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ABSTRACT 
Network descriptions and analyses are important tools in systems biology; they are 
powerful in abstracting the complex relationships inside cells and between them, and 
they often provide clues for drug discovery. In the first part of this dissertation, we 
introduce a structural network model that we call “Protein Interface and Interaction 
Network (P2IN)”, which is the integration of protein−protein interface structures and 
protein interaction networks. This interface-based network organization clarifies which 
protein pairs have structurally similar interfaces and which proteins may compete to 
bind the same surface region.  

Next, we propose a new network attack strategy, “The Interface Attack”, based on 
protein−protein interface motifs. Similar interface architectures can occur between 
unrelated proteins. Consequently, in principle, a drug that binds to one has a certain 
probability of binding to others. The interface attack strategy simultaneously removes 
from the network all interactions that consist of similar interface motifs. This strategy 
is inspired by network pharmacology and allows inferring potential off-targets. We 
built the P2IN with the p53 signaling network and performed network robustness 
analysis. We show that (1) “hitting” frequent interfaces (a set of edges distributed 
around the network) might be as destructive as eliminating high degree proteins (hub 
nodes), (2) frequent interfaces are not always topologically critical elements in the 
network, and (3) interface attack may reveal functional changes in the system better 
than the attack of single proteins. As a case study, we tried to detect the off-targets of 
some CDK6 binding drugs. We found that drugs blocking the interface between CDK6 
and CDKN2D may also affect the interaction between CDK4 and CDKN2D.  

Lastly, we describe how we use protein interactions and the structural knowledge on 
interacting surfaces of proteins (interfaces) in predicting the genotype-phenotype 
relationship. We built the phenotype specific sub-networks of protein-protein 
interactions (PPIs) involving the relevant genes responsible for lung and brain 
metastasis from primary tumor in breast cancer. First, we selected the PPIs most 
relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” 
principle. Then, we modeled structures of the interactions whose complex forms are 
not available in Protein Databank. Finally, we mapped mutations to interface 
structures (real and modeled), in order to spot the interactions that might be 
manipulated by these mutations. Functional analyses performed on these sub-networks 
revealed the potential relationship between immune system, infectious diseases and 
lung metastasis progression, but this connection was not observed significantly in the 
brain metastasis. Besides, structural analyses showed that some PPI interfaces in both 
metastasis sub-networks are originating from microbial proteins, which in turn were 
mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis; 
therefore these PPIs may be involved in similar molecular pathways that are shared by 
infectious disease and metastasis. Finally, by mapping the mutations and amino acid 
variations on the interface regions of the proteins in the metastasis sub-networks we 
found evidence for some mutations to be involved in the mechanisms differentiating 
the type of the metastasis. 

	  

	  

	   	  



 

 

ÖZET	  

Ağ açıklamaları ve analizleri sistem biyolojisi için önemli araçlardır ; hücre içindeki 
ve hücreler arasındaki karmaşık ilişkileri özetlemekte güçlüdürler ve genellikle ilaç 
keşfi için ipuçları sağlayabilirler. Bu tezin ilk bölümünde, "Protein Arayüzey ve 
Etkileşim Ağı (P2IN)" olarak isimlendirdiğimiz yapısal bir ağ modelini tanıttık. Bu ağ 
protein-protein arayüzey yapılarının ve protein etkileşim ağlarının entegrasyonundan 
oluşmaktadır. Bu arayüzey bilgisine bağlı ağ organizasyonu hangi protein çiftlerinin 
yapısal olarak benzer arayüzeylere sahip olduğunu ve hangi proteinlerin aynı yüzey 
bölgesine bağlanmak için rekabet ettiğine açıklık getirmektedir.  

Daha sonra, protein-protein arayüzey motiflerine dayanan yeni bir ağ saldırı stratejisi 
önerdik, "Arayüzey Saldırısı". Benzer arayüzey mimarileri ilintisiz protein çiftleri 
arasında oluşabilirler. Bu nedenle, prensip olarak, birine bağlanan bir ilacın belli bir 
oranda diğerlerine de bağlanma olasılığı vardır. Arayüzey Saldırısı, benzer arayüzey 
motiflerinden oluşan tüm etkileşimleri ağdan aynı anda kaldırır. Bu strateji ağ 
farmakolojisinden ilham almıştır ve potansiyel “dış-hedefler” ’in tahminine izin verir. 
Biz p53 sinyal ağının P2IN’ini inşa ettik ve ağda sağlamlık analizleri gerçekleştirdik. 
Biz (1) sıkça gözlemlenen arayüzeylerin (ağın çeşitli yerlerine dağılmış kenarlar) 
saldırılara hedef alınmasının, yüksek dereceli proteinlerin (hub düğümleri) ortadan 
kaldırılması kadar yıkıcı olabileceğini (2) sıkça gözlemlenen arayüzeylerin ağda her 
zaman topolojik olarak kritik noktalarda bulunmadığını (3) Arayüzey Saldırısının 
sistemdeki fonksiyonel değişiklikleri, tek tek proteinleri hedef alan saldırılardan daha 
iyi ortaya çıkarabildiğini gösterdik. “Dış-hedef” tespiti örnek çalışmasında, CDK6 ve 
CDKN2D arasındaki arayüzeyi engelleyen ilaçların, CDK4 ve CDKN2D arasındaki 
etkileşimi de etkileyebileceğini bulduk.  

Son olarak da, genotip-fenotip ilişkisinin tahmini için, protein etkileşimleri ve bu 
etkileşimlerin üç-boyutlu yapısının nasıl kullanıldığını açıkladık. Meme kanserinde 
primer tümörün akciğer ve beyin metastazına yol açması ile ilintili fenotipe özel 
protein etkileşim alt-ağları inşa ettik. İlk olarak, "işbirliği-ile-suçluluk" prensibini 
kullanarak, metastaza neden olan genlerle (tohum gen) en çok ilişkide bulunan protein 
etkileşimlerini seçtik. Daha sonra, kompleks halleri Protein Bilgi Bankası’ nda 
bulunmayan etkileşimlerin yapılarını modelledik. Son olarak, mutasyonlar tarafından 
manipüle edilmiş olabilecek etkileşimleri bulmak için, arayüzey yapıları üzerinde 
mutasyonları işaretledik. Bu alt ağlarda yapılan fonksiyonel analizler bağışıklık 
sistemi, enfeksiyon hastalıkları ve akciğer metastazı arasındaki potansiyel ilişkiyi 
ortaya çıkarmıştır, ama bu bağlantı beyin metastazı için kayda değer bir şekilde 
gözlenmemiştir. Bunun yanı sıra, yapısal analizler her iki metastaz alt-ağı içindeki 
protein etkileşim arayüzlerinin mikrobiyal protein kaynaklı olduğunu gösterdi. Bahsi 
geçen bu protein etkileşimlerinin hücre yapışması ile ilintili olduğu gözlemlendi. 
Hücre yapışması metastaz için önemli bir mekanizmadır; bu nedenle bu protein 
etkileşimleri bulaşıcı hastalık ve metastaz tarafından paylaşılan benzer moleküler 
yolaklarla ilgili olabilirler. Son olarak da, metastaz alt-ağlarındaki proteinlerin 
arayüzey bölgelerine amino asit varyasyonlarını eşleyerek, bazı mutasyonların 
metastaz türünün ayırt mekanizmalarına dahil olduğuna dair ipuçları bulduk. 
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Chapter 1 

INTRODUCTION 

Proteins usually team up together to function in several biological processes.  Other 

proteins with which it interacts often regulate the function and activity of a 

protein.  Bearing in mind that protein interactions are the basis for all cellular processes, 

building a protein-protein interaction network, a map of physical interactions between 

proteins, is a very essential step in understanding the complex mechanism in living 

systems. Networks help abstract the complex relationships inside cells and between them. 

While data are incomplete, and the approaches may not have matured, network 

descriptions and tools gradually become commonly used [1]. 

Conventional protein interaction networks provide binary information: whether two 

proteins interact or not. In order to grasp the information on “how protein couples 

interact?” the knowledge on three-dimensional structure of proteins is essential. In the last 

decade the molecular details of interactions have started to be integrated in protein 

interaction network. They provided mechanistic information about the regulatory 

mechanisms of protein interactions such as “mutually exclusive interactions” [2] and the 

location preferences of the mutations on the interfaces [3].  

Another use of networks is its topological properties such as hubs, betweenness, modules, 

etc. Network topology determines the information flow. Information flow and robustness 

analyses are used to locate essential components. 

This dissertation mainly focuses on integrating structural knowledge to protein-protein 

interaction networks and utilizing this additional information in solving problems like drug 

off-target prediction and genotype-phenotype mapping. Interface structures of protein-

protein interactions are modeled in atomic level and cancer related structural protein 

interaction networks are built. Sequence variations and drug-protein interactions are also 

integrated (separately) into these networks for answering specific questions. Presented 

methods and results may be in service to cancer bioinformatics, drug-protein interactions 

and systems biology. 

The outline of this dissertation is as follows: 
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In Chapter 2, an extensive literature review is provided. This section starts with reviewing 

the literature on protein interactions, protein interfaces and structural protein interaction 

networks. Then, tells about the network robustness studies applied on biological networks. 

Afterwards, the network-based strategies in polypharmacology are reviewed from a 

systems biology perspective. Finally, the attempts to shed light in the molecular 

mechanisms of metastasis via systems biology approaches are reviewed. 

In Chapter 3, a novel structural protein-protein interaction network model, based interface 

structure similarity is proposed. This new network model is named as “Protein Interface 

and Interaction Network” (P2IN). P2IN is explained in detail through several cancer 

related structural protein-protein interaction network examples. 

In Chapter 4, the use of P2INs in drug off-target prediction problem is presented. For this 

purpose the network attacks are used to depict the effects of drugs in p53 signaling network. 

We found that drugs blocking the interface between CDK6 and CDKN2D may also affect 

the interaction between CDK4 and CDKN2D. The methodology for locating similar 

interfaces on a network of protein interactions is described and the interface attack, which 

is a novel attack strategy based on similar interface concept, is defined.  

In Chapter 5, the employment of P2INs for bridging the gap between genotype and 

phenotype is shown. The phenotype specific structural networks for brain and lung 

metastasis of breast cancer are built. By mapping the sequence variations on these 

structural networks, SNPs related with each phenotype are revealed in case studies. 

This dissertation ends with a chapter discussing the results and main conclusions. 
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Chapter 2 

LITERATURE REVIEW 

In this chapter, a comprehensive review of the studies related to protein-protein 

interaction networks and their applications to poly-pharmacology and metastasis is 

presented. First, protein-protein interactions and their types, protein-protein interfaces 

and structural protein-protein interaction networks are described. Then, network 

robustness studies are reviewed. Later, network-based strategies in poly-pharmacology 

are presented. Finally, the main contributions of this thesis work are described after 

attempts to understand the molecular mechanisms behind metastasis via systems 

biology approaches are reviewed. 

2.1. Protein-Protein Interactions  

Proteins rarely act alone. When two or more proteins team up together, protein-protein 

interactions occur.  Other proteins with which it interacts often regulate the function 

and activity of a protein. PPIs are the basis for all cellular processes.  

Protein interactions have a great structural and functional diversity. Large 

macromolecular complexes, such as ribosome, are highly stable and permanent 

whereas dynamic and transient interactions are key components in signaling and 

regulatory networks [4-7]. Protein-protein interactions (PPIs) can be classified based 

on their composition, affinity and life time [8, 9] as: i) homo- and hetero-oligomeric 

complexes, ii) non-obligate and obligate complexes and iii) transient and permanent 

complexes, respectively.  

2.1.1. Homo-oligomeric and hetero-oligomeric complexes 

These groups of complexes are differentiated based on their compositions such that if 

a PPI occurs between identical chains, it is said to form a homo-oligomer whereas if 

the PPI takes place among non-identical chains then it forms a hetero-oligomer 

complex. Homo-oligomers are symmetric and provide a good scaffold for stable 

macromolecules. For example, a chaperonin protein is formed by seven GroEL 

proteins associating as a homo-heptamer to form a cylinder and seven GroES proteins 
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cap one side of this cylinder [10]. The cylindrical region is an example of a homo-

oligomer, whereas the GroEL/GroES complex is a supramolecule of hetero-oligomers. 

The stability of hetero-oligomers can vary and form a basis to gather different proteins 

that cooperate in a single macromolecule. For example, a/b tubulins form a stable 

dimer and these dimers form long protofilaments, which are constituents of 

microtubules [11].  

2.1.2. Obligate and non-obligate complexes  

The key point for differentiation between these two groups is affinity. If the 

constituents (protomers, monomers) of a complex are unstable on their own in vivo 

then this is an obligate interaction whereas the components of non-obligate 

interactions can exist independently. As an obligate complex example, Ku proteins, 

which are involved in DNA repair, are shown to bind DNA as obligate homodimers 

[12]. On the other hand, signaling protein complexes are good non-obligate interaction 

examples, due to their transient nature. After contributing to the propagation of a 

signal, they are dissociated into the stable constituent proteins. For example, H-Ras 

protein, which is a G protein, has a key role in controlling the cell growth and 

differentiation signaling pathways. It interchangeably forms non-obligate complexes 

with guanosine triphosphatase (GTPase) activating proteins (GAPs) (acceleration of 

GDP-bound state of H-Ras – switch OFF) and guanine nucleotide-exchange factors 

(GEFs) (acceleration of GTP-bound state of H-Ras - switch ON), when the cell is 

resting and when activated in response to stimuli, respectively [13]. 

2.1.3. Transient and permanent complexes  

These groups of interaction types are discriminated based on the lifetime (or stability) 

of the complex. Permanent interactions are usually very stable and irreversible (e.g. 

IL-5 cytokine dimer (PDB ID: 3b5k) [14]). However, the components of the transient 

interactions associate and dissociate temporarily in vivo [8, 14-18]. a/b tubulin dimer is 

an example of an obligate/permanent complex whereas the dimers of a/b dimers are 

transient and non-obligatory providing the dynamic nature to microtubules in cell 

division, cargo transportation and cytoskeleton [19]. Non-obligate interactions are 

predominantly transient [17], with a few examples of permanent (Figure 2.1), but 
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obligate interactions are usually permanent in nature [8]. It should be noted that, 

permanent and obligate terms are used interchangeably in the literature. 

	  

	  

Figure 2.1. Relation of protein-protein interaction types based on affinity and 

stability [20]. Non-obligate interactions are transient but there are some examples of 

permanent non-obligate interactions such as enzyme-inhibitor interactions (e.g. 

thrombin-rhodniin inhibitor interaction) 

2.2. Protein-Protein Interfaces  

Proteins interact through their interfaces. Interfaces involve interacting residues that are 

coming from two different chains, along with neighboring residues [21]. Once the 

crystal structure of a protein–protein complex is present, investigating the atomic properties 

of the protein–protein interface is possible.  However, if the complex structure is 

missing it is quite easy to predict the interface based on protein structures. Interfacial 

residues may be located by calculation based on the distance in the three-dimensional 

space [22, 23] or accessible surface area[24, 25].  

2.3. Structural Protein-Protein Interaction Networks 

Building a PPI network, a map of physical interactions between proteins, is a very 

essential step in understanding the complex mechanism in living systems. In PPI 
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networks nodes represent proteins and the undirected edges denote physical contact 

between two proteins. The complete collection of all PPIs within the cell is called 

“interactome”[26]. 

Until very recently structural information had nothing to do with PPI networks. 

However, in the last decade the molecular details of interactions have provided 

mechanistic information about the regulatory mechanisms of proteins. In 2006, Kim et 

al. added a dimension to PPI networks through structural modeling [2]. They described 

the interactions of two proteins that are binding to a common partner via the same 

binding site as “mutually exclusive interactions”. According to their study these two 

interactions could not happen simultaneously. They constructed structural yeast PPI 

network with 873 proteins and 1269 interactions, 438 of which are mutually exclusive. 

Moreover, Yang et al.[27] introduced SAPIN; a framework for the structural analysis 

of PPI networks. SAPIN was identifying the protein regions involved in interactions 

and provided template structures and identified the compatible and mutually exclusive 

interactions. 

Later, Patrick Aloy and his co-workers provided structural details at atomic resolution 

for over 12,000 PPIs in 8 model organisms through the integration of interaction data 

from the main pathway repositories [28].  

Wang et al. [3], built a human structural interaction network by combining PPI data 

and homology modeling. Using this structural network, they showed that, for 

corresponding diseases, in-frame mutations had a tendency to occur on the interface 

regions of the interacting proteins. 

Kar et al. [29] built a structural network of cancer related human protein-protein 

interactions. In this network interactions were replaced by interfaces, coming from 

either known or predicted complexes. They investigated the topological properties of 

cancer network and performed a detailed analysis of the interfaces in this network. 

Their results revealed that cancer-related proteins have smaller, more planar, more 

charged and less hydrophobic binding sites than non-cancer proteins, which may 

indicate low affinity and high specificity of the cancer-related interactions. Besides, 
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they claimed that cancer-related proteins tend to interact with their partners through 

distinct interfaces, corresponding mostly to multi-interface hubs.  

2.4. Network Robustness Studies  

An attack on a network is executed in order to disrupt the information flow locally or 

globally, to disable a pathway or to destroy the network as a whole. An attack implies 

deletion or attenuation of an edge or a node of the network [30]. In chapter 4 of this 

dissertation we utilized network attacks to depict the effects of drugs in a protein-

protein interaction network and to develop a drug off-target detection method. In this 

section you will find a brief review on the network attack types. 

2.4.1. Node Attack 

A node attack on the network removes edges focused at a single node. There are two 

different node attacks [30]: complete knockout (Figure 2.2.a) and partial knockout 

(Figure 2.2.b). Complete knockout refers to removing a node with all of its edges; 

partial attack involves removing randomly selected half of the edges of a node. 

Complete node attacks are commonly used attack strategies. The targets of these 

attacks vary according to the network topology. Complex networks were believed to 

be randomly linked [31] until Barabasi et al. discovered a common topology [32]. This 

discovery introduced scale-free networks into network theory. While in a random 

network nodes have roughly the same number of edges, in a scale-free network there 

are many nodes with a small number of edges and a few nodes (hubs) with a large 

number of connections. Random node attacks may be destructive to networks that are 

randomly linked, whereas scale-free networks are highly robust under these attacks. 

Scale-free networks are defenseless upon few vital node removals [33]. Accordingly, 

targeting hub nodes is a preferred approach in network attacks[34-37]. Detaching 

those nodes, which have many neighbors, will disrupt the information flow.  

Partial knockout was performed by Agoston et al.[30] on E. coli and S. cerevisiae 

networks. They removed randomly half of the edges of target node or attenuated all 

the edges of the node. This study suggested that partial weakening of a small number 

of nodes (3- 5) might have a stronger effect than completely removing a selected node; 
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in both cases the most damaging nodes were selected. Zhang et al. [38] questioned 

whether this result is a general concept for complex networks and retested all attack 

strategies on the Barabasi-Albert (BA) scale-free network [32] and the Erdös-Renyi 

(ER) random network [31]. They confirmed that multi target partial attacks may 

disturb complex networks more than single target complete attacks and ER random 

networks are more resistant to multi target partial attacks than the BA networks.  

2.4.2. Edge Attack 

An edge attack removes one or multiple edges from the network, where the edges do 

not have to be incident to a node. Depending on the network topology, attacking a high 

betweenness edge may damage the system more than attacking a hub node with many 

edges. Thus, deleting a number of edges scattered in different regions of the network 

might be a more efficient attack strategy than targeting a node[30]. This attack is a 

’distributed attack’ (Figure 2.2.c).  
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Figure 2.2. Network Attacks [39]. (a) Complete knockout (b) and partial knockout 

target a hub node. (c) Distributed attack.  

2.5. Network-Based Strategies in Polypharmacology 

In the 4th chapter of this dissertation we proposed a network attack strategy that is 

inspired by polypharmacology and protein-protein interface targeting drugs. In this 

section you will find a broad revision of the network-based strategies in the 

Polypharmacology and gain a systems biology view on drug discovery. This section 
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will provide a basis for the research we performed on drug off-target prediction via a 

network-based model. 

2.5.1. Poly-Pharmacology 

Poly-pharmacology searches for lead compounds that bind to multiple targets, and 

introduces a new concept of network pharmacology, which enlarges the ‘drugome’ 

[40]. It builds upon systems biology and drug discovery [41] aiming to treat diseases 

through multiple targets, which can be both a drug with several targets or a number of 

drugs with distinct targets. Poly-pharmacology describes and advocates consideration 

of a “many-to-many” relation between a ligand-protein couple, in contrast to a 

dominant “one drug-one target” drug design paradigm [42]. The novel computational 

approaches to poly-pharmacology has been reviewed recently by Xie et al. [43]. 

2.5.2. PPI Targeting Drugs 

Design of drugs that disrupt PPIs is known to be notoriously difficult. This is for two 

reasons: protein-protein interfaces have a more flat surface when compared to 

enzymes and usually do not have grooves which can serve as binding pockets [44]. 

The pockets on protein-protein interfaces are typically smaller than those in protein-

ligand interactions [45] and difficult to drug. However, now it is becoming 

increasingly possible to overcome these handicaps, and PPI inhibitors are gaining 

importance as a class of drug targets [46]. One of the most important findings was that 

interface regions usually contain clusters of residues, which are key contributors to the 

binding energy. These smaller regions of the interaction surface constitute “hot spots” 

[47-49]. Different studies showed that small molecules target hotspots on the protein-

protein interfaces [49, 50]. Hot spots on an interface may be predicted via HotPoint 

[51], HSPred [52], KFC [53], and additional servers. Moreover, currently allosteric 

drugs that bind elsewhere and lead to conformational changes in the interface appear 

increasingly feasible. Nonetheless, although designing drugs for disrupting protein-

protein interactions has surged, some such drugs have long been in existence. Protease 

inhibitors are well-known marketed examples of this drug class [54]. The number of 

PPI targeting drugs is rising; examples include inhibitors targeting IL-2 [55], MDM2 

[56, 57], BCL-2/BCL-XL[58], XIAP [59] and VLA-4 [59]. There are a number of 
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reviews [44, 54, 60-65], which investigate PPI inhibiting drugs, and these provide a 

more extensive list. 

Pockets at the active sites of enzymes are typically stable, with high population times. 

Recently attempts to target PPI have also focused on detection and targeting of 

transient dynamic pockets, which may be stabilized upon drug binding. Such grooves 

can be found in PPIs [21] and elsewhere on protein surfaces and can serve as 

orthosteric and allosteric binding sites. Transient pockets occur often [66]; the 

question is their size and population time. Furthermore, the surface of interacting 

proteins is flexible and some disordered proteins can only be solved upon interaction 

with their partners [67]. Their flexibility implicates formation of transient pockets, 

which are very useful for inhibitor design [68]. A number of drugs have been reported 

to stick to these transient pockets on the surface of protein interfaces [69]. Metz et al. 

[70] proposed a tool that locates transient pockets of PPIs on the basis of geometry, 

and molecular dynamics simulation protocols are also being developed toward this 

aim. Further validation of the presence of at least small pockets comes from a 

computational analysis of crystal structures. This study observed that among 18 

protein-protein complexes, 16 contain pre-existing pockets in their unbound structures 

[71].  

A number of clinical therapies are based on humanized monoclonal antibodies which 

disrupt PPI. These therapies have high specificity and low toxicity; however, they also 

have some deficiencies such as lack of cell/blood–brain barrier permeability, and poor 

oral bioavailability. Thus, humanized monoclonal antibodies therapies may not be 

broadly applicable to PPI inhibitor design [60] in the near future.  

The data on PPI inhibitors have been compiled in databases and literature. One of 

these, 2P2I [72], is a database which provides structural data for a collection of 

protein-protein interfaces with known inhibitors. TIMBAL [73] is also a database 

where one can find small molecules disrupting PPIs. Furthermore, Sali et. al. spotted 

“bi-functional positions” of proteins (overlapping ligand and protein binding sites) by 

aligning homologous proteins. They pointed out the significant number of proteins that 
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have such bi-functional positions and released the collection of structurally 

characterized modulators of protein interactions at http://pibase.janelia.org [74].  

2.5.3. Drugs targeting multiple proteins   

Side effects are one of the main reasons for drug failure [75]. In the last 10 years 

nearly 20 drugs have been banned from the market for causing severe side effects [76]. 

Adverse effects can be caused by the inherent mechanism of action of a drug, by toxic 

metabolites following drug degradation and by unpredictable side effects due to “off-

targets” drug hits. A number of studies highlight the promiscuity as a common 

attribute of drugs. Yildirim et al. [77] constructed a drug-target network from 4252 

drugs targeting 394 human proteins. They found out that among 890 drugs 788 had at 

least one common target and in that network the average number of target proteins was 

1.8 per drug. This result revealed the fact that new drugs generally target known 

druggable proteins and that the number of drugs targeting others is low in the market. 

However a more recent study by Mestres et al. [78], updated the average number of 

target proteins per drug as 6.3, which points to the high tendency of drugs to be multi-

targeted. Paolini et al. [79] searched for the extent of promiscuity in the global 

pharmacological space and they also observed that among 276,122 active drug 

compounds, 35% hit multiple targets. The data compiled in the drug-target databases 

also indicates this many-to-many behavior. Some of these databases are listed in the 

Table 2.1. Among the multi-target drug examples, there are a number of kinase 

inhibitors, which operate by affecting multiple targets [80, 81],  steroidal anti-

inflammatory drugs (NSAIDs), salicylate, metformin or Gleevec™ [82] and the 

anticancer drug lenalidomide [43]. Several multi-target drugs were also discovered by 

chance [83].  

Table 2.1. List of some drug-target databases. 

Server / 
Database Explanation Web Site 

DrugBank [84] 

Detailed drug data 
with comprehensive 

drug target 
information 

http://www.drugbank.ca/ 

TTD [85] Therapeutic Target 
Database 

http://xin.cz3.nus.edu.sg/group/tt
d/ttd.asp 
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Stitch [86] Chemical-Proteins 
Interactions database http://stitch.embl.de/ 

PDSP Ki [87] 
Capabilities of drugs 
binding to molecular 

targets 
pdsp.cwru.edu/pdsp.php 

PDTD [88] Potential Drug Target 
Database http://www.dddc.ac.cn/pdtd/ 

Wombat-PK 
[89] 

Clinical 
Pharmacokinetics and 

Drug Target Information 

http://www.sunsetmolecular.
com/ 

BindingDB [90] 

measured binding 
affinities 

of protein targets and 
small molecules 

http://www.bindingdb.org/ 

PDBBind [91] 
a collection of 

experimentally measured 
binding affinity data 

www.pdbbind.org 

KeggDrug [92] 
Drug information 

resource of approved 
drugs 

http://www.genome.jp/kegg/
drug/ 

PubChem [93] Biological activities 
of small molecules 

http://pubchem.ncbi.nlm.nih.
gov/ 

PharmGKB [94] pharmacogenomics 
knowledge resource http://www.pharmgkb.org/ 

DART [95] 
Drug adverse 

reaction and target 
database 

http://xin.cz3.nus.edu.sg/gro
up/drt/dart.asp 

SuperTarget [96] 
A resource for 

analyzing drug-target 
interactions 

http://bioinformatics.charite.
de/supertarget 

Promiscuous[97] 

A resource of 
protein-protein and 

protein-drug 
interactions 

http://bioinformatics.charite.
de/promiscuous/ 

CTD [98] 
Comparative 

Toxicogenomics 
Database 

http://ctd.mdibl.org 

sc-PDB [99] 

Database of 
Druggable Binding 

Sites from the Protein 
Data Bank 

http://bioinfo-pharma.u-
strasbg.fr/scPDB/ 

	  
There are examples suggesting that targeting multiple proteins simultaneously may be 

successful, such as non-steroidal anti-inflammatory drugs (NSAIDs); antidepressants; 

multi-target kinase inhibitors and anticancer drugs [100]. Drug combinations 
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(‘cocktails’) may bind at different sites on the same protein; or to multiple different 

proteins. Examples include the three drugs combination used to treat HIV infection, 

which is composed of reverse-transcriptase and protease inhibitors [101] and the drug 

combinations known as “CHOP”, which is used in the treatment of non-Hodgkin’s 

lymphoma [102]. Another synergistic drug combination example is Cytarabine and 

Aplidin (Figure 2.3), used for enhancing their antitumor activities in leukaemia and 

lymphoma models [103]. Cytarabine is an anticancer drug used in the treatment of 

patients with leukemia [104] and Aplidin is another, which activates EGFR, Src, JNK 

and p38MAPK [105] and inhibits VEGF [106]. When the system-wide effect of 

Aplidin is investigated, it is observed to activate the death receptor of Fas ligands 

[107]. This outcome of Aplidin may be due to the activation of the JNK/p38 MAPK 

pathway [108]. In turn, Fas ligand activates the receptor-mediated extrinsic cascade of 

apoptosis [109]. In addition, Cytarabine increases cellular stress by inhibiting DNA 

repair and RNA synthesis and drops the MCL1 level which leads to activation of 

CASPs [110]. Finally CASPs trigger apoptosis via the mitochondrial intrinsic cascade 

[109].  

Due to drug combinations’ side effects and at the same time enhanced treatment 

potential, detecting new drug cocktails and understanding their underlying 

mechanisms are important tasks. There is an increasing number of publications in this 

area, including in a recent work [111] a “drug cocktail network” built to investigate 

existing drug cocktails and to identify new ones. The authors note that drugs in a 

cocktail tend to interact with same partners and share common therapeutic effects. 

Another example is the computational method Zhao et al. [112] used for inferring new 

drug combinations. They combined molecular and pharmacological properties of 

drugs for this purpose and looked for feature patterns enriched in drug combinations. 

69 % of their method’s predictions were reported by literature. They also proposed 

some clues for combinatorial therapies. “Combinatorial Drug Assessment” [113] is an 

alternative tool for combinatorial drug discovery, which uses gene expression profiling 

and multiple signaling pathways. Lastly, Wang et al. [114]  considered drug 

combinations in a genetic interaction network and the associated human pathways. 
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They observed that drug combinations alter functionally-correlated pathways and have 

a smaller influence range in the genetic interaction networks. 

 

Figure 2.3. Synergistic drug combination of Cytarabine and Aplidinenhances 
antitumor activities [115]. 

