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Abstract

Inverse problems for partial differential equation arise when solving many problems of math-
ematical physics and engineering. An inverse problem is a problem where a source term
or some of coefficients of a partial differential equation modeling the appropriated process
is unknown. To find the unknown solution and the unknown coefficient or resource term
of such a problem, additional conditions will need to be provided. Such conditions may,
for example, include partial information of the unknown fields (e.g., temperature) resulting
from sensor (experimental) data at distinct points in the domain and time. In this work,
our aim is to study the problem of existence and uniqueness of various inverse problems
for second order parabolic and hyperbolic equations. We firstly consider the determination
of the initial temperature distribution of heat equations from the final data. We study the
problem of identification of the unknown source function of inhomogeneous heat equation.
Then we study inverse problems of identification of coefficients in heat equation and wave

equation.



(")zet

Matematiksel fizik ve miihendislik sorularinin birgogunu ¢ozerken kismi diferansiyel den-
klemler igin ters problemler ortaya cikar. Bir ters problem kismi difersansiyel denklemin
kaynak teriminin veya bazi katsayilarinin bilinmedigi bir problemdir. Boyle bir problemin
bilinmeyen ¢oziimiinii ve bilinmeyen katsayisini veya kaynak terimini bulmak igin ek kogullar
saglanmasi gerekir. Ornegin bu kosullar tanim bélgesi ve zaman iginde farkli noktalarda
sensOr (deneysel) veriden gikan bilinmeyen alanlarin kismi bilgilerini igerebilir (6rnegin,
sicaklik). Bu ¢aligmada amacimiz ikinci dereceden parabolik ve hiperbolik denklemler i¢in
gesitli ters problemlerin varlik ve teklik sorunlarini incelemektir. Oncelikle 151 denklem-
lerinde son veriden ilk sicaklik dagiliminin tanimlanmasi dikkate alinmaktadir. Sonra ho-
mojen olmayan 1s1 denkleminin bilinmeyen kaynak fonksiyonunun tanimlanmasi problemi
incelenmektedir. Son olarak 1s1 denkleminde ve dalga denkleminde zamana bagh katsayilarin

tanimlanmasinin ters problemi caligilmaktadir.

vi
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Introduction

It is well known that second order parabolic and hyperbolic equations are modeling many
dynamical processes in continuum mechanics and other fields of mathematical physics.
Usually such mathematical models require certain state inputs in the form of initial and
boundary data together with inputs such as coefficients or source terms which are related
to the physical properties of the system. Proving existence and uniqueness of a solution for
the associated problem constitutes solving the direct problem. Solving the direct problem
permits the computation of various system outputs of physical interest. On the other hand,
when some of the required inputs are not known we may instead be able to determine the
missing input from outputs that are measured by formulating and solving an appropriate
inverse problem (or an identification problem).. In particular, when the missing input is a
coefficient in the partial differential equation, the problem is called a coefficient identification
problem and when the source term is missing it is called a source identification problem
(see [1],[2],[5]). We point out that the problem of identifying a linear source in parabolic
and hyperbolic equations is very important and widely studied in the literature on inverse
problems for PDEs.

In this work, our main goal is to study the questions of existence and uniqueness of various
inverse problems for parabolic and hyperbolic equations.

In Chapter 1, we give a brief reminder for some common mathematical tools that we will
use in the subsequent chapters. These include some calculus facts, various inequalities,

functional analysis.



In Chapter 2, we study three inverse problems for the one-dimensional heat equation by
reviewing the following book [2]. The aim of the first section is to determine the initial
temperature distribution of a solution from certain additional information. The aim of
the second section is to determine the unknown source function F' = F(z,t) in the heat
conduction equation

Ut = Ugy + F(x,t)

from overspecified data.

In the last section, we consider the problem of determining the thermal diffusivity a(t) of a
heat equation, that is changing with time by reviewing the following book [1]. A physical
example of such a problem arises from heat conduction in a material that is undergoing
radioactive decay or damage. The thermal conductivity varies with the degree of decay,
which can be related to time. The equation of heat conduction in such a material has the
form

up = a(t)ugy

where a(t) > 0 is the time-dependent thermal diffusivity coefficient.
In Chapter 3, reviewing the paper [4], we study the problem of an inverse problem for a
second order hyperbolic equation. We consider the problem of determining the unknown

coefficient a(t) of a wave equation which has the form

utt - ugjx + (I(t)u + F(a’f, t)



Chapter 1

Preliminaries

This section is a very brief reminder of some mathematical tools for reading the main
chapters more comfortable. We only include the tools which we will need in our analysis
in the main sections. Most results are given without proof since the proofs can be found in
many sources. We may only give the proofs of results which have particular interest in our

analysis.

1.1 Calculus

Theorem 1.1.1. (Fubini’s Theorem) If f(x,y) is continuous on the rectangular region

R:a<z<b, c<y<d, then the equality

//Rf(zv,y)dAz/Cd/abf(ar,y)d:cdy:/ab/cdf(x’y)dydx

holds.

Definition 1.1.1. The Fourier transform of an integrable function f(z) is

o) = — [ x)e " dy
fo) = o= [ 1w,

Theorem 1.1.2. Let f and g be two functions in La(—00,00). We define their convolution

to be

(f * 9)(x / flz — €)g(e)de,

3



and its Fourier transform is given by

FIf * gl(€) = V2 f(£)a (&)

Definition 1.1.2. The Fourier series of a periodic function f(x) with period 27 is defined

as the series
oo
aq .
5 + E (an, cos nx + by, sinnx),
n=1

where the coefficients a,,, b, are defined as

1 ™
=— d
w=_1] f(z)dz,
1 ™
ap = — f(x)cosnxdr, n=1,2,...,
™ —Tr
1 s
by = — f(z)sinnzxdx, n=1,2,....
™ —Tr
Note: The sine series defined by
o0
Z b, sinnx
n=1

and the cosine series defined by

are special instances of Fourier series.

(1.1.1)

Theorem 1.1.3. (Parseval’s Identity) For f € Lo[—m, | with Fourier series (1.1.1),

we have
o

Tr—ﬂ'

1 T ’ |2
IO # 3l + ),



1.2 Functional Analysis

Definition 1.2.1. A sequence {z,} in a metric space X is said to converge if there is a

point € X such that d(z,,z) — 0 as n — oo.

Definition 1.2.2. A sequence {z,} in a metric space X is sad to be a Cauchy sequence if for

every € > 0 there is a positive integer N such that for all n,m > N we have d(z,, x.,) < €.

Definition 1.2.3. A metric space in which every Cauchy sequence converges is said to be

complete.

Definition 1.2.4. Let f,, be a sequence of functions defined on a set F.
We say that f,, is pointwise bounded on E is the sequence {f,(x)} is bounded for every

x € FE, that is, if there exits a finite-valued function ¢ defined on E such that
|fn(z)] < @(z) (z€E, n=1,23,...).
We say that {f,,} is uniformly bounded on FE if there exits a positive number M such that
|fa@)] <M (x€E, n=1,23,...).

Theorem 1.2.1. If {f,} is a pointwise bounded sequence of functions on a countable set

E, then {fn} has a subsequence { fn, } such that {f,,(z)} converges for every x € E.

Definition 1.2.5. A family § of complex functions f defined on a set E in a metric space

(X, d) is said to be equicontinuous on E if for every ¢ > 0, there exits a § > 0 such that

[f(z) = fy)l <e
whenever d(z,y) <6, z € E, y € FE, and f € §.

Theorem 1.2.2. (Ascoli-Arzela) If {f,} is a uniformly bounded and equicontinuous
sequence of functions defined on a compact set K, then { f,} contains a uniformly convergent

subsequence.



Theorem 1.2.3. (Dini’s Theorem) Let K be a compact space. Let f : K — R be a
continuous function and f, : K = R, n € N, be a sequence of continuous functions. If

{fn}nen converges pointwise to f and if
fox1(z) > fu(x)  forallz € K and alln € N

then { fn}nen converges uniformly to f.

Proposition 1.2.4. Let X be a complete metric space, and let Y C X be a closed subset

of X. ThenY is complete.

Definition 1.2.6. C|[a, b] is the Banach space of all continuous functions on [a, b] equipped

with the norm

lullggayy = mas u(z)|

z€[a,b]

Definition 1.2.7. The linear space Ly[a,b], p > 1 of all functions continuous on [a,b] is a

b 1/p
ol = ([ o)

Definition 1.2.8. We denote by BY the set of functions of the form

normed space with the norm

o0
u(x,t) = Zuk(t)sinkx, O<z<m 0<t<T,
k=1
where ug(t), k=1,2,3... are continuous on [0, 7] and satisfy

[e.9]
; La Orgtaé\uk(t)ﬂ? < oo, a>0.

In BY, we define the norm

(9] 1/2
_ fe 2
lullgg @) = (E [k max fux(0)]] ) (1.2.1)

k=1

where a > 0 and @ = [0, 7] x [0, T7.



Lemma 1.2.5. BY(Q) is a Banach space with respect to the given norm (1.2.1).

Proof. Let u(™ € B$(Q) be a Cauchy sequence. Then, given £ > 0, there is K > 0 such

that for all n,m > K

2
[ - w0 By - [o?%)% ™ (¢) - ulgm)(t)|]

<

o 2
a n m " " -
SZ[’@ max [uy” () - u )(t)l] :H“( -l )’Ba(@ 2’
= 2

1 0<t<T

Hence for every k > 1, the sequence {u,(gn)}neN is a Cauchy sequence in C[0,7] and since
C[0,T] is complete, the sequence {u,(cn)}neN converges to some u.

Let us show that
o
u(zx,t) = Z ug(t) sin kx
k=1

is the limit in B(Q) of the sequence {u(™},cn. To see this we first show that u € B(Q).

Since {u(™},ey is a Cauchy sequence in BY(Q), we have

N 2 N 2
> [k gm0 < 3 [k gme u0) — 0]+ 4 g o0
k=1

— 0<t<T 0<t<T 0<t<T
- YT PN )|
<9 o n B K o K
<2y [k Joax lug™ () — uy, (t)]] +2) [k: Joax lug (1)
k=1 k=1
<ﬂPWLﬂﬂﬂ2 volu®] <ot2fut)
B B3(Q) B3 Q) B3(Q)
for every N > 1. Fixing N and taking limit as n — oo we get
N 2
Z {k“" max |uk(t)|] §5+2HU(K)‘
1 0<t<T B (Q)
and taking limit as N — oo we get
] 2
Z [ka max |uk(t)]] SE—I—QHU(K)‘ < 0.
— 0<t<T B3(Q)

So, u € BY(Q). Next, we show that Hu(”) — uHBg(Q) — 0 as n — oo. Since {u(™}, ey is a
Cauchy sequence in B (Q), for every N > 1 we have

2 €
< —.

