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Abstract

Inverse problems for partial differential equation arise when solving many problems of math-

ematical physics and engineering. An inverse problem is a problem where a source term

or some of coefficients of a partial differential equation modeling the appropriated process

is unknown. To find the unknown solution and the unknown coefficient or resource term

of such a problem, additional conditions will need to be provided. Such conditions may,

for example, include partial information of the unknown fields (e.g., temperature) resulting

from sensor (experimental) data at distinct points in the domain and time. In this work,

our aim is to study the problem of existence and uniqueness of various inverse problems

for second order parabolic and hyperbolic equations. We firstly consider the determination

of the initial temperature distribution of heat equations from the final data. We study the

problem of identification of the unknown source function of inhomogeneous heat equation.

Then we study inverse problems of identification of coefficients in heat equation and wave

equation.

v



Özet

Matematiksel fizik ve mühendislik sorularının birçoǧunu çözerken kısmi diferansiyel den-

klemler için ters problemler ortaya çıkar. Bir ters problem kısmi difersansiyel denklemin

kaynak teriminin veya bazı katsayılarının bilinmediǧi bir problemdir. Böyle bir problemin

bilinmeyen çözümünü ve bilinmeyen katsayısını veya kaynak terimini bulmak için ek koşullar

saǧlanması gerekir. Örneǧin bu koşullar tanım bölgesi ve zaman içinde farklı noktalarda

sensör (deneysel) veriden çıkan bilinmeyen alanların kısmi bilgilerini içerebilir (örneǧin,

sıcaklık). Bu çalışmada amacımız ikinci dereceden parabolik ve hiperbolik denklemler için

çeşitli ters problemlerin varlık ve teklik sorunlarını incelemektir. Öncelikle ısı denklem-

lerinde son veriden ilk sıcaklık daǧılımının tanımlanması dikkate alınmaktadır. Sonra ho-

mojen olmayan ısı denkleminin bilinmeyen kaynak fonksiyonunun tanımlanması problemi

incelenmektedir. Son olarak ısı denkleminde ve dalga denkleminde zamana baǧlı katsayıların

tanımlanmasının ters problemi çalışılmaktadır.

vi
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Introduction

It is well known that second order parabolic and hyperbolic equations are modeling many

dynamical processes in continuum mechanics and other fields of mathematical physics.

Usually such mathematical models require certain state inputs in the form of initial and

boundary data together with inputs such as coefficients or source terms which are related

to the physical properties of the system. Proving existence and uniqueness of a solution for

the associated problem constitutes solving the direct problem. Solving the direct problem

permits the computation of various system outputs of physical interest. On the other hand,

when some of the required inputs are not known we may instead be able to determine the

missing input from outputs that are measured by formulating and solving an appropriate

inverse problem (or an identification problem).. In particular, when the missing input is a

coefficient in the partial differential equation, the problem is called a coefficient identification

problem and when the source term is missing it is called a source identification problem

(see [1],[2],[5]). We point out that the problem of identifying a linear source in parabolic

and hyperbolic equations is very important and widely studied in the literature on inverse

problems for PDEs.

In this work, our main goal is to study the questions of existence and uniqueness of various

inverse problems for parabolic and hyperbolic equations.

In Chapter 1, we give a brief reminder for some common mathematical tools that we will

use in the subsequent chapters. These include some calculus facts, various inequalities,

functional analysis.

1
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In Chapter 2, we study three inverse problems for the one-dimensional heat equation by

reviewing the following book [2]. The aim of the first section is to determine the initial

temperature distribution of a solution from certain additional information. The aim of

the second section is to determine the unknown source function F = F (x, t) in the heat

conduction equation

ut = uxx + F (x, t)

from overspecified data.

In the last section, we consider the problem of determining the thermal diffusivity a(t) of a

heat equation, that is changing with time by reviewing the following book [1]. A physical

example of such a problem arises from heat conduction in a material that is undergoing

radioactive decay or damage. The thermal conductivity varies with the degree of decay,

which can be related to time. The equation of heat conduction in such a material has the

form

ut = a(t)uxx

where a(t) > 0 is the time-dependent thermal diffusivity coefficient.

In Chapter 3, reviewing the paper [4], we study the problem of an inverse problem for a

second order hyperbolic equation. We consider the problem of determining the unknown

coefficient a(t) of a wave equation which has the form

utt = uxx + a(t)u+ F (x, t).



Chapter 1

Preliminaries

This section is a very brief reminder of some mathematical tools for reading the main

chapters more comfortable. We only include the tools which we will need in our analysis

in the main sections. Most results are given without proof since the proofs can be found in

many sources. We may only give the proofs of results which have particular interest in our

analysis.

1.1 Calculus

Theorem 1.1.1. (Fubini’s Theorem) If f(x, y) is continuous on the rectangular region

R : a ≤ x ≤ b, c ≤ y ≤ d, then the equality∫ ∫
R
f(x, y)dA =

∫ d

c

∫ b

a
f(x, y)dxdy =

∫ b

a

∫ d

c
f(x, y)dydx

holds.

Definition 1.1.1. The Fourier transform of an integrable function f(x) is

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−ixξdx.

Theorem 1.1.2. Let f and g be two functions in L2(−∞,∞). We define their convolution

to be

(f ∗ g)(x) =

∫ ∞
−∞

f(x− ξ)g(ξ)dξ,

3
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and its Fourier transform is given by

F [f ∗ g](ξ) =
√

2πf̂(ξ)ĝ(ξ).

Definition 1.1.2. The Fourier series of a periodic function f(x) with period 2π is defined

as the series

a0

2
+
∞∑
n=1

(an cosnx+ bn sinnx), (1.1.1)

where the coefficients an, bn are defined as

a0 =
1

π

∫ π

−π
f(x)dx,

an =
1

π

∫ π

−π
f(x) cosnxdx, n = 1, 2, . . . ,

bn =
1

π

∫ π

−π
f(x) sinnxdx, n = 1, 2, . . . .

Note: The sine series defined by
∞∑
n=1

bn sinnx

and the cosine series defined by

a0

2
+

∞∑
n=1

an cosnx

are special instances of Fourier series.

Theorem 1.1.3. (Parseval’s Identity) For f ∈ L2[−π, π] with Fourier series (1.1.1),

we have

1

π

∫ π

−π
|f(t)|2dt =

|a0|2

2
+

∞∑
n=1

(|an|2 + |bn|2).
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1.2 Functional Analysis

Definition 1.2.1. A sequence {xn} in a metric space X is said to converge if there is a

point x ∈ X such that d(xn, x)→ 0 as n→∞.

Definition 1.2.2. A sequence {xn} in a metric space X is sad to be a Cauchy sequence if for

every ε > 0 there is a positive integer N such that for all n,m ≥ N we have d(xn, xm) < ε.

Definition 1.2.3. A metric space in which every Cauchy sequence converges is said to be

complete.

Definition 1.2.4. Let fn be a sequence of functions defined on a set E.

We say that fn is pointwise bounded on E is the sequence {fn(x)} is bounded for every

x ∈ E, that is, if there exits a finite-valued function φ defined on E such that

|fn(x)| < φ(x) (x ∈ E, n = 1, 2, 3, . . .).

We say that {fn} is uniformly bounded on E if there exits a positive number M such that

|fn(x)| < M (x ∈ E, n = 1, 2, 3, . . .).

Theorem 1.2.1. If {fn} is a pointwise bounded sequence of functions on a countable set

E, then {fn} has a subsequence {fnk} such that {fnk(x)} converges for every x ∈ E.

Definition 1.2.5. A family F of complex functions f defined on a set E in a metric space

(X, d) is said to be equicontinuous on E if for every ε > 0, there exits a δ > 0 such that

|f(x)− f(y)| < ε

whenever d(x, y) < δ, x ∈ E, y ∈ E, and f ∈ F.

Theorem 1.2.2. (Ascoli-Arzela) If {fn} is a uniformly bounded and equicontinuous

sequence of functions defined on a compact set K, then {fn} contains a uniformly convergent

subsequence.
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Theorem 1.2.3. (Dini’s Theorem) Let K be a compact space. Let f : K → R be a

continuous function and fn : K → R, n ∈ N, be a sequence of continuous functions. If

{fn}n∈N converges pointwise to f and if

fn+1(x) ≥ fn(x) for all x ∈ K and all n ∈ N

then {fn}n∈N converges uniformly to f .

Proposition 1.2.4. Let X be a complete metric space, and let Y ⊆ X be a closed subset

of X. Then Y is complete.

Definition 1.2.6. C[a, b] is the Banach space of all continuous functions on [a, b] equipped

with the norm

‖u‖C[a,b] = max
x∈[a,b]

|u(x)|.

Definition 1.2.7. The linear space Lp[a, b], p ≥ 1 of all functions continuous on [a, b] is a

normed space with the norm

‖u‖Lp[a,b] =

(∫ b

a
|u(x)|p

)1/p

.

Definition 1.2.8. We denote by Bα2 the set of functions of the form

u(x, t) =

∞∑
k=1

uk(t) sin kx, 0 < x < π, 0 < t < T,

where uk(t), k = 1, 2, 3 . . . are continuous on [0, T ] and satisfy

∞∑
k=1

[
kα max

0≤t≤T
|uk(t)|

]2
<∞, α ≥ 0.

In Bα2 , we define the norm

‖u‖Bα2 (Q) =

( ∞∑
k=1

[
kα max

0≤t≤T
|uk(t)|

]2)1/2

(1.2.1)

where α ≥ 0 and Q = [0, π]× [0, T ].
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Lemma 1.2.5. Bα2 (Q) is a Banach space with respect to the given norm (1.2.1).

Proof. Let u(n) ∈ Bα2 (Q) be a Cauchy sequence. Then, given ε > 0, there is K > 0 such

that for all n,m ≥ K∥∥∥u(n)
k − u

(m)
k

∥∥∥2
C[0,T ] =

[
max

0≤t≤T
|u(n)
k (t)− u(m)

k (t)|
]2

≤
∞∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)− u(m)

k (t)|
]2

=
∥∥∥u(n) − u(m)

∥∥∥2

Bα2 (Q)
<
ε

2
.

Hence for every k ≥ 1, the sequence {u(n)
k }n∈N is a Cauchy sequence in C[0, T ] and since

C[0, T ] is complete, the sequence {u(n)
k }n∈N converges to some uk.

Let us show that

u(x, t) =
∞∑
k=1

uk(t) sin kx

is the limit in Bα2 (Q) of the sequence {u(n)}n∈N. To see this we first show that u ∈ Bα2 (Q).

Since {u(n)}n∈N is a Cauchy sequence in Bα2 (Q), we have

N∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)|

]2

≤
N∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)− u(K)

k (t)|+ kα max
0≤t≤T

|u(K)
k (t)|

]2

≤ 2

N∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)− u(K)

k (t)|
]2

+ 2
N∑
k=1

[
kα max

0≤t≤T
|u(K)
k (t)|

]2

≤ 2
∥∥∥u(n) − u(K)

∥∥∥2

Bα2 (Q)
+ 2

∥∥∥u(K)
∥∥∥
Bα2 (Q)

≤ ε+ 2
∥∥∥u(K)

∥∥∥
Bα2 (Q)

for every N ≥ 1. Fixing N and taking limit as n→∞ we get

N∑
k=1

[
kα max

0≤t≤T
|uk(t)|

]2

≤ ε+ 2
∥∥∥u(K)

∥∥∥
Bα2 (Q)

and taking limit as N →∞ we get

∞∑
k=1

[
kα max

0≤t≤T
|uk(t)|

]2

≤ ε+ 2
∥∥∥u(K)

∥∥∥
Bα2 (Q)

<∞.

So, u ∈ Bα2 (Q). Next, we show that
∥∥u(n) − u

∥∥
Bα2 (Q)

→ 0 as n → ∞. Since {u(n)}n∈N is a

Cauchy sequence in Bα2 (Q), for every N ≥ 1 we have

N∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)− u(m)

k (t)|
]2

≤
∥∥∥u(n) − u(m)

∥∥∥2

Bα2 (Q)
<
ε

2
.
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With n > K and N fixed, we let m→∞ to find that

N∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)− uk(t)|

]2

≤ ε

2
.

Since this is true for every N ,∥∥∥u(n) − u
∥∥∥2

Bα2 (Q)
=
∞∑
k=1

[
kα max

0≤t≤T
|u(n)
k (t)− uk(t)|

]2

≤ ε

2

for n > K. Hence u(n) → u and since u ∈ Bα2 (Q), the space Bα2 (Q) is complete normed

space.

Definition 1.2.9. Let (X, d) be a metric space. A mapping T : X → X is a contraction

mapping, or contraction, if there exists a constant c ∈ (0, 1) such that

d(T (x), T (y)) ≤ cd(x, y)

for all x, y ∈ X.

Theorem 1.2.6. (Contraction Mapping) If T : X → X is a contraction mapping on a

complete metric space (X, d), then the equation

T (x) = x

has a unique solution x ∈ X. Such a solution is said to be a fixed point of T .

Theorem 1.2.7. If X is a complete metric space and f : X → X is a mapping such that

some iterate fN : X → X is a contraction, then f has a unique fixed point.

Proof. By contraction mapping theorem, fN has a unique fixed point. Call it a, so fN (a) =

a. To show a is the only possible fixed point of f , observe that a fixed of f is a fixed point of

fN , thus must be a. To show a really is a fixed point of f , we note that f(a) = f(fN (a)) =

fN (f(a)), so f(a) is a fixed point of fN . Therefore f(a) and a are both fixed points of fN .