	  
2.5.4. A Systems Biology View 

Biological systems are governed by physical and functional interactions. Systems 

biology simulates and orchestrates the molecules to optimally adapt the organism 

response to its environment. Diseases disturb the network; ‘good’ drugs restore the 

network to its ‘proper’ desired state [116]. Network descriptions and analyses are 

important tools in systems biology; they are powerful in abstracting the complex 

relationships inside cells and between them, and they often provide clues for drug 

discovery [117]. While data are incomplete, and the approaches may not have 
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matured, network descriptions and tools are gradually becoming common place 

[1].  

The human protein-protein interaction (PPI) network is huge with approximately 

130,000 binary interactions between proteins [118], and is expected to be far 

larger, with around 650,000 PPIs [119]. Protein-protein interaction networks are of 

vast importance in medicine [120, 121]. From the drug development standpoint, 

we would expect it to have critical components, which would make enticing drug 

targets. Network topology may help, because drug targets are usually not 

arbitrarily located on the protein interaction networks [122]. Drugs that perturb 

topologically critical nodes (such as highly connected nodes) have increased risk 

of causing lethality [35], while blocking the targeted function. This is likely to be 

the reason why marketed drugs do not generally target high degree nodes [123]. 

An ‘ideal’ drug target would have fewer neighbors while being located at some 

strategic point of the human disease network [101]. Such a target may be a non-

vital bridging node [124]. It may disturb the information flow and the disease 

process while not causing serious side effects. For complex diseases like 

cardiovascular disease, central nervous system disorders, cancer, Alzheimer and 

aging, a network perspective is critically important. These require consideration of 

the global map of protein interactions and estimation of the expected outcome on 

the multiple, inter-connected pathways. As we describe below, in some diseases 

that are resistant to drug therapy [125], network-based strategy, where another 

protein in the same pathway is targeted may suggest alternative targets that may 

lead to the sought outcome [126, 127].  

When enriched by high-throughput data, networks may model possible responses 

to a drug or optimum combination of drugs for reaching a desired outcome. On the 

other hand, because such data are derived from population of cells, its accuracy for 

specific environments and physiological states may be compromised. Networks 

may be analyzed using mathematical models such as Flux Balance Analysis [72, 

128-130], differential equations [131], Petri Nets [132], Integer Linear 

Programming [133] and Boolean logic gates [134].  
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Another use of networks is its topological properties such as hubs, betweenness, 

modules, etc. Network topology determines the information flow. Information 

flow and robustness analyses are used to locate essential components. These 

algorithms are utilized to find perturbed proteins by hypothetical drugs [135] or for 

locating optimum drug targets that have little influence on other functions, apart 

from the intended one [136-139]. A key question is how to choose an efficient 

combination of multiple drug targets; especially those that while not key players in 

central pathways, ensure information flow among the network elements [124].  

2.5.5. The advantages and handicaps of modeled protein-protein interactions in 

mono- and poly-pharmacology 

Key requirements in drug discovery are the availability of protein structures and 

their interactions; the pathways in which they are located and the pathway cross-

talk; and how similar are the binding sites to which they bind to those of other 

proteins in the cell. Modeling protein interactions can help by predicting which 

proteins interact, which permits the construction of more complete pathways and 

the cellular network. These may allow prediction of how targeting a specific 

protein can affect the entire system. The PRISM server [140, 141] is one of the 

tools which predicts the interacting protein couples and their interface structures. 

Further, because the modeled interactions provide also the information on how the 

proteins interact, they allow prediction of which partners interact through the same 

binding site. Thus, if a particular protein is targeted, this may abolish the 

competitive binding at the same shared site, driving the system in a certain 

direction, which the structural network may forecast. Such predictions may be 

particularly powerful for multi-molecular complexes, which are prone to toxic side 

effects. If the drugs target certain PPIs, the structural network may suggest the 

other PPI which share similar motifs [39]; and as such, may also be affected by the 

drug, which may also lead to toxic side effects.  

Networks may be used to explain side effects of multi-target drugs. Xie et al. [142] 

studied the side effects of torcetrapib, which is an inhibitor of cholesteryl ester 

transfer protein (CETP). Torcetrapib was a proposed treatment for cardiovascular 
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disease and was in clinical trials. The authors compared all ligand-binding sites in 

all available protein structures, with the pockets on torcetrapib and created an off-

target binding network. They combined their study with biological pathways and 

found the likely reasons for the effects of torcetrapib on blood pressure.  

Propagation of the effects of drugs in the network may be observed for orthosteric 

and allosteric drugs [143, 144]. In the case of orthosteric drugs, which block the 

protein active site, the protein is impaired and its function is abolished; in the case 

of allosteric drugs, the modulating effects of drugs propagate through the protein 

and, through the protein-protein interactions, across the pathways. However, the 

effects are likely to be strongest in proteins sharing the same complex [144].  

A key handicap of modeled structural networks is that they provide a static view of 

cell, and of the proteins. Yet, the cellular network is highly dynamic; proteins 

associate and dissociate. This is challenging to model, because the affinities of 

their interactions which are typically measured in solution, do not necessarily 

reflect the in vivo environment, where the affinities at one binding site are affected 

by prior allosteric events at different sites, for example, binding of other partners 

or post-translational modifications. They also may not account for the presence of 

co-factors; and fluctuations in the environment. An additional challenging problem 

is protein dynamics; protein structures fluctuate, and the distributions of their 

conformational ensembles change dynamically, which affects the binding site 

conformations and drug binding [143]. Accounting for dynamics in the proteins 

and across the pathways and the network is an extremely challenging problem. 

This is because it both necessitates detailed experimental data and highly 

demanding computational requirements. To date, modeling on the network scale is 

not able to fully address these problems [117]. However, for specific proteins, on 

the local scale, Nuclear Magnetic Resonance (NMR) and molecular dynamic 

simulations may be able to provide some clues. 

Despite these shortcomings, single- and multi-drug pharmacology can benefit from 

the modeled structural proteome. Predictions are able to provide leads and 

hypotheses, which can then be validated by experiment. 
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2.6. Understanding the Molecular Mechanisms behind Metastasis via Systems 

Biology Approaches 

2.6.1. Breast Cancer Metastasis 

According to American Cancer Society, breast cancer is the second most common 

cause of cancer death among women [145]. Around 5-10% of breast cancer cases arise 

from gene mutations. The mutations on BRCA1, BRCA2, p53, PTEN, STK11, 

CHEK2, ATM, BRIP1 and PALB2 genes may be named as examples [146, 147]. 

Although the death rate of patients decreased with mammographic screenings and 

systemic adjuvant therapies [148], the breast cancer is pointed out to be the leading 

reason of death among women with the age of 40-59 [149, 150].  

Metastasis is the mechanism that causes the distant spread of cancer [151]. As our 

diagnosing and treating ability of cancer advances, the fatality is moving towards 

metastatic phase [152]. Metastasis is the primary reason of death in cancer patients 

[153]. As well, the death cause of a breast cancer patient is most of the times is the 

metastasis in another organ, not the primer tumor. A better understanding of the 

molecular mechanism of the metastatic process may help to improve the clinical 

methods for approaching to the disease.  

Breast cancer is considered to have a distinct metastatic pattern[154]. The lungs and 

bones are common breast cancer metastasis sites [155]. Besides most of the central 

nervous system metastasis originate from lung cancer (40-50%), which is followed by 

breast cancer (20-30%) [156]. Up to 20-40% of the patients with adult systemic 

malignancies grow brain metastasis [157, 158]. Brain metastasis is predicted to have 

200,000 cases in us [159], which is 10 times more than the primary brain tumors 

[160].  

2.6.2. Systems Biology Approaches to Understand Metastasis 

In the recent years, numerous studies have been trying to shed light on molecular 

mechanisms of metastasis. Some of them are: oncogene activation with new 

experimental methods [161], identifying organ specific metastasis [155, 162], the 

identification of genes associated with metastases [151, 154, 163-165] and discovery 
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of pathways playing role in metastasis [166]. Besides, a series of studies in different 

laboratories revealed the required transcription factors for starting the process of 

metastasis, programming the biological changes in the cell [167-173]. 

Likewise, recently published gene expression profiles of breast carcinomas [174-176] 

have attracted wide interest in this regard. DNA-microarray studies demonstrated that 

primary breast tumors developing metastasis can be distinguished from tumors that do 

not metastasize, using gene expression profiles[148].   

Massagué and his co-workers published several papers about breast cancer metastasis 

in the last decade, and in particular two of them studied the metastases of breast cancer 

towards brain and lung. One article [155] identified18 genes that mediate breast cancer 

to lung metastasis, and the other [177] classified 17 genes that mediate breast cancer to 

brain metastasis. They used differential expression analysis to identify these genes. 

Genes related with metastasis are usually biologically related with each other [151].  

For this reason, analysis of individual genes does not provide solid results about the 

metastatic process. Network formation and analyses are important tools for systems 

biology, providing a powerful abstraction of intracellular complex relationships. Most 

common diseases such as diabetes, schizophrenia, hypertension and cancer, are also 

believed to be caused by multiple genes (multi-genic) [178]. Recently, genes that have 

the potential to be involved with several diseases are uncovered through the 

integration of functional information of proteins and the protein interaction network 

[179-181]. Interactions in the sub-networks generally indicates functional signaling 

cascades, metabolic pathways or molecular complexes, which gives an idea about the 

cause or the result of the disease (phenotype) [121]. Protein interaction networks were 

also used to predict genes involved in breast cancer metastasis, and to identify the 

disease-related sub-networks [180, 182]. 

On the other hand, structural data can be very useful for explaining the molecular 

mechanisms leading to disease when used in conjunction with information about the 

mutation responsible for the disease [183]. For instance, Wang and colleagues [3] 

investigated the molecular mechanisms underlying complex genotype-phenotype 

relationships by integrating large-scale PPI data, mutation knowledge and atomic level 
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three-dimensional (3D) protein structure information available in RCSB Protein 

Databank (PDB) [184]. They revealed that the in-frame mutations are augmented on 

the disease related proteins’ interaction interfaces. Similarly, David et. al. [185] 

combined structural data of proteins/protein-complexes and non-synonymous single 

nucleotide polymorphisms (nsSNPs) and they investigated the location of nsSNPs for 

creating a database. They have observed that disease-causing nsSNPs that occur on the 

protein surface prefer to be located on the protein-protein interfaces.  

2.6.3. Association Between Metastasis, Infectious Diseases and Immune System  

Previous studies highlighted the resemblances in cellular and molecular mechanisms 

of invasion between metastasis and infectious diseases [186-189]. Besides, in a recent 

study, Haile et al. hypothesized that metastasis process and pathogens should be 

utilizing the same pathways [190]. Liu et al. also mentioned that certain pathogens, 

activated immune cells and tumor cells may be sharing same tactics to spread in the 

body [191].  

Metastasis, which is believed to be relatively impossible to treat completely [192], is 

mostly resilient to standard treatments, thus the attempts to develop a treatment for 

metastasis with engineered bacteria is getting many of the researchers’ attention. 

Recently, Hayashi et al. [193] proposed a targeted therapy for metastasis with a 

genetically-modified strain of Salmonella typhimurium. They claim that their 

approach is promising for curing metastasis without the need of chemotheraphy. 

Moreover, in 2004 Yu et al. [194], showed that bacteria injected into living animals 

are able to find and replicate in metastases. Escherichia coli, cytosolic vaccinia and 

three attenuated pathogens (Vibrio cholerae, Salmonella typhimurium, and Listeria 

monocytogenes) all entered tumors and replicated. Authors remarked the “tumor-

finding” ability of bacteria and viruses (engineered to transport multiple genes) might 

be used for diagnosing and curing cancer. Another example of bacteria used for 

targeting metastasis is the use of Salmonella in conjunction with the endogenous 

angiogeneic thrombospondin-1 (TSP-1) that has been caused the inhibition of 

melanoma growth and metastasis in B16F10 melanoma models[195, 196]. Highly site-
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specific adherens of bacteria makes them promising for tumor specific treatments, yet 

it is not easy. 

In 2010 Dallo et al [197] published a very interesting article suggesting that bacteria 

under SOS may evolve anticancer phenotypes targeting metastatic cells. Disturbed 

with the drugs, bacteria can be stimulated to stick to and to occupy cancer cells so that 

bacteria survive the drug attack.  

The cancer-fighting immune system mechanisms are similar to those fighting bacteria 

[198], such as Toll-like receptors [199]. Besides, the bacteria settlement in tumor sites 

may activate the immune cells in host and may demolish the immunosuppressive 

phenotype of tumor microenvironment [200]. Plus, cancer appears to develop similar 

maneuvers to bacteria (masking cells to avoid discovery, release of 

immunomodulators to collapse the immune system and misleading the immune system 

by sending fake messages), for overcoming immune system [198]. In fact this is not 

the only common feature cancer cells share with bacteria colonies. They also acquire 

more basic survival tactics that have been evolved by bacteria; speedy reproduction to 

make the cell number, creating variation in the populations and having continuous 

communication among cells. Moreover, cancer and bacteria are alike in the case of 

drug resistance. Bacteria gets resistant to antibiotic treatments after a while, that is also 

what happens to cancer after frequent anticancer drug treatment [201-203]. 

Additionally, the mysterious quiescence and strike back characteristic of cancer also 

seems to be evolved by bacteria and used by cancer [198]. Cancer may reappear after 

it had not been identified by examinations and blood tests for an indefinite amount of 

time.  Equivalent state may be observed on bacteria before sporulation and subsequent 

germination.  

2.7.  Main Contributions 

The success of the bioinformatics approaches is restricted by the availability/reliability 

of the data. With the completion of the Human Genome Project and other genome 

sequencing projects, our understanding of the molecular biology accelerated 

astonishingly in the last couple of years. However the interactome level large-scale 
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structural knowledge is far from being complete. In order to address this problem a 

number of structural PPI prediction algorithms have been developed, one of which is 

PRISM. With the help of PRISM, we focused on increasing the structural knowledge 

on PPIs and integrating this knowledge to PPI networks in this dissertation. We 

provided structural predictions for the architecture of interfaces of several PPIs 

through out this thesis. 

We combined the experimental data and the modeled structural networks to build 

cellular pathways, and suggest which specific pathways are likely to be affected by a 

drug or a genetic variation happening on a PPI interface. We worked on several cancer 

related pathways, built their structural protein interaction networks and utilized the 

structural information on these networks in solving problems like drug off-target 

prediction and genotype-phenotype mapping. The structural networks models we 

provided will serve as a foundation for the future cancer bioinformatics, structural and 

functional genomics research. 

We made use of network descriptions to find ways through which protein interactions 

can help single- and multi-target drug discovery efforts. Such structural networks may 

facilitate structure-based drug design; forecast side effects of drugs; and suggest how 

the effects of drug binding can propagate in multi-molecular complexes and pathways.  

The methods introduced in this dissertation may be applied on larger datasets and the 

outcomes may be validated via experiments. Deepening the analysis on structural 

networks with such attempts may reveal important futures about structural proteomics. 



Chapter 3: A Novel Structural Network Model 

 

 

	  

 
 

24 

Chapter 3 

A NOVEL STRUCTURAL NETWORK MODEL 

This chapter presents a new network model, which we name “Protein Interface and 

Interaction Network (P2IN)”. Similar network models were used by our group 

previously to analyze interface properties of cancer-related proteins [204] and 

topological properties of hubs [205]. This new model introduces structural information 

into protein interaction networks (PINs). This representation illustrates which proteins 

may compete for the same binding site on a protein, and all protein pairs with 

structurally similar interface architectures. 

3.1 Protein-Protein Interface Motifs and “Similar Interfaces” Concept 

The 3D structures of the protein-protein complexes and their interfaces are obtained 

through the application of the Protein Interactions by Structural Matching (PRISM) 

method [140, 141, 206]. An interface is the contact region between two interacting 

proteins. In our studies we assume that interfaces consist of PDB chains. Interface 

templates are the known structures of protein complexes. These structures of 

interacting proteins are derived from Protein Databank (PDB) [207].  

PRISM bioinformatics tool predicts possible interactions, and how the interaction 

partners connect structurally, based on geometrical comparisons of the template 

structures and the target structures. The algorithm has four steps. First, the surfaces of 

all target proteins are extracted. Second, using the MultiProt engine[208], the surfaces 

of the target proteins are structurally aligned with known interfaces (templates) 

obtained from the PDB. In this step PRISM checks whether any surface region of the 

monomers is structurally similar to one of the complementary chains of the template 

interfaces, disregarding the order of the residues in the protein chain. Third, it places 

the two chains that are structurally similar to the template interface onto the template 

complex. This leads to a putative complex. The fourth step involves flexible 

refinement of the putative complexes by FiberDock [209, 210]. This resolves steric 

clashes and ranks the predicted protein complexes by their energies. Combining 

geometric complementarity with docking tools makes the prediction more physical.  



Chapter 3: A Novel Structural Network Model 

 

 

	  

 
 

25 

In recent years, the PRISM algorithm was applied on various signaling pathways and 

reasonable structural models of the unknown interactions were obtained [39, 211, 212]. 

PRISM was able to model the structure of protein complexes in human proteome-scale 

E2-E3 interactions with 76% accuracy [211] and in human apoptosis pathway with 

78% accuracy [212]. Besides, the	  prediction	  performance	  of	  PRISM	  algorithm	  was	  

recently	  analyzed	  on	  standard	  docking	  benchmarks,	  and	  found	  to	  be	  comparable	  

to	   other	   rigid	   docking	   strategies,	   however	   considerably	   more	   efficient	   (see	  

Tuncbag	  et	  al.	  [213]).	  	  

An interface template consists of two chains of a PDB structures. The template is 

named with the combination of PDB ID and chain names. For example, the template 

interface named “1YWK-AC” template is originating from A and C chains of structure 

with the “1YWK” PDB ID. 

PRISM finds the similarity scores between the surface of each target in our datasets 

and each side of a PDB template (a template has two sides, i.e. the two complementary 

surfaces in the complex, in cyan and magenta, Figure 3.1, top line). From this output, 

it predicts the interface (Figure 3.1, bottom line). For instance, take the target protein 

pair in Figure 3.1, “TAF1” and “CDK4”, and template interface “1BLX-AB”; if 

“TAF1” has a region on its surface which is similar to the binding site on one chain of 

“1BLX-AB” and “CDK4” on the second chain, then they are predicted to interact 

similar to the interface “1BLX-AB”. This means that the binding sites of proteins 

“TAF1” and “CDK4” are similar to those of the protein chains of interface “1BLX-

AB”. 
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Figure 3.1. Interface Structure Prediction for Interacting Target Proteins [39]. 
Interface information is obtained from the “Protein Interactions by Structural 

Matching” (PRISM) server. PRISM searches for spatial motif similarity on target 

proteins’ surfaces using geometric complementarity and considers evolutionary 

conservation of hot spots based on a non-redundant protein-protein interfaces template 

dataset derived from the PDB. Its prediction principle is to compare both sides of a 

template interface with surface regions of any given two monomers, and if they are 

similar these two proteins are predicted to interact with each other via this interface 

region. In the above example the CDK6 [PDB:1BLX-A] and CDKN2D [PDB:1BLX-

B] complex is derived from PDB and the target proteins CDK4 and TAF1 are found to 

be interacting via an interface structurally similar to 1BLX-AB interface. CDK 4 and 

TAF1 are predicted to be interacting via 1BLX-AB interface.  
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3.2. Protein Interface and Interaction Network (P2IN) Model 

PINs give binary information relating to whether two proteins communicate. Being 

enriched with structural information, P2IN is a more physical and realistic version of 

PIN. Unlike the PINs whose nodes are proteins and the interactions are the connecting 

edges, P2IN have interface information linked to its edges and each protein in the 

network has a 3D structure. Interactions between the proteins are represented by edges 

going through the interfaces of the two chains (Figure 3.2). Similar interfaces may 

exist between different protein pairs and the same protein pair may interact through 

different interfaces[214-216].  

A P2IN is an undirected graph, G, that describes the interface architecture of PPIs. The 

edges (E) of this network happen on a set of proteins (V) and each edge is labeled with 

an interface name (l ). This undirected graph G = (V, E, l ) consists of a set of nodes 

(V), labels (l ) and edges (E ⊆ VxVx l). For example in Figure 3.2 node, edge and 

interface sets are as follows; V = {“CDK6”, ”CDKN2D”}, E = {(“CDK6“, 

“CDKN2D”, “1blxAB”)}, l = {“1blxAB”}. 

	  

Figure 3.2. The P2IN Representation [39]. Interactions between proteins are 

represented by the edges going through the interfaces whose two chains represent the 

binding site regions of the proteins.  

P2IN is capable of providing structural details that a PIN is not able to describe. Some 

of these details are exemplified in Figure 3.3 : different protein pairs interacting via 

the same interface (CDK6 – CDKN2D and CDK4 – TAF1 interact via same interface); 
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a protein pair interacting using different interfaces (CDKN2D and CDK4) and 

multiple proteins competing to bind the same region on a protein (RAD51, CCNE1 

and HDAC1 going for the same binding site on CDK6). This additional knowledge 

may allow identification of interactions which cannot take place simultaneously 

(Figure 3.4). Partners of a protein interacting with the same binding site cannot 

coexist. In addition, since ligands tend to bind proteins that have similar binding 

sites[142, 217, 218], locating protein pairs that interact via similar interfaces may help 

to predict additional, off-targets of these drugs. Thus, P2IN might be one step closer to 

mimicking systems-wise drugs effects [219].  
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Figure 3.3. Protein – Protein Interactions and Interface Networks (P2IN) versus 
Protein-Protein Interaction Network (PIN) [39].  (a) A subset of PRISM predictions 

represented with P2IN and (b) its PIN counterpart. In P2IN the same interface may 

exist between different protein pairs (CDK6 – CDKN2D; CDK4 – TAF1 interact via 

same interface) and the same protein pair may interact using different interfaces 

(CDKN2D and CDK4). Moreover many proteins may compete to bind the same 

binding on a protein (RAD51, CCNE1 and HDAC1 bind the same site on CDK6). 

PIN’s are not capable of depicting such structural information of protein interactions.  
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Figure 3.4. CSF3 and VCAM1 proteins competing to bind ELANE via the same 

binding site. Graphical representation of this phenomenon through P2IN and PIN. 

3.3. Cancer Related P2INs 

Through out my Ph.D. studies I dealt with the structural modeling of cancer related 

protein interactions and constructed a number of cancer-related P2INs. In this section I 

described the construction of 4 cancer related P2INs in detail. The p53 centered 

network, the IL10 centered network and lung/brain metastasis (derived from breast 

cancer) networks. 

3.3.1. P53 Centered Network  

The p53 tumor suppressor is a center of a protein interaction network. Under cellular 

stress, it is a key factor in the decision between cell cycle progression or apoptosis 

[36]. Stress signals may be due to failures in DNA replication, chromosome 

segregation and cell division [220]. Malfunction of p53 causes uncontrolled growth 

[221]. p53 is inactivated in more than 50% of human cancers [222, 223]. We 

constructed the p53 signaling P2IN using the PRISM [224, 225] predictions for this 

signaling pathway. Our network has 251 interactions among 81 proteins (please refer 

to Table A.1 for the list of PRISM interaction predictions for p53 network). 46 

different types of interface structures are observed for these interactions. 26 out of the 
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251 are present in Kohn’s molecular interaction map (MIM) [226]; 59 are in PPI 

databases such as HPRD [227], Mint [228], IntAct [229], Reactome [230],  BioGrid 

[231], Pathway Commons [232] and NCI-Nature PID [233]. 66 interaction predictions 

are directly experimentally validated and there is evidence in the STRING [234] 

database for 90 of the interactions predicted by PRISM. Overall, 104 interactions out 

of 251 are validated experimentally or via STRING.   

3.3.2. IL10 Centered Protein-Protein Interaction Network 

Inflammation by innate immunity is the first line of defense against pathogenic 

infections [235]. It is also involved in all phases of cancer development, including 

tumor initiation, promotion and metastatic dissemination [236-238]. Interleukin-10 

(IL-10), identified by Mosmann and colleagues in 1989 [239], is an anti-inflammatory 

cytokine. It restricts the immune response to pathogens and prevents damage to the 

host. It is secreted by a number of immune cells and has diverse effects on many of the 

cell-types in the immune system. 

We constructed an IL-10 centered human structural protein-protein interaction 

network that consists of the first and second-degree neighbors of IL-10. Each node 

represented a protein and each edge represented the interaction between the two 

proteins it connects. This network is composed of 49 proteins and 70 interactions 

between them (Table A.2 and Figure 3.5). Among these 70 interactions only 2 (IL-

10-IL-10RA and APOE-LRP1) were present in the PDB in a complex form. 

Accordingly, we predicted the interfaces by using PRISM and 40 additional 

interactions were modeled (Figure 3.5 the edges highlighted with pink). As a result we 

increased the available structural interface data from 2 to 42 (Table A.2). 
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Figure 3.5. The IL-10 centered P2IN. There are 49 proteins and 70 interactions in 

this network and only 2 of the interactions have structural data in a complex form in 

the PDB. We modeled the interfaces for 40 additional interactions. Thus there are 42 

interactions with interface models (edges highlighted in pink). The remaining 28 edges 

(out of 70) could not be modeled and are shown in cyan. 

3.3.3. Lung and Brain Metastasis P2INs of Breast Cancer  

In order to understand the molecular mechanism of the brain/lung metastasis of breast 

cancer patients, we have generated lung and brain metastatic breast cancer sub-

networks by finding the most relevant edges to the seed genes identified by Massagué 

and his co-workers [155, 177].  
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Figure 3.6. The a) brain and b) lung metastasis P2INs of breast cancer. The nodes 

that has structural information and the edges that has interface model are highlighted 

in pink. 

First, we built a comprehensive human PPI network, by combining the available PPI 

data from various databases. Then we ranked all the interactions of this network 

according to their relevance to genes that are known to be mediating breast cancer to 

brain and lung metastasis. Subsequently, we formed two distinct metastasis PPI sub-

networks from high ranked interactions. We obtained a brain metastasis sub network 

(BMSN) with 255 nodes and 335 edges (Figure 3.6.a), and a lung metastasis sub 

network (LMSN) with 322 nodes and 327 edges (Figure 3.6.b and Table A.3). Please 

refer to Chapter 5 for the details of the PPI networks’ constructions.  

The BMSN has 58 interactions with known 3D structures for both partners. LMSN has 

102 such interactions. PRISM modeled 18 out of 58 interactions as a binary complex 

in the BMSN (see pink edges in Figure 3.6.a). For the LMSN, 50 out of 102 

interactions were modeled (see pink edges in Figure 3.6.b and Tables A.3 - 3.1). 

Table 3.1. Edges in both metastasis sub-networks. BMSN has 335 edges, among 

which 58 are connecting two proteins with 3D structures. Thus, only 58 of them may 

be modeled by PRISM. PRISM predicted 18 of them. Besides, LMSN has 327 

interactions. Among them, 102 are connecting two proteins that have 3D structures. 

PRISM preformed predictions for 50 of those 102 edges. 
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	   BRAIN	   LUNG	  
Number	  of	  
Edges	   335	   327	  

Edges	  that	  may	  
be	  Modeled	   58	   102	  

Edges	  Modeled	   18	   50	  

	  
3.4. Methodology 

3.4.1. Preparation of the Datasets for Interface Predictions 

PRISM uses template based prediction approach, and needs the 3D structure of the 

queried proteins. It cannot make estimation for a protein, which does not have a 3D 

structure. Accordingly if an edge is not connecting two proteins whose 3D structures 

are available, PRISM will not be able to find results for that edge. The details of 

preparation of the datasets for interface predictions are described in detailed in the 

following paragraphs (Figure 3.7).  

The PPIs in a P2IN may be mined from a number of PPI databases (such as DIP[240], 

MIPS[241], HPRD[242], BIND[243],  IntAct[244], MINT[245] and BioGRID [246]). 

Once the set of PPIs is determined, the structural knowledge related with the 

interacting proteins need to be gathered.  

We downloaded the complete Uniprot database [247] in order to perform automated 

mapping of protein names to PDB structures. The main problem in this phase is that a 

protein may have multiple PDB IDs or its 3D structure might not be known. It is 

possible to have a protein which does not have any structural information, as well as a 

protein which has multiple PDB structures regarding a specific region on it.  

So there might be a number of redundant PDB chains regarding a specific region of a 

protein. We used TM-align [248] in order to eliminate redundancy of similar structures 

corresponding to the same interface. Accordingly, we clustered PDBs that have a TM-

score greater than 0.5 and an RMSD score smaller than 2.5A. Then we chose one 

representative, the structure that has the best resolution and the longest chain length, 

for each group of PDBs that describe the same region.  
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For the cases in which there were no structural data available, we employed the I-

TASSER server [249] for generating the homology models and selected the top 5 

models generated by the server. 

Finally, we took the structural knowledge of both interaction partners and cross 

product them to translate protein interaction pairs to protein chain interaction pairs. 

For example, if there is an interaction between P1 and P2. Additionally, if P1 has non-

redundant PDB chains PDB1 and PDB2, and P2 has non-redundant PDB chains PDB3 

and PDB4; interaction between P1 and P2 will be translated to PDB1-PDB3, PDB1-

PDB4, PDB2-PDB3 and PDB2-PDB4. 

As described, the structural counter part of each PPI is obtained. The final input data 

for PRISM analysis consists of chain level interaction information of proteins. 
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Figure 3.7. Flowchart of the preparation of the datasets for the interface analysis 
of Prism server. 

3.4.2. Constructing Protein Interface and Interaction Network (P2IN) 

The first step of building a P2IN is to gather raw data of protein interactions and their 

3D structures. Protein interactions are collected from the literature and databases; the 

3D structure of the interfaces is obtained from application of PRISM [224, 225]. There 

may be more than one possible template interface for one interaction pair; in such a 

case, there is more than one possible binding site between two proteins. All 

possibilities are considered, and every matching interface template is included in the 

interface and interaction networks. Proteins whose interface sites cannot be predicted 

by the PRISM server are discarded. This decreases the number of proteins and 

interactions. 

3.4.2.1 P53 Centered P2IN 

We studied the interactions between the proteins in the p53 signaling pathway. The list 

of proteins that are involved in this pathway was compiled from the literature [226] 

and databases by Tuncbag et al. [213]. Among these proteins, 85 had 3D structures in 

the PDB. The interaction and interface data is obtained from PRISM predictions. We 

used 1037 template interfaces that were extracted from the PDB [250] for the 

prediction process. The resulting interface predictions with energies lower than -10 are 

accepted. 

