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Abstract

This study aims to understand a result called the Modularity Theorem:
All rational elliptic curves arise from modular forms

Taniyama first suggested in the 1950’s that a statement along these lines might
be true and a precise conjecture was formulated by Shimura. A paper of Weil
([W67]) provides strong theoretical evidence for the conjecture. The theorem was
proved for a large class of elliptic curves by Wiles ([W95]) with a key ingredient
supplied by joint work with Taylor ([TW95]), completing the proof of Fermat’s
Last Theorem after 350 years. The Modularity Theorem was proved completely
by Breuil, Conrad, Taylor and Diamond ([BCDTO1]). This thesis is devoted to
understand the work of these mathematicians and there is no new claim in this
thesis.

In this study we will first introduce modular forms and study some properties of
these mathematical objects, such as some basic properties of them, their behaivour
as vector spaces and topological spaces. Then we introduce Hecke operators, these
are the operators between the vector spaces of modular forms. Using Hecke op-
erators we will construct a basis, consisting of newforms. Then we will introduce
Jacobians of modular curves and define Abelian variety which comes from weight-
2 eigenforms. In the last part, we introduce Galois representations and we will give
a brief skecth of the work done by Wiles.



Ozet

Bu calisma Modiilarite Teoremi adiyla bilinen bir sonucu anlamay1 amaglamaktadir:
Biitiin rasyonel eliptik egriler modiiler formlardan gelir.

Ik kez Taniyama tarafindan 1950’lerde bu ifadeye ¢ok yakin bir olgunun dogru
olabilecegi ifade edildi. Sonradan bu teorem, san1 olarak Shimura tarafindan ortaya
atildi. Weil’in bir makalesi ((W67]) bu saninin dogrulugu konusunda gii¢lii teorik
ipuclar1 vermisti. Teorem Wiles tarafindan biiyiik bir eliptik egri sinif1 i¢in Taylor
ile ortak bir calisma ile kanitland1 ([W95], [TW95]) ve Fermat’in son teoremi 350
yil aradan sonra ¢6ziildii. Modiilarite teoremi Breuil, Conrad, Taylor ve Diamond
tarafindan tamamiyla kanitlanmistir ((BCDTO1]). Bu tez bu matematikgilerin calig-
malarin1 anlamaya adanmigtir ve bu tezde yeni bir iddia yoktur.

Bu calismada oncelikle modiiler formlar tanitacagiz ve vektor uzayi, topolo-
jik uzay olarak sagladig1 birtakim temel 6zelliklerini inceleyecegiz. Sonra modiiler
formlarin olugturdugu vektor uzaylari arasinda olan Hecke operatorlerini tanitacagiz.
Hecke operatorlerini kullanarak, yeniformlardan olusan bir baz inga edecegiz. Sonra
modiiler egrilerin Jacobian’larini ve 2-agirlikli yeniformlardan gelen abelyen varye-
teleri tamimlayacagiz. Son kisimda ise, Galois temsillerini tanitacagiz ve Wiles’in

yapmis olduklarinin kisa bir 6zetini verecegiz.
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Chapter 1

Introduction

1.1 Modular Forms

Definition 1.1. The modular group, S L2(Z) is the set of 2-by-2 matrices with inte-

ger entries and with determinant 1:

b
SL,(Z) = {[a d}:a,b,c,dez,ad—bc: 1}
C

. Each

11 0 -1
The group SL,(Z) is generated by the two matrices {O 1] and L 0

element of the modular group can also be viewed as an automorphism of the Rie-

mann sphere C = C U {co} given by the fractional linear transformation

a b ar+b
= f
L d} (1) —d orteC

Note that, if ¢ = 0 then co maps to oo, if ¢ # 0 then %1 maps to co and co maps

to £.
C

For v € SL,(Z), the matrices y and —y give the same transformation.

11 0 -1
Since SL;(Z) is generated by 0 1} and ll 0 l we have the group of these

transformations is generated by the maps

T T+ land Tt —-1/7



Let H denote the upper half plane; H = {r € C : Im(7) > 0}. It is easy to verify

the equality:

Im(y(r)) = 20 - fory € SLa@)
leT + d|

so that H is closed under the action of the modular group.

Definition 1.2. Let k be an integer. A meromorphic function f : H — C is called
weakly modular of weight k if

foy() = (ct+d)*f(r) foryeSLy(Z)and T € H

Lemma 1.3. Let f be a meromorphic function. f is weakly modular of weight k if

. 1 1 0 -1
f@+1) = f@) and f(=1/7) = P f(7) for 7 = [o 1] s L 0 }

Proof. O

Note that, letting ¥ = —/ in the definition 1.2 we see that f = (—1)*f, this
implies that the only weakly modular function of odd weight is the zero function.
Note also that, f(7) and f(y(7)) have the same zeros and poles since the factor
(ct + d) doesnot have any zero or pole.

Let f : H — C be a function. f is said to be holomorphic at oo if f(7) is
bounded as Im(7) — oo.

Definition 1.4. Let k be an integer. A function f : H — C is called a modular form
of weight k if,

1. f is holomorphic on H,
2. f is weakly modular of weight k,

3. f is holomorphic at oo.

The set of modular forms of weight k is denoted by M (SL»(Z))

Mi(SLy(Z)) forms a vector space over C. If f is a modular form of weight
k and g is a modular form of weight / then the product fg is a modular form of
weight k + [. Hence the direct sum EB ez Mk(SL2(Z)) forms a graded ring, and it
is denoted by M(SL»(Z)).

Examples:

1. The zero function is a modular form of every weight and a constant function

is a modular of weight zero. These are trivial examples of modular forms.



2. We also have a concrete nontrivial example of modular forms which are
called Eisenstein series. Let k > 2 be an even integer, for 7 € H define the

Eisenstein series of weight k,

, 1
Gi(1) = —
(;d) (et + d)f
where he sum is taken over all (c,d) € Z2 \ (0,0), this is what the primed
sum means. This sum is absolutely convergent and converges uniformly on

compact subsets of H. For any y € SL,(2), if we compute;

1

k
(c'(&By + @)

Gy@) = (o ar

, 1
=(t+d" Y oy
Z (e.d") (ca+d'c)r+ (c’b + dd’))k

(Here )As (¢, d’) runs through Z>\{(0, 0)} do does ((c’a + d’c)t + (c’b + dd")).
So the right side of the equality is (c7 + d)Gy (1), hence Gy, is weakly modular
of weight k. Finally, it is easy to see that Gy is bounded as Im(7) — o0. So

Gy is a modular form.

Definition 1.5. A cusp form of weight k is a modular form of weight k whose
Fourier expansion has leading coefficient ag = 0, i.e. f(7) = 2.2, an(e¥™7)". The
set of cusp forms is denoted by Si(SL2(Z)). A modular form is a cusp form when
limgm(r)—e0 f(7) = 0

Remark 1.6. The cusp forms Si(SL;(Z)) form a vector subspace of the modular
forms M (SL;(Z)) and the graded ring Si(SL2(2)) = Y kez Sk(SL2(2)) is an ideal
in My(SL»(2))

1.2 Congruence Subgroups

In the definition 1.2, it is stated that f is weakly modular if f(y(r)) = (cT + d)k f(1)
for all v € SL,(Z). If we replace SL,(Z) by a subgroup I, it would generalize the
notion of weak modularity and allow more examples of weakly modular functions.



Let N be a positive integer. The principal congruence subgroup of level N is;

a bl {1 ol }
= (mod N)
c dl o 1

Here, the matrix congruence is entrywise, i.e. a = 1,b=0,c=1andd =0 in
modulo N. In particular I'(1) = SL,(Z).
Consider the natural surjective homomorphism ¢ : SLy(Z) — SL(Z/NZ).

{[a bl
['(N) = € S, (Z) :
c d

I'(N) is exactly the kernel of this natural homomorphism, which means I'() is a

normal subgroup of SL;(Z) and it induces an isomorphism
SLy(Z)/T(N) — SLo(Z/NZ)

So, this implies that for every positive integer N, the subgroup I'(V) is a normal

subgroup of finite index in SL,(Z)
Definition 1.7. A subgroup I of SL,(Z) is a congruence subgroup is ['(N) c I for

some positive N € Z, in which case I is a congruence subgroup of level N.

By the remarks above every congruence subgroup of SLy(Z) has finite index.

Besides, the principal congruence subgroups, the most important subgroups are;

F(N)—a ab=**(dN)
0 e cd_O*mO

rvy =% Plesn * Pzt *| tnoam
N | P e P I [

These subgroups satisfy the relations;

b
p € SLy(Z) :

and

I'(N) cI'1(NV) c T'h(N) € SLo(Z)

Consider the map I'{(N) — Z/NZ defined by

a b L
+— b mod(N), which is a
c d

surjection with kernel I'(N). It shows that ['(N) < I'|(N) and

I'[(N)/T(N) = Z/NZ with [[{(N):T(N)]=N

Similarly the map, T'gy(N) — (Z/NZ)* defined by

a b .
} — d mod(N) is a
c d

10



surjection with kernel I'1(N), so that I'{(N) < I'g(N) and,
T1(N)/To(N) = (Z/NZ)*  with [T1(N) : T(N)] = ¢(N)

where ¢ is the Euler totient function.