N 2
o )y (m) (n) _ oy(m) €
Z[k max. uy,” () — uy, (t)} SH“ “ ‘Bg(@) 2

0<t<T
k=1




With n > K and N fixed, we let m — oo to find that

> o} (n) ? €
,;[k s 10— w )] <2
Since this is true for every IV,
w_u? ZS e (") (g _ fee
Hu u‘ BQ k=1 [ oglt%}%‘u’“ ®) uk(t)@ =3

for n > K. Hence u(™ — u and since u € B$(Q), the space BS(Q) is complete normed

space. ]

Definition 1.2.9. Let (X,d) be a metric space. A mapping T': X — X is a contraction

mapping, or contraction, if there exists a constant ¢ € (0, 1) such that
d(T(x),T(y)) < cd(w,y)
for all z,y € X.

Theorem 1.2.6. (Contraction Mapping) If T : X — X is a contraction mapping on a

complete metric space (X,d), then the equation
T(x)=x
has a unique solution x € X. Such a solution is said to be a fixed point of T'.

Theorem 1.2.7. If X is a complete metric space and f : X — X 1is a mapping such that

some iterate fN : X — X is a contraction, then f has a unique fized point.

Proof. By contraction mapping theorem, f has a unique fixed point. Call it a, so f~ (a) =
a. To show a is the only possible fixed point of f, observe that a fixed of f is a fixed point of
N, thus must be a. To show a really is a fixed point of f, we note that f(a) = f(fV(a)) =
N(f(a)), so f(a) is a fixed point of fV. Therefore f(a) and a are both fixed points of fV.

Since fVV has a unique fixed point, f(a) = a. O



Proposition 1.2.8. Suppose that K(x,y) is continuous on [0, 1] x [0,1]. Then the Volterra

integral equation of the 2™ kind

o)+ [ KGeg)otu)dy = 1o
has a unique solution ¢(x) € C[0,1] for any f(z) € C[0,1].
Proof. Define the operator T': C[0, 1] — C[0, 1] by

Té = f(x) - /0 " K (e y)é(y)dy

(1.2.2)

If T'¢ has a fixed point, such a fixed point must be a solution of (1.2.2). To show that such

a fixed point exists we will show that T, for some n, will be a contraction operator. By

theorem 1.2.7, T will then have a unique fixed point.

Define
ki@ = [ K@iy
Then
K2 (@) = & | [ K s
= [ Ko [ Kensws
= /Ox U; K(:vvy)K(z,y)dZ} f(y)dy
It follows that K2 is an integral operator, whose kernel is given by

/x K(z,y)K(z,y)dz

More generally it is easy to show that

K" fa) = [ " Kola,9) () dy

where K, (x,y) can be defined recursively by

y
K, (x,y) = / K(z,2)Kn—1(z,y)dz, n=2,3,...

Ki(z,y) = K(x,y)
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Let us consider the operator
To=f—-K¢
It is clear that

T?p=T[f —K¢|=f - Kf+ K¢

T'g=f—Kf+Kf—Kf+--(=1)" K" 'f + (-1)"K"¢
so that
[T"p1 — T b2llcpo1) = K" ¢1 — K" ¢2l¢jo 11

_ \ /0 " Ko(,y) (1) — b2(v)) dy

The kernel K(z,y) is continuous on [0,1] x [0,1], and therefore uniformly bounded, say

C[0,1]

|K(x,y)| < M. Then, one can show by induction that

n _ n—1
MU e=y)" o<y

Kl y)] € S 05y <

For n = 1, the above is obviously valid. If it is true for n, then

Ko (2,9)] < / K (2, 9) | (2, 9) =
Yy

o MMz —y)
- n!
We have, therefore,
H H ek o)
T"¢1 — T" g2 < — / $1(y) — d2(y))dy
OU=(n—1)1|Jy c[o,1]
MTL
< = 1) [¢1(y) — d2(y)llcpo,1y
For n sufficiently large
M” <1
(n—1)!

so that T™ is a contraction operator. Since C[0, 1] is complete, T" has a unique fixed point. []



11

Theorem 1.2.9. (Lebesgue Dominated-Convergence Theorem) Let {f,} denote a
sequence of integrable functions on [a,b] such that f(x) = limp o0 fn(x). Suppose that there
exits a positive-valued integrable function g such that |f,(x)| < g(z) for all x € [a,b] and

alln =1,2,.... Then the limit function f(x) is integrable and

b b b
nh_)ngo fn(a:)dzvz/ nli_)ngofn(x)dznz/ f(x)dx.
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1.3 Inequalities

Lemma 1.3.1. (Gronwall) Let x and ¥ > 0 be real-valued continuous functions defined

on [a,b], and C be a constant. We suppose that on [a,b] we have the inequality
t
z(t) < C —i—/ U(r)z(T)dr.

Then

z(t) < Cela V()T
Lemma 1.3.2. Let p(t) be real-valued continuous function satisfying
t
0<pt)<C | ———=dr, 0<t<T, 1.3.1

where C > 0. Then

Proof. Let z > t. Multiplying both sides of (1.3.1) by 1/(z — t)%/? and integrating both

sides from 0 to z, we obtain

2 et 2 [ o(7)
e T A e e

If we interchange the order of integration on the left, we obtain

T e 17 d
| wfmse [ || ogrammm) e 092

Letting t = 7 + (2 — 7)u we see that

# dt B 1 (z —7)du
| e~ | e e

B ! du
o o (1_u)1/2u1/2'

2

Letting u = v* we see that

/1 du /1 2udv 0 /1 dv 5 aresin vl
- P — = Zarcsmv|, = 7.
o (1 —u)t/2yl/2 0o V1—v2v 0 V1—0v? 0
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Then, from (1.3.2), we have

/OZ (Z(i(tt))lﬂdt <Cw /OZ o(T)dr. (1.3.3)

By using the inequality (1.3.1), left-hand side of (1.3.3) is greater than or equal to ¢(z)/C.
Therefore, we have

4
0<¢p(z) < 7102/ o(r)dr, 0< z<T.
0
Gronwall’s lemma yields the result. O
Lemma 1.3.3. Let y be a nonnegative continuous function and
¢
y(t) < Cy + C’g/ yi(r)dr, 0<t<T
0

where C1 and Co are some positive numbers and

C1CQT < 1.
Then
Cy
< ——.
y( ) - 1-C1C9T
Proof. Set

v(t) = C1 + Co /(;t yz(T)dT.

Then, we have

v = Coy?, v(0) = Cy, and y < v.
From the last equality and inequality, we obtain
v = Coy® < Cov?,

or

Vo2 < Cs.
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Integrating the last inequality from 0 to ¢, we obtain

t t
/v'v_szS/ Cadr. (1.3.4)
0 0

t ¢
/ Vv ldr = / [—o™Ydr = v~ 10) — v 1(2).
0 0
Then, from (1.3.4), we have
v H0) — v () < Cot < CuT.

By using the initial point v(0) = C, we obtain

Cy
t) < 0<t<T
’U()_ 1—01C2T’ -
Asy <w,
Cy
t <t<T

O]

Theorem 1.3.4. (Hélder’s Inequality) Let p > 1, 1/p+ 1/q = 1, f(z) and g(z) be

continuous real-valued functions on |a,b]. Then, the Hélder’s inequality for integrals states

/ @)l < (/ b !f(w)lpdw>1/p (/ b o(o)lds ) "

Similarly, Holder’s inequality for sums states that

n n 1/p n 1/q
> larbi| < (Z !ak!p> (Z ’bk\q> :
k=1 k=1 k=1

that

Corollary 1.3.5.

n 2 n
(Z bi> <n) b
=1 =1

Proof. By using the Holder’s inequality for sums, we get

n 2 n 2 " 12 , 1/27 2 n
([ ) T 5
i=1 i=1 i=1 i=1 i=1



Chapter 2

Inverse Problem for Parabolic
Equations

2.1 Determination of the Initial Temperature Distribution

2.1.1 Heat Equation on the Real Line

It is well-known that the Cauchy problem for the heat equation
U = Uy, —o00 < < 00, t>0; (2.1.1)
u(z,0) = p(z), —oo <z < 00. (2.1.2)

is well-posed problem and the solution of this problem has the form

u(x,t):/oo L5 (e, (2.1.3)

—o VATa?t

Our aim in this section is to consider the inverse problem for the heat equation, i.e., find
the function ¢(z) in (2.1.2) provided u(z,T) = g(z), T > 0 is given. That is we are going

to solve the problem of finding solution of (2.1.1) at ¢ = 0 under the condition
u(z,T) =g(z), —oo <z < 00. (2.1.4)

Setting in (2.1.3) ¢t = T and using (2.1.4), we obtain

e (€)= gx), — 00 < < 00 (2.1.5)

&0 1
/—oo VAra?T

15
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Firstly, we shall consider the existence of solution of equation (2.1.5). We have an integral

equation
L[ K(z — &)p(€)dé = g(z), — o0 <z < o0, (2.1.6)

where
1 —a?
K(xr) = ————e127 .
(@) VAra?T

If the function g(x) € La(—o00,00), then we can take the Fourier transform of both sides of

the equation (2.1.6). Then we obtain

and

Fly] = Flgle®s’T.

If the right side of the equation (2.1.1) is in La(—00, 00), we finally obtain

o= F 1 (FlgleT).

Now, we shall prove that equation (2.1.5) has a unique solution in the space La[—00, 0.

Assume that it has two different solution ¢1, p2 in La[—00, 00]. Then, we have

—(z—y)?