Since fN has a unique fixed point, f(a) = a.
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Proposition 1.2.8. Suppose that K(x, y) is continuous on [0, 1]× [0, 1]. Then the Volterra

integral equation of the 2nd kind

φ(x) +

∫ x

0
K(x, y)φ(y)dy = f(x) (1.2.2)

has a unique solution φ(x) ∈ C[0, 1] for any f(x) ∈ C[0, 1].

Proof. Define the operator T : C[0, 1]→ C[0, 1] by

Tφ = f(x)−
∫ x

0
K(x, y)φ(y)dy

If Tφ has a fixed point, such a fixed point must be a solution of (1.2.2). To show that such

a fixed point exists we will show that Tn, for some n, will be a contraction operator. By

theorem 1.2.7, T will then have a unique fixed point.

Define

Kf(x) =

∫ x

0
K(x, y)f(y)dy.

Then

K2f(x) = K

[∫ x

0
K(x, y)f(y)dy

]
=

∫ x

0
K(x, z)

∫ z

0
K(z, y)f(y)dydz

=

∫ x

0

[∫ x

y
K(x, y)K(z, y)dz

]
f(y)dy

It follows that K2 is an integral operator, whose kernel is given by∫ x

y
K(x, y)K(z, y)dz

More generally it is easy to show that

Knf(x) =

∫ x

0
Kn(x, y)f(y)dy

where Kn(x, y) can be defined recursively by

Kn(x, y) =

∫ y

x
K(x, z)Kn−1(z, y)dz, n = 2, 3, . . .

K1(x, y) = K(x, y)
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Let us consider the operator

Tφ = f −Kφ

It is clear that

T 2φ = T [f −Kφ] = f −Kf +K2φ

...

Tnφ = f −Kf +K2f −K3f + · · · (−1)n−1Kn−1f + (−1)nKnφ

so that

‖Tnφ1 − Tnφ2‖C[0,1] = ‖Knφ1 −Knφ2‖C[0,1]

=

∥∥∥∥∫ x

0
Kn(x, y) (φ1(y)− φ2(y)) dy

∥∥∥∥
C[0,1]

The kernel K(x, y) is continuous on [0, 1] × [0, 1], and therefore uniformly bounded, say

|K(x, y)| ≤M . Then, one can show by induction that

|Kn(x, y)| ≤ Mn(x− y)n−1

(n− 1)!
, 0 ≤ y ≤ x

For n = 1, the above is obviously valid. If it is true for n, then

|Kn+1(x, y)| ≤
∫ x

y
|K(x, y)||Kn(z, y)|dz

≤ Mn+1(x− y)n

n!

We have, therefore,

‖Tnφ1 − Tnφ2‖C[0,1] ≤
Mn

(n− 1)!

∥∥∥∥∫ x

0
(φ1(y)− φ2(y))dy

∥∥∥∥
C[0,1]

≤ Mn

(n− 1)!
‖φ1(y)− φ2(y)‖C[0,1]

For n sufficiently large

Mn

(n− 1)!
< 1

so that Tn is a contraction operator. Since C[0, 1] is complete, T has a unique fixed point.
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Theorem 1.2.9. (Lebesgue Dominated-Convergence Theorem) Let {fn} denote a

sequence of integrable functions on [a, b] such that f(x) = limb→∞ fn(x). Suppose that there

exits a positive-valued integrable function g such that |fn(x)| ≤ g(x) for all x ∈ [a, b] and

all n = 1, 2, . . .. Then the limit function f(x) is integrable and

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
lim
n→∞

fn(x)dx =

∫ b

a
f(x)dx.
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1.3 Inequalities

Lemma 1.3.1. (Gronwall) Let x and Ψ ≥ 0 be real-valued continuous functions defined

on [a, b], and C be a constant. We suppose that on [a, b] we have the inequality

x(t) ≤ C +

∫ t

a
Ψ(τ)x(τ)dτ.

Then

x(t) ≤ Ce
∫ t
a Ψ(τ)dτ .

Lemma 1.3.2. Let ϕ(t) be real-valued continuous function satisfying

0 ≤ ϕ(t) ≤ C
∫ t

0

ϕ(t)

(t− τ)1/2
dτ, 0 ≤ t ≤ T, (1.3.1)

where C ≥ 0. Then

ϕ(t) = 0.

Proof. Let z > t. Multiplying both sides of (1.3.1) by 1/(z − t)1/2 and integrating both

sides from 0 to z, we obtain∫ z

0

ϕ(t)

(z − t)1/2
≤ C

∫ z

0

∫ t

0

ϕ(τ)

(z − t)1/2(t− τ)1/2
dτ.dt

If we interchange the order of integration on the left, we obtain∫ z

0

ϕ(t)

(z − t)1/2
dt ≤ C

∫ z

0

[∫ z

τ

dt

(z − t)1/2(t− τ)1/2

]
ϕ(τ)dτ. (1.3.2)

Letting t = τ + (z − τ)u we see that∫ z

τ

dt

(z − t)1/2(t− τ)1/2
=

∫ 1

0

(z − τ)du

(z − τ)1/2(1− u)1/2(z − τ)1/2u1/2

=

∫ 1

0

du

(1− u)1/2u1/2
.

Letting u = v2 we see that∫ 1

0

du

(1− u)1/2u1/2
=

∫ 1

0

2vdv√
1− v2v

= 2

∫ 1

0

dv√
1− v2

= 2 arcsin v
∣∣1
0

= π.
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Then, from (1.3.2), we have ∫ z

0

ϕ(t)

(z − t)1/2
dt ≤ Cπ

∫ z

0
ϕ(τ)dτ. (1.3.3)

By using the inequality (1.3.1), left-hand side of (1.3.3) is greater than or equal to ϕ(z)/C.

Therefore, we have

0 ≤ ϕ(z) ≤ πC2

∫ z

0
ϕ(τ)dτ, 0 ≤ z ≤ T.

Gronwall’s lemma yields the result.

Lemma 1.3.3. Let y be a nonnegative continuous function and

y(t) ≤ C1 + C2

∫ t

0
y2(τ)dτ, 0 ≤ t ≤ T

where C1 and C2 are some positive numbers and

C1C2T < 1.

Then

y(t) ≤ C1

1− C1C2T
.

Proof. Set

v(t) = C1 + C2

∫ t

0
y2(τ)dτ.

Then, we have

v′ = C2y
2, v(0) = C1, and y ≤ v.

From the last equality and inequality, we obtain

v′ = C2y
2 ≤ C2v

2,

or

v′v−2 ≤ C2.



14

Integrating the last inequality from 0 to t, we obtain∫ t

0
v′v−2dτ ≤

∫ t

0
C2dτ. (1.3.4)

As v′v−2 = [−v−1]′, ∫ t

0
v′v−2dτ =

∫ t

0
[−v−1]′dτ = v−1(0)− v−1(t).

Then, from (1.3.4), we have

v−1(0)− v−1(t) ≤ C2t ≤ C2T.

By using the initial point v(0) = C1, we obtain

v(t) ≤ C1

1− C1C2T
, 0 ≤ t ≤ T.

As y ≤ v,

y(t) ≤ C1

1− C1C2T
, 0 ≤ t ≤ T.

Theorem 1.3.4. (Hölder’s Inequality) Let p > 1, 1/p + 1/q = 1, f(x) and g(x) be

continuous real-valued functions on [a, b]. Then, the Hölder’s inequality for integrals states

that ∫ b

a
|f(x)g(x)|dx ≤

(∫ b

a
|f(x)|pdx

)1/p(∫ b

a
|g(x)|qdx

)1/q

.

Similarly, Hölder’s inequality for sums states that

n∑
k=1

|akbk| ≤

(
n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

.

Corollary 1.3.5. (
n∑
i=1

bi

)2

≤ n
n∑
i=1

b2i

Proof. By using the Hölder’s inequality for sums, we get(
n∑
i=1

bi

)2

=

(
n∑
i=1

1 · bi

)2

≤

( n∑
i=1

12

)1/2( n∑
i=1

b2i

)1/2
2

= n

n∑
i=1

b2i



Chapter 2

Inverse Problem for Parabolic
Equations

2.1 Determination of the Initial Temperature Distribution

2.1.1 Heat Equation on the Real Line

It is well-known that the Cauchy problem for the heat equation

ut = a2uxx, −∞ < x <∞, t > 0; (2.1.1)

u(x, 0) = ϕ(x), −∞ < x <∞. (2.1.2)

is well-posed problem and the solution of this problem has the form

u(x, t) =

∫ ∞
−∞

1√
4πa2t

e
−(x−ξ)2

4a2t ϕ(ξ)dξ. (2.1.3)

Our aim in this section is to consider the inverse problem for the heat equation, i.e., find

the function ϕ(x) in (2.1.2) provided u(x, T ) = g(x), T > 0 is given. That is we are going

to solve the problem of finding solution of (2.1.1) at t = 0 under the condition

u(x, T ) = g(x), −∞ < x <∞. (2.1.4)

Setting in (2.1.3) t = T and using (2.1.4), we obtain∫ ∞
−∞

1√
4πa2T

e
−(x−ξ)2

4a2T ϕ(ξ)dξ = g(x), −∞ < x <∞. (2.1.5)

15
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Firstly, we shall consider the existence of solution of equation (2.1.5). We have an integral

equation ∫ ∞
−∞

K(x− ξ)ϕ(ξ)dξ = g(x), −∞ < x <∞, (2.1.6)

where

K(x) =
1√

4πa2T
e
−x2
4a2T .

If the function g(x) ∈ L2(−∞,∞), then we can take the Fourier transform of both sides of

the equation (2.1.6). Then we obtain

√
2πF [K]F [ϕ] = F [g],

and

F [ϕ] = F [g]ea
2ξ2T .

If the right side of the equation (2.1.1) is in L2(−∞,∞), we finally obtain

ϕ = F−1
(
F [g]ea

2ξ2T
)
.

Now, we shall prove that equation (2.1.5) has a unique solution in the space L2[−∞,∞].

Assume that it has two different solution ϕ1, ϕ2 in L2[−∞,∞]. Then, we have∫ ∞
−∞

1√
4πa2T

e
−(x−y)2

4a2T ϕi(y)dy = g(x), i = 1, 2.

Subtracting these two equations from each other, we obtain∫ ∞
−∞

e
−(x−y)2

4a2T φ(y)dy = 0, −∞ < x <∞, (2.1.7)

where φ = ϕ1 − ϕ2. To establish the uniqueness, we need to show that the homogeneous

equation (2.1.7) has only the trivial solution. Differentiating (2.1.7) with respect to x, we

obtain ∫ ∞
−∞

(x− y)e
−(x−y)2

4a2T φ(y)dy = 0, −∞ < x <∞. (2.1.8)
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Multiplying (2.1.7) by x and using equation (2.1.8), we obtain∫ ∞
−∞

ye
−(x−y)2

4a2T φ(y)dy = 0, −∞ < x <∞. (2.1.9)

Differentiating (2.1.9) with respect to x, we obtain∫ ∞
−∞

y(x− y)e
−(x−y)2

4a2T φ(y)dy = 0, −∞ < x <∞. (2.1.10)

Multiplying (2.1.9) by x and using equation (2.1.10), we obtain∫ ∞
−∞

y2e
−(x−y)2

4a2T φ(y)dy = 0, −∞ < x <∞.

Continuing this process, we obtain for all n = 1, 2, · · ·∫ ∞
−∞

yne
−(x−y)2

4a2T φ(y)dy = 0, −∞ < x <∞

Consider

g(z) =

∫ ∞
−∞

e

(
iyz− (x−y)2

4a2T

)
φ(y)dy = 0, −∞ < x <∞

is defined and analytic on the complex plane since for eachR > 0 the function |φ(y)|e

(
R|y|− (x−y)2

4a2T

)

is integrable over R. Then, from the equation (2.1.1), we obtain

g(0) = 0 and g(n)(0) = 0, n = 1, 2, . . . .

So, g ≡ 0. Then an integrable function φ(y)e−
(x−y)2

4a2T has zero Fourier transform. Therefore,

φ = 0 a.e. on L2[−∞,∞], i.e., ϕ1(x) = ϕ2(x). Thus, uniqueness of solution for equation

(2.1.5) is established.
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2.1.2 Heat Equation in a Finite Interval

Consider the following boundary-value problem

ut = a2uxx, 0 < x < π, 0 < t < T ; (2.1.11)

u(0, t) = u(π, t) = 0, t ≤ t ≤ T ; (2.1.12)

u(x, 0) = ϕ(x), 0 ≤ x ≤ π. (2.1.13)

It is well-known that the solution of this problem has the form

u(x, t) =
∞∑
n=1

2

π

∫ π

0
ϕ(ξ) sin(nξ)dξe−n

2a2t sin(nx). (2.1.14)

Our aim in this section is to consider the inverse problem for the heat equation, i.e., find

the function ϕ(x) in (2.1.13) provided u(x, T ) = g(x) is given. That is we are going to solve

the problem of finding solution of (2.1.11) at t = 0 under the condition

u(x, T ) = g(x), 0 ≤ x ≤ π. (2.1.15)

Setting in (2.1.14) t = T and taking into account (2.1.15), we obtain

∞∑
n=1

2

π

∫ π

0
ϕ(ξ) sin(nξ)dξe−n

2a2T sin(nx) = g(x), 0 ≤ x ≤ π. (2.1.16)

Thus, the inverse problem is reduced to equation (2.1.16) for the unknown function ϕ(x).

