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ABSTRACT

This study investigates the problem of jointly determining the order size and optimal

prices for a perishable inventory system under the condition that demand is time and price

dependent. The inventory is also assumed to decay at a certain rate. We assume that

a decision-maker has the opportunity to adjust prices during the sales season to influence

demand and to improve revenues. In this system the seller is allowed to change the prices

for a discrete number of times at a certain cost. We develop a mathematical model to

find the optimal times to change the prices, the optimal prices and the order quantity. We

analyze both single and double product system where items are procured from a single

supplier with respect to the economic order quantity model. This research investigates

the operational efficiency of the supply chain by considering the effects of price change

throughout the timeline. We develop analytical results for the optimal prices when the

times of price changes are given. However, due to the complexity of the problem, we design

heuristic algorithms in order to find best times to change the prices in order to obtain the

highest profit values. We develop two different heuristics which are Simulated Annealing and

Genetic Algorithm. We observe that better results can be obtained by genetic algorithm

for most of the parameter settings. For the double product system, we analyze multiple

pricing at equal time intervals and obtain similar results as in the single product case. We

again apply Simulated Annealing and Genetic Algorithm heuristic methods in order to find

the best time arrays and we again observe that genetic algorithm gives better results than

simulated annealing. We observe that the profit values can be significantly increased by using

multiple prices over the season rather than using a constant price for both single product

and double product cases. The system can be managed much more efficiently and the decay

rates can be decreased significantly with the application of multiple prices over the season.

Through numerical experiments, we also analyze the effects of different parameters on this

system and extract managerial insights.
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ÖZETÇE

Bu çalışma talep fonksiyonunun zaman ve fiyata bağlı olduğu durumlar için bozunabilen

envanter sistemlerinde en uygun fiyat ve sipariş büyüklüğünün belirlenmesini incelemekte-

dir. Yapılan analizler süresince karar verici kişilerin ürün fiyatlarını değiştirerek talepleri etk-

ileyebileceği ve bu şekilde kazancın artırılabileceği varsayılmıştır. Sistemde satıcının önceden

belirlenen zaman aralıklarında belirli bir maliyeti üstlenerek ürünlerin fiyatlarını değiştirme-

sine izin verilmiştir. Fiyatların değiştirilmesi gereken en uygun zaman aralıkları, bu zaman

aralıklarında uygulanması gereken fiyatlar ve sipariş büyüklüğünü bulmak üzere matem-

atiksel modeller geliştirilmiştir. Bu çalışma hem tek ürünlü hem de çift ürünlü sistemler

için uygulanmış ve yapılan analizler sırasında ürünlerin tek bir tedarikçiden temin edildiği

varsayılmıştır. Bu araştırma aynı zamanda belirli zaman çizelgesi boyunca fiyat değişik-

liğinin etkilerini dikkate alarak tedarik zincirinin operasyonel verimliliğini de incelemekte-

dir. Fiyat değişim sayıları önceden belirlenerek zaman çizelgelerine uygun elde edilebilecek

en iyi fiyatları bulmak üzere analitik modeller geliştirilmiştir. Ancak sorunun karmaşıklığı

nedeniyle en yüksek kâr değerlerini elde etmek için fiyat değişim zamanları sezgisel algorit-

malar tasarlanarak elde edilmiştir. İki farklı sezgisel algoritma kullanılmıştır bu çalışmada:

genetik algoritma ve benzetimli tavlama algoritması. Genetik algoritma ile çok daha iyi

sonuçlar elde edildiği görülmüştür. İki ürünlü sistemlerde ise eş zaman aralıklarında fiyat

değişikliği yapıldığı varsayılarak aynı şekilde sezgisel algoritma çalışmaları yapılmış ve tek

ürünlü sistemdekine benzer olarak genetik algoritma ile daha iyi sonuçlar elde edilmiştir.

Tüm yapılan çalışmaların sonucunda hem tek ürünlü hem de iki ürünlü sistemlerde tek fiyat

yerine birden fazla fiyat uygulaması yapıldığı takdirde daha yüksek kâr değerlerine ulaşıldığı

görülmüştür. Bu sistemlerde bozunma oranlarında azalma ve aynı zamanda operasyonel ver-

imlilikte artış sağlanmıştır. Bu sonuçlara ek olarak farklı parametre etkileri analiz edilerek

yönetsel çıkarımlar yapılmıştır.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Recent researches show that implementing good pricing policies results in bigger revenue

than reduction of variable costs and increase in sales volume. A study by McKinsey and

Company states that: “Pricing right is the fastest and most effective way for managers to

increase profits”. According to Rafaat [23] traditional pricing and inventory control methods

are generally static due to need for wealth of information and data about customer behaviour

and its own cost structure as well as information covering competition and market structure.

The fast development of Information technology enables us use of data in a desired manner

leading to improvement of pricing technologies. Perishable product systems are more com-

plex in nature hence detailed pricing strategies have to be applied by using these pricing

methodologies.