[e%¢) 1 .
/ Voare ey = gl@), i=1.2
— 00

Subtracting these two equations from each other, we obtain

0 —@—y?
/ e 1?7 P(y)dy =0, —oo <z < 00, (2.1.7)

—o
where ¢ = 1 — 2. To establish the uniqueness, we need to show that the homogeneous
equation (2.1.7) has only the trivial solution. Differentiating (2.1.7) with respect to x, we

obtain

0 —(z—y)?
/ (& —ye 1 $(y)dy =0, — o0 <z < . (2.1.8)

—00
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Multiplying (2.1.7) by « and using equation (2.1.8), we obtain

0 —(a—y)?
/ ye 421 ¢(y)dy =0, —oo < x < o0. (2.1.9)

—0o0

Differentiating (2.1.9) with respect to x, we obtain

00 —(z—y)?
/ ylx —y)e 177 $(y)dy =0, —oo <z < 0. (2.1.10)

—00
Multiplying (2.1.9) by x and using equation (2.1.10), we obtain
®© , Za—w)?
/ yew¢(y)dy=0, —o0o < xr<oo.
—00
Continuing this process, we obtain for all n =1,2,---
o0 —(e—y)?
/ y'e 4?1 ¢(y)dy =0, —oo<x < o0
—00

Consider

o0 i Z?(z*y)z
9(2) :/ €<y 1a*T >¢(y)dy =0, —c0o<x <

—00

2
. . . . Ry~ 542 )
is defined and analytic on the complex plane since for each R > 0 the function |¢(y) |e( e

is integrable over R. Then, from the equation (2.1.1), we obtain

g(0)=0 and ¢™(0)=0, n=1,2,....

_(@=p)?
So, g = 0. Then an integrable function ¢(y)e™ 427 has zero Fourier transform. Therefore,

¢ = 0 a.e. on La[—00,00], i.e., p1(x) = p2(x). Thus, uniqueness of solution for equation

(2.1.5) is established.
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2.1.2 Heat Equation in a Finite Interval

Consider the following boundary-value problem

U = a gy, 0<z<m 0<t<T; (2.1.11)
u(0,t) = u(m,t) =0, t <t <T, (2.1.12)
u(z,0) = p(z), 0 <z <. (2.1.13)

It is well-known that the solution of this problem has the form

u(z,t) Z / ) sin(n&)dée™" sm(naz). (2.1.14)

Our aim in this section is to consider the inverse problem for the heat equation, i.e., find
the function () in (2.1.13) provided u(z,T) = g(z) is given. That is we are going to solve

the problem of finding solution of (2.1.11) at ¢ = 0 under the condition

u(z,T)=g(x), 0 <z <. (2.1.15)

Setting in (2.1.14) t = T and taking into account (2.1.15), we obtain
Z / ) sin(n)de™™ sm(nx) g(x), 0 <z <m. (2.1.16)
Thus, the inverse problem is reduced to equation (2.1.16) for the unknown function ¢(x).

Firstly, we shall show that the equation (2.1.16) has a unique solution in the space L2[0, 7].

Assume that it has two different solutions ¢1, w2 in L3[0,7]. Then, we have

Z / ©i(§) sin(n)de ™" sm(nm) g(z), i=1,2.

Subtracting these two equations from each other, we obtain

Z / (&) sin(n&)de™ ™ sm(n:c) =0, 0<z<m, (2.1.17)
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where ¢ = 1 — 2. As the system of functions {\/gsin(na:)}nzl is orthonormal in Ly[0, ],
and

e_”Q“QT#Ofornzl,Q,---,

then, multiplying (2.1.17) by sin(kz) and integrating it from 0 to 7, we obtain

[ o@sinerae =0, k=12,
0

Therefore, it follows that ¢(z) = 0, i.e., ¢1(x) = pa2(x) on Lo[0,n]. Thus, uniqueness of

solution of the integral equation (2.1.16) is established.

Now we shall consider the problem of existence of solution of the integral equation (2.1.16).
Let the equation (2.1.16) with g(x) € L]0, 7] have a solution ¢(z) € L2[0, 7]. As the system
of functions {\/%sin(mc)}nzl is orthonormal in Lo[0, 7] , multiplying (2.1.16) by 2 sin(kz)

and integrating form 0 to 7, we obtain, for k =1,2,---,

% /0 o(€) sin(k¢)dee ¥ ’T = % /O (&) sin(k&)de. (2.1.18)
Let
oo == [ e simnke)de, o= = [ a(€)sinlhe)ag

denote the Fourier coefficients of the functions ¢(x) and g(z), respectively. Then, by using

the equation (2.1.18), we have
_ k2a2T o
Vr = gre , k=1,2,---. (2.1.19)
By using the Parseval’s identity and the equation (2.1.19), we have

o (o]
2 ™ ™ 2,27
leliaom =5 D 0n =15 D_gne™ T (2.1.20)
n=1 n=1

Thus, in order that (2.1.16) has a solution in Ls|[0, 7], it is necessary that the function
g(x) € L]0, 7] provides a converging series in the right-hand side of (2.1.20). As the terms

of this series have the fast growing multiplier

2.2
eQnaT’
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then the converging of the series imposes a heavy restriction on the decrease of the Fourier

coefficients g, of the function g(z). As an example, we consider the function

(z) = Z e "sin(nzx), 0 <z <.

n=1

g

Firstly, we will show that g € Ls[0,7]. It is clear that

Therefore, g € L2[0, 7]. As the system of functions {\/g sin(nz)}p>1 is orthonormal, then

the Fourier coefficients of g(z) are

2 T o0
= _ < —n _: n(kx)dr = e % k=1.2....
Tk 77/0 g_ e "sin(nz)sin(kz)dr = e ", )2,

Thus, by using the equation (2.1.20), we obtain

o
™ . 2 2
1,07 = 5 2 Fne™ "
n=1
- (2.1.21)
§ : 2nca*T—2n
= e .
n=1

But, the series on the right-hand side of (2.1.21) diverges, since

2 2m
2t T=2n o o as m — o0o.

Therefore, the equation (2.1.16) has no solution for the function g(z).

Now we prove the uniqueness theorem by using the energy method. Suppose that ui(x,t)

is a classical solution of the problem (2.1.11)-(2.1.13). Assume that the problem has not a

unique solution, i.e. there exits another solution ug(z,t) of the problem (2.1.11)-(2.1.13).
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Let us consider the function u(z,t) = wui(x,t) — ug(x,t). Since the equation (2.1.11) is
a linear homogeneous equation, the function wu(x,t) is also the solution of the problem

(2.1.11)-(2.1.13).

Let us consider the following function

Y(t) = /07r u?(z,t)dz. (2.1.22)

If ¢(t) = 0 for all ¢ € [0,77], then the solution of the problem is unique. If not, there exits
an interval (t1,t2) € [0,T] such that ¢(t) > 0, Vt € [t1,t2) and ¥ (t2) = 0.

Differentiating the function ) (t), we obtain

P(t) =2 /07T u(z, t)ug(z, t)dx. (2.1.23)

By using the equation (2.1.11), we obtain

V' (t) = 2a* /07r u(z, t)uge(x, t)dz = —2a> /07r ul(z,t)dz.

From this equality, we obtain

W' (t) = —4@2/0 Ug (z, ) uge(z, t)dx
= 4a2/ ur(x, ) ugy (z, t)dx —4/ u?(z,t)da (2.1.24)
0 0

Now, we consider the function h(t) = In(¢(¢)). By using the equalities (2.1.23),(2.1.24)

twice differentiating the function h(t), we obtain

- 428 s - )]

_ w;(t) [4/0 (ue(z, 1)) da /07r (u(z, 1)) dz — 4 (/07r u(a:,t)ut(:r,t)dx> 2] .

By using the Cauchy-Schwartz inequality, we obtain that

h// (t)

R"(t) > 0 for all t € [t1,t2).
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So, the function h(t) is a convex function on the interval [¢;,t2). Therefore, for each t €

[t1,t2) and for each 7 € (0,1) we have
h((1 — 1)ty +7t) < (1 —7)h(t1) + Th(t).

That is

(1 — )t +7t) < (1 —7)Inw(ty) + 7 In (L)
or
(1= 7)tr +7t) < [Y(t)] " Tlo(0)]"
Passing to the limit as t — ¢, we get

D((1—7)ts 4+ 7t2) < [(t)] [0 (t2)]

Since 9(t2) = 0, the last inequality implies that ¢(t) = 0 for each t € [t;,t2]. This

contradiction shows that solution of the problem is unique.
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2.2 Determination of the Unknown Source Function F(z,t)

2.2.1 Inhomogeneous Heat Equation in a Finite Interval

Now, we consider the following inhomogeneous heat conductivity equation

up = a*uze + f(2)g(t), 0 <z <m 0<t<T; (2.2.1)
uz(0,t) = ug(m,t) =0, 0 <t <T; (2.2.2)
u(z,0) =0, 0 <z <. (2.2.3)

The solution of this problem may be obtained by
ZT cos(nx) (2.2.4)

It is clear that this series satisfies the boundary conditions (2.2.2). Setting the series (2.2.4)

into the equation (2.2.1), we obtain

ZT’ cos(nx) —aQZnQT cos(nz) + f(z)g(t),

or
00

D (T() + a®nT(8)] cos(na) = f(x)g(t). (2.2.5)

n=0
Expanding f(x), we have

flx) = % + an cos(nz), (2.2.6)
n=1
where
= i/oﬂ f(&) cos(n&)de, n=0,1,---

From (2.2.5) and (2.2.6), we obtain

[TO( fog ] Z [T (t) 4+ a*nTp(t) — fag(t)] cos(nz) = 0.

This equality holds if and only if

Ty(t) = fog; ) (2.2.7)
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and
T (t) + a®*n*Ty, (t) = fug(t), n=1,2,.... (2.2.8)

Taking into account the initial condition (2.2.3), we obtain

Z T,,(0) cos(nz) = 0. (2.2.9)

It follows then

T,(0)=0,n=0,1,.... (2.2.10)

Integrating (2.2.7) from 0 to ¢ and using the initial condition (2.2.10), we obtain

Otfo*‘;( // F(&)g(r)dedr = = /f dg/ dr.

Multiplying (2.2.8) by "t we have

/
<Tn(t)ea2"2t> = eQQ”Qtfng(t), n=12....
Integrating from 0 to ¢ and using the initial condition (2.2.9), we obtain
2 t 2,2
To(t)e ™t = / e fug(T)dr, n=1,2,...,
0
or
b a2 2
Tn(t):/e“”tTfng() :/ “”tT/f 7) cos(ng)dEdr
/ f(¢ cosnﬁd{/ ema’n’ ENdr, n=1,2,....

