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ABSTRACT

Cloud storage systems are becoming cheaper and more available. With the in-

crease in popularity of the cloud storage systems both in industry and our personal

lives people have started to care about the security of their data on the clouds. In

this thesis, we develop and test a complete system for a server able to prove integrity

of the client’s data without her downloading the whole data, and still letting the

client interact with her data in a read/write manner. This system is called Dynamic

Provable Data Possession by Erway et al. .

We first show the FlexList: Flexible Length-Based Authenticated Skip List, a data

structure optimized for secure cloud storage systems, and its differences from previous

data structures. Then we demonstrate its utilization on the dynamic provable data

possession system and we call the new scheme FlexDPDP. We further optimize the

FlexDPDP scheme using parallelization techniques, and provide optimized algorithms

to reduce the time complexity of the protocol.

We provide an analysis on all of our proposals at the end of each chapter. We also

deployed the optimized FlexDPDP scheme on large-scale network test-bed Planet-

Lab, demonstrating that FlexDPDP performs comparably to the most efficient static

storage scheme (PDP), while providing dynamic data support. Finally, we demon-

strate the efficiency of our proposed optimizations on multi-client scenarios according

to real workloads based on real version control system traces.
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ÖZETÇE

Bulut depolama sistemleri gittikçe ucuzluyor ve yaygınlaşıyor. Bu sistemlere olan

ilgi arttıkça günlük yaşamlarımızda da, endüstride de insanlar verilerinin güvenliğini

daha çok önemsemeye başlıyorlar. Bu tezde biz, bir sunucunun, müşterinin verisinin

istediği kısımlarını yazma okuma şeklinde değiştirmesine izin verirken aynı zamanda

verinin tamamını indirmeden bütünlüğünü ispatlayabileceği, kullanılabilir tam bir

sistem öneriyoruz. Bu sisteme, Erway et al. ’ın ismini koyduğu dinamik ispatlanabilir

veri saklama deniliyor.

Önce bulut sistemleri için en verimli duruma getirilmiş FlexList veri yapısını

(Esnek Uzunluk-tabanlı doğrulanabilir atlamalı liste) ve eski veri yapılarından fark-

larını anlatıyoruz. Devamında bu veri yapısını dinamik ispatlanabilir veri saklama

sistemindeki kullanımını gösteriyor ve yeni oluşan plana (scheme) FlexDPDP diy-

oruz. FlexDPDP planını paralelleştirme yöntemleri kullanarak ve verimli algoritmalar

sağlayarak daha da iyi kullanılabilecek bir hale getiriyoruz.

Her bölümün sonunda o bölümde tavsiye ettiklerimizin verimlilik incelemesini

sunuyoruz. Ayrıca, iyileştirilmiş FlexDPDP planını geniş çaplı ağ deneme yatağı

olan PlanetLab’da çalışır hale getirdik ve FlexDPDP’nin dinamik veri özelliğini

sağlamasına rağmen, en verimli statik veri saklama sistemiyle (PDP) kıyaslanabilir

olduğunu gösteriyoruz. Son olarak da kurduğumuz planı gerçeğe yakın ortamlar ve

gerçek dosya sürümleme sistemlerinden alınmış iş yükleriyle test ederek geliştirilmiş

algoritmalarımızın verimliliğini gösteriyoruz.
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lab at Koç, without whom the days and nights I passed in office wouldn’t have been

as much fun or as pleasant. I also would like to thank Emrah Çem, and many others
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Chapter 1

INTRODUCTION

Data outsourcing has become quite popular in recent years both in industry

(e.g., Dropbox, box.net, Google Drive, Amazon S3, iCloud, Skydrive) and academia

[Ateniese et al., 2007, Ateniese et al., 2008, Cash et al., 2013, Dodis et al., 2009,

Erway et al., 2009, Juels and Kaliski., 2007, Shacham and Waters, 2008,

Stanton et al., 2010, Zhang and Blanton, 2013b, Yuan and Yu, 2013]. The

most important impediment in public adoption of cloud systems is

due to the lack of some security guarantees in data storage services

[Jensen et al., 2009, Furht and Escalante, 2010, Wooley, 2011]. In a cloud stor-

age system, there are two main parties, a server and a client where the client

transmits her files to the cloud storage server and the server stores the files on behalf

of the client. The client outsources her data to the third party data storage provider

(server), which is supposed to keep data intact and make it available to her. In this

work, we address the integrity of the client’s data stored on the cloud storage servers.

A trustworthy brand is not sufficient for the client, since hardware/software failures

or malicious third parties may also cause data loss or corruption [Cachin et al., 2009].

The client should be able to efficiently and securely check the integrity of her data

without downloading the entire data from the server [Ateniese et al., 2007].

One such model proposed by Ateniese et al. is Provable Data Possession (PDP)

[Ateniese et al., 2007] for provable data integrity. In this model, the client can

challenge the server on random blocks and verify the data integrity through a
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proof sent by the server. Solutions for the static cases (i.e., logging, archival,

static file sharing) such as Provable Data Possession [Ateniese et al., 2007] were

proposed [Dodis et al., 2009, Juels and Kaliski., 2007, Shacham and Waters, 2008,

Ateniese et al., 2007, Ateniese et al., 2009]. These proposals show poor performance

for blockwise update operations (insertion, removal, modification).

For many applications it is important to take into consideration the dy-

namic scenario, where the client keeps interacting with the outsourced data in a

read/write manner, while maintaining the data possession guarantees. Ateniese et

al. [Ateniese et al., 2008] proposed Scalable PDP, which overcomes this problem with

some limitations (only a pre-determined number of operations are possible within a

limited set of operations). Erway et al. [Erway et al., 2009] proposed a solution called

Dynamic Provable Data Possession (DPDP), which extends the PDP model and pro-

vides a dynamic storage scheme. Implementation of the DPDP scheme requires an

underlying authenticated data structure based on a skip list [Pugh, 1990b].

Authenticated skip lists were presented by Goodrich and Tamassia

[Goodrich and Tamassia, 2001], where skip lists and commutative hashing are

employed in a data structure for authenticated dictionaries. A skip list is a key-value

store whose leaves are sorted by keys. Each node stores a hash value calculated with

the use of its own fields and the hash values of its neighboring nodes. The hash value

of the root is the authentication information (meta data) that the client stores in

order to verify responses from the server.

To insert a new block into an authenticated skip list, one must decide on a key

value for insertion since the skip list is sorted according to the key values. This is very

useful if one, for example, inserts files into directories, since each file will have a unique

name within the directory, and searching by this key is enough. However, when one

considers blocks of a file to be inserted into a skip list, the blocks do not have unique

names; they have indices. Unfortunately, in a dynamic scenario, an insertion/deletion
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would necessitate incrementing/decrementing the keys of all the blocks till the end

of the file, resulting in degraded performance. DPDP [Erway et al., 2009] employs

Rank-based Authenticated Skip List (RBASL) to overcome this limitation. Instead

of providing key values in the process of insertion, the index value where the new

block should be inserted is given. These indices are imaginary and no node stores

any information about the indices. Thus, an insertion/deletion does not propagate

to other blocks.

Theoretically, an RBASL provides dynamic updates with O(log n) complexity,

assuming the updates are multiples of the fixed block size. Unfortunately, a variable

size update leads to the propagation of changes to other blocks, making RBASL

inefficient in practice. Therefore, one variable size update may affect O(n) other

blocks. We discuss the problem in detail in Chapter 3. We propose FlexList to

overcome the problem in DPDP. With our FlexList, we use the same idea but instead

of the indices of blocks, indices of bytes of data are used, enabling searching, inserting,

removing and modifying a specific block containing the byte at a specific index of

data. Since in practice a data alteration occurs starting from an index of the file,

not necessarily an index of a block of the file, our DPDP with FlexList (FlexDPDP)

performs much faster than the original DPDP with RBASL. Even though Erway et

al. presents the idea where the client makes updates on a range of bytes instead of

blocks (in Section 7.1 of [Erway et al., 2009]) by defining rank values of the bottom

level nodes to the size of its corresponding data and states that queries and proofs

proceed as before. We show that a naive implementation as mentioned in Section

7.1 of [Erway et al., 2009] leads to a security gap in the storage system. We show in

detail that our FlexDPDP scheme is provably secure.

Our optimizations result in a dynamic cloud storage system whose efficiency is

comparable to the best known static system PDP. Our system takes ∼15% more time

than an optimized version of PDP on the client side when implemented on a real
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network system. Our results confirm that FlexDPDP improves throughput 11 times

at the server side in comparison to existing PDP approach, at the cost of increasing

response time ∼35% at the client side.

1.1 Contributions

• (Chapter 3) Our implementation uses the optimal number of links and nodes;

we created optimized algorithms for basic operations (i.e., insertion, deletion).

These optimizations are applicable to all skip list types (skip list, authenticated

skip list, rank-based authenticated skip list, and FlexList).

• (Chapter 3) Our FlexList translates a variable-sized update to O(u) insertions,

removals, or modifications, where u is the size of the update divided by the

block size, while an RBASL requires O(n) block updates.

• (Chapter 3) We provide a novel algorithm to build a FlexList from scratch in

O(n) time instead of O(n log n) (time for n insertions). Our algorithm assumes

the original data is already sorted, which is the case when a FlexList is con-

structed on top of a file in secure cloud storage.

• (Chapter 4) We provide multi-prove and multi-verify capabilities in cases where

the client challenges the server for multiple blocks using authenticated skip

lists, rank-based authenticated skip lists and FlexLists. Our algorithms provide

an optimal proof, without any repeated items. The experimental results show

efficiency gains of 35% and 40% in terms of proof time and size, respectively.

• (Chapter 5) We optimize the first preprocessing phase of the FlexDPDP prov-

able cloud storage protocol by showing that the algorithm to build a FlexList in

O(n) time is well parallelizable even though FlexList is an authenticated data

structure that generates dependencies over the file blocks. We propose a paral-

lelization algorithm and our experimental results show a speed up of 6 and 7.7,
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with 8 and 12 cores respectively.

• (Chapter 5) We provide a multiple update algorithm for FlexDPDP. Our exper-

iments show 60% efficiency gain at the server side compared to updating blocks

independently, when the updates are on consecutive data blocks.

• (Chapter 5) We provide an algorithm to verify update operations for FlexD-

PDP. Our new algorithm is applicable to not only modify, insert, and remove

operations but also a mixed series of multiple update operations. The exper-

imental results show an efficiency gain of nearly 90% in terms of verification

time of consecutive updates.

• (Chapter 6) We deployed the FlexDPDP implementation on the network test-

bed PlanetLab and also tested its applicability on a real SVN deployment. The

results show that our improved scheme is practically usable in a real life scenarios

with only 35KB overhead (from the server to the client) per update of size 77KB

on average. Our results demonstrate that FlexDPDP performs comparable to

the most efficient static storage scheme (PDP), while providing dynamic data

support.

1.2 Overview

In this thesis we propose, present and test a complete dynamic provable data posses-

sion scheme where the server is able to prove integrity of the client’s data without

her downloading the whole data, and still letting the client interact with her data.

Details of the thesis are presented in respective chapters as described here:

Chapter 2 presents the literature review. We divide the literature into two parts.

In the first part we discuss the cloud storage related work, then we discuss the re-

lated work about the underlying data structure and provide comparison with the

alternatives.
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Chapter 3 presents the underlying data structure used in our protocol. We first

start with the definitions and tell why the FlexList is important. Then, we provide

definitions and fundamental functions of the data structure, such as insert, remove,

modify and build. At the end of the chapter, we provide analysis of the proposed

algorithms.

Chapter 4 presents the scheme we propose and shows the algorithms employed

in the scheme both for challenge-verify and verifiable update mechanisms. In this

chapter, we also provide analysis for the functions provided and we compare our

system with one of the most efficient static provable data possession scheme. Last,

we prove our scheme secure under the same assumptions with the previous work.

Chapter 5 presents further optimizations on the flexDPDP scheme by using paral-

lel techniques and providing more efficient algorithms. First, we show parallelization

of the build algorithm of the FlexList. Second, we show how to handle multiple up-

dates in one query. Third, we show the multiple verification mechanism (at the client

side), without which multiple update operation can not be performed (at the server

side).

Chapter 6 presents analysis on the proposed efficient algorithms and their imple-

mentation on the large-scale network test bed PlanetLab. In this chapter, we use real

work loads under realistic conditions.



Chapter 2

RELATED WORK

2.1 Cloud Storage Related Work

2.1.1 Static Cloud Storage

PDP was one of the first proposals for provable cloud storage [Ateniese et al., 2007].

PDP does not employ a data structure for the authentication of blocks, and is applica-

ble to only static storage. A later variant called Scalable PDP [Ateniese et al., 2008]

allows a limited number of updates. Wang et al. [Wang et al., 2009] proposed the

usage of Merkle tree [Merkle, 1987] which works perfectly for the static scenario,

but has balancing problems in a dynamic setting. For the dynamic case we would

need an authenticated balanced tree such as the data structure proposed by Zheng

and Xu [Zheng and Xu, 2011], called range-based 2-3 tree. Yet, there is no algo-

rithm that has been presented for rebalancing either a Merkle tree or a range-based

2-3 tree while efficient updating and maintaining authentication information. Nev-

ertheless, such algorithms have been studied in detail for the authenticated skip list

[Papamanthou and Tamassia, 2007]. Table 2.1 summarizes this comparison.

For improving data integrity on the cloud, some protocols such as

[Chockler et al., 2009, Hendricks et al., 2007, Cachin and Tessaro, 2006,

Liskov and Rodrigues, 2006, Goodson et al., 2004, Malkhi and Reiter, 1998] provide

Byzantium fault-tolerant storage services based on some server labor. There also exist

protocols using quorum techniques, which do not consider the server-client system but

works on local systems such as hard disk drives or local storage [Jayanti et al., 1998,
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Gafni and Lamport, 2003, Abraham et al., 2006, Chockler and Malkhi, 2002]. A

recent protocol using quorum techniques [Bessani et al., 2011] replicates the data on

several storage providers to improve integrity of data stored on the cloud, yet the

protocol only considers static data.