Firstly, we shall show that the equation (2.1.16) has a unique solution in the space L2[0, π].

Assume that it has two different solutions ϕ1, ϕ2 in L2[0, π]. Then, we have

∞∑
n=1

2

π

∫ π

0
ϕi(ξ) sin(nξ)dξe−n

2a2T sin(nx) = g(x), i = 1, 2.

Subtracting these two equations from each other, we obtain

∞∑
n=1

2

π

∫ π

0
φ(ξ) sin(nξ)dξe−n

2a2T sin(nx) = 0, 0 ≤ x ≤ π, (2.1.17)
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where φ = ϕ1−ϕ2. As the system of functions {
√

2
π sin(nx)}n≥1 is orthonormal in L2[0, π],

and

e−n
2a2T 6= 0 for n = 1, 2, · · · ,

then, multiplying (2.1.17) by sin(kx) and integrating it from 0 to π, we obtain∫ π

0
φ(ξ) sin(kξ)dξ = 0, k = 1, 2, · · · .

Therefore, it follows that φ(x) = 0, i.e., ϕ1(x) = ϕ2(x) on L2[0, π]. Thus, uniqueness of

solution of the integral equation (2.1.16) is established.

Now we shall consider the problem of existence of solution of the integral equation (2.1.16).

Let the equation (2.1.16) with g(x) ∈ L2[0, π] have a solution ϕ(x) ∈ L2[0, π]. As the system

of functions {
√

2
π sin(nx)}n≥1 is orthonormal in L2[0, π] , multiplying (2.1.16) by 2

π sin(kx)

and integrating form 0 to π, we obtain, for k = 1, 2, · · · ,

2

π

∫ π

0
ϕ(ξ) sin(kξ)dξe−k

2a2T =
2

π

∫ π

0
g(ξ) sin(kξ)dξ. (2.1.18)

Let

ϕk =
2

π

∫ π

0
ϕ(ξ) sin(kξ)dξ, gk =

2

π

∫ π

0
g(ξ) sin(kξ)dξ

denote the Fourier coefficients of the functions ϕ(x) and g(x), respectively. Then, by using

the equation (2.1.18), we have

ϕk = gke
k2a2T , k = 1, 2, · · · . (2.1.19)

By using the Parseval’s identity and the equation (2.1.19), we have

‖ϕ‖2L2[0,π] =
π

2

∞∑
n=1

ϕ2
n =

π

2

∞∑
n=1

g2
ne

2n2a2T . (2.1.20)

Thus, in order that (2.1.16) has a solution in L2[0, π], it is necessary that the function

g(x) ∈ L2[0, π] provides a converging series in the right-hand side of (2.1.20). As the terms

of this series have the fast growing multiplier

e2n2a2T ,
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then the converging of the series imposes a heavy restriction on the decrease of the Fourier

coefficients gn of the function g(x). As an example, we consider the function

g(x) =

∞∑
n=1

e−n sin(nx), 0 ≤ x ≤ π.

Firstly, we will show that g ∈ L2[0, π]. It is clear that∫ π

0
g2(x)dx =

∫ π

0

( ∞∑
n=1

e−n sin(nx)

)2

dx

≤
∫ π

0

( ∞∑
n=1

[
1

e

]n)2

dx =

∫ π

0

(
1

1− 1
e

− 1

)2

dx

=

∫ π

0

(
1

1− e

)2

dx <∞.

Therefore, g ∈ L2[0, π]. As the system of functions {
√

2
π sin(nx)}n≥1 is orthonormal, then

the Fourier coefficients of g(x) are

gk =
2

π

∫ π

0

∞∑
n=1

e−n sin(nx) sin(kx)dx = e−k, k = 1, 2, · · · .

Thus, by using the equation (2.1.20), we obtain

‖ϕ‖2L2[0,π] =
π

2

∞∑
n=1

g2
ne

2n2a2T

=
∞∑
n=1

e2n2a2T−2n.

(2.1.21)

But, the series on the right-hand side of (2.1.21) diverges, since

e2n2a2T−2n −→∞ as n→∞.

Therefore, the equation (2.1.16) has no solution for the function g(x).

Now we prove the uniqueness theorem by using the energy method. Suppose that u1(x, t)

is a classical solution of the problem (2.1.11)-(2.1.13). Assume that the problem has not a

unique solution, i.e. there exits another solution u2(x, t) of the problem (2.1.11)-(2.1.13).
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Let us consider the function u(x, t) = u1(x, t) − u2(x, t). Since the equation (2.1.11) is

a linear homogeneous equation, the function u(x, t) is also the solution of the problem

(2.1.11)-(2.1.13).

Let us consider the following function

ψ(t) =

∫ π

0
u2(x, t)dx. (2.1.22)

If ψ(t) = 0 for all t ∈ [0, T ], then the solution of the problem is unique. If not, there exits

an interval (t1, t2) ∈ [0, T ] such that ψ(t) > 0, ∀t ∈ [t1, t2) and ψ(t2) = 0.

Differentiating the function ψ(t), we obtain

ψ′(t) = 2

∫ π

0
u(x, t)ut(x, t)dx. (2.1.23)

By using the equation (2.1.11), we obtain

ψ′(t) = 2a2

∫ π

0
u(x, t)uxx(x, t)dx = −2a2

∫ π

0
u2
x(x, t)dx.

From this equality, we obtain

ψ′′(t) = −4a2

∫ π

0
ux(x, t)uxt(x, t)dx

= 4a2

∫ π

0
ut(x, t)uxx(x, t)dx = 4

∫ π

0
u2
t (x, t)dx (2.1.24)

Now, we consider the function h(t) = ln(ψ(t)). By using the equalities (2.1.23),(2.1.24)

twice differentiating the function h(t), we obtain

h′′(t) =
d

dt

ψ′(t)

ψ(t)
=

1

ψ2(t)

[
ψ′′(t)ψ(t)−

(
ψ′(t)

)2]
=

1

ψ2(t)

[
4

∫ π

0

(
ut(x, t)

)2
dx

∫ π

0

(
u(x, t)

)2
dx− 4

(∫ π

0
u(x, t)ut(x, t)dx

)2
]
.

By using the Cauchy-Schwartz inequality, we obtain that

h′′(t) ≥ 0 for all t ∈ [t1, t2).
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So, the function h(t) is a convex function on the interval [t1, t2). Therefore, for each t ∈

[t1, t2) and for each τ ∈ (0, 1) we have

h((1− τ)t1 + τt) ≤ (1− τ)h(t1) + τh(t).

That is

lnψ((1− τ)t1 + τt) ≤ (1− τ) lnψ(t1) + τ lnψ(t).

or

ψ((1− τ)t1 + τt) ≤ [ψ(t1)]1−τ [ψ(t)]τ .

Passing to the limit as t→ t−2 we get

ψ((1− τ)t1 + τt2) ≤ [ψ(t1)]1−τ [ψ(t2)]τ

Since ψ(t2) = 0, the last inequality implies that ψ(t) = 0 for each t ∈ [t1, t2]. This

contradiction shows that solution of the problem is unique.
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2.2 Determination of the Unknown Source Function F (x, t)

2.2.1 Inhomogeneous Heat Equation in a Finite Interval

Now, we consider the following inhomogeneous heat conductivity equation

ut = a2uxx + f(x)g(t), 0 < x < π, 0 < t < T ; (2.2.1)

ux(0, t) = ux(π, t) = 0, 0 ≤ t ≤ T ; (2.2.2)

u(x, 0) = 0, 0 ≤ x ≤ π. (2.2.3)

The solution of this problem may be obtained by

u(x, t) =
∞∑
n=0

Tn(t) cos(nx). (2.2.4)

It is clear that this series satisfies the boundary conditions (2.2.2). Setting the series (2.2.4)

into the equation (2.2.1), we obtain

∞∑
n=0

T ′n(t) cos(nx) = −a2
∞∑
n=0

n2Tn(t) cos(nx) + f(x)g(t),

or
∞∑
n=0

[T ′n(t) + a2n2Tn(t)] cos(nx) = f(x)g(t). (2.2.5)

Expanding f(x), we have

f(x) =
f0

2
+
∞∑
n=1

fn cos(nx), (2.2.6)

where

fn =
2

π

∫ π

0
f(ξ) cos(nξ)dξ, n = 0, 1, · · ·

From (2.2.5) and (2.2.6), we obtain[
T ′0(t)− f0g(t)

2

]
+

∞∑
n=1

[T ′n(t) + a2n2Tn(t)− fng(t)] cos(nx) = 0.

This equality holds if and only if

T ′0(t) =
f0g(t)

2
(2.2.7)
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and

T ′n(t) + a2n2Tn(t) = fng(t), n = 1, 2, . . . . (2.2.8)

Taking into account the initial condition (2.2.3), we obtain

u(x, 0) =
∞∑
n=0

Tn(0) cos(nx) = 0. (2.2.9)

It follows then

Tn(0) = 0 , n = 0, 1, . . . . (2.2.10)

Integrating (2.2.7) from 0 to t and using the initial condition (2.2.10), we obtain

T0(t) =

∫ t

0

f0g(τ)

2
dτ =

1

π

∫ t

0

∫ π

0
f(ξ)g(τ)dξdτ =

1

π

∫ π

0
f(ξ)dξ

∫ t

0
g(τ)dτ.

Multiplying (2.2.8) by ea
2n2t, we have(
Tn(t)ea

2n2t

)′
= ea

2n2tfng(t), n = 1, 2, . . . .

Integrating from 0 to t and using the initial condition (2.2.9), we obtain

Tn(t)ea
2n2t =

∫ t

0
ea

2n2τfng(τ)dτ, n = 1, 2, . . . ,

or

Tn(t) =

∫ t

0
e−a

2n2(t−τ)fng(τ)dτ =
2

π

∫ t

0
e−a

2n2(t−τ)

∫ π

0
f(ξ)g(τ) cos(nξ)dξdτ

=
2

π

∫ π

0
f(ξ) cos(nξ)dξ

∫ t

0
g(τ)e−a

2n2(t−τ)dτ, n = 1, 2, . . . .

Therefore, the solution of the problem (2.2.1)-(2.2.3) is as follows

u(x, t) =
1

π

∫ π

0
f(ξ)dξ

∫ t

0
g(τ)dτ

+

∞∑
n=1

2

π

∫ π

0
f(ξ) cos(nξ)dξ

∫ t

0
g(τ)e−a

2n2(t−τ)dτ cos(nx).

(2.2.11)

Our aim in this section is to find the function g(t) in (2.2.1) provided u(x0, t) = h(t), 0 ≤

x0 ≤ π is given. That is we are going to solve the problem of finding the source term g(t)
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of (2.2.1) under the condition

h(t) = u(x0, t), 0 ≤ t ≤ T (2.2.12)

where x0 ∈ [0, π].

Setting in (2.2.11) x = x0, we obtain

1

π

∫ π

0
f(ξ)dξ

∫ t

0
g(τ)dτ

+
∞∑
n=1

2

π

∫ π

0
f(ξ) cos(nξ)dξ

∫ t

0
g(τ)e−a

2n2(t−τ)dτ cos(nx0) = h(t) 0 ≤ t ≤ T.

Changing the summation and integration, we obtain the Volterra integral equation of first

kind for the function g(t) ∫ t

0
K(t, τ)g(τ)dτ = h(t), 0 ≤ t ≤ T (2.2.13)

with the kernel

K(t, τ) =
1

π

∫ π

0
f(ξ)dξ +

∞∑
n=1

2

π

∫ π

0
f(ξ) cos(nξ)dξe−a

2n2(t−τ)dτ cos(nx0). (2.2.14)

Now we consider the problem of existence and uniqueness of the solution of (2.2.13) in the

space C[0, T ].

Theorem 2.2.1. Let f(x) ∈ C4[0, π] and f ′(0) = f ′(π) = 0. If f(x0) 6= 0 and h(t) ∈

C1[0, T ], h(0) = 0, then (2.2.13) has a unique solution g(t) ∈ C[0, T ].

Proof. By using the conditions of theorem, we have∣∣∣∣∣
∫ π

0
f(ξ) cos(nξ)dξ

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

0
f(ξ)

(
1

n
sin(nξ)

)′
dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1nf(ξ) sin(nξ)

∣∣∣∣π
0

− 1

n

∫ π

0
f ′(ξ) sin(nξ)dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

n2

∫ π

0
f ′(ξ)

(
cos(nξ)

)′
dξ

∣∣∣∣∣
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=

∣∣∣∣∣ 1

n2
f ′(ξ) cos(nξ)

∣∣∣∣π
0

− 1

n2

∫ π

0
f ′′(ξ) cos(nξ)dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

n3

∫ π

0
f ′′(ξ)

(
sin(nξ)

)′
dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

n3
f ′′(ξ) sin(nξ)

∣∣∣∣π
0

− 1

n3

∫ π

0
f ′′′(ξ) sin(nξ)dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

n4

∫ π

0
f ′′′(ξ)

(
cos(nξ)

)′
dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

n4
f ′′′(ξ) cos(nξ)

∣∣∣∣π
0

− 1

n4

∫ π

0
f ′′′′(ξ) cos(nξ)dξ

∣∣∣∣∣
≤ 1

n4

(
|f ′′′(π)|+ |f ′′′(0)|+

∫ π

0
|f ′′′′(ξ)|dξ

)

≤ 1

n4

(
|f ′′′(π)|+ |f ′′′(0)|+ C1π

)
=
C

n4
, n = 1, 2, · · · ,

where C = |f ′′′(π)|+ |f ′′′(0)|+ C1π > 0.

