of operations of a job is equal to the 

number of machines for the permutation flow shop problems. Thus, the main problem in 

permutation flow shop is to generate a permutation of all jobs that minimizes the 

makespan. This scheduling problem is NP-hard and complexity increases with the number 

of machines and the number of jobs. 

Hybrid flow shop scheduling is the generalization of flow shop scheduling problems 

where a stage may have multiple processing machines. Flexible flow shop (FFS) 

scheduling, which has also been referred to as hybrid flow shops and as multi-processor 

flow shops, is a type of hybrid flow shop scheduling where jobs may skip some stages. 

(Pinedo (2008)) 

1.2. Objectives of Scheduling Problems 

Among many different kinds of scheduling objectives three of them prevail among the 

researchers throughout the decades. These objectives are minimizing makespan, 

minimizing mean weighted tardiness and minimizing total flow time. 

The objective of minimizing makespan, which amounts to minimizing the amount of 

time required for all the jobs to complete processing on certain sets of machines, is utilized 

when the main concern is to increase the production rate. By minimizing makespan in 

scheduling problems the idle time on machines is eliminated and jobs may be produced in a 

shorter time period. 

Minimizing the mean weighted (by job priority) tardiness is one of the typical 

objectives in both single and multi-job scheduling problems. Tardiness is defined as the 

difference between order due date and completion date of a job if its completion date is 

greater than its order due date. Thus, the objective of minimizing mean weighted tardiness 

is utilized when main concern is to meet the customer demand before the order due date. 
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Considering penalty (weights) on late delivery, this objective also minimizes cost of late 

delivery and maximizes customer satisfaction. 

Flow time of a job is defined as the time elapsed between the completion time of the job 

and the time the job was first available for processing. Minimizing total flow time, which is 

often referred to as the sum of the completion times of jobs when all jobs are available at 

time zero, measures the responsiveness of the production system. In many production 

systems which involve queues (for instance, in networks) the flow time of a job consists of 

both the waiting time in the queue and the processing time on machines so that 

minimization of flow time leads to improvements in service quality. (Leonardi and Raz 

(1997)) 

1.3. The Concept of Lot Streaming 

In multi-machine flow shop manufacturing systems, a scenario where different 

products (called lots) which have several discrete items (called sublots) are to be processed 

on each machine is commonly used. One of the many techniques to deal with the 

processing of the entire lot set is to transfer them in smaller batches instead of waiting for 

the whole batch to be processed on each machine. This concept of splitting a production 

batch (called lot) into smaller portions (called sublots); to be transferred and scheduled in 

an overlapping fashion on downstream machines is called lot streaming.  

In contrast with the concept of lot sizing, which is a medium term planning approach 

and aims to determine production lot size and inventory levels in order to minimize setup 

and inventory holding costs and meet a given customer demand, the concept of lot 

streaming is a short term planning approach which is mainly utilized after orders are 

released to shop floors with given lot sizes found in lot sizing stage in order to find the 

optimal sublot sizes and production sequences. 



 

 

 

Chapter 1: Introduction     4 

 

To illustrate this concept, examine the following example where the lot consisting of 64 

identical items is to be processed on two-machines. The unit processing times of the lot are 

2 and 7 for machine 1 (M1) and machine 2 (M2) respectively.  In a traditional two-machine 

flow shop environment (under which no lot streaming concept is utilized), it is 

straightforward to find the makespan of the lot over two-machines (In our case below 

makespan is 576 time units). The resultant chart without lot streaming concept utilized is 

shown in Figure 1: 

 

Figure 1. Processing without lot streaming concept 

 

On the other hand, when we split the entire lot into four equal sublots and permit 

processing of sublots in overlapping fashion over two-machines we obtain the following 

chart in Figure 2: 

 

Figure 2. Processing with lot streaming concept 
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One of the many advantages of lot streaming is the reduction in the makespan value, 

which is depicted in the Figures 1 and 2 (576 time-units in Figure 1 against 480 time-units 

in Figure 2 which leads to 16.6% decrease in the makespan). 

1.4. Advantages of Lot Streaming 

While the main benefit of lot streaming is to reduce the makespan of the resulting 

schedule, it also reduces work-in process (WIP) inventory levels and in turn improves the 

overall performance of the production system. As supported by Kalir and Sarin (2000), 

adopting lot streaming concepts in flow shop manufacturing environment is more 

beneficial in terms of “three commonly used performance measures, namely, the 

makespan, the mean flow time, and the average WIP levels.” 

Reducing WIP and mean flow time of the production batches are the core concepts of 

lean manufacturing, which mainly targets any possible elimination of waste created by the 

manufacturing system. Toyota, as one of the pioneers of lean manufacturing, fully deploys 

the concept and pursues elimination of “The Seven Wastes” in their entire manufacturing 

steps. The seven wastes are identified as follows: Transport, inventory, motion, waiting, 

overproduction, over processing and defects. 

Reductions in WIP, makespan and mean flow time of products have strong connection 

with inventory, waiting and overproduction wastes in the system. Keeping unnecessary 

inventory, which could be specifically thought of in the form of WIP in our case, causes a 

capital expense that has not generated any income yet. Therefore, this waste of capital is 

reduced to a large extent by employing the concept of lot streaming. Moreover, waste of 

time, which generally emanates from waiting for the next production step, is also decreased 

by the lot streaming concept, since the main drive to apply lot streaming is to lower the 

makespan and mean flow time of products. Finally, overproduction of semi and final 

products is induced when the demand of customer is unknown (to keep safety stock) or 
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total production time of all products takes a very long time, which is the case of production 

of large batches. Overproduction has the utmost importance since it triggers off all the 

other wastes. Utilization of lot streaming concept in manufacturing facilities yields 

elimination of the aforementioned consequences of overproduction to a considerable 

extent. 

1.5.  Contributions and Summary of Remaining Chapters 

In this research, we propose two heuristic approaches for the lot streaming problem in 

multi-product flow shop environments. We consider the multi-product lot streaming 

(MPLS) problem with equal and consistent sublots in multi-machine flow shops (MMFS) 

with objective of minimizing the makespan. We present comparative results of 

experimental studies for both heuristics, which show that solution qualities of both 

heuristics that we developed are better than or equal to those obtained by the heuristic and 

exact methods from the literature. Solution qualities of both heuristics can be attributed to 

construction of better initial solution by using the several properties of bottleneck 

dominant, reversely bottleneck dominant and interior lots. Moreover, utilization of the 

interior lot concept, which can be regarded as the main contribution of the research, leads 

us to generate better neighborhoods at each iteration of the specially structured tabu search 

algorithm for LS problems. 

Chapter 2 provides detailed background information and literature review on four 

distinctive kinds of lot streaming problems, namely single-product – 2-3 machines, single-

product – multi-machine, multi-product – 2-3 machines and multi-product – multi-machine 

lot streaming problems. This chapter also gives a brief review on lot streaming problems 

with consistent sublots. 

Chapter 3 explains the core concepts in lot streaming terminology which we use while 

constituting the heuristic method. Moreover, thorough explanation of the heuristic 
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algorithm (heuristic RO) is presented and specially structured tabu search method is also 

introduced. Finally, a claim is proven in order to demonstrate the significance of using an 

“interior lot” in the heuristic method. 

Chapter 4 deals with the LS problems with consistent sublot size. Proposed heuristic 

approach for MPLS problems with consistent sublots in MMFS (heuristic RO - Consistent), 

which utilizes heuristic RO for generating better initial lot sequences and tabu search 

algorithm for improving the quality of sublot size matrix, is provided in this chapter. 

Chapter 5 provides computational experiments of proposed heuristics comparing them 

with similar studies in the literature to demonstrate the performance and the solution 

quality of the proposed heuristic algorithms. 

Chapter 6 briefly summarizes and concludes the study while explaining differentiating 

parts of developed heuristics. 
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Chapter 2 

 

LITERATURE REVIEW 

 

 

 

2.1. Overview 

Lot streaming (LS) problems in the literature differ from each other depending on 

several components. Overview of lot streaming problems can be generalized in Figure 3. 

Moreover, Figure 3 also demonstrates the ground of this study in the literature (blue 

shadowed items).  

LS problems in flow shop production systems with time-based objective function 

prevail among the researchers. Furthermore, the most common objective is makespan 

minimization since it provides more realistic scenarios for the production facilities. Articles 

with makespan minimization objective in LS literature can be generalized in four 

distinctive categories, which are single-product – 2-3 machines, single-product – multi-

machine, multi-product – 2-3 machines and multi-product – multi-machine LS problems. 

Therefore, literature survey will essentially mention the articles falling into these four 

categories. Moreover, comprehensive review of articles dealing with LS problems with 

consistent sublots will be presented, and finally the survey will be concluded with the 

articles on other types of scheduling problems which are related to lot streaming. 

The literature mainly focuses on simpler LS problems because the complexity of LS 

problems increases rapidly for large scale problems. Main explanations for this 

simplification are the complexity of product sequencing problem, which is classified as 
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NP-hard, and the existence of an additional sublot allocation problem. Researchers 

generally partition the entire multi-product lot streaming (MPLS) problems into a series of 

sub-problems and deal with those particular cases individually. To solve these sub-

problems, they have proposed different solution techniques most of which include heuristic 

approaches. 

 

Figure 3. Characteristics of Lot Streaming Problems in the Literature 
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2.2. Lot Streaming Problems with Single-Product – 2-3 Machines 

Potts and Baker (1989) model the single-product lot streaming problem up to three-

machines for the flow shop environments allocating work across sublots with objective of 

minimizing the makespan. They highlight two important cases: Consistent sublots with the 

same allocation of work across all machines and equal sublots under which work is 

allocated equally among sublots on all machines. When number of machines is less than or 

equal to three, they show that they can always find the optimal scheduling policy with 

consistent sublots. 

Baker and Jia (1993) deal with LS problems with single-product and three-machines. 

They endeavor to find special constraints imposed on the schedule. They research the 

impacts of different constraints on the makespan value, such as no-idling, equal and 

consistent sublot sizes. Their experimental study shows that different combination of those 

constraints may eventually increase the makespan value of optimal schedule. On the other 

hand, they have statistical analysis on the impact of dominant machine over other 

machines. They stress that no-idling constraint has no effect on the problem if second 

machine is dominant over other machines. 