2.1.2 Dynamic Cloud Storage

For dynamic provable data possession (DPDP) in a cloud storage setting, Erway

et al. [Erway et al., 2009] were the first to introduce the new data structure rank-

based authenticated skip list (RBASL) which is a special type of the authenticated

skip list [Goodrich et al., 2001]. In the DPDP model, there is a client who wants

to outsource her file and a server that takes the responsibility for the storage of

the file. The client preprocesses the file and maintains meta data to verify the

proofs from the server. Then she sends the file to the server. When the client

needs to check whether her data is intact or not, she challenges some random

blocks. Upon receipt of the request, the server generates the proof for the chal-

lenges and sends it back. The client then verifies the data integrity of the file

using this proof. Some distributed versions of the idea have been studied as well

[Curtmola et al., 2008, Etemad and Küpçü, 2013]. There are other studies show-

ing that a client’s file is kept intact in the sense that client can retrieve (recover)

it fully whenever she wishes [Juels and Kaliski., 2007, Shacham and Waters, 2008,

Dodis et al., 2009, Cash et al., 2013, Bowers et al., 2009].

An RBASL, unlike an authenticated skip list, allows a search with indices of the

blocks. This gives the opportunity to efficiently check the data integrity using block

indices as proof and update query parameters in DPDP. To employ indices of the

blocks as search keys, Erway et al. proposed using authenticated ranks. Each node in

the RBASL has a rank, indicating the number of the leaf-level nodes that are reachable
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from that particular node. Leaf-level nodes having no after links have a rank of 1,

meaning they can be used to reach themselves only. Ranks in an RBASL handle

the problem with block numbers in PDP [Ateniese et al., 2007], and thus result in a

dynamic system.

Nevertheless, in a realistic scenario, the client may wish to change a part of a

block, not the whole block. This can be problematic to handle in an RBASL. To

partially modify a particular block in an RBASL, we not only modify a specified

block but also may have to change all following blocks. This means the number of

modifications is O(n) in the worst case scenario for DPDP as well.

Another dynamic provable data possession scheme was presented by Zhang et al.

[Zhang and Blanton, 2013a]. They employ a new data structure called a balanced

update tree, whose size grows with the number of the updates performed on the

data blocks. Due to this property, they require extra rebalancing operations. The

scheme uses message authentication codes (MAC) to protect the data integrity. Un-

fortunately, since the MAC values contain indices of data blocks, they need to be

recalculated with insertions or deletions. The data integrity checking can also be

costly, since the server needs to send all the challenged blocks with their MAC values,

because the MAC scheme is not homomorphic (see [Ateniese et al., 2009]). In our

scheme we send only tags and a block sum, which is approximately of a single block

size. At the client side, there is an overhead for keeping the update tree.

Our proposed data structure FlexList, based on an authenticated skip list, per-

forms dynamic operations (modify, insert, remove) for cloud data storage, having

efficient variable block size updates.
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Storage
(client)

Proof Complexity
(time and size)

Dynamic (in-
sert, remove,
modify)

Hash Map (whole file) O(1) O(n) -
Hash Map (block by block) O(n) O(1) -
PDP [Ateniese et al., 2007] O(1) O(1) -
Merkle Tree [Wang et al., 2009] O(1) O(log n) -
Balanced Tree (2-3 Tree)
[Zheng and Xu, 2011]

O(1) O(log n) + (balancing
issues)

RBASL [Erway et al., 2009] O(1) O(log n) + (fixed
block size)

FlexList O(1) O(log n) +

Table 2.1: Complexity and capability table of various data structures and ideas for
provable cloud storage. n: number of blocks

2.2 Skip Lists and Other Data Structures

Table 2.1 provides an overview of different data structures proposed for the secure

cloud storage setting. Among the structures that enable dynamic operations,

the advantage of skip list is that it keeps itself balanced probabilistically, with-

out the need for complex operations [Pugh, 1990b]. It offers search, modify,

insert, and remove operations with logarithmic complexity with high probability

[Pugh, 1990a]. Skip lists have been extensively studied [Anagnostopoulos et al., 2001,

Battista and Palazzi, 2007, Crosby and Wallach, 2011, Erway et al., 2009,

Goodrich et al., 2001, Maniatis and Baker, 2003, Polivy and Tamassia, 2002].

They are used as authenticated data structures in two-party proto-

cols [Papamanthou and Tamassia, 2007], in outsourced network storage

[Goodrich et al., 2001], with authenticated relational tables for database

management systems [Battista and Palazzi, 2007], in timestamping systems

[Blibech and Gabillon, 2005, Blibech and Gabillon, 2006], in outsourced data stor-

ages [Erway et al., 2009, Goodrich et al., 2008], and for authenticating queries for

distributed data of web services [Polivy and Tamassia, 2002].

In a skip list, not every edge or node is used during a search or update operation;
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therefore those unnecessary edges and nodes can be omitted. Similar optimizations

for authenticated skip lists were tested in [Goodrich et al., 2007]. Furthermore, as

observed in DPDP [Erway et al., 2009] for an RBASL, some corner nodes can be

eliminated to decrease the overall number of nodes. Our FlexList contains all these

optimizations, and many more, analyzed both formally and experimentally.

A binary tree-like data structure called rope is similar to our FlexList

[Boehm et al., 1995]. It was originally developed as alternative to the strings, bytes

can be used instead of the strings as in our scheme. Since a rope is tree-like struc-

ture, it requires rebalancing operations. Moreover, a rope needs further structure

optimizations to eliminate unnecessary nodes.



Chapter 3

FLEXLIST: FLEXIBLE LENGTH-BASED

AUTHENTICATED SKIP LIST

In this chapter, we provide the data structure FlexList to be used as the underlying

data structure in the later chapters. To the best of our knowledge, the data structure

we provide in this chapter is the first optimized implementation of its kind. It has no

unnecessary links and nodes (we clearly define necessary and unnecessary) and it can

be constructed from scratch in O(n). The implementation also covers Rank-based

skip list, the data structure proposed in [Erway et al., 2009]. We first start with the

primitive version of a skip list and show its evolution to our FlexList.

3.1 Definitions

Skip List is a probabilistic data structure presented as an alternative to bal-

anced trees [Pugh, 1990b]. It is easy to implement without complex balanc-

ing and restructuring operations such as those in AVL or Red-Black trees

[Anagnostopoulos et al., 2001, Foster, 1973]. A skip list keeps its nodes ordered by

their key values. We call a leaf-level node and all nodes directly above it at the same

index a tower.

Figure 3.1 demonstrates a search on a skip list. The search path for the node with

key 24 is highlighted. In a basic skip list, the nodes include key, level, and data (only

at leaf level nodes) information, and below and after links (e.g., v2.below = v3 and

v2.after = v4). To perform the search for 24, we start from the root (v1) and follow
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Figure 3.1: Regular skip list with search path of node with key 24 highlighted. Num-
bers on the left represent levels. Numbers inside nodes are key values. Dashed lines
indicate unnecessary links and nodes.

the link to v2, since v1’s after link leads it to a node which has a greater key value

than the key we are searching for (∞ > 24). Then, from v2 we follow link l1 to v4,

since the key value of v4 is smaller than (or equal to) the searched key. In general,

if the key of the node where after link leads is smaller or equal to the key of the

searched node, we follow that link, otherwise we follow the below link. Using the

same decision mechanism, we follow the highlighted links until the searched node is

found at the leaf level (if it does not exist, then the node with key immediately before

the searched node is returned).

Figure 3.2: Skip list of Figure 3.1 without unnecessary links and nodes.

We observe that some of the links are never used in the skip list, such as l2, since

any search operation with key greater or equal to 11 will definitely follow link l1, and
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a search for a smaller key would never advance through l2. Thus, we say links that are

not present on at least one search path, such as l2, are unnecessary. When we remove

unnecessary links, we observe that some nodes, which are left without after links

(e.g., v3), are also unnecessary since they do not provide any new dependencies in

the skip list. Although it does not change the asymptotic complexity, it is beneficial

not to include them for time and space efficiency. An optimized version of the skip

list from Figure 3.1 can be seen in Figure 3.2 with the same search path highlighted.

Formally:

• A link is necessary if and only if it is on at least one search path.

• A node is necessary if and only if it is at the leaf level or has a necessary

after link.

Assuming existence of a collision-resistant hash function family H, we randomly

pick a hash function h from H and let || denote concatenation. Throughout our study

we will use: hash(x1, x2, ..., xm) to mean H(x1||x2||...||xm).

An authenticated skip list is constructed with the use of a collision-resistant

hash function and keeps a hash value in each node. Nodes at level 0 keep links to

file blocks (may link to different structures e.g., files, directories, anything to be kept

intact) [Goodrich et al., 2001]. A hash value is calculated with the following inputs:

level and key of the node, and the hash values of the node after and the node below.

Through the inputs to the hash function, all nodes are dependent on their after and

below neighbors. Thus, the root node is dependent on every leaf node, and due to

the collision resistance of the hash function, knowing the hash value of the root is

sufficient for later integrity checking. Note that if there is no node below, data or a

function of data (which we will call tag in the following sections) is used instead of

the hash of the below neighbor. If there is no after neighbor, then a dummy value
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Figure 3.3: Skip list alterations depending on an update request.

(e.g., null) is used in the hash calculation.

A rank-based authenticated skip list (RBASL) is different from an authen-

ticated skip list by means of how it indexes data [Erway et al., 2009]. An RBASL has

rank information (used in hashing instead of the key value), meaning how many nodes

are reachable from that node. An RBASL is capable of performing all operations that

an authenticated skip list can in the cloud storage context.

3.2 FlexList

A FlexList supports variable-sized blocks whereas an RBASL is meant to be used

with fixed block size since a search (consequently insert, remove, modify) by index
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of data is not possible with the rank information of an RBASL. For example, Figure

3.3-A represents an outsourced file divided into blocks of fixed size.

In our example, the client wants to change “brown” in the file composed of the

text “The quick brown fox jumps over the lazy dog...” with “red” and the diff al-

gorithm returns [delete from index 11 to 15] and [insert “red” from index 11 to 13].

Apparently, a modification to the 3rd block will occur. With a rank-based skip list, to

continue functioning properly, a series of updates is required as shown in Figure 3.3-B

which asymptotically corresponds to O(n) alterations. Otherwise, the beginning and

the ending indices of each block will be complicated to compute, requiring O(n) time

to translate a diff algorithm output to block modifications at the server side. It also

leaves the client unable to verify that the index she challenged is the same as the

index of the proof by the server (this issue is explained in Section 4.2 with the veri-

fyMultiProof algorithm). Therefore, for instance a FlexList having 500000 leaf-level

nodes needs an expected 250000 update operations for a single variable-sized update.

Besides the modify operations and related hash calculations, this also corresponds

to 250000 new tag calculations either on the server side, where the private key (or-

der of the RSA group) is unknown (thus computation is very slow) or at the client

side, where the new tags should go through the network. Furthermore, a verification

process for the new blocks is also required (that means a huge proof, including half

of the data structure used, sent by the server and the verified by the client, where

she needs to compute an expected 375000 hash values). With our FlexList, only one

modification suffices as indicated in Figure 3.3-C.

Due to the lack of providing variable block sized operations with an RBASL,

we present FlexList which overcomes this problem and serves our purposes in the

cloud data storage setting. A FlexList stores, at each node, how many bytes can

be reached from that node, instead of how many blocks are reachable. The rank of

each leaf-level node is computed as the sum of the length of its data and the rank
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of the after node (0 if null). The length information of each data block is added

as a parameter to the hash calculation of that particular block. We discuss the

insecurity of an implementation that does not include the length information in the

hash function calculation in Section 4.6. Note that when the length of data at each

leaf is considered as a unit, the FlexList reduces to an RBASL (thus, ranks only count

the number of reachable blocks). Therefore all our optimizations are also applicable

to RBASL, which is indeed a special case of FlexList.

3.2.1 Preliminaries

Figure 3.4: A FlexList example with 2 sub skip lists indicated.

In this section, we introduce the helper methods required to traverse the skip list,

create missing nodes, delete unnecessary nodes, delete nodes, and decide on the level

to insert at, to be used in the essential algorithms (search, modify, insert, remove).

Note that all algorithms are designed to fill a stack tn where we store nodes which may

need a recalculation of hash values if authenticated, and rank values if using FlexList.

All algorithms that move the current node immediately push the new current node

to the stack tn as well. Further notations are shown in Table 3.1.

We first define a concept called sub skip list to make our FlexList algorithms
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Symbol Description
cn current node
pn previous node, indicates the last node that current node moved from
mn missing node, created when there is no node at the point where a node has to be

linked
nn new node
dn node to be deleted

after the after neighbor of a node
below the below neighbor of a node
r rank value of a node
i index of a byte

npi a boolean which is always true except in the inner loop of insert algorithm
tn stack (initially empty), filled with all visited nodes during search, modify, insert or

remove algorithms

Table 3.1: Symbol descriptions of skip list algorithms.

easier to understand. An example is illustrated in Figure 3.4. Let the search index be

250 and the current node start at the root (v1). The current node follows its below

link to v2 and enters a sub skip list (big dashed rectangle). Now, v2 is the root of

this sub skip list and the searched node is still at index 250. In order to reach the

searched node, the current node moves to v3, which is the root of another sub skip list

(small dashed rectangle). Now, the searched byte is at index 150 in this sub skip list.

Therefore the searched index is updated accordingly. The amount to be reduced from

the search index is equal to the difference between the rank values of v2 and v3, which

is equal to the rank of below of v2. Whenever the current node follows an after link,

the search index should be updated. To finish the search, the current node follows

the after link of v3 to reach the node containing index 150 in the sub skip list with

root v3.

Algorithm 3.2.1: nextPos Algorithm
Input: pn, cn, i, level, npi
Output: pn, cn, i, tn
tn = new empty Stack1

while cn can go below or after do2

if canGoBelow(cn, i) and cn.below.level ≥ level and npi then3

cn = cn.below4

else if canGoAfter(cn, i) and cn.after.level ≥ level then5

i = i - cn.below.r; cn = cn.after6

add cn to tn7
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nextPos (Algorithm 3.2.1): The nextPos method moves the current node cn repet-

itively until the desired position according to the method (search, insert, remove)

from which it is called. There are 4 cases for nextPos:

• insert - moves current node cn until the closest node to the insertion point.

• remove or search - moves current node cn until it finds the searched node’s

tower.

• loop in insert - moves cn until it finds the next insertion point for a new node.

• loop in remove - moves current node cn until it encounters the next node to

delete.

