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ABSTRACT

In this thesis we study the j-invariant of the canonical lifting of an elliptic curve

as a Witt vector. It is proved that its Witt coordinates lie in the open affine subset of

the j-line determined by the ordinary locus which implies the existence of a universal

formula for the j-invariant of the canonical lifting. Canonical lifting of elliptic curves over

imperfect fields are also analyzed and the notion of the canonical lifting is generalized for

elliptic curves defined over bases which are not necessarily fields. The canonical lifting of

the elliptic curves with some specific j-invariants are also explicitly computed.
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ÖZET

Bu tezde eliptik eğrilerin kanonik uzamalarının j-invaryantları Witt vektörü olarak

incelenmiştir. Bu Witt koordinatlarının j-doğrusunun adi noktalar tarafından belirlenen

açık afin altkümesinin içinde olduğu ve bu sayede kanonik uzamanın j-invaryantı için

evrensel bir formülün varlığı ispatlanmıştır. Ayrıca mükemmel olmayan cisimler üzerinde

tanımlı eliptik eğrilerin kanonik uzamaları incelenmiştir ve kanonik uzama kavramı cisim-

ler üzerinde tanımlı olmayan eliptik eğrilere genelleştirilmiştir. Bazı özel j-invaryantlara

sahip eliptik eğrilerin kanonik uzamaları da açıkça bulunmuştur.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Let k be an algebraically closed field of characteristic p and W (k) be the ring of

p-typical Witt vectors of k. Let A be an ordinary abelian variety over k. A consequence

of the Serre-Tate theorem is that up to isomorphism there exists a unique abelian scheme

A over W (k) such that

1. A⊗W (k) k
∼→ A,

2. EndW (k)(A)
∼→ Endk(A)

where both isomorphisms are obtained via the reduction (mod p) : A→ A. This abelian

scheme A is called the canonical lifting of A. We will see and use some of the other

equivalent characterizations of the canonical lifting throughout this thesis.

In general it is not an easy question to completely determine the canonical lifting

of a given abelian variety. There are various works on the computation of the canonical

lifting of elliptic curves which allow us to derive algorithms with satisfactory complexities

with different applications (See [9], [14]) .

In the case of elliptic curves we can reformulate the problem of finding canonical

lifting in terms of the j-invariants as follows. Let E be an ordinary elliptic curve over k

and E be its canonical lifting. By definition, the j-invariant of E, denoted by j(E) ∈ W (k)

depends only on the j-invariant of E, say j0. If we set

kord = {j0 ∈ k| elliptic curves with j-invariant j0 are ordinary}



Chapter 1: Introduction 2

then we can define the following function;

Θ : kord −→ W (k),

j0 7−→ j(E) = (j0, j1, ...)

where E is the canonical lifting of E and each ji is a function of j0. The question of

finding the canonical lifting in this form was first given in [7]. The first solution of this

question which uses the classical modular equation was also given there.

In this thesis we will focus on the structure of ji considered as a function of j0. It

was proved that ji is a rational function of j0 [2], but a complete description of ji was not

given. A first guess is that each ji may be a polynomial of j0. We will see that this is

almost true, i.e. each ji is a rational function of j0 where the set of all poles of all ji is a

subset of supersingular j-values and hence finite. We also obtain a complete result for the

coefficients of ji seen as a rational function of j0. Explicitly we will prove the following

theorem.

Theorem 1.1 (Main theorem). Let F be a perfect field of characteristic p > 0 with a fixed

algebraic closure k, and J be an indeterminate. Let φp(J) denote the Hasse polynomial,

i.e. the polynomial in Fp[J ] whose roots are the supersingular j-values in characteristic

p. Let

A = F [J, 1/φp(J)].
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(i) There exist fi ∈ A for all i ∈ Z≥1 such that for any j0 ∈ kord,

Θ(j0) = (j0, f1(j0), f2(j0), ...fn(j0), ...)

where for any such j0 we see fi ∈ A as the homomorphism defined as

ji : A −→ k, J 7−→ j0

(ii) If j0 = 0 is an ordinary j-value then Θ(0) = 0 ∈ Zp, and similarly if j0 = 1728 is

an ordinary j-value then Θ(1728) = 1728 ∈ Zp.

The first assertion of the theorem mean that we have a universal formula for the

j-invariant of the canonical lifting, and Witt entries of this universal formula are almost

polynomials. The second assertion is independent of the previous one and proved with a

different argument.

We proceed as follows. In §2 we give a brief overview of the Serre-Tate theorem.

In §3, we generalize the notion of the canonical lifting for elliptic curves defined over

Fp-schemes satisfying certain hypotheses. In §4 we use fppf-Kummer theory to analyze

the canonical lifting of an elliptic curve defined over an imperfect field. In §5 we give

a purely elementary and computational proof of the main results of §4 which allow us

to compute the canonical lifting with a different method. Finally in the last chapter we

apply the results of §3 and §4 to universal families of ordinary elliptic curves to prove (i)

of Theorem 1.1. We also prove (ii) in the last chapter.
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We fix the following notation. For any schemes X/T and U/T we set XU := X×T U .

If U =SpecC is affine, we may use XC instead of XU . If T =SpecB is also affine, we may

also use X⊗BC for XU . For t ∈ T with residue field κ(t), we denote X×TSpecκ(t) by Xt.

For any group scheme G/T , G[N ] denotes the kernel of the multiplication by N on G. If G

is a p-divisible group then we may write G = (Gn, in) where Gn =ker(pn : Gn+1 −→ Gn+1)

and in : Gn −→ Gn+1. If X is an abelian variety, we denote the p-divisible group

(X [pn], in) associated to X by X [p∞].
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Chapter 2

AN OVERVIEW OF THE SERRE-TATE THEOREM

In this chapter we briefly recall some aspects of the Serre-Tate theorem. We restrict

ourselves to the definition-construction of the canonical lifting which is directly used in

the proofs. General references for a complete proof and a detailed analysis of the Serre-

Tate theorem are [5] and [8]. For the sake of completeness we quote the following theorem

from [5] and call it as the general Serre-Tate theorem.

Theorem 2.1 (General Serre-Tate theorem). Let A be a ring in which p is nilpotent. Let

I be a nilpotent ideal of A, and put A0 = A/I. Let AS(A) denote the category of abelian

schemes over A, and let Def(A,A0) denote the category of triples (X0, L, ǫ) where X0 is an

abelian scheme over A0, L is a p-divisible group over A and ǫ : L0 := L⊗AA0 −→ A0[p
∞]

is an isomorphism. Then the functor

X 7−→ (X0, X [p∞], the natural map)

is an equivalence of the categories AS(A) and Def(A,A0).