By using the last inequality, we obtain for 0 ≤ τ ≤ t ≤ T ,∣∣∣∣∣ 2π
∫ π

0
f(ξ) cos(nξ)dξe−a

2n2(t−τ)dτ cos(nx0)

∣∣∣∣∣ ≤ 2C/π

n4
,

and ∣∣∣∣∣−2n2a2

π

∫ π

0
f(ξ) cos(nξ)dξe−a

2n2(t−τ)dτ cos(nx0)

∣∣∣∣∣ ≤ 2a2C/π

n2
.

Since
∞∑
n=1

1

np

is convergent for p > 1, by using the comparison test, we see that the series

K(t, τ) =
∞∑
n=1

2

π

∫ π

0
f(ξ) cos(nξ)dξe−a

2n2(t−τ)dτ cos(nx0),

and

Kt(t, τ) =
∞∑
n=1

−2n2a2

π

∫ π

0
f(ξ) cos(nξ)dξe−a

2n2(t−τ)dτ cos(nx0)

are convergent for 0 ≤ τ ≤ t ≤ T . Therefore, K(t, τ) and Kt(t, τ) are continuous functions

on 0 ≤ τ ≤ t ≤ T .
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Differentiating (2.2.13) with respect to t, we obtain

K(t, t)g(t) +

∫ t

0
Kt(t, τ)g(τ)dτ = h′(t), 0 ≤ t ≤ T. (2.2.15)

Setting t = T into the kernel (2.2.14), we obtain

K(t, t) =
1

π

∫ π

0
f(ξ)dξ +

∞∑
n=1

2

π

∫ π

0
f(ξ) cos(nξ)dξdτ cos(nx0). (2.2.16)

The right-hand side of the equation (2.2.16) is the Fourier cosine series of f(x) at the point

x = x0. Therefore, K(t, t) = f(x0) 6= 0.

Dividing both sides of the equation (2.2.15) with K(t, t), we obtain

g(t) +

∫ t

0

Kt(t, τ)

K(t, t)
g(τ)dτ =

h′(t)

K(t, t)
, 0 ≤ t ≤ T. (2.2.17)

As

Kt(t, τ)

K(t, t)
, and

h′(t)

K(t, t)

are continuous for 0 ≤ τ ≤ t ≤ T , the equation (2.2.17) is a Volterra integral equation of

the second kind with a continuous kernel and the right-hand side. By Theorem 1.2.8, the

integral equation (2.2.17) has a unique solution g(t) ∈ C[0, π].
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2.3 Determination of an Unknown Time-Dependent Diffu-

sivity a(t)

2.3.1 Heat Equation on the Real Line

We consider the following initial-value problem

ut = a(t)uxx, −∞ < x <∞, t > 0; (2.3.1)

u(x, 0) =

 1, −b ≤ x ≤ b;
0, |x| > b.

, b > 0. (2.3.2)

where a(t) > 0 is the time-dependent thermal diffusivity.

We shall determine the function a(t) > 0 and u from the interior temperature measurement

u(0, t) = h(t), t ≥ 0. (2.3.3)

The solution of the problem (2.3.1)-(2.3.2) for arbitrary a(t) > 0 can be found by using the

Fourier transform in the form

u(x, t) =
1√

4π
∫ t

0 a(y)dy

∫ b

−b
exp

{
−(x− ξ)2

4
∫ t

0 a(y)dy

}
dξ. (2.3.4)

To determine the function a(t) > 0, we will use the additional condition (2.3.3).

Setting x = 0 in (2.3.4) and taking into account (2.3.3), we obtain

h(t) =
1√

4π
∫ t

0 a(y)dy

∫ b

−b
exp

{
−ξ2

4
∫ t

0 a(y)dy

}
dξ.

Defining

F (η) =
1√
4πη

∫ b

−b
e
−ξ2
4η dξ, (2.3.5)

we can easily see that

F

(∫ t

0
a(y)dy

)
= h(t). (2.3.6)
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Setting t = 0 in (2.3.6), we obtain from the initial condition (2.3.2),

F (0) = h(0) = u(0, 0) = 1.

By using the fact that e−x
2

is an even function and substituting the variable ψ = ξ
2
√
η to

the integral in (2.3.5), we obtain

F (η) =
1√
4πη

∫ b

−b
e
−ξ2
4η dξ =

1
√
πη

∫ b

0
e
−ξ2
4η dξ

=
2√
π

∫ b/2
√
η

0
e−ψ

2
dψ.

Then, we have limη→∞ F (η) = 0, and by using the Fundamental Theorem of Calculus,

F ′(η) =
−b

2
√
π
e
−b2
4η η−3/2 < 0, η > 0. (2.3.7)

Consequently, F : (0,∞) −→ (0, 1) is a strictly-decreasing function and then the inverse of

F exists, say G. If 0 < h(t) < 1, t > 0, then from (2.3.6),∫ t

0
a(y)dy = G(h(t)), (2.3.8)

and

a(t) = G′(h(t))h′(t) =
F ′(G(h(t)))

F ′(G(h(t)))
G′(h(t))h′(t)

=
[F (G(h(t)))]′

F ′(G(h(t)))
=

h′(t)

F ′(G(h(t)))
, t > 0.

(2.3.9)

From (2.3.8) and (2.3.9), we must require that h′ is continuous, h′ < 0, and limt→∞ h(t) = 0.

From these requirements on h it follows that a(t) is positive, integrable, and continuous for

t > 0. For a(t) to be continuous at t = 0 with a(0) > 0, we must have

lim
t→0+

h′(t)

F ′(G(h(t)))
> 0.

Collecting all of the requirements, we obtain the result in the following theorem.



30

Theorem 2.3.1. If h is continuously differentiable for t > 0, h′(t) < 0 for t > 0, and

limt→∞ h(t) = 0, and if

lim
t→0+

h′(t)

F ′(G(h(t)))
> 0.

where F is defined by the equation (2.3.5) and G is the inverse of F , then it follows that a(t)

defined by (2.3.9) and u defined by (2.3.4) constitute the unique solution to (2.3.1)-(2.3.3).
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2.3.2 Heat Equation in a Finite Segment

We consider the boundary-value problem

ut = a(t)uxx, 0 < x < π, 0 < t; (2.3.10)

u(0, t) = u(π, t) = 0, 0 ≤ t; (2.3.11)

u(x, 0) = ϕ(x), 0 ≤ x ≤ π. (2.3.12)

where a(t) > 0 is the time-dependent thermal diffusivity.

We shall determine the function a and u from the interior temperature measurement

u(x0, t) = h(t), t ≥ 0 (2.3.13)

where x0 ∈ (0, π).

The solution of the problem (2.3.10)-(2.3.12) for arbitrary a(t) > 0 can be found by using

the separation of variables in the form

u(x, t) =
∞∑
n=1

Ane
−n2

∫ t
0 a(y)dy sin(nx) (2.3.14)

where

An =
2

π

∫ π

0
ϕ(ξ) sin(nξ)dξ, n = 1, 2, . . . .

To determine the function a(t), we will use the additional condition (2.3.13).

Setting x = x0 in (2.3.14) and taking into account (2.3.13), we obtain

h(t) =

∞∑
n=1

Ane
−n2

∫ t
0 a(y)dy sin(nx0), t > 0.

The function

v(x, η) =
∞∑
n=1

Ane
−n2η sin(nx), (2.3.15)

where

An =
2

π

∫ π

0
ϕ(ξ) sin(nξ)dξ, n = 1, 2, · · ·
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satisfies the problem

vη = vxx, 0 < x < π, η > 0, (2.3.16)

v(0, η) = v(π, η) = 0, η ≥ 0, (2.3.17)

v(x, 0) = ϕ(x), 0 ≤ x ≤ π. (2.3.18)

Suppose that ϕ is nonnegative continuous on 0 ≤ x ≤ π, ϕ(x0) > 0, and ϕ is twice

continuously differentiable on 0 < x < π such that ϕ′′ < 0 and ϕ′′ is bounded for 0 < x < π.

Firstly, we have

v(x0, 0) = ϕ(x0) > 0 (2.3.19)

and, from (2.3.15),

lim
η→∞

v(x0, η) = 0. (2.3.20)

Next, we will show that vη(x0, η) < 0 for η ≥ 0.

Set DT = (0, π)× (0, T ] and BT = DT −DT . Define the auxiliary function

w(x, η) = vη(x, η) + εx2 = vxx(x, η) + εx2,

where ε is a positive number. Then w assumes its maximum on BT . Otherwise, there would

exist a point (x1, η1) ∈ DT s.t.

w(x1, η1) = max
DT∪BT

w.

Hence, at (x1, η1) ∈ DT ,

wxx − wη ≤ 0 (2.3.21)

since wη(x1, η1) ≥ 0 and wxx(x1, η1) ≤ 0.

But

wxx − wη = (vηxx + 2ε)− vxxη = 2ε > 0

contradicts to (2.3.21). Then w has its maximum in BT . Since

w ≤ max
BT

w,
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and

vη(x0, η) < vη(x0, η) + εx2
0 = w(x0, η)

where x0 ∈ (0, π), η > 0, we have

vη(x0, η) < w(x0, η) ≤ max
BT

w ≤ max
BT

vη + εmax
BT

x2.

Since ε can be chosen arbitrarily,

vη(x0, η) < max
BT

vη = max
BT

vxx = max
0<x<π

{0, ϕ′′(x)} = 0.

Also, we have

vη(x0, 0) = vxx(x0, 0) = ϕ′′(x0) < 0.

Thus, we have

vη(x0, η) < 0, 0 ≤ η. (2.3.22)

Defining

F (η) = v(x0, η).

we can easily see that

F

(∫ t

0
a(y)dy

)
= h(t). (2.3.23)

Setting t = 0, we have F (0) = h(0). Then, by using the results (2.3.19),(2.3.20), and

(2.3.22), we have

F (0) = h(0) = ϕ(x0), lim
η→∞

F (η) = 0, F ′(η) < 0, η ≥ 0.

Then, F : [0,∞) −→ (0, ϕ(x0)] is strictly-decreasing function and then the inverse of F

exists, say G. If 0 < h(t) ≤ ϕ(x0), t ≥ 0, then from (2.3.23), we have∫ t

0
a(y)dy = G(h(t)), t ≥ 0 (2.3.24)
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and

a(t) = G′(h(t))h′(t) =
F ′(G(h(t)))

F ′(G(h(t)))
G′(h(t))h′(t)

=
[F (G(h(t)))]′

F ′(G(h(t)))
=

h′(t)

F ′(G(h(t)))
, t ≥ 0.

(2.3.25)

Note that F ′(G(h(t))) < 0, t ≥ 0. From (2.3.24) and (2.3.25), we must require that h′ is

continuous, h′ < 0, and limt→∞ h(t) = 0. From these requirements on h it follows that a(t)

is positive, integrable, and continuous for t ≥ 0.

Collecting all of the requirements, we obtain the result in the following theorem.

Theorem 2.3.2. If ϕ is nonnegative, twice continuously differentiable with bounded ϕ′′ < 0,

and ϕ(x0) > 0, 0 < x0 < π, and if h is continuously differentiable for t ≥ 0, h′ < 0, and

limt→∞ h(t) = 0, then a(t) given by (2.3.25) and u given by (2.3.14) constitute the unique

solution to problem (2.3.10)-(2.3.13).
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2.3.3 Heat Equation on the Half-Line

Now, we consider in this section the determination of a positive continuous function a(t)

defined on the interval 0 ≤ t < T and a function u = u(x, t) defined on 0 ≤ x < ∞, 0 ≤

t < T , such that the pair (a, u) satisfies

ut = a(t)uxx, 0 < x <∞, 0 < t < T ; (2.3.26)

u(x, 0) = 0, 0 ≤ x <∞; (2.3.27)

u(0, t) = ψ(t), 0 ≤ t < T. (2.3.28)

where ψ(t) is given function defined on 0 ≤ t < T .

We shall determine the function a(t) defined on the interval 0 ≤ t < T and u defined on

0 ≤ x <∞, 0 ≤ t < T from the boundary-flux measurement

−a(t)ux(0, t) = g(t), 0 < t < T (2.3.29)

where g is given function defined on 0 < t < T .

Definition 2.3.1. Let Q = [0,∞) × [0, T ). A pair of functions {a(t), u(x, t)} is called a

solution of (2.3.26)-(2.3.29) if

1. u ∈ C2,1(Q), and positive function a ∈ C
(
[0, T )

)
2. (2.3.27)-(2.3.29) is satisfied in the usual sense.

The first step in this section is based upon the representation of solutions of the heat

equation to which equation (2.3.26) can be reduced via the transformation

θ(t) =

∫ t

0
a(y)dy, 0 ≤ t ≤ T.

Since

θ′(t) = a(t) > 0, 0 ≤ t ≤ T, (2.3.30)
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the continuous function θ(t) is invertible, i.e., there exits a function ϕ such that

ϕ(θ(t)) = t, 0 ≤ t ≤ T, (2.3.31)

θ(ϕ(τ)) = τ, 0 ≤ τ ≤ θ(T ). (2.3.32)

Let

η = θ(t), 0 ≤ t ≤ T.