Algorithm 3.2.2: createMissingNode Algorithm
Input: pn, cn, i, level
Output: pn, cn, i, tn
tn = new empty Stack1

mn = new node is created using level //Note that rank value for missing2

node is given ∞
if canGoBelow(cn,i) then3

mn.below = cn.below; cn.below = mn4

else5

mn.below = cn.after; cn.after = mn6

i = i - cn.below.r //Since current node is going after, i value should7

be updated
pn = cn; cn = mn; then cn is added to tn8

createMissingNode (Algorithm 3.2.2) is used in both the insert and remove algo-

rithms. Since in a FlexList there are only necessary nodes, when a new node needs

to be connected, this algorithm creates any missing node to make the connection.

deleteUNode (Algorithm 3.2.3) is employed in the remove and insert algorithms

to delete an unnecessary node (this occurs when a node loses its after node) and

maintain the links. It takes the previous node and current node as inputs, where

the current node is unnecessary and meant to be deleted. The purpose is to preserve

connections between necessary nodes after the removal of the unnecessary one. This

involves deletion of the current node if it is not at the leaf level. It sets the previous
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node’s after or below to the current node’s below. As the last operation of deletion,

we remove the top node from the stack tn, as its rank and hash values no longer need

to be updated.

Algorithm 3.2.3: deleteUNode Algorithm
Input: pn, cn
Output: pn, cn, tn
tn = new empty Stack1

if cn.level == 0 then2

cn.after = NIL3

else4

if pn.below == cn then5

pn.below = cn.below6

else7

pn.after = cn.below8

tn.pop(); cn = pn9

Algorithm 3.2.4: deleteNode Algorithm
Input: pn, cn
Output: pn, cn

pn.after = cn.after1

deleteNode (Algorithm 3.2.4), employed in the remove algorithm, takes two con-

secutive nodes, the previous node and the current node. By setting after pointer

of the previous node to current node’s after, it detaches the current node from the

FlexList.

tossCoins: Probabilistically determines the level value for a new node tower. A coin

is tossed until it comes up heads. The output is the number of consecutive tails.

3.2.2 Methods of FlexList

FlexList is a particular way of organizing data for secure cloud storage systems. Some

basic functions must be available, such as search, modify, insert and remove. These

functions are employed in the verifiable updates. All algorithms are designed to fill

a stack for the possibly affected nodes. This stack is used to recalculate of rank and

hash values accordingly.

A search path, which is the basic idea of a proof path, is visible in the stack in
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the basic algorithms.

search (Algorithm 3.2.5) is the algorithm used to find a particular byte. It takes the

index i as the input, and outputs the node at index i with the stack tn filled with

the nodes on the search path. Any value between 0 and the file size in bytes is valid

to be searched. It is not possible for a valid index not to be found in a FlexList.

Algorithm 3.2.5: search Algorithm
Input: i
Output: cn, tn
tn = new empty Stack1

cn = root2

// cn moves until cn.after is a tower node of the searched node
call nextPos3

cn = cn.after then cn is added to tn4

// cn is moved below until the node at the leaf level, which has data
while cn.level 6= 0 do5

cn = cn.below then cn is added to tn6

In algorithm 3.2.5, the current node cn starts at the root. The nextPos method

moves cn to the position just before the top of the tower of the searched node. Then

cn is taken to the searched node’s tower and moved all the way down to the leaf level.

modify: By taking index i and new data, we make use of the search algorithm for the

node, which includes the byte at index i, and update its data. Then we recalculate

hash values along the search path. The input of this algorithm contains the index i

and new data. The outputs are the modified node and stack tn filled with nodes on

the search path.
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Algorithm 3.2.6: insert Algorithm
Input: i, data
Output: nn,tn
tn = new empty Stack1

pn = root; cn = root; level = tossCoins()2

call nextPos// cn moves until it finds a missing node or cn.after is3

where nn is to be inserted
// Check if there is a node where new node will be linked. if not,
create one.
if !CanGoBelow(cn, i) or cn.level 6= level then4

call createMissingNode;5

// Create new node and insert after the current node.
nn = new node is created using level6

nn.after = cn.after; cn.after = nn and nn is added to tn7

// Create insertion tower until the leaf level is reached.
while cn.below 6= null do8

if nn already has a non-empty after link then9

a new node is created to the below of nn; nn = nn.below and nn is added10

to tn
call nextPos // Current node moves until we reach an after link that11

passes through the tower. That is the insertion point for the
new node.
// Create next node of the insertion tower.
nn.after = cn.after; nn.level = cn.level12

// cn becomes unnecessary as it looses its after link, therefore
it is deleted
deteletUNode(pn, cn);13

// Done inserting, put data and return this last node.
nn.data = data14

// For a FlexList, call calculateHash and calculateRank on the nodes
in the tn to compute their (possibly) updated values.

Figure 3.5: Insert at index 450, level 4 (FlexList).

insert (Algorithm 3.2.6) is run to add a new node to the FlexList with a random
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level by adding new nodes along the insertion path. The inputs are the index i and

data. The algorithm generates a random level by tossing coins, then creates the new

node with given data and attaches it to index i, along with the necessary nodes until

the level. Note that this index should be the beginning index of an existing node,

since inserting a new block inside a block makes no sense.1 As output, the algorithm

returns the stack tn filled with nodes on the search path of the new block.

Figure 3.5 demonstrates the insertion of a new node at index 450 with level 4.

nextPos brings the current node to the closest node to the insertion point with level

greater than or equal to the insertion level (c1 in Figure 3.5). Lines 3-4 create any

missing node at the level, if there was no node to connect the new node to (e.g.,

m1 is created to connect n1 to). Within the while loop, during the first iteration, n1

is inserted to level 2 since nodes at levels 3 and 4 are unnecessary in the insertion

tower. Inserting n1 makes d1 unnecessary, since n1 stole its after link. Likewise, the

next iteration results in n2 being inserted at level 1 and d2 being removed. Note that

removal of d1 and d2 results in c3 getting connected to v1. The last iteration inserts

n3, and places data. Since this is a FlexList, hashes and ranks of all the nodes in the

stack will be recalculated (c1,m1, n1, c2, c3, n2, n3, v1, v2). Those are the only nodes

whose hash and rank values might have changed.

remove (Algorithm 3.2.7) is run to remove the node which starts with the byte

at index i. As input, it takes the index i. The algorithm detaches the node to

be removed and all other nodes above it while preserving connections between the

remaining nodes. As output, the algorithm returns the stack tn filled with the nodes

on the search path of the left neighbor of the node removed.

1In case of an addition inside a block we can do the following: search for the block including the
byte where the insertion will take place, add our data in between the first and second part of data
found to obtain new data and employ modify algorithm (if new data is long, we can divide it into
parts and send it as one modify and a series of inserts).
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Algorithm 3.2.7: remove Algorithm
Input: i
Output: dn,tn
tn = new empty Stack pn = root; cn = root1

call nextPos // Current node moves until after of the current node is2

the node at the top of deletion tower
dn = cn.after3

// Check if current node is necessary,if so it can steal after of the
node to delete, otherwise delete current node
if cn.level = dn.level then4

deleteNode(cn, dn); dn = dn.below; // unless at leaf level5

else6

deleteUNode(pn, cn);7

// Delete whole deletion tower until the leaf level is reached
while cn.below 6= null do8

call nextPos// Current node moves until it finds a missing node9

// Create the missing node unless at leaf level and steal the
after link of the node to delete
call createMissingNode; deleteNode(cn, dn)10

dn = dn.below // move dn to the next node in the deletion tower11

unless at leaf level
// For a FlexList, call calculateHash and calculateRank on the nodes
in the tn to compute their (possibly) updated values.

Figure 3.6: Remove block at index 450(FlexList).

Figure 3.6 demonstrates removal of the node having the byte with index 450. The

algorithm starts at the root c1, and the first nextPos call on line 2 returns d1. Lines

4-7 check if d1 is necessary. If d1 is necessary, d2 is deleted and we continue deleting

from d3. Otherwise, if d1 is unnecessary, then d1 is deleted, and we continue searching

from c1. In our example, d1 is unnecessary, so we continue from c1 to delete d2.

Within the while loop, the first call of nextPos brings the current node to c3. The
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goal is to delete d2, but this requires creating of a missing necessary node m1. Note

that, m1 is created at the same level as d2. Once m1 is created and d2 is deleted,

the while loop continues its next iteration starting from m1 to delete d3. This next

iteration creates m2 and deletes d3. The last iteration moves the current node to v2

and deletes d4 without creating any new nodes, since we are at the leaf level. The

output stack contains nodes (c1, c2, c3,m1,m2, v1, v2). Rank and hash values of those

nodes could have changed, those values will be recalculated.

3.2.3 Novel Build from Scratch Algorithm

Algorithm 3.2.8: buildFlexList Algorithm
Input: B, L, T
Output: root

// H will keep pointers to tower heads
H = new vector is created of size L0 + 11

// Loop will iterate for each block
for i =B.size− 1 to 0 do2

pn= null3

for j = 0 to Li+1 do4

// Enter only if at level 0 or Hj has an element
if Hj 6= null or j = 0 then5

nn = new node is created with level j //if j is 0, Bi,T i are6

included to the creation of nn
nn.below = pn; nn.after = Hj // Connect tower head at Hj as7

an after link
call calculateRank and calculateHash on nn8

pn = nn; Hj = null9

// Add a tower head to H at HLi

HLi
= pn10

root = HL0
//which is equal to pn11

root.level =∞; call calculateHash on root12

return root13

The usual way to build a skip list (or FlexList) is to perform n insertions (one for

each item). When original data is already sorted, one may insert them in increasing

or decreasing order. Such an approach will result in O(n log n) total time complexity.

But, when data is sorted as in the secure cloud storage scenario (where blocks of a

file are already sorted), a much more efficient algorithm can be developed. Observe

that a skip list contains 2n nodes in total, in expectation [Pugh, 1990b]. This is an
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O(n) value, and thus spending O(n log n) time for creating O(n) nodes is an overkill,

since creation of nodes takes a constant time only. We present our novel algorithm

for building a FlexList from scratch in just O(n) time. To the best of our knowledge,

such an efficient build algorithm did not exist before.

buildFlexList (Algorithm 3.2.8) is an algorithm that generates a FlexList over a

set of sorted data in time complexity O(n). It has the small space complexity of

O(l) where l is number of levels in the FlexList (l = O(log n) with high probability).

As the inputs, the algorithm takes blocks B on which the FlexList will be generated,

corresponding (randomly generated) levels L and tags T . The algorithm assumes data

is already sorted. In cloud storage, the blocks of a file are already sorted according to

their block indices, and thus our optimized algorithm perfectly fits our target scenario.

The algorithm attaches one link for each tower from right to left. For each leaf node

generated, its tower follows in a bottom up manner. As output, the algorithm returns

the root node.

Figure 3.7: buildFlexList example.

Figure 3.7 demonstrates the building process of a FlexList where the insertion

levels of blocks are 4, 0, 1, 3, 0, 2, 0, 1, 4, in order. Labels vi on the nodes indicate

the generation order of the nodes. Note that the blocks and the tags for the sentinel

nodes are null values. The idea of the algorithm is to build towers of a given level
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for each block. As shown in the figure, all towers have only one link from left side to

its tower head (the highest node in the tower). Therefore, we need to store the tower

heads in a vector, and then make necessary connections. The algorithm starts with

the creation of the vector H to hold pointers to the tower heads at line 1. At lines

6-9 for the first iteration of the inner loop, the node v1 is created which is a leaf node,

thus there is no node below. Currently, H is empty; therefore there is no node at H0

to connect to v1 at level 0. The hash and the rank values of v1 are calculated. Since

H is still empty, we do not create new nodes at levels 1, 2, 3, 4. At line 10, we put v1

to H as H4. The algorithm continues with the next block and the creation of v2. H0

is still empty, therefore no after link for v2 is set. The hash and the rank values of

v2 are calculated. The next iterations of the inner loop skip the lines 6-9, because H1

and H2 are empty as well. At line 10, v2 is inserted to H2. Then, v3 is created and

its hash and rank values are calculated. There is no element at H0 to connect to v3.

Its level is 0, therefore it is added to H as H0. Next, we create the node v4; it takes

H0 as its after. The hash and the rank values are calculated, then v4 is added to H

at index 0. The algorithm continues for all elements in the block vector. At the end

of the algorithm, the root is created, connected to the top of the FlexList, then its

hash and rank values are calculated.

3.3 Performance Analysis

We have developed a prototype implementation of an optimized FlexList (on top

of our optimized skip list and authenticated skip list implementations). We used

C++ and employed some methods from the Cashlib library [Meiklejohn et al., 2010,

Brownie Points Project, ]. The local experiments were conducted on a 64-bit machine

with a 2.4GHz Intel 4 core CPU (only one core is active), 4GB main memory and

8MB L2 cache, running Ubuntu 12.10. As security parameters, we used 1024-bit RSA
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modulus, 80-bit random numbers, and SHA-1 hash function, overall resulting in an

expected security of 80-bits. All our results are the average of 10 runs. The tests

include I/O access time since each block of the file is kept on the hard disk

drive separately, unless it is stated otherwise. The size of a FlexList is suitable to

keep a lot of FlexLists in RAM.

Core FlexList Algorithms Performance:
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Figure 3.8: The number of nodes and links used on top of leaf level nodes, before and
after optimization.

One of the core optimizations in a FlexList is done in terms of the structure. Our

optimization, removing unnecessary links and nodes, ends up with 50% less nodes
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and links on top of the leaf nodes, which are always necessary since they keep the

file blocks. Figure 3.8 shows the number of links and nodes used before and after

optimization. The expected number of nodes in a regular skip list is 2n [Pugh, 1990b]

(where n represents the number of blocks): n leaf nodes and n non-leaf nodes. Each

non-leaf node makes any left connection below its level unnecessary as described in

Section 3.1.
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Figure 3.9: Time ratio on buildFlexList algorithm against insertions.