Let k be an algebraically closed field of characteristic p > 0 and A be an Artin local

ring with residue field k. In general we say that a lifting of a scheme X −→ Spec k is a pair

(X, ι) where X −→ SpecA is a scheme over SpecA and ι : X⊗Ak
∼−→ X is an isomorphism.
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If ι is unique we omit it and just say that X −→ SpecA is a lifting of X −→ Spec k. We

can replace SpecA by any scheme with some residue field k and still can define a lifting in

a similar way, but for our purposes we only consider lifting over Artin local rings. Given

an ordinary abelian variety X over k, the Serre-Tate theorem classifies all abelian schemes

defined over A that lift X . For such an ordinary abelian variety X −→ Spec k and an

abelian scheme X −→ SpecA lifting X/k, there are the associated p-divisible groups (=

Barsotti-Tate groups) denoted by X [p∞] and X[p∞] respectively which play an important

role summarized in the following diagram;

{Isomorphism classes of X/A lifting X/k} ∼−→ (2.1)

{Isomorphism classes of X[p∞]/A lifting X [p∞]/k} ∼−→ (2.2)

ExtA(Tp(X)(k)⊗Qp/Zp,HomZp
(Tp(X

D)(k), Ĝm))
∼−→ (2.3)

HomZp
(Tp(X)(k)⊗ Tp(X

D)(k), Ĝm(A)),

where Tp(X)(k) is the Tate module of X , XD denotes the dual abelian variety, Ĝm

denotes the formal completion of the multiplicative group Gm and ExtA(−,−) denotes

the extension group of A-groups. General references for the properties of p-divisible groups

are [13] and [8].

This diagram is the core ingredient of this thesis. We will not give a proof of these

equivalences but use them widely. A complete proof can be found in [5] and [8]. Indeed

(2.1) is just the general Serre-Tate theorem. We will use it in almost all chapters. The

next equivalence (2.2) will be used in §3 and §4 and the last equivalence (2.3) will be used

in an indirect way in §5.
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The above diagram shows that the set

{Isomorphism classes of X/A lifting X/k}

has a natural group structure.

Definition. With the above notation the unique abelian scheme X/A which corresponds

to the identity element of the group

ExtA(Tp(X)(k)⊗Qp/Zp,HomZp
(Tp(X

D)(k), Ĝm))

is called the canonical lifting of X/k over A.

Remark 1. In the introduction, the base of the canonical lifting is given to be a charac-

teristic zero integral domain, but here we define it over an Artin local ring which indeed

fits well to our purposes. At the end of this chapter we will see that this definition is

justified.

Remark 2. If we only assume that k is perfect than the above diagram and the definition

still remain valid by a slight change of the objects involved. A complete study of equivalent

definitions of the canonical lifting for perfect k can be found in [8, V.3 and the Appendix].

The particular case we are concerned with here is the case where A = Wn(k), the

ring of p-typical Witt vectors of length n. Recall that if k is a perfect field of characteristic

p then Wn(k) is an Artin local ring with residue field k and maximal ideal (p). See [11]

for the definition and basic facts about Witt vectors which we use here. In this case the
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canonical liftings Xm/Wm(k) are compatible with each other, i.e. for any m ≤ n,

Xn ⊗Wn(k) Wm(k)
∼−→ Xm.

Thus the inverse system (Xm/Wm(k))m defines a formal abelian scheme over W (k) which

can be algebraicized ([8], §V.3.3). This abelian scheme is defined as the canonical lifting

of X/k over W (k), and hence justifies our definition above. If there is no confusion about

the base we will just say the canonical lifting of X/k.
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Chapter 3

CANONICAL LIFTING OF FAMILIES OF ELLIPTIC CURVES

In this chapter we will show that we can extend the definition of the canonical lifting

to elliptic curves defined over Fp-schemes under some hypothesis. This will allow us to

mention about the canonical lifting of a family of elliptic curves. Main result of this

chapter is Theorem 3.4 which is stated and proved at the end of this chapter.

We fix the following notation for this chapter. Let F be a perfect field of charac-

teristic p and R be a Noetherian integral F -algebra with fields of fractions K. We fix an

algebraic closure of K, and denote it by K̄. Let K ′ be the perfect closure of K (i.e. the

maximal purely inseparable extension of K) in K̄ and R′ be the integral closure of R in

K ′. We also define the subrings

Rn = R1/pn = {x ∈ K̄|xpn ∈ R}.

Note that Rn is Noetherian, and R′ = ∪nRn. Also the morphism of schemes

SpecR′ −→ SpecR induced by the inclusion R →֒ R′ is a homeomorphism. If s′ ∈ SpecR′

maps to s ∈ SpecR then κ(s′) is the perfect closure of κ(s) [3]. Let E/R be an ordinary

elliptic curve in the sense of [6, §2 and §12]. Let En := E ⊗R Rn where the base change

is done via the pn-th root homomorphism R −→ Rn.
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Throughout this chapter E/R and En/Rn will always denote these elliptic curves

defined here. To simplify notation we use E also to denote the base extensions E ⊗R,i Rn

and E ⊗R,i R
′ where i is the inclusion map.

Now let T be the spectrum of a complete Noetherian local ring. Then for any finite

locally free group scheme G/T , there is a unique exact sequence called the connected-

étale sequence of G,

0 −→ G0 −→ G −→ Get −→ 0

whereG0 andGet are connected and étale T -group schemes respectively. It is characterized

by the fact that for any étale T -group H , any T -group homomorphism G −→ H factors

through G −→ Get [12]. By passage to limit we have a similar construction for p-divisible

groups. If G = (Gn, in)n is a p-divisible group, then G0 := (G0
n, in) and Get := (Get

n , in)

are connected and étale p-divisible groups respectively. By [13] we have an exact sequence

of p-divisible groups

0 −→ G0 −→ G −→ Get −→ 0.

Note that if T =SpecF then the connected-étale sequence of G splits. In particular if Ẽ

is an ordinary elliptic curve over F then the connected-étale sequence of Ẽ[p∞] splits over

F . This fact is very crucial in the construction of the canonical lifting (Recall Remark

2). So in order to generalize the notion of the canonical lifting we need a similar result

when F is replaced by another scheme. But a priori we don’t even know that E[p∞] has
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a connected-étale sequence over an arbitrary base. The following theorems of Messing

which we directly quote from [8] and the Proposition 3.1 below allow us to overcome this

problem.

Theorem 3.1. Let S be any scheme and f : X −→ S be a finite locally free morphism of

schemes. Then the function s 7−→ (separable rank of Xs) is locally constant on S if and

only if there are morphisms i : X −→ X ′ and f ′ : X ′ −→ S which are finite and locally

free with i radiciel and surjective, f ′ étale and f = f ′ ◦ i. The factorization is unique up

to unique isomorphism and is functorial in X/S.