PRISM predicted 251 interactions among 81 proteins and there are 46 different 

interface structures in the network. The number of proteins dropped from 85 to 81, 

since PRISM did not infer interactions for some proteins. If we were to link each 

protein in the network to other proteins, we would end up with ~3300 edges. PRISM 

infers 251 interactions out of those 3300 possibilities and 41% of those predictions are 

already known. Furthermore, in the generated p53 P2IN, there are 15 PPIs, which have 

PDB structures in complex form. PRISM was able to predict 13 of those interfaces 

correctly (Table 3.2). 
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Table 3.2. PRISM Predictions for 15 Interactions with Available PDB Structures. 

There are 15 interaction predictions in the p53 P2IN, which have PDB structures in 

complex form. Out of these interactions, PRISM made 13 correct predictions. 

Predicted	  
Interaction	   Prediction	  Status	   PDB	  ID	  

CDK2	  -‐	  CKS1B	   CORRECTLY	  PREDICTED	   1BUH	  

CDK2	  -‐	  CCNE1	   CORRECTLY	  PREDICTED	   1W98	  

CDK2	  -‐	  CCNB1	   INCORRECT	  PREDICTION	   2JGZ	  
CDKN1B	  -‐	  
CCNA2	   CORRECTLY	  PREDICTED	   1JSU	  

CDKN2D	  -‐	  CDK6	   CORRECTLY	  PREDICTED	   1BLX	  

MYC	  	  -‐	  MAX	  	   CORRECTLY	  PREDICTED	   1NKP	  

RAF1	  -‐	  RAP1A	   CORRECTLY	  PREDICTED	   1C1Y	  

RELA	  -‐	  NFKBIA	   INCORRECT	  PREDICTION	   1NFI	  

RPA1	  -‐	  RPA2	   CORRECTLY	  PREDICTED	   1L1O	  

RPA1	  -‐	  RPA3	   CORRECTLY	  PREDICTED	   1L1O	  

RPA2	  -‐	  RPA3	   CORRECTLY	  PREDICTED	   1L1O	  

SKP1	  -‐	  SKP2	   CORRECTLY	  PREDICTED	   2AST	  

SKP2	  -‐	  CKS1B	   CORRECTLY	  PREDICTED	   2AST	  

TFDP2	  -‐	  E2F4	   CORRECTLY	  PREDICTED	   1CF7	  
TP53	  -‐	  
TP53BP2	   CORRECTLY	  PREDICTED	   1YCS	  

 

3.4.2.2. IL-10 Centered P2IN  

We used the String server [251] for selecting the first and second-degree neighbors of 

IL-10. Only interactions with experimental evidence and confidence score larger than 

0.4 (the default confidence value) were considered. There were 4 first-degree and 45 

second-degree neighbor proteins of IL-10. Overall, we had 50 proteins comprising the 

IL-10 centered protein-protein interaction network. 

We checked the structural data available for the 50 target proteins. We encountered 

958 PDB [252] chains for 39 of the 50 proteins and for the remaining 11, we built 

homology models (except IGHV3-6, whose sequence information could not be found) 

(Table A.4). We employed the I-TASSER server [249] for generating the homology 

models and selected the top 5 models generated by the server. 

We reduced the redundancy of similar interface architectures for each protein, using 

TM-align [248]. We classified PDB structures that have template modeling (TM)-

scores larger than 0.5 and RMSD under 2.5Å. We assigned a representative PDB 
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structure for each similar structure group and ended up with 127 representative 

structures for the 39 proteins. The final IL-10 centered network is composed of 49 

proteins (IGHV3-6 protein not included due to lack of structural data) and 70 

interactions.  

 
3.4.2.3. Lung and Brain Metastasis P2INs of Breast Cancer:  
We searched for the 3D structural information of the proteins of lung metastasis sub-

networks (LMSN) and brain metastasis sub-networks (BMSN) via the PDB. Brain 

metastasis network has 255 proteins and for 117 of them we found 1612 PDB 

structures. On the other hand, LMSN has 322 proteins and for 182 proteins we found 

2712 PDB structures. In BMSN there are 58 interactions connecting proteins with 

known structure stored in the PDB (these interactions can be modeled with PRISM) 

and in LMSN there are 102 such interactions. This means that, we could only make 

models for these edges. 

We eliminated redundancy of similar structures corresponding to the same interface 

using TM-align[248]. Accordingly, we grouped PDBs that have a TM-score greater 

than 0.5 and an RMSD score smaller than 2.5A. We chose one representative for each 

group of PDBs that describe the same region. We ended up with 255 PDB structures 

for 117 proteins of the BMSN, and with 414 PDB structures for 182 proteins of the 

LMSN.  

In this experiment we have used 7922 interface templates (mined in 2006 from PDB) 

[140]. We filtered the PRISM results by considering only the interaction predictions 

with an energy value lower than 0. For each interface model PRISM structurally 

compares 2 PDB chains (target chains) to all 7922 interface templates.  PRISM made 

multiple predictions for some of the interactions; we used the models with the lowest 

free binding energies. 
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Chapter 4 
P2IN PRACTICES FOR DRUG OFF-TARGET PREDICTION 

4.1. Network Attacks may Imply Effects of Drugs 

The interface attack strategy proposed in this work focuses on protein-protein interface 

motifs. Currently protein–protein interfaces are increasingly becoming targets in drug 

discovery [253] [67], and it was suggested that the high flexibility of monomers may 

lead to overlooking small highly populated pockets that may occur when in the 

complex form [67]. Finding small-molecule drugs that hit protein–protein interactions 

is still highly challenging [49, 254-257]. Although generally interfaces of PPIs (~1500 

- 3000 Å2) are larger than protein-small molecule interactions (~300 - 1000 Å2), an 

optimized small molecule may bind with an affinity comparable to that of the native 

partner protein or peptide [49]. 

Our interface attack is inspired by interface motifs and by multi-target drugs. Since 

drugs may disrupt protein interactions which have structurally similar interfaces, we 

aim to develop a strategy which may take a first step toward prediction of the outcome 

of disabling a set of structurally similar interactions in protein-protein interaction 

networks (PINs). Our study is the first to target interfaces in a network attack. A few 

successful PPI drugs on the market [256] such as tirofiban targeting the integrins 

(cardiovascular conditions) [258]; and maraviroc targeting CCR5–gp120 interactions 

(HIV) [259], and several new drugs entering Phase II clinical trials [260], suggest  that  

protein interfaces can be druggable. 

 4.2. Interface Attack: A New Network Attack Strategy 

Here we propose an attack strategy which is based on the expectation that PPI-

targeting drugs may disrupt a number of protein-protein interactions which have 

structurally similar interfaces. Interface attack is the graphical representation of this 

strategy and removes interactions with similar interfaces from the network (Figure 

4.1).  

Interface attack is a kind of distributed attack, since it targets one or more interactions 

between protein pairs. However, instead of selecting random edges or the ones which 
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lead to the most damage, structurally similar interfaces are targeted. Interface attack is 

a knowledge-based distributed attack. 

 

Figure 4.1. Interface Attack [39]. Interface attack hits the set of edges, which interact 

via structurally similar interfaces (marked with red crosses). When the interaction 

between P1 and P2 is targeted, the interactions between P4 and P7; P7 and P8 are also 

hit, since they all interact through interface 1.  

4.3. P2INs may Help in Identifying Predicting Druggable Protein Interfaces and 

Drug Off-Targets 

This section describes a case study for off-target prediction application on the 

interfaces of p53 P2IN. CDK6 is a regulator of cell cycle progression and affects the 

activity of tumor suppressor protein RB which inhibits it and keeps the cell growing in 

G1 phase. Inactivation through phosphorylation by CDK leads to cell cycle 

progression. Some CDK6 inhibitors that block the G1/S transition of cell are listed in 

Table 4.1. The drugs in this table have 3D structures in complex with CDK6 [207].  

Table 4.1. List of CDK6 Inhibitors. 

INHIBITOR NAME RESOURCE PUBCHEM ID [261] PDB ID 

Aminopurvalanol [262] PDB 6914609 2F2C 

PD-0332991 [263] TTD[264], PDB 5330286 2EUF 

CHEBI: 792519 [265] PDB 49800099 3NUP 
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CHEBI: 792520 [265] PDB 49800100 3NUX 

Fisetin[266] Uniprot[267] 5281614 1XO2 

 

CDKN2D is a cyclin dependent kinase inhibitor, which forms a stable complex with 

CDK6 (Figure 4.2.a). The drugs listed in the table (Aminopurvalanol, PD-0332991, 

CHEBI: 792519, CHEBI: 792520 and Fisetin) seem to interfere with CDK6 and 

CDKN2D interface, when the CDK6–CDKN2D complex is superimposed on CDK6 

and drug complexes present in PDB (Figure 4.2.b – 4.2.c, Figure A.1). The crystal 

structure of CDK6 and CDKN2D interface is available (PDB ID: 1BLX, chains: A, 

B[268]. 1BLX is a complex between human CDK6 and mouse CDKN2D. The same 

complex is also available for human CDK6 and human CDKN2D (PDB ID: 1BI8, 

chains: A, B) [269]. We considered the mouse and human CDKN2D as homologs, 

with 87% sequence similarity and 0.41 RMSD and used the 1BLX complex in this 

study since it has a better X-ray resolution). PRISM predicts an interaction between 

CDK4 and CDKN2D, with a structurally similar interface to the CDK6-CDKN2D 

interface. The interaction of CDK4 and CDKN2D is detected by in vitro and in vivo 

assays[270], but the 3D structure of their complex is unavailable. The interface attack 

by the five drugs blocking the interaction of CDK6-CDKN2D may disturb the CDK4-

CDKN2D interaction.  
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Figure 4.2. The CDK6 (green) - CDKN2D (orange) Complex and CHEBI: 792520 

(purple) Interference [39]. (a) The interface of CDKN2D - CDK6 is from PDB 

ID:1BLX. (b,c) In the PDB, CHEBI: 792520 has a 3D structure in complex with 

CDK6 (PDB ID: 3NUX). When CDK6 proteins of 3NUX and 1BLX are 

superimposed, CHEBI: 792520 interferes with the CDK6 and CDKN2D interface. 

These two figures are predicted outcomes; no structural data are available. 

Using the HotPoint server [271], we identified the computational hotspots of CDK4, 

CDK6 and CDKN2D. When the interfaces with CDKN2D are superimposed by using 

Multiprot engine [208], CDK4 (obtained from PRISM predictions) and CDK6 

(obtained from the PDB) have a number of identical hotspots (Figure 4.3).  CDKN2D 

interacts with them via the same surface area. Lastly, we found that the hotspot (CDK6 

residue Ile19) that is closest to the ligand binding region on CDK6, is also present on 

the binding region of CDK4 (residue Ile12) (Figures 4.4-4.5). These drugs are also 

close to hotspots Gln98, and Asp97 on CDK4, and Gln103 (hotspot), Asp102 (non-

hotspot) on CDK6 (please refer to Figures A.2 – A.3). These residues overlap when 

CDK4 (PDB ID: 2W96, chain: B) and CDK6 (PDB ID: 1BLX, chain: A) are 
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superimposed with Multiprot engine (RMSD: 1.28 Å). At this point we propose that 

CDK4 may be an off-target candidate for drugs targeting CDK6. In order to see how 

alike the binding pockets of CDK4 and CDK6 are, we superimposed the ligand 

binding sites using VMD[272] (Figure A.4). The results revealed that CDK4 has a 

binding pocket which is similar to that of CDK6, with RMSD 0.87 Å.  

 

Figure 4.3. Hotspots of CDK4-CDKN2D and CDK6-CDKN2D Interfaces [39]. 
The predicted hotspots of CDK4 (cyan) and CDK6 (orange) proteins are represented 

with “Licorice” and the hotspots of CDKN2D are drawn as a (red) surface, using 

VMD [272]. The red, transparent body in the background is also CDKN2D protein. 

CDK4 and CDK6 have a number of identical hotspots, when their interfaces with 

CDKN2D are superimposed.   
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Figure 4.4. CDK4 Docking Simulations [39]. AutoDock [273] is used to dock the 

drugs (Aminopurvalanol, PD-0332991, CHEBI: 792519, CHEBI: 792520 and Fisetin) 

to candidate off target CDK4.  The hotspot (CDK6 residue Ile19) that is closest to the 

ligands’ binding region on CDK6, is also present on the binding region of CDK4 

(residue Ile12). 
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Figure 4.5. CDK6 Docking Simulations [39]. AutoDock[273] is used to dock the 

mentioned drugs (Aminopurvalanol, PD-0332991, CHEBI: 792519, CHEBI: 792520 

and Fisetin) to primary target CDK6. The hotspot (CDK6 residue Ile19) that is closest 

to the ligands’ binding region on CDK6 is also present on the binding region of 
CDK4 (residue 12).   

Docking simulations may suggest if a ligand is capable of binding to a protein. 

AutoDock[273] is used to dock these drugs to candidate off-target CDK4 (Figure 4.4) 

and primary target CDK6 (Figure 4.5). As shown in Table 4.2, the binding free 

energies between CDK4 and the drugs are promising; they are comparable to the 

binding energies between CDK6 and its inhibitors. The listed energies are the lowest 

binding free energies of the most populated clusters. The RMSD values of 

superimpositions of the best poses of each drug molecule docked to CDK4 compared 

to CDK6 are also provided in Table 4.2 (Figure A.5). These findings strengthen our 

proposition that CDK4 is an off-target for the drugs targeting CDK6. 
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Table 4.2. AutoDock [273] Results. Results given in terms of the lowest binding 

energy of the largest conformational clusters are in the first two rows. The RMSD 

values of superimpositions of the best poses of each drug molecule docked to CDK4 

compared to CDK6 are in the last row. 

 PD-0332991 Fisetin Aminopurvalanol CHEBI: 792520 CHEBI: 792519 

CDK4 -8.22 kcal/mol -7.59 kcal/mol -5.97 kcal/mol -7.55 kcal/mol -6.51 kcal/mol 

CDK6 -8.05 kcal/mol -6.75 kcal/mol -7.69 kcal/mol -6.81 kcal/mol -6.18 kcal/mol 

RMSD 0.57 Å 0.68 Å 0.89 Å 1.83 Å 1.92 Å 

 

Lastly, we searched for the inter-relationship between CDK6 inhibitors and CDK4 in 

the literature. We found that PD-0332991 has been designed to turn off both CDK4 

and CDK6[274]. Moreover, SuperTarget states that CDK4 is a target of CHEBI: 

792520 [275].  Accordingly, we are able to verify two of our off-target predictions. To 

conclude, we may now suggest that CDK6 binding drugs that block the interface 

between CDK6 and CDKN2D, may also bind to CDK4 and disrupt the interaction 

between CDK4 and CDKN2D. Therefore, when CDK6-CDKN2D interaction is hit in 

the interface attack, we may also break the interaction between CDK4 and CDKN2D. 

4.4. Biological Consequences of Interface Attack versus Complete Node Attack 

Networks of protein interactions are vital tools for explaining a series of events in the 

cell which may be triggered by a drug. A drug which inhibits protein-protein 

interactions may be represented in the network by removing the respective edges. To 

foresee the effects of a drug designed to inhibit all the interactions of a single protein, 

one can simply remove this node from the network and investigate the changes. For 

making an accurate functional analysis, we need all known protein interactions in the 

p53 pathway. We constructed a p53 network which, regardless of the structural 

availability, contains all known protein interactions and proteins. We simulated the 

changes in the network when subject to node and interface attacks. We partitioned the 

network using the “Affinity Propagation” algorithm [276]. This clustering algorithm 
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determines the representative examples (examplars) of the graph and then partitions 

the network according to these examplars. 

We mapped the experimentally validated PRISM interface predictions of the p53 

pathway on Kohn’s MIM [226] as the starting point for constructing an experimentally 

validated network of protein interactions enriched with interfaces. We obtained a p53 

PIN with 109 nodes and 227 edges. We expanded this network with the 66 PRISM 

predicted interfaces that were experimentally validated (26 interactions present in 

Kohn’s MIM, 33 additional interactions from various experimental databases). We 

gathered a network of 115 nodes and 269 edges. Recall that there were a number of 

proteins from databases other than Kohn’s MIM in our PRISM target. As a result the 

number of nodes also increased (Figure 4.6). The clusters generated by the Affinity 

Propagation algorithm are shown using pie charts (Figure 4.7 top row). Clusters are 

named according to the highest degree node of that partition.  

 

Figure 4.6. Structurally Enriched MIM Attacked Based on the 1jsuBC Interface 
[39]. Experimentally validated edges of p53 P2IN mapped on the Kohn’s MIM [226]. 

The edges with interface structures are shown in pink color and the edges with 1jsuBC 
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interface is highlighted in green. In the close-up figure edges with 1jsuBC interfaces 

are also can be seen in green. 

When the 1jsuBC interface (template interface is between the CCNA2 and CDKN1B 

proteins) is attacked, 11 edges are removed from the network. Six of these are around 

the CDKN1B node. Therefore, this node is completely removed from the network by 

the 1jsuBC interface attack, in addition to the removal of 5 edges around other nodes. 

One can see that this attack causes the cluster, with the RB1 hub node, to get 

significantly bigger (please refer to the slices of RB1cluster in the top and middle rows 

of Figure 4.7). RB1 now has a greater influence on the network. MYC is no more the 

hub node of a cluster (red slice present in the top row of Figure 4.7 dissapears in the 

middle row of Figure 4.7) and the cluster of CDK2 enlarges from 9% of the nodes of 

network to 16% (Figure 4.7 middle row). A complete node attack targeting the 

CDKN1B protein, means breaking all of this node’s interactions detaching it from the 

network. PRISM predicts that all 6 interactions of CDKN1B have a similar structure to 

1jsuBC interface. Thus, to block all of the interactions of CDKN1B, a drug has to 

attack the 1jsuBC interface, which affects 5 more edges in the network. However, in 

the case of complete node attack on CDKN1B, only edges of this node are discarded 

from the network. We do not observe a significant change in the sizes of the clusters 

following complete node attack (see top and bottom rows of Figure 4.7).  

The changes observed after the interface attack appear reasonable. During the 1jsuBC 

interface attack, CDKN1B is removed from the network, CDK2 cluster gets bigger 

and the influence of this protein  on other nodes increases. Since CDKN1B has 

inhibitory activity on some CDK2 complexes[277], this change is expected. Once 

MYC is not a hub in a cluster, the RB1 cluster expands. In the presence of MYC, the 

RB1 transcription is suppressed and MYC activates a set of miRNAs, which in turn 

inhibit the translation of RB1 [278]. Finally, CDKN1B and RB1 are tumor-

suppressors. The RB1 cluster gets bigger when CDKN1B loses all of its interactions, 

possibly suggesting that RB1 may be involved in an alternative pathway.  
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Figure 4.7. Pie Charts of Clusters Generated with Affinity Propagation 
Algorithm [39]. In the pie charts each slice represents a cluster and they are named 

with the clusters’ hub nodes. Percentages of the slices are the ratio of the node number 

in the corresponding cluster to the total number of nodes in the network. (Top row) 

Clusters of the network generated by mapping the experimentally validated PRISM 

predictions of p53 pathway onto Kohn’s MIM. (Middle row) The clusters after 1jsuBC 

interface attack. (Bottom Row) The clusters after CDKN1B node attack. 

4.5. Network Attack Scenarios Applied to P53 P2IN and Changes in the Network 
Robustness 
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P53 P2IN is a small sub-network, and it does not have a scale-free architecture. The 

average number of interfaces per node is 3.24 in this P2IN. Besides, its clustering 

coefficient is 0.197, its network diameter (the largest distance between two nodes) is 7, 

its network radius (the minimum distance, among the non-zero distances, between two 

nodes) is 4, its characteristic path length (the expected distance between two connected 

nodes) is 2.672 and its average number of neighbors (average connectivity of a node) 

is 5.926.  

The robustness of a network relates to its ability to withstand the damage caused by 

attacks. It can be expressed by topological parameters. The most commonly used 

robustness parameters are the average inverse geodesic length (AIGL) [34, 279] and 

the giant component size [34] (GCS). To monitor the change in the connectedness of 

the nodes in the system, we use both.  

For the p53 P2IN survivability analysis, several attack types and target selection 

strategies are used. These attack scenarios refer to partial or complete knockout of hub 

nodes and deletion of multiple edges that are scattered around the network. At each 

step a new target is hit and the topological parameters are recalculated until the 

network is left without interactions.  

4.5.1. Hub Node Attack  

A hub is the highest degree node of the network; it is the node that has the largest 

number of interactions. This attack type targets the largest degree node of the network. 

Hitting this element also affects its interacting partners and causes a serious 

disturbance in the network communication.  

4.5.2. Frequent Interface Attack  

In P2IN, the number of occurrences of each interface type is known. In this strategy 

the most frequently observed interface is selected as the target of interface attack. 

4.5.3. Maximal Damage Strategy 

The maximal damage strategy is a greedy algorithm, which was studied by Agoston et 

al. [30]. It hits the component that will harm the network the most in each attack. This 
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tactic may be used in both node and edge attack types. Removing multiple edges that 

are selected according to the maximal damage target selection strategy is a kind of a 

distributed attack. It targets the node or interface that is expected to cause the greatest 

possible harm. 

4.5.4. Frequent Interface Attack is as Harmful as Complete Hub Knockout and it 
is a More Realistic Scenario  

Breaking an edge can be considered as the graphical representation of a drug blocking 

the interaction of two proteins. If we were to map node-targeted attacks (complete or 

partial knockout) to a drug mechanism, it would be a “magic bullet"; even if a drug 

would specifically bind to one protein, in most of the cases it may not obstruct all of 

its interactions. It seems that complete knockout is rarely observed in realistic drug 

action. The common “similar binding sites should recognize similar ligands” 

strategy[280], motivated us to develop the interface attack.  

Complete/partial hub node attacks and interface attacks based on their frequencies of 

occurrence are performed on the p53 P2IN. In Figure 4.8 the change in the network 

robustness is plotted according to AIGL and GCS. The x-axis stands for the number of 

attacks, while the y-axis is the AIGL or GCS values during the attacks. A drop in 

AIGL or GCS of the network correlates with the damage caused to the system. The 

plots show that attacking the most frequent interface in the p53 signaling network is at 

least as harmful as complete removal of the hub nodes from the network. Thus, rather 

than targeting a well connected protein, which is more likely to be essential [35], we 

may target edges that have similar interface structures.  
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Figure 4.8. Hub Node Attack versus Most Frequent Interface Attack [39]. The 

figure plots of the damage to the network following 15 successive complete hub node 

attacks, partial hub node attacks and frequent interface attacks (for AIGL (on the left) 

and GCS (on the right) topological parameters). The results suggest that the most 

frequent interface attack and complete hub knockout lead to roughly the same damage, 

while the effect of the partial hub knockout is to a lesser extent.  

The most frequent interface (PDB ID: 1JSU, chains: B, C) is observed 46 times in the 

p53 network. 21 of these predictions are validated experimentally or present in the 

STRING database. If there was a drug designed to disturb one of these 46 interactions, 

not just that particular edge, but all 46 interactions could be hit. This interface is not 

focused around a hub node, however many high degree nodes of the p53 P2IN utilize 

it (Figure 4.9). During a possible attack some of the hub nodes will also be partially 

affected. Hence, building the interface and interaction network of a biological system 

may provide us such insights and may be helpful for drug development. 
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Figure 4.9. Degree sorted circular layout of p53 P2IN. Most frequent interface 

1jsuBC is utilized by the edges highlighted in pink. The node sizes are proportional to 

their degrees. 

4.5.5. Interface Attack is not as Harmful as Distributed Attack when Maximal 
Damage Strategy is Applied 

Agoston et al. [30] showed that rather than removing a node completely from the 

network, one could inflict similar damage by removing a number of edges distributed 

around the network. They chose the most destructive edges.  

Interface attack is a kind of distributed attack, but it chooses the target edge set based 

on interface similarity. We performed distributed attacks and interface attacks on the 

p53 P2IN. In this experiment we followed a maximal damage target selection strategy, 

by selecting the most damaging edges (distributed attack) or the most damaging 

interface in successive attacks. The comparison of the damage caused by distributed 

attack and interface attack is plotted in Figure 4.10. The x-axis is the number of edges 

removed during attacks and the y-axis the change in the network GCS and AIGL. It is 
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clear that distributed attack harms the network more than interface attack. However, 

comparison of interface attack and distributed attack is not straightforward, since 

distributed attack selects edges one by one, while interface attack chooses between sets 

of edges. This is why distributed attack is so harmful and is nearly the optimal attack 

strategy for collapsing the network. However, interface attack seems to be physically 

more suitable for simulating the impact of multi-target drugs on the network, since the 

interactions affected by multi-target drugs are not always the most harmful.  

 

Figure 4.10. Maximal Successive Damage Strategy on Distributed and Interface 

Attack [39]. Damage in the network (both according to AIGL (on the left) and GCS 

(on the right) topological parameters) is monitored, under successive attacks. 

Distributed attack and interface attack are executed using the maximal damage 

strategy. The number of edges removed from the network in each attack is parallel to 

the harm attacks cause on the network. It is obvious that distributed attack is the most 

harmful strategy.  

4.5.6. Frequent Interfaces are not Observed on Topologically Critical 

Interactions 

When random edge attacks are compared with frequent interface attacks (Figure 4.11) 

according to the change in giant component sizes, the most frequent interface attack is 

less harmful to the p53 P2IN than random edge attacks. 
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However, when the attacks are performed on randomly selected interfaces, we observe 

that on average they harm the network more than random edge attacks. Consequently, 

random interface attacks are more harmful to the network than frequent interface 

attacks; that is, a frequent interface is less likely to hit topologically critical elements 

of the network. This makes the network more resistant to failures.  

 

Figure 4.11. Random Edge Attacks versus Interface Attacks [39]. The most 

frequent interface attack is relatively less harmful to the p53 P2IN than random edge 

attacks (on the left). However, the average of random interface attacks harms the 

network more than the average of random edge attacks (on the right). Consequently, 

random interface attacks give more harm to the network than frequent interface 

attacks. 

4.6. Methodology 

4.6.1. Docking Parameters 

For adding polar hydrogens, assigning Gasteiger charges and drawing grid boxes 

AutoDockTools 1.5.4[273] was used. Binding affinities were calculated with 

AutoGrid version 4. Lamarckian genetic algorithm (trials of 50 dockings, population 

size of 150, and maximum number of generations of 27000) was used to do the 

docking experiments using AutoDock 4.0 [273]. 
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4.6.2. Clustering Algorithm 

We partitioned the network according to the “Affinity Propagation” algorithm [276] 

with the help of Clustermaker plugin [281] of Cytoscape [282]. 

4.6.3. Mapping the experimentally validated PRISM interface predictions of p53 
pathway on the Kohn’s MIM 

Kohn’s MIM has some nodes that do not have a protein counterpart, or some nodes 

correspond to multiple proteins. Before constructing the PIN, we updated nodes in 

Kohn’s MIM by removing or expanding some of them (Table A.5). If a node was 

replaced with multiple proteins, the number of interactions automatically increased. 

We searched the String database for validating the new edges and picked the ones 

which were coming from experiments or databases. For example, the “CDK4-6” node 

corresponds to three proteins (CDK4 – CDK5 – CDK6). In the original map there was 

an interaction between “CDK7” and “CDK4-6”. The “CDK7” interactions with CDK4 

and CDK5 are validated, but not with CDK6. The full list of interactions can be found 

in Table A.6. 

4.6.4. Robustness Measures 

AIGL is the sum of the inverses of all shortest paths, divided by the number of 

possible node combinations. The definition is given in Equation 1. The notation used 

is as follows: 

!= average geodesic length 

n = number of nodes 

i, j = proteins 

dij = distance between proteins i and j 

If there is no path connecting nodes i and j, the distance between them is set to 

infinity. Some studies use the average geodesic length but we preferred to use AIGL. 
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Even after several attacks, AIGL will not be equal to infinity, because if there is no 

navigable route between i and j, 1
dij 

= 0. 

!!1= 1
n( ) n!1( )

1
diji" j#   (Eq. 1) 

GCS is the number of nodes in the network’s largest connected sub-graph and it may 

give important clues about the collapsing mechanism of network under attacks.   

NetworkX [283], a Python language software package, was used for the damage 

simulations on p53 centered network. 
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Chapter 5 

P2IN PRACTICES FOR LINKING GENOTYPE TO PHENOTYPE 

In this chapter, on behalf of understanding the molecular mechanism of the brain/lung 

metastasis of breast cancer patients, we have generated lung and brain metastatic 

breast cancer sub-networks by finding the most relevant edges to the seed genes 

identified by Massagué and his co-workers [155, 177]. Then, we enriched these 

networks with structural information of 3D structural models of known protein-

complexes and predicted its protein-protein interfaces. We have analyzed the protein-

protein interfaces commonly employed in these sub-networks and observed that 

interactions of microbial origin played an important role. We also investigated the 

mutations happening on the most relevant proteins of the breast cancer metastasis sub-

networks. (Figure 5.1) 

 

Figure 5.1. Flow chart of the bioinformatics pipeline designed for genotype-

phenotype mapping. 
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5.1. P2INs of Lung and Brain Metastasis Driven from Breast Cancer 

5.1.1. Identifying Brain & Lung Metastatic Breast Cancer Sub-networks and 

Their Functional Annotations 

We have built a comprehensive human PPI network that consisted of 11,123 proteins 

and 149,931 interactions. We ranked each PPI in the network, according to its 

relevance to the seed nodes causing breast cancer metastasis, using GUILD (Genes 

Underlying Inheritance Linked Disorders) network-based prioritization tool [284]. 

We defined a score threshold and discarded interactions below the threshold based on 

the following reasoning: 1) we need two comparable sets of nodes and edges for brain 

and lung metastasis, where the topology may be different but not the size; 2) 

predicting the interface structures of interacting proteins is a highly time-consuming 

step, therefore we needed to reduce the network to a limited sub-network of small but 

highly relevant edges (i.e. less than 500) for each metastasis under study. 

	  



Chapter 5: P2IN Practices for Linking Genotype to Phenotype           

 

 

 
 

60 

Figure 5.2. The BMSN and the LMSN networks [285]. We obtained a) the BMSN 

and b) the LMSN by choosing the edges of human PPI network with GUILD Score 

higher than 0.178. The proteins that have PDB structures are highlighted in pink, plus 

the edges that have complexes modeled by PRISM are also in pink color. c) PLOD2 

cluster (the first-degree neighbors of PLOD2) from the BMSN d) BMSN and LMSN 

merged as a one big network. There are 84 common proteins and 71 common PPIs 

(blue edges). The edges that are only present in LMSN are shown with green and the 

edges that are only present in BMSN are shown with pink. 