The process which prevents an item from being used for its intended original use is de-

fined as decay or deterioration for instance: (i) spoilage of materials like food or vegetables;

(ii) physical depletion like evaporation of liquids or alcohol; (iii) decay, as in radioactive

substances or loss of potency as in the photographic films or pharmaceutical drugs. Deterio-

ration involves two different concepts the first of which is about materials becoming obsolete

at the end of their lifetime and the other one is about deteriorating items throughout their

planning horizon. The second concept deals with both constant and continuous decay cov-

ering all materials from blood to radioactive substances. In addition deteriorating items can

also be classified with respect to their value or utility as a function of time. Fresh products

such as fruits are decreasing value material, prescription drugs are constant value material

and lastly wines or antiques are increasing value materials.

We can categorize mathematical models of the deteriorating items by using the following

scheme: single vs. multiple items, deterministic vs. probabilistic demand, static vs. varying

demand, single period vs. multiple periods, purchase vs. production model, quantity dis-
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count, no shortage vs. shortage and also constant vs. changing deteriorating rate. Classical

inventory models assume replenishment rate as either infinite or constant which are unre-

alistic when we think about perishable items. Replenishment rate of materials are mostly

influenced by stock on hand and also instantaneous demand rate. Producers generally tend

to produce more or less with respect to their inventory on hand and also instantaneous

demand rate in the market. Then it would be illogical to take stock level constant without

considering replenishment effect especially for the material groups like food, vegetable and

perfumes decreasing in value under deterioration.(Bhunia et al. [9])

This thesis investigates some inventory management methodologies of substitutable and

perishable items under demand uncertainty. At the expiration time perishable items be-

come inappropriate for consumption either partially or completely. Academics and also

practitioners continuously seek for ways to improve the management of perishable items.

Market researches show that if there are multiple products in the system, customers show

willingness to buy fresher product which is generally failed to be incorporated in the math-

ematical models of the inventory systems. Bret [10] states that there are four major groups

for perishable items: grocery industry takes more attention which accounts for over 50.4% of

the $400 million retail sales in the US . Additionally, medical area accounts for $643billion

in 2006, and in the area of blood management 75 million units of blood are donated world-

wide every year. Therefore it is very important to employ effective inventory management

methods in order to obtain maximum efficiency in the supply chain of perishable products.

The major contributions of this dissertation are two-fold. The first contribution is the de-

velopment of heuristic models in order to evaluate the expected profit function for managing

the inventories of multiple product and single product systems under product substitution

and perishability. The second contribution is a comparison of the best order-up-to levels

that maximize profit by constant pricing case using heuristic algorithms under product per-

ishability. Inventory problems can be divided into single or multiple product cases; in our

study we deal with both single and double product systems. Inventory decisions are based on

a single set of parameters for single product systems which includes product, its buyer and

supplier. Multiple product case includes also relation between products as multiple product

model parameters; for instance demand correlation or product substitution. Demand values

can be both stochastic and deterministic; in our study we analyze deterministic case.
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In multiproduct systems it is hard for the manufacturers to decide upon the pricing and

production of the items, because of the products’ substitution property. If we change one of

the product’s price than another product’s demand value also change. Producers generally

choose superior product substitute inferior one; hence most of the times extra stock belong

to the superior product stay unsold, whereas inferior products encounter stockouts. As a

result double product pricing decisions are more complex than the single product system

decisions(YinPing [40]).

Most inventory models deal with single item in literature; on the other hand in the

real world this occurs rarely. Demand may favor the first item in the presence of second

material in the inventory; hence may companies deal with several items in their warehouses

in order to get most efficient result. This procedure leads many researches to study multi

product systems. As in the single product case the purpose is either maximization of profit

or minimization of operational costs in the system. Therefore the analysis for a single item

inventory is almost same with double product case. As the inventory of deteriorating item;

so sooner they are sold out, better than they are stored(Abdulhakim [5]).

For the multiproduct case, in order to decrease supply chain costs, most of the people

make significant efforts by using improved inventory management. On the other hand, a

large partition of retailers still lose millions of dollars due to loss sales and excess inventory;

hence it is critical for them to coordinate inventory management with dynamic pricing to

achieve higher overall profit. Perishable products come in fresh with a retail price at the

beginning of the cycle . However when they face deterioration and their expiry date comes

closer, the retailer prices them at a lower price, which attracts customers who are more price

sensitive; hence higher profits are achieved. As an example a CPU’s price is lowered down

throughout their short lifetime, whenever a new CPU is introduced to the market. Retailer’s

profit is maximized by dynamic pricing and also coordinating inventory/pricing decisions.

When we integrate dynamic pricing and ordering decisions, we can match better supply and

demand. (Liu [34])

Managing products that grows increasingly less valuable over time is an important issue

to handle, because when we give answer incorrectly its cost can be quite high. A quite good

example for this situation is Wal-Mart which faces significant challenge while managing with

perishable inventories. Wal-Mart’s portfolio is generally composed of perishable items like
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food (fresh products, dairy and bakaery), pharmaceuticals, chemicals (house cleaning agents)

and cut flowers. In a 2003 survey, overall unsalable cost of consumer packed perishable

products at distributors, supermarkets and drug stores is estimated at $2.57 billion, and

%22 of these costs over 500 million dollars were due to expiration in only branded segment

(Grocery Manufacturers of America, 2004).