Since in a skip list, half of all nodes and links are at the leaf level in expectation,

this means half of the non-leaf level links and half of the leaf level links are unnecessary,

making a total on n unnecessary links. Since there are n/2 non-leaf unnecessary

links, it means that there are n/2 non-leaf unnecessary nodes as well, according to
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unnecessary node definition (Section 3.1). Hence, there are n − n/2 = n/2 non-leaf

necessary nodes. Since each necessary node has 2 links, in total there are 2 ∗n/2 = n

necessary links above the leaf level. Therefore, in Figure 3.8, there is an overlap

between the standard number of non-leaf nodes (n) and the optimal number of the

non-leaf links (n). Therefore, we eliminated approximately 50% of all nodes and

links above the leaf level (and 25% of all).

Moreover, we presented a novel algorithm for the efficient building of a FlexList.

Figure 3.9 demonstrates time ratio between the buildFlexList algorithm and building

FlexList by means of insertion (in sorted order). The time ratio is calculated by

dividing the time spent for building FlexList using insertion method by the time

needed by the buildFlexList algorithm. In our time ratio experiment, we do not take

into account the disk access time; therefore there is no delay for I/O switching. As

expected, buildFlexList algorithm outperforms the regular insertion method, since in

the buildFlexList algorithm the expensive hash calculations are performed only once

for each node in the FlexList. So practically, the buildFlexList algorithm reduced

the time to build a FlexList for a file of size 400MB with 200000 blocks from 12

seconds to 2.3 seconds and for a file of size 4GB with 2000000 blocks from 128

seconds to 23 seconds.



Chapter 4

FLEXDPDP: FLEXIBLE DYNAMIC PROVABLE DATA

POSSESSION

In this chapter, we describe the application of our FlexList to integrity checking

in secure cloud storage systems according to the DPDP model [Erway et al., 2009].

The DPDP model has two main parties: the client and the server. The cloud server

stores a file on behalf of the client. Erway et al. showed that an RBASL can be

created on top of the outsourced file to provide proofs of integrity (see Figure 4.1).

The following are the algorithms used in the DPDP model for secure cloud storage

[Erway et al., 2009]:

• Challenge is a probabilistic function run by the client to request a proof of

integrity for randomly selected blocks.

• Prove is run by the server in response to a challenge to send the proof of

possession.

• V erify is a function run by the client upon receipt of the proof. A return value

of accept ideally means the file is kept intact by the server.

• prepareUpdate is a function run by the client when she changes some part of

her data. She sends the update information to the server.

• performUpdate is run by the server in response to an update request to perform

the update and prove that the update performed reliably.

• verifyUpdate is run by the client upon receipt of the proof of the update. Re-

turns accept (and updates her meta data) if the update was performed reliably.
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Figure 4.1: Client Server interactions in FlexDPDP.

We construct the above model with FlexList as the authenticated data structure.

We provide new capabilities and efficiency gains as discussed in Section 3.2 and call

the resulting scheme FlexDPDP. In this section, we describe our corresponding

algorithms for each step in the DPDP model.

The FlexDPDP scheme uses homomorphic verifiable tags (as in DPDP

[Erway et al., 2009]); multiple tags can be combined to obtain a single tag that cor-

responds to combined blocks [Ateniese et al., 2009]. Tags are small compared to data

blocks, enabling storage in memory. Authenticity of the skip list guarantees integrity

of tags, and tags protect the integrity of the data blocks.

4.1 Preliminaries

Before providing optimized proof generation and verification algorithms, we introduce

essential methods to be used in our algorithms to determine intersection nodes, search

multiple nodes, and update rank values. Table 4.1 shows additional notation used in
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this section.

Symbol Description
hash hash value of a node
rs rank state, indicates the byte count to the left of current node and used to recover i

value when roll-back to a state is done
state state, created in order to store from which node the algorithm will continue, contains

a node, rank state, and last index
C challenged indices vector, in ascending order
V verify challenge vector, reconstructed during verification to check if the proof belongs

to challenged blocks, in terms of indices
p proof node
P proof vector, stores proof nodes for all challenged blocks
T tag vector of challenged blocks
M block sum
ts intersection stack, stores states at intersections in searchMulti algorithm
th intersection hash stack, stores hash values to be used at intersections
ti index stack, stores pairs of integer values, employed in updateRankSum
tl changed nodes’ stack, stores nodes for later hash calculation, employed in hashMulti

start start index in ti from which updateRankSum should start
end end index in ti
first current index in C
last end index in ts

Table 4.1: Symbols used in our algorithms.

isIntersection: This function is used when searchMulti checks if a given node is an

intersection. A node is an intersection point of proof paths of two indices when the

first index can be found following the below link and the second index is found by

following the after link (the challenged indices will be in ascending order). There are

two conditions for a node to be called an intersection node:

• The current node follows the below link according to the index we are building

the proof path for.

• The current node needs to follow the after link to reach the element of chal-

lenged indices at index last in the vector C.
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If one of the above conditions is not satisfied, then there is no intersection, and the

method returns false. Otherwise, it decrements last and continues trying until it finds

a node which cannot be found by following the after link and returns last′ (to be used

in the next call of isIntersection) and true (as the current node cn is an intersection

point). Note that this method directly returns false if there is only one challenged

index.

Algorithm 4.1.1: searchMulti Algorithm
Input: cn, C, first, last, rs, P , ts
Output: cn, P , ts
// Index of the challenged block (key) is calculated according to the
current sub skip list root
i = Cfirst−rs1

// Create and put proof nodes on the search path of the challenged
block to the proof vector
while Until challenged node is included do2

p = new proof node with cn.level and cn.r3

// End of this branch of the proof path is when the current node
reaches the challenged node
if cn.level = 0 and i < cn.length then4

p.setEndF lag(); p.length = cn.length5

//When an intersection is found with another branch of the proof
path, it is saved to be continued again, this is crucial for the
outer loop of ‘‘multi’’ algorithms
if isIntersection(cn, C, i, lastk, rs) then6

//note that lastk becomes lastk+1 in isIntersection method
p.setInterF lag(); state(cn.after, lastk, rs+cn.below.r) is added to ts //7

Add a state for cn.after to continue from there later
// Missing fields of the proof node are set according to the link
current node follows
if (CanGoBelow(cn, i)) then8

p.hash = cn.after.hash; p.rgtOrDwn =dwn9

cn = cn.below //unless at the leaf level10

else11
p.hash = cn.below.hash; p.rgtOrDwn =rgt12

// Set index and rank state values according to how many bytes
at leaf nodes are passed while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after13

p is added to P14

Proof node is the building block of a proof, used throughout this section. It contains

level, data length (if level is 0), rank, hash, and three boolean values rgtOrDwn, end

flag and intersection flag. Level and rank values belong to the node for which the
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proof node is generated. The hash is the hash value of the neighbor node, which is not

on the proof path. There are two scenarios for setting hash and rgtOrDwn values:

(1) When the current node follows below link, we set the hash of the proof node to

the hash of the current node’s after and its rgtOrDwn value to dwn.

(2) When the current node follows after link, we set the hash of the proof node to

the hash of the current node’s below and its rgtOrDwn value to rgt.

searchMulti (Algorithm 4.1.1): This algorithm is used in genMultiProof to generate

the proof path for multiple nodes without unnecessary repetitions of proof nodes.

Figure 4.2, where we challenge the node at the index 450, clarifies how the algorithm

works. Our aim is to provide the proof path for the challenged node. We assume that

in the search, the current node cn starts at the root (w1 in our example). Therefore,

initially the search index i is 450, the rank state rs and first are zero, the proof

vector P and intersection stack ts are empty.

Figure 4.2: Proof path for challenged index 450 in a FlexList.

For w1, a proof node is generated using scenario (1), where p.hash is set to v1.hash

and p.rgtOrDwn is set to dwn. For w2, the proof node is created as described in

scenario (2) above, where p.hash is set to v2.hash and p.rgtOrDwn is set to rgt.

The proof node for w3 is created using scenario (2). For w4 and w5, proof nodes are
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generated as in scenario (1). The last node c1 is the challenged leaf node, and the

proof node for this node is also created as in scenario (1). Note that in the second,

third, and fifth iterations of the while loop, the current node is moved to a sub skip

list (at line 13 in Algorithm 4.1.1). Lines 4-5 (setting the end flag and collecting the

data length) and 6-7 (setting intersection flag and saving the state) in Algorithm 4.1.1

are crucial for generation of proof for multiple blocks. We discuss them later in this

section.

updateRankSum: This algorithm, used in verifyMultiProof, is given the rank dif-

ference as input, the verify challenge vector V , and indices start and end (on V ). The

output is a modified version of the verify challenge vector V ′. The procedure is called

when there is a transition from one sub skip list to another (larger one). The method

updates entries starting from index start to index end by rank difference, where rank

difference is the size of the larger sub skip list minus the size of the smaller sub skip

list.

Finally, tags and combined blocks will be used in our proofs. For this purpose, we

use an RSA group Z∗N , where N = pq is the product of two large prime numbers, and

g is a high-order element in Z∗N [Erway et al., 2009]. It is important that the server

does not know p and q. The tag t of a block m is computed as t = gm mod N . The

block sum is computed as M =
|C|∑
i=0

aimCi
where C is the challenge vector containing

block indices and ai is the random value for the ith challenge.

4.2 Handling Multiple Challenges at Once

Client server interaction (Figure 4.1) starts with the client pre-processing her data

(creating a FlexList for the file and calculating tags for each block of the file). The

client sends the random seed she used for generating the FlexList to the server along

with a public key, data, and the tags. Using the seed, the server constructs a FlexList
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over the blocks of data and assigns tags to leaf-level nodes. Note that the client may

request the root value calculated by the server to verify that the server constructed

the correct FlexList over the file. When the client checks and verifies that the hash

of the root value is the same as the one she had calculated, she may safely remove

her data and the FlexList. She keeps the root value as meta data for later use in the

proof verification mechanism.

To challenge the server, the client generates two random seeds, one for a pseudo-

random generator that will generate random indices for bytes to be challenged, and

another for a pseudo-random generator that will generate random coefficients to be

used in the block sum. The client sends these two seeds to the server as the challenge,

and keeps them for verification of the server’s response.

4.2.1 Proof Generation

genMultiProof (Algorithm 4.2.1): Upon receipt of the random seeds from the client,

the server generates the challenge vector C and random values A accordingly and runs

the genMultiProof algorithm in order to get tags, file blocks, and the proof path for

the challenged indices. The algorithm searches for the leaf node of each challenged

index and stores all nodes across the search path in the proof vector. However, we

have observed that regular searching for each particular node is inefficient. If we start

from the root for each challenged block, there will be a lot of replicated proof nodes.

In the example of Figure 4.2, if proofs were generated individually, w1, w2, and w3

would be replicated 4 times, w4 and w5 3 times, and c3 2 times. To overcome this

problem we save states at each intersection node. In our optimal proof, only one proof

node is generated for each node on any proof path. This is beneficial in terms of not

only space but also time. The verification time of the client is greatly reduced since

she computes less hash values.
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Figure 4.3: Multiple blocks are challenged in a FlexList.

We explain genMultiProof (Algorithm 4.2.1) using Figure 4.3 and notations in

Table 4.1. By taking the index array of challenged nodes as input (challenge vector

C generated from the random seed sent by the client contains [170, 320, 470, 660] in

the example), the genMultiProof algorithm generates the proof P , collects the tags

into the tag vector T , calculates the block sum M at each step, and returns all three.

The algorithm starts traversing from the root (w1 in our example) by retrieving it

from the intersection stack ts at line 3 of Algorithm 4.2.1. Then, in the loop, we call

searchMulti, which returns the proof nodes for w1, w2, w3 and c1. The state of node w4

is saved in the stack ts as it is the after of an intersection node, and the intersection

flag for proof node for w3 is set. Note that proof nodes at the intersection points store

no hash value. The second iteration starts from w4, which is the last saved state. New

proof nodes for w4, w5 and c2 are added to the proof vector P , while c3 is added to the

stack ts. The third iteration starts from c3 and searchMulti returns P , after adding

c3 to it. Note that w6 is added to the stack ts. In the last iteration, w6 and c4 are

added to the proof vector P . As the stack ts is empty, the loop is over. Note that all

proof nodes of the challenged indices have their end flags and length values set (line

5 of Algorithm 4.1.1). When genMultiProof returns, the output proof vector should
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be as in Figure 5.3. At the end of the genMultiProof algorithm the proof and tag

vectors and the block sum are sent to the client for verification.

Algorithm 4.2.1: genMultiProof Algorithm
Input: C, A
Output: T , M , P

Let C= (i0, . . . , ik) where ij is the (j + 1)th challenged index;

A = (a0, . . . , ak) where aj is the (j + 1)th random value;
statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; M = 0; ts, P and T are empty; state(root, k, rs) added to ts1

// Call searchMulti method for each challenged block to fill the
proof vector P
for i = 0 to k do2

state = ts.pop()3

cn = searchMulti(state.node,C, i,state.end,state.rs,P ,ts)4

// Store tag of the challenged block and compute the block sum
cn.tag is added to T and M += cn.data*ai5

Figure 4.4: Proof vector for Figure 4.3 example.

4.2.2 Verification

verifyMultiProof (Algorithm 4.2.2): Remember that the client keeps random seeds

used for the challenge. She generates the challenge vector C and random values A
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according to these seeds. If the server is honest, these will contain the same values

as the ones the server generated. There are two steps in the verification process: tag

verification and FlexList verification.

Tag verification is done as follows: Upon receipt of the tag vector T and the block

sum M , the client calculates tag =
|C|∏
i=0

T ai
i mod N and accepts iff tag = gM mod N .

By this, the client checks the integrity of file blocks by tags. Later, when tags are

proven to be intact by FlexList verification, the file blocks will be verified. FlexList

verification involves calculation of hashes for the proof vector P . The hash for each

proof node can be calculated in different ways as described below using the example

from Figure 4.3 and Figure 5.3.

The hash calculation always has the level and rank values stored in a proof node

as its first two arguments.

• If a proof node is marked as end but not intersection (e.g., c4, c2, and c1),

this means the corresponding node was challenged (to be checked against the

challenged indices later), and thus its tag must exist in the tag vector. We

compute the corresponding hash value using that tag, the hash value stored in

the proof node (null for c4 since it has no after neighbor, the hash value of v4

for c2, and the hash value of v3 for c1), and the corresponding length value (110

for c4, 80 for c2 and c1).