Differentiating the both sides of (2.3.31) with respect to t, we have

1 =
d

dt
ϕ(θ(t)) =

d

dt
ϕ(η) = ϕ′(η)

dη

dt
= ϕ′(η)θ′(t)

or, by using the equation (2.3.30), we have

ϕ′(η) =
1

θ′(t)
=

1

θ′
(
ϕ(θ(t))

) =
1

θ′
(
ϕ(η)

) =
1

a(ϕ(η))
, 0 ≤ η ≤ θ(T ). (2.3.33)

Let

U(x, η) = u
(
x, ϕ(η)︸︷︷︸

t

)
. (2.3.34)

Differentiating the equation (2.3.34) with respect to η and using the result (2.3.33), we have

Uη(x, η) = ut(x, ϕ(η))ϕ′(η) = ut(x, ϕ(η))
1

a(ϕ(t))

= uxx(x, ϕ(η)) = Uxx(x, η).

Consequently, to obtain the representation for u(x, t), we substitute η = θ(t) into the

representation for U(x, η).

So, the problem (2.3.26)-(2.3.28) is reduced to

Uη = Uxx, 0 < x <∞, 0 < η < θ(T ); (2.3.35)

u(x, 0) = 0, 0 ≤ x <∞; (2.3.36)

U(0, η) = ψ(ϕ(η)), 0 ≤ η ≤ θ(T ). (2.3.37)
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The solution of the problem (2.3.35)-(2.3.37) can be found by using the Laplace transform

in the form

U(x, η) =

∫ η

0

x√
4π(η − y)3

e−x
2/4(η−y)ψ(ϕ(y))dy.

Substituting in η = θ(t), we obtain

u(x, t) =

∫ θ(t)

0

x√
4π(θ(t)− y)3

e

−x2

4(θ(t)− y)ψ(ϕ(y))dy.

If we make the substitution y = θ(τ), we obtain dy = θ′(τ)dτ = a(τ)dτ and then

u(x, t) =

∫ t

0

x√
4π(θ(t)− θ(τ))3

e

−x2

4(θ(t)− θ(τ))ψ(ϕ(θ(τ)))a(τ)dτ

=
1

2
√
π

∫ t

0

x( ∫ t
τ a(y)dy

)3/2 e
−x2

4
∫ t
τ a(y)dy ψ(τ)a(τ)dτ.

(2.3.38)

Now, we shall determine the function a(t) defined on the interval 0 ≤ t < T from the

boundary-flux measurement (2.3.29). Differentiating the equality (2.3.38) with respect to

x and setting x = 0, we obtain

ux(0, t) =
1

2
√
π

∫ t

0

ψ(τ)a(τ)( ∫ t
τ a(y)dy

)3/2dτ. (2.3.39)

Under the assumption that ψ is continuously differentiable, integrating by parts in (2.3.39)

and using the initial condition ψ(0) = u(0, 0) = 0, we obtain∫ t

0

ψ(τ)a(τ)( ∫ t
τ a(y)dy

)3/2dτ =

∫ t

0
2ψ(τ)

(
1( ∫ t

τ a(y)dy
)1/2

)′
dτ

=

(
2ψ(τ)

1( ∫ t
τ a(y)dy

)1/2
∣∣∣∣∣
τ=t

τ=0

−
∫ t

0

2ψ′(τ)( ∫ t
τ a(y)dy

)1/2dτ
= −

∫ t

0

2ψ′(τ)( ∫ t
τ a(y)dy

)1/2dτ.
By using this result, we can write the equation (2.3.39) in the form

ux(0, t) =
−1√
π

∫ t

0

ψ′(τ)( ∫ t
τ a(y)dy

)1/2dτ. (2.3.40)
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From the equation (2.3.29) and (2.3.40), we get the nonlinear integral equation

a(t) =
−g(t)

ux(0, t)
=

√
πg(t)∫ t

0

[
ψ′(τ)( ∫ t

τ a(y)dy
)1/2

]
dτ

, 0 < t < T. (2.3.41)

Then, the existence of a unique solution to the problem (2.3.26)-(2.3.29) is equivalent to

the existence of a unique solution to the integral equation (2.3.41).

Define

Fa(t) =

√
πg(t)∫ t

0

[
ψ′(τ)( ∫ t

τ a(y)dy
)1/2

]
dτ

, 0 < t < T (2.3.42)

Now, the existence of a unique solution to the integral equation (2.3.41) is equivalent to the

existence of a unique fixed point of the operator F .

Assumption

We shall assume that

1. ψ is continuously differentiable on every compact subset of 0 ≤ t < T ;

2. ψ′ > 0, 0 < t < T ;

3. g is continuous for 0 ≤ t < T , and positive for 0 < t < T ;

4. The function

h(t) =

√
πg(t)∫ t

0

[
ψ′(τ)

(t− τ)1/2

]
dτ

, 0 < t < T,

satisfies

lim
t→0+

h(t) = h0 > 0.

Definition 2.3.2. For any function ϕ(t) defined for 0 ≤ t < T , Let

s(ϕ, t) = sup
0<y<t

ϕ(y), i(ϕ, t) = inf
0<y<t

ϕ(y).
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Lemma 2.3.3. The function Fa(t) satisfies

√
i(a, t)i(h, t) ≤ Fa(t) ≤

√
s(a, t)s(h, t), 0 < t < T.

Proof. Since g > 0 and ψ′ > 0,

Fa(t) =

√
πg(t)∫ t

0

[
ψ′(τ)( ∫ t

τ a(y)dy
)1/2

]
dτ

≤
√
πg(t)∫ t

0

 ψ′(τ)( ∫ t
τ sup

0<y<t
a(y)dy

)1/2
 dτ

=

√
πg(t)∫ t

0

[
ψ′(τ)(

(t− τ)s(a, t)
)1/2

]
dτ

=
√
s(a, t)h(t) ≤

√
s(a, t)s(h, t)

Likewise,

Fa(t) =

√
πg(t)∫ t

0

[
ψ′(τ)( ∫ t

τ a(y)dy
)1/2

]
dτ

≥
√
πg(t)∫ t

0

 ψ′(τ)( ∫ t
τ inf

0<y<t
a(y)dy

)1/2
 dτ

=

√
πg(t)∫ t

0

[
ψ′(τ)(

(t− τ)i(a, t)
)1/2

]
dτ

=
√
i(a, t)h(t) ≥

√
i(a, t)i(h, t)

Lemma 2.3.4. If a(t) is a solution of the nonlinear integral equation (2.3.41), then

i(h, t)2 ≤ a(t) ≤ s(h, t)2, 0 ≤ t < T.

Proof. By Lemma 2.3.3,

a(t) = Fa(t) ≤
√
s(a, t)s(h, t).

whence it follows that

s(a, t) ≤
√
s(a, t)s(h, t).

and √
s(a, t) ≤ s(h, t). (2.3.43)
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Likewise,

a(t) ≥
√
i(a, t)i(h, t).

whence it follows that

i(a, t) ≥
√
i(a, t)i(h, t).

and √
i(a, t) ≥ i(h, t). (2.3.44)

Combining (2.3.43) and (2.3.44),we have

i(h, t) ≤
√
i(a, t) ≤

√
a(t) ≤

√
s(a, t) ≤ s(h, t) (2.3.45)

Therefore, the result follows by taking the square of each term in (2.3.45).

We now restrict our attention to the class of functions defined as

G = {a ∈ C
(
[0, T )

)
| i(h, t)2 ≤ a(t) ≤ s(h, t)2} (2.3.46)

Lemma 2.3.5. F maps G into G

Proof. Let a(t) be in G. From the Lemma 2.3.3, we have

Fa(t) ≤
√
s(a, t)s(h, t)

But, since a(t) ∈ G, √
s(a, t) ≤

√
s(h, t)2.

Then

Fa(t) ≤
√
s(a, t)s(h, t) ≤ s(h, t)2.

Likewise,

Fa(t) ≥
√
i(a, t)s(h, t)

But, since a(t) ∈ G, √
i(a, t) ≥

√
i(h, t)2.
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Then

Fa(t) ≥
√
i(a, t)i(h, t) ≥ i(h, t)2.

Therefore the result follows.

Lemma 2.3.6. If a1 and a2 are G and a1 ≤ a2, then Fa1 ≤ Fa2.

Proof. From the definition (2.3.42) of F , we obtain

√
πg(t)

Fa2
=

∫ t

0

ψ′(τ)(∫ t
τ a2(y)dy

)1/2
dτ ≤

∫ t

0

ψ′(τ)(∫ t
τ a1(y)dy

)1/2
dτ =

√
πg(t)

Fa1
.

Thus

Fa1(t) ≤ Fa2.

Lemma 2.3.7. The image FG is an equicontinuous, uniformly bounded family of functions.

Proof. Since i(h, t)2 ≤ Fa(t) ≤ s(h, t)2 and

lim
t→0+

i(h, t) = lim
t→0+

s(h, t) = lim
t→0+

h(t) = h0,

it follows that the family FG is equicontinuous at t = 0. Now, we will consider FG at

t, 0 < t < T .

Let t0 be fixed such that t < t0 < min(2t, T ) and let δ > 0 satify t < t+ δ < t0. Set

∆(a, δ) =

∫ t+δ

0

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ −

∫ t

0

ψ′(τ)(∫ t
τ a(y)dy

)1/2
dτ
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Then,

|∆(a, δ)| =

∣∣∣∣∣
∫ t+δ

t

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ

+

∫ t

0

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ −

∫ t

0

ψ′(τ)(∫ t
τ a(y)dy

)1/2
dτ

∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ t+δ

t

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫ t

0

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ −

∫ t

0

ψ′(τ)(∫ t
τ a(y)dy

)1/2
dτ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ t+δ

t

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫ t

0

(−1)ψ′(τ)(∫ t
τ a(y)dy

)1/2
−
(∫ t+δ

τ a(y)dy
)1/2

dτ

∣∣∣∣∣∣∣
= I1 + I2

where

I1 =

∫ t+δ

t

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ

and

I2 =

∫ t

0

ψ′(τ)(∫ t
τ a(y)dy

)1/2
−
(∫ t+δ

τ a(y)dy
)1/2

dτ
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By using the inequality i(h, t) ≤ a(t), 0 ≤ t < T obtained from the Lemma 2.3.4, we have

I1 =

∫ t+δ

t

ψ′(τ)(∫ t+δ
τ a(y)dy

)1/2
dτ ≤

∫ t+δ

t

ψ′(τ)(∫ t+δ
τ inf

0<y<t0
a(y)dy

)1/2
dτ

≤
∫ t+δ

t

ψ′(τ)(∫ t+δ
τ i(h, t0)2dy

)1/2
dτ =

1

i(h, t0)

∫ t+δ

t

ψ′(τ)

(t+ δ − τ)1/2
dτ

≤ 1

i(h, t0)

(
sup

t≤τ≤t0
ψ′(τ)

)∫ t+δ

t

1

(t+ δ − τ)1/2
dτ

=
1

i(h, t0)

(
sup

t≤τ≤t0
ψ′(τ)

)(
− 2(t+ δ − τ)1/2

∣∣∣∣τ=t+δ

τ=t

= C1δ
1/2

(2.3.47)

where

C1 =
2

i(h, t0)

(
sup

t≤τ≤t0
ψ′(τ)

)
which is positive and finite by our assumptions and independent of a(t).

For bi > 0 , i = 1, 2, it follows that

1√
b1
− 1√

b2
=

√
b2 −

√
b1√

b1
√
b2

=
b2 − b1√

b1
√
b2(
√
b1 +

√
b2)

. (2.3.48)

By using this result, we obtain

I2 =

∫ t

0

ψ′(τ)(∫ t
τ a(y)dy

)1/2
−
(∫ t+δ

τ a(y)dy
)1/2

dτ

=

∫ t

0

(∫ t+δ
t a(y)dy

)
ψ′(τ)dτ(∫ t

τ a(y)dy
)1/2 (∫ t+δ

τ a(y)dy
)1/2

[(∫ t
τ a(y)dy

)1/2
+
(∫ t+δ

τ a(y)dy
)1/2

]

≤

(
sup

0<y<t0

a(y)

)
(

inf
0<y<t0

a(y)

)3/2

∫ t

0

(∫ t+δ
t dy

)
ψ′(τ)dτ(∫ t

τ dy
)1/2 (∫ t+δ

τ dy
)1/2

[(∫ t
τ dy

)1/2
+
(∫ t+δ

τ dy
)1/2

]
≤ s(h, t0)2

i(h, t0)3

∫ t

0

δ

(t− τ)1/2(t+ δ − τ)1/2
[
(t− τ)1/2 + (t+ δ − τ)1/2

]ψ′(τ)dτ

=
s(h, t0)2

i(h, t0)3

∫ t

0

[
1

(t− τ)1/2
− 1

(t+ δ − τ)1/2

]
ψ′(τ)dτ

(2.3.49)
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We now let η, 0 < η < 1
2 t. Then, from the inequality (2.3.49), we have

I2 ≤ C2

∫ t

0

[
1

(t− τ)1/2
− 1

(t+ δ − τ)1/2

]
ψ′(τ)dτ

= C2

∫ η

0

[
1

(t− τ)1/2
− 1

(t+ δ − τ)1/2

]
ψ′(τ)dτ

+ C2

∫ t

η

[
1

(t− τ)1/2
− 1

(t+ δ − τ)1/2

]
ψ′(τ)dτ

≤ C2

∫ η

0

ψ′(τ)

(t− τ)1/2
dτ + C2 sup

η≤τ≤t0
ψ′(τ)

∫ t

0

[
1

(t− τ)1/2
− 1

(t+ δ − τ)1/2

]
dτ

= C2

[(
ψ(τ)

1

(t− τ)1/2

∣∣∣∣τ=η

τ=0

−
∫ η

0

ψ(τ)

2(t− τ)3/2
dτ

]
+ C2 sup

η≤τ≤t0
ψ′(τ)

(
− 2(t− τ)1/2 + 2(t+ δ − τ)1/2

∣∣∣∣τ=t

τ=0

≤ C2ψ(η)
1

(t− η)1/2
+ C2 sup

η≤τ≤t0
ψ′(τ)

[
2δ1/2 + 2t1/2 − 2(t+ δ)1/2

]
≤ C2ψ(η)η−1/2 + 2C2δ

1/2 sup
η≤τ≤t0

ψ′(τ)

where

C2 =
s(h, t0)2

i(h, t0)3

Since ψ is continuous and ψ(0) = 0, we can select η sufficiently small so that

C2ψ(η)η−1/2 < 2−1ε, ε > 0.