Chen and Steiner (1998) study the single-product LS problem with attached setup times 

in a multi-machine flow shop. They extend the results of Glass et. al (1994) with no-setup 

case to the case of attached setups. For the optimal sublot sizes, they split the problem into 

three cases and deal with each case individually proving the optimality conditions for each 

of the cases. They also conclude that in some certain situations no-wait schedules are more 

desirable, since it can be seen from the structure of the optimal solutions that no-wait 

requirement can be satisfied without increasing the length of the optimal schedule. 

Sen et al (1998) present theoretical results on single-product lot streaming problem with 

two-machines. They also perform analysis on equal, consistent and variable sublot typed 

lot streaming problems. They conclude that even when variable sublot sizes are allowed, 
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the schedule with consistent sublots becomes optimal. Finally, their findings justify the use 

of equal sublots in practice, since equal sublots give quite effective results in most cases of 

their analysis. 

Sriskandarajah and Wagneur (1999) deal with the scheduling of single-product in two-

machine no-wait flow shops. When sublot sizes are allowed to take continuous values, they 

show that their schedule is always optimal. They also provide a polynomial heuristic 

procedure to solve the integer sublot sized version. 

2.3. Lot Streaming Problems with Single-Product – Multi-machines 

Baker and Pyke (1990) consider the scheduling of a single-product in multi-machine 

flow shop environment with the objective of “cycle-time minimization”. They present a 

solution algorithm for this lot streaming problem with only two sublots. Moreover, newer 

concept of bottleneck machine, which is based on a critical path analogy, is developed and 

utilized throughout their algorithms. On the other hand, they provide a series of heuristic 

procedures for the multi-product case owing to their analysis on two sublots. 

Glass and Potts (1998) study the lot streaming of a single job in a flow shop, where the 

objective is to minimize makespan. They only deal with the continuous sublot sized LS 

problems and keep them equal on each machine. They restrict their results to three-machine 

case and provide a characterization of the structure of an optimal solution. This 

characterization enables them to extend the range of problems for which they can provide a 

direct solution. Analysis of the problem is carried out in two-stages: First, they derive a 

relaxation algorithm, by which they can reduce the number of machines that they consider. 

Secondly, they characterize the critical path structure of the optimal solution. 

Kumar et al. (2000) extend the approach of Sriskandarajah and Wagneur (1999) for the 

case of multiple machines. They obtain continuous-sized sublots optimally using linear 

programming approach when the flow shop produces only one type of products.  
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Kalir and Sarin (2001) address the LS problem with single-product in a flow shop 

environment. They consider different setup time criteria and develop a solution procedure 

on how to split a lot into optimal sublots that can optimize several different performance 

measures. Their main procedure enables them to optimize the objective function of 

makespan, however their procedure is said to be adaptable to other objective functions, 

such as mean flow time and work-in-process inventory. In order to address the multi-

product version of their problem, they point out the importance of the concept of bottleneck 

machine. 

Chen and Steiner (2003) present a new LP model for the single-product LS problem in 

no-wait flow shops. They also develop a polynomial time solution for the discrete LS 

problem with two sublots. Moreover, they have also shown that the minimum makespan 

achievability does not change by the addition of the no-wait constraints in a regular flow 

shop when s = 2. On the other hand, for the general case, they have found good quality 

approximations for the optimal solution. 

Kalir and Sarin (2003) address the flow shop lot streaming (FSLS) problem with sublot 

attached setups. They develop an optimal solution algorithm for the single-batch problem 

and guarantee finding the optimal solution in a fast and efficient manner with low 

polynomial order.  

Edis and Ornek (2009) develop a heuristic procedure for lot streaming problems in 

stochastic flow shops. Their proposed heuristic combines simulation and tabu search to 

minimize the makespan for a single-product multi-stage stochastic flow shop problem with 

consistent sublot types and discrete sublot sizes. 

2.4. Lot Streaming Problems with Multi-product – 2-3 Machines 

Vickson and Alfredsson (1992) consider MPLS problems with two and three-machines. 

In their theoretical study, they focus on “unit and equal” sublot sizes and present an 
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optimality condition when setup and transfer times are neglected. Moreover, they show that 

among many optimal solutions there exists an optimal solution where sublots of the same 

products are processed continuously on each machine (so called non-intermingled 

solution). 

Cetinkaya and Kayaligil (1992) extend the study of Vickson and Alfredsson (1992) on 

MPLS problems with two and three-machines by considering the case of detached setups. 

They suggest a procedure of finding optimal solution for two-stage flow shops with unit 

sized transfer batches. Their procedure is similar to the one of Johnson’s rule (1954). The 

procedure includes run-in and run-out times of lots between two machines and comparison 

is made accordingly. Moreover, Cetinkaya (1994) and Vickson (1995) showed that 

sequencing of the products optimally and splitting of each product into optimal sublots 

could be done disjunctively. The optimal sequence was obtained using Johnson’s rule 

(1954) as stated above. 

Sriskandarajah and Wagneur (1999) deal with the lot streaming and scheduling of 

multiple products in a two-machine no-wait flow shop and present efficient algorithms for 

solving the problem simultaneously. They also show that sequencing and lot streaming of 

multiple products with continuous sized-sublots can be done in polynomial time. Based on 

their findings and results, they present an effective heuristic procedure to solve sequencing 

and lot streaming of multiple products with integer-sized sublots. 

Bukchin et al. (2002) present a solution procedure (SMB – Single machine bottleneck) 

for the two-machine flow shop lot streaming problem with sublot-attached setup times to 

minimize flow-time. Although their SMB property does not always guarantee the 

optimality of their solutions, they have an empirical analysis which shows that their 

solutions are close to the optimal. Finally, they prove that the SMB property is satisfied in 

all optimal solutions for some specific cases. 
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Ganapathy et al. (2004) develop two heuristic algorithms (tabu search and simulated 

annealing) for LS problems in two-machine flow shop environment to minimize makespan 

and total flow time. Performance comparison between two heuristics is carried out and it is 

observed that when the objective is to minimize the makespan, tabu search (TS) and 

simulated annealing (SA) perform almost similar. On the other hand, if the objective is to 

minimize total flow time, TS outperforms SA regardless of the neighborhood creation 

schemes. 

Marimuthu and Ponnambalam (2005) evaluate three heuristic algorithms, namely 

genetic algorithm (GA), SA and Baker’s algorithm (1995), for lot streaming in a two-

machine flow shop to minimize makespan. They propose the GA and SA algorithm in 

order to compare it with Baker’s algorithm (1995). According to their results, GA performs 

better over others. As one might expect, the CPU time required for the simulated annealing 

algorithm is less compared with the time for the genetic algorithm. However, they conclude 

that despite the requirement of higher CPU time, overall performance of genetic algorithm 

is better for lot streaming and scheduling in a flow shop. 

2.5. Lot Streaming Problems with Multi-product – Multi-machines 

Kropp and Smunt (1990) investigate optimal lot streaming policies in multi-machine 

environment and present optimal sublot size policies and two heuristic methods for flow 

time minimization in a flow shop setting with no additional constraints. Their objective is 

either minimizing the makespan or mean flow time. For the problem with objective of 

minimizing the mean flow time, they use quadratic programming approach and determine 

the optimal way of splitting a job into smaller sublots under various setup times to run time 

ratios, number of machines in the flow shop, and number of allowed sublots. 

Kumar et al. (2000) also extend their study for single-batch multi-machine LS problems 

to multi-batch problems. For the multi-product and continuous-sized sublots case they 
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develop a traveling salesman problem (TSP) formulation and determine an optimal 

sequence that minimizes the makespan. Finally, they devise a different heuristic to obtain 

an optimal sequence for integer-sized sublots. 

Kalir and Sarin (2001) propose a heuristic for the lot streaming problem with m 

machines, which minimizes the idle time between sublots of each product (bottleneck 

minimal idleness). They find near-optimal sequences for the lot streaming sequencing 

problem (LSSP) in a multi-batch multi-machine flow shop. Their efficient heuristic 

procedure is called the bottleneck minimal idleness (BMI) heuristic. The BMI heuristic 

constructs a schedule attempting to minimize the idle time at the bottleneck machine. 

Moreover, “bottleneck dominant lots” term is introduced, which is built on a “bottleneck 

dominance theorem”. Bottleneck dominancy and bottleneck dominant lots play a key role 

in their constructive heuristic. Laha and Sarin (2009) and Glass and Possani (2011) also 

mention the bottleneck dominance theorem introduced by Kalir and Sarin (2001) in their 

articles. 

With an objective of minimizing the mean weighted absolute deviation from due dates, 

Yoon and Ventura (2002a) develop an LP model to find the optimal sublot allocation for a 

given sequence. They also consider the no-wait lot streaming flow shop. They employ 

sixteen pair-wise interchange methods in order to build the best sequences. They derive 

these sixteen pair-wise exchange methods from combining four rules used to generate the 

initial sequences with four neighborhood search mechanisms. In principle, they divide the 

problem into two independent sub-problems and solve them separately. 

Yoon and Ventura (2002b) also develop a hybrid genetic algorithm (HGA) to solve the 

lot streaming flow shop scheduling problem for the case where buffers between successive 

machines have infinite capacities and sublots have equal size. Their hybrid approach 

incorporates LP and non-adjacent pair-wise interchange (NAPI) methods. They also 

recommend that their hybrid method can be applied to other lot streaming flow shop 
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scheduling problems where sublots are consistent and buffers between successive machines 

have finite capacities. 

Hall et al. (2003) develop a useful heuristic for minimizing the makespan in no-wait 

flow shops. They show that it is possible to formulate this problem as generalized traveling 

salesman problem (GTSP). They also provide an effective and customized heuristic for the 

multiple product lot streaming problems. 

Kalir and Sarin (2003) also deal with the multiple-batches in flow shop lot streaming 

(FSLS) problem with sublot attached setups. For the multiple-batch problem they propose 

several algorithms, some of which obtain a near optimal solution procedure for the 

determination of the number of sublots as well as the sequence in an FSLS problem with 

sublot-attached setups. Moreover, they develop a heuristic procedure in order to 

substantially reduce the complexity of the optimal solution algorithm. 