• If a proof node is not marked and rgtOrDwn = rgt or level = 0 (e.g., w6, w2),

this means the after neighbor of the node is included in the proof vector and the

hash value of its below is included in the associated proof node (if the node is at

leaf level, the tag is included instead). Therefore we compute the corresponding

hash value using the hash value stored in the corresponding proof node and the

previously calculated hash value (hash of c4 is used for w6, hash of w3 is used

for w2).
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• If a proof node is marked as intersection and end (e.g., c3), this means the

corresponding node was both challenged (thus its tag must exist in the tag

vector) and is on the proof path of another challenged node; therefore, its after

neighbor is also included in the proof vector. We compute the corresponding

hash value using the corresponding tag from the tag vector and the previously

calculated hash value (hash of w6 for c3).

• If a proof node is marked as intersection but not end (e.g., w5 and w3), this

means the node was not challenged but both its after and below are included

in the proof vector. Hence, we compute the corresponding hash value using the

previously calculated two hash values (the hash values calculated for c2 and for

c3, respectively, are used for w5, and the hash values calculated for c1 and for

w4, respectively, are used for w3).

• If none of the above is satisfied, this means a proof node has only rgtOrDwn =

dwn (e.g., w4 and w1), meaning the below neighbor of the node is included in

the proof vector. Therefore we compute the corresponding hash value using the

previously calculated hash value (hash of w5 is used for w4, and hash of w2 is

used for w1) and the hash value stored in the corresponding proof node.

We treat the proof vector (Figure 5.3) as a stack and do necessary calculations as

discussed above. The calculation of hashes is done in the reverse order of the proof

generation in genMultiProof algorithm. Therefore, we perform the calculations in

the following order: c4, c6, c3, c2, w5, . . . until the hash value for the root (the last

element in the stack) is computed. Observe that to compute the hash value for w5,

the hash values for c3 and c2 are needed, and this reverse (top-down) ordering always

satisfies these dependencies. Finally, we compute the corresponding hash values for

w2 and w1. When the hash for the last proof node of the proof path is calculated,

it is compared with the meta data that the client possesses (in line 22 of Algorithm
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4.2.2).

Algorithm 4.2.2: verifyMultiProof Algorithm
Input: C, P , T , MetaData
Output: accept or reject

Let P = (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj ,
isEndj , lengthj) for j = 0, . . . , k; T = (tag0, . . . , tagn), where tagm = tag
for challenged blockm for m = 0, . . . , n;
start = n; end = n; t = n; V = 0; hash = 0; hashprev = 0; startTemp = 0; th and1

ti are empty stacks
// Process each proof node from the end to calculate hash of the root
and indices of the challenged blocks
for j = k to 0 do2

if isEndj and isInterj then3
hash = hash(levelj , rj , tagt,hashprev, lengthj ); decrement(t)4

updateRankSum(lengthj , V , start, end); decrement(start) // Update5
index values of challenged blocks on the leaf level of current
part of the proof path

else if isEndj then6
if t 6= n then7

hashprev is added to th8

(start, end) is added to ti9

decrement(start); end = start10

hash = hash(levelj , rj , tagt,hashj , lengthj); decrement(t)11

else if isInterj then12
(startTemp,end) = ti.pop()13

updateRankSum(rprev, V , startTemp,end) // Last stored indices of14
challenged block are updated to rank state of the current
intersection
hash = hash(levelj , rj , hashprev, th.pop())15

else if rgtOrDwnj = rgt or levelj = 0 then16
hash = hash(levelj ,rj ,hashj ,hashprev)17

updateRankSum(rj− rprev, V , start, end) // Update indices of18
challenged blocks, which are on the current part of the proof
path

else19
hash = hash(levelj , rj , hashprev, hashj)20

hashprev = hash; rprev = rj21

//endnodes is a vector of proof nodes marked as End in the order of
appearance in P
if ∀a, 0 ≤ a ≤ n , 0 ≤ Ca −Va < endnodesn−a.length OR hash 6= MetaData22

then
return reject23

return accept24

The check above makes sure that the nodes, whose proofs were sent, are indeed in

the FlexList that correspond to the meta data stored at the client. But the client also

has to make sure that the server indeed proved storage of data that she challenged.
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The server may have lost those blocks but may instead be proving storage of some

other blocks at different indices. To prevent this, the verify challenge vector, which

contains the start indices of the challenged nodes (150, 300, 450, and 460 in our

example), is generated by the rank values included in the proof vector (in lines 5, 9,

10, 13, 14, and 18 of Algorithm 4.2.2). With the start indices and the lengths of the

challenged nodes given, we check if each challenged index is included in a node that

the proof is generated for (as shown in line 22 of Algorithm 4.2.2). For instance, we

know that we challenged index 170, c1 starts from 150 and is of length 80. We check

if 0 ≤ 170− 150 < 80. Such a check is performed for each challenged index and each

proof node with an end mark.

4.3 Verifiable Variable-size Updates

The main purpose of the insert, remove, and modify operations (update operations) of

our FlexList being employed in the cloud setting is that we want the update operations

to be verifiable. The purpose of the following algorithms is to verify the update

operation and compute new meta data to be stored at the client through the proof

sent by the server.

4.3.1 Performing an Update

performUpdate is run at the server side upon receipt of an update request to the

index i from the client. We consider it to have three parts: proveModify, proveInsert,

proveRemove. The server runs genMultiProof algorithm to acquire a proof vector in

a way that it covers the nodes which may get affected from the update. For a modify

operation the modified index (i), for an insert operation the left neighbor of the insert

position (i-1 ), and for a remove operation the left neighbor of the remove position

and the node at the remove position (i-1, i) are to be used as challenged indices for
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genMultiProof Algorithm. Then the server performs the update operation as it is

using the regular FlexList algorithms, and sends the new meta data to the client.

4.3.2 Verifying an Update

The algorithm verifyUpdate of the DPDP model, in our construction, not only updates

her meta data but also verifies if it is correctly updated at the server by checking

whether or not the calculated meta data and the received one are equal. It makes use

of one of the following three algorithms due to the nature of the update, at the client

side.

Algorithm 4.3.1: verifyModify Algorithm
Input: C, P , T , tag, data, MetaData, MetaDatabyServer

Output: accept or reject, MetaData ′

Let C= (i0) where i0 is the modified index; P = (A0, . . . , Ak), where
Aj = ( levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for
j = 0, . . . , k; T = (tag0), where tag0 is tag for block0 before
modification; P, T are the proof and tag before the modification;
tag and data are the new tag and data of the modified block
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject;2

else3

i = size(P ) - 14

hash = hash(Ai.level, Ai.rank - Ai.length + data.length, tag, Ai.hash,5

data.length)
// Calculate hash values until the root of the Flexlist
MetaDatanew = calculateRemainingHashes( i-1, hash, data.length - Ai.length,6

P )
if MetaDatabyServer = MetaDatanew then7

Metadata = MetaDatanew8

return accept9

else10
return reject11

verifyModify (Algorithm 4.3.1) is run at the client to approve the modification. The

client alters the last element of the received proof vector and calculates temp meta

data accordingly. Later she checks if the new meta data provided by the server is

equal to the one that the client has calculated. If they are the same, then modification

is accepted, otherwise rejected.

verifyInsert (Algorithm 4.3.2) is run to verify the correct insertion of a new block
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to the FlexList, using the proof vector and the new meta data sent by the server. It

calculates the temp meta data using the proof P as if the new node has been inserted

in it. The inputs are the challenged block index, a proof, the tags, and the new block

information. The output is accept if the temp root calculated is equal to the meta

data sent by the server, otherwise reject.

Algorithm 4.3.2: verifyInsert Algorithm
Input: C, P , T , tag, data, level, MetaData, MetaDatabyServer

Output: accept or reject, MetaData ′

Let C= (i0) where i0 is the index of the left neighbor; P
= (A0, . . . , Ak), where Aj = ( levelj , rj , hashj , rgtOrDwnj , isInterj ,
isEndj , lengthj) for j = 0, . . . , k; T = (tag0) where tag0 is for precedent
node of newly inserted node; P, T are the proof and tag before the
insertion; tag, data and level are the new tag, data and level of the
inserted block
if !VerifyMultiProof(C, P , T , MetaData) then1

return reject;2

else3

i = size(P ) - 1; rank = Ai.length; rankTower = Ai.rank - Ai.length +4

data.length
hashTower = hash(0, rankTower, tag, Ai.hash, data.length)5

if level 6= 0 then6

hash = hash(0, Ai.length, tag0, 0);7

decrement(i)8

while Ai.level 6= level or (Ai.level = level and Ai.rgtOrDwn = dwn) do9

if Ai.rgtOrDwn = rgt then10

rank += Ai.rank - Ai+1.rank11

// Ai.length is added to hash calculation if Ai.level = 0
hash = hash(Ai.level, rank, Ai.hash, hash)12

else13

rankTower += Ai.rank - Ai+1.rank14

hashTower = hash(Ai.level, rankTower, hashTower, Ai.hash)15

decrement(i)16

hash = hash(level, rank + rankTower, hash, hashTower)17

MetaDatanew = calculateRemainingHashes(i, hash, data.length, P )18

if MetaDatabyServer = MetaDatanew then19
MetaData = MetaDatanew20

return accept21

return reject22

The algorithm is explained using Figure 4.5 as an example where a verifiable insert

at index 450 occurs. The algorithm starts with the computation of the hash values

for the proof node n3 as hashTower at line 5 and v2 as hash at line 7. Then the loop

handles all proof nodes until the intersection point of the newly inserted node n3 and

the precedent node v2. In the loop, the first iteration calculates the hash value for
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Figure 4.5: Verifiable insert example.

v1 as hash. The second iteration yields a new hashTower using the proof node for

d2. The same happens for the third iteration but using the proof node for d1. Then

the hash value for the proof node c3 is calculated as hash, and the same operation is

done for c2. The hash value for the proof node m1 (intersection point) is computed

by taking hash and hashTower. Following this, the algorithm calculates all remaining

hash values until the root. The last hash value computed is the hash of the root,

which is the temp meta data. If the server’s meta data for the updated FlexList is

the same as the newly computed temp meta data, then the meta data stored at the

client is updated with this new version.

verifyRemove (Algorithm 4.3.3) is run to verify the correct removal of a block in

the FlexList, using the proof and the new meta data by the server. Proof vector P

is generated for the left neighbor and the node to be deleted. It calculates the temp

meta data using the proof P as if the node has been removed. The inputs are the

proof, a tag, and the new block information. The output is accept if the temp root

calculated is equal to the meta data from the server, otherwise reject.
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Figure 4.6: Verifiable remove example.

Algorithm 4.3.3: verifyRemove Algorithm
Input: C, P , T , MetaData, MetaDatabyServer

Output: accept or reject, MetaData ′

Let C= (i0, i1) where i0, i1 are the index of the left neighbor and the
removed index respectively; P = (A0, . . . , Ak), where Aj = (levelj , rj ,
hashj , rgtOrDwnj , isInterj , isEndj , lengthj) for j = 0, . . . , k; T
= (tag0, tag1) where tag1 is tag value for deleted node and tag0 is for
its precedent node ; P, T are the proof and tags before the removal;

if !VerifyMultiProof(C, P , T , MetaData) then1
return reject2

else3

dn = size(P ) - 1; i = size(P ) - 2; last = dn4

while !Ai.isEnd do5

decrement(i)6

rank = Adn.rank; hash = hash(0, rank, tag0, Adn.hash, Adn.length)7

decrement(dn)8

if !Adn.isEnd or !Ai.isInter then9

decrement(i)10

while !Adn.isEnd or !Ai.isInter do11

if Ai.level < Adn.level or Adn.isEnd then12

rank += Ai.rank - Ai+1.rank13

// Ai.length is added to hash calculation if Ai.level = 0
hash = hash(Ai.level, rank, Ai.hash, hash)14

decrement(i)15

else16

rank += Adn.rank - Adn+1.rank17

hash = hash(Adn.level, rank, hash, Adn.hash)18

decrement(dn)19

decrement(i)20

MetaDatanew = calculateRemainingHashes(i, hash, Alast.length, P )21

if MetaDatabyServer = MetaDatanew then22
MetaData = MetaDatanew23

return accept24

return reject25
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The algorithm will be discussed through the example in Figure 4.6, where a ver-

ifiable remove occurs at index 450. The algorithm starts by placing iterators i and

dn at the position of v2 (line 6) and d4 (line 4), respectively. At line 7, the hash

value (hash) for the node v2 is computed using the hash information at d4. dn is

then updated to point at node d3 at line 8. The loop is used to calculate the hash

values for the newly added nodes in the FlexList using the hash information in the

proof nodes of the deleted nodes. The hash value for v1 is computed by using hash

in the first iteration. The second and third iterations of the loop calculate the hash

values for m2 and m1 by using hash values stored at the proof nodes of d3 and d2

respectively. Then the hash calculation is done for c3 by using the hash of m1. After

the hash of c2 is computed using the hash of c3, the algorithm calculates the hashes

until the root. The hash of the root is the temp meta data. If the server’s meta data

for the updated FlexList is verified using the newly computed temp meta data, then

the meta data stored at the client is updated with this new version.

4.4 Performance Analysis

Proof Generation Performance : Figure 4.7 shows the server proof generation

time for FlexDPDP as a function of the block size by fixing the file size to 16MB,

160MB, and 1600MB. As shown in the figure, with the increase in block size, the

time required for the proof generation increases, since with a higher block size, the

block sum generation takes more time. Interestingly though, with extremely small

block sizes, the number of nodes in the FlexList become so large that it dominates

the proof generation time. Since 2KB block size worked best for various file sizes, our

other tests employ 2KB blocks. These 2KB blocks are kept on the hard disk drive,

on the other hand the FlexList nodes are much smaller and subject to be kept in

RAM. While we observed that buildFlexList algorithm runs faster with bigger block
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Figure 4.7: Server time for 460 random challenges as a function of block size for
various file sizes.

sizes (since there will be fewer blocks), the creation of a FlexList happens only once.

On the other hand, the proof generation algorithm runs periodically depending on

the client, therefore we chose to optimize its running time.

The performance of our optimized implementation of the proof generation mech-

anism is evaluated in terms of communication and computation. We take into con-

sideration the case where the client wishes to detect with more than 99% probability

if more than a 1% of her 1GB data is corrupted by challenging 460 blocks; the same

scenario as in PDP and DPDP [Ateniese et al., 2007, Erway et al., 2009]. In our ex-

periment, we used a FlexList with 500,000 nodes, where the block size is 2KB.