Now, before continuing further we will introduce a notatin. For any matrix

b
y = ¢ 4 € SL,(Z) define the factor of automorphy j(y,7) € C for any 7 € H to
C

be
jy, ) =ct+d

for any v € SL,(Z) and for any integer k define the weight-k operator [y]; on
functions fH — C by

(FIYl@) = j(y, ) *f(y(r))  forany r e H

Now, we can say that a meromorphic function f on H is weakly modular of weight
kif
flylk=f  forallyel

The next lemma can be proven by easy calculations. It gives the basic proper-

ties of the factor of automorphy and weight-k operator:
Lemma 1.8. Forally,y € SLy(Z) and T € H,

(a) joyy's7) = jlv. ¥ (D) jy',7)

(b) (yy)(®) =y (7))

(c) Iyy' Tk = [ylly' Ik

(d) Im(y(1)) = u?;,(:))lz

dy(t) _ 1
(€) “ar = fq.7

A T'-equivalence class of points in QU {oo} is called a cusp of I'. If I' = SL,(Z),
all rational numbers are I'-equivalent to co and so SL,(Z) has only one cusp, rep-
resented by co. A modular form with respect to a congruence subgroup I' should
be holomorphic at the cusps. Writing any s € Q U {oo} as s = @(c0), holomorphy
at s is naturally defined in terms of holomorphy at co via the [a]; operator. f is

holomorphic at s if f[a]; is holomorphic at co. This makes sense since f[a]y is

11



holomorphic on H and weakly modular with respect to @~ 'T'a which is again a

congruence subgroup of SL,(Z).

Definition 1.9. Let I' be a congruence subgroup of SL,(Z), and let k be a positive
integer. A function f : H — C is a modular form of weight k with respect to I if

(1) f is holomorphic
(2) f is weight-k invariant under I

(3) flalk is holomorphic at oo for all @ € SL»(Z)

If in addition,

(4) ap = 0 in the Fourier expansion of f[a]i for all @ € SL,(Z)

then f is a cusp form of weight-k with respect to I'. The modular forms of
weight k with respect to I' are denoted by M (T'), the cusp forms Si(I').

1.3 Complex Tori

This section gives a sketch of results about complex tori, also known as complex

elliptic curves. This material is covered in details in many books, such as [JS87].
A lattice in C is a set A = w|Z & wyrZ with {w;,w,} a basis of C over R.

We make the normalizing condition w;/w; € H. We have the following relation

between lattices.

Lemma 1.10. Let A = wZ & woZ and N = w|Z & w)Z be two lattices with
w/w; € Hand w}/w), € H. Then A = A if and only if

w’l_abwl
W) c d||ws

Proof. See [DS05] - Lemma 1.3.1 m]

b
J € SLy(Z)

a
for some [
c
A complex torus is the quotient of the complex plane by a lattice,
C/A={z+A:z€C}

Algebraically a complex torus is an Abelian group (under the complex addition).
Geometrically a complex torus is a parallelogram spanned by w; and w; (in the

definition of a lattice) with its sides identified in opposite pairs.

12



Proposition 1.11. Suppose ¢ : C/A — C/A’ is a holomorphic map between
complex tori. Then there exist complex numbers m,b with mA C A’ such that

p(z+ A) =mz+ b+ A'. The map is invertible if and only if mA = A'.

Proof. We will use algebraic topology methods to prove this proposition. Since
C is the universal covering space of C/A, ¢ lifts to a holomorphic map @ : C —
C. (See [HO1] for detailed information). So we have the following commutative

diagram:

c/A —7

C/N

Let A € A and consider the function f(z) = @(z + 1) — @(z). By the commutativity
of the diagram above we have p’(@(z + 1)) = p(p(z + 1)) = ¢(p(2)) = p’(P(z)) and
thus @(z + A) — §(z) € A’. Hence f) maps C to A’ and since f) is continuos, it must
be constant. Therefore differentiating both sides would give us; @'(z + 2) = ¢'(2)
so that ¢’ is a holomorphic, A-periodic function. This makes ¢’ bounded and by
Liouville’s Theorem (from complex analysis) it must be constant. Hence @(z) =
mb + z. Since @ lifts a map between the quotients, we have mA C A and ¢ has the

form given in the proposition. m|

Corollary 1.12. ¢ : C/A — C/A’ is a holomorphic map between complex tori,
p(z+ AN) =mz+ b+ AN withmA C N'. Then the following are equivalent:

(i) @ is a group homomorphism.
(ii) be N, sop(z+ AN) =mz+ N
(iii) ¢(0) =0

In particular, there exists a nonzero holomorphic group homomorphism between
complex tori C/A and C/A’ if and only if there exists a nonzero m € C such that
mA C N, and there exists a holomorphic group isomorphism between complex
tori C/A and C/N’ if and only if there exists some m € C such that mA = N’.

Now, given any example of an isomorphism between complex tori. Let A =
wW1Z & w, be a lattice and T = w;/wy. Let Ar = 7Z® Z. Since (1wy)A = A4, by
the above corollary the map ¢, := C/A — C/A; given by ¢(z+ A) = z/wrA; is an

13



isomorphism. Thus every complex torus is isomorphic to a complex torus whose
lattice is generated by a complex number 7 and 1. 7 is not unique but if 7 € H is
another such number, i.e. A = w|Z® w)Z and 7" = w//w) then by Lemma 1.10
on page 12, 7" = y(7) for some y € SL,(Z). Thus each complex torus determines a

complex number 7 € H up to action of SL,(Z).
Definition 1.13. A nonzero holomorphic homomorphism between complex tori is
called an isogeny.

Examples:

(i) Every holomorphic isomorphism is an isogeny.

(i) Multiply with integer maps. Let N be a positive integer and A be a lattice.
Consider the map [N] : C/A — C/A givenby z+ A +— Nz+A. AsNACA
this is an isogeny. Its kernel is the set of N-torsion points of C/A isomorphic
to Z/NZ X Z/NZ. This kernel is denoted by E[N]

(iii) Cyclic quotient maps: Let N be a positive integer and C be a cyclic subgroup
of E[N] isomorphic to Z/NZ. As a set, C is a superlattice of A. The cyclic
quotient map 7 : C/A — C/C is an isogeny with kernel C.

14



Chapter 2
Hecke Operators

In this chapter, we will introduce Hecke operators and we will find a basis for the
space Si(I'1(N)).

2.1 The Double Coset Operator

LetI'; and I'; be two congruence subgroups of SL,(Z). So, I'; and I'; are subgroups
of GLJ(Q) (this is the group of 2 X 2 matrices with rational entries and positive
determinant). For each a € GL;r (Q) the set,

Falz = {y1ay2 1 y1 €, y2 €I}

is a double coset in GLEr (Q). Such a double coset transforms modular forms with
respect to I'; into modular forms with respect to I';.

The group I'y acts on the double coset I'jal’; via left multiplication and par-
titions it into orbits. An orbit is G5 where B is a representative § = yjay; and
the orbit space I'y \ I'yal’; becomes a disjoint union (JI';3; for some choice of
representatives §;’s. The next two lemmas show that this union is in fact a finite

union.

Lemma 2.1. Let I be a congruence subgroup of SLy(Z) and « be an element of
GL;r (Q). Then o 'Ta N SLy(Z) is again a congruence subgroup of SLy(Z).

Proof. There exists N € Z* satisfying the conditions I'(N) c T', N € M»(Z) and

15



Nale My (Z). Set N = N3. Consider;

al(N)a™! c al + N*Ma(Z))a™!
=1+ N.NaMy(Z).Na~!
c I+ NMy(2)

and the observation that oI'(N)a~! consist only the matrices with determinant 1
combine to show that al'(N)a~' c T'(N). Hence, I'(N) c o 'T(N)e c a 'Ta,
intersecting with SL,(Z) completes the proof. m|

Lemma 2.2. Let I'y and I', be two congruence subgroups of SLy(Z). Let a be
an element of GL;(Q). Set I'; = o 'Tya NTa. Then left multiplication by «:
I, — I'yal; given by yo — @y, induces a natural bijection from the coset space
'3\ I'; to the orbit space I'; \ I'1al,.

Proof. The map I, — I'y \ I'1al’; taking vy, to I'jay, clearly surjects. It takes the
elements 5,7y} to the same orbit when I'iay; = T'iay), i.e. 2y, l'e oI a, and
of course y’zyg I e I'; as well. So the definition '3 = o~ 'Tja N T, gives a bijection
Ih\I; - I'y \ I'jal; from cosets '3y, to orbits I'jay,. And the last statement

follows easily. O

Remark 2.3. LetI'] and I'; be two congruence subgroups of SL,(Z). Then [I"; NI';]
is finite. In particular, since a~'T'ja N SLy(Z) is a congruence subgroup by Lemma
2.1 and the coset space '3\ I, is Lemma 2.2 is finite and hence so is the orbit space
'\ Tals.

Now, we will define the double coset operator.