Zhang et al. (2005) study the MPLS problem in m-1 two-stage hybrid flow shops and 

develop two heuristic algorithms to minimize the mean completion time of the jobs. Both 

heuristic algorithms are based on the similar strategy of first sequencing the jobs and then 

lot streaming each job. They utilize an LP model to decide the sublot sizes, after solving 

the lot streaming problem of each job in the sequence. 

Pan and Ruiz (2012) utilize the heuristic of Nawaz, Enscore and Ham (NEH) (1983) to 

develop the initial solution of their improvement type algorithms (EDA) for MPLS 

problem in MMFS with setup times under both idling and no-idling case. They claim to 

outperform all the other algorithms they considered in their paper for the lot streaming flow 

shop problem with setup times to minimize makespan. 

2.6. Lot Streaming Problems with Consistent Sublots 

In order to demonstrate the impact of equal and consistent sublots on system 

performance, Baker and Jia (1993) give comparative results using over 6000 test problems 
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in a three-stage and one-product environment. They find that when the number of sublots 

increases, improvements in makespan reduction gradually decline. For each solution 

procedure they considered, they found that over 80% of the potential makespan reductions 

from employing ten sublots are already obtained using just three sublots. On the other 

hand, their performance comparisons indicate that the ratio of makespan values calculated 

using equal and consistent sublots approaches one, which states that it is less appealing to 

use consistent sublots instead of equal sublots. 

Vickson (1995) considers non-intermingled, discrete and consistent sublot sized LS 

problems on two-stages. He also considers detached and attached setup cases respectively. 

For discrete sublot case he presents a polynomially bounded search algorithm, and for the 

continuous sublot case he finds a closed form solutions. 

Sriskandarajah and Wagneur (1999) deal with LS problems with consistent sublot sizes, 

discrete (as well as continuous) lot sizes and detached setups. They propose a two-staged 

solution procedure to solve the problem with those settings. Their two-staged approach is 

then generalized to a three-staged solution procedure by Kumar et al. (2000). In a multi-

product, multi-stage, no-wait flow shop environment with non-intermingled and discrete 

sublots, Kumar et al. (2000) propose a solution procedure composed of three main steps. 

Initially, they calculate the optimal continuous and consistent sublots individually for each 

lot by utilizing linear programming. Then, they round the sublots to meet the requirement 

of discrete sublot case. Finally, they formulate the remaining sequencing problem again as 

a TSP and solve it using heuristics.  

Hall et al. (2003) study the problem of Sriskandarajah and Wagneur (1999) with 

attached setups and provide an efficient heuristic to solve the multi-stage no-wait lot 

streaming problem with multiple products, if consistent non-intermingling but integer 

sublot sizes are assumed. Later, Hall et al. (2005) modify their procedures given in Hall et 

al. (2003) to minimize the makespan in no-wait two-machine open shops with consistent 
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and non-intermingling sublots. Since their problem additionally requires a machine 

sequence for each product, they limit the study to two-stage settings.  They utilize a 

dynamic programming algorithm in order to create dominant schedule profiles for each 

product, which are required to formulate the open shop problem as a generalized TSP. 

Finally, they provide an efficient heuristic which shows that good solutions can quickly be 

found for two-machine open shops with up to 50 products. 

Zhang et al. (2005) study the multi-job lot streaming problem in two-stage hybrid flow 

shops with m identical machines at the first stage and a single machine at the second stage. 

They keep sublot sizes consistent at two stages. They propose two heuristic algorithms to 

solve the problem.  Both heuristics first sequence the jobs and then schedules them one at a 

time. Only difference between the two heuristics arises when the jobs are sequenced, since 

they use two distinctive methods to sequence the jobs. Finally, they utilize mixed integer 

linear programming (MILP) formulation in order to calculate the lower bounds, which are 

used to compare the results of heuristic solutions and MILP. 

Martin (2009) presents a hybrid genetic algorithm/mathematical programming heuristic 

for the n-job, m-machine flow shop problems with lot streaming. He restricts the study to 

consistent sublot sizes. He generates the number of sublots for each job and the size of 

sublots by the heuristic and also addresses a new aspect of the problem which is the 

interleaving of sublots from different jobs in the processing sequence. 

Buscher and Shen (2011) consider the lot streaming problem with consistent sublot 

sizes in a job shop environment. They propose a three-phase algorithm which includes the 

phases of the predetermination of sublot size, determination of tabu-search based schedules 

and the sublot size variation. In their tabu search algorithm they connect three distinct 

neighborhood functions through a constructive multi-level neighborhood method. Their test 

results suggest that all tested instances rapidly converge to their lower bounds. 
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2.7. Other Types of Scheduling Problems Related to Lot Streaming 

Studies regarding multi-product multi-machine sequencing problems date back to 

1970’s. Campbell, Dudek and Smith (1970) develop a simpler heuristic approach for n-

product m-machine sequencing problems, which is called “Campbell-Dudek algorithm” in 

the literature. They provide a constructive heuristic, in which they generate different lot 

sequences dependent on the number of machines (at most m-1) and print the lot sequence 

with minimum total processing time as the solution of their constructive heuristic 

algorithm. Although their algorithm is not classified in lot streaming literature, their study 

can be regarded as an important contribution to the LS literature since they acknowledge 

the importance of total processing time of products on machines and include it in their 

study. 

For job shop production environments, the shifting bottleneck procedure developed by 

Adams et al. (1988) is one of the pioneers in job shop literature. In their study they describe 

an approximation method that solves the minimum makespan problem in job shop 

scheduling. Briefly, they successively manage to sequence the machines taking each time 

the machine with the highest processing time (the one which is identified as bottleneck 

machine) among the machines not yet sequenced. Their straightforward method is 

generally utilized to obtain near optimal sequences (See Dauzere-Peres and Lasserre 

(1997)). 

In a job shop production environment, Dauzere-Peres and Lasserre (1997) propose an 

iterative procedure to obtain the sublot sizes and the schedule, respectively. Their 

procedure alternates between solving for the optimal sublot sizes for a fixed number of 

sublots and a fixed sequence of these sublots on the machines; and the “optimal” schedule, 

for a fixed number of sublots and fixed sublot sizes. The latter task, which is finding 

optimal schedule for a job shop environment, is proven to be NP-hard, even for fixed sublot 

sizes. Thus, they utilize the heuristic, called “the shifting bottleneck heuristic”, developed 
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by Adams et al. (1988) in order to obtain schedules that are optimal or near optimal in 

some cases. 

In flow shop scheduling literature, the heuristic proposed by Nawaz, Enscore and Ham 

(NEH) (1983) is regarded as the best performing heuristic in flow shop environment with 

the makespan minimization criterion (Turner and Booth (1987), Taillard (1990)). 

Superiority of NEH comes from its ease of implementation and solution quality particularly 

on large scale problems. Brief explanation of the NEH procedure can be given as follows: 

They initially arrange all jobs in decreasing order according to sums of their total 

processing times. Then, they select first two jobs, and find their order that gives shorter 

makespan value. Remaining jobs are sequenced according to the similar criterion above: 

Selected job is inserted into a place in the current subsequence on hand, where it has the 

shortest makespan. Many articles have compared their results with NEH, some of which 

claimed to outperform it on different comparison criteria (See Kalir and Sarin (2001) and 

Rad, Ruiz and Boroojerdian (2009)). 
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Chapter 3 

 

HEURISTIC APPROACH FOR THE MPLS PROBLEM WITH EQUAL 

SUBLOTS IN MMFS 

 

 

3.1. Introduction 

This chapter explains the core concepts of lot streaming which will be used in 

developing the heuristic method. Detailed analysis and explanation of the heuristic 

algorithm we developed for MPLS problems with equal sublots in MMFS, namely heuristic 

RO is presented. Moreover, specially structured tabu search method is also introduced. 

Finally, a claim is proven in order to demonstrate the significance of using an “interior lot” 

in the heuristic method. 

3.2. Terminology 

The structure and solution procedure of any given lot streaming problem is generally 

dependent upon the combination of different components specified in Table 1. 

To capture the structure of any given lot streaming problem completely, some of the 

components supplied in Table 1 will be explained in more detail in the following 

subsections. 

3.2.1. Equal Sublots 

When all the sublots of a given lot have the same size, this specific case is called “lot 

streaming problem with equal sublots”. The more restricted version of the case of equal 

sublots is unit sublots. In the unit sublot case, the lot size of a given product (all items that 

are to be processed for a given lot) is equal to the number of sublots of the product. Figure 
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2 is an example of equal sublots where the lot consisting of 64 identical items is split into 

four equal sublots of 16 items each. 

 

Table 1. Different Components of Lot Streaming Problem 

Components Level 

Product (Lot) Types 
Single-Product 

Multi-product 

Machine Types 
Single Machine 

Multi-machine 

Production Types 

Flow shop  

Job shop  

Open-shop 

Sublot Types 

Equal 

Consistent 

Variable 

Number of Sublots 
Upper-bounded 

Fixed 

Sublot Sequence 
Intermingled 

Not-Intermingled 

Performance Measures 

Makespan 

Mean Flow Time 

Average Tardiness 

Number of Tardy jobs 

Total Tardiness 

Total cost 
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3.2.2. Consistent and Variable Sublots 

When sublot sizes of the lot are not restricted to be the same, we have a general case of 

the problem. If invariable (identical in size) sublot sizes are used for transferring a lot from 

one machine to another, we use the term consistent sublot. On the other hand, if sublot 

sizes that are used for transferring a lot from one machine to another may vary, we have the 

most general case of the lot streaming problem, which is called lot streaming problem with 

variable sublots. 

 

Figure 4. Lot streaming with consistent sublot sizes of 32, 16, and 16 items 

 

Figure 4 illustrates an example of consistent sublots, where sublot sizes are selected as 

32, 16 and 16 respectively. As indicated in the definition of consistent sublot, sublot sizes 

are kept the same in between machines 1 and 2. 