We plotted the number of edges versus their scores to select the best cut-off (see 

Figure A.6).  We observed a dramatic rise in the number of interactions (and also 

nodes), between scores 0.15 and 0.18 for the punctuation of brain and lung metastasis 

(Figure A.7 and Table 5.1). Accordingly, we selected 0.178 as the common GUILD 

cut-off score to generate both sub-networks. This cutoff yielded a brain metastasis 

BMSN with 255 nodes and 335 edges (Figure 5.2.a), and a lung metastasis LMSN 

with 322 nodes and 327 edges (Figure 5.2.b).  

Table 5.1. The number of edges and nodes of metastasis networks according 
to Guild Scores.  

	   BRAIN	  METASTASIS	   LUNG	  METASTASIS	  
CUTOFF	  VALUES	   #OF	  NODES	   #OF	  EDGES	   #OF	  NODES	   #OF	  EDGES	  
Score	  0.140	   276	   5382	   354	   7085	  
Score	  0.170	   255	   4220	   322	   328	  
Score	  0.178	   255	   335	   322	   327	  

	  

Although we used all proteins of both sub-networks (BMSN and LMSN) in our 

analyses, we tracked down the evidence for the expressions of the genes that coded the 

proteins in both sub-networks in breast tissue. We found that 87% of the genes in the 

LMSN (280 out of 322, see Table A.8) and 93% in the BMSN (238 out of 255, see 

Table A.9) are expressed in breast tissue.  

We used ClueGo [286] to find significant KEGG pathways in BMSN (Table 5.2) and 

LMSN (Table 5.5). Each pathway in KEGG belongs to a class according to KEGG 

Orthology (KO) [287]. Then we mapped each KEGG pathway to its KEGG class. 

Subsequently, we calculated the percentages of observed KEGG classes (Figure 5.3). 
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We found out that “Transport and Catabolism Cellular Processes” and “Replication 

and Repair Genetic Information Processing” classes contain the most abundant 

significant pathways in BMSN “Infectious Diseases”, “Cancer” and “Immune System” 

were the classes of most abundant pathways in the LMSN. 

Table 5.2. The KEGG pathways enriched (P<0.05) in brain metastasis network 

with respect to ClueGO p-value are listed in this table.  

PATHWAY	  NAME	  
ClueGo	  PValue	  
(after	  Bonferroni	  
Correction)	  

KEGG	  Class	  

path:hsa04142	  Lysosome	   5.47E-‐14	   Cellular	  Processes;	  Transport	  and	  
Catabolism	  

path:hsa05222	  Small	  cell	  lung	  cancer	   4.86E-‐06	   Human	  Diseases;	  Cancers	  

path:hsa04210	  Apoptosis	   3.50E-‐05	   Cellular	  Processes;	  Cell	  Growth	  
and	  Death	  

path:hsa03430	  Mismatch	  repair	   0.001638707	   Genetic	  Information	  Processing;	  
Replication	  and	  repair	  

path:hsa04145	  Phagosome	   2.47E-‐04	   Cellular	  Processes;	  Transport	  and	  
Catabolism	  

path:hsa04640	  Hematopoietic	  cell	  
lineage	   0.001806729	   Organismal	  Systems;	  Immune	  

System	  
path:hsa04960	  Aldosterone-‐
regulated	  sodium	  reabsorption	   0.042397972	   Organismal	  Systems;	  Excretory	  

system	  

path:hsa05146	  Amoebiasis	   0.009476797	   Human	  Diseases;	  Infectious	  
Diseases	  

path:hsa03460	  Fanconi	  anemia	  
pathway	   0.027029128	   Genetic	  Information	  Processing;	  

Replication	  and	  repair	  
 
 
Table 5.3. The KEGG pathways enriched (P<0.05) in lung metastasis network 

with respect to ClueGO p-value are listed in this table. 

PATHWAY	  NAME	  

ClueGo	  PValue	  	  
(after	  

Bonferroni	  
Correction)	  

KEGG	  Class	  

path:hsa04062	  Chemokine	  signaling	  
pathway	   8.53E-‐16	   Organismal	  Systems;	  Immune	  

System	  

path:hsa03010	  Ribosome	   1.41E-‐08	   Genetic	  Information	  Processing;	  
Translation	  

path:hsa04670	  Leukocyte	  
transendothelial	  migration	   1.65E-‐07	   Organismal	  Systems;	  Immune	  

System	  
path:hsa05100	  Bacterial	  invasion	  of	  

epithelial	  cells	   7.15E-‐06	   Human	  Diseases;	  Infectious	  
diseases	  

path:hsa04512	  ECM-‐receptor	  
interaction	   8.72E-‐05	  

Environmental	  Information	  
Processing;	  Signaling	  Molecules	  

and	  Interaction	  
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path:hsa04012	  ErbB	  signaling	  
pathway	   1.16E-‐04	   Environmental	  Information	  

Processing;	  Signal	  transduction	  
path:hsa04722	  Neurotrophin	  

signaling	  pathway	   1.20E-‐04	   Organismal	  Systems;	  Nervous	  
system	  

path:hsa04530	  Tight	  junction	   8.94E-‐04	   Cellular	  Processes;	  Cell	  
Communication	  

path:hsa04520	  Adherens	  junction	   0.00293406	   Cellular	  Processes;	  Cell	  
communication	  

path:hsa05142	  Chagas	  disease	  
(American	  trypanosomiasis)	   0.004287851	   Human	  Diseases;	  Infectious	  

diseases	  

path:hsa05160	  Hepatitis	  C	   0.004273745	   Human	  Diseases;	  Infectious	  
Diseases	  

path:hsa05212	  Pancreatic	  cancer	   0.010078577	   Human	  Diseases;	  Cancers	  
path:hsa04660	  T	  cell	  receptor	  

signaling	  pathway	   0.006243754	   Organismal	  Systems;	  Immune	  
system	  

path:hsa05162	  Measles	   0.004967513	   Human	  Diseases;	  Infectious	  
Diseases	  

path:hsa05131	  Shigellosis	   0.016765074	   Human	  Diseases;	  Infectious	  
diseases	  

path:hsa05220	  Chronic	  myeloid	  
leukemia	   0.014252803	   Human	  Diseases;	  Cancers	  

path:hsa04910	  Insulin	  signaling	  
pathway	   0.020275511	   Organismal	  Systems;	  Endocrine	  

System	  

path:hsa05213	  Endometrial	  cancer	   0.027536913	   Human	  Diseases;	  Cancers	  

path:hsa05120	  Epithelial	  cell	  
signaling	  in	  Helicobacter	  pylori	  

infection	  
0.0372481	   Human	  Diseases;	  Infectious	  

diseases	  

path:hsa04350	  TGF-‐beta	  signaling	  
pathway	   0.042778509	   Environmental	  Information	  

Processing;	  Signal	  transduction	  
path:hsa04720	  Long-‐term	  

potentiation	   0.044536399	   Organismal	  Systems;	  Nervous	  
system	  

 

According to the functional analysis we have observed a functional link between lung 

metastasis of breast cancer, infectious diseases and immune system. Although, BMSN 

was also significantly enriched in some pathways that are governed by “Immune 

system” and “Infectious Diseases”, these two classes were not covering the most 

abundant pathways. It is interesting that immune system and infectious diseases seem 

to play an important role in lung metastasis, while transport and catabolism seem to 

play a major role for brain metastasis. Indeed, lung tissue is in contact with the 

environment, being likely prepared for infection, while brain is separated of circulating 

blood by the blood-brain barrier and it requires metabolic processes to transport and 

catabolize glucose. Still, these results are obtained for networks which expression is 

produced mostly in breast. 
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Figure 5.3. The percentages of KEGG classes observed in LMSN and BMSN 
[285]. 

5.1.2. Structural Analysis of the Metastasis Sub-Networks 

The network representation of PPIs provides information about the sets of interacting 

proteins (i.e. whether two proteins bind or do not bind and the number of interactions a 

protein can have). Introducing structural knowledge to PPI networks adds an extra 

dimension of data to the representation. When we know how proteins are interacting 

structurally, we can detect multiple proteins trying to bind the same region on a protein 
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surface. This extra knowledge may help us realize which interactions cannot happen 

concurrently. Besides, there may be protein pairs interacting via similar interface 

architectures. A drug targeting on any of these PPIs will have a high probability of 

targeting the others as well [39, 115], since ligands have tendency to bind to similar 

binding sites [288-290]. Moreover, knowing the interface region of two proteins helps 

us to check whether mutations of these proteins occur in the interface or not. 

Among the PPIs of the BMSN, only 4 of them had 3D structural data of the binary 

complex in PDB. Similarly, for LMSN, only 2 PPIs were found with the structure of 

the binary complex in PDB (see Table 5.4). In order to increase the structural 

coverage of interactions of our sub-networks, it is necessary to use modeling. We used 

PRISM [140, 141, 206] in order to predict, assign and model the structure of the 

interface of protein-pairs in the BMSN and LMSN (see Methods for the details).  

Table 5.4. Interactions available in PDB. In PDB 4 of the PPIs of brain metastasis 

network had 3D structural data in their complex forms. Similarly, only 2 were found 

for lung metastasis network. 

 

PRISM produces template-based predictions and it models the structure of an 

interaction based on the known 3D structure of two interacting proteins. The BMSN 

has 58 interactions with known 3D structures for both partners. LMSN has 102 such 

interactions. PRISM modeled 18 out of 58 interactions as a binary complex in the 

BMSN (see Figure 5.2.a). For the LMSN, 50 out of 102 interactions were modeled 

(see Figure 5.2.b).  

	   Protein	  
Name	  

Protein	  
Name	  

PDB	  ID	  of	  The	  
Complex	  

BMSN	  

TNFRSF10B	   TNFSF10	   1D0G,	  1D4V,	  1DU3	  

ITGA5	   ITGB1	   3VI4,	  3VI3	  

MMP1	   TIMP1	   2J0T	  

CSF3	   CSF3R	   2D9Q	  

LMSN	  
MMP1	   TIMP1	   2J0T	  

CXCL12	   CXCR4	   2K03,	  2K04,	  2K05	  
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We should note that PRISM can model an interaction using structurally different 

interface templates or can use the same template interface to model different 

interacting protein pairs. Besides, a protein may be embodied with different chains (as 

identified in the PDB) or domains describing different portions or protein-states (i.e. 

due to post-transcriptional modifications). Therefore, the interaction between two 

proteins can imply more than one interface region (i.e. produced by two or more pairs 

of domains) that may or may not occur at the same time. This would explain the 

causes for multiple interface predictions. On the other hand, template interfaces can be 

assigned to several interactions, some of them being common for different sub-

networks or highly frequent in some sub-network. This arises a particular interest 

because it can explain a phenotype but also has implications on the putative use of 

drugs disrupting a particular set of interactions. As a consequence, for BMSN we 

obtained 32 predictions for 18 PPIs coming from 28 interface templates. Therefore, the 

average template interface frequency in BMSN is 1.14 (32/28). For LMSN, we 

obtained 99 predictions for 50 interactions and 75 out of 99 corresponded to different 

template interfaces. Thus, the average template interface frequency for LMSN is 1.32 

(99/75). The numbers of occurrences of interfaces in both metastasis networks are 

shown in Table A.10.  

We studied the common template interfaces in the BMSN and LMSN. We observed 

top 3 high frequency template interfaces in the LMSN: 1) 2b8nAB 8 times, the 

interface extracted from the homodimer Glycerate kinase, putative. 2) 1jogCD 5 times, 

the interface extracted from the homodimer Uncharacterized protein HI_0074. 3) 

2a6aAB 4 times, the interface extracted from the homodimer Peptidase M22 

glycoprotease.  We observed 4 template interfaces with less frequency (only in 2 PPIs) 

in the BMSN: 1) 2b8nAB (as for LMSN), 2) 1nqlAB, taken from the interface 

between EGFR-EGF, 3) 1qjcAB the interface extracted from the homodimer 

phosphopantetheine adenylyltransferase and 1moxAC (the interface between EGFR-

TGFA). Interestingly, the 2b8nAB template interface is the most frequent interface in 

both sub-networks (see Figure 5.4 and Figure 5.5). Details of the most frequent 

interface templates can be found in Table A.11 and Table A.12. We observed that the 

three most common interface templates in LMSN are all coming from bacterial 

proteins.  
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Figure 5.4. Commonly observed interfaces of lung metastasis network [285]. In 

this figure structural sub-networks are also included. In these sub-networks only the 

interactions that have PRISM modeled complex structures are present. Each node 

represents a protein that has 3D structure and each edge stands for a distinct model 

between two proteins. The relevant template interfaces are represented with pink edges 

in these structural sub-networks. 
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Figure 5.5. Commonly observed interfaces of brain metastasis network [285]. 
Legend for the sub-networks is the same as in Figure 5.4. 

Then we studied the source organisms of all the template interfaces used in our sub-

networks. We used 28 different template interfaces (Table A.10 for modeling the 

complexes in BMSN. Each template interface consists of 2 chains, thus there are 56 

template interface chains utilized for the predictions. Among them, 30 template 

interface chains are originating from microbes (bacteria/virus) (see Figure 5.6, 

bottom sketch). The probability of observing 30 or more microbial chains in a 

randomly selected set of 56 template interface chains is not significant (p-value = 

0.09). Likewise, there were 150 template interface chains (75 template interfaces see 

Table A.10) used for the modeling of LMSN’s complexes. 78 out of 150 template 

interface chains are coming from microbes (see Figure 5.6, top sketch). Observing 78 

or more template interface chains found in microbes in a randomly selected set of 150 

is significant (p-value=0.024). Thus, metastasis protein complexes may be mimicking 

microbial interface architectures to form complexes, although only for LMSN this 

feature is significant.  
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Figure 5.6. The “subcellular locations” depiction of lung metastasis structural 
sub-network (top sketch) and brain metastasis structural sub-network (bottom 
sketch). Proteins, which are only in membrane, are shown in red, which are only 

observed in extracellular region are in yellow and the ones only in intracellular region 

are purple. The proteins, which can be present in multiple regions of the cell has 

multiple colors (e.g., EGFR), which is present in intracellular & extracellular regions 
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and membrane. The green dashed edges are the interactions, which have similar 

architecture to bacteria/virus interfaces. 

Then we investigated the interactions modeled with templates of protein interactions 

found in microbes. 53% of the models are coming from microbial origin in BMSN 

(Figure 5.7, left) and 59% of the models are coming from microbes in LMSN (Figure 

5.7, right). Again, the protein complexes in LMSN, utilize more interface templates 

with microbial origin than the ones in brain network. 

 

Figure 5.7. Percentages of source organisms [285]. We considered the interfaces’ 

number of observations in the networks. 53% of the modeled complexes use microbial 

template interfaces in BMSN and this percentage is 59% in LMSN. 

There are 14 proteins in BMSN whose interactions are modeled via templates 

originating from microbes. Seven out of these 14 proteins (Table A.13) are actually 

known to be involved in host-pathogen interactions. For LMSN this ratio is 14/40 

(Table A.14). These proteins have binding sites similar to microbial interfaces and 

some of them are observed to be involved in the host-pathogen protein-protein 

interactions. This finding suggests that these metastasis related proteins might be 

involved in mechanisms shared by metastasis and infectious diseases. 

Likewise, except 1nqlAB and 1moxAC templates, all the common interfaces observed 

in both metastasis sub-networks are coming from bacteria. The human proteins in our 

networks, which are using these frequent templates, have mostly cell adhesion 
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biological process. Moreover, 50 % of all the proteins modeled with microbial 

templates in our sub-networks are related with cell adhesion (Tables A.14 – A.15). 

Besides, in BMSN, 25% of the proteins modeled with non-microbial interface 

predictions are related with cell adhesion. Finally, 21% of the proteins in the LMSN 

use non-microbial interface architecture (an interface other than microbial interfaces) 

to interact. Cell adhesion molecules play a significant role in cancer metastasis [291, 

292]. Those molecules use mechanisms of cell adhesion for creating metastasis in 

another organ [293]. Proteins using bacterial interface architectures for interacting 

with other proteins may be reproducing the adhesion ability of the bacterial proteins. 

Moreover, both functional analysis discussed above and the structural analysis suggest 

a relationship between pathogens, immune system and metastasis. Pathogens may be 

triggering some mechanisms that lead to metastasis of a primary breast cancer tumor 

or vice-versa, metastasis may create the proper environment for bacteria invasion. 

Actually, previous studies highlighted the resemblances in cellular and molecular 

mechanisms of invasion between metastasis and infectious diseases [186-189]. 

Besides, in a recent study, Haile et al. hypothesized that metastasis process and 

pathogens should be utilizing the same pathways [190]. Liu et al. also mentioned that 

certain pathogens, activated immune cells and tumor cells may be sharing same tactics 

to spread in the body [191]. These findings reinforce our functional and structural 

analyses results. 

5.1.3. Overview of the Lung/Brain Metastasis Sub-networks 

Network representation of the proteins and their interactions provides a systems level 

abstraction. Via network representation we may identify the proteins that are central 

and important. Hubs, proteins with a high number of interactions, are the vulnerable 

points of scale-free networks and are very important. As expected the hub proteins in 

the LMSB and BMSN are actually the protein products of the seed genes mentioned 

earlier. However, not all of the seed genes’ products are hubs in these two networks 

(Table 5.5). In BMSN PLOD2, HBEGF, MMP1, LAMA4, FSCN1, TNFSF10 and 

SCNN1A are the hubs (Figure 5.2.a), whereas in LMSN KRT81 (KRTHB1), FSCN1, 
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ID1, NEDD9, CXCR4, VCAM1 and MMP1 are the hubs (Figure 5.2b). 

Consequently, these seed genes are more critical from a systems point of view.  

Table 5.5. Metastasis seed genes. 18 genes [155] that mediate breast cancer to lung 

metastasis, and 17 genes [177] that mediates breast cancer to brain metastasis. (*) 

Implies the genes, whose protein products are hubs in the metastasis sub-networks. 

LUNG	  
METASTASIS	  

SEEDS	  

BRAIN	  
METASTASIS	  

SEEDS	  
MMP1*	   MMP1*	  
RARRES3	   RARRES3	  
FSCN1*	   FSCN1*	  
ANGPTL4	   ANGPTL4	  
LTBP1	   LTBP1	  
PTGS2	   PTGS2	  
KYNU	   SEPP1	  
TNC	   LAMA4*	  

C10orf116	   PLOD2*	  
CXCL1	   COL13A1	  
CXCR4*	   SCNN1A*	  
KRTHB1*	  
(KRT81)	  

RGC32	  

VCAM1	   PELI1	  
LY6E	   TNFSF10*	  
EREG	   B4GALT6	  
NEDD9*	   HBEGF*	  
MAN1A1	   CSF3	  
ID1*	   	  

 

These hubs are mostly not in direct interaction with each other, consequently the 

topology of both networks consist of a number of node clusters (a seed gene and its 

interaction partners). Please refer to Figures A.8 and A.9 for the significantly enriched 

KEGG pathways in each cluster. 

Furthermore, there are 2 hub nodes, LAMC1 and ITGA3, in BMSN that are not seed 

genes. They became hub nodes in the network because of the their interactions with 

PLOD2’s interaction partners (shown with green edges in Figure 5.2.c).  PLOD2 

cluster (the first degree neighbors of PLOD2) is shown in Figure 5.2.c. They have a 

very high potential of being major players in brain metastasis formation. In fact, 
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ITGA3 is down regulated in metastatic medulloblastoma tumors and claimed to be 

allowing metastatic tumors to spread more eagerly [294].  

There are 84 common proteins and 71 common PPIs (blue edges in Figure 5.2.d) in 

both metastasis networks. There are PPIS present only in LMSN (green edges in 

Figure 5.2.d) and only in BMSN (pink edges in Figure 5.2.d). As one can see from 

Figure 5.2.d, FSCN1 and MMP1 are two hubs that are common to both metastasis 

sub-networks, thus they are not very helpful in differentiating two metastasis types. On 

the other hand, the interactions of PLOD2, the highest ranked protein in BMSN, are 

only present in BMSN. Similarly, KRT81 is the highest ranked protein in LMSN and 

its interactions are only present in LMSN. These two proteins may be playing key 

roles in the related metastasis types. 

In Figure 5.2.a and Figure 5.2.b the proteins that have PDB structures are shown with 

pink nodes, while the proteins that don’t have PDB structures are shown with blue 

nodes. Most of the hub nodes do not have PDB structures, thus we couldn’t make 

further structural analyses for them. The edges that are modeled with PRISM are 

shown in pink in Figure 5.2.a and Figure 5.2.b.  

In Figure 5.4 and Figure 5.5 the most frequently observed template interfaces in 

LMSN and BMSN are depicted. In these figures structural sub-networks are also 

included. In these sub-networks only the interactions that have PRISM modeled 

complex structures are present. Each node represents a protein that has 3D structure 

and each edge stands for a distinct model between two proteins. The relevant template 

interfaces are represented with pink edges in these structural sub-networks. According 

to structural sub-network of lung metastasis NEDD9 is a hub protein with multiple 

interface architectures on different regions of its surface (please see Figure A.10 for 

the first three most frequently observed interfaces of LMSN mapped on NEDD9). 

Actually, NEDD9 has multiple domains like SH3 domain, SH2 domain and C-terminal 

domain containing a HLH motif that it uses for its interactions [295-297]. Right now 

there is only one PDB structure available in PDB (PDB ID: 2L81) that contains the 

SH3 and the SH2 domains. Accordingly our predictions are limited with these two 

domains. 
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5.2. Genetic Variations on The Protein Interfaces 

There are 6 proteins that are present in both metastasis sub-networks and have at least 

one different interaction partner in each network. We wanted to find out whether the 

reason why these proteins are changing partners is related with genetic variations. By 

mapping the mutations on the proteins’ 3D structures we may see if  the mutation is on 

the interface region and if  the mutated residue is a hotspot, which may intensely affect 

the interaction strength.  

We have PRISM models for 12 interactions that these 6 proteins are involved in 

(Table 5.6). These 12 interactions are happening between 13 proteins. By using the 

genetic variation data in UNIPROT and COSMIC we made further investigations for 

them. There are 386 genetic variations taking place on the mentioned 13 proteins; 251 

variations on the surface, 135 variations in the core. Among these 386 genetic 

variations, only 28 of them are happening on the interface regions.  Even in recent 

publications it is mentioned that in-frame mutations [3] and disease causing SNPs 

[185] have a tendency to occur on protein-protein interfaces we have not encountered 

this phenomenon (Tables A.17 and A.18). However, if we had a larger protein set, 

this result might have been different. Plus the structural information we have on 

interfaces is very limited, most probably we are missing some additional interfaces. 

Thus the genetic variations mapped on the surface region may be coinciding with 

interfaces as well.  

Table 5.6. List of proteins that exist in both metastasis network and the 

different interactions they make in each metastasis network. 

PROTEIN	  
BRAIN	  NETWORK	  
INTERACTION	  
PARTNERS	  

LUNG	  NETWORK	  
INTERACTION	  
PARTNERS	  

ELANE	   CSF3	   VCAM1	  
EGFR	   HBEGF	   EREG	  
ITGA5	   ITGB1	  CD44	  FBN1	   TNC	  
ERBB4	   HBEGF	   EREG	  
CD44	   FBN1	  ITGA5	  MMP1	   MMP1	  
FN1	   -‐	   TNC	  	  
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Two of the interactions that have genetic variations on their interface regions are 

discussed further as case studies below. 

5.2.1. EGFR and ERBB4 

The EGFR and ERBB4 proteins interact with HBEGF in BMSN, whereas they interact 

with EREG in LMSN. In fact HBEGF is a gene known to have a role in brain 

metastasis of breast cancer [177], while EREG is a gene known to be mediating lung 

metastasis of breast cancer [155]. The structural models of these interactions are not 

available in PDB, but we have PRISM predictions for these complexes. HBEGF is 

predicted to interact with EGFR and ERBB4 via the same binding site on its surface, 

and this is also the case for EREG (Figure 5.8).  

 

Figure 5.8. The PRISM predictions for a) EREG (blue) – EGFR (pink), b) EREG 

(blue) – ERBB4 (green) interaction, c) HBEGF (purple) - EGFR (pink) 
interacrion and d) HBEGF (purple – ERBB4 (green)) interaction [285]. We have 

discovered multiple genetic variations happening on these interfaces.  
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Both EREG and HBEGF are growth factors that may be integrated to the membrane 

and can also be present in the extracellular space. EGFR binds EGF family members 

via its L1 (between residues 1-151) and L2 (between residues 312-481) domains [298]. 

The interface residues modeled with PRISM on EGFR (interfaces with HBEGF and 

EREG) are lying in these domains. Similar to EGFR; ERBB4 binds to EGF family 

members via its L1 and L2 domains (between residues 27-198 and 324-517 [299]). 

Most of the interface residues of ERBB4 modeled by PRISM are coinciding with these 

domains as well. Plus, the EGF-like domain (between residues 20-208) of HBEGF is 

known to have an important role in binding to EGFR [300]. The predicted interface 

residues for HBEGF are taking place in its EGF-like domain. EREG’s C-terminal 

(between residues 96-106) is suggested to be involved with its binding to ErbB 

receptors[301]. The C-terminus of EREG is in the interface model produced by 

PRISM. 

There are a number of EGFR complexes, one ERBB4 complex and one HBEGF 

complex available in PDB, while there are no EREG complexes. When we compare 

our model’s interface residues with the binding sites of the available PDB complexes, 

we see that they are all overlapping (see Tables A.19, A.20, A.21 and A.22). 

Position 102 in the amino-acid sequence of EREG acquires a SNP (p.R102L) in some 

cancer patients (derived from COSMIC database).  This amino acid is on the interface 

region of EREG-ERBB4 interactions. Plus, this residue lies in the C-terminal of EREG 

that is known to be essential for its interactions with ErbB receptors. Moreover, 

ERBB4 acquires 5 different mutations that coincide with its interfaces. These 

mutations are observed in cancer patients (derived from COSMIC). Genetic variations 

p.L39F, p.A90T, p.409L and p.V468F mutations are coinciding with ERBB4-EREG 

interactions. Furthermore p.L39F and p.N352S mutations are coinciding with ERBB4-

HBEGF interaction. Additionally, 4 mutations of EGFR derived from COSMIC 

database are coinciding with its interactions. While p.D46N, p.Q432H and p.V441I are 

affecting EGFR-EREG interaction, p.R377S mutation is affecting both EGFR-EREG 

and EGFR-HBEGF interactions. 

These mutations may be making the mentioned interactions stronger or weaker but 

they are most probably changing the functions of the EREG, HBEGF, EGFR and 
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ERBB4 proteins (Figure 5.8). Besides, there may be a relationship between the 

metastasis progression and these mutations.  

5.2.2. ELANE (ELA2) 

ELANE interacts with CSF3 in BMSN, while it is switching its interaction partner to 

VCAM1 in LMSN. CSF3 is a seed gene in BMSN [177], while VCAM1 is a seed 

gene in LMSN [155]. The structural models of these interactions are not available in 

PDB, but we have PRISM predictions for these complexes.  

ELANE has  variants that coincides with its interfaces (p.V98L, p.V101L, p.V101M 

and p.S126L (derived from UNIPROT)). The variances in the amino acid 101, which 

are polymorphisms, coincide with one of the hotspots of the interface region between 

ELANE and CSF3 and the variances in the amino acids 98 (polymorphism) and 126 

(unclassified variation) are inside the interface region of VCAM1 on ELANE (Figure 
5.9). These amino-acid variances may be affecting the interactions of ELANE with 

CSF3 and VCAM1. As a result, these amino acid variations may be related with  

metastasis progression in breast cancer patients.  

 

Figure 5.9. The PRISM predictions for ELANE (orange) - VCAM1 (green) and 

ELANE - CSF3 (blue) interaction [285]. The amino acids 98, 101, 126 (red amino 

acids) on ELANE have genetic variations. Amino acid 101 is a hotspot in the CSF3 – 

ELANE interface, moreover amino acids 98 and 126 are part of the ELANE – 

VCAM1 interface.  
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5.3. Methodology 

5.3.1. The Human PPI Network 

Experimental data on protein interactions are spread among multiple databases. Even 

if the data in these databases partially overlap, the reliability of data differs because of 

the variations in the experimental techniques and the organisms used. In addition, 

information of the same protein can be stored with different designations in different 

databases. Therefore, all the available data should be queried properly and matches 

should be combined to form a comprehensive human PPI network. We made use of 

BIANA [302] (Biological Integration And Network Analysis) bioinformatics tool in 

order to form human PPI network. BIANA gathered PPI data from various databases 

and dealt with mapping between the different identifiers. We combined DIP[240], 

MIPS[241], HPRD[242], BIND[243],  IntAct[244], MINT[245] and BioGRID [246] 

databases (all downloaded on May, 2011). Interactions and protein information were 

integrated with BIANA assuming that two proteins from different databases were the 

same if they had the same UNIPROT Accession, amino acid sequence, or Entrez Gene 

Identifier.  

5.3.2. The Sub-networks Implicated in Lung and Brain Metastatic Breast Cancer 

We used GUILD, a network-based disease-gene prioritization tool [284] to identify the 

sub-networks implicated in the two phenotypes of our interest: 1) breast cancer 

metastasis in lung, and 2) breast cancer metastasis in brain. GUILD package includes 

several methods of “guilt-by-asssociation” to prioritize a list of candidate genes 

associated with a phenotype. Guilt-by-association approaches are based on a set of 

genes associated with a phenotype, named seeds, and the tendency that other genes 

associated with the same phenotype will interact with the seeds.  We took 18 genes 

that mediate breast cancer to lung metastasis [155], 17 genes mediating breast cancer 

to brain metastasis [177] identified by Massagué and his co-workers and used them as 

seeds for each phenotype (Table 5.5).  

We employed the NetCombo algorithm in GUILD using the default parameters as in 

[284] to rank all the proteins of the major component of the human PPI network. This 

algorithm combines the algorithms of NetScore, NetZcore and NetShort. The scores 
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were different for proteins produced by genes associated with brain metastasis than 

those associated with lung metastasis. Therefore, two different sub-networks were 

considered with the proteins associated with lung or brain metastasis and their 

interactions.  