Definition 2.4. For B € GLJ(Q) and k € Z, weight-k 8 operator on functions
f : H — Cis defined by, for 7 € H;

FUABLOG@) = (det) ! j(B, ) F(B(x))

Definition 2.5. For congruence subgroups I'1 and I'; of SL»(Z) and o € GLJ(Q),
the weight-k 'jal>-operator ( or the double coset operator) is defined from
M (1) (into Mi(I'2)) given by; for f € My (T),

flCala ], = Z S1Bjlk
J

16



Remark 2.6. The double coset operator is independent from the choice of orbit

representatives 3;’s, i.e. it is well-defined.

Remark 2.”7. The double coset operator takes modular forms with respect to I'; to
the modular forms with respect to I'; and it takes cusp forms with respect to G to

the cusp forms with respect to I';.

Remark 2.8. These are some special cases of double coset operators:

o If Iy C I'; then taking @ = I (the identity matrix) makes the double coset
operator f[I'jal2]x = f. It is the natural inclusion from from the subspace
Mk(l“l) into Mk(rz).

e If o 'Tja = T'; then fIl1alz]k = flalk. It is a natural isomorphism from
M (') to Mi(I2).

o If I'y C I, take @ = I (the identity matrix). If {y, ;} are the coset repre-
sentatives of the action I'y \ I, then f[I"1alz]; = X j fly2,jlk. In this case,
SfIal; ]k is the projection of My (I'1) onto its subspace M(I).

2.2 The < d > and T, Operators

ro) = {|* PN mod V)
0 _c cd_O*mO

r =1 8lesn@:|* 2l=1" | noam
YR a T e al T o 1|

Note thet since I'j (V) C I'o(N) we habe M;(I'o(N)) € Mp(I'{(N)). We will
introduce two operators on the space M(I'1(N)).

Recall the congruence subgroups:

b
p € SLy(Z) :

and

To define the first type of Hecke operator, take any a € I'p and take I'} = I, =
I'{(N). Consider the weight-k double coset operator [I'jal'1]¢. Since I'; < Iy, by
Remark 2.8 on page 17 this operator translates each function f € Mi(I'1(N)) to
(for every a € I'o(N));

FIN(N)al'1 (M) = fladk

17



So flalr € Mi(I'1(N)) and it means I'o(N) acts on M (I';(N)). Hence we have an
operator

(d) : MiT'1(N)) = MT'1(N))

b
given by (d)f = flali for any @ = “a 5] where 6 = d (mod N). This first type
c

Hecke operator is called the diamond operator.

The second kind of Hecke operaor is also a weight-k double coset operator

[['1al»]x where again I'j = I'; = I'1(N), but now @ =

} with p is a prime
p
integer. This operator is denoted by T',. So, we have

T, : MiT'1(N)) = Mi(T'1(N))

given by

1 0
T,f = f[rl(N)[ T1(N) ]k
0 p

Lemma 2.9. These two kind of Hecke operators commute.

Proof. Note that by the definition of a double coset we have;

10 1 =
I'(N) LiN)=JyeMxZ):y = (modN), dety=p
0 p 0 p
1 0 . -1
Let a = 0 and y € I'o(N). By an easy computation, we get yay = =
4

*

4
Suppose I' (N)aI'1 (N) = [J; '1(N)B; for some coset representatives 3;’s. Then

} (mod N)

by the above description of I'{(N)

0
I'1(N), we have Fl(N)[
p

0
(V) =
p

1 1
0 0
T (N)yay 'Ti(N) = yT1(N)al 1 (N)y™ = U; T1(N)yBy", so that

Uniagy = Jriavms;
J J

b
s € T'y(N) such that

This equality is true for all y € I'o(N). If we choose y = “
c

18



0 =d (mod N), we get;

(DT = Y. FIBvI = Y flyBilk = (Tpld)(f)
J J

Moreover, we have:

Theorem 2.10. Let d and e be elements of (Z/NZ)" and let p and q be prime.
Then,

(i) {d)}e) = (eXd) = (de)
(i) T,T, = T,T,

Proof. See [DS05], Proposition 5.2.4. O

2.2.1 (n)and T, Operator

Now, we will extend the definitions of (d) and T, operators to {n) and T, for all
nezt.

For n € Z* with (n, N) = 1, {(n) is determined by n (mod N). For n € Z* with
(n,N) > 1, we define (n) = 0-the zero operator on My(I';(N)). So that the mapping
n — (n) is completely multiplicative.

For defining the operator T}, we will use an inductive definition. Set T = 1-the
identity operator on M (I'1(V)). We have already defined T,. For prime powers,
define inductively

Ty =TpT 1 - pk_l(p>Tpr-z

for all » > 2. Now, let n € Z* be any integer, write n = [] pf" and define;

T, = 1_[ Ty

So that by Theorem 2.10 on page 19 for all n,m € Z* with the property that (n, m) =
1 we have T,,T,, = T,,T,.

2.3 Petersson Inner Product

In this section to make the space of cusp forms Si(I'{(N)) an inner product space,

we will define an inner product called the Petersson Inner Product. It will be de-

19



fined as an integral which may not be convergent on the larger space M(I'{(N)),

so the inner product is restricted to the cusp forms.

The hyperbolic measure on the upper half plane is defined by du(t) = d’y‘fy for
all 7 € H. This is invariant under the action of the automorphism group SL,(Z),
which means du(y(t)) = durt for all v € SL,(Z). Since Q U {oo} is a countable set
it has measure zero and so du suffices for integrating over the extended upper half
plane H* = HU Q U {co}.

The fundamental domain of H* under the action of SL,(Z) is the set

D" ={reH:Re(r) < 1/2, |1 = 1} U {co}

. This means, for every point 7/ € H there exists an element y € SL,(Z) such
that y(tau) maps into the connected domain 9*. Putting some certain baoundary
conditions on P* the mapping is unique. Every point of Q U {co} maps to co under
the action of SL,(Z). (See [M76], Chapter 1 for details)

Lemma 2.11. For any continuos bounded function ¢ : H — C and any « € SL,(Z),
the integral fz)* @(a(1))du(t) converges.

Proof. Say f is bounded by M. Then we have;

f p(a(r))du(r)| < f lp(a(T)| du(t)
D+ D
<M dxfy
oy
12 oo g
<M f —;)dx
-1/2J12 Y

Sf d—§<oo
12y

Let I' ¢ SL,(Z) be a congruence subgroup and let {@;} be some representa-

O

tions of the coset space {+/}I'/SL,(Z), which means the disjoint union SL;(Z) =
U£lTa;. If the function ¢ is I'-invariant then the sum };; fz)* e(aj(7))du(r) is
independent of the choice of the coset representatives «;’s. Since du is SLo(Z)-
invariant the sum is Ve (D) ©(1T)du(t). For some reasons we denote (up to some

boundary identification) this union as X(I') (the modular curve of T, see [DS05],
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Chapter 2 for details). So may make the definition

f @()dp(t) = f <P(T)dM(T)=Z f e(aj(1)du(T)
X(T) Uaj(0) = Jor

In particular, taking ¢ = 1, the volume of X(I') is given by Vr = fX(F) du(t) and

the volume and index of a congruence subgroup are related by

Vr = [SLa(Z) : (=1} VsL,2)

Now, to construct inner product; let f, g € Si(I') and consider (for 7 € H) the

continuos function

(1) = f(D)g@IAm((1))*
Moreover;
Lemma 2.12. ¢ is I'-invariant.

Proof. Lety €T be any. Then

e(y(0) = fy(T)gly(@)Im(y())*
= (FIY)0@) 0 D G0 o) Am() iy, DI
= (fIYl0@ &yl @ Am(T)F

= @(1)(since f and g are weight-k invariant under I')

O

Definition 2.13. Let ' ¢ SL,(Z) be a congruence subgroup. The Petersson Inner
Product;
Gor s S x S — C,

is given by

1 -
(f.8hr = f F@g@Am(r))dpu(r)
Vr Jxa)

Remark 2.14. Petersson Inner Product is linear in the first coordinate, conjegate
linear in the sesond coordinate, Hermitian-symmetric and positive definite. The
normalizing factor 1/Vr ensures that if [ C I" then (, )p» = {, )r on Si(I")
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2.4 Adjoints of Hecke Operators

In this section we will find the adjoints of Hecke operators. Recall that if V is an
inner product space and 7 is a linear operator on V, then the adjoint T* is the linear
operator on V defined by the condition that for all v,w € V; (Tv,w) = (v, T*w).
An operator T is called normal if T commutes with its adjoint 7.

The next proposition will help us computing the adjoints of the Hecke opera-

tors.

Proposition 2.15. Let ' C SLy(Z) be a congruence subgroup. Let a € GL;(Q) be

any element. Set @' = det aa~ . Then;

(i) If & 'Ta c SLy(Z) then for all f € Sp(T') and g € Si(a™'Ta),
(flalk, 8q-tre = (f. 8l Tkr
(ii) Forall f,g € S;(I),
(flCaTlk, g) = (f, glla’T];
In particular, if a™'Ta = T then [@]} = [@']; and in any case [[al']; = [[a'T];.