Proof. [8, §II.4.8].

Theorem 3.2. Let S be a scheme on which p is locally nilpotent, and G be a p-divisible

group over S. Then the following conditions are equivalent.

(i) G is an extension of an étale p-divisible group by a connected p-divisible group.

(ii) The function s 7−→ (separable rank of G[p]s) is locally constant on S.

Proof. We only take the relevant parts of [8, §II.4.9].

Proposition 3.1. Let E[pn] denote the kernel of pn : E −→ E and E[p∞] be the p-divisible

group of E.

(i) For each n there is a unique connected- étale sequence

0 −→ E[pn]0 −→ E[pn] −→ E[pn]et −→ 0

which splits over Rn.
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(ii) There is a unique connected- étale sequence of p-divisible groups

0 −→ E[p∞]0 −→ E[p∞] −→ E[p∞]et −→ 0,

which splits over R′.

Proof. By hypothesis E is ordinary, so the p-divisible group G = E[p∞] satisfy the last

condition of Theorem 3.2, and the existence of both sequences follow. Recall the notation

we adopted for E, i.e. we can take the base to be R, Rn or R′ and so we have the relevant

connected- étale sequences over any of these bases. But by the uniqueness assertion of

Theorem 3.1 these sequences are compatible with each other in the sense that ER′ [pn]0 =

(E[pn]0)R′ and similarly for other groups and the other base Rn. Thus the uniqueness of

the sequences in the theorem also follow.

The remaining thing is to prove the splitting of the sequences over the specified

bases. First note that the splitting of the sequences given in (i) for all n imply the

splitting of the sequence given in (ii). Thus we only need to show that

0 −→ E[pn]0 −→ E[pn] −→ E[pn]et −→ 0

splits over Rn. Also the groups involved here are all commutative, so splitting amounts

to giving a chapter of E[pn] −→ E[pn]et over Rn.

Let F n : SpecRn −→SpecRn be the n-th iterate of the absolute Frobenius of
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SpecRn. Then we have

E(pn)
n := En ⊗Rn,Fn Rn = E ⊗R,i Rn(= E).

To simplify notation we use F n also to denote the n-th iterate of the relative Frobenius

of En; F
n : En −→ E

(pn)
n . We denote the dual isogeny of F n by V n. Then we have the

following commutative diagram

E
V n

> En

E

Fn

∨[pn] >

which shows that ker(V n) is a subgroup of E[pn]. But since E is ordinary then ker(V n) is a

finite étale group over Rn [6, §12.3.6]. The inclusion ker(V n) →֒ E[pn] will give a required

section once we can show that ker(V n)
∼−→ E[pn]et. Note that this isomorphism holds

over algebraically closed fields; since then E[pn] = µpn × Z/pnZ, and V n is the identity

on µpn and kills Z/pnZ. Our aim is to reduce to this case. In general the composition

ker(V n) −→ E[pn] −→ E[pn]et (3.1)

is a group homomorphism, so necessarily commutes with the action of the étale fundamen-

tal group (see [12] for the definition of the étale fundamental group). Finally we remark

that Rn is Noetherian for any n. Now the following theorem of Grothendieck completes
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the proof.

Theorem. Let S be a locally Noetherian scheme, α be a geometric point, and π = π(S, α)

be the étale fundamental group of S centered at α. Then the functor Y 7−→ Y (α) estab-

lishes an equivalence between the category of finite étale schemes over S and the category

of finite sets with a continuous π action.

Remark. We need Noetherian hypothesis only in the last step of the proof, i.e. only to

use the above theorem of Grothendieck. So the sequences in (i) and (ii) still exist if we

drop the Noetherian condition on R.

Remark. The sequence given in (ii) of Proposition 3.1 also captures the connected- étale

sequence of the fibre κ(s′) for any s′ ∈ SpecR′ in the following sense;

(E[p∞]et)s′ = (Es′ [p
∞])et and (E[p∞]0)s′ = (E′s[p

∞])0.

Now we will use Proposition 3.1, and the general Serre-Tate theorem to find a good

lifting of E(= ER′) to Wm(R
′) for each m. We will need the following important theorem

of Grothendieck.

Theorem 3.3. Let A be a ring, I an ideal of A. Suppose that A is complete and separated

with respect to topology defined by the ideal I. Put A0 = A/I. Then the functor

X 7−→ X ⊗A A0

establishes an equivalence between the category of finite étale A-schemes and the category

of finite étale A0-schemes.
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Proof. [4, §18.3.2].

Theorem 3.4. Let R be a Noetherian, integral F -algebra with perfect closure R′, and

E be an ordinary elliptic curve over R. Then for each m there exists a unique elliptic

curve Em/Wm(R
′) lifting E/R′ such that the p-divisible group Em[p

∞] has a split exact

connected-étale sequence. Moreover for any s′ ∈ SpecR′ with residue field κ(s′), the elliptic

curve

Em ⊗Wm(R′) Wm(κ(s
′))

is the canonical lifting of Es′ over Wm(κ(s
′)).

Proof. Let m ≥ 2 be a fixed integer. Since R′ is a perfect ring, A = Wm(R
′) satisfies the

hypothesis of Theorem 3.3. So for any n there exists a unique étale group scheme Hn over

Wm(R
′) such that

Hn ⊗Wm(R′) R
′ ∼−→ E[pn]et.

It also follows that Hn form an inductive system, and so the limit gives a p-divisible group

H∞ lifting E[p∞]et. Applying Cartier duality to E[pn]et, we see that E[pn]0 and so E[p∞]0

has also a unique lifting G∞ to Wm(R
′). Since the sequence given in (ii) of Proposition

3.1 is split exact, the product G∞ ×H∞ lifts the p-divisible group E[p∞].

By the general Serre-Tate theorem there is a unique abelian scheme Em over Wm(R
′)
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lifting E which corresponds to G∞×H∞, and so has a split exact connected- étale sequence

0 −→ Em[p
∞]0 −→ Em[p

∞] −→ Em[p
∞]0 −→ 0.

By checking fibers or dimension we can see that Em is indeed an elliptic curve.

Now by construction for any s′ ∈ SpecR′, the elliptic curve Em ⊗Wm(R′) Wm(κ(s
′))

lifts Es′ and the associated p-divisible group

Em[p
∞]⊗Wm(R′) Wm(κ(s

′))

has a split exact connected- étale sequence. So Em⊗Wm(R′)Wm(κ(s
′)) must be the canon-

ical lifting of Es′ .