GUILD scored only the nodes (proteins/genes) but not the edges (PPIs) and gene-gene 

associations), therefore we needed to transfer the score of the nodes into the edges. 

Thus, we defined the score of the edge as the average of the scores of its nodes (the 

values of these scores lie between 0 and 1). We selected a common threshold cut-off 

on the score of the edges to set up the sub-networks of brain and lung metastasis with 

similar size. 

We used HPRD [242], UNIPROT [295, 296] and TIGER[303] databases for checking 

the expression of genes in breast tissue. 

The average node degree is 2.6 for BMSN and 2 for LMSN. Nodes with 12 or more 

edges are considered to be hubs. 

We have used VMD [272] for visualizing protein structures and for network 

visualizations we have used Cytoscape [282]. 

5.3.3. Functional Analysis of Brain and Lung Metastatic Networks 

We used the ClueGo [286], a Cytoscape [282] plugin, designed for biological 

interpretation of gene sets. The significance (enrichment) analysis was performed with 

right-sided hyper-geometric testing with a Bonferroni step down P-value correction 

factor. KEGG pathways used for the calculations are downloaded in 24.05.2012. P-

values smaller than 0.05 were considered significant. 

5.3.4. Structural Analysis of Brain and Lung Metastatic Networks 

We have used “uniprot_sprot.dat” (downloaded in November of 2012, from 

UNIPROT’s ftp server) for detecting the source organisms of the PDB chains used for 

modeling the protein complexes in both metastasis networks. 
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For significance testing, we have calculated the p-value of a hyper-geometric 

distribution using the R package[304]. P-values smaller than 0.05 were considered 

significant. Please refer to Table A.23 for the numbers we have used for calculations. 

Every protein-protein interface consists of two chains. The 7922 template interfaces 

used in the experiments, consist of 15844 template chains. Among them the source 

organism of 11255 were available in “uniprot_sprot.dat” and 4918 were coming from 

microorganisms (bacteria/virus). 

The protein interfaces that are available in PDB are clustered according to their 

structural similarity. These clusters are provided in PRINT database which can be 

accessed from the http://prism.ccbb.ku.edu.tr/interface/ address. We mentioned these 

structurally similar protein clusters as PRINT clusters all through the text. 

While detecting the source organisms of the template interfaces, we have taken into 

account all the interfaces, not only the representative interfaces (in each PRINT 

cluster). Besides, we have used the biological process and the molecular functions 

listed in UNIPROT database for our analyses. 

In Figure 5.6 the interfaces coming from pathogens are presented with green dashed 

lines. We have used “Cellular Component Ontology”[305] in order to find out the 

locations of the molecules. If an interface has PDB’s coming from both eukaryotes and 

pathogens in its cluster, we have counted it as a pathogenic interface. 

We have made use of UNIPROT and HPIDB[306] databases to mine the knowledge 

on the host-pathogen relationships of the related proteins. We have checked whether 

the proteins are known to be interacting with pathogens or not (Tables 5.10 and 5.11). 

5.3.5. Genetic Variations on Interface Surfaces 

We obtained the available point mutations related with cancer from COSMIC [307] 

database and humsavar.txt of UNIPROT database. UNIPROT [295, 296] provides the 

variants of a protein’s amino-acid sequence. These variations can be polymorphisms, 

variations between strains, isolates or cultivars, disease-associated mutations 

or RNA editing events. Both databases provide detailed information about the 

mutations, as well as the mutated residue numbers. Then, we mapped these point 
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mutations to the interface regions of interacting proteins in the metastasis sub-

networks (BMSN and LMSN). We used the PDBSWS database [308] for the PDB and 

Uniprot residue-level alignment.  

We used Naccess [309] for determining the surface and core residues. Naccess 

computes the atomic accessible area by rolling a probe (typically with the same radius 

as water (1.4 Angstroms)) around the Van der Waal’s surface of macromolecule. It 

employs the Lee & Richards method [310], whereby a probe of given radius is rolled 

around the surface of the molecule, and the path traced out by its centre is the 

accessible surface. 

For the statistical calculations of location preferences of genetic variations we used 

fisher’s (exact) test and two-tailed P-value for statistical significance (P-value smaller 

than 0.05 was considered statistically significant) as described in David et al.’s [185] 

article. We used the R package[304] for the statistical calculations. 

Hot spots are the residues that contribute more to the binding free energy with respect 

to other residues in the protein-protein interface. We have used HotPoint [271] for hot 

spot predictions. This webserver calculates the hot spots in protein interfaces using an 

empirical model with 70% accuracy.  

	  



Chapter 6: Conclusion  

 

 

81 

Chapter 6 

CONCLUSION 

The main focus of this dissertation has been the integration of structural knowledge to 

protein-protein interaction networks and utilizing this additional information in solving 

drug off-target prediction and genotype-phenotype mapping problems. 

We proposed a new network representation (P2IN), which introduces the structures of 

protein interfaces into the PINs. In addition to providing the binary information of whether 

two proteins interact with each other, the P2IN also provides information on the structure 

of the complex that they form. Through out my PhD studies we have built a number of 

cancer related P2INs and increased the structural knowledge on protein interactions of 

these networks. The accuracy of these P2INs is limited with the completeness of protein 

interactions, reliability of homology models and availability of template interface 

structures, however with the exponential growth of the number of protein complexes in 

PDB and the discovery of pairwise protein interactions building high-quality P2INs will be 

possible.  

P2IN representation allows us to propose a new attack strategy, interface attack, of hitting 

edges between protein pairs that interact via structurally similar interfaces rather than 

nodes. We generated the signaling network of the p53 P2IN and tested its robustness to 

various attacks. Both node and edge attacks are performed. The interface attack is found to 

be as destructive as hub node attacks; however, it is not as harmful as distributed attack 

that targets maximal edges. A drug that disturbs a frequent interface type may be as 

destructive as a drug targeting a high degree protein, suggesting the usefulness of 

considering the frequency of interface motifs during drug development. We discovered that 

some drugs (Aminopurvalanol, PD-0332991, CHEBI:792519, CHEBI:792520 and Fisetin) 

binding to CDK6, disrupt its interaction with CDKN2D. We applied our interface attack 

strategy to this case and found that drugs blocking this interface may also affect the 

interaction between CDK4 and CDKN2D. CDK4 also appears an off-target for drugs 

binding to CDK6. This example illustrates the promise in our strategy as a first step in 

indentifying potential off-target drug hits. Finally, we provided a case study of a 

comparison between node and interface attacks. Challenging next steps are accounting for 
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molecular flexibility. Proteins are highly dynamic, and structure-based drug discovery 

requires detailed structural treatment to uncover transient pockets which are unlikely to be 

observed in the static crystal snapshots and rigid docking. Nonetheless, systems-wide 

outcome involving possible off-targets of a drug is an important consideration, and 

eventually would need to be integrated with detailed structural investigation in attempts to 

forecast potential side effects. Here, our concept of interface attack exploits structural 

motifs. It is inspired by network pharmacology, an emerging paradigm in drug discovery.  

In the future this drug off-target prediction approach may be exerted on the complete 

human interactome. Working in larger scale would provide a more complete view of the 

pathways affected by a given drug. Besides, while building the P2IN, considering both the 

bound and unbound states of a protein will also increase the reliability of our off-target 

prediction approach. In addition, experimental verifications could be very useful to prove 

the credibility of our prediction method.  

We combined PPI networks, protein-protein interface structure and genetic variations 

together at the systems level to explain genotype-phenotype relationships. We have built 

two networks of proteins playing roles in different breast cancer metastasis and tried to 

explain the mechanisms behind metastasis process. 

We built a comprehensive human PPI network, by combining the available PPI data from 

various databases. Then we ranked all the interactions of this network according to their 

relevance to genes that are known to be mediating breast cancer to brain and lung 

metastasis. Subsequently, we formed two distinct metastasis PPI sub-networks from high 

ranked interactions. Next, we introduced structural knowledge to metastasis PPI sub-

networks. Only a small proportion of our protein complexes were available in PDB. We 

modeled the interface structures of PPIs by using PRISM tool. Knowing the interface 

structure between two proteins and the residue numbers on the interface surface, allowed 

us checking whether the mutations are located in the interfaces or not.  

We preformed functional analysis on metastasis sub-networks and observed that the 

proteins engaged in LMSN are enriched in “Infectious Diseases”, “Cancer” and “Immune 

System” KEGG classes. This correlation pinpoints a relationship between pathogens, 

immune system and lung metastasis. This may be due to the fact that, brain is a better-
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protected area than the lung, due to the blood-brain barrier and being less exposed to 

outside world compared to lung. Besides, the protein complexes in LMSN utilize more 

interface templates found in PPIs in microbes than BMSN. This finding reinforces our 

conclusion about the relationship between lung metastasis progression and pathogens. 

Furthermore, we saw that in both metastasis sub-networks the proteins using microbial 

interface architectures are mostly related with cell adhesion. Cell adhesion is a very 

important mechanism for metastasis and our findings suggest that there may be some 

mechanistic commonalities, such as cell adhesion, between pathogens and metastatic 

cancer cells employed during cell invasion. Actually, most of these proteins have 

interactions with proteins of pathogens themselves.  

We provided structural predictions for the architecture of interfaces of interactions between 

EGFR-EREG, EGFR-HBEGF, ERBB4-EREG, ERBB4-HBEGF, ELANE-CSF3 and 

ELANE-VCAM1. Moreover, we have discovered some genetic variations happening on 

these interfaces which are most probably related with the metastasis progression of breast 

cancer patients.  

For future studies our metastasis network models may provide a foundation and may also 

be helpful for finding escape pathways of breast cancer metastasis. In our results, there is a 

group of SNPs that are nominated to be related with specific metastasis types, they could 

be validated with experiments. This would increase the impact of our predictions.  

We have utilized P2INs in predicting drug off-targets and linking genotype to phenotype. 

However these networks have the potential to be used for answering several other 

questions as well. Deepening the analysis on these networks may reveal important futures 

about structural proteomics. Besides, the visualization of P2INs may be improved in the 

future, which may enable us to acquire structural data intuitively from the network 

representation.  

In the overall, significant information is gained towards the protein interactions in the 

systems level. Integration of structural knowledge into protein interaction networks helped 

us answer many questions by providing additional information on “how protein couples 

interact”. We believe that this work will serve functional and structural genomics, cancer 

bioinformatics and drug design. 
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APPENDIX	  
	  

Supplementary	  Figures:	  
	  

	  
Figure A.1. CDK6 binding site (one chain of CDK6–CDKN2D interface) highlighted on 

CDK6-drug complexes present in PDB [39].	   In each figure CDK6 structure is the 

transparent green body and the binding site on CDK6 is the opaque green one a) Fisetin-

CDK6 complex b) PD-0332991-CDK6 complex, c) Aminopurvalanol-CDK6 complex, d) 

CHEBI: 792519-CDK6 complex, e) CDKN2D-CDK6 complex, f) CHEBI: 792520-CDK6 

complex. The structures of CDK6 are not exactly the same in each PDB (please refer to 

Table A.7 for the RMSD values of CDK6 structures), as a consequence we didn’t perform a 

superimposition between CDK6-drug complexes and CDKN2D-CDK6 complex like we did 

in the Figure 4.2.  
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Figure A.2. The hotspots of CDK4 (dark blue surfaces), CDK4 structure (cyan transparent 

body) and the drugs (balls and sticks) docked on CDK4 can be seen all together in this figure 

[39].	   The drugs are close to hotspots 12 ILE, 98 GLN and 97 ASP. 

	  



Appendix 

 

 

 
 

86 

	  
Figure A.3. The hotspots of CDK6 (pink surfaces), CDK6 structure (gray transparent body) 

and the drugs (balls and sticks) docked on CDK6 can be seen all together in this figure [39]. 

The drugs are close to hotspots 19 ILE, 103 GLN and non-hotspot residue 102 ASP (cyan 

surface). 
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Figure A.4. Superimposition of pockets of CDK6 (cyan) and CDK4 (dark blue) using VMD 

visualization tool [39].   
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Figure A.5. Superimposition of pockets of CDK6 (dark blue), CDK4 (red) and the drugs 

docked to them [39]. The blue ligands are docked on CDK6 and the red ones are docked on 

CDK4. The ligands in the figures are: a) PD-0332991 b) Fisetin c) Aminopurvalanol d) 

CHEBI: 792520 e) CHEBI: 792519. 

	  

 
Figure A.6. This graph shows the increase in the number of interactions, as the number of 

GUILD score gets smaller [285]. 
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Figure A.7.  This graph shows the increase in the number of interactions, as the number of 

nodes gets bigger [285]. 

	  

Figure A.8. The significantly enriched KEGG pathways in the clusters of LMSN. 
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Figure A.9. The significantly enriched KEGG pathways in the clusters of BMSN. 
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Figure A.10. NEDD9 is a hub protein with multiple interface architectures on different 

regions of its surface. a) There is only one PDB structure available in PDB (PDB ID: 2L81) 

that contains the SH3 and the SH2 domains. The first three most frequently observed 

interfaces (b) 1jogCD interface, c) 2a6aAB interface and d) 2b8nAB interface) of LMSN 

mapped on NEDD9.  

	  
	  
Supplementary	  Tables:	  
Table A.1. List of PRISM Interaction Predictions for p53 Network. Out of 251 PRISM 

interaction predictions, 26 are present in Kohn’s map, 59 are present in various PPI databases 

and 90 are present in STRING database. 104 interactions are validated totally. 

PPI	  
Predictions	  

Interface	  
Template	   Validation	   PPI	  Predictions	   Interface	  

Template	   Validation	  

APC	  -‐	  E2F1	   1gl2AD	   	  	   ERCC4	  -‐	  SKP2	   2astBC	   	  	  
APC	  -‐	  CCNH	   1vf6BD	   	  	   ERCC4	  -‐	  CDKN1B	   1jsuBC	   	  	  
APC	  -‐	  TFDP1	   1gl2AD	   	  	   FOS	  -‐	  E2F1	   1gl2AD	   STRING	  
APC	  -‐	  CCNA2	   1jsuBC	   	  	   FOS	  -‐	  RFC5	   1gl2AD	   	  	  
APC	  -‐	  JUN	   1gl2AD	   	  	   GADD45A	  -‐	  RAP1A	   1c1yAB	   	  	  

APC	  -‐	  MAPK10	   1pq1AB	   	  	   GADD45A	  -‐	  CDKN2D	   1gveAB	   	  	  
APC	  -‐	  BRCA1	   1jsuBC	   	  	   GADD45A	  -‐	  NFKB1	   1gveAB	   STRING	  
APC	  -‐	  RFC5	   1jsuBC	   	  	   GADD45A	  -‐	  SFN	   1gveAB	   	  	  
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APC	  -‐	  XRCC6	   1rkeAB	   	  	   GADD45A	  -‐	  BAX	   1gveAB	   STRING	  
APC	  -‐	  CCNE1	   1rkeAB	   	  	   GADD45A	  -‐	  MNAT1	   1gveAB	   	  	  
APC	  -‐	  POLR2G	   1cxzAB	   	  	   GADD45A	  -‐	  APC	   1gveAB	   	  	  
APC	  -‐	  RB1	   1jsuBC	   	  	   GADD45A	  -‐	  PLK1	   1gveAB	   	  	  

APC	  -‐	  GTF2H1	   1jsuBC	   	  	   GADD45A	  -‐	  MAPK8	   1lqbAB	   STRING	  
APC	  -‐	  EP300	   1g4yBR	   	  	   GPIHBP1	  -‐	  APC	   1pq1AB	   	  	  
APC	  -‐	  LIG1	   1jsuBC	   	  	   GPIHBP1	  -‐	  CDK2	   1rkeAB	   	  	  
APC	  -‐	  PARP1	   1jsuBC	   	  	   GTF2H1	  -‐	  CDKN1B	   1jsuBC	   	  	  
APC	  -‐	  EP300	   1hx1AB	   	  	   HDAC1	  -‐	  XRCC5	   1n62DF	   STRING	  
APC	  -‐	  CCNB1	   1jsuBC	   KOHN’S	  MAP	   HDAC1	  -‐	  CDK1	   1unlAD	   BIOGRID	  
APC	  -‐	  RPA1	   1jsuBC	   	  	   HDAC1	  -‐	  CDK6	   1unlAD	   STRING	  
APC	  -‐	  KAT2B	   1rkeAB	   	  	   JUN	  -‐	  POLR2G	   2ahmCG	   	  	  
APC	  -‐	  MAX	   1gl2AD	   	  	   JUN	  -‐	  E2F1	   1gl2AD	   STRING	  
APC	  -‐	  MDM2	   1rkeAB	   	  	   JUN	  -‐	  EP300	   2ahmCG	   BIOGRID	  
APC	  -‐	  MYC	   1gl2AD	   MINT	   JUN	  -‐	  XRCC5	   2ahmCG	   	  	  
APC	  -‐	  XRCC1	   1jsuBC	   	  	   JUN	  -‐	  RAD51	   2ahmCG	   	  	  
APC	  -‐	  HMGB1	   1g4yBR	   	  	   JUN	  -‐	  SFN	   2ahmCG	   	  	  
APC	  -‐	  FOS	   1gl2AD	   	  	   JUN	  -‐	  MARK3	   2ahmCG	   	  	  
APC	  -‐	  MYC	   1jsuBC	   MINT	   LIG3	  -‐	  SFN	   1e8oCD	   	  	  
APC	  -‐	  RAD52	   1pq1AB	   	  	   LIG3	  -‐	  RAD23B	   1tf0AB	   	  	  
BAX	  -‐	  XRCC5	   1nw9AB	   	  	   MAPK8	  -‐	  RPA3	   1lqbAB	   	  	  
BAX	  -‐	  RAF1	   1wmhAB	   STRING	   MAPK9	  -‐	  E2F4	   2btfAP	   	  	  
BAX	  -‐	  EP300	   1rkeAB	   STRING	   MDM2	  -‐	  CCNA2	   1nw9AB	   KOHN’S	  MAP	  
CCNA2	  -‐	  XRCC5	   2ahmCG	   	  	   MYC	  -‐	  CCNE1	   1jsuBC	   STRING	  
CCNA2	  -‐	  EP300	   1rkeAB	   STRING	   MYC	  -‐	  RAD52	   1pq1AB	   	  	  
CCNB1	  -‐	  RPA3	   1quqCD	   	  	   MYC	  -‐	  MAX	   3ezeAB	   KOHN’S	  MAP	  
CCNB1	  -‐	  CCNE1	   1gveAB	   	  	   MYC	  -‐	  CCNB1	   1jsuBC	   STRING	  
CCND1	  -‐	  MYC	   1jsuBC	   STRING	   MYC	  -‐	  RB1	   1jsuBC	   BIOGRID	  

CCND1	  -‐	  CDKN1B	   1jsuBC	   KOHN’S	  MAP	   MYC	  -‐	  CDH1	   1jsuBC	   STRING	  
CCNE1	  -‐	  RPA3	   1quqCD	   	  	   MYC	  -‐	  CCNA2	   1jsuBC	   STRING	  
CCNE1	  -‐	  MAPK8	   1w36CD	   	  	   MYC	  -‐	  CDKN1B	   1jsuBC	   INTACT	  
CCNE1	  -‐	  MNAT1	   1gveAB	   STRING	   MYC	  -‐	  E2F1	   1gl2AD	   STRING	  
CCNE1	  -‐	  CDK5	   1unlAD	   	  	   PARP1	  -‐	  XRCC5	   2ahmCG	   BIOGRID	  
CCNE1	  -‐	  CASP3	   1gveAB	   STRING	   PARP1	  -‐	  RAF1	   1wmhAB	   STRING	  
CCNE1	  -‐	  CDK5	   1gveAB	   	  	   PARP1	  -‐	  CDKN1B	   1jsuBC	   STRING	  
CCNE1	  -‐	  EP300	   1rkeAB	   KOHN’S	  MAP	   PARP1	  -‐	  SKP2	   3ezeAB	   	  	  
CCNE1	  -‐	  CHEK1	   1unlAD	   	  	   PARP1	  -‐	  CHEK1	   1unlAD	   MINT	  
CCNH	  -‐	  MYC	   1jsuBC	   BIOGRID	   PARP1	  -‐	  CCNH	   1jsuBC	   	  	  
CDK1	  -‐	  CKS1B	   1buhAB	   KOHN’S	  MAP	   PARP1	  -‐	  E2F1	   2ahmCG	   INTACT	  
CDK2	  -‐	  PLK1	   1rkeAB	   INTACT	   PARP1	  -‐	  NFKBIA	   3ezeAB	   STRING	  
CDK2	  -‐	  ABL1	   1rkeAB	   INTACT	   PARP1	  -‐	  CDH1	   1jsuBC	   	  	  
CDK2	  -‐	  APC	   1rkeAB	   	  	   PARP1	  -‐	  MYC	   1jsuBC	   STRING	  

CDK2	  -‐	  MAPK9	   2btfAP	   	  	   PCNA	  -‐	  BRCA1	   1xkpAC	   NCI-‐NATURE	  
PID	  

CDK2	  -‐	  SFN	   1rkeAB	   	  	   PCNA	  -‐	  CDKN1B	   1pq1AB	   STRING	  

CDK2	  -‐	  CCNE1	   1rkeAB	   KOHN’S	  MAP	   PCNA	  -‐	  NFKB1	   1h9sAB	   PATHWAY	  
COMMONS	  

CDK2	  -‐	  CCNE1	   1unlAD	   KOHN’S	  MAP	   PLK1	  -‐	  RPA3	   1quqCD	   	  	  
CDK2	  -‐	  RB1	   1nw9AB	   KOHN’S	  MAP	   PLK1	  -‐	  CDH1	   1lqbAB	   STRING	  
CDK2	  -‐	  TFDP2	   1rkeAB	   KOHN’S	  MAP	   POLR2D	  -‐	  CDK5	   1gveAB	   	  	  
CDK2	  -‐	  SKP2	   1unlAD	   KOHN’S	  MAP	   POLR2G	  -‐	  MAPK9	   2btfAP	   	  	  
CDK2	  -‐	  EP300	   1rkeAB	   KOHN’S	  MAP	   POLR2G	  -‐	  TFDP1	   2btfAP	   	  	  
CDK2	  -‐	  RPA3	   1rkeAB	   KOHN’S	  MAP	   POLR2G	  -‐	  RPA3	   2btfAP	   	  	  
CDK2	  -‐	  BAX	   1rkeAB	   STRING	   POLR2G	  -‐	  E2F4	   2btfAP	   	  	  
CDK2	  -‐	  E2F1	   1e8oCD	   KOHN’S	  MAP	   RAD23B	  -‐	  TFDP2	   1fxtAB	   	  	  
CDK2	  -‐	  CCNB1	   1oiyBC	   BIOGRID	   RAD23B	  -‐	  CDKN1B	   1jsuBC	   	  	  
CDK2	  -‐	  CKS1B	   1buhAB	   KOHN’S	  MAP	   RAD51	  -‐	  XRCC5	   1rkeAB	   STRING	  
CDK2	  -‐	  XRCC5	   1oiyBC	   	  	   RAD51	  -‐	  SFN	   3ezeAB	   	  	  
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CDK2	  -‐	  MARK3	   1oiyBC	   INTACT	   RAD51	  -‐	  SFN	   1gveAB	   	  	  
CDK4	  -‐	  CDKN2D	   1blxAB	   BIOGRID	   RAF1	  -‐	  RAP1A	   1c1yAB	   KOHN’S	  MAP	  
CDK4	  -‐	  CSNK2A2	   1buhAB	   	  	   RAF1	  -‐	  RAD52	   1lqbAB	   	  	  
CDK4	  -‐	  XRCC5	   1rkeAB	   	  	   RAF1	  -‐	  SKP2	   1wmhAB	   	  	  
CDK4	  -‐	  CDKN2D	   1e8oCD	   BIOGRID	   RAF1	  -‐	  FEN1	   1wywAB	   	  	  

CDK4	  -‐	  MYC	   1jsuBC	   NCI-‐NATURE	  
PID	   RAF1	  -‐	  RAD51	   1wmhAB	   	  	  

CDK4	  -‐	  MAPK10	   1buhAB	   	  	   RAP1A	  -‐	  CDH1	   1c1yAB	   	  	  
CDK4	  -‐	  KAT2B	   1a9nAB	   	  	   RB1	  -‐	  WEE1	   1unlAD	   	  	  
CDK4	  -‐	  ABL1	   1gveAB	   	  	   RB1	  -‐	  PARP1	   1gh6AB	   STRING	  
CDK4	  -‐	  CDK6	   1buhAB	   CELL-‐MAP	   RB1	  -‐	  RAD23B	   1tf0AB	   	  	  
CDK6	  -‐	  CKS1B	   1buhAB	   	  	   RELA	  -‐	  SFN	   1rkeAB	   STRING	  
CDK6	  -‐	  CCNE1	   1unlAD	   STRING	   RELA	  -‐	  BRCA1	   1xkpAC	   BIOGRID	  
CDK6	  -‐	  RAD51	   1unlAD	   	  	   RELA	  -‐	  NFKBIA	   1oy3CD	   BIOGRID	  
CDK6	  -‐	  RAF1	   1wywAB	   	  	   RFC1	  -‐	  XRCC5	   1nw9AB	   BIOGRID	  
CDK7	  -‐	  CCND1	   1xg2AB	   STRING	   RFC5	  -‐	  RAD51	   1gveAB	   	  	  
CDK7	  -‐	  RB1	   1unlAD	   STRING	   RFC5	  -‐	  RAD51	   1t08AB	   	  	  
CDK7	  -‐	  RAD52	   1lqbAB	   	  	   RFC5	  -‐	  CDK6	   1l0oBC	   	  	  
CDK7	  -‐	  MYC	   1jsuBC	   STRING	   RFC5	  -‐	  MYC	   1jsuBC	   	  	  
CDK7	  -‐	  HDAC1	   1unlAD	   	  	   RFC5	  -‐	  PLK1	   1gveAB	   MINT	  
CDK7	  -‐	  CDKN2D	   1blxAB	   	  	   RFC5	  -‐	  EP300	   1rkeAB	   	  	  
CDK7	  -‐	  CKS1B	   1buhAB	   	  	   RFC5	  -‐	  CSNK2A2	   1gveAB	   	  	  

CDKN1B	  -‐	  RAD52	   1jsuBC	   	  	   RFC5	  -‐	  XRCC6	   1gveAB	   INTACT	  
CDKN1B	  -‐	  CCNE1	   1jsuBC	   BIOGRID	   RFC5	  -‐	  MAX	   1gl2AD	   	  	  
CDKN1B	  -‐	  WEE1	   1jsuBC	   STRING	   RFC5	  -‐	  CDKN1B	   1jsuBC	   	  	  
CDKN1B	  -‐	  CDH1	   1jsuBC	   STRING	   RFC5	  -‐	  MYC	   1gl2AD	   	  	  
CDKN1B	  -‐	  CCNB1	   1jsuBC	   INTACT	   RFC5	  -‐	  XRCC6	   1rkeAB	   INTACT	  
CDKN1B	  -‐	  CCNA2	   1jsuBC	   KOHN’S	  MAP	   RFC5	  -‐	  CSNK2A1	   1gveAB	   	  	  

CDKN1B	  -‐	  RB1	   1jsuBC	   PATHWAY	  
COMMONS	   RFC5	  -‐	  CCNE1	   1gveAB	   	  	  

CDKN2A	  -‐	  TP53	   1lqbAB	   BIOGRID	   RFC5	  -‐	  E2F1	   1gl2AD	   	  	  
CDKN2A	  -‐	  CHEK1	   1blxAB	   	  	   RPA1	  -‐	  RPA2	   1l1oEF	   BIOGRID	  
CDKN2D	  -‐	  MAPK8	   1blxAB	   	  	   RPA1	  -‐	  XRCC5	   1rkeAB	   MINT	  
CDKN2D	  -‐	  CDH1	   1rypMN	   	  	   RPA1	  -‐	  RPA3	   1quqCD	   BIOGRID	  
CDKN2D	  -‐	  CDKN1B	   1jsuBC	   STRING	   RPA1	  -‐	  E2F1	   1e8oCD	   	  	  
CDKN2D	  -‐	  CCNA2	   1e8oCD	   	  	   RPA1	  -‐	  CCNA2	   1lqbAB	   BIOGRID	  
CDKN2D	  -‐	  CCNB1	   1e8oCD	   	  	   RPA1	  -‐	  CDKN1B	   1jsuBC	   	  	  
CDKN2D	  -‐	  CDK6	   1blxAB	   BIOGRID	   RPA2	  -‐	  RPA3	   1quqCD	   BIOGRID	  
CDKN2D	  -‐	  CHEK1	   1blxAB	   	  	   SKP1	  -‐	  RPA3	   1quqCD	   	  	  
CDKN2D	  -‐	  MAPK9	   1blxAB	   	  	   SKP1	  -‐	  E2F1	   2c38SV	   	  	  
CKS1B	  -‐	  MAPK10	   1buhAB	   	  	   SKP2	  -‐	  SKP1	   2astAB	   KOHN’S	  MAP	  
CRK	  -‐	  RPA3	   1quqCD	   	  	   SKP2	  -‐	  CCNE1	   1gveAB	   BIOGRID	  

CSNK2A1	  -‐	  CKS1B	   1buhAB	   	  	   SKP2	  -‐	  CKS1B	   2astBC	   BIOGRID	  
CSNK2A2	  -‐	  CKS1B	   1buhAB	   	  	   SKP2	  -‐	  SKP1	   1fs2AD	   KOHN’S	  MAP	  