Therefore, the solution of the problem (2.2.1)-(2.2.3) is as follows

=1 [0 [ o(rar

+n§72r/oﬂ £(6) cos(nf)df/otg(T ~a*n*(=7) 47 cos(na).

(2.2.11)

Our aim in this section is to find the function g(t) in (2.2.1) provided u(xg,t) = h(t), 0 <

xo < 7 is given. That is we are going to solve the problem of finding the source term g(t)
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of (2.2.1) under the condition
h(t) = u(zo,t), 0<t<T (2.2.12)
where ¢ € [0, 7].
Setting in (2.2.11) & = zy, we obtain
e
+ Z / f(&) cos(né d{/ e~ (t=T) g7 cos(nxg) = h(t) 0 <t <T.

Changing the summation and integration, we obtain the Volterra integral equation of first

kind for the function g(t)
t
/ K(t,7)g(r)dr = h(t), 0 <t < T (2.2.13)
0
with the kernel
1 (7 —2 [T
K(t,7) = / f(&)dé + Z / f(&) cos(n{)dﬁe‘a2”2(t_7)d7 cos(nxg). (2.2.14)
TJo n=1 TJo
Now we consider the problem of existence and uniqueness of the solution of (2.2.13) in the
space C[0,T.

Theorem 2.2.1. Let f(z) € C*0,7] and f'(0) = f'(x) = 0. If f(x0) # 0 and h(t) €

C0,T], h(0) =0, then (2.2.13) has a unique solution g(t) € C[0,T).

Proof. By using the conditions of theorem, we have

-\ [ 5o (i Sin(nﬁ))/dﬁ

= |2 @) sin

() cos(ng)dE

T 1 T . '
)|~ a ] F@ st

MR (COS(n€)>,d€

7'L2O




— L) costre 0 -z [ 7@ ostn)at
= [ f”(é)(sin(n€)>,d£

— | L sinne 0 - /0 © 7€) sin(ng)de
e OW f”’(§)<008(n€)>/d£

| L) costrng 0 - /0 " () cos(n€)de

IN

- (If”’(ﬂ)l o)+ [ If””(f)ld£>
0

1 c
< = <|f///(7r)| +1£7(0)] +C17r> = —n= 1,2,

where C = |f"(7)| + | f"(0)| + Ci7 > 0.

By using the last inequality, we obtain for 0 < 7 <t < T,

2/ (&) cos(n€)dee™ ™" =) dr cos(nag) | < 2C£W7
T Jo -
and
9.2 2 pm ;
‘ s / f(g)COS(ng)dfe_azn%_T)dTcoS(nxo) < & CQY/TF
T 0 -
Since
L
n=1 nP

is convergent for p > 1, by using the comparison test, we see that the series

K(t7)=) % /0 F(€) cos(ng)dge™ """ =) dr cos(no),
n=1

and

™

Ki(t,7) = —on2q2 /0“ F(&) cos(n)dée™ " =) dr cos(nmg)
n=1

26

are convergent for 0 < 7 <t < T. Therefore, K(t,7) and K;(t,7) are continuous functions

on0<r7<t<T.
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Differentiating (2.2.13) with respect to ¢, we obtain
t
K(t, t)g(t) +/ Ki(t,m)g(T)dr =W (t), 0 <t <T. (2.2.15)
0
Setting t = T into the kernel (2.2.14), we obtain
I —2 [T
K(t,t) =~ / fede+>" = / (&) cos(né)dédr cos(na). (2.2.16)
0 =™ Jo

The right-hand side of the equation (2.2.16) is the Fourier cosine series of f(x) at the point
x = xg. Therefore, K(t,t) = f(zo) # 0.

Dividing both sides of the equation (2.2.15) with K (t,t), we obtain

g(t)+/0 I[((tg”;)g(f)dfz 1?;7(2) 0<t<T. (2.2.17)
As
Ki(t,7) and R (t)
K(t,t)’ K(t,t)

are continuous for 0 < 7 <t < T, the equation (2.2.17) is a Volterra integral equation of
the second kind with a continuous kernel and the right-hand side. By Theorem 1.2.8, the

integral equation (2.2.17) has a unique solution ¢(t) € C|0, 7]. O
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2.3 Determination of an Unknown Time-Dependent Diffu-
sivity a(t)
2.3.1 Heat Equation on the Real Line

We consider the following initial-value problem

up = a(t)ugy, —o0 <x <00, t>0; (2.3.1)
1, -b<ax<b

u(z,0) = - ,b>0. (2.3.2)
0, |z|>b.

where a(t) > 0 is the time-dependent thermal diffusivity.

We shall determine the function a(t) > 0 and u from the interior temperature measurement

w(0,t) = h(t), t > 0. (2.3.3)

The solution of the problem (2.3.1)-(2.3.2) for arbitrary a(t) > 0 can be found by using the

Fourier transform in the form

1 b )2
u(z,t) = / exp {(tgjg)}df (2.3.4)
VA [ a(y)dy /= 4 [y aly)dy
To determine the function a(¢) > 0, we will use the additional condition (2.3.3).
Setting = = 0 in (2.3.4) and taking into account (2.3.3), we obtain
1 b _ 2
h(t) = ————= | exp _ = dg.
[ar [ b 4 [Ta(y)d
47 fo a(y)dy o A\Y)ay
Defining
1 b 752
F(n) = / e ¥ dg, (2.3.5)
Vamn Jp

we can easily see that

F([M@@)—Mﬂ (2.3.6)



29

Setting ¢ = 0 in (2.3.6), we obtain from the initial condition (2.3.2),

F(0) = h(0) = u(0,0) = 1.

By using the fact that e~*" is an even function and substituting the variable ¢ = % to
the integral in (2.3.5), we obtain
1= 1 b=
F) = [ et = e dg
VAT Jp VT Jo
2 b/2\/ﬁ
= / eV d.

v Jo

Then, we have lim, ., F'(n) = 0, and by using the Fundamental Theorem of Calculus,
F'(n) = = e%??n—?’/? <0,7>0 (2.3.7)
Nz , . 3.

Consequently, F': (0,00) — (0, 1) is a strictly-decreasing function and then the inverse of

F exists, say G. If 0 < h(t) < 1, t > 0, then from (2.3.6),

/0 a(y)dy = G(h(t)), (2.3.8)
and
alt) = G () (1) = TGP oy
FI(G(h(D)) 239)
REOON AL &

From (2.3.8) and (2.3.9), we must require that 2" is continuous, h’ < 0, and lim;_,, h(t) = 0.
From these requirements on h it follows that a(t) is positive, integrable, and continuous for
t > 0. For a(t) to be continuous at ¢t = 0 with a(0) > 0, we must have

R (t
lim *)

e Eammy) Y

Collecting all of the requirements, we obtain the result in the following theorem.
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Theorem 2.3.1. If h is continuously differentiable for t > 0, h'(t) < 0 for t > 0, and

limy o A(t) = 0, and if
/
lim I(#)

A mcne) Y

where F is defined by the equation (2.3.5) and G is the inverse of F', then it follows that a(t)

defined by (2.3.9) and u defined by (2.3.4) constitute the unique solution to (2.3.1)-(2.3.3).
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2.3.2 Heat Equation in a Finite Segment

We consider the boundary-value problem

ur = a(t)ugz, 0 <z <m 0<t; (2.3.10)
u(0,t) = u(m, t) =0, 0 <t; (2.3.11)
u(z,0) =p(z), 0 <z <m. (2.3.12)

where a(t) > 0 is the time-dependent thermal diffusivity.

We shall determine the function a and u from the interior temperature measurement
u(zo,t) = h(t), t >0 (2.3.13)
where zg € (0, ).

The solution of the problem (2.3.10)-(2.3.12) for arbitrary a(t) > 0 can be found by using

the separation of variables in the form
ZA e Jo 9w gin (nz) (2.3.14)

where

A, = 2/7r o(&)sin(n)dé, n=1,2,....
0

T
To determine the function a(t), we will use the additional condition (2.3.13).

Setting © = x¢ in (2.3.14) and taking into account (2.3.13), we obtain
ad t
2
t) = ZAne_” Jo atw)dy sin(nxg), t > 0.
The function

Z Ape " sin (nz), (2.3.15)

where

A, = 2/7r e(&)sin(n)dé, n=1,2,---
0
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satisfies the problem

Uy = Vg, 0 <<, >0, (2.3.16)
v(0,n) = v(m,n) =0, n =0, (2.3.17)
v(z,0) =p(z), 0 <z <. (2.3.18)

Suppose that ¢ is nonnegative continuous on 0 < z < 7, p(xg) > 0, and ¢ is twice
continuously differentiable on 0 < x < 7 such that ¢” < 0 and ¢” is bounded for 0 < z < 7.

Firstly, we have

v(x0,0) = p(zg) >0 (2.3.19)
and, from (2.3.15),
lim v(xg,n) = 0. (2.3.20)
7]—>OO

Next, we will show that vy (zg,n) < 0 for n > 0.
Set Dy = (0,7) x (0,T] and By = Dt — Dp. Define the auxiliary function
'U)(x, 7]) = 'l)n(.%'77’]) + gxz = 'sz(flf, 77) + 51'2,
where ¢ is a positive number. Then w assumes its maximum on Bp. Otherwise, there would

exist a point (z1,m) € Dr s.t.

w(zy,m) = jnax w.

Hence, at (x1,m1) € Dr,

Wez — Wy <0 (2.3.21)

since wn(x1,771) > 0 and wye (21, 771) <0.
But

Weg — Wy = (Ve + 26) — Vgey = 26 >0
contradicts to (2.3.21). Then w has its maximum in Bp. Since

w < maxw,
Br
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and
Un($0’77) < Un($0>77) + gx(Q) = w(xoan)

where xg € (0,7),n > 0, we have
vy (0,m) < w(wo,n) < maxw < maxwv, + € max 2.
Br Br Br
Since € can be chosen arbitrarily,

vy(20,7) < MAX vy = WAx vy = max {0, ¢"(x)} = 0.