We may call the elliptic curve Em as the canonical lifting of E over Wm(R
′). The

j-invariant of Em, denoted by j(Em) will be the universal formula for the canonical lifting

of the fibers in the following sense: Let

j(Em) = (j0, j1, ..., jm−1)
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and let fs′ : R′ −→ κ(s′) be the canonical map for s′ ∈ SpecR′. Then the j-invariant of

the canonical lifting of Es′ over Wm(κ(s
′)) is given by

j = (fs′(j0), fs(j1), ..., fs(jm−1)).
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Chapter 4

CANONICAL LIFTING OVER IMPERFECT FIELDS

In this chapter we will prove that the base of the canonical lifting has a well behaviour

with respect to the base of the given ordinary elliptic curve. Explicitly we will prove the

following theorem.

Theorem 4.1. Let K be any field of characteristic p > 0, and let E be an ordinary elliptic

curve over K. Let E be the canonical lifting of E over W (K̄). We denote the j-invariant

of E by j(E) = (j0, j1, ..., jn, ...). Then each jn is an element of K.

Proof. This theorem for p ≥ 5 was proved by Finotti, L.R.A. in [2] using Greenberg

transforms and elliptic Teichmüller lifts. Here we give a different proof. The theorem

holds for perfect K by definition of the canonical lifting. Let K ′ and Ksep denote the

perfect and separable closures of K respectively. Then we have K ′ ∩ Ks = K. Since

jn ∈ K ′ it suffices to show that jn ∈ Ksep. Thus we may assume K to be a separably

closed field and K ′ = K̄. In this case for any integer n ≥ 1 we have the following

isomorphisms over K,

E[pn]0
∼−→ µpn,

E[pn]et
∼−→ Z/pnZ
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where µpn =ker(pn : Gm −→ Gm) and Z/pnZ is the Cartier dual of µpn. We may fix these

isomorphisms to be compatible with Cartier duality. Then we have the exact sequence

0 −→ µ −→ E[p∞] −→ Qp/Zp −→ 0

where µ and Qp/Zp denote the p-divisible groups (µpn, in) and (Z/pnZ, in) respectively.

By the general Serre-Tate theorem it suffices to show that there exists a p-divisible group

G/Wm(K) lifting E[p∞] given with an extension

0 −→ µ −→ G −→ Qp/Zp −→ 0

which splits after base change to Wm(K
′). So the result follows from the following more

general theorem.

Theorem 4.2. Let K be any field of characteristic p > 0 and G = (Gn, in) be a p-divisible

group over K given with an extension

0 −→ µ −→ G −→ Qp/Zp −→ 0. (4.1)

Then there exists a p-divisible group G/Wm(K) lifting G with an extension

0 −→ µ −→ G −→ Qp/Zp −→ 0.
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which splits over Wm(K
′).

Before we go into the proof we briefly give some facts which is crucial in the proof.

Further details of this part can be completely found in [6, §8.7-10]. We define a finite

locally free group scheme T [N ] for any N > 0 over Z[q, q−1] as follows. As a scheme T [N ]

is the disjoint union of

Ti[N ] = Spec (Z[q, q−1][X ]/(XN − qi))

for i = 0, 1, ..., N − 1. For any connected Z[q, q−1]-algebra C we have

T [N ](C) = {(X, i/N)|X ∈ C, 0 ≤ i ≤ N − 1, XN = qi}

The group law is defined by

(X, i/N).(Y, j/N) =







(XY, (i+ j)/N) if i+ j ≤ N − 1,

(XY/q, (i+ j −N)/N) if i+ j ≥ N.

It is easy to see that T [N ] is a finite locally free group scheme of order N2 killed by N

and the elements of the form (X, 0) is a subgroup isomorphic to µN . So that we have an

exact sequence

0 −→ µN −→ T [N ] −→ Z/NZ −→ 0.
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This exact sequence splits over C if and only if the image of q in C has an N -th root.

Indeed T [N ] is universal in the following sense.

Proposition 4.1. Let S be any scheme and G/S be a finite locally free group scheme

over S of order N2 which is killed by N given with an extension structure

0 −→ µN −→ G −→ Z/NZ −→ 0. (4.2)

Then Zariski locally on S there exists q ∈ Gm(S) such that

G
∼−→ T [N ]⊗Z[q,q−1] S

and this isomorphism is compatible with extension structures.

Proof. A complete proof can be found in [6, §8.10.5]. Here we do not give a complete

proof. For our purposes we briefly recall the construction of the given isomorphism in

the case S =SpecA is affine and Pic(A) = 0. So that we may remove the Zariski local

condition on the relevant isomorphism.

Now locally fppf (4.2) splits. So G is an fppf form of the product group scheme

µpn ×Z/pnZ. But the set isomorphism classes of fppf forms of µpn ×Z/pnZ is bijective to

the set of isomorphism classes of Aut-torsors where Aut is the group scheme whose set of
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T -valued points denoted by Aut(T ) is







automorphisms of µpn × Z/pnZ of the form





1 φ

0 1



 , φ ∈ HomT (Z/p
nZ, µpn)







But the later set is just H1(SpecA,Aut). Also Aut
∼−→ µpn and so the group

H1(SpecA, µpn) classifies the isomorphism classes of forms of µpn × Z/pnZ. Note that

the torsor corresponding to G is just the inverse image of 1 in G −→ Z/pnZ. Now

consider the Kummer sequence

0 −→ µpn −→ Gm −→ Gm −→ 0.

Since H1(SpecA,Gm) =Pic(A) = 0 we have the following relevant part of the correspond-

ing long exact sequence

Gm(A)
pn−→ Gm(A) −→ H1(SpecA, µpn) −→ 0.

So for any cocycle in H1(SpecA, µpn) the corresponding µpn-torsor is just [p
n]−1(q)

for some q ∈ A∗. Note that q is unique up to multiplying by a pn-th power in A∗. In

particular the class of G in H1(SpecA, µpn) denoted by cl(G) corresponds to a µpn-torsor

[pn]−1(q) for some q ∈ A∗. For any A-scheme T , the T -valued points of [pn]−1(q) is the
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set {x ∈ Gm(T ) : x
pn = q}. Now consider the following extension of group schemes

0 −→ µpn −→ T [pn]⊗Z[q,q−1] A
ǫ−→ Z/pnZ −→ 0.

The µpn-torsor corresponding to T [pn] ⊗Z[q,q−1] A is then ǫ−1(1) = [pn]−1(q), so that the

images of G and T [pn]⊗Z[q,q−1] A in H1(SpecA, µpn) are the same and hence

Gn
∼−→ T [pn]⊗Z[q,q−1] A.