 

Figure 5. Lot streaming with variable sublot sizes of 32, 16, and 16 items in machine 1 and 

16, 32, and 16 items in machine 2 
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Figure 5 provides an example of variable sublots, where sublot sizes are selected as 32, 

16 and 16 items respectively for machine 1 and 16, 32, and 16 items respectively for 

machine 2. As indicated in the definition of the variable sublot, sublot sizes may vary in 

between machines 1 and 2. Even though the resulting makespan values for problems with 

consistent and variable sublots are the same, depending on the processing times and 

different sublot sizes they may result in different makespan values. 

3.2.3. Bottleneck Dominance Theorem and BMI Heuristic by Kalir and Sarin (2001) 

Kalir and Sarin (2001) propose a heuristic for the lot streaming problem with m 

machines, which aims to minimize the idle time between sublots of each product. In their 

heuristic procedure called the bottleneck minimal idleness (BMI) heuristic, they provide a 

“bottleneck dominance theorem” and introduce the term “bottleneck dominant lots”, which 

is also utilized in the heuristic procedures we developed. The bottleneck dominance 

theorem states that if for some lot i, the difference: 

          
      

          

Then, under lot streaming, there would be no idle time created between the sublots of lot i 

on the bottleneck machine (Kalir and Sarin (2001)). They define a lot i as “bottleneck 

dominant” if it satisfies the bottleneck dominance property given above. The BMI heuristic 

considers only two sets, which are the set of bottleneck dominant lots (  ) and the set of 

bottleneck dominated lots (  ) and orders them by arranging the lots in the decreasing 

order of the closeness of the secondary bottleneck machine to BN. On the other hand, the 

heuristic we developed (Heuristic RO) considers three distinct sets, namely the sets of 

bottleneck dominant lots, reversely bottleneck lots and interior lots. We also have entirely 

different ordering and tie breaking rules, unique sequence construction steps and additional 

tabu search algorithm for generating better final sequences, which will be covered in 

upcoming sections. 
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3.2.4. Run-in and Run-out Times for Lot j 

Run-in and run-out times are used for lot streaming problems with two-machines in 

particular. In order to gain more knowledge about how sublots of a lot can spread over two-

machines without increasing the makespan value, we use these terms. Run-in time for lot j 

is defined as time elapsed after its first sublot begins processing on machine 1 till its latest 

possible start on machine 2 without increasing the makespan.  

Consider the lot streaming problem depicted in Figure 4 in which processing times are 

given as 2 (  ) and 7 (  ) for machine 1 and 2 respectively. Run-in time for the lot given in 

Figure 4 is 64. In general, for the case of two-machines if       holds, run-in time of the 

lot will be the total processing time of the first sublot on the first machine (machine 1). On 

the other hand, if       holds (as in Figure 6), sublots of the lot can be right-shifted on 

the second machine (machine 2) to eliminate possible idleness created between its sublots 

on machine 2 without increasing the makespan value. In Figure 6, the run-in time for the 

lot will be 352 (not 224) due to the properties given above. 

 

Figure 6. Run-in time for lot j when       

Run-out time for lot j is defined as the time elapsed between the end of its processing 

on the first machine and that on second machine. Contrary to the run-in time calculation 

given above, if       holds (as in Figure 4), run-out time of the lot will be 384 (512 - 

128) according to the procedure specified above. On the other hand, if       holds (as in 

Figure 6), run-out time of the lot will be equal to the total processing time of the last sublot 
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on the second machine (machine 2). For the lot given in Figure 6, its run-out time is 32 

(16*2, also 480 – 448). 

3.2.5. Intermingled versus Non-Intermingled Schedules 

Intermingled schedules allow sublot(s) of a different lot to intervene between 

successive sublots of another lot on the same machine. The problem structure and solution 

methodology completely changes when intermingling is allowed. In our study, we do not 

allow intermingling of different sublots, so we only deal with non-intermingled 

schedules. 

3.2.6. Sublot Transfer Times/Costs and Setup Times 

When a sublot finishes its operation on a machine and needs to be conveyed to the 

downstream machine (the machine which comes later in the fixed machine sequence) 

transfer times and (or) costs may occur. If transfer times (and/or costs) constitute a major 

part of the objective function, they need to be considered in the problem structure. 

Furthermore, in some of the flow shop environments setup times of machines between the 

processing of sublots of different lots may take longer than expected. In this case, the setup 

time parameter needs to be added to the problem definition. Moreover, sublot-attached and 

sublot-detached setups are two of the common setup types that have distinct characteristics. 

In the sublot-attached version, setup of a lot on a given machine cannot be started unless 

its first sublot arrives at that machine. On the other hand, in sublot-detached case we are 

able to perform the setup of the lot on a given machine if its first sublot is being processed 

on a previous machine. 

3.3. Problem Definition 

In this study, we propose a heuristic (heuristic RO) for multi-product lot streaming 

(MPLS) in multi-machine flow shop (MMFS) environments, where sublots of all lots are 

equal or consistent, no idling is permitted in between sublots and each sublot consists of 

integer number of items. The motivation behind this study is to characterize certain 
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properties of the problem so that the heuristic can be extended to more general versions in 

future studies. 

3.4. General Assumptions 

As briefly explained in earlier sections, we have some general assumptions that most of 

the studies in the literature exploit and also some particular ones that only we employ for 

our study. Here is the list of assumptions which are used throughout the study:  

1. All jobs (lots) to be processed are available at time zero. 

2. Intermingling of sublots belonging to different lots is not allowed. 

3. Preemption of any sublot is not allowed; that is, processing of a sublot on any machine 

cannot be interrupted. 

4. Sublot transfer times between machines are assumed to be zero (negligible). 

5. Setup times of machines between the processing of sublots of different lots are 

neglected.  

6. Sublot sizes of each lot are assumed to be equal. 

3.5. Heuristic Algorithm for the LS Problem with Multi-Product Flow Shops with 

Equal Sublots (Heuristic RO)  

Below we present the heuristic algorithm (heuristic RO) developed for MPLS in MMFS 

with equal sublots. The following notation is used throughout the section:  

Parameters: 

m   Number of machines 

n   Number of jobs (lots) 

     Lot size for lot i 

      Unit processing time of lot i on machine j 

     Size of sublots of lot i 

     Number of sublots of lot i 

Indices: 

j   Machine index,  j = 1..m 
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i   Lot index,  i = 1..n 

Sets: 

M  Machine set 

N  Job (lot) set 

S  Bottleneck dominant lot set 

R  Reversely bottleneck dominant lot set  

I  Interior lot set 

Bestfinalseq Final set of lot sequences 

Heuristic RO: 

Set loop = 0; 

                                 

             

Keep processing time matrix (  matrix) as it is. (So that ordinary pass will be executed.) 

                 

Reverse processing time matrix. (So that backward pass will be executed.)  

End 

Step 1: 

Identify primary and secondary Bottleneck Machines (BN) by calculating total time 

spent on each machine, that is: 

    ∑  

 

   

           

The machine with the highest    value will be the primary bottleneck machine (BN1) 

and the machine with the second highest    value will be the secondary bottleneck machine 

(BN2). 
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Step 2:  

Identify bottleneck dominant lots, the concept which is introduced by Kalir and Sarin 

(2001), using BN1 machine and put them in set S. That is: If for some lot     

                                         . 

Sort lots in set S in ascending order of their first arrival times to BN1 machine. That is: 

      ∑                 

     

   

  

If there is a tie, break it by favoring the lot with smaller run-out time between BN1 and 

BN1+1 machine (Sarin and Jaiprakash (2007)). That is, for lot  :  

                    ,                                        ,  

                   ,                                                              

Call this final ordered set:         

Note: If bottleneck machine is the last machine in the fixed machine sequence, run-out 

time criterion will not apply. Therefore, new tie breaking rule for this specific case will be: 

Favoring the lot with the smaller processing time on bottleneck machine. 

Step 3: 

Identify reversely bottleneck dominant lots using BN1 machine and put them in set R. 

That is: If for some lot  , 

                                     . 

Sort lots in set R in ascending order of their reversely first arrival times to BN1 

machine. That is: 

       ∑                 

 

       

  

If there is a tie, break it by favoring the lot with smaller run-in time between BN1-1 and 

BN1 machine. That is, for lot  : 
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                   ,                                       ,  

                   ,                                                          

Call this final ordered set:         

Note: If bottleneck machine is the first machine in the fixed machine sequence, run-in time 

criterion will not apply. Therefore, new tie breaking rule for this specific case will be: 

Favoring the lot with the smaller processing time on bottleneck machine. 

Step 4: 

Keep the interiors lots in set I. Interior lots are the lots that satisfy the following:  

           

Step 5: (Sequence Construction Step) 

If         and         are not empty sets, apply the following procedure: 

5. A. Select the first lot in         as very first lot in the final sequence. Remove that lot 

from         and         (if it is also a member of that set). Keep the sorted order of 

        and         after the deletion of the selected lot from both lists. 

5. B. Select the first lot in remaining          set. Check whether the selected lot i is the 

first lot in         set. If the lot is not the first lot in         set, select this lot as the first lot 

in the remaining sequence. If it is indeed the first lot in         set, check if       

       . If it is true, then we can again select this lot as the first lot in the remaining 

sequence. If not, skip this lot and remove it from         and         (if it is also a member 

of that set). Apply this step until all members of         are either selected or skipped. 

5. C. Remove lots that are included in the final sequence from the initial         set 

generated in step 3. If this set is not empty, set the very first lot of this  set as last lot in the 

final sequence. 

5. D. If there remains any lot that is not sequenced yet (including interior lots), use the 

following procedure: 
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5D.1. Let set P collect lots that are not sequenced yet. Sort lots in P in descending order of 

their total processing times on all machines (    ). That is: 

      ∑               

 

   

  

5D.2. For each lot in P, calculate total run-in (TRI) and total run-out (TRO) times between 

(BN1-1)-BN1 and BN1-(BN1+1) machines. TRI and TRO times are calculated as follows: 

Total Run-in (TRI) Time: As explained in step 3, TRI is calculated between (BN-1) - BN 

and BN - (BN+1) machines. 