Additionally the huge impact is not only important for consumer goods but also for in-

dustrial products, military ordnance, and blood. In order to model the system we consider

the following issues: Firstly decrease in value of the product, change in both demand for

product due to aging and market conditions. Secondly, during lifetime of the product re-

plenishment of the products and pricing decisions can be made more than once. Therefore

by gathering all information we design system and use heuristic methods in order to obtain

values giving high profits. (Deniz [13])

In this study, not only dealing with perishable items but we also consider discrete pricing

case for both single and double product systems in order to improve supply chain perfor-

mance. Discrete pricing is the use of temporal price discrimination in order to improve

inventory and capacity management enabling us to adjust prices at minimal cost to satisfy

demand. In our study we analyze an EOQ model considering coordinated pricing and lot

sizing decisions. The distributor procures a single or multiple products from an external

supplier and sells them on a single market. Price response function includes only demand

value for single product system, whereas these functions include also competition between

products for double product systems. Both systems subject to variable procurement cost,

a fixed ordering cost and also holding cost. Main aim is to maximize the average profit by

choosing an optimal lot size and pricing strategy where seller is allowed to vary the selling

prices over time horizon. The contribution is analyzing an EOQ model with price changes

which are limited with organizational costs linked with the number of price change. Only

changing prices for a few times can contribute to the profit in larger scale by balancing

benefits and costs of the price change.

Along the time horizon seller has to decide the prices and when to change or fix them. Re-

sults will be in the form of optimal cycle length, prices, optimal times and order quantity. In

constant pricing case it is easy to find optimal values, on the other hand for single and multi

product case we develop heuristic methods in order to obtain explicit results,(Transchel [16]).
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We use two pricing strategies: Firstly, we use constant pricing where seller determines op-

timal selling price that is constant over an infinite planning horizon and secondly we use

dynamic pricing where seller varies the selling price over time. If there is no cost of price

change, the optimal case is to change the prices continuously. If there is a cost associated

with price change, a continuous price change will not be beneficial, as a result a limited num-

ber of price change will be profitable. We will give the comparison between the constant and

dynamic pricing case also. In order to obtain optimized problem, we use two stage systems;

during first stage the number of price changes is optimized and during second stage opti-

mal pricing and purchasing strategy is applied. Dynamic pricing offers a decreased cost of

holding cost and increased demand rate by efficient usage of stock on hand, (Transchel [51]).

The organization of the thesis is as follows. In Chapter 2 we share related literature

work about perishable products, and their pricing strategies. Then in Chapter 3, we give

our single product problem in detail and give some insights on computational complexity.We

also explain heuristic algorithms in order to solve the problem for single product system.

. Next in Chapter 4, we describe the double product system and give detail about the

heuristic algorithms used. In Chapter 5, we give the details about data generation and

results of computational studies. Finally in Chapter 6, we give a summary of the thesis and

some future research directions.
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Chapter 2

LITERATURE REVIEW

Ghare et al. [18] are one of the first researchers who analyze perishable products by

including EOQ models with deterministic demand and exponential decay. On the other

hand, Covert et al. [12] have developed an EOQ model for the items whose deterioration

patterns follow the Weibull distribution.

Nahmias [43] reviews related literature about determining the ordering policies for both

fixed life perishable inventory and also products having exponential decay. He includes

deterministic and stochastic demands in the models for both single and multiple products

and also formulates other approximations for perishable products with fixed life over a finite

horizon. He constructs policies of the order up to type based on the total inventory. As a

brief application he includes blood bank management in his study. Rafaat [23] also presents

a detailed survey about deteriorating items including constant rate and variable rate of

perishability. In addition he also analyzes probabilistic and also deterministic inventory

models with deterioration with constant and variable demand rate.

Wee [30] has developed a joint pricing and replenishment policy for a Weibull distribution

deteriorating items with partial backordering and quantity discounts where profit is maxi-

mized by using the optimal inventory holding time and the selling price. Both Rafaat [23] and

Wee [30] assumes finite replenishment rate. Giri et al. [26] have served an up to date review

of inventory models after Rafaat’s [23] survey including both deterministic and stochastic

demand results

Abdulhakim [5] has considered multi item inventory system with deteriorating items.

He constructs models optimizing the objective function with respect to all possible different

types of demands as non-linear functions of inventory levels. He achieved optimal solution by

using Pontryagin Maximum Principle for different types of demand rates. Bhattacharya [7]

uses two item deteriorating inventory models with a linear stock dependent demand rate

in his research. He uses control parameters in order to maintain continuous supply to the
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inventory and then forms an objective function to be used for the calculation of the net

profits and also losses. He puts forward the steady state optimal control problem subjected

to the constraints given by the ordinary differential equations for optimizing the objective

function values. If control parameters satisfy the equations then objective function value can

be determined. Two-product continuous review inventory models have been studied recently

by Yadavalli et al. [58], Yadavalli et al. [59].