E2F1	  -‐	  SFN	   1e8oCD	   	  	   SKP2	  -‐	  CDK5	   1unlAD	   	  	  
E2F1	  -‐	  CDH1	   1e8oCD	   	  	   TAF1	  -‐	  ERCC4	   1lkyAB	   	  	  
E2F1	  -‐	  RPA2	   2c38SV	   STRING	   TAF1	  -‐	  RPA3	   1quqCD	   	  	  
E2F1	  -‐	  EP300	   2ahmCG	   KOHN’S	  MAP	   TAF1	  -‐	  CDK4	   1blxAB	   	  	  
E2F1	  -‐	  NFKBIA	   2ahmCG	   STRING	   TFDP1	  -‐	  XRCC5	   1rkeAB	   	  	  
E2F1	  -‐	  EP300	   1gl2AD	   KOHN’S	  MAP	   TFDP1	  -‐	  EP300	   1rkeAB	   	  	  
E2F1	  -‐	  XRCC5	   2ahmCG	   	  	   TFDP2	  -‐	  RB1	   1j2jAB	   KOHN’S	  MAP	  
E2F1	  -‐	  WEE1	   1e8oCD	   	  	   TFDP2	  -‐	  EP300	   1rkeAB	   	  	  
E2F1	  -‐	  MAX	   1gl2AD	   	  	   TFDP2	  -‐	  E2F4	   1cf7AB	   KOHN’S	  MAP	  
E2F4	  -‐	  XRCC5	   1rkeAB	   	  	   TP53	  -‐	  TP53BP2	   1ycsAB	   BIOGRID	  
EP300	  -‐	  MAX	   2ahmCG	   BIOGRID	   XPA	  -‐	  CDKN1B	   1jsuBC	   	  	  
EP300	  -‐	  ABL1	   1rkeAB	   MINT	   XRCC1	  -‐	  CCNE1	   1gveAB	   	  	  
ERCC1	  -‐	  MYC	   1jsuBC	   	  	   XRCC1	  -‐	  EP300	   1h9sAB	   	  	  
ERCC1	  -‐	  EP300	   1rkeAB	   	  	   XRCC1	  -‐	  CDKN1B	   1jsuBC	   	  	  
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ERCC1	  -‐	  JUN	   2ahmCG	   	  	   XRCC1	  -‐	  PLK1	   1gveAB	   	  	  
ERCC1	  -‐	  RPA3	   1quqCD	   KOHN’S	  MAP	   XRCC1	  -‐	  MYC	   1jsuBC	   	  	  
ERCC1	  -‐	  MAX	   2ahmCG	   	  	   XRCC1	  -‐	  CDH1	   1tueFG	   	  	  
ERCC1	  -‐	  APC	   1hx1AB	   	  	   XRCC5	  -‐	  ABL1	   1rkeAB	   KOHN’S	  MAP	  

ERCC1	  -‐	  CDKN1B	   1jsuBC	   	  	   XRCC6	  -‐	  MDM2	   1rkeAB	   STRING	  

	   	   	  
XRCC6	  -‐	  MNAT1	   1gveAB	   	  	  
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Table A.2. PPIs and Interface Templates used for modeling the interactions in the IL-10 

centered network 

PPI	   Interface	  
Templates	   PPI	   Interface	  

Templates	  
PDGFA-‐PDGFB	   1vppVW	  1n7fAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   SIRPG-‐F3	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

IL10-‐IL10RA	   1qjcAB	  1zdnAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   CTSB-‐A2M	   1wurAE	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

UBC-‐TP63	   1jo0AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   IL10RA-‐UBC	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

UBC-‐ERBB4	   1u2eAC	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐LCAT	   1lnuDF	  1mu4AB	  1yrlAC	  
1u2eAC	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

SIRPG-‐ERBB4	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   ANXA6-‐A2M	   1hkxMN	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

UBC-‐JAK2	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   MMP2-‐IL1B	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐KLK13	  
1h7sAB	  1jmjAB	  1m2oAB	  
1yllAB	  1mzhAB	  1ns5AB	  

1bvsAB	  1g8tAB	  	  	  	  	  	  	  	  	  	  	  
A2M-‐PAEP	  

1vbfAB	  1f9aAF	  1lehAB	  
1epaAB	  2fa1AB	  1yqdAB	  
1bebAB	  1y9iAD	  1okjAB	  
2a1bAB	  1pbiAB	  2a0sAB	  
1mu4AB	  1mzhAB	  1jieAB	  

1aorAB	  	  	  

A2M-‐AMBP	   1wwhBD	  1xsvAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   IL10RA-‐IL10RB	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

APP-‐APOE	  
2ffjAB	  1a49AB	  1zydAB	  
1ylmAB	  1nh0AB	  1qjcAB	  
1iokAB	  1l8wAC	  1t6uAF	  	  	  	  	  	  	  	  	  	  

B2M-‐A2M	   1oh0AB	  1ix1AB	  1tr0AB	  
1xsvAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

IL10RA-‐JAK1	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   APOE-‐UBC	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

HSPA5-‐UBC	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐LEP	  
1mu4AB	  2scpAB	  1f74AC	  

1hkxMN	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

IL10RB-‐IL10	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   IL10-‐A2M	   1mwqAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

SIRPG-‐IL10	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐CPB2	   2b8nAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

APP-‐LRP1	  
1vr0BC	  1dxxAD	  1pl4AD	  
1fr3AB	  1k9jAB	  1g8tAB	  	  	  	  	  	  	  	  	  	  	  	  	   PDGFB-‐A2M	  

2a0sAB	  2b8nAB	  1z8hCD	  
1wb1BD	  1hssAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  

LRP1-‐A2M	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   AMBP-‐CTSB	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐KLK3	   2a0sAB	  1jmjAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   APOE-‐CTSB	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

APOE-‐LRP1	   1ylmAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐SPACA3	   1cmbAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

IL10RB-‐IL22	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   UCN2-‐IL10RB	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

IGLL5-‐SIRPG	   1t92AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐ADAM19	   1wovAB	  2fa1AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

LYZ-‐UBC	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   IL10RA-‐JAK2	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

IL10RB-‐UCN3	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   PDGFA-‐A2M	   1yqhAB	  1cqkAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

APOE-‐A2M	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐IL1B	   1t92AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐APP	  

1v8pEF	  1mn8AB	  1jogCD	  
1nbqAB	  1dxxAD	  1fftAC	  
1jyaAB	  1qorAB	  1q7sAB	  
1iw8AB	  1bo1AB	  1a49AB	  
2b8nAB	  2scpAB	  1a96AB	  

2a1bAB	  2a74DF	  	  

A2M-‐KLK2	  
1f9nBE	  1oh0AB	  1rd5AB	  
1pbiAB	  2b8nAB	  2b8tCD	  
1uypAE	  1vjlAB	  1jmjAB	  	  	  	  	  	  	  	  	  	  

SIRPG-‐CD47	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   NGF-‐A2M	   1tqjCD	  1jieAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐LYZ	   2b8nAB	  1aorAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   IL28B-‐IL10RB	   2b99CE	  1c2pAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐MMP2	   1jogCD	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   ADAM19-‐UBC	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐HSPA5	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   TGFBI-‐A2M	   1wdjAC	  1oh0AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

CTSE-‐A2M	   1zh8AB	  1vmfAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   IL28A-‐IL10RB	   2b99CE	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

LRP1-‐PDGFB	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   MYOC-‐A2M	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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UBC-‐APP	   1qorAB	  1barAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   BTRC-‐UBC	   1mu4AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐ADAMTS1	   1gveAB	  2aalEF	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   A2M-‐TP63	   1ns5AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

A2M-‐IL4	   1mu4AB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   TP63-‐HSPA5	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

BTRC-‐IL10RA	   1wurAE	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   SHBG-‐A2M	   1f9aAF	  1z8hCD	  1m4rAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

BTRC-‐TP63	   2astAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   UBC-‐ANXA6	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

CELA1-‐A2M	   -‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   UBC-‐CTSB	   2a0sAB	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  

Table A.3. PPIs and Interface Templates used for modeling the interactions in the 

brain/lung metastasis networks. 

BMSN	   LMSN	  

PPI	   Interface	  
Templates	   PPI	   Interface	  Templates	  

PLS3-‐FSCN1	   2bo4CD	  	  	  	   NEDD9-‐PTK2B	  
3ezeAB	  1jogCD	  1zdnAB	  1tb3AD	  

1fiuAB	  1pbiAB	  1t3uAB	  	  	  	  
BSG-‐MMP1	   2b8nAB	  1xx9CD	  	  	   ITCH-‐CXCR4	   2btfAP	  	  	  	  	  	  	  	  	  	  

MMP1-‐TNFSF11	   1zdnAB	  1g8tAB	  	  	   PLS3-‐FSCN1	   2bo4CD	  	  	  	  	  	  	  	  	  	  
LTBP1-‐FN1	   1ywkAC	  2b8nAB	  1qjcAB	  	   MICAL1-‐NEDD9	   2b8nAB	  1qjcAB	  2a6aAB	  	  	  	  	  	  	  	  

FSCN1-‐KPNB1	   1tueAH	  	  	  	   NEDD9-‐PTPN11	   2b8nAB	  	  	  	  	  	  	  	  	  	  
MMP7-‐MMP1	   1qiaCD	  1b3dAB	  	  	   TNC-‐CNTN1	   2b8nAB	  	  	  	  	  	  	  	  	  	  

CD44-‐FBN1	   1oh0AB	  	  	  	   FN1-‐TNC	  
2b8nAB	  1u6iAF	  1oh0AB	  1u2eAC	  
1p65AB	  1wb1BD	  1yllAB	  2a6aAB	  

1xmzAB	  	  

MMP1-‐CCL2	   1nh0AB	  	  	  	   TNC-‐ITGB1	   2b8nAB	  	  	  	  	  	  	  	  	  	  
ERBB4-‐HBEGF	   1moxAC	  1nqlAB	  	  	   BSG-‐MMP1	   2b8nAB	  1xx9CD	  	  	  	  	  	  	  	  	  
EGFR-‐HBEGF	   1moxAC	  1nqlAB	  	  	   MYH9-‐CXCR4	   2a6aAB	  	  	  	  	  	  	  	  	  	  
ITGA5-‐ITGB1	   1kkmAB	  	  	  	   NEDD9-‐CRKL	   1zuwAC	  	  	  	  	  	  	  	  	  	  
FBN1-‐ITGA5	   1kamAB	  2btfAP	  	  	   MMP1-‐TNFSF11	   1zdnAB	  1g8tAB	  	  	  	  	  	  	  	  	  
CSF3-‐CSF3R	   1jzmAB	  2b99CE	  1cd9AB	  	   LTBP1-‐FN1	   1ywkAC	  2b8nAB	  1qjcAB	  	  	  	  	  	  	  	  

MMP1-‐SERPINA3	   1jyaAB	  	  	  	   NEDD9-‐BCAR1	   1y0eAB	  1jogCD	  1y9iAD	  1tljAB	  	  	  	  	  	  	  
MMP1-‐CD44	   1jogCD	  	  	  	   MSN-‐VCAM1	   1xedAC	  	  	  	  	  	  	  	  	  	  
CSF3-‐ELA2	   1gveAB	  1jflAB	  	  	   VCAM1-‐ELA2	   1x8dAB	  1a49AB	  	  	  	  	  	  	  	  	  

CD44-‐ITGA5	  
1eq2GJ	  1qjcAB	  1rd5AB	  

1okjAB	   NEDD9-‐CRK	   1vi6AB	  1gveAB	  	  	  	  	  	  	  	  	  

MMP1-‐TIMP1	   1bqqMT	  	  	  	   PTPN6-‐CXCR4	   1u0kAB	  	  	  	  	  	  	  	  	  	  
RNF135-‐RARRES3	   -‐	  	  	  	   VCAM1-‐EZR	   1twjCD	  	  	  	  	  	  	  	  	  	  
LAMC1-‐PLOD2	   -‐	  	  	  	   FSCN1-‐KPNB1	   1tueAH	  	  	  	  	  	  	  	  	  	  
ITGA3-‐PLOD2	   -‐	  	  	  	   NEDD9-‐ABL1	   1t6uAF	  1wmhAB	  	  	  	  	  	  	  	  	  
ITGA5-‐PLOD2	   -‐	  	  	  	   TNC-‐ITGA5	   1symAB	  1q5cAB	  1f6fBC	  	  	  	  	  	  	  	  
PLOD2-‐FBN1	   -‐	  	  	  	   NEDD9-‐SMAD3	   1sj1AB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐CD44	   -‐	  	  	  	   CXCR4-‐JAK3	   1s96AB	  	  	  	  	  	  	  	  	  	  
ITGB1-‐PLOD2	   -‐	  	  	  	   VCAM1-‐IL13	   1qorAB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐SETD3	   -‐	  	  	  	   MMP7-‐MMP1	   1qiaCD	  1b3dAB	  	  	  	  	  	  	  	  	  

PLOD2-‐AADACL1	   -‐	  	  	  	   NEDD9-‐DIMT1L	   1pe0AB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐PPT1	   -‐	  	  	  	   NEDD9-‐BCAR3	   1p60AB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐PH-‐4	   -‐	  	  	  	   NEDD9-‐SMAD1	   1o60AB	  1t6uAF	  	  	  	  	  	  	  	  	  
CD276-‐PLOD2	   -‐	  	  	  	   EREG-‐ERBB4	   1nqlAB	  1moxAC	  	  	  	  	  	  	  	  	  
TREML2-‐PLOD2	   -‐	  	  	  	   MMP1-‐CCL2	   1nh0AB	  	  	  	  	  	  	  	  	  	  
TXNDC15-‐PLOD2	   -‐	  	  	  	   NEDD9-‐PIK3CA	   1nh0AB	  2erbAB	  1v8pEF	  1p5qAC	  	  	  	  	  	  	  
GLT25D1-‐PLOD2	   -‐	  	  	  	   CXCR4-‐STAT1	   1n1bAB	  	  	  	  	  	  	  	  	  	  

BTD-‐PLOD2	   -‐	  	  	  	   PTK2-‐CXCR4	   1mzhAB	  1vr0BC	  2bo4CD	  	  	  	  	  	  	  	  
SGSH-‐PLOD2	   -‐	  	  	  	   EREG-‐EGFR	   1moxAC	  1nqlAB	  	  	  	  	  	  	  	  	  
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SEL1L-‐PLOD2	   -‐	  	  	  	   PTPRC-‐CXCR4	   1l1yAD	  	  	  	  	  	  	  	  	  	  
SIAE-‐PLOD2	   -‐	  	  	  	   VCAM1-‐ITGB1	   1kkmAB	  	  	  	  	  	  	  	  	  	  

C21orf29-‐PLOD2	   -‐	  	  	  	   NEDD9-‐PTK2	  
1k2fAB	  2b8nAB	  1jogCD	  1yw0AD	  
1c4zAD	  1xqcAB	  1on2AB	  1gveAB	  

1um0CD	  1y9iAD	  

ACP2-‐PLOD2	   -‐	  	  	  	   NEDD9-‐TCF3	   1jzmAB	  	  	  	  	  	  	  	  	  	  
ATP1B3-‐PLOD2	   -‐	  	  	  	   MMP1-‐SERPINA3	   1jyaAB	  	  	  	  	  	  	  	  	  	  
DNASE2-‐PLOD2	   -‐	  	  	  	   NEDD9-‐ITCH	   1jogCD	  1rkeAB	  2a6aAB	  	  	  	  	  	  	  	  
FUT11-‐PLOD2	   -‐	  	  	  	   MMP1-‐CD44	   1jogCD	  	  	  	  	  	  	  	  	  	  
CD109-‐PLOD2	   -‐	  	  	  	   VCAM1-‐ITGB7	   1jd1AB	  	  	  	  	  	  	  	  	  	  
CLN5-‐PLOD2	   -‐	  	  	  	   NEDD9-‐PXN	   1j2rCD	  	  	  	  	  	  	  	  	  	  

PLOD2-‐PCYOX1	   -‐	  	  	  	   CXCR4-‐CD74	   1iieAB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐P4HA1	   -‐	  	  	  	   CDH1-‐NEDD9	   1iawAB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐EGFL11	   -‐	  	  	  	   NEDD9-‐CHAT	   1gveAB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐CLPTM1	   -‐	  	  	  	   CXCR4-‐VAV1	   1fr3AB	  	  	  	  	  	  	  	  	  	  
PLOD2-‐FKBP9	   -‐	  	  	  	   MMP9-‐CXCL1	   1e8oCD	  1djrDE	  	  	  	  	  	  	  	  	  
PLOD2-‐C1orf85	   -‐	  	  	  	   MMP1-‐TIMP1	   1bqqMT	  	  	  	  	  	  	  	  	  	  
PLOD2-‐BTN2A1	   -‐	  	  	  	   RNF135-‐RARRES3	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐SLC3A2	   -‐	  	  	  	   CCL17-‐VCAM1	   -‐	  	  	  	  	  	  	  	  	  	  
ECE1-‐PLOD2	   -‐	  	  	  	   CCL22-‐VCAM1	   -‐	  	  	  	  	  	  	  	  	  	  

C20orf3-‐PLOD2	   -‐	  	  	  	   ITGAD-‐VCAM1	   -‐	  	  	  	  	  	  	  	  	  	  
COL5A1-‐PLOD2	   -‐	  	  	  	   KRT81-‐MYH2	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐SUMF1	   -‐	  	  	  	   KRT81-‐PGAM2	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐PODXL2	   -‐	  	  	  	   KRT81-‐KRT34	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐TPBG	   -‐	  	  	  	   KRT81-‐VSIG8	   -‐	  	  	  	  	  	  	  	  	  	  

KIAA0090-‐PLOD2	   -‐	  	  	  	   KRT81-‐LRRC15	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐GAA	   -‐	  	  	  	   KRT81-‐USP15	   -‐	  	  	  	  	  	  	  	  	  	  
DPP7-‐PLOD2	   -‐	  	  	  	   KRT81-‐FABP4	   -‐	  	  	  	  	  	  	  	  	  	  
ADNP-‐PLOD2	   -‐	  	  	  	   KRT81-‐YWHAE	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐NPC1	   -‐	  	  	  	   KRT81-‐ADSL	   -‐	  	  	  	  	  	  	  	  	  	  

PLOD2-‐MAN2B1	   -‐	  	  	  	   KRT81-‐CSTF1	   -‐	  	  	  	  	  	  	  	  	  	  
ATP6AP1-‐PLOD2	   -‐	  	  	  	   KRT81-‐KPNB1	   -‐	  	  	  	  	  	  	  	  	  	  
STT3B-‐PLOD2	   -‐	  	  	  	   KRT81-‐RNF40	   -‐	  	  	  	  	  	  	  	  	  	  
CD97-‐PLOD2	   -‐	  	  	  	   KRT81-‐TUT1	   -‐	  	  	  	  	  	  	  	  	  	  
PIGS-‐PLOD2	   -‐	  	  	  	   KRT81-‐LSM6	   -‐	  	  	  	  	  	  	  	  	  	  

PLOD2-‐LYPLA3	   -‐	  	  	  	   KRT81-‐LSM2	   -‐	  	  	  	  	  	  	  	  	  	  
STT3A-‐PLOD2	   -‐	  	  	  	   KRT81-‐C19orf50	   -‐	  	  	  	  	  	  	  	  	  	  
STCH-‐PLOD2	   -‐	  	  	  	   KRT81-‐PRPF4	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐PIGT	   -‐	  	  	  	   KRT33B-‐KRT81	   -‐	  	  	  	  	  	  	  	  	  	  
LAMP2-‐PLOD2	   -‐	  	  	  	   KRT81-‐KRT31	   -‐	  	  	  	  	  	  	  	  	  	  
ERO1L-‐PLOD2	   -‐	  	  	  	   KRT81-‐PRSS1	   -‐	  	  	  	  	  	  	  	  	  	  
NUP210-‐PLOD2	   -‐	  	  	  	   KRT81-‐PRPF3	   -‐	  	  	  	  	  	  	  	  	  	  
PLXNB2-‐PLOD2	   -‐	  	  	  	   KRT85-‐KRT81	   -‐	  	  	  	  	  	  	  	  	  	  
SCARB1-‐PLOD2	   -‐	  	  	  	   KRT81-‐IRS4	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD3-‐PLOD2	   -‐	  	  	  	   KRT81-‐ECH1	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐CD36	   -‐	  	  	  	   KRT81-‐FAM33A	   -‐	  	  	  	  	  	  	  	  	  	  
LNPEP-‐PLOD2	   -‐	  	  	  	   KRT81-‐RBM25	   -‐	  	  	  	  	  	  	  	  	  	  
LAMP1-‐PLOD2	   -‐	  	  	  	   KRT81-‐GRPEL1	   -‐	  	  	  	  	  	  	  	  	  	  
SSR1-‐PLOD2	   -‐	  	  	  	   KRT81-‐MCCC1	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐HYOU1	   -‐	  	  	  	   KRT81-‐PCCA	   -‐	  	  	  	  	  	  	  	  	  	  
HEXA-‐PLOD2	   -‐	  	  	  	   KRT81-‐KRT32	   -‐	  	  	  	  	  	  	  	  	  	  
GNS-‐PLOD2	   -‐	  	  	  	   KRT81-‐MRPS27	   -‐	  	  	  	  	  	  	  	  	  	  

LAMA5-‐PLOD2	   -‐	  	  	  	   KRT81-‐R3HCC1	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐M6PR	   -‐	  	  	  	   KRT81-‐KRT78	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐NOMO1	   -‐	  	  	  	   KRT81-‐KRT16	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD1-‐PLOD2	   -‐	  	  	  	   KRT81-‐DCD	   -‐	  	  	  	  	  	  	  	  	  	  
CTSD-‐PLOD2	   -‐	  	  	  	   KRT81-‐CDCA4	   -‐	  	  	  	  	  	  	  	  	  	  
NCSTN-‐PLOD2	   -‐	  	  	  	   KRT81-‐PCCB	   -‐	  	  	  	  	  	  	  	  	  	  
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PLOD2-‐L1CAM	   -‐	  	  	  	   KRT81-‐KRT2	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐ITGAV	   -‐	  	  	  	   KRT81-‐PRDX4	   -‐	  	  	  	  	  	  	  	  	  	  
PSAP-‐PLOD2	   -‐	  	  	  	   KRT81-‐S100A9	   -‐	  	  	  	  	  	  	  	  	  	  

PLOD2-‐VPS37C	   -‐	  	  	  	   KRT81-‐KRT6B	   -‐	  	  	  	  	  	  	  	  	  	  
TXNDC10-‐PLOD2	   -‐	  	  	  	   KRT81-‐PC	   -‐	  	  	  	  	  	  	  	  	  	  

PLOD2-‐GBA	   -‐	  	  	  	   KRT81-‐C18orf24	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐SCARB2	   -‐	  	  	  	   KRT81-‐PRDX3	   -‐	  	  	  	  	  	  	  	  	  	  
TPP1-‐PLOD2	   -‐	  	  	  	   KRT81-‐KRT14	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐IGF2R	   -‐	  	  	  	   KRT81-‐SERTAD4	   -‐	  	  	  	  	  	  	  	  	  	  
GUSB-‐PLOD2	   -‐	  	  	  	   KRT81-‐KRT5	   -‐	  	  	  	  	  	  	  	  	  	  
CLU-‐PLOD2	   -‐	  	  	  	   KRT81-‐BAG2	   -‐	  	  	  	  	  	  	  	  	  	  

FAM107B-‐PLOD2	   -‐	  	  	  	   KRT81-‐SNF1LK2	   -‐	  	  	  	  	  	  	  	  	  	  
FKBP10-‐PLOD2	   -‐	  	  	  	   KRT81-‐PPP2R2B	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐ASAH1	   -‐	  	  	  	   KRT81-‐TUBA1B	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐A2M	   -‐	  	  	  	   KRT81-‐DDX6	   -‐	  	  	  	  	  	  	  	  	  	  

SERPINA1-‐PLOD2	   -‐	  	  	  	   KRT81-‐HCFC2	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐STOM	   -‐	  	  	  	   KRT81-‐RECQL4	   -‐	  	  	  	  	  	  	  	  	  	  

PLOD2-‐LGALS3BP	   -‐	  	  	  	   KRT81-‐PPP4C	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐BSG	   -‐	  	  	  	   KRT81-‐RBM7	   -‐	  	  	  	  	  	  	  	  	  	  

TUBB4-‐PLOD2	   -‐	  	  	  	   KRT81-‐KRT1	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐PIGR	   -‐	  	  	  	   KRT81-‐PPIH	   -‐	  	  	  	  	  	  	  	  	  	  
CRTAP-‐PLOD2	   -‐	  	  	  	   KRT81-‐RPL30	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐LEPRE1	   -‐	  	  	  	   KRT81-‐LSM4	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐MARCKS	   -‐	  	  	  	   KRT81-‐SKIV2L2	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐UNC84B	   -‐	  	  	  	   KRT81-‐KRT10	   -‐	  	  	  	  	  	  	  	  	  	  
FOLR1-‐PLOD2	   -‐	  	  	  	   KRT81-‐KRT9	   -‐	  	  	  	  	  	  	  	  	  	  
DSG1-‐PLOD2	   -‐	  	  	  	   KRT81-‐TCP1	   -‐	  	  	  	  	  	  	  	  	  	  
BCAN-‐MMP1	   -‐	  	  	  	   KRT81-‐LSM8	   -‐	  	  	  	  	  	  	  	  	  	  
CCL13-‐MMP1	   -‐	  	  	  	   KRT81-‐SELENBP1	   -‐	  	  	  	  	  	  	  	  	  	  
PLOD2-‐TFRC	   -‐	  	  	  	   KRT81-‐CCT7	   -‐	  	  	  	  	  	  	  	  	  	  
TUBB-‐PLOD2	   -‐	  	  	  	   KRT81-‐RPLP1	   -‐	  	  	  	  	  	  	  	  	  	  
RPA2-‐PLOD2	   -‐	  	  	  	   KRT81-‐CCT8	   -‐	  	  	  	  	  	  	  	  	  	  
DYNLL1-‐PLOD2	   -‐	  	  	  	   KRT81-‐RPLP2	   -‐	  	  	  	  	  	  	  	  	  	  
TFPI-‐MMP1	   -‐	  	  	  	   KRT81-‐CCT6A	   -‐	  	  	  	  	  	  	  	  	  	  
CCL7-‐MMP1	   -‐	  	  	  	   KRT81-‐HIST1H1E	   -‐	  	  	  	  	  	  	  	  	  	  
CMA1-‐MMP1	   -‐	  	  	  	   KRT81-‐TUFM	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA2-‐MMP1	   -‐	  	  	  	   KRT81-‐TMPO	   -‐	  	  	  	  	  	  	  	  	  	  
COL2A1-‐MMP1	   -‐	  	  	  	   KRT81-‐NUFIP2	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐LAMA4	   -‐	  	  	  	   KRT81-‐CALM1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐LAMA4	   -‐	  	  	  	   KRT81-‐CAPZA1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA5-‐LAMA4	   -‐	  	  	  	   KRT81-‐CCT4	   -‐	  	  	  	  	  	  	  	  	  	  
FBN1-‐LTBP1	   -‐	  	  	  	   KRT81-‐CALML3	   -‐	  	  	  	  	  	  	  	  	  	  
FBN2-‐LTBP1	   -‐	  	  	  	   KRT81-‐CCT2	   -‐	  	  	  	  	  	  	  	  	  	  
ITGB1-‐LAMA4	   -‐	  	  	  	   KRT81-‐PRDX1	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐CD44	   -‐	  	  	  	   KRT81-‐MRPL12	   -‐	  	  	  	  	  	  	  	  	  	  
MMP1-‐IGFBP3	   -‐	  	  	  	   KRT81-‐CCT3	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐MMP7	   -‐	  	  	  	   KRT81-‐EEF1B2	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC3-‐LAMA4	   -‐	  	  	  	   KRT81-‐PPP2CA	   -‐	  	  	  	  	  	  	  	  	  	  
COL13A1-‐NID2	   -‐	  	  	  	   KRT81-‐CDC42	   -‐	  	  	  	  	  	  	  	  	  	  
LAMB2-‐LAMA4	   -‐	  	  	  	   KRT81-‐MATR3	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐LTBP3	   -‐	  	  	  	   KRT81-‐PPP2R1B	   -‐	  	  	  	  	  	  	  	  	  	  
LTBP1-‐IGFBP3	   -‐	  	  	  	   KRT81-‐TUBB2C	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐CD9	   -‐	  	  	  	   KRT81-‐CKB	   -‐	  	  	  	  	  	  	  	  	  	  

TGM1-‐RARRES3	   -‐	  	  	  	   KRT81-‐HSPA9	   -‐	  	  	  	  	  	  	  	  	  	  
ITGB3-‐LAMA4	   -‐	  	  	  	   KRT81-‐VIM	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA1-‐COL13A1	   -‐	  	  	  	   KRT81-‐CCT5	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐CD82	   -‐	  	  	  	   KRT81-‐ALDOA	   -‐	  	  	  	  	  	  	  	  	  	  
COL13A1-‐NID1	   -‐	  	  	  	   KRT81-‐PPP2CB	   -‐	  	  	  	  	  	  	  	  	  	  
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SPARC-‐COL13A1	   -‐	  	  	  	   KRT81-‐HNRNPL	   -‐	  	  	  	  	  	  	  	  	  	  
FN1-‐COL13A1	   -‐	  	  	  	   KRT81-‐HNRPH1	   -‐	  	  	  	  	  	  	  	  	  	  
LAMA4-‐ATF7IP	   -‐	  	  	  	   KRT81-‐PPP2R1A	   -‐	  	  	  	  	  	  	  	  	  	  
HSPG2-‐COL13A1	   -‐	  	  	  	   KRT81-‐SKIL	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐FBLN1	   -‐	  	  	  	   KRT81-‐JUP	   -‐	  	  	  	  	  	  	  	  	  	  
ITGB5-‐LTBP1	   -‐	  	  	  	   KRT81-‐S100A7	   -‐	  	  	  	  	  	  	  	  	  	  
ZHX1-‐LAMA4	   -‐	  	  	  	   KRT81-‐JUN	   -‐	  	  	  	  	  	  	  	  	  	  

UNC119-‐LAMA4	   -‐	  	  	  	   KRT81-‐HSPD1	   -‐	  	  	  	  	  	  	  	  	  	  
PTN-‐LAMA4	   -‐	  	  	  	   KRT81-‐MCM5	   -‐	  	  	  	  	  	  	  	  	  	  

LAMA4-‐MEF2C	   -‐	  	  	  	   KRT81-‐IQGAP1	   -‐	  	  	  	  	  	  	  	  	  	  
LAMA4-‐C1orf103	   -‐	  	  	  	   KRT81-‐RPL14	   -‐	  	  	  	  	  	  	  	  	  	  
RIF1-‐LAMA4	   -‐	  	  	  	   KRT81-‐HSPA5	   -‐	  	  	  	  	  	  	  	  	  	  
BRD7-‐LAMA4	   -‐	  	  	  	   KRT81-‐MEPCE	   -‐	  	  	  	  	  	  	  	  	  	  
UBR1-‐LAMA4	   -‐	  	  	  	   KRT81-‐RPL21	   -‐	  	  	  	  	  	  	  	  	  	  
LAMA4-‐TP53	   -‐	  	  	  	   KRT81-‐RPL19	   -‐	  	  	  	  	  	  	  	  	  	  
LAMA4-‐MED31	   -‐	  	  	  	   KRT81-‐RPL4	   -‐	  	  	  	  	  	  	  	  	  	  
SUMO2-‐LAMA4	   -‐	  	  	  	   KRT81-‐RPS8	   -‐	  	  	  	  	  	  	  	  	  	  
COPS6-‐LAMA4	   -‐	  	  	  	   KRT81-‐EEF1A1	   -‐	  	  	  	  	  	  	  	  	  	  
LAMA4-‐APC	   -‐	  	  	  	   KRT81-‐RPS6	   -‐	  	  	  	  	  	  	  	  	  	  