Also, we have
vy (20, 0) = vz (20,0) = ¢ (z0) < 0.
Thus, we have

vy(x0,m) <0, 0< 7. (2.3.22)
Defining
F(n) = v(wo, n)-
we can easily see that
F (/Ota(y)dy) = h(t). (2.3.23)

Setting t = 0, we have F(0) = h(0). Then, by using the results (2.3.19),(2.3.20), and
(2.3.22), we have

F(0) = h(0) = p(xp), lim F(n) =0, F'(n) <0, n>0.

n—00

Then, F : [0,00) — (0, ¢(z0)] is strictly-decreasing function and then the inverse of F

exists, say G. If 0 < h(t) < p(zg), t > 0, then from (2.3.23), we have

/ t aly)dy = G(h(t)), t >0 (2.3.24)
0
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and

alt) = G' (W) (1) =
(2.3.25)

IR0 R X0
FIGh() ~ F(GhD)

Note that F'(G(h(t))) < 0, t > 0. From (2.3.24) and (2.3.25), we must require that h’ is
continuous, h’ < 0, and lim;_, A(t) = 0. From these requirements on A it follows that a(t)
is positive, integrable, and continuous for ¢ > 0.

Collecting all of the requirements, we obtain the result in the following theorem.

Theorem 2.3.2. If ¢ is nonnegative, twice continuously differentiable with bounded ©” < 0,
and p(xg) > 0, 0 < xo < 7, and if h is continuously differentiable for t > 0, ' < 0, and
limy_,oo h(t) = 0, then a(t) given by (2.3.25) and u given by (2.3.14) constitute the unique

solution to problem (2.3.10)-(2.3.13).
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2.3.3 Heat Equation on the Half-Line

Now, we consider in this section the determination of a positive continuous function a(t)
defined on the interval 0 < ¢ < T and a function v = u(x,t) defined on 0 < z < oo, 0 <

t < T, such that the pair (a,u) satisfies

up = a(t)ugz, 0 <z <oo, 0<t<T, (2.3.26)
u(z,0) =0, 0 <z < oc; (2.3.27)
u(0,t) =¢(t), 0<t<T. (2.3.28)

where 1(t) is given function defined on 0 <t < 7.
We shall determine the function a(t) defined on the interval 0 < ¢t < T and wu defined on

0<x<oo, 0<t<T from the boundary-flux measurement
—a(t)ug(0,t) =g(t), 0<t <T (2.3.29)
where ¢ is given function defined on 0 < ¢ < T.

Definition 2.3.1. Let @ = [0,00) x [0,T). A pair of functions {a(t),u(z,t)} is called a

solution of (2.3.26)-(2.3.29) if
1. u € C*!(Q), and positive function a € C([0,T))

2. (2.3.27)-(2.3.29) is satisfied in the usual sense.

The first step in this section is based upon the representation of solutions of the heat

equation to which equation (2.3.26) can be reduced via the transformation

H(t):/ota(y)dy, 0<t<T.

Since

0'(t) =a(t)>0, 0<t<T, (2.3.30)
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the continuous function 6(t) is invertible, i.e., there exits a function ¢ such that

p(0(t) =t, 0<t<T, (2.3.31)

0(p(r)) =7, 0<7<0(T). (2.3.32)

Let

Differentiating the both sides of (2.3.31) with respect to ¢, we have

d d i _

L= —0(0t) = o) = ¢'(n) g = ¢ (o' (1)

or, by using the equation (2.3.30), we have

@' (n) = e/tt) = ! 1 1( . 0<n<o(T). (2.3.33)

Let

U(x,n) = u(m,@) (2.3.34)

Differentiating the equation (2.3.34) with respect to  and using the result (2.3.33), we have

Up(z,m) = us(z, 0(n))¢' () = u(z, ‘P(”))a(go(t))

Consequently, to obtain the representation for w(z,t), we substitute n = 6(t) into the

representation for U(z,n).

So, the problem (2.3.26)-(2.3.28) is reduced to

Up="Uss, 0 <z <00, 0<n<lT); (2.3.35)
u(z,0) =0, 0 <z < oo; (2.3.36)

U(0,n) =v(e(n), 0 <n<0(T). (2.3.37)
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The solution of the problem (2.3.35)-(2.3.37) can be found by using the Laplace transform

in the form

e Dy (p(y)dy,

Ve = /0 VAr(n—y)3

Substituting in n = 0(t), we obtain

o(t)

0 A (6(t) — y)3

If we make the substitution y = 6(7), we obtain dy = 6'(7)dr = a(7)dr and then

u(z,t) = 20 =) y(p(y))dy.

— 2

(@1 /O =TT Vlp0()a(r)d
2 (2.3.38)

—.le

Now, we shall determine the function a(t) defined on the interval 0 < ¢ < T from the

boundary-flux measurement (2.3.29). Differentiating the equality (2.3.38) with respect to

x and setting x = 0, we obtain

g (0, ¢ Zf/ 3/2 T. (2.3.39)

Under the assumption that 1 is continuously differentiable, integrating by parts in (2.3.39)

and using the initial condition 1(0) = u(0,0) = 0, we obtain

‘() ) ( ! )
2 Y’ZJ( ) t 1/2 dr
/0 (ffa(y)dy)g/ /0 (f! aly)dy)"

. /t W)
o (faly)dy)"?

T

T=t

1

= (2p(r)——

( ([ aly)dy)"?

o /t W)
0 ([ a(y)dy)"”

By using this result, we can write the equation (2.3.39) in the form

S eE
VT Jo (ffaly)dy)"?

7=0

uz(0,1) = (2.3.40)
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From the equation (2.3.29) and (2.3.40), we get the nonlinear integral equation

) — =50 Vg(t)
t

- L 0<t<T. 2.3.41
ux(O, ) /t 1/]/(7_) 0 ( )
o L(Jfaly)dy)'?

Then, the existence of a unique solution to the problem (2.3.26)-(2.3.29) is equivalent to

the existence of a unique solution to the integral equation (2.3.41).

Define

t
Fa(t) = Vg(t) L0<t<T (2.3.42)
T v
¢ 1/2 dr
0 L(J:aly)dy)
Now, the existence of a unique solution to the integral equation (2.3.41) is equivalent to the
existence of a unique fixed point of the operator F.

Assumption

We shall assume that
1. v is continuously differentiable on every compact subset of 0 <t < T}
2.9 >0, 0<t<T;
3. g is continuous for 0 < ¢t < T, and positive for 0 < ¢t < T

4. The function

A) = V)
[ e o

lim h(t) = ho > 0.

t—0t

, 0<t<T,

satisfies

Definition 2.3.2. For any function ¢(t) defined for 0 <t < T, Let

s(p,t) = Oiugtw(y), i(p,t) = Oggtso(y)-
Yy
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Lemma 2.3.3. The function Fa(t) satisfies

Vila, t)i(h,t) < Fa(t) < v/s(a,t)s(h,t), 0 <t <T.

Proof. Since g > 0 and ¢’ > 0,

Fa(t) VTg(t) < VTg(t)
t —¢/<T) ] dr o W'(T)
/0 [(f: a(?/)dy)l/2 /0 |:(f7t Oiggta(y)dy)lm dr
I L 10 — /@ Dh(t) < /sl s(h 1)
/ [ ¥(7) ] "
o |((t—7)s(a,1))"”
Likewise,
Fa(t) = VTg(t) S VTg(t)
t —wl(ﬂ ] dr o W'(1)
I [<f:a<y>dy>”2 / Lf: ot o(w)dy)"” "
- vrg(®) = Vi(a,)h(t) > \/i(a, t)i(h, )

Lemma 2.3.4. If a(t) is a solution of the nonlinear integral equation (2.3.41), then
i(h,t)? < a(t) <s(h,t)?, 0<t<T.
Proof. By Lemma 2.3.3,
a(t) = Fa(t) < +/s(a,t)s(h,t).
whence it follows that
s(a,t) < \/s(a,t)s(h,t).

and

Vv s(a,t) < s(h,t). (2.3.43)
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Likewise,
a(t) > /i(a,t)i(h,t).
whence it follows that
i(a,t) > i(a,t)i(h,t).
and
i(a,t) >i(h,t). (2.3.44)

Combining (2.3.43) and (2.3.44),we have

i(h,t) < Vi(a,t) < Va(t) < \/s(a,t) < s(h,t) (2.3.45)
Therefore, the result follows by taking the square of each term in (2.3.45). O]
We now restrict our attention to the class of functions defined as

G={acC([0,T)) | i(h,t)* <a(t) < s(h,t)*} (2.3.46)
Lemma 2.3.5. F maps G into G

Proof. Let a(t) be in G. From the Lemma 2.3.3, we have

Fa(t) < +/s(a,t)s(h,t)

But, since a(t) € G,

Vs(a,t) < +/s(h,t)2.
Then
Fa(t) < /s(a,t)s(h,t) < s(h,t)%
Likewise,
Fa(t) > v/i(a, t)s(h,1)

But, since a(t) € G,

Vila,t) > /i(h, )2



41

Then
Fa(t) > \/i(a,t)i(h,t) > i(h,t)%

Therefore the result follows. O
Lemma 2.3.6. If a1 and as are G and a1 < aq, then Fay < Fas.

Proof. From the definition (2.3.42) of F , we obtain

! Y'(7) Vg(t)
)1/2dTS/o <fta1(y)dy>1/2d7-: fi .

T

Vy(t) ' Y'(7)
}"Zg :/0 (f

*as(y)dy
Thus

fal(t) S .7'—(12.

O
Lemma 2.3.7. The image FG is an equicontinuous, uniformly bounded family of functions.
Proof. Since i(h,t)? < Fa(t) < s(h,t)? and

lim i(h,t) = lim s(h,t) = lim h(t) = hy,

t—0t t—0t t—0t

it follows that the family FG is equicontinuous at ¢t = 0. Now, we will consider FG at
t,0<t<T.