Proof of 4.2. First note that any p-divisible group G lifting G necessarily has an extension

structure

0 −→ µ −→ G −→ Qp/Zp −→ 0.

This follows from Theorem 3.2. So we only need to show the splitting. Now giving an

extension as (4.1) is same as giving a compatible family of extensions

0 −→ µpn −→ Gn
π−→ Z/pnZ −→ 0 (4.3)

for all n. Since Gn satisfies the conditions of Proposition 4.1 there exists q ∈ K∗ such
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that

Gn
∼−→ T [pn]⊗Z[q,q−1] K.

By hypothesis we have that

Gn−1 = ker(pn−1 : Gn −→ Gn)
∼−→ T [pn−1]⊗Z[q,q−1] K.

This shows that the class of Gn−1 in H1(SpecK,µpn−1) is the µpn−1-torsor [pn−1]−1(q).

So G = (Gn, in) determines a non-unique sequence of elements (qn) in K∗ where qn ∈
H1(SpecK,µpn)

∼−→ K∗/(K∗)p
n

and qn = upn−1

n qn−1 for some un ∈ K∗, i.e. G determines

an element of the inverse limit

lim←−
n

K∗/(K∗)p
n

.

Conversely given an element (qn) ∈ lim←−n
K∗/(K∗)p

n

choose a sequence (qn) in K∗ such

that qn 7→ qn. Then we have that qn = upn−1

n qn−1 and that G = (T [pn]⊗Z[qn,q
−1
n ] A, in)n is

a p-divisible group. Thus

ExtK(Qp/Zp, µ)
∼→ lim←−

n

K∗/(K∗)p
n
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Up to now we didn’t use that K is indeed a field, we only used that Pic(K) = 0. We

can carry out the same procedure to obtain a p-divisible group over Wm(K), i.e. we need

to specify a sequence (Qn) in Wm(K)∗ such that Qn = Upn−1

n Qn−1. Then the p-divisible

group

G = (T [pn]⊗Z[Qn,Q
−1
n ] Wm(K), in)

is the p-divisible group corresponding to the chosen sequence (Qn). Now we impose the

condition that G lifts G, i.e. Gn ⊗Wm(K) K
∼−→ Gn via the surjection Wm(K) −→ K

and the isomorphims are compatible with the maps in : Gn −→ Gn+1. This condition is

satisfied if we choose Qn and Un such that Qn 7→ qn and Un 7→ un under Wm(K) −→ K.

Also we want the connected-étale sequence of G to split over Wm(K
′). This means that

Qn must have a pn-th root in Wm(K
′). All of these are satisfied if we set Qn and Un to

be the Teichmüller lifts of qn and un respectively. Let

f : K∗ −→ Wm(K)∗,

a 7−→ (a, 0, 0, ..., 0)

be the Teichmüller map. Thus if we set Qn = f(qn) = (qn, 0, 0, ..., 0) and Un = f(un) =

(un, 0, 0, ..., 0), the corresponding G is the required p-divisible group.
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Chapter 5

CANONICAL LIFTING AND DIVISION POLYNOMIALS

In the previous chapter we proved that if K is a separably closed field and E is an

ordinary elliptic curve over K then the canonical lifting of E is defined over Wm(K). In

this chapter we will show that if char(K) = p ≥ 5 then we can drop the assumption that

K is separably closed. Explicitly we prove the following theorem.

Theorem 5.1. Let K be a field of characteristic p ≥ 5, n ≥ 2 be an arbitrary integer and

E be an ordinary elliptic curve over K. Then the canonical lifting E of E is defined over

Wn(K). In particular if we denote the j-invariant of E by j(E) = (j0, j1, ..., jn) then each

jn is an element of K.

Note that we proved this theorem for separably closed K in the previous chapter.

Here we give a more elementary proof for any K. But before we go into the proof we need

do to some setup. We first obtain some simple results which leads another characterization

of the canonical lifting. In this chapter we will use the division polynomials extensively.

The only preliminary about division polynomials is [10, §3, Exercise 3.7]

First we give an equivalent characterization of the canonical lifting. We omit most

of the details referring the reader to [5]. Let X be an ordinary elliptic curve over an

algebraically closed field k of characteristic p > 0, and B be an Artin local ring with

residue field k. Let X be any lifting of X/k over B. Then by Theorem 3.2 we have the
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following exact sequences

0 → X̂(= X [p∞]0)→ X [p∞]→ X [p∞]et → 0, (5.1)

0 → X̂(= X[p∞]0)→ X[p∞]→ X[p∞]et → 0 (5.2)

where the first and the last nonzero p-divisible groups are of height 1, and so the middle

one is of height 2 in both sequences. Also X̂ and X̂ are Cartier duals of X [p∞]et and

X[p∞]et respectively (See [12] and [13] for Cartier duality). Since k is algebraically closed

we have that X [p∞]et
∼→ Qp/Zp = (X(k)[pn], in) where we see X(k)[pn] as the constant

étale group Z/pnZ over k. By the same reason the first sequence splits. For each n we

have the following isomorphisms of k-groups;

X̂ [pn]
∼→ HomZ(X(k)[pn], µpn),

X̂
∼→ HomZp

(TpX(k), Ĝm).

Since B is an Artin local ring by Theorem 3.3 these isomorphisms extend to the following

isomorphisms of B-groups;

X̂[pn]
∼→ HomZ(X(k)[pn], µpn),

X̂
∼→ HomZp

(TpX(k), Ĝm).
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Thus we obtain the the perfect pairings

Epn,X : X̂[pn]×X(k)[pn]→ µpn,

EX : X̂× TpX(k)→ Ĝm.

for each n.

Now we construct a map TpA(k) → X̂(R). Let I be the maximal ideal of B and r

be a sufficiently large integer such that Ir+1 = 0. Since X̂ is a formal Lie group over B,

every element of X̂ is killed by pr. Now for any P ∈ X(k) define φr(P ) = pr(P̂ ) where

P̂ ∈ X(B) is any lifting of P . This gives a map from X(k) into X(B). Note that this

map is independent of the choice of P̂ and so well-defined. The image of X(k)[pn] is

in X̂(B). So we get a homomorphism φr : X(k)[pn] → X̂(B) which is compatible with

pi : X(k)[pr+i]→ X(k)[pr]. Thus we obtain a homomorphism

φX : TpX(k)
πr−→ X(k)[pr]

φr−→ X̂(B).

We define qX/B : TpX(k) ⊗ TpX(k) → Gm(B) as qX/B(α, β) := EX(φX, β). Thus start-

ing with an extension of the form (5.2) we obtain an element q ∈ HomZp
(Tp(X)(k) ⊗

Tp(X
D)(k), Ĝm(B)) which indeed gives the equivalence (2.3) of §2 [5].