Abad [2] has considered inventory and pricing problem about perishable products faced

by a reseller. The inventory model allows demand to be partially back ordered which is

the generalization of the model studied by Rakesh et al. [47]. If the materials are highly

perishable resellers use backlogging in order to control costs when customers demand fresh

stock. The closest point to our study is that reseller may change the prices in order to obtain

the maximum utilization of fresh stocks and to achieve the maximum profit. The solution

procedure is first solving a single non linear equation and then if required two non linear

equations. Rakesh et al. [47] explain the effects of markdown pricing applied to the retail

goods disposed to decay. The study also shows the effective results of multi pricing system

due to product aging by considering the effects on the ordering intervals and quantities

Burwell et al. [11] extend the results of Abad [1] by offering shortages in addition to all

unit quantity discounts and demand which is decreasing function of price. Abad [1] gives

the retailer ability to change prices and to determine optimal lot sizes without the case of

shortage.

Giri et al. [26] study an extended EOQ type perishable product inventory model in which

demand rate is dependent on on-hand inventory. He keeps unit item cost and ordering costs

constant in the model but takes holding cost as both non linear function of time the item held

in stock and also functional form of the on-hand inventory. First type of holding cost is more

applicable for green vegetables, fruits and breads and the second type model is for volatile

liquids, electronic components and radioactive materials. Bhunia et al. [9] also consider two

deterministic deteriorating inventory models which allows shortages. The replenishment rate

is dependent on the instantaneous inventory level and also on the demand both of which are

increasing functions of time. Benkherouf [6] presents an optimal procedure for the inventory

system with shortages in order to find a replenishment Schedule where items deteriorate at

a constant rate and demand rates decrease over a known and planning horizon.
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Chaudhuri et al. [35] develop an inventory model for a deteriorating item with a price

dependent demand rate. He considers rate of deterioration as time proportional and price

dependence of demand with power law form. Generally price dependence is taken linear and

deterioration as constant hence Chaudhuri et al. [35] give a new insight into the problem.

This study contributes to the literature by using perishable product with a constant rate of

deterioration and also time proportional decay and demand functions.

Sana [36] deals with an EOQ model for perishable items with price dependent demand

and partial backorder. Time proportional decay and occurring shortage only at the begin-

ning of the cycle are the main assumptions for the model. The SFI (Shortage followed by

inventory) of replenishment is used. Mishra et al. [37] analyze the price determination for an

EOQ model under perfect competition. In order to obtain unit prices marginal revenue and

marginal cost are employed. This study gives detailed information about market structure

of the economy by using perfect competition case.

Panda et al. [45] consider a single item economic order quantity model where demand is

stock dependent. Due to deterioration product’s price is changed hence significant increase

is obtained in demand value. He also examines whether pre discount affects the net profit

value or not other than just applying it during the deterioration process.

Transchel et al. [51] compare dynamic and constant pricing cases by using the economic

order quantity model with all unit quantity discount and also price sensitive customer de-

mand. The weakness of the given model is the deterministic and stationary environment

based on EOQ assumptions. Different from the research of Transchel et al. [51], Panda et

al. [45] work with pre discount effects.

Mishra [37] develops an inventory model for deteriorating items where shortages are al-

lowed and partially backlogged and also Singh [48] develops an EOQ model for deteriorating

items with linear demand and variable deterioration rate. The model allows shortages and

backlogging where backlogging is taken as variable and dependent on the waiting time of the

next replenishment. He takes the objective function as the minimization of the total cost.

P-S You [14] deals with perishable inventory models with price and time dependent de-

mand. The seller has the right to change the prices before the end of the sales season so as to

improve sales and revenues. The optimal number of prices, price values and order quantities

can be found by the proposed model. Dalfard et al. [52] examine single product system with
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pricing and inventory model applications. The model aims to decide on the optimal prices,

inventory and also production decisions. The constructed model is nonlinear hence Hybrid

Genetic Algorithm and Simulated Annealing are used in order to solve the problem. Taguchi

experimental design method is also used in order to enhance the performance.

Transchel et al. [16] analyze the dynamic pricing of a single product system where mo-

nopolist decision maker determines the pricing points along the time horizon. He gives

details about the coordinated decision making of optimal prices and ordering of the inven-

tory by concentrating on the issue that the higher inventory level the more demand level. He

achieves that with only a few price change, an unprofitable systems can be made profitable.

It is hard to find solutions for dynamic pricing model hence author takes price response

functions both linear and exponential in order to get insight about the problem and figures

out that: if price is low, then demand is more sensitive to price fluctuations than at higher

prices. As a result price variations are lower at the beginning of time cycle than at the end

of the cycle.

Pan [56] constructs model with deteriorating items having price sensitive demand. He

uses Weibull distribution as in the research of Wee (1999). Additionally seller has the right to

change the prices for multiple times with which he can find optimal dynamic prices and order

quantity maximizing the profit. Bhowmick et al. [8] study a continuous production model

for a deteriorating items where he assumes variable production cycle and allows shortages

in the model. He uses different rates of production; hence a large stock of manufactured

items at the initial stage can be avoided, which leads to lower holding cost value. DaeSoo et

al. [15] study the joint determination of price and lot size; in order to maximize profit which

has price dependent demands with non concave objective functions. He uses Kuhn-Tucker

conditions by the application of geometric programming.

Gupta et al. [19] show that in a deterministic setting when a reduction in reservation

price is applied this leads to declining optimal prices and also he develops heuristic methods

in order to obtain near optimal results. Pekelman [20] deals with price determination and

production scheduling over a time horizon where demand is time dependent.