In Figure 4.8 we plot the ratio of the unoptimized proofs over our optimized
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Figure 4.8: Performance gain graph ([460 single proof / 1 multi proof] for 460 chal-
lenges).

proofs in terms of the FlexList proof size and computation, as a function of the

number of challenged nodes. The unoptimized proofs correspond to proving each block

separately, instead of using our genMultiProof algorithm for all of them at once. Our

multi-proof optimization results in 40% computation and 50% communication

gains for FlexList proofs. This corresponds to FlexList proofs being up to 1.75 times

as fast and 2 times as small.

We also measure the gain in the total size of a FlexDPDP proof and com-

putation done by the server in Figure 4.8. With our optimizations, we clearly see

a gain of about 35% and 40% for the overall computation and communica-
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tion, respectively, corresponding to proofs being up to 1.60 times as fast and 1.75

times as small. The whole proof roughly consists of 213KB FlexList proof, 57KB

of tags, and 2KB of block sum. Thus, for 460 challenges as suggested by PDP and

DPDP [Ateniese et al., 2007, Erway et al., 2009], we obtain a decrease in total proof

size from 485KB to 272KB, and the computation is reduced from 19ms to

12.5ms by employing our genMultiProof algorithm. We could have employed gzip

to eliminate duplicates in the proof, but it does not perfectly handle the duplicates

and our algorithm also provide computation (proof generation and verification) time

optimization as well. Compression is still beneficial when applied on our optimal

proof.
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Figure 4.9: Time ratio on genMultiProof algorithm.
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Furthermore, we tested the performance of genMultiProof algorithm. The time

ratio graph for the genMultiProof algorithm is shown in Figure 4.9. We have tested

the algorithm in different file size scenarios, starting a file size from 4MB to 4GB

(where block size is 2KB, and thus the number of blocks increase with the file size).

In constant scenario we applied the same challenge size of 460. Our results showed

a relative decline in the performance of the genMultiProof as the number of blocks

in the FlexList increases. This is caused by the number of challenges being constant.

Because as the number of blocks in the FlexList grows, the number of repeated proof

nodes in the proof decreases. In proportional scenario, we have the time ratio for 5, 46

and 460 challenges for the block number of 20000, 200000 and 2000000 respectively.

The graph shows a relative incline in the performance of genMultiProof for the pro-

portional number of challenges to the number of blocks in a file. The algorithm has

a clear efficiency gain in the computation time in comparison to the generating each

proof individually.

Provable Update Performance: In FlexDPDP, we have optimized algorithms

for verifiable update operations. The results for the basic functions of the FlexList

(insert,modify, remove) against their verifiable versions are shown in Figure 4.10.

The regular insert method takes more time than any other method, since it needs

extra time for the memory allocations and I/O delay. The remove method takes

less time than the modify method, because there is no I/O delay and at the end

of the remove algorithm there are less nodes that need recalculation of the hash

and rank values. As expected, the complexity of the FlexList operations increase

logarithmically. The verifiable versions of the functions require an average overhead

of 0.05 ms for a single run. For a single verifiable insert, the server needs less

than 0.4ms to produce a proof in a FlexList with 2 million blocks (corresponding

to a 4GB file). These results show that the verifiable versions of the updates can be

employed with only little overhead.
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Figure 4.10: Performance evaluation of FlexList methods and their verifiable versions.

4.5 Comparison with Static Cloud Storage on the

PlanetLab

We compare static PDP with FlexDPDP, which is a dynamic system. The server in

PDP computes the sum of the challenged blocks and the multiplication and expo-

nentiation of their tags. FlexDPDP server only computes the sum of the blocks and

FlexList proof, but not the multiplication and exponentiation of their tags, which

are expensive cryptographic computations. In such a scenario the FlexDPDP server

outperforms such a naive PDP server, since the multiplication of tags in PDP takes

much longer than the FlexList proof generation in FlexDPDP. This result is in con-
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trast to the fact that PDP proofs take O(1) time and space whereas FlexDPDP

proofs require O(log n) time and space, due to a huge difference in the constants in

the Big-Oh notation.

We note that it is possible for PDP to be implemented by the server sending the

tags to the client and the client computing the multiplication and exponentiation

of the tags. If this is done in a PDP implementation, even though the proof size

grows, the PDP server can respond to challenges faster than FlexDPDP. Therefore,

we realize that where to handle the multiplication and exponentiation of tags is an

implementation decision for PDP.

PDP PDP∗ FlexDPDP
Local Server Computation 413.19 12.97 38.60
Close Client Total 466.82 557.49 649.11
Mid-range Client Total 496.856 714.47 874.63
Distant Client Total 551.376 986.98 1023.25

Table 4.2: Time spent for a challenge of size 460, in milliseconds. PDP∗ is the
modified PDP scheme, where we send all challenged tag values to the client instead
of multiplying them.

We deployed FlexDPDP, together with original and modified PDP versions, on

the world-wide network test bed, PlanetLab. On PlanetLab, a node has minimum

requirements of having 6x Intel Xeon E5 cores @ 2.2GHz processor, 24 GB of RAM,

and 2TB shared hard disk space. The nodes are also required to have minimum of

400kbps of bi-directional bandwidth to the Internet [PlanetLab, 2013] As a central

point in Europe, we chose a node in Berlin, Germany (planetlab01.tkn.tu-berlin.de)

as the server. We measured the whole time spent for one challenge at both the

client and the server side (Table 4.2). We moved our client location and tested

serving a close range client in Munich, Germany (1.lkn.ei.tum.de), a mid-range client

in Koszalin, Poland (ple2.tu.koszalin.pl), and a distant client in Lisbon, Portugal

(planetlab1.di.fct.unl.pt). We used a single core at each side. The protocols are run
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on a 1GB file, which is divided into blocks of 2KB, having 500000 nodes.

Inducting from Table 4.2, we conclude that using 6 cores (usual core count in

PlanetLab nodes), a PDP server can answer 14.5 queries per second whereas

a server using PDP∗ and FlexDPDP can serve 462 queries and 155.5 queries

per second respectively. We discern that, for the server, tag multiplication is the

most time consuming task in each challenge. It is clear that to increase the server

throughput, tag multiplication should be delegated to the client. This delegation

increases the total time spent by the client a bit more than it saves from the server,

since the tags should be sent over the network. However, the outcome is the dramatic

increase in the server throughput. Note that, when one considers the total time

a client spends for sending a challenge, obtaining the proof, and verifying it, the

overhead of being dynamic (FlexDPDP vs. PDP∗) is around 40 to 90 ms, which is

a barely-visible difference for a real-life application (especially considering that the

whole process takes on the order of a second).

4.6 Security Analysis

Note that within a proof vector, all nodes which are marked with the end flag “E”

contain the length of their associated data. These values are used to check if the

proof in the process of verification is indeed the proof of the block corresponding to

the challenged index. A careless implementation may not consider the authentication

of the length values. To show the consequence of not authenticating the length values,

we will use Figure 4.3 and Figure 5.3 as an example.

The scenario starts with the client challenging the server on the indices {170, 400,

500, 690} that correspond to nodes c1, v4, c3, and c4 respectively. The server finds out

that he does not possess v4 anymore, and therefore, instead of that node, he will try

to deceive the client by sending a proof for c2. The proof vector will just be the same
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as the proof vector illustrated in Figure 5.3 with a slight change done to deceive the

client. The change is done to the fourth entry from the top (the one corresponding

to c2): Instead of the original length 80, the server puts 105 as the length of c2. The

verification algorithm (without authenticated length values) at the client side will

accept this fake proof as follows:

• The block sum value and the tags get verified since both are prepared using

genuine tags and blocks of the actual nodes. The client cannot realize that the

data of c2 counted in the block sum is not 105 bytes, but 80 bytes instead.

This is because the largest challenged data (the data of c4 of length 110 in our

example) hides the length of the data of c2.

• Since the proof vector contains genuine nodes (though not necessarily all the

challenged ones), when the client uses verifyMultiProof algorithm on the proof

vector from Figure 5.3, the check on line 22 (Algorithm 4.2.2), “hash 6= Meta-

Data” will be passed.

• The client also checks that the proven nodes are the challenged ones by com-

paring the challenge indices with the reconstructed indices by “∀a, 0 ≤ a ≤ n ,

0 ≤ Ca −Va < endnodesn−a.length” (Algorithm 4.2.2 on line 22). This check

will also be passed because:

– c1 is claimed to start at index 150 and contain 80 bytes, and hence includes

the challenged index 170 (verified as 0 < 170− 150 < 80).

– c2 is claimed to start at index 300 and contain 105 bytes, and hence in-

cludes the challenged index 400 (verified as 0 < 400− 300 < 105).

– c3 is claimed to start at index 450 and contain 100 bytes, and hence includes

the challenged index 500 (verified as 0 < 500− 450 < 100).

– c4 is claimed to start at index 640 and contain 110 bytes, and hence includes

the challenged index 690 (verified as 0 < 690− 640 < 110).
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There are two possible solutions. We may include either the authenticated rank

values of the right neighbors of the end nodes to the proofs, or use the length of

the associated data in the hash calculation of the leaf nodes. We choose the second

solution, which is authenticating the length values, since adding the neighbor node

to the proof vector also adds a tag and a hash value, for each challenged node, to the

communication cost.

Lemma 1. If there exists a collision resistant hash function family, FlexList is an

authenticated dictionary.

Proof. The only difference between FlexList and RBASL is the calculation of the rank

values at the leaf levels. All rank values, which are used in the calculation of the start

indices of the challenged nodes, are used in hash calculations as well. Therefore, both

length and rank values contribute to the calculation of the hash value of the root.

To deceive the client, the adversary should fake the rank or length value of at least

one of the proof nodes. By Theorem 1 of [Papamanthou and Tamassia, 2007], if the

adversary sends a verifying proof vector for any node other than the challenged ones,

we can break the collision resistance of the hash function, using a simple reduction.

Therefore, we conclude that our FlexList protects the integrity of the tags and data

lengths associated with the leaf-level nodes.

Remember that the tags verification protects the integrity of the data itself, based

on the factoring assumption, as shown by DPDP [Erway et al., 2009]. Combining

this with Lemma 1 concludes security of FlexDPDP.

Theorem 1. If the factoring problem is hard and a collision resistant hash function

family exists, then FlexDPDP is secure.

Proof. Consider the proof by Erway et al. for Theorem 2 of [Erway et al., 2009].

Replacing Lemma 2 of [Erway et al., 2009] in that proof with our Lemma 1 yields an

identical challenger, and the exact proof shows the validity of our theorem.



Chapter 5

OPTIMIZED FLEXDPDP: A PRACTICAL SOLUTION

FOR DYNAMIC PROVABLE DATA POSSESSION

In this chapter, we provide further optimizations on the FlexDPDP. We use par-

allelization techniques to make the buildFlexList function faster, thus the preprocess

operation can be performed faster. We provide optimized algorithms to perform

update operations faster, thus we reduce the server load. We provide optimized algo-

rithms to perform verification faster, thus making the client faster.

First, we start with some examples and definitions to be used throughout this

chapter.

Figure 5.1 is the base FlexList we use in this chapter.

Figure 5.1: A FlexList example.

Remember that Insert/Remove operations perform add/remove of a leaf node

by keeping the necessary non-leaf nodes and removing the unnecessary ones, thus
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Figure 5.2: Insert and remove examples on FlexList.

Figure 5.3: An output of a multiProof algorithm.

preserving the optimality of the structure. Figure 5.2 illustrates an example of both

insert and remove operations. This example is given for better understanding of

the verify algorithm provided later in this section.

First, we insert a data of length 50 to index 110 at level 2. Dashed lines show the

nodes and links which are removed, and strong lines show the newly added ones. The

old rank values are marked and new values written below them. For the removal of

the node at index 110, read the figure in the reverse order, where dashed nodes and

lines are newly added ones and strong nodes and lines are to be removed, and the

initial rank values are valid again.
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For proof of possession, genMultiProof collects all necessary values through

search paths of the challenged nodes without any repetition. A multi proof is a

response to a challenge of multiple nodes. For instance, on Figure 5.1 a challenge to

indices 50, 180, 230 is replied by a proof vector as in Figure 5.3 and a vector of tags

of the challenged nodes and the block sum of the corresponding blocks. This proof

vector is used to verify the integrity of these specific blocks. We use, in Section 5.1.3,

this proof vector to verify the multiple updates on the server.

Update information consists of the index of the update, the new data and the

corresponding tag.

5.1 Optimizations

In this section, we describe our optimizations on FlexDPDP and FlexList for achieving

an efficient and secure cloud storage system. We then demonstrate the efficiency of

our optimizations in the Analysis section.

First, we observe that a major time consuming operation in the FlexDPDP scheme

is the preprocess operation, where a build FlexList function is employed. Previous

O(n) time algorithm is an asymptotic improvement, but in terms of actual running

times, it is still noticeably slow to build a large FlexList (e.g. half a minute for a file

of size 1GB with 500000 blocks). A parallel algorithm can run as fast as its longest

chain of dependent calculations, and in the FlexList structure each node depends on

its children for the hash value, yet we show that building a FlexList is surprisingly

well parallelizable.

Second, we observe that performing or verifying FlexDPDP updates in batches

yield great performance improvements, and also match with real world usage of such

a system. The hash calculations of a FlexList take the most of the time spent for an

update, and performing them in batches may save many unnecessary calculations.
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Therefore, in this section, we provide a parallel algorithm for building

FlexList, a multiple update algorithm for the server to perform updates faster,

and a multiple verification algorithm for the client to verify the update proofs

sent by the server. The notations used in our algorithms is presented in Table 5.1 as

a reminder. They are the same with the notations used so far.

Symbol Description
cn / nn current node / new node

after / below node reached by following the after link / by following the below
link

i / first / last index / C’s current index / C’s end index
rs rank state, is the state to indicate the bytes that can not be reached

from that point
state state contains a node, rank state, and last index and these values

are used to set the cn to the point where the algorithm will continue
C contains the indices that are challenged (ascending order)

P / T / M proof vector / tag vector / block sum
ts intersection stack, stores states at intersections
tl stores nodes for which a hash calculation is to be done

Method Description
canGoBelow returns true if the searched index can be reached by following the

below link
isIntersection returns true if the current node is the lowest common ancestor(lca)

of indices i and last of vector C. This algorithm also decrements
last until it finds a Clast for which the current node is lca or until
confirms that the current node is not a lca of two indices, where
one is i

generateIndices depending on the update information adds the indices of the nodes
which are required to an array and return the array. If the update
index is idx ⇒ for insert and modify we add idx, for a remove we
add idx and idx - 1

Table 5.1: Symbols and helper methods used in our algorithms.