Total Run-out (TRO) Time: As explained in step 2, TRO is calculated between (BN-1) - 

BN and BN - (BN+1) machines. 

Note: If BN machine is either the first or the last machine, TRI time should be calculated 

between primary bottleneck machine (BN) and secondary bottleneck machine (BN2). 

Similarly, if BN machine is either the first or the last machine, TRO time should be 

calculated between primary bottleneck machine (BN) and secondary bottleneck machine 

(BN2). 

5D.3. Select the first lot in sorted set P and locate it in the final sequence according to 

following criteria: 

- If for lot                is true, sequence lot   to the top of the remaining sequence. 

- If for lot               is true, sequence lot   to the end of the remaining sequence. 

- Remove lot   from set P. 

Repeat step 5D.3 until each of the member of set P is sequenced. 

Step 6:  

Add the resulting final sequence that is generated in steps 1-5 to the bestfinalseq list. 

Note: If loop number is 1, reverse the resulting final sequence and add it accordingly. 
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Step 7: Generation of revised lot sequences  

Apply the following procedures to the final sequence generated in step 5, and add the 

resulting sequence(s) (If there exists any change in the schedule) to the bestfinalseq list: 

A. For each lot      in the final sequence, if the processing time of lot i on BN1 machine 

is greater than the processing time of that lot on BN1+1, insert lot i to place where it 

comes after all of the interior lots in the final sequence. For instance, consider that we 

have an LS problem with 5 products and final sequence is generated as 2-1-4-3-5 

throughout steps 1-6. Moreover, assume that the interior lot is found to be lot 3 and 

bottleneck dominant lots are 1 and 2. If lot 1 satisfies the property given above, revised 

lot sequence will be: 2-4-3-1-5. 

B. For each lot      in the final sequence, if the processing time of lot i on BN1 machine 

is less than the processing time of that lot on BN1-1, insert lot i to place where it comes 

before all of the interior lots in the final sequence. For instance, consider that we have 

an LS problem with 5 products and final sequence is generated as 2-1-3-4-5 throughout 

steps 1-6. Moreover, assume that the interior lot is found to be lot 3 and reversely 

bottleneck dominant lots are 4 and 5. If lot 4 satisfies the property given above, revised 

lot sequence will be: 2-1-4-3-5. 

Step 8: 

Reverse the processing time matrix (matrix  ) and carry out steps 1-8 according to 

reversed   matrix. Increase the loop number by 1. (           ) 

Note: Reverse of the final lot sequence generated using the reversed p matrix will provide 

an appropriate sequence for the problem with original processing time matrix. Thus, if the 

loop number is equal to 1 (that is, if processing time matrix is reversed) resulting final 

sequence must be reversed in order to get an appropriate solution. 
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Step 9: Generation of better lot sequences by tabu search (TSA) 

Steps 1-8 generate at most 10 different lot sequences and we keep them in bestfinalseq 

list, which records all the final lot sequences. In this step, we narrow the number of lot 

sequences in bestfinalseq list down to at most five elements. Selection rule while 

narrowing the list down to five elements is to simply favor the lot sequences with lower 

makespan value. Then we apply a specially structured tabu search algorithm (TSA) for lot 

streaming problem, using those five lot sequences as initial solutions for TSA. TSA will be 

explained in Section 3.6. 

Step 10: 

Select the final lot sequence(s), which are the output of TSA, with minimum makespan 

value as the output of heuristic RO. 

3.6. Tabu Search Algorithm for Generating Better Sequences 

Tabu search algorithm designed is examined in detail in the following subsection. 

While the TSA is in general generic, there are some features, which make it unique for the 

lot streaming problem. 

3.6.1. Steps of Tabu Search Algorithm 

Tabu search algorithm is comprised of four main steps, namely initialization of 

parameters, best neighborhood generation, construction of tabu list and termination: 

Step 1: Initialization of Parameters 

Essential parameters of the algorithm are initialized in this step. There are mainly three 

components to be initialized: Maximum iteration number, tabu tenure and initial solution of 

the algorithm. 

Among those components, maximum iteration number determines after how many 

iterations the algorithm is going to terminate. Moreover, a solution which is previously 

visited is kept in a tabu list for certain number of iterations (called tabu tenure). Tabu 
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tenure is the number that specifies how many of those previous solutions to be stored. On 

the other hand, initial solution determines the starting point of the algorithm. Finding a 

better initial solution seems to be crucial for TSA, since it controls where the algorithm 

starts generating new solutions by using its neighborhood function and generally selection 

of well-structured solutions leads to better final solutions (in terms of the objective 

function) in fewer number of iterations. Below we present initial values for those three 

components: 

Maximum Iteration Number: Number of products 

Tabu Tenure: Number of products / 2 

Initial Solution: As explained previously, five final lot sequences obtained by using 

heuristic RO are utilized as initial solutions respectively. 

Step 2: Best Neighborhood Generating Function 

This step differentiates our TSA from other studies in the literature. To begin with, a lot 

sequence that is obtained by heuristic RO is used as an input for the “Best Neighborhood 

Generating Function”. Then, the function produces new lot sequences (as many as the 

number of products) using specially structured insertion method and selects the lot 

sequence with the minimum makespan value as an output of the function. 

Insertion Method: 

Insertion method generates totally a “product size” of new lot sequences from the 

current available sequence on hand. For instance, if we have 5-product LS problem with 

current available sequence of 2-1-3-4-5 as an input for the best neighborhood function and 

if the lot to be inserted is selected as lot 2, we will generate five new sequences, such as: 2-

1-3-4-5, 1-2-3-4-5, 1-3-2-4-5, 1-3-4-2-5 and 1-3-4-5-2 from the current sequence using 

insertion method. 
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Differentiating Part of the Insertion Method: 

Insertion method is based on the following priority rule: Interior lots are privileged to 

be selected as a candidate for insertion. Other lots are considered after all the interior lots 

are inserted in their initial positions in the lot sequence. On the other hand, if the first 

member of the output of the best neighborhood generating function is an interior lot, it is 

immediately disregarded and kept in the tabu list. Main reason behind it is given in 

upcoming sections (Section 3.7). 

Step 3: Construction of Tabu List 

First of all, tabu tenure is set to be the half of the number of products as stated above 

(For a 10-product LS problem, tabu tenure will be 5). 

Construction of tabu list is comprised of two major parts: Firstly, lot sequences which 

have been visited in the recent past (less than n iterations ago, where n is the number of 

previous solutions to be stored, namely the tabu tenure) is kept in the tabu list. This 

prevents the algorithm from visiting the same sequences repeatedly and so allows a 

diversification of generated lot sequences. 

Secondly, if the first member of the lot sequence is among interior lot list, this lot 

sequence is directly added to tabu list (as described previously). 

Aspiration Criterion: 

Commonly used aspiration criterion is also utilized here: We allow lot sequences which 

are better than the currently-known best sequence with minimum makespan value. 

Specifically before directly adding the lot sequence with its first member being a lot among 

interior lots, this aspiration criterion prevents us from disregarding the solution if it satisfies 

the criterion.  
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Step 4: Termination Criterion of Tabu Search 

Single termination criterion is utilized for our TSA, which is checking whether pre-

specified number of iterations is passed or not. As stated above, specified number of 

iterations (maximum number of iterations) is set to be the “number products”. 

3.6.2. Time Complexity of RO and TSA 

Steps 1 to 8 of heuristic RO run in          mainly due to step 5 of the algorithm 

(sequence construction step). On the other hand, examining the tabu search algorithm in 

detail, step 2 (best neighborhood generating function) is found to be the one which adds 

more complexity than other steps. Considering the insertion method in step 2 with the time 

complexity of      together with the maximum iteration number of n (the number of 

products), we culminate with the total complexity of      . Thus, heuristic RO still runs 

in         . 

3.7. Significance of Using an Interior Lot in the Heuristic Method 

To better observe the importance of the utilization of interior lots repeatedly in steps of 

heuristic RO as well as in steps of tabu search algorithm, a claim is made and proven. 

Before the details of the proof, preliminary information about the proof is as follows: 

Preliminary Information: 

1. Claim deals with multi-product lot streaming (MPLS) problem in 3-machine flow shop 

(   ) with unit and equal sublot sizes (          ). The claim also applies for 

MPLS problem in 3-machine flow shop (   ) with equal sublot sizes if unit 

processing time matrix (    ) is multiplied by the size of sublots (     for each product. 

(        ) 

2. Claim applies when bottleneck machine (BN1) is the second machine in fixed machine 

sequence. (BN1 = 2) 

3. Claim applies for the case where there is no idle time created on BN1 machine before 

the processing of the selected interior lot. 
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Following notation will be used in the rest of the proof: 

Notation: 

      Time elapsed from the start of first sublot of all the lots before lot    to the 

completion of last sublot of all the lots before lot     on machine j,  j   1..3 

     Time elapsed from the start of first sublot of lot    to the completion of last sublot of 

lot    on machine j, j   1..3 

      Time elapsed from the start of first sublot of all the lots after lot    to the completion 

of last sublot of all the lots after lot    on machine j, j   1..3 

    Deadline on machine j found by calculating the completion time of last sublot of all the 

lots after lot     on machine j,  j   1..3 

     Completion time of last sublot of lot    on machine j, j   1..3 

     Length of the block       and       respectively 

Claim: 

For any given sequence if lot      (the set of interior lots) is inserted into first position 

and the remaining lots are shifted accordingly, minimum makespan value that particular 

sequence can have will not decrease. 