Burke et al. [22] study fresh material allocation to shelf space by using heuristic and

metaheuristic algorithms. Firstly he studies single product system and develops greedy al-

gorithms, then he extends his solution to the multiproduct case. Bitran et al. [24] research



Chapter 2: Literature Review 10

over optimal pricing policies with perishable products having demand correlation; substi-

tution between products is included in the model where customers arrive according to a

stochastic process . Drezner et al. [21] analyze the perishable products with respect to no

substitution, full substitution and partial substitution by using single product economic or-

der quantity formulation. He proves that full substitution can never be the optimal case,

only partial or no substitution may be the optimal cases.

Markdown price is studied by Widyadana et al. [25] where they show that larger profits

can be obtained by markdown prices especially for the perishable materials having price

dependent demand. Lee et al. [28] are one of the researchers who deal with price discount

problems. He extends the results of Monahan by relaxing implicit assumptions of order

for order policy adopted by the supplier. Widyadana et al. [25] develop a deteriorating

inventory model to increase retailers’ profit. Retailer determines the prices in advance and

applies markdown price once in a replenishment time. The author puts forward a hypothesis

that markdown policy can be used for increasing profit.

Deng et al. [29] analyze the single product pricing decisions by taking in to account a

capacity constrained manufacturer having price sensitive demands. He shows the linkage

between optimal prices and capacity. Thomas [32] considers a single product system which

has deterministic demand. He extends the results of Wagner and Whitin’ s [54] inventory

work by including price-production decisions. Continuous pricing is not profitable when

high amount of price change costs exist in the system. As a result, Netessine [44] analyzes

the limited number of price change in a dynamic, deterministic environment where demand

depends on current price and time.

Fleischmann et al. [39] contribute to the literature on dynamic pricing by developing de-

terministic and finite horizon dynamic programming model taking into account price/demand

effect as well as a stockpiling/consumption effect. He puts forward endogenous demand and

develops analytical decisions into the nature of optimal prices. Whereas Nagare et al. [42]

study continuously deteriorating items having random shelf life. An EOQ model is con-

structed including the zero lead time and constant deterioration rate. Porteus [46] studies

with an EOQ model where he includes reduced set up costs and also determines sale rate.

Yinping et al. [40] research multiproduct case with downward substitution. N.Jeyanthi

et al. [41] consider the multiproduct system where the main objective is to reduce the
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holding cost by an effective inventory management. Singh et al. [48] work with the inventory

models for deteriorating items having constant demand rates where demand is piecewise

linear function; he proposes an inventory replenishment policy. Wee [30] contributes to the

literature by using variable demand rate for the single product systems. He formulates an

optimal replenishment policy for the items with linear price function of demand.

Most of the researches are about discrete time and fixed points in time where a price

change can be applied; or in the case of continuous pricing models allow continuous price

change having mostly finite planning horizon. We investigate the dynamic pricing on order-

ing decisions in classical EOQ context with a given or optimized number of price changes in

every cycle for both single and double product system. We construct model by only giving

time values random and giving the seller the ability of change the prices so as to maximize

the total profit. We also analyze two extreme cases which are constant and continuous

pricing. In order to obtain time intervals we put forward heuristic algorithms and their

comparisons with constant pricing case.



Chapter 3: Single Product System 12

Chapter 3

SINGLE PRODUCT SYSTEM

In single product system, our main aim is to decide on the pricing and inventory decisions.

Inventory cycle is defined as the time period between two successive orders of the new

materials along which we try to maximize the profit by pricing at different time intervals.

In our model h is the inventory holding cost, N is the number of price changes and f is

the cost of price change where Nf gives the cost of total price change. Figure 3.1 is the

graphical inventory level demonstration of a single product system.

Orders are replenished in batches of size Q, along every T periods during infinite planning

horizon. Each single batch is associated with a procurement cost C per unit. It is assumed

that there are no capacity constraints and the orders are delivered with no lead time. Back-

orders are not allowed. The retailer determines the number of different prices, N per order

cycle length tN . The menu costs associated with price changes are denoted by K(N) and are

non decreasing functions of N . For a given N , the order interval [0, tN ] is partitioned into

N mutually exclusive intervals, labelled by [t0, t1), [t1, t2), · · · , [tN−1, tN ) where pi is charged

for [ti−1, ti) interval. tN is equal to the cycle length T and t0 = 0. Optimal prices are shown

by “*”.

In our model pi is the price amount given for the interval [ti−1, ti). During the same

price we obtain decreasing demand value due to demand function’s dependency on the time

value. In our model inventory decreases due to both decay and demand for the product. We

define inventory level as I(t) and Q is the inventory level at the beginning of cycle length.

We take decay rate constant given by θ and w(t) = θI(t) as the total rate of decay at any

time. Parameters are given in Table 3.1.

In Figure 3.1, x axis is the time line having N different prices and y axis is the inventory

level at each time interval. In this figure t1, t2..., tN are the times where we apply price

adjustments and I(t1), I(t2)..., I(tN ) are their corresponding inventory levels. I(t) is the

inventory level at time t. I(t) is the amount of inventory at time t which compensates the
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Table 3.1: Parameter Values for Single Product System

I(t) net stock at time t for the product, (units).
I0 = I(0) maximum net stock for the product, (units).
Q = I0 the batch size for the product, (units).
D(pi, t) demand rate at time t for the product, (units/period).
σ(t) wastage coefficient at time t for the product.
pi is the price value during [ti − ti−1].
ω(t) = σ(t).I(t) wastage rate at time t for the product, (units/period).

selling and decay amounts in the following intervals.