Let top be fixed such that t <ty < min(2¢,7") and let 6 > 0 satify t < ¢t + 0 < to. Set

w LG
A(G” 6) = dr — [ . S —
/0 (ff+5a(y)dy)1/2 /0 (fi a(y)dy) 2
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Then,

|Ala,d)] =

/“5 Vi) o
C (0 atay)

D )™ (e

S ay)dy)

<

/t+5 1/}/(7_) 0
C( i)

where

and




43

By using the inequality i(h,t) < a(t), 0 <t < T obtained from the Lemma 2.3.4, we have

t+46 / t+46 /
. YO i | e,
¢ t+6 t
(V ) (42 int at)d
t+46 / t+46 /
= / . 7297 = hlt / t 12) - 72T
t (ft+5 (h ¢ )gdy> 7’( ) 0) t ( + _T) (2347)
t+5 1
—d
(t535t0¢ ) . (tro-niET
T=t+09
( sup (7 > < 2t +6—71)/? = (162
t<7<to T=t
where
o= < sup o >>
= u T
! l(ha tO) tSTgt()
which is positive and finite by our assumptions and independent of a(t).
For b, > 0 ,i=1,2, it follows that
Vo Vb Vhivhe  VBivba (Vi + VD) .
By using this result, we obtain
t /
I, = / ; 1/2w (7) > 72 dr
O (faty)ay) "~ (S aly)dy)
/t (S aly)dy) v'(r)ar
- 1/2 1/2 1/2 1/2
* (Jatay) " (S aty)y) [(ff a()dy) "+ ([1 aly)dy) }
sup a t+6 2.3.49
- <O<y£to (y)> /t ( ¢ dy) Y'(T)dr ( )
= 32 J, . 12/ .5 1/2 [ . 1/2 s 1/2]
i - dy . dy - dy +( /), dy
<0<15£ " a(y)> (f > (f ) (f ) (f >

> [ J
3 /0 =72t +6—T)V2[(t—7)"2+(t+6—7)

(

(h,to)
_ S(h,t0)2 t 1 1 )
i(h,to)3 /0 [(t —71)1/2 B (t+6 — 7,)1/2] Y(7)dr




We now let n, 0 < < %t. Then, from the inequality (2.3.49), we have

YA [ e = K
= [~ e v

Y A e e o

TY(r) ' ' 1 L
<a | ot o v [ G~ g o

- [(vor L] - [ ]

+Co sup /(1) < —2(t — 7‘)1/2 +2(t+6— 7‘)1/2

n<t<to

T=t

7=0

1
+Co sup /(1) [251/2 +2tY2 —9(t + 6)1/2}

< CQ@D(W)W n<r<to

< Cop(n)n M2+ 2C26'% sup /(1)

n<t<to

where
S(h, t0)2

Co = i(h, to)?

Since 9 is continuous and ¥(0) = 0, we can select 1 sufficiently small so that
Cop(m)n™Y? <27, e > 0.
Fixing 7, we then can select § sufficiently small so that
20562 sup /(1) <27'e e > 0.
n<t<to
Consequently, for each € > 0, there exists a §. > 0 independent of a such that

I, <e

forall 0 < < 6.
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(2.3.50)

Combining (2.3.47) and (2.3.50), it follows that A(a,d) tends to zero uniformly with respect

to a € G as J tends to zero from above. By a similar argument, A(a,d) tends to zero
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uniformly with respect to a € G as § tends to zero from below.

Thus, the functions

Vagt) [t ()
fag(t) _/0 ( [ aly) dy)l/z‘”

for a € G are equicontinuous for 0 <t < T. As g is continuous for 0 < ¢t < T, it follows
that the functions Fa(t) for a € G are equicontinuous. The uniformly boundedness follows

from results of Lemma 2.3.5 O

Now, we will consider the existence of a fixed point of the operator F.
Let ao(t) = i(h,t)?, 0 < t < T. Then ag is in G. Since F maps G into G, Fag € G,
which implies that Fag(t) > i(h,t)*> = ao(t). As Fag(t) > ag(t), by the Lemma 2.3.6,
F2ap(t) > Fao(t), and by induction the sequence F"ap(t) is a monotone increasing sequence
of functions on 0 < ¢t < T. As F"ap(t) € G, n = 1,2,3,..., they are bounded above by
s(h,t)%. Hence,

lim F"ap(t)

n—oo
exists for 0 < ¢t < T, say a(t). But, from Lemma (2.3.7), F"ao(t), n = 1,2,3..., are
equicontinuous and uniformly bounded. From the Ascoli-Arzela Theorem, there exists a
uniformly convergent subsequence on each compact subset of 0 < ¢ < T. This, together with
the monotonicity of the sequence, implies that the entire sequence F"ag, n = 1,2,3,...,
converges uniformly to a(t) on each compact subset of 0 <¢ < T
Since F"ag(t) converges uniformly to a(t) on 0 <t < Ty < T, for each 7, 0 < 7 < t < Ty,

we have

t t
lim F“ao(y)dy:/ a(y)dy.

nsoo [

Then, we have

Y'(7) Y'(7)

lim =

T tfﬂa()(y)dy)l/? (/ t )iy

1/2°
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Since F"ap(t) is a monotone increasing sequence and lim F"ay(t) = a(t), we have for
n—oo

0<t<T,

(I(](t) anao(t) Sa(t)7 ’I’L:1,2,3,...

By using this result, we obtain

¥'(7) Y'(7)

V()
h (/ ta'(y)dy) " (/ tf”cm(y)dy) " (/ t ao(y)dy>l/2

Then, from the Lebesgue dominated-convergence theorem, we obtain
t / ¢ /
lim Vi) AT = / vir) dr.
/2 0

([ Fratway ([ atwa) "

Then, we also have
Vg(t) Vg(t)

nlLIEO /t 1/)/(7' -
o ([I Fraoly

By using the definiton 2.3.42 of F, from the last equality, we obtain

~—

dr /t —W(T) dr
dy)1/? o ([la(y)dy)1/?

T

~—

lim ]—“<]—"na0(t)> = Fa(t)

n—oo

Since the left-hand side of last equation equals to a(t), we have

Thus, a(t) = lim,, o F™ap(t) is a fixed point of the operator F.

Now, we will consider the uniqueness of the fixed point of the operator F.
Suppose that a1 (t) and as(t) are two different solutions of the nonlinear integral equation

(2.3.41). Then, we see that

ﬁg(t)_ﬁg(t)_/o ! _ L Dp| vmdr (2351)
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By using the equation (2.3.48), we can write (2.3.51) as

a(t)as(t) /t (ff al(y)dy)_l/2 (ff a2<y)dy)_1/2 (ff (a2(y) — al(y))dy)
vt o (o)™ + (J aatiar) "]

Employing the fact that aq(t) and ag(t) are in G defined by (2.3.46), we obtain

< st /t J1 las(y) — ai(y)|dy o
VRO S ([Lay) ([ dy) 2 ()] dy) '+ (S dy) 2]

W' (T)dr.

CLQ(t) — al(t) =

(1)dr

|az(t) — ar(t)

S e e
s(h,t)'s(lay —aol,t) [* [idy
SN O / ¥ (7T

< s(h,t)
T 2(/mg(t)i(h,t)?

*s(la1 — az, 1) /t V() o st is(lar — as),t) Vrg(t)
o (t—7)12 2ymy(t)i(h,t)> (1)

s(h,t)*
< — t
= 2’i(h,t)48(|a1 a2‘7 )
(2.3.52)
Thus, we have
s(h,t)*
— t) < — t
s(lag — a1, 1) < % (h1) (la1 — as|, )
for 0 <t < T. Since lim h(t) = hgy, we have
t—0t
h,t)t 1
stht)” 1 (2.3.53)

im
t—0+ 2i(h,t)* 2
Since h(t) is continuous, from the equation (2.3.53), for each 0 < € < %, there exists a tg > 0

such that for all ¢, 0 <t < tg, we have

2i(h,t)F 2| S 2 ©

s(h,t)* 1’ 1
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or
s(h,t)* 1
0 1- O<e< -
S it TS TTET g
Thus, for 0 <t < ty, we have
s(lag — a1|,t) < (1 —¢)s(|lar — azl,t). (2.3.54)

which implies that
a1 (t) = as(t)
for 0 <t < tg.

Now, we will consider the inequality (2.3.52). Then, we have

i las(y) — ar()ldy
<t <
os(t) ~an() < 5 [ S i, <t <1y
(2.3.55)
t ¢
< C/ (t— 7)3/2/ laz(y) — a1(y)|dydr, to <t < T,
0 T
where
_ s(hTo)s(¥, To)
- . 3 . .
2y/mi(h, To)* inf = g(t)
Applying Fubini’s Theorem,
t ¢ t y
/(t—T)S/Q/ laz(y) —a1(y)\dyd7':/ laz(y) —a1(y)|/ (t — 7) "3 drdy
0 T 0 0
t T=Yy
— [ laao) - w266 - )77 dy
0 7=0
(2.3.56)

=1/ laa(y) — ax@)I[(t = )"V2 — -2y
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Substituting (2.3.56) into (2.3.55), we obtain
t
lag(t) — a1(t)] < 20/ (t — ) ?as(y) — ar1(y)|dy, to <t <Tp. (2.3.57)
0

As a1 = ag for 0 < t < tp, (2.3.57) holds for all ¢, 0 < t < Ty. From this inequality it
follows from Lemma (1.3.2) that a1 (t) = ao(t) for 0 < ¢t < Tp. As Ty is an arbitrary positive
number less than T, we see that the solution to the nonlinear integral equation (2.3.41) is

unique.

Theorem 2.3.8. If v is continuously differentiable for 0 <t <T,¢'(t) >0, 0<t<T, g

1s continuous for 0 <t < T, and positive for 0 <t < T, and the function

h(t) = VTg(t)

= , 0<t<T,
/t LGP
-
o L(t—7)12
satisfies
lim h(t) = hg > 0,
L ) = ho

then there is a unique solution to the nonlinear integral equation (2.3.41).



Chapter 3

Inverse Problem for Wave
Equation

Now, we consider in this section the determination of a continuous function a(t) defined on
the interval 0 < ¢t < T and a function v = u(z,t) defined on 0 < z < m, 0 <t < T, such

that the pair (a,u) satisfies

Ut = Ugy +a(t)u+ F(z,t), 0<z<m 0<t<T; (3.0.1)
u(z,0) = @(x), u(z,0) =¢(x), 0 <z <m (3.0.2)
u(0,t) =u(m,t) =0, 0<t <T; (3.0.3)

where ¢(x), ¥(x), F(z,t) are given functions. We shall determine the functions a(t) and

u(z,t) from the measurement

ug(0,t) = g(t), 0< t < T. (3.0.4)

Definition 3.0.3. Let Q = (0,7) x (0,7). A pair of functions {a(t),u(z,t)} is called a
solution of (3.0.1)-(3.0.4) if

1. u € C*Q), and a € C[0,T]

2. (3.0.2)-(3.0.4) is satisfied in the usual sense.