Fixing η, we then can select δ sufficiently small so that

2C2δ
1/2 sup

η≤τ≤t0
ψ′(τ) < 2−1ε ε > 0.

Consequently, for each ε > 0, there exists a δε > 0 independent of a such that

I2 < ε (2.3.50)

for all 0 < δ < δε.

Combining (2.3.47) and (2.3.50), it follows that ∆(a, δ) tends to zero uniformly with respect

to a ∈ G as δ tends to zero from above. By a similar argument, ∆(a, δ) tends to zero
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uniformly with respect to a ∈ G as δ tends to zero from below.

Thus, the functions √
πg(t)

Fa(t)
=

∫ t

0

ψ′(τ)(∫ t
τ a(y)dy

)1/2
dτ

for a ∈ G are equicontinuous for 0 ≤ t < T . As g is continuous for 0 ≤ t < T , it follows

that the functions Fa(t) for a ∈ G are equicontinuous. The uniformly boundedness follows

from results of Lemma 2.3.5

Now, we will consider the existence of a fixed point of the operator F .

Let a0(t) = i(h, t)2, 0 ≤ t < T . Then a0 is in G. Since F maps G into G, Fa0 ∈ G,

which implies that Fa0(t) ≥ i(h, t)2 = a0(t). As Fa0(t) ≥ a0(t), by the Lemma 2.3.6,

F2a0(t) ≥ Fa0(t), and by induction the sequence Fna0(t) is a monotone increasing sequence

of functions on 0 ≤ t < T . As Fna0(t) ∈ G, n = 1, 2, 3, . . ., they are bounded above by

s(h, t)2. Hence,

lim
n→∞

Fna0(t)

exists for 0 ≤ t < T , say ã(t). But, from Lemma (2.3.7), Fna0(t), n = 1, 2, 3 . . ., are

equicontinuous and uniformly bounded. From the Ascoli-Arzela Theorem, there exists a

uniformly convergent subsequence on each compact subset of 0 ≤ t < T . This, together with

the monotonicity of the sequence, implies that the entire sequence Fna0, n = 1, 2, 3, . . .,

converges uniformly to ã(t) on each compact subset of 0 ≤ t < T .

Since Fna0(t) converges uniformly to ã(t) on 0 ≤ t ≤ T0 < T , for each τ , 0 < τ < t ≤ T0,

we have

lim
n→∞

∫ t

τ
Fna0(y)dy =

∫ t

τ
ã(y)dy.

Then, we have

lim
n→∞

ψ′(τ)(∫ t

τ
Fna0(y)dy

)1/2
=

ψ′(τ)(∫ t

τ
ã(y)dy

)1/2
.
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Since Fna0(t) is a monotone increasing sequence and lim
n→∞

Fna0(t) = ã(t), we have for

0 < t ≤ T ,

a0(t) ≤ Fna0(t) ≤ ã(t), n = 1, 2, 3, . . .

By using this result, we obtain

0 <
ψ′(τ)(∫ t

τ
ã(y)dy

)1/2
≤ ψ′(τ)(∫ t

τ
Fna0(y)dy

)1/2
≤ ψ′(τ)(∫ t

τ
a0(y)dy

)1/2

Then, from the Lebesgue dominated-convergence theorem, we obtain

lim
n→∞

∫ t

0

ψ′(τ)(∫ t

τ
Fna0(y)dy

)1/2
dτ =

∫ t

0

ψ′(τ)(∫ t

τ
ã(y)dy

)1/2
dτ.

Then, we also have

lim
n→∞

√
πg(t)∫ t

0

ψ′(τ)

(
∫ t
τ Fna0(y)dy)1/2

dτ

=

√
πg(t)∫ t

0

ψ′(τ)

(
∫ t
τ ã(y)dy)1/2

dτ.

By using the definiton 2.3.42 of F , from the last equality, we obtain

lim
n→∞

F
(
Fna0(t)

)
= F ã(t)

Since the left-hand side of last equation equals to ã(t), we have

ã(t) = F ã(t)

Thus, ã(t) = limn→∞Fna0(t) is a fixed point of the operator F .

Now, we will consider the uniqueness of the fixed point of the operator F .

Suppose that a1(t) and a2(t) are two different solutions of the nonlinear integral equation

(2.3.41). Then, we see that

√
πg(t)

a1(t)
−
√
πg(t)

a2(t)
=

∫ t

0

 1(∫ t
τ a1(y)dy

)1/2
− 1(∫ t

τ a2(y)dy

)1/2

ψ′(τ)dτ. (2.3.51)
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By using the equation (2.3.48), we can write (2.3.51) as

a2(t)− a1(t) =
a1(t)a2(t)√

πg(t)

∫ t

0

(∫ t
τ
a1(y)dy

)−1/2 (∫ t
τ
a2(y)dy

)−1/2 (∫ t
τ
(a2(y)− a1(y))dy

)
[(∫ t

τ
a1(y)dy

)1/2
+
(∫ t

τ
a2(y)dy

)1/2] ψ′(τ)dτ.

Employing the fact that a1(t) and a2(t) are in G defined by (2.3.46), we obtain

|a2(t)− a1(t)| ≤ s(h, t)4

√
πg(t)i(h, t)3

∫ t

0

∫ t
τ |a2(y)− a1(y)|dy

(
∫ t
τ dy)1/2(

∫ t
τ dy)1/2

[
(
∫ t
τ dy)1/2 + (

∫ t
τ dy)1/2

]ψ′(τ)dτ

≤ s(h, t)4

2
√
πg(t)i(h, t)3

∫ t

0

∫ t
τ |a2(y)− a1(y)|dy

(t− τ)3/2
ψ′(τ)dτ

≤ s(h, t)4s(|a1 − a2|, t)
2
√
πg(t)i(h, t)3

∫ t

0

∫ t
τ dy

(t− τ)3/2
ψ′(τ)dτ

≤ s(h, t)4s(|a1 − a2|, t)
2
√
πg(t)i(h, t)3

∫ t

0

ψ′(τ)

(t− τ)1/2
dτ =

s(h, t)4s(|a1 − a2|, t)
2
√
πg(t)i(h, t)3

√
πg(t)

h(t)

≤ s(h, t)4

2i(h, t)4
s(|a1 − a2|, t)

(2.3.52)

Thus, we have

s(|a2 − a1|, t) ≤
s(h, t)4

2i(h, t)4
s(|a1 − a2|, t)

for 0 ≤ t < T . Since lim
t→0+

h(t) = h0, we have

lim
t→0+

s(h, t)4

2i(h, t)4
=

1

2
. (2.3.53)

Since h(t) is continuous, from the equation (2.3.53), for each 0 < ε < 1
2 , there exists a t0 > 0

such that for all t, 0 ≤ t ≤ t0, we have∣∣∣∣ s(h, t)4

2i(h, t)4
− 1

2

∣∣∣∣ < 1

2
− ε,
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or

0 <
s(h, t)4

2i(h, t)4
< 1− ε, 0 < ε <

1

2
.

Thus, for 0 ≤ t ≤ t0, we have

s(|a2 − a1|, t) ≤ (1− ε)s(|a1 − a2|, t). (2.3.54)

which implies that

a1(t) ≡ a2(t)

for 0 ≤ t ≤ t0.

Now, we will consider the inequality (2.3.52). Then, we have

|a2(t)− a1(t)| ≤ s(h, t)4

2
√
πg(t)i(h, t)3

∫ t

0

∫ t
τ |a2(y)− a1(y)|dy

(t− τ)3/2
ψ′(τ)dτ, t0 ≤ t ≤ T0

≤ C
∫ t

0
(t− τ)−3/2

∫ t

τ
|a2(y)− a1(y)|dydτ, t0 ≤ t ≤ T0,

(2.3.55)

where

C =
s(h, T0)4s(ψ′, T0)

2
√
πi(h, T0)3 inf

t0≤t≤T0
g(t)

.

Applying Fubini’s Theorem,∫ t

0
(t− τ)−3/2

∫ t

τ
|a2(y)− a1(y)|dydτ =

∫ t

0
|a2(y)− a1(y)|

∫ y

0
(t− τ)−3/2dτdy

=

∫ t

0
|a2(y)− a1(y)|

[
2(t− τ)−1/2

∣∣∣∣τ=y

τ=0

dy

= 2

∫ t

0
|a2(y)− a1(y)|

[
(t− y)−1/2 − t−1/2

]
dy

≤ 2

∫ t

0
(t− y)−1/2|a2(y)− a1(y)|dy

(2.3.56)
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Substituting (2.3.56) into (2.3.55), we obtain

|a2(t)− a1(t)| ≤ 2C

∫ t

0
(t− y)−1/2|a2(y)− a1(y)|dy, t0 ≤ t ≤ T0. (2.3.57)

As a1 ≡ a2 for 0 ≤ t ≤ t0, (2.3.57) holds for all t, 0 ≤ t ≤ T0. From this inequality it

follows from Lemma (1.3.2) that a1(t) ≡ a2(t) for 0 ≤ t ≤ T0. As T0 is an arbitrary positive

number less than T , we see that the solution to the nonlinear integral equation (2.3.41) is

unique.

Theorem 2.3.8. If ψ is continuously differentiable for 0 ≤ t < T , ψ′(t) > 0, 0 < t < T , g

is continuous for 0 ≤ t < T , and positive for 0 < t < T , and the function

h(t) =

√
πg(t)∫ t

0

[
ψ′(τ)

(t− τ)1/2

]
dτ

, 0 < t < T,

satisfies

lim
t→0+

h(t) = h0 > 0,

then there is a unique solution to the nonlinear integral equation (2.3.41).



Chapter 3

Inverse Problem for Wave
Equation

Now, we consider in this section the determination of a continuous function a(t) defined on

the interval 0 ≤ t ≤ T and a function u = u(x, t) defined on 0 ≤ x ≤ π, 0 ≤ t ≤ T , such

that the pair (a, u) satisfies

utt = uxx + a(t)u+ F (x, t), 0 < x < π, 0 < t < T ; (3.0.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ π; (3.0.2)

u(0, t) = u(π, t) = 0, 0 ≤ t ≤ T ; (3.0.3)

where ϕ(x), ψ(x), F (x, t) are given functions. We shall determine the functions a(t) and

u(x, t) from the measurement

ux(0, t) = g(t), 0 ≤ t ≤ T. (3.0.4)

Definition 3.0.3. Let Q = (0, π) × (0, T ). A pair of functions {a(t), u(x, t)} is called a
solution of (3.0.1)-(3.0.4) if

1. u ∈ C2(Q̄), and a ∈ C[0, T ]

2. (3.0.2)-(3.0.4) is satisfied in the usual sense.

Now, we will assume that ϕ(x), ψ(x), g(t), F (x, t) satisfy

50



51

Assumption

1. ϕ(x) ∈ C3[0, π], ϕ(4)(x) ∈ L2(0, π), and ϕ(0) = ϕ(π) = ϕ′′(0) = ϕ′′(π) = 0;

2. ψ(x) ∈ C2[0, π], ψ′′′(x) ∈ L2(0, π), and ψ(0) = ψ(π) = ψ′′(0) = ψ′′(π) = 0;

3. g(t) ∈ C2[0, T ], g(t) 6= 0, and g(0) = ϕ′(0), g′(0) = ψ′(0);

4. F (x, t) ∈ C(Q), Fxx(x, t) ∈ C(Q), Fxxx(x, t) ∈ L2(Q), and F (0, t) = F (π, t) =

Fxx(0, t) = Fxx(π, t) = 0 for all t ∈ [0, T ].

The solution of the problem (3.0.1)-(3.0.4) may be obtained by

u(x, t) =
∞∑
k=1

uk(t) sin kx (3.0.5)

It is clear that this series satisfies the boundary conditions (3.0.3). Setting the series (3.0.5)

into the equation (3.0.1), we obtain

∞∑
k=1

u′′k(t) sin kx = −
∞∑
k=1

k2uk(t) sin kx+

∞∑
k=1

a(t)uk(t) sin kx+ F (x, t) (3.0.6)

Expanding F (x, t), we have

F (x, t) =
∞∑
k=1

Fk(t) sin kx (3.0.7)

where

Fk(t) =
2

π

∫ π

0
F (ξ, t) sin kξdξ, k = 1, 2, . . .

From (3.0.6) and (3.0.7), we obtain

∞∑
k=1

[
u′′k(t) + k2uk(t)− a(t)uk(t)− Fk(t)

]
sin kx = 0

This equality holds if and only if

u′′k(t) + k2uk(t) = a(t)uk(t) + Fk(t), k = 1, 2, . . . (3.0.8)



52

Taking into account the initial conditions (3.0.2) and using the variation of parameters

method, we can easily see that the solution of the problem (3.0.8) is of the form

uk(t) = ϕk cos kt+
ψk
k

sin kt+

∫ t

0

1

k
Fk(τ) sin[k(t− τ)]dτ

+

∫ t

0

1

k
a(τ)uk(τ) sin[k(t− τ)]dτ.