Figure 3.1: Illustration of Inventory Level for Single Product System

For ease of computation backward insertion is done; we start with I(tN ) = 0 and use it

at the proceeding interval tN−1 in order to find I(tN−1) and we use I(tN−1) to find I(tN−2).

This solution path is applied for all time intervals. For instance at time t, inventory level is

the difference from time t to tN . At each time interval, demand values are different due to

decay and different price.
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As a result, inventory computation is done separately at different intervals. In our case,

firstly we find the inventory between t and t2 which gives the inventory decrease due to

decay and sell then we sum up with I(t2). I(t2) is the inventory covering sell and decay

amount from t2 to tN . By using backward insertion we can find all I(ti) up to I(t2) so we

can achieve I(t). I(t) be the instantaneous inventory level at any time t ≥ 0.

Demand rate D(pi, t) is assumed to be positive having a negative derivative in its entire

domain. The inventory is partly depleted to satisfy demand and partly for deterioration.

Along the time line given in Figure 3.1, tN gives reorder point and for each N different

prices, inventory levels can be evaluated at N different points. For tε[0, tN ], the net stock is

positive. For each time interval i boundary value c is the amount of inventory at beginning

of the proceeding time interval given by Iti .

We take demand as D(pi, t) = a − βpi − dt where pi gives price amount at ith price

adjustment point. During time products perish at a certain amount, hence product’s demand

decreases with respect to decay amount which is included as d t in the demand equation.

The instantaneous state of I(t) at any time t is described by the differential equation given

by Eq. 3.1.

I(t) =

∫ tN

t
{D(pi, t) + w(t)}dt

I(t) =

∫ tN

t
{D(pi, t) + σ(t)I(t)}dt

(3.1)

The deterioration of product is continuous and a constant fraction (0 < θ < 1) of the on-

hand inventory deteriorates per unit time. Deterioration rate θ is deterministic, known and

constant. There is no replenishment or repair of deteriorating items during the inventory

cycle. We use constant value in order to obtain explicit results, otherwise it gets impossible

to reach optimal time, inventory and also profit values.

I(t) =

∫ tN

t
{D(pi, t) + θI(t)}dt (3.2)
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Differentiating Eq. 3.2 with respect to t, we have

∂I(t)

∂t
= −D(pi, t)− θI(t) (3.3)

If we write Eq. 3.2 in the form,

∂I(t)

∂t
+ θI(t) = −D(pi, t) (3.4)

Eq. 3.4 is a first order differential equation with variable coefficients. This equation can

be solved by using integrating factor shown by µ(t). The integrating factor is µ(t) = eθt.

Multiplying Eq. 3.4 by µ(t), we obtain

eθt
dI(t)

dt
+ θeθtI(t) = −eθtD(pi, t)

d(eθtI(t))

dt
= −eθtD(pi, t) (3.5)

By integrating both sides of Eq. 3.5 we find that

eθtI(t) =

∫ tN

t
eθsD(pi, s)ds+ c (3.6)

where c is an arbitrary constant. Note that we have used s to denote the integration variable

to distinguish it from the independent variable. By solving Eq. 3.6 for I(t) we obtain the

general solution

I(t) = e−θt
∫ tN

t
eθsD(pi, s)ds+ ce−θt (3.7)

For any tε [ti−1, ti] satisfies the following inventory equations,Eq. 3.3 and also Ii(ti) = I(ti).

Ii(t) =

∫ ti

t
(D(pi, s) + I(s)θ)ds+ I(ti)

Ii(t) =

∫ ti

t
D(pi, s)e

θ(s−t)ds+ I(ti)e
θ(ti−t)

Ii(t) =

∫ ti

t
(a− βpi − ds)eθ(s−t)ds+ I(ti)e

θ(ti−t)

(3.8)

Integral in Eq. 3.8 gives the amount of sell and decay amount of product between t and ti,

I(ti) is the inventory amount at the beginning of the following interval. As a result at any
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time t, I(t) is the inventory level at time t. When we integrate the Eq. 3.8

Ii(t) =
a− βpi

θ
eθ(ti−t) − dti

θ
eθ(ti−t) +

d

θ2
eθ(ti−t) − a− βpi

θ
+
dt

θ
− d

θ2
+ I(ti)e

θ(ti−t) (3.9)

The change of inventory at any time t is the result of demand and decay which is given by

Eq. 3.3, should hold to verify the Eq. 3.9.

dIi(t)

dt
= −(a− βpi − dt)− θIi(t)

dIi(t)

dt
= −(a− βpi)eθ(ti−t) + dtie

θ(ti−t) − d

θ
eθ(ti−t) +

d

θ
− θI(ti)eθ(ti−t)

(3.10)

When we multiply I(t) with −θ and subtract D = a− βpi − dt

−(a− βpi − dt)− θI(t) = −(a− βpi)eθ(ti−t) + dtie
θ(ti−t)

− d

θ
eθ(ti−t) +

d

θ
− I(ti)θeθ(ti−t) (3.11)

Hence Eq. 3.11 is equal to Eq. 3.10, which verifies that Eq. 3.9 correctly denotes Ii(t).