Proof. See [DS05], Proposition 5.5.2. O

Theorem 2.16. In the inner product space SiI'1{(N), the Hecke operator {p) and
T, for p ¥ N have adjoints;

Py = and T, =(p)'T,

Thus the Hecke operators (n) and T, for n relatively prime to N are normal.

Proof. Let f,g € Si(I'1(N)) be any. Note that I'j(N) < I'o(N), so by Proposition
2.15 (i),

(p)* = [“]Z for any @ € I'g(V) such that @ = [; *l (mod N)
p

=l = (p)"
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For the second formula using Proposition 2.15-(ii) we get;

*

0 p 0
FI(N)l = [Fl(N)[ }H(N)l
p ' 0 1

1
T, =|TT(N
)4 [1( )|:0 .

Let m and n be two integers such that mp —nN = 1, then by an easy calculation

-1
0 1 1 0
we get P = " pn . Therefore;

0 1 N mp 0 plIN m
————— ~————
el[(N) €lo(N)

rnl? Yry =t |t lnan|? "

V0 1 N T M o ol VYN m

Now, suppose I'1(N)

0
g ) ['(N) = U;T1(NV)B; is the decomposition of the

double coset describing T',, then we have

p 0 p
I'(N I'(N)=| |T1(N)B;
1001 PN IRTED ijmﬁJN
as the decomposition for T'p,.
Hence, we get T, = (p)'T, since m = p~! (mod N). ]

From the Spectral Theorem of linear algebra (see [K89], Chapter 9 for details),
given commuting family of normal operators on a finite dimensional inner product
space, the space has an orthogonal basis of simultaneous eigenvectors for the oper-
ators. Since each vector is a modular form we say eigenform instead. So, we have

the result:

Theorem 2.17. The space S;(I'1(N)) has an orthogonal basis of simultaneous
eigenforms for the Hecke operators {(n),T, : (n,N) = 1}.

2.5 Oldforms and Newforms

If M | N, then we know that Si(I'1 (M)) C Sp(I'1(N)) since '} (N) C I'{(M). This is
one way to move between levels. Another way to embed S;(I'1 (M)) into Si(I'1(N))
is by composing with the multiple-by-d map, where d is any factor of N/M. For

d 0
any such d, let ay = [0 1] so that, (flagly)(t) = d 1 f(d7) for f : H — C. The
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injective linear map [a4]; takes Sp(I'1(M)) to Sp(I'1(N)) and lifts the level M to the
level N.

Definition 2.18. For each divisor d of N, let iy be the map;
iq : SKT1(Nd™)) X ST 1(Nd ™)) = SKT1(N))

given by
(f,8) = [+ glaalk

The subspace of oldforms at level N is

S ™ = 3 iy ((Sinavp ™))
PIN
p prime

and the subspace of newforms at level V is the orthogonal complement with re-

spect to the Petersson inner product
1d
SUTIV)™ = (SuTi (V)

Proposition 2.19. The subspace Sp(T'1(N))* and Si(T'1(N))™" are stable under
the Hecke operators T,, and {(n) for alln € Z".

Proof. See [DS05], Proposition 5.6.2. O

Corollary 2.20. The spaces Sp(T'y(N))*™ and Si(T'y(N))"" have orthogonal bases
of eigenforms for the Hecke operators away from the level, {T,,{n) : (n,N) = 1}.

2.6 Eigenforms

By Corollary 2.20 on page 24 the spaces Si(I'; (N))°¢ and Sp(I'1(N))™" have or-
thogonal bases of eigenforms for the Hecke operators {T,,{n) : (n,N) = 1}. In
this section we show that if f € Si(I'{(N))"" is such an eigenform then in fact f
is an eigenform for all 7, and {(n). Note that if (n, N) > 1 then (n) = 0 hence f is

an eigenform for all {(n), so we only need to check T,.

Definition 2.21. A nonzero modular form f € M;(I'1(N)) that is an eigenform for
the Hecke operators T, and (n) for all n € Z* is a Hecke eigenform or simply an
eigenform. The eigenform f(7) = 3% a,(f)(e*™™)" is normalized when a,(f) =

new

1. A newform is a normalized eigenform in Si(I';(V))
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Now, we will show that Sy(I'1 (N))"" has an orthogonal basis of newforms.

Suppose f € ST (N)™" and f # 0. Then f ¢ Sp(I'1(N))*¢ and a,(f) # 0,
so we may assume that f is normalized to a;(f) = 1. For any m € Z* define
gn = Tu(f) — an()H(f) € Sk(T1(N))™Y. Then g, is an eigenform for the Hecke
operators T, and (n) for (n, N) = 1. Indeed, for (n), we have (n)(g,,) = (m)(T,(f))—
M) am(F)(S)) = Tnn)(f)=am(HE(F)) = Tin(dn(f))—am(f)(dn(f)) = dn(T(f)—
am(f)(f)) = dn(gm) and for T, we have Ty(gm) = Tn(Tn(f)) = Tnlam(f)(f)) =
Tl Ta(F)) = am(HTalf) = Tonlan()f) = am(Fan(f)f = an(f)gm- The first Fourier
coefficient of gy, is ai(gm) = a1(Tw(f)) — ar(am(f)f) = an(f) — ai(fHam(f) = 0.
Thus g, € S(T1(N))°' and hence g,, € Sp(T'1(N))* N Sp(T1(N))™™ = {0}, so that
T, (f) = an(f)f. We have the following theorem:

Theorem 2.22. Let f € Si(T'1(N))"" be a nonzero eigenform for the Hecke oper-
ators T, and {n) for all n with (n,N) = 1. Then;

(i) f is a Hecke eigenform, i.e. an eigenform for T, and (n) for alln € Z*. A

suitable scalar multiple of f is a newform.

(ii) If f satisfies the same conditions as f and has the same T,-eigenvalues then

f = cf for some constant c.

The set of all newforms in the space f € Sp(I'1(N))"" is an orthogonal basis of the

space.

Proof. We have already proven part (i). For part (i), let f and f be as above. Then
c f and df are newforms for some constants ¢ and d. Let d,, be T,,-eigenvalue of f
and f. Then;

an(cfHcf = Tu(cfef = cduf

and

ap(df)df = Tu(df)df = ddu(f)
Thus a,(f) = d?” and a,(f) = %" and we are done. |
The following theorem gives a basis for the space Si(I'1(N)).
Theorem 2.23. The set
Bi(N) = {f(nt) = f is a newform of level M and nM|N}

is a basis for Sp(I'1(N)).
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Proof. See [DS05], Theorem 5.8.3.
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Chapter 3
Jacobians and Abelian Varieties

In this chapter we define Jacobians and Abelian varieties that come form a weight-2

eigenform.

3.1 Introduction

We begin with some preliminaries. Note that modular curves are compact Riemann
surfaces. We, now introduce some basic information about compact Riemann sur-
faces.

Let X be a compact Riemann surface of genus g. It is a sphere with g handles.
The holomorphic differentials on X will be denoted by Q}llol(X). It basicly is a
g-dimensional vector space over C. Let Ay, ..., A, be the longitudinal loops and
By,..., B, be the latitudinal loops. The group of integer sums of integration over
loops is the free abelian group generated by integration over the loops A; and B;

and this group is called the first homology group of X denoted by H; (X, Z), which

HI(X,Z):Zf ea...eazfeazf ea...@zf ~ 7%
A Aq By B

4

is;

The homology group is the subgroup of the dual space Qllwl X" = Hom(c(Q}I101 (X),C)

@Rf @...@Rf
B B

and the dual space is;

Qfml(X)A:RfA ea...eaRfA
1

hence Hy(X, Z) is a lattice in Qlllol(X)A.

8 8
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Definition 3.1. The Jacobian of X is defined as
Jac(X) = Q) ()" [H1(X,Z)

Since the homology is a 2g dimensional lattice in Qllml(X)’\, the Jacobianis a g
dimensional complex torus C8/A,

Let C(X) denote the field of meromorphic functions on X. The degree-0 divisor
group of X is

DiVO(X) = {Z nyx : ny € Z,n, = 0 for almost all x, and Z ny = O}
xeX xeX

The subgroup of principal divisors is
Divi(X) = {6 € Div’(X) : 6 = div(f) for some f € C(X)}
where the divisor of a meromorphic function f € C(X) is defined as

div(f) = ) vi(f)x

xeX

The degree-0 Picard group of X is
Pic’(X) = Div’(X)/Div’(X)
If X has genus g > 0 and x¢ € X then X embeds into its Picard group
X - PicO(X), given by x — [x — xg]

Indeed, suppose x, x’ € X maps to the same equivalence class then we have x—x’ =
div(f) for some f € C(X). Considering f as a holomorphic function f : X — ¢
we see that f has degree 1. Since g > 0 by Riemann-Hurwitz formula (see [H83]
for details) it is impossible. Hence the map is injective.