Since the pairing EX is perfect, q = 1 if and only if φX = O where O is the identity

element. So canonical lifting of X is the elliptic curve X such that the corresponding q is

identically one. In other words X is the canonical lifting of X if and only if φr = O. Note
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that the only condition on r is that Ir+1 = 0. If we set

r′ = min{r ∈ N : Ir+1 = 0}

we obtain the following corollary.

Corollary 5.1. With the previous notation the followings are equivalent.

1. X is the canonical lifting of X.

2. φr′ = O.

3. φr = O for some (hence all) r ≥ r′.

We will use Corollary 5.1 for B = Wn+1(k) and r = n+ 1. Note that X(k)[pn+1]
∼→

Z/pn+1Z is cyclic so it is enough to show that φr(P ) = O for some generator P ∈
X(k)[pn+1]. We will need the following lemma.

Lemma 5.1. Let K be any field of characteristic p > 0 and E be an ordinary elliptic

curve over K given by an affine Weierstrass equation

E : f(x0, y0) = 0.

Let P = (x0, y0) ∈ E(K̄) be any point. If pnP ∈ E(K) then xpn

0 ∈ Ks. In particular

if P = (x0, y0) ∈ E[pn](K̄) then xpn

0 ∈ Ks.

Proof. Let E(pn) = E⊗KK where the product is taken via the pn-th power homomorphism
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pn : K → K. Then we have the relative Frobenius F n : E → E(pn) which simply sends

(x0, y0) to (xpn

0 , yp
n

0 ). Now pn : E → E factors through F n as

pn : E
Fn

−→ E(pn) Vn

−→ E

where V n is the dual of F n called Verschiebung. Since E is ordinary, V n is an étale map

[6, §12.3.6]. Let

P : Spec K̄ → E

be a point such that pnP is a K-point. This means that pnP : Spec K̄ → E factors

through SpecK. Then we have the following commutative diagram.

Spec K̄
Fn◦P−−−→ E(pn)





y





y
V n

SpecK −−−→ E

Let Q ∈ E be the image of SpecK. Then Q̂ := F n ◦P (Spec K̄) ∈ (V n)−1(Q). Since V n is

étale we have that the residue field of E(pn) at Q̂ denoted by κ(Q̂) is a separable extension

of the residue field of E at Q which is just K. This implies that F n ◦ P factors through
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SpecKs, i.e. we have the composition

F n ◦ P : Spec K̄ → SpecKs → E(pn).

Thus F n ◦ P is a Ks-point, i.e. xpn

0 ∈ Ks.

By Corollary 5.1 it is enough to work with p-th power torsion points to find the

canonical lifting. Now we will give some basic facts about division polynomials which we

will need in the proof. Any elliptic curve C over any scheme on which 6 is invertible can

be (Zariski) locally given by equations of the form

Y 2 = X3 + AX +B

[6, §2.2]. This condition is satisfied in our case as we assume p ≥ 5. Since we will work on

the local ring Wn(K) we may assume that we have a single global Weierstrass equation

of this form. Let N be a positive integer. Let Ψ = ΨC,N be the N -division polynomial,

i.e. the polynomial whose roots give the x-coordinates of the nontrivial N -torsion points.

We say that a point P ∈ C(Wn(K̄)) is nontrivial if P (mod p) 6= O. It is well known that

if N is odd, then Ψ ∈ Z[A,B][x].

Now we explain what we mean by saying that the canonical lifting has “lots of”

nontrivial p-th power torsion points. Let E be the canonical lifting of E. Take a non-

identity point P = (x0, y0) ∈ E(K̄)[pr] for some r ≥ n. Take any lifting P̂ ∈ E(Wn(K̄)).

Then by Corollary 5.1, P̂ must be a pr-torsion point. The converse is also true, i.e. if
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any lifting P̂ ∈ E(Wn(K̄)) of any P ∈ E(K̄)[pr] for some r ≥ n is a pr-torsion point

then E is the canonical lifting. If we put P̂ = ((x0, x1, ...xn−1), (y0, y1, ..., yn−1)) then

Ψ((x0, x1, ..., xn−1)) = 0 for infinitely many x1, x2, ..., xn. This obviously puts a condition

on the coefficients of Ψ. As the coefficients of Ψ are completely determined by A and B

this a posteriori puts a condition on A and B.

In [1], Cassels shows that for any N , the division polynomials Ψ = ΨN of such a

cubic equation is defined over Z[A,B] and satisfy

(Ψ2)′ ≡ 0 (mod N), (5.3)

where ()′ means the derivative with respect to x. This result will play a key role in the

proof.

Now fix K, p, n and an ordinary elliptic curve

E : y20 = x3
0 + a0x0 + b0

as stated in Theorem 5.1 where a0, b0 ∈ K. Let a1, ...an and b1, ...bn be algebraically

independent indeterminates and consider the Weierstrass equation

E : (y0, y1, ..., yn)
2 = (x0, x1, ..., xn)

3 + (a0, a1, ..., an)(x0, x1, ...xn) + (b0, b1, ..., bn)



Chapter 5: Canonical Lifting and Division Polynomials 33

defined over Wn+1(F ) where F = K({ai, bi}). It maps to E under the reduction map

Wn+1(F ) → F so it defines an elliptic curve over Wn+1(F ). Since char(K) 6= 2 we have

that for any odd N , ΨΨ′ ∈ N.Wn+1(F )[x]. We can state this in a different way as the

following technical lemma.

Lemma 5.2. The pn+1-division polynomial Ψ of E satisfies Ψ′ ∈ pn+1.Wn+1(F )[x], i.e.

Ψ′ = 0 in Wn+1(F )[x].

Proof. Since pn+1 = 0 in Wn+1(F )[x], Ψ′ 6= 0 implies that Ψ is a zero divisor in the

polynomial ring Wn+1(F )[x]. This can occur if and only if there exists a nonzero A ∈
Wn+1(F ) such that AΨ = 0. But by construction Ψ(mod p) = ΨE,pn(x) is not identically

zero. Thus coefficients of some terms of Ψ are nonzero modulo p, i.e. they are units in

Wn+1(F ). So AΨ = 0 can not occur for any nonzero A, i.e. Ψ can not be a zero divisor.

So we have Ψ′ = 0.

Now we give a proposition about the structure of p-th power division polynomials

of E.

Proposition 5.1. Let E and E be given as above. Then the pn+1-division polynomial Ψ

of E is of the form

Ψ = (Ψ0,Ψ1, ...,Ψn)

where each Ψi is a polynomial of xpn+1

0 over the ring Z[a0, a1, ..., ai, b0, b1, ..., bi]. Moreover
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Ψi is linear with respect to ai and bi, i.e.