TUBB2A-‐LAMA4	   -‐	  	  	  	   LGALS7-‐KRT81	   -‐	  	  	  	  	  	  	  	  	  	  
GAPDH-‐LAMA4	   -‐	  	  	  	   KRT81-‐HSP90AA1	   -‐	  	  	  	  	  	  	  	  	  	  
EEF1A1-‐LAMA4	   -‐	  	  	  	   KRT81-‐RPL6	   -‐	  	  	  	  	  	  	  	  	  	  
LAMB1-‐LAMA4	   -‐	  	  	  	   KRT81-‐TUBB	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐S100A4	   -‐	  	  	  	   KRT81-‐RPS14	   -‐	  	  	  	  	  	  	  	  	  	  
ATN1-‐LTBP1	   -‐	  	  	  	   ANXA2-‐KRT81	   -‐	  	  	  	  	  	  	  	  	  	  
TGM2-‐LTBP1	   -‐	  	  	  	   KRT81-‐RPL24	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐ZBTB16	   -‐	  	  	  	   KRT81-‐RPS11	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐BAG1	   -‐	  	  	  	   KRT81-‐RPS27L	   -‐	  	  	  	  	  	  	  	  	  	  
HBEGF-‐NRD1	   -‐	  	  	  	   KRT81-‐DDX3X	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐DNAJB9	   -‐	  	  	  	   KRT81-‐RPL23	   -‐	  	  	  	  	  	  	  	  	  	  
PTGS2-‐NUCB1	   -‐	  	  	  	   KRT81-‐MYH4	   -‐	  	  	  	  	  	  	  	  	  	  
TP53-‐PTGS2	   -‐	  	  	  	   KRT81-‐PRPF31	   -‐	  	  	  	  	  	  	  	  	  	  
SEPP1-‐EGFR	   -‐	  	  	  	   KRT81-‐ACTB	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐EDIL3	   -‐	  	  	  	   KRT81-‐KRT15	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐RAB1A	   -‐	  	  	  	   KRT81-‐YBX1	   -‐	  	  	  	  	  	  	  	  	  	  
PTGS2-‐CAV1	   -‐	  	  	  	   KRT81-‐RPS4X	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐NDEL1	   -‐	  	  	  	   KRT81-‐MYL6	   -‐	  	  	  	  	  	  	  	  	  	  

FSCN1-‐KIAA1949	   -‐	  	  	  	   KRT81-‐RPLP0	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐NDE1	   -‐	  	  	  	   KRT81-‐RPL7A	   -‐	  	  	  	  	  	  	  	  	  	  
PTGS2-‐BAT5	   -‐	  	  	  	   KRT81-‐HSPA1A	   -‐	  	  	  	  	  	  	  	  	  	  
COPS5-‐PTGS2	   -‐	  	  	  	   KRT81-‐PSMD11	   -‐	  	  	  	  	  	  	  	  	  	  

TNFRSF10D-‐TNFSF10	   -‐	  	  	  	   KRT81-‐C1QBP	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PAFAH1B2	   -‐	  	  	  	   KRT81-‐RPL17	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PAFAH1B1	   -‐	  	  	  	   KRT81-‐HNRPF	   -‐	  	  	  	  	  	  	  	  	  	  

NGFR-‐FSCN1	   -‐	  	  	  	   KRT81-‐S100A8	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PAFAH1B3	   -‐	  	  	  	   KRT81-‐RAN	   -‐	  	  	  	  	  	  	  	  	  	  

SEPP1-‐PTK2	   -‐	  	  	  	   ITGA8-‐TNC	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PMS1	   -‐	  	  	  	   CXCL1-‐DARC	   -‐	  	  	  	  	  	  	  	  	  	  

FSCN1-‐MTMR15	   -‐	  	  	  	   CCL13-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
TPM2-‐FSCN1	   -‐	  	  	  	   FSCN1-‐DNAJB9	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐FANCG	   -‐	  	  	  	   ITGA9-‐VCAM1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐TPM1	   -‐	  	  	  	   DPP4-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐FANCD2	   -‐	  	  	  	   FSCN1-‐YWHAE	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PRKCA	   -‐	  	  	  	   CXCR4-‐ADRBK2	   -‐	  	  	  	  	  	  	  	  	  	  
PPP1CB-‐FSCN1	   -‐	  	  	  	   ID1-‐ELSPBP1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PPP1CA	   -‐	  	  	  	   TGM1-‐RARRES3	   -‐	  	  	  	  	  	  	  	  	  	  
TMOD3-‐FSCN1	   -‐	  	  	  	   CCL7-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
SASS6-‐FSCN1	   -‐	  	  	  	   ELSPBP1-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  



Appendix 

 

 

 
 

100 

FSCN1-‐FANCI	   -‐	  	  	  	   FSCN1-‐RAB1A	   -‐	  	  	  	  	  	  	  	  	  	  
PRKCD-‐FSCN1	   -‐	  	  	  	   BCAN-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐CAPZA2	   -‐	  	  	  	   FSCN1-‐NDEL1	   -‐	  	  	  	  	  	  	  	  	  	  

FSCN1-‐PPP1R12A	   -‐	  	  	  	   FSCN1-‐EDIL3	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐C19orf21	   -‐	  	  	  	   FSCN1-‐KIAA1949	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐RFC3	   -‐	  	  	  	   FSCN1-‐NDE1	   -‐	  	  	  	  	  	  	  	  	  	  

FSCN1-‐CORO1C	   -‐	  	  	  	   ID1-‐MYF6	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐RAPGEF2	   -‐	  	  	  	   FSCN1-‐PAFAH1B2	   -‐	  	  	  	  	  	  	  	  	  	  
ACTA1-‐FSCN1	   -‐	  	  	  	   ITGA9-‐TNC	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐CTNNB1	   -‐	  	  	  	   FSCN1-‐PAFAH1B1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐MLH1	   -‐	  	  	  	   NGFR-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PMS2	   -‐	  	  	  	   FSCN1-‐PMS1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐YWHAZ	   -‐	  	  	  	   FSCN1-‐MTMR15	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐PCNA	   -‐	  	  	  	   ELA2-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐YWHAE	   -‐	  	  	  	   FSCN1-‐FANCG	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐UBB	   -‐	  	  	  	   FSCN1-‐PAFAH1B3	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐RFC4	   -‐	  	  	  	   PRKCD-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
FSCN1-‐ACTC1	   -‐	  	  	  	   FSCN1-‐PRKCA	   -‐	  	  	  	  	  	  	  	  	  	  

TNFRSF11B-‐TNFSF10	   -‐	  	  	  	   ITGA4-‐VCAM1	   -‐	  	  	  	  	  	  	  	  	  	  
SCNN1A-‐SCNN1G	   -‐	  	  	  	   FSCN1-‐FANCD2	   -‐	  	  	  	  	  	  	  	  	  	  
ACP5-‐TNFSF10	   -‐	  	  	  	   TPM2-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
HECW1-‐SCNN1A	   -‐	  	  	  	   FSCN1-‐FANCI	   -‐	  	  	  	  	  	  	  	  	  	  

TNFRSF10C-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐CTNNB1	   -‐	  	  	  	  	  	  	  	  	  	  
SCNN1A-‐SCNN1B	   -‐	  	  	  	   PPP1CB-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
IER3-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐RAPGEF2	   -‐	  	  	  	  	  	  	  	  	  	  

TNFRSF10A-‐TNFSF10	   -‐	  	  	  	   ACTA1-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
TNFRSF10B-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐PPP1CA	   -‐	  	  	  	  	  	  	  	  	  	  
OTUD7B-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐PMS2	   -‐	  	  	  	  	  	  	  	  	  	  
WWP2-‐SCNN1A	   -‐	  	  	  	   FSCN1-‐RFC3	   -‐	  	  	  	  	  	  	  	  	  	  
CFLAR-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐TPM1	   -‐	  	  	  	  	  	  	  	  	  	  
CASP10-‐TNFSF10	   -‐	  	  	  	   TFPI-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
FADD-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐MLH1	   -‐	  	  	  	  	  	  	  	  	  	  
SNX3-‐SCNN1A	   -‐	  	  	  	   CXCR4-‐CXCL12	   -‐	  	  	  	  	  	  	  	  	  	  

DKFZP564O0523-‐
TNFSF10	   -‐	  	  	  	   FSCN1-‐CAPZA2	   -‐	  	  	  	  	  	  	  	  	  	  

WWP1-‐SCNN1A	   -‐	  	  	  	   FSCN1-‐YWHAZ	   -‐	  	  	  	  	  	  	  	  	  	  
STX1A-‐SCNN1A	   -‐	  	  	  	   TMOD3-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
CASP8-‐TNFSF10	   -‐	  	  	  	   SASS6-‐FSCN1	   -‐	  	  	  	  	  	  	  	  	  	  
NEDD4L-‐SCNN1A	   -‐	  	  	  	   FSCN1-‐ACTC1	   -‐	  	  	  	  	  	  	  	  	  	  
CUL3-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐UBB	   -‐	  	  	  	  	  	  	  	  	  	  

SQSTM1-‐TNFSF10	   -‐	  	  	  	   FSCN1-‐PCNA	   -‐	  	  	  	  	  	  	  	  	  	  
PELI1-‐IRAK4	   -‐	  	  	  	   FSCN1-‐PPP1R12A	   -‐	  	  	  	  	  	  	  	  	  	  

SCNN1A-‐NEDD4	   -‐	  	  	  	   FSCN1-‐C19orf21	   -‐	  	  	  	  	  	  	  	  	  	  
TSG101-‐SCNN1A	   -‐	  	  	  	   FSCN1-‐CORO1C	   -‐	  	  	  	  	  	  	  	  	  	  
USP10-‐SCNN1A	   -‐	  	  	  	   FSCN1-‐RFC4	   -‐	  	  	  	  	  	  	  	  	  	  
ITCH-‐SCNN1A	   -‐	  	  	  	   CXCL1-‐IL8RA	   -‐	  	  	  	  	  	  	  	  	  	  
UBE2I-‐SCNN1A	   -‐	  	  	  	   CMA1-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
IRAK2-‐PELI1	   -‐	  	  	  	   ID1-‐MYF5	   -‐	  	  	  	  	  	  	  	  	  	  
PELI1-‐IRAK1	   -‐	  	  	  	   CTSG-‐VCAM1	   -‐	  	  	  	  	  	  	  	  	  	  

HRAS-‐RARRES3	   -‐	  	  	  	   CXCR4-‐CCR5	   -‐	  	  	  	  	  	  	  	  	  	  
C13orf15-‐CDC2	   -‐	  	  	  	   ID1-‐ELK4	   -‐	  	  	  	  	  	  	  	  	  	  
BCAN-‐MMP7	   -‐	  	  	  	   CXCR4-‐SDC4	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐LAMC1	   -‐	  	  	  	   MYOG-‐ID1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA5-‐LAMC1	   -‐	  	  	  	   ID1-‐TCF3	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA5-‐ITGA3	   -‐	  	  	  	   PTPN11-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐FBN1	   -‐	  	  	  	   NEDD9-‐SH2D3C	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐FBN1	   -‐	  	  	  	   CXCR4-‐CTSG	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐CD44	   -‐	  	  	  	   ID2-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
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ITGA3-‐CD44	   -‐	  	  	  	   ID1-‐IFI16	   -‐	  	  	  	  	  	  	  	  	  	  
TFPI-‐MMP7	   -‐	  	  	  	   NCAN-‐TNC	   -‐	  	  	  	  	  	  	  	  	  	  
ITGB1-‐LAMC1	   -‐	  	  	  	   ITGA2-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGB1-‐ITGA3	   -‐	  	  	  	   ID1-‐HES1	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐SETD3	   -‐	  	  	  	   JAK2-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐SEL1L	   -‐	  	  	  	   CXCR4-‐SOCS3	   -‐	  	  	  	  	  	  	  	  	  	  

LAMC1-‐AADACL1	   -‐	  	  	  	   DOCK3-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐PPT1	   -‐	  	  	  	   MMP1-‐IGFBP3	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐PH-‐4	   -‐	  	  	  	   CXCR4-‐STAT2	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐ACP2	   -‐	  	  	  	   STAT5B-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  

LAMC1-‐PCYOX1	   -‐	  	  	  	   RAPGEF1-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐P4HA1	   -‐	  	  	  	   CXCR4-‐SOCS1	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐ATP1B3	   -‐	  	  	  	   MYOD1-‐ID1	   -‐	  	  	  	  	  	  	  	  	  	  
CD276-‐LAMC1	   -‐	  	  	  	   NEDD9-‐PTPN12	   -‐	  	  	  	  	  	  	  	  	  	  
TREML2-‐LAMC1	   -‐	  	  	  	   COL2A1-‐MMP1	   -‐	  	  	  	  	  	  	  	  	  	  
TXNDC15-‐LAMC1	   -‐	  	  	  	   CXCR4-‐CD4	   -‐	  	  	  	  	  	  	  	  	  	  
GLT25D1-‐LAMC1	   -‐	  	  	  	   JAK1-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  

BTD-‐LAMC1	   -‐	  	  	  	   STAT3-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
SGSH-‐LAMC1	   -‐	  	  	  	   GNA13-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
SIAE-‐LAMC1	   -‐	  	  	  	   ID1-‐CAV1	   -‐	  	  	  	  	  	  	  	  	  	  

C21orf29-‐LAMC1	   -‐	  	  	  	   TRIP6-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
DNASE2-‐LAMC1	   -‐	  	  	  	   ARRB2-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
FUT11-‐LAMC1	   -‐	  	  	  	   ID1-‐TCF12	   -‐	  	  	  	  	  	  	  	  	  	  
CD109-‐LAMC1	   -‐	  	  	  	   ID1-‐ELK1	   -‐	  	  	  	  	  	  	  	  	  	  
CLN5-‐LAMC1	   -‐	  	  	  	   GNAI1-‐CXCR4	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐EGFL11	   -‐	  	  	  	   LYN-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐CLPTM1	   -‐	  	  	  	   LCK-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐FKBP9	   -‐	  	  	  	   FYN-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐C1orf85	   -‐	  	  	  	   CXCL1-‐IL8RB	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐BTN2A1	   -‐	  	  	  	   NCK1-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐SLC3A2	   -‐	  	  	  	   ID1-‐TCF4	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐ECE1	   -‐	  	  	  	   CXCR4-‐HSPA8	   -‐	  	  	  	  	  	  	  	  	  	  

LAMC1-‐C20orf3	   -‐	  	  	  	   ID1-‐RUNX1T1	   -‐	  	  	  	  	  	  	  	  	  	  
FBN2-‐FBN1	   -‐	  	  	  	   ITGB6-‐TNC	   -‐	  	  	  	  	  	  	  	  	  	  

LAMC1-‐COL5A1	   -‐	  	  	  	   SMAD2-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐SUMF1	   -‐	  	  	  	   FBN2-‐LTBP1	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐PODXL2	   -‐	  	  	  	   ZYX-‐NEDD9	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐TPBG	   -‐	  	  	  	   ID1-‐CASK	   -‐	  	  	  	  	  	  	  	  	  	  

KIAA0090-‐LAMC1	   -‐	  	  	  	   ID1-‐IKBKG	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐GAA	   -‐	  	  	  	   ID1-‐PSMD4	   -‐	  	  	  	  	  	  	  	  	  	  
DPP7-‐LAMC1	   -‐	  	  	  	   PTPRB-‐TNC	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐ADNP	   -‐	  	  	  	   LTBP1-‐IGFBP3	   -‐	  	  	  	  	  	  	  	  	  	  
LAMC1-‐NPC1	   -‐	  	  	  	   EGFR-‐TNC	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐SETD3	   -‐	  	  	  	   ITGB5-‐LTBP1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐CD276	   -‐	  	  	  	   PTGS2-‐NUCB1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐TREML2	   -‐	  	  	  	   PTGS2-‐CAV1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐TXNDC15	   -‐	  	  	  	   TGM2-‐LTBP1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐GLT25D1	   -‐	  	  	  	   FBN1-‐LTBP1	   -‐	  	  	  	  	  	  	  	  	  	  

ITGA3-‐BTD	   -‐	  	  	  	   ATN1-‐LTBP1	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐SGSH	   -‐	  	  	  	   PTGS2-‐BAT5	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐SEL1L	   -‐	  	  	  	   TP53-‐PTGS2	   -‐	  	  	  	  	  	  	  	  	  	  

ITGA3-‐AADACL1	   -‐	  	  	  	   COPS5-‐PTGS2	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐PPT1	   -‐	  	  	  	   HRAS-‐RARRES3	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐PH-‐4	   -‐	  	  	  	   CD247-‐LY6E	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐SIAE	   -‐	  	  	  	   FCGR2B-‐LY6E	   -‐	  	  	  	  	  	  	  	  	  	  

ITGA3-‐C21orf29	   -‐	  	  	  	   CCL17-‐DARC	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐ACP2	   -‐	  	  	  	   DPP4-‐CCL22	   -‐	  	  	  	  	  	  	  	  	  	  

ITGA3-‐PCYOX1	   -‐	  	  	  	   CCR8-‐CCL17	   -‐	  	  	  	  	  	  	  	  	  	  
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ITGA3-‐P4HA1	   -‐	  	  	  	   CCL17-‐CCR4	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐ATP1B3	   -‐	  	  	  	   CCL22-‐CCL19	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐EGFL11	   -‐	  	  	  	   CCL22-‐CCR4	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐DNASE2	   -‐	  	  	  	   CCL2-‐DARC	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐FUT11	   -‐	  	  	  	   ITGA8-‐NPNT	   -‐	  	  	  	  	  	  	  	  	  	  
ITGA3-‐CD109	   -‐	  	  	  	  

	   	  
ITGA3-‐CLPTM1	   -‐	  	  	  	  

	   	  
ITGA3-‐CLN5	   -‐	  	  	  	  

	   	  
ITGA3-‐FKBP9	   -‐	  	  	  	   	   	  
ITGA3-‐C1orf85	   -‐	  	  	  	   	   	  
ITGA3-‐BTN2A1	   -‐	  	  	  	   	   	  
LAMC1-‐MAN2B1	   -‐	  	  	  	   	   	  
ITGA3-‐SLC3A2	   -‐	  	  	  	   	   	  

	  
	  
Table A.4. A list of Proteins in the IL-10 Centered Protein-Protein Interaction Network. 

The Distance from IL-10 column provides the degree of contiguity of the proteins to IL-10 

protein. For example, if a protein is a first-degree neighbor of IL-10, its distance from IL-10 

is 1. 

Protein	  
Name	   Protein	  Name	  

Distance	  
from	  
IL10	  

Source	  of	  
Structural	  Data	  

A2M	   Alpha-‐2-‐macroglobulin	   1	   PDB	  

ADAM19	  
Disintegrin	  and	  

metalloproteinase	  domain-‐
containing	  protein	  19	  

2	   Homology	  Modeling	  

ADAMTS1	  
A	  disintegrin	  and	  

metalloproteinase	  with	  
thrombospondin	  motifs	  1	  

2	   PDB	  

AMBP	   Alpha-‐1	  microglycoprotein	   2	   PDB	  
ANXA6	   Annexin	  A6	   2	   PDB	  
APOE	   Apolipoprotein	  E	   2	   PDB	  
APP	   Amyloid	  beta	  A4	  protein	   2	   PDB	  
B2M	   Beta-‐2-‐microglobulin	   2	   PDB	  

BTRC	   F-‐box/WD	  repeat-‐containing	  
protein	  1A	   2	   PDB	  

CD47	   Leukocyte	  surface	  antigen	  
CD47	   2	   PDB	  

CELA1	   Chymotrypsin-‐like	  elastase	  
family	  member	  1	   2	   Homology	  Modeling	  

CPB2	   Carboxypeptidase	  B2	   2	   PDB	  
CTSB	   Cathepsin	  B	   2	   PDB	  
CTSE	   Cathepsin	  E	   2	   PDB	  

ERBB4	   Receptor	  tyrosine-‐protein	  
kinase	  erbB-‐4	   2	   PDB	  

F3	   Tissue	  factor	   2	   PDB	  

HSPA5	   78	  kDa	  glucose-‐regulated	  
protein	   2	   PDB	  
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IGHV3-‐6	   Ig	  heavy	  chain	  V	  region	  3-‐6	   2	   N/A	  

IGLL5	   Immunoglobulin	  lambda-‐like	  
polypeptide	  5	   2	   Homology	  Modeling	  

IL10	   Interleukin-‐10	   0	   PDB	  

IL10RA	   Interleukin-‐10	  receptor	  
subunit	  alpha	   1	   PDB	  

IL10RB	   Interleukin-‐10	  receptor	  
subunit	  beta	   1	   PDB	  

IL1B	   Interleukin-‐1	  beta	   2	   PDB	  
IL22	   Interleukin-‐22	   2	   PDB	  

IL28A	   Interleukin	  28A	   2	   Homology	  Modeling	  

IL28B	   Interferon	  lambda-‐3	   2	   PDB	  
IL4	   Interleukin	  4	   2	   PDB	  
JAK1	   Tyrosine-‐protein	  kinase	  JAK1	   2	   PDB	  
JAK2	   Tyrosine-‐protein	  kinase	  JAK2	   2	   PDB	  

KLK13	   Kallikrein-‐13	   2	   Homology	  Modeling	  

KLK2	   Kallikrein-‐2	   2	   Homology	  Modeling	  

KLK3	   Prostate-‐specific	  antigen	   2	   PDB	  

LCAT	   Phosphatidylcholine-‐sterol	  
acyltransferase	   2	   Homology	  Modeling	  

LEP	   Leptin	   2	   PDB	  

LRP1	   Prolow-‐density	  lipoprotein	  
receptor-‐related	  protein	  1	   2	   PDB	  

LYZ	   Lysozyme	   2	   PDB	  
MMP2	   72	  kDa	  type	  IV	  collagenase	   2	   PDB	  

MYOC	   Myocilin	   2	   Homology	  Modeling	  

NGF	   Beta-‐nerve	  growth	  factor	   2	   PDB	  

PAEP	   Glycodelin	   2	   Homology	  Modeling	  

PDGFA	   Platelet-‐derived	  growth	  factor	  
subunit	  A	   2	   PDB	  

PDGFB	   Platelet-‐derived	  growth	  factor	  
subunit	  B	   2	   PDB	  

SHBG	   Sex	  hormone	  binding	  globulin	   2	   PDB	  

SIRPG	   Signal-‐regulatory	  protein	  
gamma	   1	   PDB	  

SPACA3	   Sperm	  acrosome	  membrane-‐
associated	  protein	  3	   2	   Homology	  Modeling	  

TGFBI	   Transforming	  growth	  factor-‐
beta-‐induced	  protein	  ig-‐h3	   2	   PDB	  

TP63	   Tumor	  protein	  63	   2	   PDB	  
UBC	   Polyubiquitin-‐C	   2	   PDB	  
UCN2	   Urocortin-‐2	   2	   PDB	  
UCN3	   Urocortin-‐3	   2	   PDB	  
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Table A.5. Protein List of Kohn’s MIM. Kohn’s molecular interaction map (MIM) has 

some nodes that do not have a protein counterpart, or some nodes correspond to multiple 

proteins. We updated Kohn’s MIM’s nodes by removing or expanding some of them.  

Kohn's	  
Original	  
Nodes	  

Kohn’s	  Nodes	  
Updated	  

14_3_3	   SFN	  
Abl	   ABL1	  
APC	   APC	  
Bax	   BAX	  

BRCA1	   BRCA1	  
Casp3	   CASP3	  
CycA	   CCNA2	  
CycB	   CCNB1	  
CycD	   CCND1	  
CycE	   CCNE1	  
CycH	   CCNH	  
E-‐cad	   CDH1	  
Cdk1	   CDK1	  
Cdk2	   CDK2	  
Cdk4-‐6	   CDK4,	  CDK5,	  CDK6	  
Cdk7	   CDK7	  
p16	   CDKN2A	  

p19ARF	   CDKN2A	  
Chk1	   CHEK1	  
Cks1	   CKS1B	  
Crk	   CRK	  

E2F1-‐2-‐3	   E2F1	  
E2F4	   E2F4	  
ERCC1	   ERCC1	  
XPF	   ERCC4	  
Fos	   FOS	  

HDAC1	   HDAC1	  
DP1-‐2	   TFDP1,	  TFDP2	  

JNK	   MAPK8,	  MAPK9,	  MAPK10	  

MAPK	   MAPK8,	  MAPK9,	  MAPK10	  

FEN-‐1	   FEN1	  
C-‐TAK1	   MARK3	  
HMG	   HMGB1	  
HR23B	   RAD23B	  
Jun	   JUN	  

Mdm2	   MDM2	  
Gadd45	   GADD45A	  
Ligase_1	   LIG1	  
Ligase_3	   LIG3	  
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Max	   MAX	  
Myc	   MYC	  
RPA	   RPA1,	  RPA2,	  RPA3	  
CK2	   CSNK2A1,	  CSNK2A2	  
p27	   CDKN1B	  
p300	   EP300	  

p36MAT1	   MNAT1	  
p53	   TP53	  
PARP	   PARP1	  
pCAF	   KAT2B	  
PCNA	   PCNA	  
Plk1	   PLK1	  
pRb	   RB1	  
Rad51	   RAD51	  
Rad52	   RAD52	  
Raf1	   RAF1	  
Ras	   RAP1A	  
RF-‐C	   RFC1	  

RPase_2	   POLR2D	  
Skp1	   SKP1	  
Skp2	   SKP2	  

TAFII250	   TAF1	  
TFIIH	   GTF2H1	  
Wee1	   WEE1	  
XPA	   XPA	  
XRCC1	   XRCC1	  
Ku70	   XRCC6	  
Ku80	   XRCC5	  

AP2	   TFAP2A,	  TFAP2B,	  TFAP2C	  

ATM	   ATM	  
Cdc25A	   CDC25A	  
Cdc25C	   CDC25B	  

C-‐EBP	   CEBPA,	  CEBPB,	  CEBPC,	  
CEBPD,	  CEBPE,CEBPG	  

CK1d-‐k	   CSNK1D,	  CSNK1E	  
CSB	   ERCC6	  
HBP1	   GPIHBP1	  	  
Dpase_a	   POLA1,	  POLA2	  
DMP1	   DMTF1	  
Dpase_b	   POLB	  

Dpase_d	   POLD1,	  POLD2,	  POLD3,	  
POLD4	  

dsDNA	   -‐	  
E2F6	   E2F6	  
DNA-‐PK	   PRKDC	  
Histones	   -‐	  
Karp-‐1	   KARP-‐1	  
E2F5	   E2F5	  
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p57	   CDKN1C	  
p68	   -‐	  

Paxillin	   PXN	  
PKC	   PRKCA,	  PRKCB	  

Rep_fork	   -‐	  
RHA	   -‐	  
SL1	   TAF1A	  
Sp1	   SP1	  
ssb	   -‐	  

ssDNA	   -‐	  
U-‐glyc	   UNG	  
Myt1	   PKMYT1	  
p107	   RBL1	  
p130	   RBL2	  
XPB	   ERCC3	  
XPC	   XPC	  
XPD	   ERCC2	  
p21	   CDKN1A	  
TBP	   TBP	  

	  
Table A.6. The Updated Interactions’ List of Kohn’s MIM. If a node was replaced with 

multiple proteins, the number of interactions automatically increased. We searched STRING 

database for validating the new edges and picked the ones, which were coming from high 

throughput experiments or databases. 