(3.0.9)

Thus, the solution of the problem (3.0.1)-(3.0.4) is of the form

u(x, t) =
∞∑
k=1

ϕk cos kt sin kx+
∞∑
k=1

ψk
k

sin kt sin kx

+

∞∑
k=1

2

kπ

∫ t

0

∫ π

0
F (ξ, τ) sin kξ sin[k(t− τ)]dξdτ sin kx

+
∞∑
k=1

2

kπ

∫ t

0

∫ π

0
a(τ)u(ξ, τ) sin kξ sin[k(t− τ)]dξdτ sin kx.

(3.0.10)

Taking into account the equation (3.0.4), we get the system of integral equation

∞∑
k=1

ϕkk cos kt+

∞∑
k=1

ψk sin kt+

∞∑
k=1

2

π

∫ t

0

∫ π

0
F (ξ, τ) sin kξ sin[k(t− τ)]dξdτ

+
∞∑
k=1

2

π

∫ t

0

∫ π

0
a(τ)u(ξ, τ) sin kξ sin[k(t− τ)]dξdτ = g(t).

(3.0.11)

Differentiating (3.0.11) with respect to t, we obtain

−
∞∑
k=1

ϕkk
2 sin kt+

∞∑
k=1

ψkk cos kt+

∞∑
k=1

2k

π

∫ t

0

∫ π

0
F (ξ, τ) sin kξ cos[k(t− τ)]dξdτ

+

∞∑
k=1

2k

π

∫ t

0

∫ π

0
a(τ)u(ξ, τ) sin kξ cos[k(t− τ)]dξdτ = g′(t).

(3.0.12)
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Again, differentiating the equation (3.0.12) with respect to t, we obtain

−
∞∑
k=1

ϕkk
3 cos kt−

∞∑
k=1

ψkk
2 sin kt+

∞∑
k=1

2k

π

∫ π

0
F (ξ, t) sin kξdξ

−
∞∑
k=1

2k2

π

∫ t

0

∫ π

0
F (ξ, τ) sin kξ sin[k(t− τ)]dξdτ + a(t)

∞∑
k=1

2k

π

∫ π

0
u(ξ, t) sin kξdξ

−
∞∑
k=1

2k2

π

∫ t

0

∫ π

0
a(τ)u(ξ, τ) sin kξ sin[k(t− τ)]dξdτ = g′′(t).

(3.0.13)

As

u(x, t) =
∞∑
k=1

2

π

∫ π

0
u(ξ, t) sin kξdξ sin kx,

then we have

g(t) = ux(0, t) =
∞∑
k=1

2k

π

∫ π

0
u(ξ, t) sin kξdξ. (3.0.14)

Similarly, from the equation (3.0.7), we obtain

Fx(0, t) =

∞∑
k=1

2k

π

∫ π

0
F (ξ, t) sin kξdξ. (3.0.15)

By using the equations (3.0.14) and (3.0.15), we rewrite the equation (3.0.13) to obtain

a(t) =
1

g(t)

∞∑
k=1

ϕkk
3 cos kt+

1

g(t)

∞∑
k=1

ψkk
2 sin kt+

g′′(t)

g(t)
− Fx(0, t)

g(t)

+
1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0
F (ξ, τ) sin kξ sin[k(t− τ)]dξdτ

+
1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0
a(τ)u(ξ, τ) sin kξ sin[k(t− τ)]dξdτ.

(3.0.16)
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Theorem 3.0.9. Under the assumption 1) - 4), suppose that T1 and T2 are some positive
numbers that satisfy the conditions

C1

(
π2

3
+

π2

2H2
∗

)
T 2

1 < 1

and

C1 +

(
π2

3
+

π2

2H2
∗

)
M4T 2

2 ≤M2

where

M =


C1

1− C1

(
π2

3
+

π2

2H2
∗

)
T 2

1


1
2

, (3.0.17)

C1 =
8

π

∥∥ϕ′′′∥∥2

L2(0,π)
+

8

π

∥∥ψ′′∥∥2

L2(0,π)
+

8T

π

∥∥∥∥∂2F

∂x2

∥∥∥∥2

L2(Q)

+
6

H2
∗

∥∥g′′∥∥2

C[0,T ]

+
6

H2
∗
‖Fx(0, ·)‖2C[0,T ] +

2π

H2
∗

∥∥∥ϕ(4)
∥∥∥2

L2(0,π)
+

2π

H2
∗

∥∥∥ψ(3)
∥∥∥2

L2(0,π)

+
2πT

H2
∗

∥∥∥∥∂3F

∂x3

∥∥∥∥2

L2(Q)

,

H∗ = min
0≤t≤T

|g(t)|.

Then, the problem (3.0.1)-(3.0.4) has a unique solution with T ≤ min{T1, T2}.

Now, we write (3.0.10) and (3.0.16) in the form

v = φ[v] (3.0.18)

where

v = {u, a}, φ = {φ1(u, a), φ2(u, a)}, (3.0.19)

and φi(u, a), i = 1, 2 are defined by the right hand side of (3.0.10) and (3.0.16), respectively.

Let E = B3
2(Q)× C[0, T ] be defined with the norm

‖v‖E =
(
‖u‖2B32(Q) + ‖a‖2C[0,T ]

) 1
2

(3.0.20)
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Corollary 3.0.10. E is a Banach space with respect to the given norm (3.0.20).

Proof. Let {vn}n∈N ∈ E be a Cauchy sequence. Then, given ε > 0, there is K > 0 such
that for all n,m ≥ K we have

‖vn − vm‖E =
(
‖un − um‖2B32(Q) + ‖an − am‖2C[0,T ]

) 1
2
< ε

Then, it is easy to see that for all n,m ≥ K

‖un − um‖ < ε and ‖an − am‖ < ε.

Then, {un}n∈N and {an}n∈N are also Cauchy sequences. Since B3
2(Q) and C[0, T ] are com-

plete, sequences un and an converge to some u ∈ B3
2(Q) and a ∈ C[0, T ], respectively. So

there is K1 > 0 such that for all n ≥ K1 we have

‖un − u‖B32(Q) <
ε√
2
,

and there is K2 > 0 such that for all n ≥ K2 we have

‖an − a‖C[0,T ] <
ε√
2
.

Set v = {u, a}. Then, for all n ≥ maxK1,K2 we have

‖vn − v‖E < ε

Hence, vn converges to v ∈ E. It shows that E is a complete metric space.

Now, let us show that solutions of (3.0.18) are bounded in E.

Lemma 3.0.11. If v is the solution of (3.0.18), then

‖v‖E ≤M (3.0.21)

where M is defined by (3.0.17).

Proof. From the equation (3.0.9) and by using the Hölder’s Inequality, we obtain

k3 max
0≤τ≤t

|uk(τ)| ≤ k3|ϕk|+ k2|ψk|

+
2

π

[∫ t

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

] 1
2
[∫ t

0
sin2[k(t− τ)]dτ

] 1
2

+

[∫ t

0

(
k2a(τ)uk(τ)

)2

dτ

] 1
2
[∫ t

0
sin2[k(t− τ)]dτ

] 1
2

.

(3.0.22)
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Note that ∫ t

0
sin2[k(t− τ)]dτ ≤

∫ t

0
dτ = t ≤ T. (3.0.23)

From the equation (3.0.22), by using the inequality

( n∑
i=1

bi

)2

≤ n
n∑
i=1

b2i , we obtain

∞∑
k=1

[
k3 max

0≤τ≤t
|uk(τ)|

]2

≤ 4

∞∑
k=1

(
k3ϕk

)2
+ 4

∞∑
k=1

(
k2ψk

)2
+

16T

π2

∞∑
k=1

∫ T

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

+ 4T

∞∑
k=1

∫ t

0

(
k2a(τ)uk(τ)

)2

dτ.

(3.0.24)

By using the simple inequality 2ab ≤ a2 + 2ab+ b2 = (a+ b)2, we have

4T
∞∑
k=1

∫ t

0

(
k2a(τ)uk(τ)

)2

dτ ≤ 4T

∫ t

0
a2(τ)

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2 1

k2
dτ

≤ 4T

∫ t

0
a2(τ)

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2 ∞∑
k=1

1

k2
dτ

≤ 2T

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2 ∞∑

k=1

1

k2
dτ.

(3.0.25)

Since
∞∑
k=1

1

k2
=
π2

6
,

from the equation (3.0.24), we have

∞∑
k=1

[
k3 max

0≤τ≤t
|uk(τ)|

]2

≤ 4

∞∑
k=1

(
k3ϕk

)2
+ 4

∞∑
k=1

(
k2ψk

)2
+

16T

π2

∞∑
k=1

∫ T

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

+
Tπ2

3

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ.
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Note that∥∥ϕ′′′∥∥2

L2(0,π)
=

∫ π

0
[ϕ′′′(x)]2dx =

∫ π

0

[
d3

dx3

( ∞∑
k=1

ϕk sin kx

)]2

dx

=

∫ π

0

( ∞∑
k=1

k3ϕk cos kx

)2

dx =
∞∑
k=1

k6ϕ2
k

∫ π

0
cos2 kxdx

=
π

2

∞∑
k=1

k6ϕ2
k =

π

2

∞∑
k=1

(
k3ϕk

)2
,

(3.0.26)

∥∥ψ′′∥∥2

L2(0,π)
=

∫ π

0
[ψ′′(x)]2dx =

∫ π

0

[
d2

dx2

( ∞∑
k=1

ψk sin kx

)]2

dx

=

∫ π

0

( ∞∑
k=1

k2ψk sin kx

)2

dx =

∞∑
k=1

k4ψ2
k

∫ π

0
sin2 kxdx

=
π

2

∞∑
k=1

k4ϕ2
k =

π

2

∞∑
k=1

(
k2ϕk

)2
,

and ∥∥∥∥∂2F

∂x2

∥∥∥∥2

L2(Q)

=

∫ T

0

∫ π

0

[
∂2F (x, τ)

∂x2

]2

dxdτ

=

∫ T

0

∫ π

0

[
∂2

∂x2

( ∞∑
k=1

Fk(τ) sin kx

)]2

dxdτ

=

∫ T

0

∫ π

0

( ∞∑
k=1

k2Fk(τ) sin kx

)2

dxdτ

=

∫ T

0

∞∑
k=1

k4F 2
k (τ)

∫ π

0
sin2 kxdxdτ

=
π

2

∞∑
k=1

∫ T

0
k4F 2

k (τ)dτ =
π

2

∞∑
k=1

∫ T

0

(
k2Fk(τ)

)2
dτ

=
2

π

∞∑
k=1

∫ T

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ.

(3.0.27)

Therefore, we have

∞∑
k=1

[
k3 max

0≤τ≤t
|uk(τ)|

]2

≤ 8

π

∥∥ϕ′′′∥∥2

L2(0,π)
+

8

π

∥∥ψ′′∥∥2

L2(0,π)
+

8T

π

∥∥∥∥∂2F

∂x2

∥∥∥∥2

L2(Q)

+
Tπ2

3

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ.

(3.0.28)
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From the equation (3.0.16) and by using the Hölder’s Inequality, we obtain

max
0≤τ≤t

|a(τ)| ≤ 1

min
0≤t≤T

|g(t)|

{
max

0≤t≤T
|g′′(t)|+ max

0≤t≤T
|Fx(0, t)|

+
∞∑
k=1

|ϕk|k3 +
∞∑
k=1

|ψk|k2

+
2

π

∞∑
k=1

[∫ t

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

] 1
2
[∫ t

0
sin2[k(t− τ)]dτ

] 1
2

+

∞∑
k=1

[∫ t

0

(
k2a(τ)uk(τ)

)2

dτ

] 1
2
[∫ t

0
sin2[k(t− τ)]dτ

] 1
2
}
.

By using the inequality

( n∑
i=1

bi

)2

≤ n
n∑
i=1

b2i , and inequality (3.0.23), we obtain

(
max

0≤τ≤t
|a(τ)|

)2

≤ 1(
min

0≤t≤T
|g(t)|

)2

{
6
∥∥g′′∥∥2

C[0,T ]
+ 6 ‖Fx(0, ·)‖2C[0,T ]

+ 6

( ∞∑
k=1

|ϕk|k3

)2

+ 6

( ∞∑
k=1

|ψk|k2

)2

+
24T

π2

 ∞∑
k=1

[∫ T

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

] 1
2

2

+ 6T

 ∞∑
k=1

[∫ t

0

(
k2a(τ)uk(τ)

)2

dτ

] 1
2

2}
.