Proof: 

Suppose that there exists a lot satisfying the property given above (call this lot: Lot   ) 

and also suppose that we have sequence on hand where lot    is not the first lot of that 

sequence. Given the preliminary information, a typical sequence where lot     is not the 

first lot is depicted in Figure 7: 
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Figure 7. Before the Insertion of Lot     into First Position 

In Figure 7,      values represent the total amount of time that all the lots before lot     

spend on each machine j. On the other hand,      values represent the total amount of time 

that all the lots after lot    spend on each machine j. After inserting lot    into first position, 

we obtain the sequence depicted in Figure 8: 

 

Figure 8. After the Insertion of Lot     into First Position 

Let f denote the first sublot of block      , g denote the last sublot of block      ,       

denote the processing time of lot i (i = 1...N) on machine j (j=1...3),       denote number of 

sublot of lot    and      
     

 denote the possible idle time created on machine 2 between 
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blocks        and        after the insertion. When we examine the completion time of last 

sublot of lot    on machine 2 (  ) before and after the insertion, we obtain the following: 

Before Insertion: 

  
      

            
      

               
      

 

                                                                            

After Insertion:  

  
     

             
     

              
     

 

We observe that parts (i), (ii), (iii) and (iv) are the main components that constitute     

before and after the insertion. Now we examine the changes in the values of each 

component case by case: 

Case 1: If                

(i) From the assumption above              

(ii)     
     

     
      

 since                     causes     
     

 to be greater than 

zero, so block of         will not be compressed and remain the same. 

(iii)                                            (            ) 

          (            ) 

                        

Observe that value of         has the maximum value it can have, since in the case 

of        ,         may be compressed by block of        and its value may 

decrease, thus:                    

(iv) It is given that     
      

   and for     
     

, since                         
     

 

will be greater than zero. Also its exact value will be,     
     

               

Checking   
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Case 2: If                

(i) From the assumption above              

(ii)     
     

     
      

 holds because:  

If                   it causes     
     

 to be zero, so block of         may be 

compressed and its value after insertion may decrease. The exact decrease in its 

value will be:             

If                   it causes     
     

 to be greater than zero, so block of         

will not be compressed and its value after insertion will remain the same. So, both 

cases indicate that      
     

     
      

 

(iii)                                            (            ) 

                 (            ) 

          

Observe that value of         is the maximum value it can have, since in the case 

of        ,         may be compressed by block of        and its value may 

decrease, thus:                    

(iv) It is given that     
      

   and for    
     

, (ii) states that value of     
     

 will 

be either zero or           . 

Checking   
     

    
      

  

If                      
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If                        

             
     

              
     

            
      

               
      

 

                                          

                                        
     

    
      

    

We observe that for this particular 3-machine case of multi-product lot streaming 

problem, makespan value may increase when the value of    
     

 increases. The reasoning 

is given as follows: Exact value of deadline on machine 2 after the insertion can be found 

as:   
     

     
     

          
     

  Since the increase in    
     

 will either compress the 

possible idleness in the block        or have no effect on the size of that block, it is certain 

that   
     

 will not decrease.  

Moreover, it is easy to verify that any feasible sequence of the problem will satisfy the 

following inequality which sets a lower bound on the deadline on machine 3 (which is also 

a lower bound on the makespan value of that particular lot sequence):  

  
     

     
     

         

It is also clear that if    
     

 increases, smallest value that    
     

 can have will also 

increase. In our case, since    
     

 will not decrease after the insertion, we are sure that the 

smallest value that    
     

 can have will not decrease either. 

Conclusion: 

It is shown that in each case    
     

 will be greater than    
      

 which signifies that 

   
     

 will not decrease. Thus, we can conclude that for any given sequence if lot      is 
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inserted into first position and the remaining lots are shifted accordingly, minimum 

makespan value that particular sequence can have will not decrease. 

Heuristic RO extends this inference for MPLS problems in MMFS and gives more 

importance on interior lots in sequence construction steps of the heuristic as well as in the 

tabu search algorithm. As explained in more detail in previous sections, heuristic RO and 

tabu search algorithm restrict the insertion of an interior lot into first position by: 

- Giving priority to bottleneck and reversely bottleneck dominant lots whilst the selection 

of the first (and the last) member of the lot sequence, 

- Immediately disregarding and keeping the lot in the tabu list if the first member of the 

output of the best neighborhood generating function is an interior lot. 
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Chapter 4 

 

HEURISTIC APPROACH FOR MPLS PROBLEM WITH CONSISTENT 

SUBLOTS IN MMFS 

 

 

4.1. Introduction 

The chapter examines LS problems with consistent sublot size.  To provide a better 

understanding of LS problems with consistent sublot sizes, problem definition is given. 

Details of the heuristic approach for MPLS problems with consistent sublots in MMFS 

(heuristic RO - Consistent), which utilizes heuristic RO for generating better initial lot 

sequences and tabu search algorithm for improving the quality of sublot size matrix, is 

provided in this chapter. 

4.2. Problem Definition of LS with Consistent Sublots 

When sublot sizes of the lot are not restricted to be the same (as in the case of equal 

sublots), we have a general case of the problem. If invariable (identical in size) sublot sizes 

are used for transferring a lot among each pair of machines, we use the term consistent 

sublot.  

It is apparent that when the sublot sizes are changed from equal to consistent for a given 

problem instance, makespan value will decrease. (Or at least remain the same) Main 

reasoning is as follows: Utilization of consistent sublot sizes gives us more flexibility to 

generate final schedules with less idle times between sublots of each lot. On the other hand, 

as we use consistent sublot sizes, problem structures and solution methods may vary. For 
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instance, determination of lot sequences is the main goal of the LS problems with equal 

sublots, since sublot sizes (so the number of sublots for each lot) are known beforehand. On 

the other hand, LS problems with consistent sublots have multi objectives, namely 

determination of number of sublots (hence sublot sizes) and also determination of lot 

sequences. 

4.3. Heuristic Approach for MPLS problems with Consistent Sublots in MMFS 

(Heuristic RO - Consistent) 

Following notation will be used in the rest of the subsection: 

Notation: 

Parameters: 

'
jS
 

 Maximum number of sublots for lot j 

M   Number of machines 

J   Number of products (lots) 

jL    Lot size for lot j 

jmt   Unit processing time of lot j on machine m 

Indices: 

s,t   Sublot indices, s,t  = 1..
'

jS  

m   Machine index, m = 1..M 

j   Lot index, j = 1..J 

Decision Variables: 

jsSS   Size of sublot s of lot j 

jsmp   Processing time of sublot s of lot j on machine m 

jsmb   Starting time of sublot s of lot j on machine m 
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Using the notation given above, we can use the following heuristic to generate coherent 

solution for MPLS problems with Consistent Sublots in MMFS (heuristic RO - Consistent): 

Steps of Heuristic RO – Consistent: 

Step 1: Generate initial matrix SS for heuristic RO by simply applying the following 

steps: 

- Create 
'

jS
 
number of sublots for lot j

 
 

- For each sublot of lot j, set the initial sublot size as 
'

j

j

L

S

 
 
  

 

- Starting from the first sublot of lot j (till the last sublot of lot j if applicable) 

increase the size of each sublot of lot j by 1 to accommodate each of the remaining 

products. 

- Apply these steps for all products to create the final matrix SS  

For instance, when the lot size of lot j (
1L ) is 15 and the maximum number of sublots for 

lot j ( '

1S ) is 6, then applying the procedure given above we will find matrix 1SS as: 

1 [3,3,3,2,2,2]SS   

Step 2: Find a lot sequence by using heuristic RO with initial sublot size matrix generated 

in step 1 ( SS ). 

Step 3: Generate new matrix SS using tabu search algorithm with starting solution found 

in step 2. 

Step 4: Using the lot sequence (found in Step 2) and new matrix SS (found in step 3), 

recalculate the makespan value and print the resulting makespan as the output of heuristic 

RO – Consistent. 
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This four-step heuristic method aims to create initial lot sequence by using heuristic RO 

with given sublot size matrix SS  (found in step 1). In order to generate better sublot size 

matrices, tabu search algorithm is applied in step 3 of the heuristic. Thus, the makespan 

value of this particular lot sequence is decreased and the resulting makespan is printed as 

an output of heuristic RO – Consistent in step 4. It is also necessary to give the details of 

tabu search algorithm applied in step 3. 

Tabu Search Algorithm to Generate Better Sublot Size Matrix 

Step 1: Initialization of Parameters  

This step sets the initial values for the following parameters: Tabu tenure, maximum 

iteration number and starting sublot size matrix. Among those parameters, tabu tenure 

specifies how many iteration is needed for a lot to be excluded from the list. Maximum 

iteration number designates the stopping condition for the tabu search algorithm. Finally, 

starting sublot size matrix is found by the Step 1 of the heuristic RO – Consistent and used 

here as an initial sublot size matrix. So, initial values for each parameter are as follows: 

- Tabu Tenure: Number of products / 2 

- Maximum iteration number: Number of products * 2 

- Starting sublot size matrix: Found in step 1 of the heuristic RO – Consistent 

 

Step 2: Best Neighborhood Function 

In this step, we utilize the starting sublot size matrix ( SS ) found in step 1 of heuristic 

RO – Consistent as an input for the best neighborhood function of the tabu search 

algorithm. 

In order to find the best neighborhood(s) of the sublot size matrix on hand, following 

method is used: 
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- According to current loop number, respective row of matrix SS  is chosen. (As an 

instance, if the loop number is 2 second row of the matrix is chosen.) On the other 

hand, if the current loop number exceeds the number of rows of the matrix, we go 

back to the very first row and start over. 

Note:  If makespan value is decreased in previous loop, we continue to select the 

same row of the matrix, until no improvement is possible. Thus, we can apply a 

deeper search on each row. 

- Neighborhoods of the selected array are found by increasing the selected column 

number by 1 and decreasing the succeeding column number by 1. For instance, 

applying the procedure given above, neighborhoods of 1 [3,3,3,2,2,2]SS   will be 

as follows: 

[4,2,3,2,2,2] , [3,4,2,2,2,2] , [3,3,4,1,2,2] , [3,3,3,3,1,2] , [3,3,3,2,3,1]  

Note: If the succeeding column number of the selected column is 0, it is skipped 

since no reduction is possible on this neighborhood. 

- Replace the rows found above with the selected row of matrix SS  and recalculate 

the makespan value of the same lot sequence based on those candidate matrices. 

- Select one of the candidate matrices found above with the minimum makespan 

value and print the resulting matrix as the output of the neighborhood function. 

 

Step 3: Construction of Tabu List 

First of all, as specified above, tabu tenure is selected as the half of the number of 

products. So, for a 10 product LS problem, tabu tenure will be specified as 5. Moreover, 

members of the tabu list are the rows that are changed in previous iterations. Therefore, 

reselection of previously visited solution is prohibited so that differentiation of solutions at 

each iteration is achieved. 
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 Aspiration Criterion: If a row that is candidate to be in tabu list is in the matrix SS
 
which 

has generated minimum makespan value so far, this row is not put into the tabu list. 