The selling amount of product at ith interval, denoted by Si, is the total demand belonging

to that interval found by Eq. 3.12.

Si =

∫ ti

ti−1

(a− βpi − dt)dt

= a(ti − ti−1)− βpi(ti − ti−1)−
d

2
(t2i − t2i−1) (3.12)

We find total amount of product sold for the whole inventory cycle by summing up all Si

values for each time interval, given by Eq. 3.13.

S =
N∑
i=1

∫ ti

ti−1

(a− βpi − dt)dt

=

N∑
i=1

a(ti − ti−1)− βpi(ti − ti−1)−
d

2
(t2i − t2i−1) (3.13)

Total inventory Q is the inventory level at time t = 0. Hence I(0) gives the initial inventory

level for the whole inventory cycle, given by Eq. 3.14 which is also given in Figure 3.1 where
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it is denoted by Q.

I(0) = Q =
a− βp1

θ
eθ(t1−t0) − dt1

θ
eθ(t1−t0) +

d

θ2
eθ(t1−t0)

− a− βp1
θ

− d

θ2
+
dt0
θ

+ I(t1)e
θ(t1−t0) (3.14)

In order to define the initial inventory equation explicitly, we write inventory level equations

stepwise as given in Eq. 3.15. We need I(t1) value in order to find I(0) which is given below.

Inventory level at tN ; I(tN ) is zero hence by using backward insertion we obtain initial

inventory, Q, as given in Eq. 3.16.

I(t1)e
θt1 =

a− βp2
θ

eθ(t2) − dt2
θ
eθ(t2) +

d

θ2
eθ(t2)

− a− βp2
θ

eθt1 − d

θ2
eθt1 +

dt1
θ
eθt1 + I(t2)e

θ(t2)

I(t2)e
θt2 =

a− βp3
θ

eθ(t3) − dt3
θ
eθ(t3) +

d

θ2
eθ(t3)

− a− βp3
θ

eθt2 − d

θ2
eθt2 +

dt2
θ
eθt2 + I(t3)e

θ(t3)

...

I(tN−1)e
θtN−1 =

a− βptN
θ

eθ(tN ) − dtN
θ
eθ(tN ) +

d

θ2
eθ(tN )

− a− βpN
θ

eθtN−1 − d

θ2
eθtN−1 +

dtN−1
θ

eθtN−1 + I(tN )e
θ(tN )

(3.15)

Q =

N∑
i=1

a− βpi
θ

eθ(ti)− dti
θ
eθ(ti)+

d

θ2
eθ(ti)− a− βpi

θ
eθ(ti−1)− d

θ2
eθ(ti−1)+

dti−1
θ

eθ(ti−1) (3.16)

Inventory equation can also be written in general form given by Eq. 3.17.

I(tj) =
N∑

i=j+1

a− βpi
θ

eθ(ti) − dti
θ
eθ(ti) +

d

θ2
eθ(ti) − a− βpi

θ
eθ(ti−1) − d

θ2
eθ(ti−1) +

dti−1
θ

eθ(ti−1)

(3.17)

In a single product system, we find revenue in an interval by multiplication of total

demand and price during that demand period. Total revenue is the sum of revenue earned
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at each interval. In our system total revenue is found as follows,

Revenue =

N∑
i=1

∫ ti

ti−1

(a− βpi − dt)pidt

=
N∑
i=1

api(ti − ti−1)− βp2i (ti − ti−1)−
dpi
2

(t2i − t2i−1) (3.18)

In the single product supply chain system, there are mainly two performance criteria: order

of frequency and the amount of inventory carried along the supply chain. Because of the

economies of scale, we don’t want to order too frequently and also carry too much inventory.

Here the main approach is focusing on the long run averages over time. The system

operates forever, over the time interval [0,∞), and we measure the performance by the

following quantities,

I = average inventory = lim
T→∞

{( 1
T
)

∫ T

0
I(t)dt}

We can identify the long run average I by examining the one cycle, the time interval between

the receipts of two successive orders. Also, during a cycle, I(t) decreases from Q to zero.

We can have economies of scale in the supply process by choosing a large Q, but this leads to

large average inventory; we can economize on inventory, but only at the expense of a higher

order cost and frequency. We measure all costs in some standard monetary unit; here, we

use the term moneys. Particularly parameters used in total order cost function is given in

Table 3.2.