Ψi = αiai + βibi + γi

for some αi, βi, γi ∈ Z[a0, a1, ..., ai−1, b0, b1, ..., bi−1, x
pn+1

0 ].

Proof. Let

Ψ = ΨE,pn+1 = Al + Al−1X + ...+ A1X
l−1 + A0X

l

where Ai ∈ Wn+1(F ) and X = (x0, x1, ...xn). Indeed Ai are polynomials with inte-

ger coefficients in the variables (a0, a1, ..., an), (b0, b1, ..., bn). To simplify computations

which will be made below, we may consider Ai as an element Wn+1(F̄ ) via the inclu-

sion Wn+1(F ) →֒ Wn+1(F̄ ). By the lemma for each monomial AiX
l−i of Ψ we have that

(l−i)Ai ∈ (pn+1). Let νp denote the p-adic valuation of rational integers. Let νp(l−i) = ti

and l − i = ptivi for some non-negative rational integer vi. If ti > n + 1 then

Xvip
ti = (x0, x1, ..., xn)

vip
ti = (xvipti

0 , 0, ..., 0).
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If ti ≤ n+ 1, then Ai ∈ (pn+1−ti). Since char(F ) = p we have

Xpti = (x0, x1, ..., xn)
pti = (xpti

0 , 0, 0..., 0, yj+1, yj+2, ..., yn)

= (xpti
0 , 0, 0..., 0) + (0, 0, 0..., 0, y′j+1, y

′
j+2, ..., y

′
n)

where ys and y′s are some polynomials in xi, j ≥ ti and the coordinates of both yj+1 and

y′j+1 are (j+1). Put u = (xpti
0 , 0, 0..., 0) and π = (0, 0, 0..., 0, y′j+1, y

′
j+2, ..., y

′
n). So we have

AiX
l−i = Ai(u+ π)vi.

For notational simplicity let r = n+ 1− ti and Ai = (0, 0, ..., 0, cr, cr+1, ..., cn). Note that

πpn+1−ti = 0 and so AiX
l−i = Aiu

vi. Thus in any case we have

AiX
l−i = Ai(x

vip
ti

0 , 0, 0, ..., 0) = (0, ..., 0, cr(x
vip

ti

0 )p
r

, cr+1(x
vip

ti

0 )p
r+1

, ...)

= (0, ..., 0, crx
vipn+1

0 , cr+1x
vp
i
pn+1

0 , ...)

But Ai is a polynomial in (a0, a1, ..., an) and (b0, b1, ..., bn) with integer coefficients, so we

have that each cs is a polynomial in a0, a1, ..., as, b0, b1, ..., bs with integer coefficients. By

addition and multiplication rules of the ring of Witt vectors we can see that cs is linear

with respect to as and bs. Adding all the monomials AiX
l−i we can see that Ψ is of the

desired form.
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After this preparation we can start the proof of the Theorem 5.1.

Proof. (Proof of Theorem 5.1). Since p ≥ 5 any elliptic curve over K and Wn(K̄) can be

given by Weierstrass models

E : y20 = x3
0 + a0x0 + b0

and

E : (y0, y1, ..., yn)
2 = (x0, x1, ..., xn)

3 + (a0, a1, ..., an)(x0, x1, ...xn) + (b0, b1, ..., bn).

We denote the j-invariant of E by j. If j 6= 0, 1728 then we put t0 = j/(1728−j), a0 = 3t0

and b0 = 2t0. Then E becomes

y20 = x3
0 + 3t0x0 + 2t0.

Similarly we put (a0, a1, ..., an) = 3(t0, t1, ..., tn) and (b0, b1, ..., bn) = 2(t0, t1, ..., tn) where

ti for i ≥ 1 are independent variables. If j = 0 we set ai = 0 and bi = ti for i = 0, 1, ..., n.

Similarly if j = 1728 then we set bi = 0 and ai = ti for i = 0, 1, ..., n. So in any case Ψi

can be written as a polynomial in xpn+1

0 and tj over Z for j ≤ i and is linear with respect
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to ti. So for i ≥ 1 we can write

Ψi = αiti + βi

where αi, βi ∈ Z[t0, t1, ..., ti−1, x
pn+1

0 ]. Now we take a generator P = (x0, y0) ∈ E(K̄)[pn+1].

Note that Ψ0 is the pn+1-division polynomial of the ordinary elliptic curve E/K. So for

P = (x0, y0) ∈ E[pn+1](K̄) we have that Ψ0(x0) = 0.

Now we may apply induction. For i = 1, both α1 and β1 is a polynomial in t0, and

xpn+1

0 . The existence of the canonical lifting guarantees at least one solution of

α1t1 + β1 = 0

for some t1 ∈ K̄. So either α1 6= 0 or α1 = β1 = 0. In the second case we can choose

t1 ∈ K. So we may only consider the first case , i.e. the case where t1 = β1/α1 is

uniquely determined. But note that ti is independent of the choice of x0. We can replace

P = (x0, y0) by any other P = (x′
0, y

′
0) ∈ E[pn+1](K̄). Now let G be the absolute Galois

group of K. For any σ ∈ G and x0 ∈ Ln we have that σ(x0) ∈ Ln because the division

polynomials are defined over Z[t0] and t0 ∈ K. So we may replace x0 by σ(x0) for any

σ ∈ G. If we see α1 and β1 as functions of x0 we have that

σ(α1(x0)) = α1(σ(x0)),

σ(β1(x0)) = β1(σ(x0)).
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Thus we can see t1 as the unique solution of the system of equations

{[σ(α1(x0))t1 + σ(β1(x0)) = 0}σ∈G

But this implies that β1/α1 is fixed by G and so t1 = β1/α1 ∈ K ′∩Ks = K. Now assume

that we can find tj ∈ K such that

αjtj + βj = 0

for any j = 1, 2, ..., i− 1 and x0 ∈ Ln. Again we obtain a linear equation

αiti + βi = 0.

By the same argument of the initial step we can see that ti is either uniquely determined

or can be arbitrarily chosen in K̄ according to whether αi = 0 or not. In the first case

we again see that G fixes βi/αi which implies that ti must be in K. This completes the

proof.

In [1], Cassels starts with an equation of the form

y2 = x3 + Ax+B
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and proves that (Ψ2
N)

′ ∼= (mod N). For p = 2 or 3 such an equation is always supersingular

so we have to put the condition p ≥ 5 in the theorem. But in any case we can use the

method of the proof to compute the canonical lifting. We give a simple example to

illustrate this.