 

Step 4: Termination of Tabu Search Algorithm 

As explained above, only termination criterion is selected as reaching the predetermined 

loop number (maximum iteration number), which is specified as twice of the number of 

products.  

After reaching the maximum iteration number, final matrix SS  and the lot sequence 

found in step 2 of heuristic RO – Consistent are used to find the final makespan value. 
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Chapter 5 

 

COMPUTATIONAL EXPERIMENTS 

 

 

5.1. Introduction 

The chapter begins with the comparison between random start and heuristic RO start for 

tabu search algorithm. Then comparative computational analysis on MPLS problems with 

equal sublot sizes is provided. We then switch our focus on MPLS problems with 

consistent sublot size.  Finally, we provide the comparative computational results of our 

heuristic for MPLS problems with consistent sublots.  

5.2. Random Start vs. Heuristic RO Start 

In step 1 of the tabu search algorithm, we set the initial values for three parameters of 

the TSA, namely maximum iteration number, tabu tenure and initial solution of the 

algorithm. Among three of them, foremost important step is the initialization of the 

“starting solution”. The reasoning can be given as follows: In contrast with other 

parameters, initial solution mostly shapes the computational behavior of the TSA. That is, 

if the initial solution is already close to one of the optimal solutions, performance of the 

neighborhood search increases and the number of iterations that TSA spends to converge to 

optimum can gradually decrease. On the other hand, if the initial solution is close to one of 

the local optimal solutions, TSA bears the risk of getting stuck at those local optima, 

printing the same local optimum regardless of the number of iterations that it performs. 
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This section is devoted to the analysis of performance of our TSA under different initial 

solutions. For that purpose, 10 instances for 10, 20, and 30 products with 5 and 10 

machines are created for LS problem with equal sublot size. Sublot sizes and processing 

times are randomly generated from a uniform distribution U (1, 10). Numbers of sublots 

are selected as 5 and 10. Thus, a total number of 120 randomly generated problem 

instances are used to measure the performance of the TSA under two distinct scenarios: 

The one with the random start (five initial solutions for the TSA are randomly generated) 

and the one with the heuristic RO start (five initial solutions are obtained via heuristic RO). 

For the first scenario, five solutions are generated randomly and used as an initial 

solution for the TSA. Five solutions are used in order to be consistent with heuristic RO, 

since it also produces five lot sequences as initial solutions for TSA. The output of the 

random start is the final lot sequence(s) with minimum makespan value. Moreover, the test 

is conducted ten times in order to reduce the effect of total randomness. 

The second scenario is basically applying heuristic RO on those 120 randomly 

generated problem instances to obtain the initial solution for TSA. 

The performance comparison criterion is selected as the total number of better solutions 

found by both scenarios. That is, we compare the makespan values of the best sequences 

obtained in both scenarios and conclude that the solution is “better” if the makespan of this 

solution is less than or equal to the makespan value of the solution obtained by other 

scenario. Note that whenever both scenarios end up with the solutions that have the same 

makespan value, we increase the number of better solutions found for both of them. 
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Figure 9. Number of Better Solutions Found by Random Start and Heuristic RO 

Figure 9 indicates that using the five final lot sequences obtained via heuristic RO as 

initial solutions for TSA performs better than using randomly generated initial solutions. 

One can also deduce that the performance of heuristic RO on larger problem instances is 

much better than that of random initial solutions. The reason for this can be given as 

follows: The solution space grows rapidly as the number of products increases; however 

the growth in the neighborhood space for TSA is gradual. For instance, the solution space 

for the 10-product problem instances is 10! (3628800), yet the neighborhood size for the 

neighborhood space function of TSA is only 10, which amounts to saying that we inspect 

only 10 of 3628800 available sequences at each iteration of TSA. On the other hand, the 

solution space for the 20-product problem instances is 20! (2.43290201 × 10
18

) and the 

neighborhood size for the neighborhood space function of TSA is only 20. Thus, the 

importance of starting off the tabu search algorithm with a good initial solution becomes 

more apparent for larger problem instances. So, we can observe the effect of a better initial 

solution comparing the number of better solutions found by random start and Heuristic RO. 
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Figure 10. Percentage Deviation of Makespan of RO with respect to Random Start 

It is also important to observe the percentage deviation of solutions found by using 

heuristic RO start from the solutions obtained by using random start. Figure 10 

demonstrates the correlation between the total number of better solutions found and the 

percentage deviation of solutions found by both scenarios.  

We can deduce from the Figure 10 that there exists a decreasing trend (from 0.20% down 

to -0.90%) in percentage deviation of makespan values of heuristic RO with respect to 

random start as the number of products increases. (Best linear line fit (linear (heuristic RO 

Start)) for the observations in Figure 10 also shows a decreasing trend.)  Moreover, effect 

of total randomness is also more apparent in this figure. That is, despite the existence of the 

decreasing trend in percentage deviation of makespan values of heuristic RO with respect 

to random start, we sometimes observe the uptrend in the figure (specifically in 30x5x5 and 

30x5x10 problem instances) which can be attributed to random starting solutions. This 
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allows us to restate that heuristic RO indeed generates better starting solutions for the 

initialization step of TSA particularly for the larger problem instances. 

To conclude, computational results show the importance of starting with a better initial 

solution in TSA particularly for larger problem instances. Moreover, five lot sequences 

obtained from heuristic RO comply with the necessity of starting with better initial 

solutions for the TSA. Therefore, heuristic RO should be utilized for obtaining good initial 

solutions for the TSA. 

 

5.3. Computational Results on LS Problems with Equal Sublot Size 

Heuristic RO, as thoroughly explained in previous sections, is coded in Matlab 

programming language. For the tabu search algorithm, C++ programming language is 

preferred since it has better performance on iterative algorithms. 

Same problem instances are utilized for the purpose of comparative analysis between 

heuristic RO and other heuristics as well as exact methods. To remind the problem 

instances that we work on, 10 instances for 10, 20, and 30 products with 5 and 10 machines 

each are created for LS problems with equal sublot size. Sublot sizes and processing times 

are randomly generated from a uniform distribution U (1, 10). Numbers of sublots are 

selected as 5 and 10. Thus, a total number of 120 randomly generated problem instances 

are used for the computational analysis. 

In order to test the quality of solutions that we obtain via heuristic RO on those problem 

instances, we selected one heuristic method and one exact method from the literature. The 

heuristic method that we chose to compare our heuristic RO is the revised version of the 

heuristic proposed by Nawaz, Enscore and Ham (NEH) (1983), which is regarded as the 

best performing heuristic in flow shop environment with the makespan minimization 

criterion. Note that, time complexity of revised NEH is        which is greater than the 

time complexity of heuristic RO (        ).  Revised NEH heuristic was coded in IBM 
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ILOG CPLEX 12.1 Development Studio. Moreover, the exact method for solving multi-

product lot streaming problems in multi-machine flow shop environment is selected as the 

integer programming (IP) model of Biskup and Feldmann (2005). Note that, IP model 

proposed by Biskup and Feldmann solves the MPLS problem with the inclusion of 

intermingling. Therefore, we adapted their model to our case to solve MPLS problem with 

no-intermingling allowed. IP model was coded in ILOG CPLEX 12.1 and maximum run 

time for IP model in CPLEX was selected as 3600 seconds. Therefore, it is important to 

stress that while comparing those three methods (heuristic RO, revised NEH and IP model) 

we use the final results of heuristic RO and revised NEH; however some results of the IP 

model are the best solutions obtained after 3600 seconds. 

Primary performance evaluation criterion was selected as the “percentage deviation of 

the solution values from the best solution found”. It is important to point out that IP model 

managed to terminate before 3600 seconds of maximum run time for the 10-product lot 

streaming problem instances, so “the best solutions obtained” for the 10-product MPLS 

problem instances are the optimal solutions found by IP model. On the other hand, IP 

model could not terminate in 3600 seconds for all 20 and 30-product LS problem instances. 

Thus, “the best solutions obtained” in those cases are the ones which have the minimum 

makespan value among the solutions found by heuristic RO, revised NEH and IP model. 

Therefore, we separate the analysis of 10-product case from the others. 

Figure 11 shows that heuristic RO is capable of finding solutions that have lower 

percentage deviation than solutions found by revised NEH heuristic with respect to optimal 

solutions found by IP model for 10-product problem instances. 
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Figure 11. Percentage Deviation of the Solution Values from the Optimal Solution 

Moreover, for the analysis of the problems instances with 20 or more products, Figure 

12 clearly demonstrates the quality of the final lot sequence generated by heuristic RO 

compared to both revised NEH and IP formulation in terms of percentage deviation from 

the best available solution. Heuristic RO mostly finds the best available solution among all 

different settings of the problem. On the other hand, heuristic RO is more favorable with 

regards to stability and standard deviation of the solutions found by three methods. Max 

percentage deviation of heuristic RO is only 1.24% for 10Px10Mx10S problem setting, 

while it is 3.10% for revised NEH on the same setting and 3.52% for IP formulation on 

30Px10Mx10S problem setting, which is also depicted in Figures 11 and 12. 

It is also important to point out that both heuristic methods show decreasing trend as the 

number of products increases, however heuristic RO has less fluctuation than revised NEH 

heuristic, which again demonstrates the stability and quality of the solutions found by 

heuristic RO. 
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Figure 12. Percentage Deviation of the Solution Values from the Best Solution Found 

We also conducted performance profile analysis introduced by Dolan and More (2002) 

to compare the performances of these three methods on the problem instances with 20 or 

more products. Using the notation given by Dolan and More (2002), we have 3 methods 

(solvers) (    ) and 80 randomly generated problem instances (     ). Performance 

measure is selected as the makespan value found by the solver on a given problem instance. 