We also have a map from degree-0 divisors to the Jacobian
’ Simees S ||
Div’(X) — Jac(X), given by NeX Ny f
X x X0

Abel’s Theorem states that this map induces an isomorpism between the Picard

group and the Jacobian
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Theorem 3.2. Abel’s Theorem The above map induces an isomorphism Pic®(X) —
Jac(X) given by [ Y nyx] = X ny fxi

Abel’s Theorem states that principal divisors maps to trivial integration on
Qtllol(X) modulo integration over loops. If X has genus g > 0 then its embed-
ding into its Picard group followed by the isomorphism of Abel’s Theorem shows

that the map
X
X — Jac(X), X f
x0

emdeds the Riemann surface in its Jacobian. Abel’s Theorem also implies the fact

that
Qp (X" = {Z ”yf : Z”y = O}
Y Yoy

3.2 Modular Jacobians and Hecke Operators

The Hecke operators give rise to holomorphic maps between modular curves which
are compact Riemann surfaces. They lead to maps between Jacobians of modular
curves and Picard groups.

Let I'; and I'; be two congruence subgroups of SL»(Z) and o € GL(Q). The
double coset operator [['jal»], induces a map between divisor groups of modular
curves

[["1al’], : Div(X;) — Div(X))

which is the Z-linear extension of the map I'; 7 — >;I'18;(7), where §; are orbit
representatives of I'jal; under the action of I'y. This map comes from the compo-

sition of the maps in the following diagram:

X; X
T ‘/ b8!
X, X

where the top row is the isomorphism given by I'37 — F’3a/(7'). [["1al2], descends
to map of Picard groups;

[[1al2]; = (11)p 0 ap(m)’ : Pic’(Xy) — Pic(X))
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given by

][ e

We need the following result to define the action of the double coset operator

on the Jacobians;

Proposition 3.3. Let I" be a congruence sungroup of SLy(Z). Then the holomor-
phic differentials Q}ml(X(l")) and the weight-2 cusp forms S»(I') are isomorphic as

vector spaces over C,
w: 8 [) = QXT),  f = (@)
where w; pulls back to f(t)dr € Q! (H)

ho
Proof. (See: [DS05], Theorem 3.3.1) m|

By the proposition above we can identify Qflol(X (IN) and S(I'). So we can also
identify Qllml(X(F))A, S@)". Let H{(X(I'), Z) denote the corresponding subgroup
of S(I')". Then we can identify the Jacobian of X(I') in terms of the dual space of

weight-2 cusp forms.

Definition 3.4. Let I" be a congruence subgroup of SL,(Z). The Jacobian of the
modular curve X(I') is

Jac(X()) = So(D)/H (X(T), Z)

Now, let X and Y be the modular curves whose congruence subgroups are I'y
and I'y. Let & € GL](Q) be such that al'a™! c T'y and consider the corresponding
holomorphic map 4 : X — Y, given by I'x7 — I'ya(7).

Denote the isomorphism between Q! (X) (respectively Q! (Y)) and S>(I'x)
(respectively S»(I'y)) by wx (respectively wy). Then we have the following com-

mutative diagram:

SQ(Fy) —>[a]2 SZ(FX)
Qlllol(Y) - 'Q}llol (X)

To see this, it is enough to check that f([a]>)(T)dT = f(a(1))d(a(7)). But it is
clear that it holds.
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The induced map on the dual space is

he : SoTx)" = SaTy)" ¢ polaly

Suppose, alxya ' \Ty = U j alya™! [yy,j]> then the following diagram is com-

mutative;
2illyjl
S)(Tx) —— Sy(T'y)
1 tr;, 1
Q0 (X) Q0 (X)

Letting trj, also denote the top map the induced map on the dual space is

tr2 STy = So(Ty)”, Yo Z[VYJ]Z
J

Now, h. and and tr2 descends to Jacobians.
Recall that the double coset operator [I'jal»], : S(I'y) — SI») given by
fllal’z] = Zj f1B;]2. Its dual map denoted as the same is

[[1al2ls - Sa(T) = S ¢ po[lalzl];

which can be realized as (7). ocwtr,’r\z. Thus the double coset operator on Jacobians

is
[C1al2]s = (11)y 0 @y o (m2)” : Jac(Xa) — Jac(Xy),  [W]+ [y o [Tiel2ls]

Let J1(N) denote the Jacobian of the modular curve X{(~). The following
proposition which is a special case of the above discussion describes the action of
the Hecke operator on J{(N)

Proposition 3.5. The Hecke operators T = T, and T = (d) act by composition on
the Jacobian of X (N),

T : Ji(N) = Ji(N), el = [poT]

for ¢ € SH(T1(N)™.
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Thus the Hecke operators acts as endomorphisms on the homology H;(X;(N), Z)
which is a finitely generated Abealian group. Hence the characteristic polynomial
f(x) of T}, has integer coefficients and it is monic. T, satisfies its characteristic
polynomial and so f(T),) = 0 on . Since T, is C-linear f(7,) = 0 on So(I'{(N)"
and so f(T,) = 0 on S(I'1(N)). Therefore the minimal polynomial of 7}, on
S>(T'1(N)) divides f(x) and the eigenvalues of T, satisfies f(x) which makes them

algebraic integers. Hence we have proved the following theorem:

Theorem 3.6. Let [ € S»(I'1(N)) be a normalized eigenform. Then the eigenvalues

ay(f) are algebraic integers.

Definition 3.7. The Hecke algebra over Z is the algebra of endomorphisms of
S»(T'1(N)) generated over Z by the Hecke operators,

Tz = Z[{Ty,(n) : n € Z*}]

The Hecke algebra over C is defined similarly.
Being a ring of endomorphisms of finitely generated free Z-module H; (X (N), Z),

Ty is finitely generated as well. Let f(7) = }° | a,(f)q" be a normalized eigen-
form. Define the homomorphism

/lf 1Ty — C, Tf = /lf(T)f

The image of Ay is a finitely generated Z-module. Actually, the image of Ay is
Zla,(f) : n € Z*]. This ring is a finite extension of Q and the extension degree is
the rank Tz /7 .

Definition 3.8. Let f € S»(I'1(N)) be a normalized eigenform and suppose f(7) =
2 ax()q". The field Ky = Q({a,(f)}) is called the number field of f.

Any embedding o : Ky < C conjugates f by acting on its coeflicients

(o8]

@ =) alf)q"

n=1

So, we may ask the question whether f“ is an eigenform or not. The following

theorem clarifies this result.

Theorem 3.9. Let f be a weight-2 normalized eigenform for the Hecke operators

then f7 is also a newform.
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Proof. (See: [DS05], Theorem 6.5.4) m|

Corollary 3.10. The space S>(I'1(N)) has a basis of forms with rational integer

coefficients.

Proof. Let f be a a newform at level M with M | N. Let K = Ky and {a1, ..., a4}
be a basis of Ok as a Z-module. Let {o1,...,0, be the embedding of K into C.

Consider the matrix

! @74
A=
;! a7
and let
A
Sl

Set g = Af, so that
d

gi= Z ;7 f7

j=1
Since A is invertible, span({gy, - . ., g4}) = span({f’"', ..., f74}). Let gi(7) = >, a,(g)q"
with a,(g;) € Z. For any automorphism o~ : C — C as o, runs through the embed-

dings of Ky into C so does o jo- (composing left to right), and so

That is, each a,(g;) is fixed by all automorphisms of C, showing that each a,(g;)
lies in ZNQ = Z. Repeating this argument for each newform f whose level divides

N gives the result.

3.3 Abelian Varieties

Let f € S>(I'1(My)) be a newform at some level My. Recall the map Ay : Tc,
Tf = A¢f. This induces a Tz-module isomorphism Tz/1 ¢ =~ Z[{a,(f)}] and note
that Z[{a,(f)}] has rank [K; : Q]. Also, we know that Tz acts on J{(My).
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Definition 3.11. The Abelian variety associated to f is defined as the quotient
Ap=J1(My)/ L pJ(My)

By definition, Tz acts on Ay and so Z[{a,(f)}] acts on Ay as well. We have the

following commutative diagram:

BMp) — 1(My)

]

Af ——— Ay

where a,(f) acts on Ay as T),. Let ¢ € Ay and o : Ky — C be an embedding.
Then, by Theorem 3.9 on page 32;

(ap(f)()o)(fo—) = QD(OTp)(fO—) = Qo(ap(fg)fo—) = ap(f)g()o(fo—)

If a,(f) € Z then it acts on Ay as multiplication.

Define the following equivalence relation on newforms:
f~ f e f=f for some automorphism o : C — C

Let f denote the equivalence class of f. Again by Theorem 3.9 on page 32

each f7 € [f]is a newform at level M, so that the subspace

Vi = span([f1) € So(T'1(My))

has dimension [K; : Q]. Restricting the elements of H;(X{(My), Z) to functions on
V; gives the subgroup of the dual V7,

Ay = Hi(Xi(My), 2)ly,

and so we have a well defined homomorphism J;(My) — VJ’) /Ay, given by [p] —
()DIVf + Af for (RS Sz(rl(Mf))/\

Proposition 3.12. Let f € S,(I'1(My)) be a newform with some number field K.

Then restricting to V¢ induces an isomorphism

Ar > V[ Ny given by [@) + T pJ1(My) - ¢ly, + Ay forg € ST (M)
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Proof. (See: [DS05], Proposition 6.6.4) m|

Recall the definition;

Definition 3.13. An isogeny is a holomorphic homomorphism between complex

tori that surjects and has finite kernel.