	  

Interaction	  
String	  

Prediction	  
Method	  

Interaction	  
String	  

Prediction	  
Method	  

TFAP2A	  ppi	  MYC	   EXPERIMENTS	   TFDP1	  ppi	  E2F6	   EXPERIMENTS	  
TFAP2B	  ppi	  MYC	   EXPERIMENTS	   TFDP2	  ppi	  E2F6	   EXPERIMENTS	  
TFAP2A	  ppi	  RB1	   EXPERIMENTS	   TFDP1	  ppi	  RBL1	   EXPERIMENTS	  
CSNK1D	  ppi	  TP53	   EXPERIMENTS	   TFDP2	  ppi	  RBL1	   EXPERIMENTS	  
CSNK1E	  ppi	  TP53	   EXPERIMENTS	   TFDP1	  ppi	  RBL2	   EXPERIMENTS	  
TP53	  ppi	  PRKCA	   EXPERIMENTS	   TFDP2	  ppi	  RBL2	   EXPERIMENTS	  
PARP1	  ppi	  POLA1	   EXPERIMENTS	   TFDP1	  ppi	  CCNA2	   DATABASES	  
PARP1	  ppi	  POLA2	   EXPERIMENTS	   TFDP2	  ppi	  CCNA2	   DATABASES	  
PCNA	  ppi	  POLD1	   EXPERIMENTS	   TFDP1	  ppi	  CDK2	   DATABASES	  
PCNA	  ppi	  POLD2	   EXPERIMENTS	   TFDP2	  ppi	  CDK2	   DATABASES	  
PCNA	  ppi	  POLD3	   EXPERIMENTS	   TP53	  ppi	  TFDP1	   EXPERIMENTS	  
PCNA	  ppi	  POLD4	   EXPERIMENTS	   RB1	  ppi	  TFDP1	   EXPERIMENTS	  
RB1	  ppi	  CEBPB	   EXPERIMENTS	   RB1	  ppi	  TFDP2	   EXPERIMENTS	  
RB1	  ppi	  CEBPD	   EXPERIMENTS	   TP53	  ppi	  MAPK8	   EXPERIMENTS	  
RB1	  ppi	  CEBPE	   EXPERIMENTS	   TP53	  ppi	  MAPK9	   EXPERIMENTS	  
RPA1	  ppi	  POLA1	   EXPERIMENTS	   TP53	  ppi	  MAPK10	   EXPERIMENTS	  
RPA3	  ppi	  POLA1	   DATABASES	   TP53	  ppi	  RPA1	   EXPERIMENTS	  
RPA3	  ppi	  POLA2	   DATABASES	   CDK2	  ppi	  RPA3	   DATABASES	  
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RPA2	  ppi	  UNG	   EXPERIMENTS	   CCNA2	  ppi	  RPA3	   EXPERIMENTS	  
CDC25A	  ppi	  CDK4	   DATABASES	   TP53	  ppi	  RPA1	   EXPERIMENTS	  
CDC25A	  ppi	  CDK6	   DATABASES	   RAD51	  ppi	  RPA1	   EXPERIMENTS	  
CDK4	  ppi	  CCND1	   EXPERIMENTS	   RAD51	  ppi	  RPA3	   DATABASES	  
CDK4	  ppi	  CDKN2A	   EXPERIMENTS	   RAD52	  ppi	  RPA1	   EXPERIMENTS	  
CDK4	  ppi	  CDKN2A	   EXPERIMENTS	   RAD52	  ppi	  RPA2	   EXPERIMENTS	  
CDK6	  ppi	  CDKN2A	   EXPERIMENTS	   RAD52	  ppi	  RPA3	   EXPERIMENTS	  
CDK7	  ppi	  CDK4	   EXPERIMENTS	   RPA3	  ppi	  RAD23B	   DATABASES	  
CDK7	  ppi	  CDK5	   EXPERIMENTS	   RPA1	  ppi	  ERCC4	   EXPERIMENTS	  
CCNH	  ppi	  CDK4	   DATABASES	   RPA3	  ppi	  ERCC4	   DATABASES	  
CCNH	  ppi	  CDK5	   EXPERIMENTS	   RPA3	  ppi	  ERCC1	   DATABASES	  
TFDP1	  ppi	  E2F1	   EXPERIMENTS	   RPA3	  ppi	  GTF2H1	   DATABASES	  
TFDP2	  ppi	  E2F1	   EXPERIMENTS	   XPA	  ppi	  RPA1	   EXPERIMENTS	  
TFDP1	  ppi	  E2F4	   EXPERIMENTS	   XPA	  ppi	  RPA3	   DATABASES	  
TFDP2	  ppi	  E2F4	   EXPERIMENTS	   XPA	  ppi	  RPA2	   EXPERIMENTS	  
TFDP1	  ppi	  E2F5	   EXPERIMENTS	   XPC	  ppi	  RPA3	   DATABASES	  

TFDP2	  ppi	  E2F5	   EXPERIMENTS	   TP53	  ppi	  
CSNK2A1	   EXPERIMENTS	  

	  
Table A7. RMSD values of CDK6 structures. We highlighted the RMSD values higher 
than 2.5 with red. 

	  	   CHAIN	  2	  

CH
AI
N
	  1
	  

RMSD	   1BLX_A	   1XO2_B	   2EUF_B	   2F2C_B	   3NUP_A	   3NUX_A	  

1BLX_A	   -‐	   2.67	   2.8	   2.82	   0.78	   0.92	  

1XO2_B	   2.67	   -‐	   0.88	   1.06	   1.69	   1.77	  

2EUF_B	   2.8	   0.88	   -‐	   0.9	   1.68	   1.78	  

2F2C_B	   2.82	   1.06	   0.9	   -‐	   1.95	   1.98	  

3NUP_A	   0.78	   1.69	   1.68	   1.95	   -‐	   0.4	  

3NUX_A	   0.92	   1.77	   1.78	   1.98	   0.4	   -‐	  
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Table A.8. We have tested the evidence of the presence of the genes of lung metastasis sub-

network in different databases.
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Table A.9. We have tested the evidence of the presence of the genes of brain metastasis sub-

network in different databases 

	  
Table A.10. The frequency of interfaces in both metastasis networks. 

Interface	  
Template	  
Name	  

Frequency	  
in	  Lung	  
Metastasis	  
Network	  

Frequency	  
in	  Brain	  
Metastasis	  
Network	  

	  

Interface	  
Template	  
Name	  

Frequency	  
in	  Lung	  
Metastasis	  
Network	  

Frequency	  
in	  Brain	  
Metastasis	  
Network	  

2b8nAB	   8	   2	  
	  

1xedAC	   1	   0	  
2a6aAB	   4	   0	  

	  
1l1yAD	   1	   0	  

1nqlAB	   2	   2	  
	  

1on2AB	   1	   0	  
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1qjcAB	   2	   2	  
	  

1e8oCD	   1	   0	  
1moxAC	   2	   2	  

	  
1a49AB	   1	   0	  

1jogCD	   5	   1	  
	  

1iieAB	   1	   0	  
1gveAB	   3	   1	  

	  
1fr3AB	   1	   0	  

1oh0AB	   1	   1	  
	  

1djrDE	   1	   0	  
1bqqMT	   1	   1	  

	  
1p65AB	   1	   0	  

1zdnAB	   2	   1	  
	  

1symAB	   1	   0	  
2bo4CD	   2	   1	  

	  
1c4zAD	   1	   0	  

1tueAH	   1	   1	  
	  

1y0eAB	   1	   0	  
1xx9CD	   1	   1	  

	  
1x8dAB	   1	   0	  

1g8tAB	   1	   1	  
	  

1p5qAC	   1	   0	  
1b3dAB	   1	   1	  

	  
1u6iAF	   1	   0	  

1jflAB	   0	   1	  
	  

1u0kAB	   1	   0	  
1okjAB	   0	   1	  

	  
1wb1BD	   1	   0	  

1qiaCD	   1	   1	  
	  

1twjCD	   1	   0	  
1eq2GJ	   0	   1	  

	  
1xqcAB	   1	   0	  

2b99CE	   0	   1	  
	  

1tljAB	   1	   0	  
1kkmAB	   1	   1	  

	  
1f6fBC	   1	   0	  

2btfAP	   1	   1	  
	  

1p60AB	   1	   0	  
1jyaAB	   1	   1	  

	  
1pbiAB	   1	   0	  

1cd9AB	   0	   1	  
	  

1yw0AD	   1	   0	  
1jzmAB	   1	   1	  

	  
1iawAB	   1	   0	  

1nh0AB	   2	   1	  
	  

1v8pEF	   1	   0	  
1rd5AB	   0	   1	  

	  
1qorAB	   1	   0	  

1kamAB	   0	   1	  
	  

1rkeAB	   1	   0	  
1ywkAC	   1	   1	  

	  
1o60AB	   1	   0	  

1t6uAF	   2	   0	  
	  

1jd1AB	   1	   0	  
1y9iAD	   2	   0	  

	  
1vr0BC	   1	   0	  

1pe0AB	   1	   0	  
	  

1n1bAB	   1	   0	  
1j2rCD	   1	   0	  

	  
1fiuAB	   1	   0	  

1u2eAC	   1	   0	  
	  

3ezeAB	   1	   0	  
1wmhAB	   1	   0	  

	  
1k2fAB	   1	   0	  

1tb3AD	   1	   0	  
	  

1um0CD	   1	   0	  
1sj1AB	   1	   0	  

	  
1vi6AB	   1	   0	  

1zuwAC	   1	   0	  
	  

1q5cAB	   1	   0	  
1xmzAB	   1	   0	  

	  
1s96AB	   1	   0	  

2erbAB	   1	   0	  
	  

1yllAB	   1	   0	  
1mzhAB	   1	   0	  

	  
1t3uAB	   1	   0	  

 

Table A.11 Most frequently used interfaces while modeling the interactions of 
lung metastasis network. 
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Template	  Interface	   2b8nAB	   1jogCD	   2a6aAB	  

Proteins	  of	  the	  Complex	   Glycerate	  kinase,	  
putative	  

Uncharacterized	  
protein	  HI_0074	  

Peptidase	  M22	  
glycoprotease	  

PRINT	  Cluster	  Size	   1	   17	   1	  
#	  of	  PPIs	  Modelled	   8	   5	   4	  

#	  of	  Proteins	  Using	  	  This	  
Interface	   11	   7	   7	  

Origin	   Thermotoga	  
Maritima	  bacteria	  

Eukaryote	  and	  
Bacteria	  (Table	  

A.24)	  

Thermotoga	  
Maritima	  bacteria	  

Common	  Biological	  Processes	   -‐	  
oxygen	  

transportation	  
(Table	  A.24)	  

hydrolase	  and	  
protease	  

Common	  Molecular	  Functions	  

enzymatic	  
activities	  like	  

kinase,	  
oxidoreductase,	  
transferase	  

-‐	   -‐	  

Proteins	  in	  
the	  Metastasis	  
Network	  

Common	  
Biological	  
Processes	  

cell	  adhesion	  
(Table	  A.25)	  

cell	  adhesion,	  
angiogenesis,	  
host-‐virus	  
interaction,	  
immunity	  	  

(Table	  A.25)	  

cell	  adhesion,	  cell	  
shape	  and	  host-‐
virus	  interaction	  
(Table	  A.25)	  

Common	  
Molecular	  
Functions	  

enzymatic	  
activities	  (Table	  

A.26).	  

enzymatic	  
activities	  (Table	  

A.26)	  

-‐	  
(Tables	  A.26)	  

	  
Table A.12. Most frequently used interfaces while modeling the interactions of 

brain metastasis network.  

Template	  Interface	   2b8nAB	   1qjcAB	   1nqlAB	   1moxAC	  
Proteins	  of	  the	  

Complex	  
Glycerate	  

kinase,	  putative	   coaD	   EGFR-‐EGF	   EGFR-‐TGFA	  

PRINT	  Cluster	  Size	   1	   7	   1	   4	  
#	  of	  PPIs	  Modelled	   2	   2	   2	   2	  
#	  of	  Proteins	  Using	  	  
This	  Interface	   4	   4	   3	   3	  

Origin	  
Thermotoga	  
Maritima	  
Bacteria	  

E.	  Coli	  and	  
Thermatoga	  Maritime	  

Bacteria	  
Homo	  Sapiens	   Homo	  Sapiens	  

Common	  Biological	  
Processes	   -‐	   Coenzyme	  A	  

biosynthesis	   -‐	   -‐	  
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Common	  Molecular	  
Functions	  

enzymatic	  
activities	  like	  

kinase,	  
oxidoreductase,	  
transferase	  

nucleotidyltransferase	  
and	  transferase	  

Developmental	  
Protein	  
Kinase	  
Receptor	  
Transferase	  

Tyrosine-‐protein	  
kinase	  

Growth	  Factor	  

Developmental	  
Protein	  
Kinase	  
Receptor	  
Transferase	  
Tyrosine-‐

protein	  kinase	  
Growth	  Factor	  

Mitogen	  

Proteins	  
in	  the	  

Metastasis	  
Network	  

Common	  
Biological	  
Processes	  

-‐	  
(Tables	  A.27)	  

cell	  adhesion	  	  (Tables	  
A.27)	  

Apoptosis	  
Lactation	  

Transcription	  
Transcription	  
Regulation	  
(Table	  A.27)	  

Apoptosis	  
Lactation	  

Transcription	  
Transcription	  
Regulation	  
(Table	  A.27)	  

Common	  
Molecular	  
Functions	  

-‐	  	  
(Tables	  A.28)	  

receptor	  	  
(Tables	  A.28)	  

Developmental	  
Protein	  
Kinase	  
Receptor	  
Transferase	  

Tyrosine-‐protein	  
kinase	  

Growth	  Factor	  
Activator	  

(Table	  A.28)	  

Developmental	  
Protein	  
Kinase	  
Receptor	  
Transferase	  
Tyrosine-‐

protein	  kinase	  
Growth	  Factor	  
Activator	  

(Table	  A.28)	  
	  
Table A.13. Host-pathogen knowledge on proteins that use pathogenic interface 

architectures in brain metastasis network. 

PROTEIN	   RELATIONSHIP	   SOURCE	  
LTBP1	   -‐	   -‐	  

TNFSF11	   -‐	   -‐	  
SERPINA3	   -‐	   -‐	  

BSG	   -‐	   -‐	  
FBN1	   -‐	   -‐	  
PLS3	   -‐	   -‐	  
FSCN1	   -‐	   -‐	  
FN1	   interaction	  with	  	  bacteria	   [311]	  

CCL2	  

involvement in 
mycobacterium 

tuberculosis 
susceptibility 

[312]	  

MMP1	   Host-‐virus	  interaction	   UNIPROT	  
ITGB1	   Host-‐virus	  interaction	   UNIPROT	  
KPNB1	   Host-‐virus	  interaction	   UNIPROT	  
CD44	   HIV1	  downregulates	   HPIDB 
ITGA5	   Host-‐virus	  interaction	   UNIPROT	  
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Table A.14. Host-pathogen knowledge on proteins that use pathogenic interface 

architectures in lung metastasis network. 

PROTEIN RELATIONSHIP SOURCE 
ABL1 HIV1 downregulates HPIDB 

BCAR1 - - 
BSG - - 

CCL2 
involvement in 

mycobacterium tuberculosis 
susceptibility 

[312] 

CD44 HIV1 downregulates HPIDB 
CDH1 - - 

CNTN1 - - 
CRKL - - 
CXCL1 - - 
CXCR4 Host-virus interaction UNIPROT 

ELA2 (elane) associated with Hendra 
virus HPIDB 

EZR -   
FN1 interaction with  bacteria [311] 

FSCN1 -   
IL13 -   
ITCH Host-virus interaction UNIPROT 
ITGB1 Host-virus interaction UNIPROT 

ITGB7 Host cell receptor for virus 
entry UNIPROT 

JAK3 -   
KPNB1 Host-virus interaction UNIPROT 
LTBP1 -   

MICAL1 -   
MMP1 Host-virus interaction UNIPROT 
MMP9 -   
MYH9 -   
NEDD9 -   

PIK3CA associated with influenza A 
virus HPIDB 

PLS3 -   
PTK2 -   

PTK2B -   
PTPN11 -   
PTPN6 -   
PTPRC defense response to virus UNIPROT 

PXN -   
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SERPINA3 -   
SMAD1 -   

TNC -   
TNFSF11 -   

VAV1 -   
VCAM1 Host-virus interaction UNIPROT 

	  
Table A.15. Proteins in brain metastasis sub-network with PRISM interface 

predictions 

PROTEIN	   BIOLOGICAL	  FUNCTION	  
USING	  PATHOGEN	  
INTERFACE	  
ARCHITECTURE	  

LTBP1	   -‐	   YES	  
SERPINA3	   -‐	   YES	  
BSG	   -‐	   YES	  
FBN1	   -‐	   YES	  
PLS3	   -‐	   YES	  
FSCN1	   -‐	   YES	  
MMP1	   -‐	   YES	  
KPNB1	   -‐	   YES	  
FN1	   cell	  adhesion	   YES	  
CCL2	   cell	  adhesion	   YES	  
ITGB1	   cell	  adhesion	   YES	  
CD44	   cell	  adhesion	   YES	  
ITGA5	   cell	  adhesion	   YES	  

TNFSF11	   positive	  regulation	  of	  
homotypic	  cell-‐cell	  adhesion	   YES	  

CSF3R	   cell	  adhesion	   NO	  
HBEGF	   -‐	   NO	  
EGFR	   cell-‐cell	  adhesion	   NO	  
ELANE	   -‐	   NO	  
ERBB4	   -‐	   NO	  
MMP7	   -‐	   NO	  
TIMP1	   -‐	   NO	  

	  
	  
	  
Table A.16. Proteins in lung metastasis sub-network with PRISM interface 

predictions 

PROTEIN	   BIOLOGICAL	  FUNCTION	  
USING	  PATHOGEN	  

INTERFACE	  
ARCHITECTURE	  
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CDH1	   cell	  adhesion	   YES	  
CNTN1	   cell	  adhesion	   YES	  
TNC	   cell	  adhesion	   YES	  

BCAR1	   cell	  adhesion	   YES	  
NEDD9	   cell	  adhesion	   YES	  
PTK2B	   cell	  adhesion	   YES	  
PXN	   cell	  adhesion	   YES	  
ABL1	   cell	  adhesion	   YES	  
FN1	   cell	  adhesion	   YES	  
CCL2	   cell	  adhesion	   YES	  
ITGB7	   cell	  adhesion	   YES	  
ITGB1	   cell	  adhesion	   YES	  
CD44	   cell	  adhesion	   YES	  
ITGA5	   cell	  adhesion	   YES	  
VCAM1	   cell	  adhesion	   YES	  
MYH9	   cell-‐cell	  adhesion	   YES	  
EZR	   leukocyte	  cell-‐cell	  adhesion	   YES	  

PTPRC	  
negative	  regulation	  of	  cell	  adhesion	  
involved	  in	  substrate-‐bound	  cell	  

migration	  
YES	  

PTK2	  
negative	  regulation	  of	  cell-‐cell	  

adhesion,	  positive	  regulation	  of	  cell	  
adhesion	  

YES	  

TNFSF11	   positive	  regulation	  of	  homotypic	  cell-‐
cell	  adhesion	   YES	  

PTPN11	   regulation	  of	  cell	  adhesion	  mediated	  
by	  integrin	   YES	  

BSG	   -‐	   YES	  
CRKL	   -‐	   YES	  
CXCL1	   -‐	   YES	  
IL13	   -‐	   YES	  
JAK3	   -‐	   YES	  
MMP9	   -‐	   YES	  
SMAD1	   -‐	   YES	  
FSCN1	   -‐	   YES	  
LTBP1	   -‐	   YES	  
MICAL1	   -‐	   YES	  
PLS3	   -‐	   YES	  
PTPN6	   -‐	   YES	  

SERPINA3	   -‐	   YES	  
VAV1	   -‐	   YES	  

ELA2	  (elane)	   -‐	   YES	  
MMP1	   -‐	   YES	  
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KPNB1	   -‐	   YES	  
CXCR4	   -‐	   YES	  
ITCH	   -‐	   YES	  
PIK3CA	   -‐	   YES	  
CD74	   -‐	   NO	  
CHAT	   -‐	   NO	  
CRK	   cell	  adhesion	   NO	  
EGFR	   cell-‐cell	  adhesion	   NO	  
ERBB4	   -‐	   NO	  
EREG	   -‐	   NO	  
SMAD3	   -‐	   NO	  
MMP7	   -‐	   NO	  
MSN	   leukocyte	  cell-‐cell	  adhesion	   NO	  
STAT1	   -‐	   NO	  
TCF3	   -‐	   NO	  
TIMP1	   -‐	   NO	  
BCAR3	   -‐	   NO	  
DIMT1L	   -‐	   NO	  

 
Table A.17. Distribution of the residue numbers and the mutation numbers per 

protein.  

 
 
Table A.18. The total residues numbers/genetic variations observed in different 
locations and the odds ratio, 95% confidence interval, and the P-value for a two 

tailed test that OR is different from 1.0. 

	  	   #	  of	  
Residues	  

Genetic	  
Variations	   	  	   OR	   95	  percent	  CI	   P	  value	  

Core	   1275	   135	   Core	  vs.	  surface	   0.99	   0.78	  -‐	  1.24	   0.95	  
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Surface	   2344	   251	  
Interface	  vs	  	  
surface	  
noninterface	  

0.76	   0480	  -‐	  1.15	   0.21	  

Interface	   326	   28	   Core	  vs.	  
interface	   1.26	   0.81	  -‐	  2.01	   0.3	  

Surface	  
noninterface	   2018	   223	       
Total	   3619	   386	       

 

Table A.19. Interface residues (Sequence IDs)  of HBEGF-EGFR model, the binding 

site residues of HBEGF protein’s complexes available in PDB and the binding site 

residues of EGFR protein’s complexes available in PDB. The interface residues that 

are overlaping with available binding site residues are in italic, bold fonts.  

	   IN	  PDB	   	  	   PRISM	  MODEL	   	  	   IN	  PDB	  

PDB	  ID;	  
Chain	  ID	   1XDT	  ;	  R	   	  	   -‐	   	  	   1NQL;	  A	   1MOX;	  A	   1IVO;	  A	   3NJP;	  A	  

PROTEIN	  
NAME	   HBEGF	   	  	   HBEGF	   EGFR	   	  	   EGFR	   EGFR	   EGFR	   EGFR	  

RE
SI
DU

ES
	  

112	   	  	   111	   36	   	  	   36	   36	   36	   36	  
115	   	  	   112	   37	   	  	   37	   37	   37	   37	  
122	   	  	   113	   38	   	  	   38	   38	   38	   38	  
124	   	  	   114	   39	   	  	   39	   39	   39	   39	  
126	   	  	   115	   40	   	  	   40	   40	   40	   40	  
127	   	  	   117	   41	   	  	   41	   41	   41	   41	  
129	   	  	   124	   42	   	  	   42	   42	   42	   42	  
130	   	  	   126	   69	   	  	   46	   69	   46	   46	  
131	   	  	   127	   92	   	  	   47	   93	   50	   53	  
132	   	  	   129	   93	   	  	   93	   122	   69	   69	  
133	   	  	   131	   122	   	  	   114	   123	   92	   93	  
134	   	  	   132	   123	   	  	   122	   125	   93	   114	  
135	   	  	   133	   125	   	  	  

	  
126	   114	   122	  

136	   	  	   134	   349	   	  	  
	  

149	   122	   123	  
137	   	  	   139	   377	   	  	  

	  
152	   123	   125	  

138	   	  	   140	   379	   	  	  
	  

349	   125	   349	  
139	   	  	   141	   380	   	  	  

	  
370	   349	   370	  

140	   	  	   142	   381	   	  	  
	  

372	   370	   372	  
141	   	  	   143	   408	   	  	  

	  
374	   372	   373	  

143	   	  	   144	   433	   	  	  
	  

378	   372	   374	  
147	   	  	   145	   	   	  	  

	  
379	   374	   377	  

	   	  	   	   	   	  	  
	  

380	   375	   379	  
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381	   381	   380	  

	   	  	   	   	   	  	  
	  

406	   382	   381	  

	   	  	   	   	   	  	  
	  

408	   406	   382	  

	   	  	   	   	   	  	  
	  

432	   408	   406	  

	   	  	   	   	   	  	  
	  

433	   432	   408	  

	   	  	   	   	   	  	  
	  

435	   433	   432	  

	   	  	   	   	   	  	  
	  

436	   435	   433	  

	   	  	   	   	   	  	  
	  

439	   436	   436	  

	   	  	   	   	   	  	  
	  

462	   439	   439	  

	   	  	   	   	   	  	  
	   	  

441	   441	  

	   	  	   	   	   	  	  
	   	  

462	   462	  

	   	  	   	   	   	  	  
	   	  

464	   464	  

	   	  	   	   	   	  	  
	   	  

489	   491	  

	   	  	   	   	   	  	  
	   	   	  

492	  
 
Table A.20. Interface residues (Sequence IDs) of EREG-EGFR model and the 

binding site residues of EGFR protein’s complexes available in PDB. The interface 

residues that are overlaping with available binding site residues are in italic, bold 

fonts.  

	   PRISM	  MODEL	   	   IN	  PDB	  

PDB	  ID;	  
Chain	  ID	   -‐	   	   1NQL;	  A	   1MOX;	  A	   1IVO;	  A	   3NJP;	  A	  

PROTEIN	  
NAME	   EREG	   EGFR	   	   EGFR	   EGFR	   EGFR	   EGFR	  

RE
SI
DU

ES
	  

71	   34	   	   36	   36	   36	   36	  
72	   35	   	   37	   37	   37	   37	  
73	   36	   	   38	   38	   38	   38	  
74	   38	   	   39	   39	   39	   39	  
75	   39	   	   40	   40	   40	   40	  
77	   40	   	   41	   41	   41	   41	  
84	   41	   	   42	   42	   42	   42	  
86	   42	   	   46	   69	   46	   46	  
87	   43	   	   47	   93	   50	   53	  
89	   46	   	   93	   122	   69	   69	  
91	   69	   	   114	   123	   92	   93	  
92	   93	   	   122	   125	   93	   114	  
93	   122	   	  

	  
126	   114	   122	  

94	   123	   	  
	  

149	   122	   123	  
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96	  

C-‐
Te
rm

in
us
	  

125	   	  
	  

152	   123	   125	  
99	   372	   	  

	  
349	   125	   349	  

101	   373	   	  
	  

370	   349	   370	  
104	   374	   	  

	  
372	   370	   372	  

105	   377	   	  
	  

374	   372	   373	  
106	   379	   	  

	  
378	   372	   374	  

107	   380	   	  
	  

379	   374	   377	  
108	   381	   	  

	  
380	   375	   379	  

	  
382	   	  

	  
381	   381	   380	  

	  
383	   	  

	  
406	   382	   381	  

	  
406	   	  

	  
408	   406	   382	  

	  
408	   	  

	  
432	   408	   406	  

	  
432	   	  

	  
433	   432	   408	  

	  
433	   	  

	  
435	   433	   432	  

	  
439	   	  

	  
436	   435	   433	  

	  
441	   	  

	  
439	   436	   436	  

	  
442	   	  

	  
462	   439	   439	  

	  
462	   	  

	   	  
441	   441	  

	  
489	   	  

	   	  
462	   462	  

	  
	   	  

	   	  
464	   464	  

	  
	   	  

	   	  
489	   491	  

	  
	   	  

	  
	  

	  
492	  

 
Table A.21. Interface residues (Sequence IDs)  of HBEGF-ERBB4 model, the 

binding site residues of HBEGF protein’s complexes available in PDB and the 

binding site residues of ERBB4 protein’s complexes available in PDB. The interface 

residues that are overlapping with available binding site residues are in italic, bold 

fonts.  

	   IN	  PDB	   	   PRISM	  MODEL	   	   IN	  PDB	  
PDB	  ID;	  
Chain	  ID	   1XDT;	  R	   	   -‐	   	   3U7U;	  A	  

PROTEIN	  
NAME	   HBEGF	   	   HBEGF	   ERBB4	   	   ERBB4	  

RE
SI
DU

ES
	   112	   	   111	   33	   	   34	  

115	   	   112	   34	   	   35	  
122	   	   113	   35	   	   36	  
124	   	   114	   36	   	   37	  
126	   	   115	   37	   	   38	  
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127	   	   117	   38	   	   39	  
129	   	   118	   39	   	   40	  
130	   	   124	   40	   	   41	  
131	   	   126	   52	   	   42	  
132	   	   127	   91	   	   44	  
133	   	   131	   120	   	   51	  
134	   	   132	   121	   	   91	  
135	   	   133	   125	   	   111	  
136	   	   134	   352	   	   112	  
137	   	   135	   375	   	   120	  
138	   	   138	   376	   	   121	  
139	   	   139	   377	   	   123	  
140	   	   140	   382	   	   125	  
141	   	   141	   383	   	   148	  
143	   	   142	   384	   	   346	  
147	   	   144	   411	   	   369	  

	   	   145	   435	   	   370	  

	   	   146	   443	   	   371	  

	   	   147	   444	   	   382	  

	   	   	   	   	   383	  

	   	   	   	   	   384	  

	   	   	   	   	   385	  

	   	   	   	   	   405	  

	   	   	   	   	   429	  

	   	   	   	   	   432	  

	   	   	   	   	   435	  

	   	   	   	   	   437	  

	   	   	   	   	   438	  

	   	   	   	   	   459	  
 
Table A.22. Interface residues (Sequence IDs)  of EREG-ERBB4 model and the 

binding site residues of ERBB4 protein’s complexes available in PDB. The interface 

residues that are overlapping with available binding site residues are in italic, bold 

fonts.  

	   PRISM	  MODEL	   	   IN	  PDB	  
PDB	  ID;	  
Chain	  ID	   -‐	   	  

3U7U;	  
A	  

PROTEIN	  
NAME	   EREG	   ERBB4	   	   ERBB4	  

RE
SI
D

U
ES
	   71	   32	   	   34	  

72	   33	   	   35	  
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73	   34	   	   36	  
74	   36	   	   37	  
75	   37	   	   38	  
77	   38	   	   39	  
78	   39	   	   40	  
84	   40	   	   41	  
86	   41	   	   42	  
87	   44	   	   44	  
89	   52	   	   51	  
91	   90	   	   91	  
93	   91	   	   111	  
94	   120	   	   112	  

96	  
C-‐
te
rm

in
us
	  

121	   	   120	  
99	   373	   	   121	  
100	   375	   	   123	  
101	   376	   	   125	  
102	   377	   	   148	  
104	   383	   	   346	  
105	   409	   	   369	  
106	   411	   	   370	  

107	   435	   	   371	  
108	   443	   	   382	  

	   	  
444	   	   383	  

	   	  
465	   	   384	  

	   	  
467	   	   385	  

	   	  
468	   	   405	  

	   	  
494	   	   429	  

	   	   	   	   432	  

	   	   	   	   435	  

	   	   	   	   437	  

	   	   	   	   438	  

	   	   	   	   459	  
	  

	  
	  
Table A.23. The table for the source organism distribution of template chains, 
used for modeling the complexes of BMSN and LMSN.  

	  

Lung	  
Met.	  Net.	  
Template	  
Chains	  

Brain	  Met.	  
Net.	  

Template	  
Chains	  

All	  
Template	  
Chains	  in	  

the	  Dataset	  
Eukaryota	   60	   22	   5822	  



Appendix 

 

 

 
 

122 

Archaea	   12	   4	   515	  
Viruses	   6	   4	   716	  
Bacteria	   72	   26	   4202	  
Microbial	  

(Viruses	  +	  Bacteria)	   78	   30	   4918	  

Total	  Number	  of	  
Template	  Chains	   150	   56	   11255	  

 

Table A.24. The interfaces in the 1jogCD PRINT cluster. 

PDB	  chains	   Protein	  Name	   Organism	   Molecular	  
Function	  

Biological	  
Process	  

1jog_CD/AB	   uncharacterized	  
protein	   bacteria	   -‐	   -‐	  

1i4y_AH/FG/BC/DE:	  
1i4z_CF/AD/BG/EH	  :	  

2hmqCD	  :	  2hmzCD	  :	  1hmdCD	  :	  
1hmoCD	  

Hemerythrin	   eukaryota	   -‐	  
Oxygen	  

transport,	  
Transport	  

1wwpAB	   uncharacterized	  
protein	   bacteria	   -‐	   -‐	  

1wty_BC/AD	   uncharacterized	  
protein	   bacteria	   -‐	   -‐	  
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Table A.27. The biological processes of the proteins utilizing the most frequent interfaces 

of brain metastasis network. 

	  
 

Table A.28. The molecular functions of the proteins utilizing the most frequent interfaces 

of brain metastasis 
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