Using set of solvers   and test set   we define       as the makespan value found by solver 

    on problem instance     for each solver s and problem p. In order to select a 

baseline for comparisons, we also compare the makespan value of solver s on problem p 

with the best makespan value by any solver on this problem, so we define our performance 

ratio as:      
    

              
 In order to obtain overall assessment of the performance of the 

solvers      , which is the probability for     that the performance ratio       is within a 

factor      of the best possible ratio, is selected as:       
 

  
                 . So, 

the function     is the cumulative distribution function for the performance ratio of solver  . 
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Figure 13. Performance Profile on [1, 1.07] 

From Figure 13 we deduce that among all solvers the probability that heuristic RO will 

find the best solution on a given problem instance is 0.70, while it is only 0.28 for NEH 

heuristic and 0.30 for IP model. Moreover, the cumulative distribution function of heuristic 

RO reaches its maximum value of 1 when the factor          which amounts to stating 

that it is certain that heuristic RO will find makespan values that are at most 3.8% above 

the best solution. On the other hand, the factor   values are       and       for NEH 

heuristic and IP model, respectively. Thus, performance profile analysis also enables us to 

conclude that heuristic RO performs better on large scale problems compared to NEH and 

IP model. 

 “Average CPU Time” should also be considered as the one of the performance 

indicators and should be used when comparing the performances of both heuristics RO and 

revised NEH. Figure 14 shows the average computational time (in seconds) results of each 

method for all different problem settings. Figure 14 also depicts that heuristic RO and 
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revised NEH spend similar amount of CPU time to generate their solutions. On the other 

hand, as the IP model spends at least 3600 seconds (predetermined maximum run time of 

CPLEX model) to find the optimal lot sequence for 20 and 30 product LS problem 

instances, we can disregard the average CPU time results for IP model. 

 

Figure 14. Average CPU Times (in seconds) 

5.4. Computational Results on LS Problems with Consistent Sublot Size 

Although Heuristic RO is designed specifically for multi-product lot streaming 

problems with equal sublots on multi-machine flow shops, it is straightforward to adapt the 

heuristic for LS problems with consistent sublots. Before the detailed explanation on how 

to adapt heuristic RO for LS problems with consistent sublots, it is necessary to restate the 

definition of LS problems with consistent sublots. 

5.4.1. Revision of IP Model of Feldmann and Biskup (2008) 

In order to compare the performance of Heuristic RO – Consistent on selected problem 

instances, IP model of Feldmann and Biskup (2008) for multi-product lot streaming 
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problems with consistent and intermingled sublots is adapted to our case, which is MPLS 

with consistent and not-intermingled sublots. In order to fully adapt the IP model of 

Feldmann and Biskup (2008) to the consistent and not-intermingled sublot case, following 

modifications are made using the notation given in section 4.3: 

Decision Variables: 

New decision variables below are added to the existing IP model and some of the 

existing decision variables are replaced by those new decision variables: 

:jky  Binary (0-1) variable, 1 if lot j is processed before lot k, 0 otherwise, j,k = 1..J 

(Replaces jsktx  decision variable in original IP model) 

:jsu  Amount processed in sublot s of lot j, j = 1..J,  s = 1.. 
'

jS  

:jsw  Binary (0-1) variable, 1 if corresponding 0jsu  , 0 otherwise, j = 1..J,  s = 1.. 
'

jS  

Constraints for Not-Intermingling Case: 

0jky  , when j,k = 1..J and j k  

1jk kjy y  , when j,k = 1..J and j k  

Addition of each constraint to the existing IP model allows us to prevent intermingling 

of sublots of different lots. (If lot j is processed before lot k no sublot of lot k can 

intermingle with the sublots of lot j.) 

Introduction of Parameter 
'
jS  to the Model: 

* jsjsw R u , j = 1..J, s = 1..
'

jS  and R is a sufficiently large integer 

jsjsw u , j = 1..J, s = 1.. 
'

jS  

'

1

S

j

s
jsw S



 , j = 1..J 
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Addition of all of the constraints above allows us to set different maximum number of 

sublot levels for each lot, which makes the problem more flexible. 

5.4.2. Computational Experiments for LS Problems with Consistent Sublots 

Heuristic RO – Consistent is coded in Matlab, whereas additional tabu search algorithm 

is coded in C++, since C++ can perform better on cyclical operations. Adapted IP model of 

Biskup and Feldmann (2008) is coded in IBM ILOG CPLEX 12.1 programming language. 

In order to compare the performance of both models, 10 instances for 5 and 10 products 

with 5 and 10 machines each are created for LS problem with consistent sublot size. 

Processing times are randomly generated from a uniform distribution U (1, 10). Also, 

maximum number of sublots for each lot (array 'S ) are generated as 5 + U (-1, 1) and 10 + 

U (-2, 2). Thus, a total number of 80 randomly generated problem instances are used to 

compare the performance of heuristic RO – Consistent (RO-C) with adapted IP model 

(IPM) of Biskup and Feldmann (2008). 

We again select the primary performance evaluation criterion as “percentage deviation 

of the solution values from the best solution found” for convenience. “Best Solution” (if 

available) is regarded as the makespan values found by IPM before the predetermined 

termination time. If IPM cannot terminate before the predetermined termination time 

(which is selected as 3600 seconds), the best solution is the minimum of the solution found 

by RO-C and IPM.   

It is important to point out that IP model manages to terminate before 3600 seconds of 

maximum run time for the 5-product x 5 machine lot streaming problem instances, so “the 

best solutions obtained” for those MPLS problem instances are the optimal solutions found 

by IP model. Figure 15 shows the results found by both approaches on the same problem 

instances: 
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Figure 15. Percentage Deviation from the Best Solution (%) 

We can deduce from Figure 15 that RO-C can also find good solutions for MPLS 

problems with consistent sublots, although it is originally designed for MPLS problems 

with equal sublots. Using the “percentage deviation from the best solution found” as the 

primary performance evaluation criterion, for 'S  matrix with 5±1 RO-C can find solutions 

that are 0.88% above from the best solution in general. On the other hand, adapted IPM can 

find solutions that are 0.31% above from the best solution in general. Moreover, for 'S  

matrix with 10±2 when RO-C can find solutions that are 0.64% above from the best 

solution in general, adapted IPM can find solutions that are 0.65% above from the best 

solution.  
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Figure 16. Performance Profile on [1, 1.042] 

Conducting performance profile analysis for LS problems with consistent sublots given 

in Figure 16, we observe that the probability that heuristic RO will find the best solution on 

a given problem instance is 0.35, while it is 0.68 for IPM. However, the slope of the 

cumulative distribution function for heuristic RO is greater than that of IPM. Thus, we see 

that the cumulative distribution function of heuristic RO reaches its maximum value of 1 

when the factor          which amounts to saying that it is certain that heuristic RO will 

find makespan values that are at most 4.2 % above the best solution. (The factor   value for 

IPM is      ) To conclude, percentage deviation and performance profile analysis show 

that RO-C has stability as the number of products as well as maximum number of sublots 

increase. 

It is important to observe how fast our heuristic can find solution in similar quality with 

IPM, so we choose “average CPU time” as the last performance evaluation criterion. Figure 

17 shows the average CPU times of both methods for all problem settings:   
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Figure 17. Average CPU Times (in seconds) 

Average CPU time results shown in Figure 17 suggest us to conclude that heuristic RO-

C spends considerably less amount of time to generate final lot sequences with similar 

makespan values. It is also important to note that average CPU time values of IPM on the 

entire 10-product problem are not shown in the figure, because all the averages are equal to 

the predetermined termination time of 3600 seconds. 
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Chapter 6 

 

CONCLUSIONS 

 

 

This chapter presents a summary of the research conducted in this thesis. Several 

concluding remarks are also presented based on the heuristic method and results analysis.  

This research provided heuristic approaches for the lot streaming problem in multi-

product flow shop environments. We considered the multi-product lot streaming (MPLS) 

problem with equal and consistent sublots in multi-machine flow shops (MMFS) with 

objective of minimizing the makespan.  

Firstly, we provided detailed background information and literature review on various 

kinds of lot streaming problems with equal and consistent sublots. Then we developed two 

heuristic procedures for equal and consistent sublot sized MPLS problems respectively 

(heuristic RO and heuristic RO-C). We then presented comparative results of experimental 

studies for both heuristics. It is shown that solution qualities of both heuristics that we 

developed are better than or equal to those obtained by the heuristic and exact methods 

from the literature. There are several justifications for the superiority of the heuristics that 

we proposed. Heuristic RO uses several properties of the problem to obtain a better 

solution. Firstly, ordering and tie breaking rules for sorting bottleneck dominant and 

reversely bottleneck dominant lots are selected according to making bottleneck machine 

available as soon as possible. Moreover, backward pass utilizes the fact that makespan 

values of the problems with ordinary processing time matrix and reverse processing time 

matrix are equivalent. Thus, finding a sequence for the problem with reverse processing 
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time matrix and reversing that sequence will give a good sequence for the original problem. 

Furthermore, the final sequences generated by ordinary and backward passes are improved 

with specially structured tabu search algorithm to obtain local optimum. The results 

indicate that in most cases this local optimum coincides with the global optimum. Lastly, in 

sequence construction step (steps 5.D.1, 5.D.2 and 5.D.3), remaining lots are sequenced 

according to series of criteria, which leads to better sequences than using a single criterion. 

Utilization of the interior lot concept led us to generate better neighborhoods at each 

iteration of tabu search method. The proof of the claim, which supports the use of interior 

lot concept in both of the heuristics allowed us to give more importance on interior lots in 

heuristic RO as well as in the tabu search algorithm. Heuristic RO and tabu search 

algorithm restricted the insertion of an interior lot into first position by giving priority to 

bottleneck and reversely bottleneck dominant lots while selecting the first (and the last) 

member of the lot sequence and immediately disregarding and keeping the lot in the tabu 

list if the first member of the output of the best neighborhood generating function is an 

interior lot. 

Finally, comparative results of experimental studies suggest that heuristic RO and 

heuristic RO-C find solutions that are better than or equal to those obtained by the revised 

NEH heuristic IP model formulation. In most of the cases, both heuristics manage to 

outperform their competitors on several performance evaluation criteria which are 

percentage deviation from the best solution found, performance profile analysis and 

average CPU time. 
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