The next theorem gives us a decomposition of J{(N),

Theorem 3.14. J{(N) is isogeneous to a direct sum of Abelian varieties associated

to equivalence classes of newforms;
I = @A}

where the direct sum is taken over a set of representatives f € Sy(I'1(N)) at levels
My | N and each my is the number of divisors of N/Mj.

Proof. (See: [DS05] Theorem 6.6.6) a

Remark 3.15. We have the following commutative diagram;

Tp
Ji(N) J1(N)

“f,n ap(f)

@ fn Ay @ fn Ay

where p is a prime not dividing N and the vertical maps are isogenies. To see that

this diagram commutes; let ¢ € J1(N). Then

ap(f) o ¥ a(@)(f7 (1) = ap(Nne(f7 (n7))) = ne(Tp(f7 (n7))

and
(Prn o Tp)@)(f7 (1) = ¥ yulp(T,f7 (1)) = np((T), f7)(n7))

Computing the Fourier coefficients we see that these two are the same. Thus

the diagram commutes.
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Chapter 4

Galois Representations

In this chapter we construct Galois representations attached to elliptic curves and
modular forms. Then we will give an overview of the method of Wiles’s proof of

modularity theorem.

4.1 Galois Number Fields

Recall that a number field is a field F c Q-the algebraic closure of Q, such that the
degree of the extension F over Q; [F : Q] is finite. We will only take the extensions
which are Galois over Q. Each number field has its ring of algebraic integers OF.
In this section we will illustrate some results form algebraic number theory in the
Galois case without proof and we will give some spesific examples. (For detailed
information about the topic see: [L96] or [LOO])

Let F is a Galois number field and p € Z be a prime. There are positive integers
e, f and g such that we could describe the ideal pOr as a product of maximal ideals
of Op;

POF = (P1...Pg)°

where

Or/pi =F, foralli=1,2,...,g

and

efg=1F:Q]

The ramification degree e says how many times each maximal ideal p of Of

that lies over p repeats as a factor of pOp. There are only finitely many p such that
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e > 1, those are the primes that ramify in F. The residue degree f, is the dimension
of the residue field f, = Or/p (a finite field) as a vector space over F, = Z/pZ for
any p over p. The decomposition index g, is the number of distinct p over p. The
condition efg = [F : Q] implies that the net measure of ramification degree, and
the decomposition index associated to each rational prime p is the field extension

degree or equivalently efg = [Gal(F/Q)].
Example: A (family of) simple Galois number fields are the cyclotomic fields.

Let N be a positive integer. Let F = Q(uy) where uy is a primitive N-th root of
unity. We may take uy = e?*/N. Then we have [F : Q] = ®(N) where @ is the
Euler totient function and the Galois group of the extension F over Q is a group

isomorphic to (Z/NZ)*. The isomorphism is given by;
Gal(F/Q) — (Z/NZ)", (un = py) — a( modN)
The cyclotomic integers are;
Or = Z[un] = {ap + ayuy + ... + an— 11N s ag, ... an_ € Z}
In this case each rational prime not dividing N is unramified in F,
pPOF =Pi...Pgs (wherep { N)

and its residue degree f is the order of p modN in (Z/NZ)*. Note that the primes
dividing N ramify in Q(uy).

Example: For a spesific example let d be a cubefree integer, let d'/? denote the
real cube root of d, and let F = Q(d'/3, u3).

In this case, [F : Q] = 6 and Gal(F/Q) is isomorphic to Sym(3)- the symmetric
group on three letters. The Galois group is generated by

[ d'3 s pzd3 ) ( d\3 s g'/3 ]
o . , T 2
M3 > U3 M3 > [

and the isomorphism is given by

Gal(F/Q) — Sym(3), o (123), 7+ (23)
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The rational primes not dividing 3d are unramified in F, and we have:

P1...Ps if p = 1(mod 3) and d is a cube modulo p,
pOF =< pip2 if p = 1(mod 3) and d is not a cube modulo p,

pip2p;  if p = 1(mod 2)

Now, we continue to the general case. Let F be a Galois number field and let
p be a rational prime. For each maximal ideal p of Of lying over p be a rational
prime. For each maximal ideal p of OF lying over p, the decomposition group of

p is the subgroup of the Galois group that fixes p as a set;
Dy = {0 € Gal(F/Q) : p” = p}

The decomposition group has order ef, so its index in Gal(F/Q) is indeed the

decomposition index g. By its definition it acts on the residue field f, = Ofr/p,

x+p) =x" +p, where x € Op, o0 €D,

The inertia group of p is the kernel of this action,
Ip={0€Dy:x” =x(mod p) for all x € OF}

The inertia group has order e, so it is trivial for all p lying over an unramified p.
The Frobenius map o, : x — x” in characteristic p is an automorphism which
is called the Frobenius automorphim. 1f we view F, = Z/pZ as a subfield of

fp =OFr/p = ]pr then there is an injection
Dp/Tp — Gal(f/Fp) = (o))

Since both groups have order f, the injection is an isomorphism and the quotient
Dy /I p has a generator that maps to o,. Any representative of this generator in Dp
is called a Frobenius element of Gal(F/Q) and denoted by Frob,,. That is, Froby, is
any element of a particular coset -7, in the subgroup Dj of Gal(F/Q). Its action
on F, restricted to OF, descends to the residue field f, = Op/p, where it is the

action of o ,. If p is unramified the inertia group 7 is trivial and Frob,, is unique.

Definition 4.1. Let F/Q be a Galois extension. Let p be a rational prime and let p

be a maximal ideal of OF lying over p. A Frobenius element of Gal(F/Q) is any
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element Froby, satisfying the condition

xF% = xP (mod p), for all p € Op

Thus Froby, acts on the residue field £}, as the Frobenius automorphism o).

When the extension F/Q is Galois, the Galois group acts transitively on the
maximal ideals lying over p, i.e. given any two such ideals p and p’ there is an

automorphism o € Gal(F/Q) such that
P =p
The associated decomposition and inertia groups satisfy
Dpe = O'_IDPO' and Tpo = o-‘lfp(r
and the relation between corresponding Frobenius element is
Frobyr = 0'_1Fr0bp0'

If p is unramified then this means that the conjugatate of a Frobenius is a Frobenius
of the conjugate. And note that this relation shows that if the Galois group is
abelian then Froby, for any p lying over p can be denoted by Frob,,.

We have the following theorem to be used later which is called Tchebotarov
Density Theorem, weak version:

Theorem 4.2. Let F be a Galois number fied. Then every element of Gal(F/Q)
takes the form Froby, for infinitely many maximal ideals p of OF.

4.2 The (-adic integers and the {-adic numbers

In this section we introduce and give some basic facts about the ¢-adic integers and
the {-adic numbers where ¢ is prime positive integer, without proofs. (For detailed
information see: [K96])

For the rest of this chapter; let £ denote a prime number. Consider the affine
algebraic curve over Q:

C:xy=1

The points of C are identified with the abelian group Q* via (x, y) ~ x, this implies

C has an Abelian group structure. For each n € Z* the points of order ¢ form a
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subgroup C[{"]. Since this is identified with the cyclic group Z/{"Z, there is an
isomorphism
Cl{"l - Z/t"Z givenby uy, +— a

So there is an isomorphism
Aut(C[€"]) = (Z/"Z)"  given by (e = i) — m
This isomorphism gives us the following isomorphism
Gal(Q(ue)/Q) — (Z/€"Z)"  given by (e > () > m

If we take the union of all number fields Q(us) we get:
Q) = ) Q)
n=1

This is a subfield of Q which has infinite degree over Q. Set Go,e = AutQ(ue).
Every element o € Ggy restricts to o, € Gal(Q(ue)/Q) for each integer n.
The restriction form a sequence (01,072, ...,0y,...) such that 041 lgum) = On
for all n. Conversely, if (o1,07%,...) is such a compatible sequence, defining
o € Aut(Q(ue~)) by o(x) = op(x) if x € Q(uem). By compability this defini-
tion is well-defined. Thus Gg can be viewed as a group of compatible sequences,
where the group operation is componentwise composition. Each sequence acts
componentwise on the group of compatible sequences of £-power roots of unity.
The ¢-adic Tate module of C,

Tar(C) = {(us' j3, 15, ) ™ = i for all n)

where the group operation is componentwise multiplication. Ta,(C) is isomorphic

to the abelian group of sequences
{(ai,a2,a3,...) : a, € Z/€"Z and a,4+1 = a, (mod £") for all n}

where the group operation is componentwise addition and Gg is isomorphic to

the abelian group of sequences

{(my,ma,m3,...) :m, € (Z/€"Z)" and m,,; = m, (mod £") for all n}
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where the group operation is componentwise multiplication.

Definition 4.3. Let £ be a prime. An ¢-adic integer is a sequence @ = (a;,az,as, . ..)
with a,, € Z/{"Z and a1 = a, (mod £"Z) for each n € Z*. The ring of ¢-adic in-
tegers, where the operations are componentwise addition and multiplication. It is

denoted as Z;.