5.1.1 Parallel Build FlexList

We propose a parallel algorithm to generate FlexList over the file blocks, resulting

in the same FlexList as a sequentially generated one. The algorithm has three steps.

First, it divides the task into the sub-tasks. It generates small skip lists using the

buildFlexList function. Second, it connects one root after another to discard right
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Figure 5.4: A build skip list distributed to 3 cores.

sentinel nodes of the FlexLists, but the rightmost one. Then, only left sentinel nodes

remain extra in the list. Third, it removes the left sentinel nodes using basic remove

function of the FlexList. As a result, all the nodes of the small FlexLists are connected

to their level on the FlexList. Observe the node c10 while the remove operation in

Figure 5.2 to understand the unifying property of remove operation.

Figure 5.4 shows the parallel construction of the FlexList (in Figure 5.1) on three

cores. We first determine three tasks distributed to three threads and generate

FlexLists. To unify the parts of the FlexList, we first connect all roots together

with links (c1 to r1 and r1 to r2 in our example, thus eliminate l1 and l2) and calculate

new rank values of the roots (r1 and c1). Then, we use basic remove function to re-

move left sentinels, which remain in between each part. We use the remove function

(to indices 360 and 180: 360 = c1.rank - r2.rank and 180 = c1.rank - r1.rank). Re-

move operation generates c5 and c10 of Figure 5.1 and connects the remaining nodes

to them, and rank values of c2, c6, c7, c11 get recalculated after the removal of sentinel

nodes. After the unify operation, we obtain the same FlexList of Figure 5.1 generated

efficiently in a parallel manner.
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5.1.2 Handling Multiple Updates at Once

We investigated the verifiable updates and inferred that the majority of the time

spent is for the hash calculations in each update. We discuss this in detail in Analysis

Chapter. When a client alters her data and commits it to the server, she generates

a vector of updates (U) out of a diff algorithm. An update information u, in U,

includes an index i, and (if insert or modify) a block and a tag value. Furthermore, the

updates on a FlexList consist of a series of modify operations followed by either insert

or remove operations, all to adjacent nodes. This nature of the update operations

makes single updates inefficient since they keep calculating the hash values of the

same nodes over and over again. To overcome this problem, we propose dividing

the task into two: doing a series of updates without the hash calculations, and

then calculate all affected nodes’ hash values at once, where affected means that

at least a value of the hash calculation of that node has changed. multiUpdate

(Algorithm 5.1.1) gets a FlexList and vector of updates U, and produces proof vector

P , tag vector T , block sum M, and new hash value of the root after the updates

newRootHash.

Algorithm 5.1.1: multiUpdate Algorithm
Input: FlexList, U
Output: P , T , M , newRootHash

Let U= (u0, . . . , uk) where uj is the jth update information
C = generateIndices(U) //According to the nature of the update for each1

u ∈ U , we add an index to the vector (uj.i for insert and modify,
uj.i and uj.i-1 for remove as it is for a single update proof)
P , T , M= genMultiProof(C) //Generates the multiProof using the2

FlexList
for i = 0 to k do3

apply ui to FlexList without any hash calculations4

update C to all affected nodes using U5

calculateMultiHash(C) // Calculates hash values of the changed nodes6

rootHash = FlexList.root.hash7

hashMulti (Algorithm 5.1.2), employed in calculateMultiHash algorithm, collects

nodes on a search path of a searched node. In the meantime, it is collecting the

intersection points (which is the lowest common ancestor (lca) of the node the col-
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lecting is done for and the next node of which the hash calculation is needed). The

repetitive calls from calculateMultiHash algorithm for each searched node collects all

nodes which may need a hash recalculation. Note that each time, a new call starts

from the last intersecting (lca) node.

calculateMultiHash (Algorithm 5.1.3) first goes through all changed nodes and

collects their pointers, then calculates all their hash values from the largest index

value to the smallest, until the root. This order of hash calculation respects all hash

dependencies.

We illustrate handling multiple updates with an example. Consider a multiUpdate

called on the FlexList of Figure 5.1 and a consecutive modify and insert happen to

indices 50 and 110 respectively (insert level is 2). When the updates are done without

hash calculations, the resulting FlexList looks like in Figure 5.2. Since the tag value

of c6 has changed and a new node is added between c6 and c7, all the nodes getting

affected should have a hash recalculation. If we first perform the insert, we need to

calculate hashes of n3, n2, c6, n1, c2 and c1. Later, when we do the modification to

c6 we need to recalculate hashes of nodes c6, n1, c2 and c1. There are 6 nodes to

recalculate hashes but we do 10 hash calculations. Instead, we propose performing

the insert and modify operations and call calculateMultiHash to indices 50 and 110.

The first call of hashMulti goes through c1, c2, n1, and c6. On its way, it pushes n2 to

a stack since the next iteration of hashMulti starts from n2. Then, with the second

iteration of calculateMultiHash, n2 and n3 are added to the stack. At the end, we call

the nodes from the stack one by one and calculate their hash values. Note that the

order preserves the hash dependencies.
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Algorithm 5.1.2: hashMulti Algorithm
Input: cn, C, first, last, rs, tl, ts
Output: cn, tl, ts
// Index of the challenged block (key) is calculated according to the
current sub skip list root
i = Cfirst−rs1

while Until challenged node is included do2

cn is added to tl3

//When an intersection is found with another branch of the proof
path, it is saved to be continued again, this is crucial for the
outer loop of ‘‘multi’’ algorithms
if isIntersection(cn, C, i, lastk, rs) then4

//note that lastk becomes lastk+1 in isIntersection method
state(cn.after, lastk+1, rs+cn.below.r) is added to ts5

if (CanGoBelow(cn, i)) then6

cn = cn.below //unless at the leaf level7

else8

// Set index and rank state values according to how many bytes
at leaf nodes are passed while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after9

Algorithm 5.1.3: calculateMultiHash Algorithm
Input: C
Output:

Let C= (i0, . . . , ik) where ij is the (j + 1)th altered index;
statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; ts, tl are empty; state= (root, k, rs)1

// Call hashMulti method for each index to fill the changed nodes
stack tl
for x = 0 to k do2

hashMulti(state.node,C, x,state.end,state.rs,tl,ts)3

if ts not empty then4

state = ts.pop(); cn = state.node ; state.rs += cn.below.r5

for k =tl.size to 0 do6

calculate hash of kth node in tl7

5.1.3 Verifying Multiple Updates at Once

When multiUpdate algorithm is used at the server side of FlexDPDP protocol, it

produces a proof vector in which all affected nodes are included and a hash value

which corresponds to the root of the FlexList after all of the update operations are

performed.

The solution we present to verify such an update is constructed in four parts.

First, we verify the multi proof both by FlexList verification and tag verification.

Second, we construct a temporary FlexList which is constituted of the parts
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Figure 5.5: The temporary FlexList generated out of the proof vector in Figure 5.3.
Note that node names are the same with Figure 5.1.

necessary for the updates. Third, we do the updates as they are, at the client side.

The resulting temporary FlexList has the root of the original FlexList at the server

side after performing all updates correctly. Fourth and last, we check if the new

root we calculated is the same with the one sent by the server. If they are the same

return accept and update the meta data that is kept by the client.

Constructing a temporary FlexList out of a multi proof:

Building a temporary FlexList is giving the client the opportunity to use regular

FlexList methods to do the necessary changes to calculate the new root. Dummy

nodes that we use below are the nodes which have some values set and never

subject to recalculation.

We explain the algorithm 5.1.4 using the proof vector presented in Figure 5.3 and

the output of the algorithm given the proof vector is the temporary FlexList in Figure
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5.5. First the algorithm takes the proof node for c1, generates the root using its values

and adds the dummy after, with the hash value (of c16) stored in it. Later in the loop,

nodes are connected to each other depending on their attributes. The proof node for

c2 is used to add node c2 to the below of c1 and the c2’s dummy node is connected to

its below with rank value of 50, calculated as rank of c2 minus rank of c5. Note that

the rank values of below nodes are used in regular algorithms so we calculate and

set them. These values can also be calculated on the fly, but we choose to put them

while constructing the dummy FlexList). The next iteration sets c5 as c2’s after and

its dummy node added to its after. The next step is to add c6 to the below of c5. c6

is both an end node and an intersection node, therefore we set its tag (from the tag

vector) and its length values. Then we attach c7 and calculate its length value since

it is not in the proof vector generated by default genMultiProof (but we have the

necessary information, rank of c7 and rank of c8). Next, we add the node for c8, set

its length value from the proof node and its tag value from the tag vector. And last,

we do the same to c9 as c8. The algorithm outputs the root of the new temporary

FlexList.

Verification:

Recall that U is the proof of updates generated by the client. An update information

u, in U, includes an index i and if insert or modify, a block and a tag value. The

client calls verifyMultiUpdate (Algorithm 5.1.5) with its meta data and the outputs

of multiUpdate from the server. Using verifyMultiProof with P and T and block

sum, if it returns accept we call buildDummyFlexList with the proof vector P. The

resulting temporary FlexList is ready to handle updates. Again we either choose to

do regular FlexList updates or do the updates and call calculateMultiHash algorithm

after applying updates without the hash calculations. If we have the verifyMultiProof

algorithm verify the challenged indices for updates, that means after the update, we
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do have to calculate all nodes present in the temporary FlexList; therefore, we do not

need to track changes to call a calculateMultiHash at the end but instead calculate

all nodes present in the list. Last, we check if the resulting hash of the root of our

temporary FlexList is equal to the one sent by the server. If they are the same we

accept and update the client’s meta data.

Algorithm 5.1.4: constructTemporaryFlexList Algorithm
Input: P , T
Output: root (temporary FlexList)

Let P = (A0, . . . , Ak), where Aj = ( levelj , rj , hashj , rgtOrDwnj , isInterj ,
isEndj , lengthj) for j = 0, . . . , k; T = (tag0, . . . , tagt), where tagt is tag
for challenged blockt and dummy nodes are nodes including only hash
and rank values set on them and they are final once they are created;
//
root = new Node(r0, length0) // This node is the root and we keep this1

as a pointer to return at the end//
ts = new empty stack2
cn = root3

dumN = new dummy node is created with hashj4

cn.after = dumN5

for i = 0 to k do6
nn = new node is created with Leveli+1 and ri+17

if isEndi and isInteri then8
cn.tag = next tag in T ; cn.length = lengthi ; cn.after = nn; cn = cn.after9

else if isEndi then10
cn.tag = next tag in T ; cn.length = lengthi ; if ri != lengthi then11

dumN = new dummy node is created with hashi as hash and ri -12

lengthi as rank
cn.after = dumN13

if ts is not empty then14
cn = ts.pop() ; cn.after = nn; cn = cn.after15

else if leveli = 0 then16
cn.tag = hashi ; cn.length = ri - ri+1 ; cn.after = nn ; cn = cn.after17

else if isInteri then18
cn is added to ts ; cn.below = nn; cn = cn.below19

else if rgtOrDwni = rgt then20
cn.after = nn21

dumN = new dummy node is created with hashi as hash and ri - ri+1 as22

rank
cn.below = dumN ; cn = cn.after23

else24
cn.below = nn25

dumN = new dummy node is created with hashi as hash and ri - ri+1 as26

rank
cn.after = dumN ; cn = cn.below27

return root28
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Algorithm 5.1.5: verifyMultiUpdate Algorithm
Input: P , T ,MetaData, U, MetaDatabyServer
Output: accept or reject

Let U= (u0, . . . , uk) where uj is the jth update information
if !verifyMultiProof(P, T, MetaData) then1

return reject2

FlexList = buildTemporaryFlexList(P )3

for i = 0 to k do4

apply ui to FlexList without any hash calculations5

calculate hash values of all nodes in the temporary FlexList. //A recursive call6

from the root
if root.hash != MetaDatabyServer then7

return reject8

return accept9



Chapter 6

EXPERIMENTAL EVALUATION

In this chapter, we analyze the optimizations on FlexDPDP: preprocess, multi

update and multi verification operations respectively. We show the reasons of the

optimization algorithms and the gains on realistic scenarios. Then, we show the

results of our implementation on the network test bed PlanetLab using real version

control system workload traces.

From now on, in this Chapter, we changed our local testing computer and our

local experiments are run on a 64-bit computer possessing 4 Intel(R) Xeon(R) CPU

E5-2640 0 @ 2.50GHz CPU, 16GB of memory and 16MB of L2 level cache, running

Ubuntu 12.04 LTS. Keep in mind that we keep each block of a file separately on the

hard disk drive and include I/O times in our experimental analysis.

6.1 Analysis of the Preprocess Operation

Recall that at the beginning client and server should build a FlexList over the data.

We reduced the amount of time required for the build operation by parallelizing the

algorithm.

Parallel build FlexList performance and speedup: Figure 6.1 shows the

build FlexList function’s time as a function of the number of cores used in parallel.

The case of one core corresponds to the sequential build FlexList function. From 2

cores to 24 cores, we measure the time spent by our parallel build FlexList function.

Notice the speed up where parallel build reduces the time to build a FlexList of size
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Figure 6.1: Time spent while building a FlexList from scratch.

4 million blocks from 240 seconds to 30 seconds on 12 cores, and to 40 seconds on

8 cores. The speedup values are reported in Figure 6.2 where T stands for time for

a single core used and Tp stands for time with p number of cores used. The more

sub-tasks created, the more time is required to divide the big task into parts and the

more time is required to combine them. We see that a FlexList of size 100000 blocks

doesn’t get its share of the parallel build as the bigger ones do, since the sub tasks

are getting smaller and the overhead of thread generation starts to surpass the gain

of parallel operations. Starting from 12 cores, we observe this side effect for all sizes.

For 500000 blocks (i.e. 1GB file) in size and larger FlexLists, speed up of 6 and

7.7 are observed on 8 and 12 cores respectively.
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Figure 6.2: Speedup values of buildFlexList function with multiple cores. T: Time
for a single core used, Tp: Time with p number of cores used.