(3.0.29)

By using the same methods in (3.0.26)-(3.0.27), we have( ∞∑
k=1

|ϕk|k3

)2

=

( ∞∑
k=1

|ϕk|k4 1

k

)2

≤
∞∑
k=1

(
ϕkk

4
)2 ∞∑

k=1

1

k2

=
π2

6

2

π

∥∥∥ϕ(4)
∥∥∥2

L2(0,π)
=
π

3

∥∥∥ϕ(4)
∥∥∥2

L2(0,π)
,

(3.0.30)

( ∞∑
k=1

|ψk|k2

)2

=

( ∞∑
k=1

|ψk|k3 1

k

)2

≤
∞∑
k=1

(
ψkk

3
)2 ∞∑

k=1

1

k2

=
π2

6

2

π

∥∥∥ψ(3)
∥∥∥2

L2(0,π)
=
π

3

∥∥∥ψ(3)
∥∥∥2

L2(0,π)
,

(3.0.31)
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and ( ∞∑
k=1

[∫ T

0

(
k2

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

] 1
2
)2

=

 ∞∑
k=1

1

k

[∫ T

0

(
k3

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

] 1
2

2

≤
∞∑
k=1

1

k2

∞∑
k=1

∫ T

0

(
k3

∫ π

0
F (ξ, τ) sin kξdξ

)2

dτ

=
π3

12

∥∥∥∥∂3F

∂x3

∥∥∥∥2

L2(Q)

.

(3.0.32)

By using the simple inequality 2ab ≤ a2 + 2ab+ b2 = (a+ b)2, we have

( ∞∑
k=1

[∫ t

0

(
k2a(τ)uk(τ)

)2

dτ

] 1
2
)2

=

 ∞∑
k=1

1

k

[∫ t

0

(
k3a(τ)uk(τ)

)2

dτ

] 1
2

2

≤
∞∑
k=1

1

k2

∞∑
k=1

∫ t

0

(
k3a(τ)uk(τ)

)2

dτ

=
π2

12

∫ t

0
2a2(τ)

∞∑
k=1

(
k3uk(τ)

)2
dτ

≤ π2

12

∫ t

0

(
a2(τ) +

∞∑
k=1

(
k3uk(τ)

)2)2

dτ

≤ π2

12

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+
∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ.

(3.0.33)

Therefore, by using the results (3.0.30)-(3.0.33), we obtain from the equation (3.0.29)(
max

0≤τ≤t
|a(τ)|

)2

≤ 1

H2
∗

{
6
∥∥g′′∥∥2

C[0,T ]
+ 6 ‖Fx(0, ·)‖2C[0,T ]

+ 2π
∥∥∥ϕ(4)

∥∥∥2

L2(0,π)
+ 2π

∥∥∥ψ(3)
∥∥∥2

L2(0,π)
+ 2πT

∥∥∥∥∂3F

∂x3

∥∥∥∥2

L2(Q)

+
π2T

2

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+
∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ

}
.

(3.0.34)

where H∗ = min0≤t≤T |g(t)|.
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Therefore, it follows from (3.0.28) and (3.0.34)(
max

0≤τ≤t
|a(τ)|

)2

+

∞∑
k=1

[
k3 max

0≤τ≤t
|uk(τ)|

]2

≤ C1 +

(
π2

3
+

π2

2H2
∗

)
T

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+
∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ

(3.0.35)

where

C1 =
8

π

∥∥ϕ′′′∥∥2

L2(0,π)
+

8

π

∥∥ψ′′∥∥2

L2(0,π)
+

8T

π

∥∥∥∥∂2F

∂x2

∥∥∥∥2

L2(Q)

+
6

H2
∗

∥∥g′′∥∥2

C[0,T ]

+
6

H2
∗
‖Fx(0, ·)‖2C[0,T ] +

2π

H2
∗

∥∥∥ϕ(4)
∥∥∥2

L2(0,π)
+

2π

H2
∗

∥∥∥ψ(3)
∥∥∥2

L2(0,π)

+
2πT

H2
∗

∥∥∥∥∂3F

∂x3

∥∥∥∥2

L2(Q)

.

Since T1 ≥ T , inequality (3.0.35) holds if we replace T by T1. Then, by using the Lemma
1.3.3 and under the assumption of the Theorem 3.0.9, we get(

max
0≤τ≤T

|a(τ)|
)2

+
∞∑
k=1

[
k3 max

0≤τ≤T
|uk(τ)|

]2

︸ ︷︷ ︸
‖v‖2E

≤ C1

1− C1

(
π2

3
+

π2

2H2
∗

)
T 2

1

Then,
‖v‖E ≤M

We now restrict our attention to the class of functions defined as

K =
{
v ∈ E = B3

2(Q)× C[0, T ] : ‖v‖E ≤M
}

Note that K is complete since K is a closed subset of the complete metric space E.

Let us show that φ maps K into K.

Lemma 3.0.12. Under the assumption of Theorem 3.0.9, φ maps K into K.

Proof. Let v be in K. Then, by the definition of φ in (3.0.19), we have

‖φ1v‖2B32(Q) = ‖u‖2B32(Q) ≤
8

π

∥∥ϕ′′′∥∥2

L2(0,π)
+

8

π

∥∥ψ′′∥∥2

L2(0,π)
+

8T

π

∥∥∥∥∂2F

∂x2

∥∥∥∥2

L2(Q)

+
Tπ2

3

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ,

(3.0.36)
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and

‖φ2v‖2C[0,T ] = ‖a‖2C[0,T ] ≤
1

H2
∗

{
6
∥∥g′′∥∥2

C[0,T ]
+ 6 ‖Fx(0, ·)‖2C[0,T ]

+ 2π
∥∥∥ϕ(4)

∥∥∥2

L2(0,π)
+ 2π

∥∥∥ψ(3)
∥∥∥2

L2(0,π)
+ 2πT

∥∥∥∥∂3F

∂x3

∥∥∥∥2

L2(Q)

+
π2T

2

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ

}
.

(3.0.37)

Then, from (3.0.36) and (3.0.37), we obtain

‖φv‖2E = ‖φ1v‖2B32(Q) + ‖φ2v‖2C[0,T ]

≤ C1 +

(
π2

3
+

π2

2H2
∗

)
T

∫ t

0

([
max

0≤η≤τ
|a(η)|

]2

+
∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
)2

dτ

≤ C1 +

(
π2

3
+

π2

2H2
∗

)
T

∫ t

0
M4dτ

≤ C1 +

(
π2

3
+

π2

2H2
∗

)
M4T 2

≤ C1 +

(
π2

3
+

π2

2H2
∗

)
M4T 2

2 .

So, under the conditions of Theorem, we have

‖φv‖E ≤M.

Let us show that some iteration of φ is a contraction.

Lemma 3.0.13. For some n ∈ N, φn is a contraction, i.e., there exits a nonnegative real
number k < 1 such that for all v, w ∈ E,

‖φnv − φnw‖ ≤ k ‖u− w‖ .

Proof. Let u,w ∈ K be arbitrary elements. Consider the sequences

v(0) = v, v(1) = φ(v(0)), v(2) = φ(v(1)), · · · v(n) = φ(v(n−1)), · · · ,

and

w(0) = w, w(1) = φ(w(0)), w(2) = φ(w(1)), · · · w(n) = φ(w(n−1)), · · · .
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Now consider the n-th iteration∥∥∥v(n) − w(n)
∥∥∥2

E
=
∥∥∥u(n) − ũ(n)

∥∥∥2

B32(Q)
+
∥∥∥a(n) − ã(n)

∥∥∥2

C[0,T ]

where

v(n) = {u(n), a(n)}, a(0) = a, u(0) = u

w(n) = {ũ(n), ã(n)}, ã(0) = ã, ũ(0) = ũ

By using the definition of φ1 and the equation (3.0.10), we have

u(1) − ũ(1) = φ1(u, a)− φ1(ũ, ã)

=

∞∑
k=1

2

kπ

∫ t

0

∫ π

0
[a(τ)u(ξ, τ)− ã(τ)ũ(ξ, τ)] sin kξ sin[k(t− τ)]dξdτ sin kx

=

∞∑
k=1

2

kπ

∫ t

0

∫ π

0

[(
a(τ)− ã(τ)

)
u(ξ, τ)

]
sin kξ sin[k(t− τ)]dξdτ sin kx

+
∞∑
k=1

2

kπ

∫ t

0

∫ π

0

[
ã(τ)

(
u(ξ, τ)− ũ(ξ, τ)

)]
sin kξ sin[k(t− τ)]dξdτ sin kx.

(3.0.38)

By using the equation (3.0.38) and the inequality (3.0.24) and (3.0.25), we have∥∥∥u(1) − ũ(1)
∥∥∥
B32(Q)

≤

∥∥∥∥∥
∞∑
k=1

2

kπ

∫ t

0

∫ π

0

[(
a(τ)− ã(τ)

)
u(ξ, τ)

]
sin kξ sin[k(t− τ)]dξdτ sin kx

∥∥∥∥∥
B32(Q)

+

∥∥∥∥∥
∞∑
k=1

2

kπ

∫ t

0

∫ π

0

[
ã(τ)

(
u(ξ, τ)− ũ(ξ, τ)

)]
sin kξ sin[k(t− τ)]dξdτ sin kx

∥∥∥∥∥
B32(Q)

≤

{
4Tπ2

6

∫ t

0

(
a(τ)− ã(τ)

)2 ∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
dτ

} 1
2

+

{
4Tπ2

6

∫ t

0

(
ã(τ)

)2 ∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)− ũk(η)|

]2
dτ

} 1
2

≤

{
4Tπ2M2

6

∫ t

0

(
max

0≤η≤τ
|a(η)− ã(η)|

)2

dτ

} 1
2

+

{
4Tπ2M2

6

∫ t

0

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)− ũk(η)|

]2
dτ

} 1
2

.
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Therefore, by using the inequality (a+ b)2 ≤ 2(a2 + b2), we have

∥∥∥u(1) − ũ(1)
∥∥∥2

B32(Q)
≤ 8Tπ2M2

6

{∫ t

0

(∥∥∥a(0) − ã(0)
∥∥∥2

C[0,T ]

+
∥∥∥u(0) − ũ(0)

∥∥∥2

B32(Q)

)
dτ

}
.

(3.0.39)

By using the definition of φ2 and the equation (3.0.16), we have

a(1) − ã(1) = φ2(u, a)− φ2(ũ, ã)

=
1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0
[a(τ)u(ξ, τ)− ã(τ)ũ(ξ, τ)] sin kξ sin[k(t− τ)]dξdτ

=
1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0

[(
a(τ)− ã(τ)

)
u(ξ, τ)

]
sin kξ sin[k(t− τ)]dξdτ

+
1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0

[
ã(τ)

(
u(ξ, τ)− ũ(ξ, τ)

)]
sin kξ sin[k(t− τ)]dξdτ.

(3.0.40)

By using the equation (3.0.40) and the inequality (3.0.29) and (3.0.33), we have∥∥∥a(1) − ã(1)
∥∥∥
C[0,T ]

≤

∥∥∥∥∥ 1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0

[(
a(τ)− ã(τ)

)
u(ξ, τ)

]
sin kξ sin[k(t− τ)]dξdτ

∥∥∥∥∥
C[0,T ]

+

∥∥∥∥∥ 1

g(t)

∞∑
k=1

2k2

π

∫ t

0

∫ π

0

[
ã(τ)

(
u(ξ, τ)− ũ(ξ, τ)

)]
sin kξ sin[k(t− τ)]dξdτ

∥∥∥∥∥
C[0,T ]

≤

{
Tπ2

∫ t

0

(
a(τ)− ã(τ)

)2 ∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)|

]2
dτ

} 1
2

+

{
Tπ2

∫ t

0

(
ã(τ)

)2 ∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)− ũk(η)|

]2
dτ

} 1
2

≤

{
Tπ2M2

∫ t

0

(
max

0≤η≤τ
|a(η)− ã(η)|

)2

dτ

} 1
2

+

{
Tπ2M2

∫ t

0

∞∑
k=1

[
k3 max

0≤η≤τ
|uk(η)− ũk(η)|

]2
dτ

} 1
2

.
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Therefore, by using the inequality (a+ b)2 ≤ 2(a2 + b2), we have

∥∥∥a(1) − ã(1)
∥∥∥2

C[0,T ]
≤ 2Tπ2M2

{∫ t

0

(∥∥∥a(0) − ã(0)
∥∥∥2

C[0,T ]
+
∥∥∥u(0) − ũ(0)

∥∥∥2

B32(Q)

)
dτ

}
.

(3.0.41)
Then, from (3.0.39) and (3.0.41), we have∥∥∥v(1) − w(1)

∥∥∥2

E
=
∥∥∥u(1) − ũ(1)

∥∥∥2

B32(Q)
+
∥∥∥a(1) − ã(1)

∥∥∥2

C[0,T ]

≤ 10Tπ2M2

3

{∫ t

0

(∥∥∥a(0) − ã(0)
∥∥∥2

C[0,T ]
+
∥∥∥u(0) − ũ(0)

∥∥∥2

B32(Q)

)
dτ

}

=
10Tπ2M2

3

∫ t

0

∥∥∥v(0) − w(0)
∥∥∥2

E
dτ.

By induction, we get∥∥∥v(n) − w(n)
∥∥∥2

E
≤
{

10Tπ2M2

3

}n
Tn

n!

∥∥∥v(0) − w(0)
∥∥∥2

E
,

or

‖φnv − φnw‖E ≤
{(

10π2M2

3

)n
T 2n

n!

} 1
2

‖v − w‖E .

Clearly, for large enough n {(
10π2M2

3

)n
T 2n

n!

} 1
2

< 1.

Hence, φn is a contraction on K in the norm E.

Thus φ has a unique fixed point in K by Theorem 1.2.7



Conclusion

In this work, our main goal is to study the problem of existence and uniqueness of various

inverse problems for second order parabolic and hyperbolic equations. We consider the

identification of the initial temperature distribution of heat equations from the final data.

We study the problem of the identification of the source function of inhomogeneous heat

equation. Then we study inverse problems of the determination of the time-dependent

coefficients in various heat equations and a wave equation.
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