With this definition we see that each entry a, in an ¢-adic integer determines
the preceding entries down to a;, while the entry a,.; to its right is one of its £ lifts
from Z/("Z to Z/¢"+'Z. This makes the £-adic integer a special case of an algebraic
construct called the inverse limit. In this case the inverse limit of the rings Z/{"Z
forn e Z*,

Z¢ = l<ln{Z/ "7}

The ring Z; is an integral domain. The natural map

77 a (a+Z,a+0Z,a+07Z,..)

is a ring injection, so we may view Z as a subring of Z,. This maps induces a

natural isomorphism
Z|CZ — Z¢|tZ¢, given by (a + Zp v a + {Zy)

so we may identify Z/€Z and Z;/€Z¢. As the inverse limit of a system of finite
groups, Zy is profinite.

The multiplicative group of units of Z; is
Z; ={(a1,az,a3,...) € Z¢ : ay € (Z/C"Z)" for all n}

for given such a compatible sequence, the sequence of inverses modulo ¢ is again
compatible. Every ¢-adic integer @ with a; # 0 in Z/{"Z is invertible.
The ideal {Z; is the unique maximal ideal of Z,, and Z; = Z¢ \ {Z¢. The ideal
structure of Z; is
Z(DfZgD€2Z[D...35”%[3...
4.3 Galois Representations
The automorphism group of Q form the absolute Galois group of Q;

Go = Aut(Q)
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This section defines £-adic Galois representations as homomorphisms from Gg into
{-adic matrix groups.

As described in the previous section we may see Gg as an inverse limit;

Gq = lim{Gal(F/Q))
F
Since these Galois groups are all finite, Gq is a profinite group.
For each o € Gg and each Galois number field F, define U,(F) = o.ker(Gg —
Gal(F/Q)). The topology on Gg which has the basis

{Us(F) : 0 € Gg, F is a Galois number field}

is called the Krull topology, so that every U(F) is an open normal subgroup of
Gg and it is a fact that every open normal subgroup of Gq takes the form U(F) for
some Galois number field F and as the inverse limit of finite groups, the topological
group Gq is compact.

Complex conjugation is an element of Gg. For a family of elements, let p € Z
be a prime and let p C Z be any maximal ideal over p. The decomposition group
of pis

Dp ={c €Gg:p’ =p}

Thus each o € D, acts on Z/p as (x +p)? = x7 + p so that this can be viewed
as an action of IF‘,,. If we set Gy, as the absolute Galois group Aut(IF‘p) of F,. The
reduction map Dp — Gy, is surjective. An absolute Frobenius element over p is
any preimage Froby, € D, of the Frobenius automorphism o, € Gg,. Thus Frob,

is defined only up to the kernel of the reduction map, the inertia group of p;
Iy ={o € Dp:x7 = x (mod p) for allx € Z}

For each Galois number field F' the restriction map Go — Gal(F/Q) takes an
absolute Frobenius element to a corresponding Frobenius element for F,

Froby|, = Frobpnr

All maximal ideals of Z over p are conjugate to p and the definition of Froby,

shows that analously before

Frobyr = o~ 'Frobyo, o € Gg

42



Theorem 4.4. For each maximal ideal p of Z lying over any but finite set of rational
primes p, chose an absolute Frobenius element Froby. The set of such elements

form a dense subset of Gq.

Proof. Let U = Uy(F) be any basis element of the Krull topology on Gg. It
suffices to show that there exists Froby, € U. By the remarks above o|r € Gal(F/Q)
takes the form Froby, for some maximal ideal pr € OF. Lifting pr to a maximal
ideal p of Z, we get pNF = pr. Thus Frobyp|, = Froby, = o|r. Hence Frobp.a"1 €
ker(Gg — Gal(F/Q)) and this implies that Frob, € U(F). m|

Definition 4.5. Let d be a positive integer. A d-dimensional €-adic Galois repre-

sentation is a continuous homomorphism
p: FQ - GLd(L)

where L is a finite extension field of Q,. If p” : Gg — GL4(L) is another such
representation and there is a matrix m € GL4(L) such that p’(0) = m™p(c-)m for

all o € Gq then p and p’ are equivalent. This equivalence is denoted as p ~ p’.

Given a Galois representation p we want to know the values p(o) for o € Gg.
Especially at absolute Frobenius elements Frobp. Frob, is defined up to the inertia
group 1, and so p(Frobp) is well-defined if and only if 7, C kerp. Let p and
p’ be two maximal ideals lying over the same prime p. Then we have seen that
Iy = T pT for some 7 € Gg. Since kerp < Ggq, the condition 7, C kerp
depends only on the underlying prime p. Let p and p’ be two representations such
that p ~ p’. Then kerp = kerp’ hence the condition 7, C ker makes sense for
an equivalence class of representations. Now p(Frobp) depends on the choice of
p. Since every conjugate of p(Froby) has the same characteristic polynomial as
p(Froby) and Frobys = o"lFrobpcr, the characteristic polynomial depends only on
p.

Definition 4.6. Let p be a Galois representation and p be a prime. Then p is un-
ramified at p if T, C kerp for any maximal ideal p C Z lying over p.

Definition 4.7. Let d be a positive integer. A d-dimensional l-adic Galois repre-
sentation is a d-dimensional topological vector space V over L, where L is a finite

extension field of Qg, that is also a Gg-module such that the action

VXxGg -V, W, o) > v
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is continuos. If V' is such an another representation and there is a continuos G-

module isomorphism of L-vector spaces V — V’ then V and V' are equivalent.

Proposition 4.8. Let p : Go — GL4(L) be a Galois representation. Then p is

similar to a Galois representation p’ : Gg — GL4(Op)

Proof. Set V = LY and A = Oi. Then we have A as a lattice of V, hence a
finitely generated Z,-module, hence compact. Since Gq is also compact, we have
the image A’ of A X Gg under the map V X Gg — V is also compact. Thus the
image lies in 7" A for some r € Z". The image is finitely generated, it contains A
so its rank is at least d. It is taken to itself by Gg. These remarks combine to show

that Oy -basis of A’ gives the desired p’. O

4.4 Galois Representations and Elliptic Curves

This section aims is to construct two dimensional Galois representations attached
to elliptic curves. We begin with some facts about elliptic curves.

Let k be a field of characteristic zero. Every field has an algebraic closure and
any two algebraic closures of a field are isomorphic.

A Weierstrass equation over K is any cubic equation of the form
E:yY =4 -gX —g5, @.8¢€k
We define the discriminant of this equation to be
A=g3-27gi €k

Definition 4.9. Let k be the algebraic closure of the field k. When a Weierstrass

equation £ has nonzero discriminant A it is called nonsingular and the set
e ={(x,y) € k satisfying E(x, y)} U {0}

is called an elliptic curve over K.

Now, let E be an elliptic curve over Q and let £ be a prime. Multiplication by ¢

between {-power torsion subgroups of E gives the maps

E[£] «— E[{?] «— E[£®] — ...
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The ¢-adic Tate module of E is

Ta,(E) = lim E[¢"]

n

Choose a basis (P,, Q,) of E[{"] for each n € Z* such that [{]P,41 = P, and
[£10,+1 = O,. Each basis gives an isomorphism E[/"] — (Z/f”Z)2 and since the
basis are compatible with the transition maps we can pass to the limit which gives
Tay(E) =~ Z?. Note that for each n, Q(E[£"]) is a Galois number field. Hence we
have a restriction map

Gg — Gal(Q(E[¢"])/Q)

and we also have an injection Gal(Q(E[£"]/Q) — Aut(E[{"]) Composing these
maps gives
Gq — Aut(E[¢"]) foreachn

For each n, consider the following commutative diagram;

S

Aut(E[£"]) Aut(E[£™1])

Go

This shows that Gg acts on the Tate module of E and so Ta/(E) is a Gg-module.
Each basis (P, O,,) determines an isomorphism Aut(E[{"]) — GLy(Z/¢"Z) and by

the choice of the basis the following diagram commutes for all #,

Aut(E[£"]) GL,(Z/"Z)
Aut(E[0"1]) GL,(Z/6"'7)

Thus we have Aut(Ta,(E)) ~ GL,(Z/{"Z). Combining this isomorphism with
the action of Gg on Ta,(E) we get a homomorphism pg, : Go — GLa(Z¢) C

GL2(Qo).
Let us see that this is a continuos homomorphism. It suffices to check that

pglt,(U (n)) is open for each n where U(n) = ker(GLy(Z;)) — GLo(Z/{"Z). Now

we have;
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o € pp(Un) & pro(o) € Un)
& (P, 07) = (Py, On)
© TloEpe) = 1d
& o € ker(Gg — Gal(Q(E[("]))/Q)
& o € UQE[L")

Hence, p;{,(U (n)) = U(Q(E[€"])) and so it is open for all n. pg, is the 2-

dimensional Galois representation attached to E.