Now, we will assume that ¢(z), ¥ (z), g(t), F(z,t) satisfy

50
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Assumption
L. p(z) € C3[0,], ¢ () € La(0,7), and ¢(0) = p(m) = ¢"(0) = ¢ (7) = 0;
2. ¢(x) € C*[0,], ¥"(x) € L2(0, 7), and ¥(0) = ¢(7) = ¢"(0) = 4" (m) = 0;
3. g(t) € C?[0,T], g(t) # 0, and g(0) = ¢'(0), ¢'(0) = +'(0);

4. F(x,t) € C(Q), Fypp(x,t) € C(Q), Frpz(z,t) € Lo(Q), and F(0,t) = F(m,t) =
Fpz(0,t) = Fpp(m,t) = 0 for all ¢ € [0, 7.

The solution of the problem (3.0.1)-(3.0.4) may be obtained by
o0
u(z,t) = Z ug(t) sin kx (3.0.5)
k=1

It is clear that this series satisfies the boundary conditions (3.0.3). Setting the series (3.0.5)

into the equation (3.0.1), we obtain

D uf(t)sinks = =) " KPug(t)sinka + > a(t)ug(t)sinke + F(z,t) (3.0.6)
k=1 k=1 k=1

Expanding F(x,t), we have
F(z,t) =) Fi(t)sinkz (3.0.7)
k=1

where

Fiu(t) = i/oﬂ P&, ) sin kéde, k=12, ...

From (3.0.6) and (3.0.7), we obtain

D [ui(t) + KPur(t) — a(t)ur(t) — Fi(t)] sinka =0
k=1

This equality holds if and only if

ul (t) + k2ug(t) = a(t)ur(t) + Fi(t), k=1,2,... (3.0.8)
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Taking into account the initial conditions (3.0.2) and using the variation of parameters

method, we can easily see that the solution of the problem (3.0.8) is of the form
(. t1 ‘
ug(t) = py coskt + - sin kt + %Fk(T) sin[k(t — 7)]dr
0
(3.0.9)
"1
+/ EG(T)%(T) sin[k(t — 7)]dr.
0

Thus, the solution of the problem (3.0.1)-(3.0.4) is of the form
u(x,t) = i @k cos kt sin kx + i 2 sin kt sin kz
’ k

k=1 k=1

oo 2 t pm
— in k& sinlk(t — 7)|dédT sink .0.
+;k7r /0/0 F(&,7)sin k€ sin[k(t — 7)]d&dT sin kx (3.0.10)

o0 ) t pm
+ Z — // a(T)u(&, 7) sin k€ sinlk(t — 7)]dédT sin k.
1 km Jo.Jo
Taking into account the equation (3.0.4), we get the system of integral equation
00 oo oo 9 t prm
> prkcoskt+ Y apsinkt + Y = // F(&,7)sin k¢ sin[k(t — 7)]dEdr
T JoJo
k=1 k=1 k=1
(3.0.11)
0 9 t pm
+ Z - // a(T)u(&, 7)sin k€ sin[k(t — 7)]dédT = g(t).
1 T JoJo
Differentiating (3.0.11) with respect to t, we obtain
(o) - [e%s) 0o o t pm .
- Z ork” sin kt + Z Yk cos kt + Z — F(&,7)sin k€ cos|k(t — 7)]d&dr
T JoJo
k=1 k=1 k=1
(3.0.12)

X 2k ([T ‘ N
+ ; . /0/0 a(T)u(€, 7) sin k€ cos[k(t — 1)]dédT = ¢ (t).
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Again, differentiating the equation (3.0.12) with respect to ¢, we obtain

— f: ok cos kt — i Vpk? sin kt + i 2k /ﬁ F(&,t)sin k&d€
k=1 k=1 k=1 " 0
2k? =
- (&, 7)sinkE sin[k(t — 7)|dédT + a(t (€, t)sink&€dE  (3.0.13)
e DI

2
_ Z 2k // )sin k€ sin[k(t — 7)]dédT = ¢ (t).

As
xt:Z/ (&, 1) sin kEdE sin ka,

=1
then we have

— 2k [T
ot) = ua(0,8) = S 2 / w(é, 1) sin kede. (3.0.14)
k=1 /0
Similarly, from the equation (3.0.7), we obtain

2% [T
F,(0,t) =Y = [ F(&,t)sink&de. (3.0.15)
>,

By using the equations (3.0.14) and (3.0.15), we rewrite the equation (3.0.13) to obtain

L ST eoskt 4+ S iz sing 4 £0 _ Fa(0.0)
) = gy 2 o7 oSkt + S5 D nksinkt = =

/07r F(&, 1) sin k€ sin[k(t — 7)]d&dT (3.0.16)

_|_
5|
M8
a\%
S~

/0 " a(Fyule, 7) sin ke sin[k(t — 7)]dédr

_|_
Sl
M8
a\%
S~
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Theorem 3.0.9. Under the assumption 1) - 4), suppose that Ty and Ty are some positive
numbers that satisfy the conditions

2 2
01<W+W>T12<1

3 " 2H2
and
ot (T ) are <
! 3 " 2H? 2=
where
2
C
- “a , (3.0.17)
7r ™\ 72
1 . - P
¢ < 3 " 2H§f‘> !
2
8\ 2 8 1 2 8T ||0°F 6 "2
O = 1 a0 + 2 10 Mo + = | B2z |, T A2 19 e
L2(Q) *
6 9 27 2 27 2
2 1F, (0, - AfH(Q‘ 4*H(ﬂ
+ i 1 F2(0, ) llego,r + 2217 Mlr.om + 1?2 v La(0,7)
27T || 83 F ||?
Hf 8333 LQ(Q)

H, = mi £)].
« 0rglglngIQ()l

Then, the problem (3.0.1)-(3.0.4) has a unique solution with T < min{T1,T»}.
Now, we write (3.0.10) and (3.0.16) in the form

v = ¢[v] (3.0.18)

where

v={u,a}, ¢ ={¢1(u,a), pa(u,a)}, (3.0.19)

and ¢;(u,a), i = 1,2 are defined by the right hand side of (3.0.10) and (3.0.16), respectively.

Let E = B3(Q) x C[0,T] be defined with the norm

1
lolls = (Nl + laldon)’ (3.0.20)
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Corollary 3.0.10. E is a Banach space with respect to the given norm (3.0.20).

Proof. Let {v,}neny € E be a Cauchy sequence. Then, given ¢ > 0, there is K > 0 such
that for all n,m > K we have

1
2 2 2
lvn = omlly = (lltn — wmlFgiq) + lon — amlidom)* <=
Then, it is easy to see that for all n,m > K
lun —uml <e and |la, —anl <e.

Then, {un}nen and {an }nen are also Cauchy sequences. Since B3(Q) and C[0,T] are com-
plete, sequences u,, and a,, converge to some u € B3(Q) and a € C[0,T], respectively. So
there is K7 > 0 such that for all n > K7 we have

g
[un — UHBg(Q) < ok

and there is Ky > 0 such that for all n > K5 we have

e
lan — allgjm < 7

Set v = {u,a}. Then, for all n > max K1, Ky we have
|vn —vllp <e

Hence, v, converges to v € E. It shows that E is a complete metric space. ]

Now, let us show that solutions of (3.0.18) are bounded in E.

Lemma 3.0.11. If v is the solution of (3.0.18), then
lollg < M (3.0.21)

where M is defined by (3.0.17).

Proof. From the equation (3.0.9) and by using the Holder’s Inequality, we obtain

K3 < kK3 k?
s Jur (7] < k2] + Kyl

1

/Ot <l<:2 /OW F(e,7) sinkgdg>2dTr[/0t sin2[k:(t—7')]d7'] 2 5.022)
/0 t <k2a(7)uk(7)>2d7-] : [ /O 2kt — T)]dT] é.

2
+ —
s

_l’_
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Note that . .
/ sin?[k(t — 7)]dr < / dr =t <T. (3.0.23)
0 0

n 2 n
From the equation (3.0.22), by using the inequality (Z bi) <n Z b?, we obtain
i=1 j

S o] < e
k=1

16TZ/ (kQ/ Fl&r Slnk5d5> (3.0.24)
+4T;/O (kza(T)Uk(T)> dr.

By using the simple inequality 2ab < a® + 2ab + b* = (a + b)?, we have

4Tg/ot (k:QCL(T)uk(T)>2dT < 4T/0t a2(7')i [k O@%Juk( )|rkl2d7

k=1
0 2 o0 1
< 4T/ Zl [k Orggé\u )!] @dT (3.0.25)
¢ 2 o 2\ 2 oo 1
§2T/0 ([Oglgg\a(n)l] +k:1 [k:)’orggg Iuk(n)l} ) ;kzdf

Since

from the equation (3.0.24), we have

> 2 = 2

16TZ / <k2 / F(¢ )sink§d§>2dr

2
Tr? 3 2
+ = ([0%?2(7 a(n ] + Z [/{ max |ug( )@ ) dr.
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Note that
H /HHLQ (0,m) — /0 [90/”(55)}2(@:/0 [dx3 (Zgok&nkx)] dzx
:/ (Z kB@kCOSka) dl':Zk'chz/ cos? kxdzx (3.0.26)
0 k=1 k=1 0
T 6 2 T - 3 \2
IS RIS )
k=1 k=1
2
7|2 T 2 T 42 e _
Hw HLQ(O,W) = 0 (" (z)]"dx = ; ) glbksmkx dzx
T 0 2 o] -
_/ <Zk wkSinkaﬁ> da:—Zk4w,%/ sin® kxdx
0 \k=1 k=1 0
T 4 2 T = 9 \2
—52 ¢k:§Z(k90k),
k=1 k=1
and
2710 ((2 2 2
=d . / L
Ox? L2(Q) Ox?