Let k = F3 and J be an indeterminate. Consider the elliptic curve E defined over

k(J)

E : y20 = x3
0 + x2

0 − t0.

Note that j(E) = 1/t0, so E is ordinary. Also for any t0 ∈ k̄∗, E is an ordinary elliptic

curve over k̄. One can easily see that P = (x0, y0) = (t
1/3
0 , t

1/3
0 ) is a 3-torsion point. Now

we take a general Weierstrass equation over W2(k(J)) lifting the above one

E : (y0, y1)
2 = (x0, x1)

3 + (x0, x1)
2 + (−t0, t1).

So in the notation of Corollary 5.1 we have r′ = 1. Although in the proof we used pr
′+1-

torsion points for simplicity, it is enough to work with pr-torsion points in practice. Let

P̂ = ((t
1/3
0 , x1), (t

1/3
0 , y1)) be any lifting of P . We want that 3P̂ = O, i.e. 2P̂ = −P̂ . So

we just need to equate the x-coordinates of 2P̂ and −P̂ . Now by an easy computation

using the doubling formula we can see that t1 satisfies the equation

x12
0 − x3

0t
3
0 − x6

0t0 + x3
0t

2
0 + t1 = 0
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Putting x0 = t
1/3
0 we see that t1 = 0.



Chapter 6: The Universal Formula 41

Chapter 6

THE UNIVERSAL FORMULA

Now we can use the results of the previous chapters to prove Theorem 1.1 stated in

§1.

Proof of Theorem 1.1. Let p be any prime number. Recall that we defined the ring A as

A = F [J, 1/φp(J)].

Let K be the fields of fractions of A with a fixed algebraic closure K̄. We define the ring

R to be the localization of A at the element J(J − 1728), i.e.

R = F [J, 1/J(J − 1728)Φp(J)].

We define the elliptic curve E/R as

E : y2 + xy = x3 − 36x/(J − 1728)− 1/(J − 1728).
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Note that j(E) = J , ∆(E) = J2/(J − 1728)2 and E is ordinary. So the hypotheses of

Theorem 3.4 is satisfied. With the same notation of Theorem 3.4, for any positive integer

m we have the elliptic curve Em over Wm(R
′) with j-invariant j(Em) = (j0, j1, j2, ..., jm−1)

and with a split exact connected-étale sequence. Now for any j0 ∈ kord \ {0, 1728}, the
homomorphism R′ −→ k induced by J 7−→ j0 maps E to an ordinary elliptic curve over

k with j-invariant j0, say Ẽ. Similarly it maps Em to the canonical lifting of Ẽ. We set

fi = ji for all i. Now we show that ji ∈ R.

Let K and K ′ be the fields of fractions of R and R′ respectively. Consider the elliptic

curve

Em ⊗Wm(R′) Wm(K
′)

obtained via the inclusion Wm(R
′) →֒ Wm(K

′). It is a lifting of the generic fiber of E

denoted by EK ′ = E⊗R′ K ′ and has a split exact connected-étale sequence over Wm(K
′).

So it is the canonical lifting of EK ′. Its j-invariant is in Wm(R
′) as it is obtained from

Em. But Theorem 4.1 implies that the j-invariant of the canonical lifting of EK which

is tautologically equal to the j-invariant of Em ⊗Wm(R′) Wm(K
′) is indeed in Wm(K). So

each ji ∈ R′ ∩ K = R since R is integrally closed. Now we will show that ji ∈ A,

i.e. ji are regular at 0 and 1728 provided that these are ordinary. We will also prove

that (0, j1(0), j2(0)..., ) is the j-invariant of the canonical lifting of the elliptic curve with

j-invariant zero, and similarly for 1728.

We may assume p ≥ 5 because 0 = 1728 is supersingular in characteristic 2

and 3. Let µ3 6= 1 be a fixed cube root of 1. Let L = F (µ3,
√
3), a = 3

√
J and

b = 2.3−1.
√
J − 1728/

√
3.
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Let B = L[J, 3
√
J,
√
J − 1728, 1/φp(J)] and E be the scheme over B defined as

E ′ : y2 = x3 + ax+ b.

Note that B is an integral extension of A and E ′ is an elliptic curve over B with j(E ′) = J

and ∆(E) = −43.1728 6= 0. Now E ′ and E are isomorphic over K̄ since they have the

same j-invariant. So the j-invariants of the canonical lifting of E and E ′ denoted by Em

and E′
m are the same. But by Theorem 3.4 we have j(E′) ∈ Wm(B

′) where B′ is the

perfect closure of B. So j(E′) = j(E) = (j0, j1, j2, ..., jm−1) where ji ∈ B′. But previously

we proved that ji ∈ R. Now B′ is an integral extension of A and A is integrally closed in

R. Thus R ∩B′ = A, and so ji ∈ A. In particular ji are regular at any element of kord.

Now let j0 = 0 ∈ kord. Consider the maximal ideal (J) ⊂ A. Since S ′ is an integral

extension of A there exists a prime ideal q′ of S ′ such that q′ ∩A = (J). Integrality of S ′

also implies that q′ is a maximal ideal. Let κ = S ′/q′. Since J (mod q′) = 0 we have that

E′
m ⊗Wm(S′) Wm(κ)

is the canonical lifting of the elliptic curve with j-invariant zero. The j-invariant of this

canonical lifting is just

(0, j1, j2, ..., jm−1)
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where ji = ji (mod q′). But A/(J) → S ′/q′ is injective and ji ∈ A, so ji (mod q′) is the

image of ji (mod (J)) under this injection. But ji (mod (J)) = ji(0). The same argument

also works for the maximal ideal (J − 1728) provided that j0 = 1728 is in kord. This

completes the proof of (i).

Now we prove (ii). Since J = 0 = 1728 is supersingular for p = 2, 3, we may assume

that p ≥ 5. Let E be any ordinary elliptic curve over k with j(E) = j0 ∈ k, and let E be

its canonical lifting over W (k). Let Ω be a fixed algebraic closure of the field of fractions

of W (k). By [8, §V.3] we have that

EndW (k)(E)
∼−→ Endk(E)

via the reduction modulo p map. Now take any p such that j0 = 0 is an ordinary j-value

in k. Then the automorphism group of E/k, Autk(E) has order 6 and by the above

isomorphism we also have that AutΩ(E ⊗ Ω) has order at least 6. But this can happen

if and only if j(E) = 0, i.e. in Witt vector notation Θ(0) = (0, 0, 0...). Similarly if E/k

with j(E) = j0 = 1728 is ordinary for some p, then we have that Autk̄(E) has order 4.

So that j(E) = 1728.
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