Theorem 4.10. Let £ be a prime and E be an elliptic curve over Q with conductor
N. The Galois representation pg ¢ is unramified at every prime p 1 {N. For any
such p, let p C Z be any maximal ideal over p. Then the characteristic equation of
pE(Froby) is

X - ap(E)x+p=0

where ay(E) = p + 1 — |E(F))|.
Proof. (See [DS05], Theorem 9.4.1) m|

It is also true that pg ¢ is an irreducible representation but this will not be proven
here. Galois representations attached to isogenous elliptic curves E and E’ are
equivalent. To see this, ¢ : E — E’ be an isogeny. Then ¢ induces a map between
Tate modules and so we have a map V/(E) — V,(E’). Similarly, the dual isogeny
also gives a map V,/(E’) — V,(E) and the composition is multiplication by deg(¢)
which is an automorphism as V¢(E) and V,(E’) are vector spaces over Q; and Qg

has characteristic zero.

4.5 Galois Representations and Modular Forms

This section associates Galois representations to modular curves and then decom-
poses them into representations attached to modular forms.

Let N be a positive integer and £ be a prime. X|(/N) is a projective nonsingular
algebraic curve over Q. Let g be the genus of X;(N). The Jacobian of the complex
curve X () is

JIN) = Jac(X1(N)¢) = ST (N)"/Hi(X1(N)c, Z) ~ C¥/A®
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The Picard group of the modular curve is the abelian group of the divisor

classes on the points of X;(N);
Pic’(X1(N)) = Div’(X1(N))/Div’ (Xi(N))

Pic’(X1(NV)) can be identified with a subgroup of the complex Picard group
PicO(X 1(N)¢) which is isomorphic to the Jacobian by Abel’s Theorem (See:[FK80])

Thus there is an inclusion of £"*-torsion;
in : Pic® (X (N)["] = Pic® (X (N)o)[L"] = (Z/£"2)%8

We have a surjective reduction map PicO(X 1(N)) — Pico(f(l (N)). Restricting it to
{"*-torsion;
7, 2 Pic’ (X (N)[€"] — Pic’ (X (N)[£"]

Note that if a curve C over a field k has genus g and N is coprime to char(k)
then Pic’(C)[N] = (Z/NZ)*¢ and if C is a curve over Q has a good reduction at
prime p {1 N then the reduction map is injective on PicO(C)[N]. Hence i, and 7,
are actually isomorphism for p { £N.

The ¢-adic Tate module of X;(N) is ;

Ta(Pic’(X1(N))) = lim Pic®(X; (N)[£"]

n

Choosing a compatible family of basis of Pic’(X;(N))[£"], for all n, we have

Ta(Pic’(X(N))) = Z,*

G acts on DiVO(X 1(N)) as
(Z n,,(P))(r = Z n,(P7), foro e Gg
and this action descends to Pic®(X;(N)),
Pic’(X1(N)) x Gg — Pic’(X1(N))
The field extension Q(PicO(Xl (N)[€"D/Q is Galois for each n € Z*, so the

action restricts to PiCO(X 1(N)[€"]. For each n there is a commutative diagram;
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Ga

Aut(Pic’ (X1 (N)[£"]) Aut(Pic’(X; (N)[£™1])

Thus Gg acts on Tag(PiCO(X 1(N))) and gives us the representation
pxie - Gg — Aut(Ta(Pic’(X1(N))) = Glag(Ze) € Glag(Qp)

This is the 2g-dimensional Galois representation associated to X;(N)

Theorem 4.11. Let € be a prime and let N be a positive integer. The Galois repre-
sentation px,(ny.¢ is unramified at every prime p ¥ {N. For any such p, letp C Z be

any maximal ideal over p. Then px, ) ¢(Froby) satisfies the polynomial equation
x> - T,x+{p)p=0

Proof. Let p 1 €N and p lies over p. We have the following commutative diagram;

D, Aut(Pic’ (X, (N))[£"])

Gr Aut(Pic® (X1 (N))[£])

»
The map on the right side is the isomorphism induced by r,, from the beginning
of the section. As we seen before; 7, C kerpx, v),¢
Now for the second part, using the Euler-Schimura relation (see [DS05] Chap-
ter 8 for details), we have the restrictions to {"*-torsion and it gives the following

commutative diagram;

PicO (X1 (N))[("] i PicY (X (N)[£"]

Tt D)

Pic’ (X, (N))[£"] ——————= Pic’ (X1 (N))[£"]

We also have the following commutative diagram;
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Frobp+(p)pFroby'

Pic®(X; (N))[£"] Pic’ (X, (N)[¢"]

Tpat(P). 0

PicO(X, (N)[£"] Pic’ (X, (N))[£"]

Since the vertical arrows are isomorphisms, 7}, = Frobyp + (p)pFrob, ' on
Pic’(X;(N))[£"]. This holds for all n, so the equality extends to Tas(Pic® (X, (N))[£"])

and the result follows.

4.6 Galois Representations and Modularity

This last section states the Modularity Theorem in terms of Galois representations.

Definition 4.12. An irreducible Galois representation

p : Gg — GL2(Qp)

such that detp is modular if there exists a newform f € S>(I'o(My)) such that
K/, = Qg for some maximal ideal A of OKf lying over ¢ and such that ps, ~ p.

In particular, if E is an elliptic curve over Q and ¢ is prime then the Galois

representation pg ¢ is a candidate to be modular.

Theorem 4.13. Modularity Theorem Let E be an elliptic curve over Q. Then pg ¢

is modular for some ¢.

This is the version that was proved, for semistable curves in [W95] and [TW95]
and then for all curves in [BCDTO1].

Theorem 4.14. Modularity Theorem, strong version Let E be an elliptic curve
over Q with conductor N. Then for some newform f € Sy(I'o(N)) with number

field Ky = Q,
pre=pece foralll

Proposition 4.15. Let E be an elliptic curve over Q. Then if pg ¢ is modular for

some €, then pg ¢ is modular for all {.

Proof. Since pg is modular, there exists a newform f € S>(I'o(My)) such that
Kya = Qg for some maximal ideal A lying over £ and ps, ~ pg¢. Using the
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characteristic polynomials of py(Frobp) and pg ¢(Froby) we get; a,(f) = a,(E)
for almost all p. Now, since Ky = Q the Galois representation associated to f takes
the form pr, : Gg — GLEr (Q),(Qy) for all £. Thus, pg ¢ ~ pye for all £ and hence
PE.¢ 1s modular for all £. m]

Remark 4.16. Modulo ¢ representations are essential for the proof of the Modular-
ity Theorem. Let f € So(I'1(M)) be a newform and A C OKf be a maximal ideal
lying over £. We may assume that ps, : Gg — GL;(Q),(Ok;, 4), so that ps has a
good ¢ reduction

pra: Gg = GL3(Q)1(Ok,.1)/ A0k,

50



Bibliography

[A90] Tom M. Apostol, Modular Functions and Dirichlet Series in Number The-
ory, Springer, 1990

[BCDTO1] C. Breuil, B. Conrad, F. Diamond, R. Taylor - On The Modularity of
Elliptic Curves over Q: wild 3-adic exercises. Journal of American Mathemati-
cal Society 14(4):843-939, 2001

[CRO1] Brian David Conrad, Karl Rubin - Aritmetic Algebraic Geometry, Amer-
ican Mathematical Society, 2001

[DS05] Fred Diamond, Jerry Shurman - A First In Modular Forms, Springer, 2005.

[FK80] Hershel M. Farkas, Irwin Kra - Riemann Surfaces, Graduate Texts in
Mathematics 71, Springer-Verlag, 1980.

[Gou] Fernando Q. Gouvea - Deformations of Galois Representations, Arithmetic
Algebraic Geometry (IAS Park City Mathematics)

[HO1] Allen Hatcher - Algebraic Topology, 2001
[H83] Robin Hartshorne - Algebraic Geometry, Springer, 1983

[J96] Gerald J. Janusz -Algebraic Number Fields, American Mathematical Soci-
ety,1996

[JS87] Gareth A. Jones, David Singerman - Complex Functions, an Algebraic and

Geometric Viewpoint, Cambridge University Press, 1987
[K89] Erwin Kreyszig - Introductory Functional Analysis with Applications, 1989

[K93] Neal I. Koblitz - Introduction to Elliptic Curves and Modular Forms,
Springer, 1993

51



[K96] Neal Koblitz - p-adic Numbers, p-adic Analysis and Zeta Functions,
Springer, 1996

[LOO] Serge Lang - Algebraic Number Theory, Springer, 2000.
[M76] Toshitsune Miyake - Modular Forms, Springer, 1976

[M95] Rick Miranda - Algebraic Curves and Riemann Surfaces, American Math-
ematical Society, 1995.

[S96] Jean Pierre Serre - A Course In Arithmetic, 1996
[S09] Joseph H. Silverman - Arithmetic of Elliptic Curves, Springer, 2009

[TWOS5] Richard Taylor, Andrew Wiles - Ring Theoretic Properties of certain
Hecke Algebras. Ann. of Math. 141(3): 553-572, 1995

[W95] Andrew Wiles - Modular Elliptic Curves and Fermat’s Last Theorem. Ann.
of Math. 141(3): 443-551, 1995

[W67] Andr Weil - Uber die Bestimmung Dirichletscher Reihen durch Funktion-
algeichungen, Math Annalen, 168:149-156, 1967

52