\\

2
2
[88582 (Z Fy(7)sin kx) ] dxdr
2
<Z k*F(7) sin k:x) dxdr

(3.0.27)
/ Zk4Fk / sin® kxdzdr
0 k=1
Z/ KU (T Z/ (K2Fy,(7)) dr
2
= Z/ <k2/ F(&,7) sinkfdf) dr
T 0 0
k=1
Therefore, we have
00 2 2 2
8 8 2 8T ||0“F
3 /// "
2 [k quax, lu(7 )|] = }H HLQ 0,7) ;H@b HLz(o,n)+7 el
k=1 L2(Q)
(3.0.28)

2 t 2 e’ 2 2
L aml| +3 & il a
3 0 01217782{7. a — 0?7?’%(7_ |uk(77 T.
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From the equation (3.0.16) and by using the Holder’s Inequality, we obtain

1
< F,
02y 2t la(m)| < min |g(t) ’{Orgta<XT|g @ +OI£%}EF‘ =(0,4)]

0<t<T
+Z|sﬂk|k‘3+i|¢k\k2
k=1 k=1 )
+ij[/%(u['@,mm%@fmrlégﬁwg'mm]
1
/ < TYug (T )>2dTr!/Otsinﬂk(t—f)}dfr}.

o0
>
2 n
bi) < nz b?, and inequality (3.0.23), we obtain

[

k=1

By using the inequality (

i=1
2
max |a(7)| | < ! GHQ//HQ +6F2 (0,12
0225, = . 2 C[0,T] z\H JliCo, T
(i, oo
+6 (Z rsok\k3) +6 (Z wk|k2>
k=l k=t N (3.0.29)
(T (S| [T (5 [T . 27
+ (; [/O (k /O F(g,r)smkgdg> dT]
o) t 2 % 2
+6T (> [/ (kQa(T)u;c(T)> dT] }
k=1 L70
By using the same methods in (3.0.26)-(3.0.27), we have
00 2 00 2 0o 00
Dolenlk® ) = (Yo leulk's ] <D (erk) Y 5
k=1 k=1 k=1 k=1 (3.0.30)
2
ZZEH (4)‘2 :EH (4)‘2
6 La(0m) 3 Ly(0,m)
Sl ) = erk\ki”f <Y (k)Y
k k
k=1 k=1 k=1 k=1 (3.0.31)
) 2
=57 19 = 5 0,0
T L2(0,m) ~3 L2(0,m)
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and

(g [/OT <k2 /(: F(&,7)sin k§d§)2dT] é>2
N
_ (i ]1 [/OT (ka /OﬂF(g,T) sinkﬁd{)QdT] 2)

(3.0.32)
o0 1 o0 T T 2
3 .
<> = Z/O <k; /0 F(¢,7)sin k:§d£> dr
k=1" k=1
|3 F |
12 8.1'3 LQ(Q) '
By using the simple inequality 2ab < a? 4 2ab + b? = (a + b)?, we have
[e e} t 2 % 2 o) 1 t 2 % 2
> / Ka(r)up() ) dr =Y / Ka(r)ugp(r) ) dr
0 k| Jo
k=1 k=1
o0 1 (e’e} t 5 2
< sz/o <k a(T)uk(T)> dr
k=1"" k=1
7T2 t 2 > 3 2
-3 ; 2a (T)]; (KPui (7)) dr (3.0.33)

IA

5 |
e ~
VR

)

(]

-

_|_
(]2

—~

o

w

<

-

\1

N
N~
no

IS8

\]

2
7.‘.2 t 2 00 5 2
< .
<), [Orgggla(n)l] +z_: [k‘ Orggglu;c(n)!} dr

Therefore, by using the results (3.0.30)-(3.0.33), we obtain from the equation (3.0.29)

2
2
(Oglggt!a( )!> < HQ{GH 9" [le07y + 6 1F2 (0, ) 20,7

PBF |

+2n o0 =

oo

Lo (3.0.34)

+ 27T ‘
Lo (0,7)

(@)

Lo
2
2T [ 2 3
z Uy qm’ ]+ 3 [ s ] )

where H, = ming<;<7 |g(t)].
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Therefore, it follows from (3.0.28) and (3.0.34)
2
(s o) + > 1 o,
2 2 t 2\ 2
<o (3 am)7 ([m lat) } +Z ¥ guas st ) "

(3.0.35)

where
8. , 02F ||? (2
Gy = ; H HL2 (0,7) } H¢ HLz(Oﬂr) + || 022 + FE Hg HC[O’T]
+ If;f |72 (0, )||c0T] + 3 H2 H‘f’ ‘LQ(M) + [2{7:2 (3)‘ ;(o,n)
27T || 93 F ||
" ‘35”3 L2Q)

Since T1 > T, inequality (3.0.35) holds if we replace T' by Ti. Then, by using the Lemma
1.3.3 and under the assumption of the Theorem 3.0.9, we get

2
C
<OI<nTa<xT|a ) —I-Z [k Inax |ug (7 )|] < - -
1-C4 T2

- 3 2H?

HUHE

Then,
o]l < M

We now restrict our attention to the class of functions defined as
K={veE=855Q)xC[0,T] : |v|p<M}

Note that K is complete since K is a closed subset of the complete metric space FE.

Let us show that ¢ maps K into K.
Lemma 3.0.12. Under the assumption of Theorem 3.0.9, ¢ maps K into K.
Proof. Let v be in K. Then, by the definition of ¢ in (3.0.19), we have

8 o T ‘82F 2

|’¢1UHB3 Q = HUHB:)’(Q) HLQ(Ow p HWHLQ(OJ) T 1 oz2

L2(Q
D 3.0.36)

2 ot 2 0 2\ 2
Mk ol + 3|k max )| |
5y \ [ 0l 30 [ e ol )
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and

1 2
2 2 2
Ié2vllcro,r) = llallepm < }13{6 19" ejo.7 + 6 1 (0, ')”C[O,T]

33

2 H¢(3)‘ 3

+ WT’

+ 2r [|ot* >‘

(3.0.37)

L2(0,m) L2(0,m)

La(Q)
2
7T2T t 2 o) 5 2
5 ([JE?? la(n) } +;[1f Orgggluk(n)l] dr 5.

Then, from (3.0.36) and (3.0.37), we obtain

vl = lérollzgq) + lI$2vlicom

2 2 t 2\ 2
7o) T ) (|t %Z[’f juas G| ) ar

3 ' 2H?

2 7T2 A2
<Ci+ ?+2H2 M=T

7T2 7'('2 42

So, under the conditions of Theorem, we have

[pvllg < M.

Let us show that some iteration of ¢ is a contraction.

Lemma 3.0.13. For some n € N, ¢" is a contraction, i.e., there exits a nonnegative real
number k < 1 such that for all v,w € F,

[¢"v — ¢"w| <k [lu—w]|.
Proof. Let u,w € IC be arbitrary elements. Consider the sequences
oM = (@), @ =pM), .. W =gy,
and

w =w, wh=pw®), w® =g¢w®), - W =),
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Now consider the n-th iteration

2
H”( H _ a(n) + Ham) _ g™
3(Q) clo.7
where
o™ = {u™ o™} ¢ =g, 4 =y
w™ = {a™ &}, @@ =a, =g
By using the definition of ¢; and the equation (3.0.10), we have
u® — g = ¢1(u,a) — ¢1(u,a)
= Z ki / / —a(r)u(§, )] sin k€ sin[k(t — 7)]d&dT sin kx
= 3.0.38
- Z ;/ / (7)) u(€, 7)] sin k€ sinlk(t — 7)]d¢dr sin kx ( )
k=1
+ Z o= / / — (&, 7))] sin k€ sinlk(t — 7)]dédr sin kz.

By using the equation (3.0.38) and the inequality (3.0.24) and (3.0.25), we have

o

;m (1))u(é,7)] sin k€ sin[k(t — 7)|dédT sin kx

B3(Q)

— (&, 7))] sin k€ sinlk(t — 7)]dédr sin kx

B3(Q)

< {‘”ZQ /0 a(r) ) 30 [ s st )\de}Q
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Therefore, by using the inequality (a + b)? < 2(a? + b?), we have

2 8T7r2M2
e T (R

2
o+ [|u® - a© dr .
B3(Q)

By using the definition of ¢ and the equation (3.0.16), we have

Huu) _a®

(3.0.39)

/W[a(T)u(f, 7) — a(r)u(&, 7)] sin kE sinlk(t — 7)]|dédr

_iw% e a(T) —a(7))u(&, 7)| sin k€ sin -7 T (3.0.40)
= (t);; /0/0 [(a(r) — a(7))u(€, 7)] sin k¢ sin[k(t — 7)]déd

s 2 gt opm
Z - /0 /0 [d(T) (u(§,7-) - ft(f,T))} sin k€ sin[k(t — 7)]dédT.

By using the equation (3.0.40) and the inequality (3.0.29) and (3.0.33), we have

o =2

2
1) % / / u(é, )] sin k¢ sin[k(t — 7)]dédr

clo,T]

2
g(lt Z - / / 7) —a(§,7))] sin k€ sinfk(t — )]dEdT

1
o0 2

2 2
T7r/0 E {k orgr?é(r‘uk ]} dT}

k=1

C[0,T]

=

Tr /Ot (a(T))Qi [;ﬁ mas [ux (1 )_ak(n”]sz}?

<n<t
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Therefore, by using the inequality (a + b)? < 2(a? + b?), we have

o 20 gy <21 [ (0 4
C[0,T] 0 C[o,T]

2
> dr ;.
B3(Q) }

Then, from (3.0.39) and (3.0.41), we have 040
o = = =+ =
o MoTm M~ 1OT712M2 / <H B EL(O)HZ N HU(O) 02 ) i
C[o,7] 5(Q)
_ 10T7;2M2/0 Hv(o) B w(O)szT'
By induction, we get
[0 = wto 2 o {M}nT" L0 _wm)H2 7
E 3 n! E

or

1
n n 1072 M2\" T2 2
o= rullp < { (P50 ) T o - wle

Clearly, for large enough n
107202\ " T2 ) 2
) ) e

Hence, ¢™ is a contraction on K in the norm F. O

Thus ¢ has a unique fixed point in K by Theorem 1.2.7



Conclusion

In this work, our main goal is to study the problem of existence and uniqueness of various
inverse problems for second order parabolic and hyperbolic equations. We consider the
identification of the initial temperature distribution of heat equations from the final data.
We study the problem of the identification of the source function of inhomogeneous heat
equation. Then we study inverse problems of the determination of the time-dependent

coefficients in various heat equations and a wave equation.
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