6.2 Analysis of Multi Update Operations

Results for the core FlexList methods (insert, remove, modify) with and without the

hash calculations for various sizes of FlexListare shown in Figure 6.3. To be realistic,

these measurements take file I/O into consideration as well. Even with the I/O time,

the operations with the hash calculations take 10 times more time than the simple

operations in a file with size 4GB (i.e., 2000000 nodes). The hash calculations in an

update take 90% of the time spent for an update operation. Therefore, this finding

indicates the benefit of doing hash calculations at once for multiple updates in the

performMultiUpdate algorithm.
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Figure 6.3: Time spent for an update operation in FlexList with and without hash
calculations.

performMultiUpdate allows using multi proofs as discussed in Section 5. This

provides ∼25% time and space efficiency on the verifiable update operations when

the update is ∼20KB, and this gain increases up to ∼35% with 200KB of updates.

Moreover, with our algorithm the update speed at the server side is increased as well

since we use the calculateMultiHash algorithm, which calculates all possibly affected

nodes’ hash values at once, after a series of update operations. The time spent for

an update at the server side for various size of updates is shown in Figure 6.4 with

each data point reflecting the average of 10 experiments. Each update is an even

mix of modify, insert, and remove operations. If the update locality is high, meaning
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Figure 6.4: Time spent on performing multi updates against series of single updates.

the updates are on consecutive blocks (a diff operation generates several modifies

to consecutive blocks followed by a series of remove if the added data is shorter

than the deleted data, or a series of inserts otherwise, using our calculateMultiHash

algorithm after the updates without hash calculation on a FlexList for a file of size

1GB, the server time for 300 consecutive update operations (update of size

600KB) decreased from 53ms to 13ms. Overall, our results prove that a calculation

of the hash values all together at the end is more efficient than the hash calculation

at the end of each update operation.
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Figure 6.5: MultiVerify of an update against standard verify operations.

6.3 Analysis of the Verification Algorithms

Performance gain of verifying multiple updates at once: For the server to be

able to use multiUpdate algorithm, the client could be able to verify multiple updates

at once. Otherwise, as each single verify update requires a root hash value after that

specific update, all hash values on the search path of the update should be calculated

each time. Also, each update proof should include a FlexList proof alongside them.

Verifying multiple updates at once not only diminishes the proof size but also provides

time improvements at the server side. Figure 6.5 shows that a multi verify operation

is also faster at the client side when compared to verifying all the proofs one by one.

We tested the verify updates for two scenarios. One is for the updates randomly
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distributed along the FlexList; the other is for the updates with high locality. The

client verification is highly improved. For instance, with a file of size 1GB and an

update of 300KB, a verification at client side was reduced from 45ms to less than a 5

ms. With random updates, the multi verification is still 2 times faster.
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Figure 6.6: Clients challenging their data. Two lines present: first, server throughput
in count per second and second, whole time for a challenge query of FlexDPDP, at
client side, in ms.
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6.4 PlanetLab Analysis: The Real Network Per-

formance

This time, we chose a node, with a relatively faster connection, in Wuerzburg, Ger-

many1 on PlanetLab as the server which has two Intel(R) Core(TM)2 CPU 6600 @

2.40GHz (IC2) and 48 MBit upload and 80 MBit download speed. Our protocol runs

on a 1GB file (for each client), which is divided into blocks of 2KB, having 500000

nodes. The throughput is defined as the maximum amount of queries the server can

reply in a second. Our results are the average of 50 runs on the PlanetLab with

randomly chosen 50 clients from all over the Europe.

6.4.1 Challenge queries

We measured two metrics, the whole time spent for a challenge proof interaction at

the client side and the throughput of the server (both illustrated in Figure 6.6). As

shown in the Figure, the throughput of the server is around 21. When the server limit

is reached, we observe a slowdown on the client side where the response time increases

from around 500 ms to 1250 ms. Given that preparing a proof of size 460 using the

IC2 processor takes 40ms using genMultiProof on a single core, we conclude that the

bottleneck is not the processing power. The challenge queries are solely a seed, thus

the download speed is not the bottleneck neither. A proof of a multi challenge has

an average size of 280KB (∼215KB FlexList proof, ∼58KB tags, ∼2KB blocksum),

therefore to serve 21 clients in a second a server needs 47 MBit upload speed which

seems to be the bottleneck in this experiment. The more we increase the upload

speed, the more clients we can serve with a low end server.

1planetlab1.informatik.uni-wuerzburg.de



78 Chapter 6: Experimental Evaluation

20 30 40 50 60
0

10

20

30

40

50

Number of queries (per second)

S
er

ve
r 

T
ho

ug
hp

ut
 (

pe
r 

se
co

nd
)

 

 

20KB Random
200KB Random
20KB Consecutive
200KB Consecutive

Figure 6.7: Server replies per second while the clients interacting with their data
sending a query per 1.3 second.

6.4.2 Update queries

Real life usage analysis: We have conducted analysis on the SVN server where

we have 350MB of data that we have been using for the last 2 years. We examined

627 consecutive commit calls and provide results for an average usage of a commit

function by means of the update locality, the update size being sent through the

network and the updated block count.

We consider the directory hierarchy proposed in Section 7.2 of [Erway et al., 2009].

The idea presented is to set root of each file’s FlexList (of the single file scheme

presented) in the leaf nodes of a dictionary used to organize files. The update locality
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of the commits is very high. More than 99% updates in a single commit occur in the

same folder, thus does not affect most parts of the dictionary but a small portion of

it. Moreover, 27% of the updates are consecutive block updates on a single field of a

single file.

With each commit an average of size 77KB is sent, where we have 2.7% commits of

size greater than 200KB and 85% commits has size less than 20KB. These sizes are the

amounts sent through the network. Note that only remove operations do not count

in the size, since sending the index and number of bytes to be removed is sufficient.

Erway et al. show analysis on 3 public SVN repositories. They indicate that the

average update size is 28KB [Erway et al., 2009]. Therefore in our experiments on

PlanetLab we choose 20KB (to show general usage) and 200KB (to show big commits)

as the size sent for a commit call. The average number of blocks affected per commit

provided by Erway et al. is 13 [Erway et al., 2009] and in our SVN repository, it is

57.7 which both basically show the necessity of multiple update operations.

We observe the size variation of the commits and see that the greatest common

divisor of all commits is 1, as expected, thus we conclude that fixed block sized

authenticated skip lists is not applicable to the cloud storage scenario. We have

already explained the reason, showing an example where updates are not of fixed size

3.2.

Update size and type Server proof generation time Corresponding proof size
200KB (100 blocks) randomly dist. 30ms 70KB
20KB (10 blocks) randomly dist. 10ms 11KB
200KB (100 blocks) consecutive 7ms 17KB
20KB (10 blocks) consecutive 6ms 4KB

Table 6.1: Proof time and size table for various type of updates.

Update queries on the PlanetLab: We perform analysis using the same met-
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rics as a challenge query. The first one is the whole time spent at the client side

(Figure 6.8) and the second one is the throughput of the server (Figure 6.7), for up-

dates of size ∼20KB and ∼200KB. We test the behavior of the system by varying

the query frequency, the update size, and the update type (updates to consecutive

blocks or randomly selected blocks). Table 6.1 shows the requirements for each kind

of update when they are processed alone.
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Figure 6.8: A client’s total time spent for an update query (sending the update,
receiving a proof and verifying the proof).

For a randomly distributed update of size 200KB, a proof of size 70KB (∼55KB

FlexList proof, ∼13KB tags, ∼2KB blocksum, 10 byte new hash of the root), for a

random update of size 20KB, a proof of size 11KB (∼8KB FlexList proof, ∼1.3KB
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tags, ∼2KB blocksum, 10 byte new hash of the root), for a consecutive update

of size 200KB, a proof of size 17KB (∼1.5KB FlexList proof, ∼13KB tags, ∼2KB

blocksum, 10 byte new hash of the root), and for a consecutive update of size 20KB,

a proof of size 4KB (∼1KB FlexList proof, ∼1.3KB tags, ∼2KB blocksum, 10 byte

new hash of the root) is sent to the client by the server.

Figure 6.7 shows that a server can reply to ∼45 updates of size 20KB and ∼8 many

updates of size 200KB per second. Figure 6.8 also approves, that the server is loaded,

by the increase in time of a client getting served. Comparing update proofs with the

proof size of only challenges (shown in Figure 6.6), we conclude that the bottleneck

for replying update queries is not the upload speed of the server, since a randomly

distributed update of size 200KB needs 70KB proof and 8 proof per second is using

just 4.5 Mbit of the upload bandwidth or a randomly distributed updates of size

20KB needs a proof of size 11KB and 45 proof per second uses only 4MBit of upload

bandwidth. Table 6.1 shows the proof generation times at the server side. 30ms per

200KB random operation is required so a server may answer up to 110-120 queries

per second with IC2 processor and 10ms per 20KB random operation is required,

thus a server can reply up to 300 queries per second. Therefore, the bottleneck is not

the processing power either. Eventually the amount of queries of a size a server can

accept per second is limited, even though the download bandwidth doesn’t seem to

be load up. It is worth noting that the download speed is checked with a single source

and a continuous connection. When a server keeps accepting new connections, the

end result is different. This was not a limiting issue in answering challenge queries

since a challenge is barely a seed to show the server which blocks are challenged. In

our setting, there is one thread at the server side which accepts a query and creates

a thread to reply it. We conclude that the bottleneck is the server query acceptance

rate. These results indicate that with a distributed and replicated server system a

prover using FlexDPDP scheme may reply more queries.
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CONCLUSION

The security and privacy issues are significant obstacles toward the cloud stor-

age adoption [Zhou et al., 2010]. With the emergence of cloud storage services,

data integrity has become one of the most important challenges. Early works

have shown that the static solutions with O(1) complexity [Ateniese et al., 2007,

Shacham and Waters, 2008], and the dynamic solutions with logarithmic complexity

[Erway et al., 2009] are within reach. However, a DPDP [Erway et al., 2009] solution

is not applicable to real life scenarios since it supports only fixed block size and there-

fore lacks flexibility on the data updates, while the real life updates are likely not of

constant block size. We have extended earlier studies in several ways and provided a

new data structure (FlexList) and its optimized implementation for use in the cloud

data storage. A FlexList efficiently supports variable block sized dynamic provable

updates, and we showed how to handle multiple proofs and updates at once, greatly

improving scalability. We also provide a novel algorithm to build a FlexList from

scratch in O(n) time. This optimization greatly affects the preprocess operation of

our FlexDPDP scheme.

We have extended the FlexDPDP scheme with optimized and efficient algorithms,

and tested their performance on real workloads in realistic settings. We obtained a

speed up of 6, using 8 cores, on the preprocessing step by parallelization, 60% gain

on server-side updates (commits by the client), 90% gain while verifying them at the

client side. We deployed the scheme on PlanetLab and provided detailed analysis

using real version control system workload traces.
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This work can be extended by implementing FlexDPDP to distributed and repli-

cated servers. It can also be employed in a peer to peer secure storage system. Other

than that, we provide a dynamic provable data possession system but, in this work,

we show neither what to do when a corruption is caught nor how to recover it back.

As a future work, it would be nice to investigate the issue by using erasure code

techniques.
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tributed, and replicated dynamic provable data possession. In ACNS.

[Foster, 1973] Foster, C. C. (1973). A generalization of avl trees. Commun. ACM.

[Furht and Escalante, 2010] Furht, B. and Escalante, A. (2010). Handbook of Cloud

Computing. Computer science. Springer US.

[Gafni and Lamport, 2003] Gafni, E. and Lamport, L. (2003). Disk paxos. Distrib.

Comput.

[Goodrich et al., 2007] Goodrich, M. T., Papamanthou, C., and Tamassia, R. (2007).

On the cost of persistence and authentication in skip lists. In Proceedings of the

6th international conference on Experimental algorithms.

[Goodrich et al., 2008] Goodrich, M. T., Papamanthou, C., Tamassia, R., and Trian-

dopoulos, N. (2008). Athos: Efficient authentication of outsourced file systems. In

ISC.

[Goodrich and Tamassia, 2001] Goodrich, M. T. and Tamassia, R. (2001). Efficient

authenticated dictionaries with skip lists and commutative hashing. Technical re-

port, Johns Hopkins Information Security Institute.

[Goodrich et al., 2001] Goodrich, M. T., Tamassia, R., and Schwerin, A. (2001). Im-

plementation of an authenticated dictionary with skip lists and commutative hash-

ing. In DARPA.

[Goodson et al., 2004] Goodson, G., Wylie, J., Ganger, G., and Reiter, M. (2004).

Efcient byzantine-tolerant erasure-coded storage. In Proc. of the Int. Conference

on Dependable Systems and Networks, DSN ’04, page 135144.

[Hendricks et al., 2007] Hendricks, J., Ganger, G. R., and Reiter, M. K. (2007). Low-

overhead byzantine fault-tolerant storage. In Proceedings of twenty-first ACM



Bibliography 87

SIGOPS symposium on Operating systems principles, SOSP ’07. ACM.

[Jayanti et al., 1998] Jayanti, P., Chandra, T. D., and Toueg, S. (1998). Fault-

tolerant wait-free shared objects. J. ACM.

[Jensen et al., 2009] Jensen, M., Schwenk, J., Gruschka, N., and Iacono, L. L. (2009).

On technical security issues in cloud computing. In Cloud Computing, 2009.

CLOUD’09. IEEE International Conference on, pages 109–116. IEEE.

[Juels and Kaliski., 2007] Juels, A. and Kaliski., B. S. (2007). PORs: Proofs of re-

trievability for large files. In ACM CCS.

[Liskov and Rodrigues, 2006] Liskov, B. and Rodrigues, R. (2006). Tolerating byzan-

tine faulty clients in a quorum system. 2012 IEEE 32nd International Conference

on Distributed Computing Systems.

[Malkhi and Reiter, 1998] Malkhi, D. and Reiter, M. (1998). Byzantine quorum sys-

tems. Distrib. Comput.

[Maniatis and Baker, 2003] Maniatis, P. and Baker, M. (2003). Authenticated

append-only skip lists. Acta Mathematica.

[Meiklejohn et al., 2010] Meiklejohn, S., Erway, C., Küpçü, A., Hinkle, T., and
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