Table 3.2: Holding Cost Function Parameters

k fixed cost to place an order(moneys)
C variable cost to place an order (moneys /quantity-unit)
h cost to hold one unit in inventory for one unit of time

h is the value that at time t, I(t) causes cost to increase at a rate of hI(t). k represents

all order costs independent of order size. It includes administrative order processing costs

as well as transportation and receiving costs. Hence k represents economies of scale in the
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supply process. C includes the unit purchase cost as well as any other costs that do not

depend on the order size. The total cost per order is thus k + CQ. Holding cost h incurs

direct costs associated with inventory itself, including costs for physical handling, insurance,

refrigeration, and warehouse rental. We denote all these costs by h. the second component

is a financing cost α where α is an interest rate, reflecting the fact that holding inventory

ties up capital. Hence, h = h + αC. In the long run average order cost is (k + CQ)/tN ,

and the average inventory-holding cost is hI. The overall performance is sum of these two

quantities,

C(Q) = total average cost (moneys/time− unit)

= (k + CQ)/tN + hI

order of frequency = OF =
1

tN

Then average cost is,

C(tN ) = (k + CQ)OF + hI

As a first step, we calculated the total cost for the inventory cycle. For each time interval,

we take the area under the inventory curve and then multiply with the unit holding cost to

find the total holding cost. By using Eq. 3.9,

hI = holding cost = h
tN

∑N
i=1

∫ ti
ti−1 Ii(t)dt

= h
tN

(∑N
i=1

∫ ti
ti−1

(a−βpi
θ eθ(ti−t) − dti

θ e
θ(ti−t)

+ d
θ2
eθ(ti−t) − a−βPi

θ + dt
θ −

d
θ2

+ I(ti)e
θ(ti−t)

)
dt
)

(3.19)

We integrate Eq. 3.19, then holding cost equation becomes

hI = h
tN

∑N
i=1

(
− a−βpi

θ2
(1− eθ(ti−ti−1)) + dti

θ2
(1− eθ(ti−ti−1))

− d
θ3
(1− eθ(ti−ti−1))− a−βpi

θ (ti − ti−1)

+ d
2θ (t

2
i − t2i−1)− d

θ2
(ti − ti−1) + I(ti)

−θ (1− eθ(ti−ti−1))
)

(3.20)

Profit is the difference between total revenue and total cost. So profit function can be written
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as follows, assuming N price changes are made and I(ti) is included in open form.

π(N) =
1

tN

N∑
i=1

{
api(ti − ti−1)− βp2i (ti − ti−1)−

dpi
2

(t2i − t2i−1)

− h[−a− βpi
θ2

(1− eθ(ti−ti−1)) +
dti
θ2

(1− eθ(ti−ti−1))

− d

θ3
(1− eθ(ti−ti−1)− a− βpi

θ
(ti − ti−1)

+
d

2θ
(t2i − t2i−1)−

d

θ2
(ti − ti−1)−

N∑
j=i+1

(a− βpj
θ2

eθ(tj)

− dtj
θ2
eθ(tj) +

d

θ3
eθ(tj) − a− βpj

θ2
eθ(tj−1) − d

θ3
eθ(tj−1)

+
dtj−1
θ2

eθ(tj−1)
)
(1− eθ(ti−ti−1))]− (k + CQ)

}
(3.21)

Main aim of the problem is to maximize the profit, done by constructing two stages. At

the second stage: there is a given number of price adjustments and by using that, optimal

timing decisions and also optimal prices are found. Eq. 3.25 gives the average profit for

each given number of pricing decisions which includes unit revenue minus direct purchasing,

holding and set up cost over the cycle length.

Then different profit values are found with respect to given different number of pricing

decisions for a fixed cycle length tN . Then first stage is used to find the optimal number

of pricing, done by calculating profits for different n values and most profit giving one is

chosen as the optimal. Here K(N) gives the cost of price change. If you are changing price

N times then cost of price change is K(N) which is included in the profit function at the
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first stage.

Stage1 : (3.22)

π∗ = maxπ(N) −K(N) (3.23)

Stage2 : (3.24)

π(N) = max
1

tN

N∑
i=1

{
api(ti − ti−1)− βp2i (ti − ti−1)−

dpi
2

(t2i − t2i−1)

− h[−a− βpi
θ2

(1− eθ(ti−ti−1)) +
dti
θ2

(1− eθ(ti−ti−1))

− d

θ3
(1− eθ(ti−ti−1)− a− βpi

θ
(ti − ti−1)

+
d

2θ
(t2i − t2i−1)−

d

θ2
(ti − ti−1)−

N∑
j=i+1

(a− βpj
θ2

eθ(tj)

− dtj
θ2
eθ(tj) +

d

θ3
eθ(tj) − a− βpj

θ2
eθ(tj−1) − d

θ3
eθ(tj−1)

+
dtj−1
θ2

eθ(tj−1)
)
(1− eθ(ti−ti−1))]− (k + CQ)

}
(3.25)

s.t Di ≥ 0 ∀i ∈ i = 1, · · · , N (3.26)

ti−1 − ti ≤ 0 ∀i ∈ i = 1, · · · , N (3.27)

t0 ≥ 0

Eq. 3.26 prevents any negative value for the demand, which is unacceptable in real life cases.

Eq. 3.27 guarantees that all time intervals are mutually exclusive and exhaustive.

In order to maximize the average profit, we differentiate Eq. 3.25 with respect to pi and ti for i =

1, . . . , N . The necessary first order conditions for the optimal prices ∂πN

∂pi

!
= 0 and the opti-

mal times for price changes ∂πN

∂ti

!
= 0 for i = 1, . . . , N and j = 1, . . . , N .

In order to find optimal prices for the given ti values, we differentiate Eq. 3.25 with respect to

pi for i = 1, . . . , N and i = 1, . . . , N . If we are dealing with the ithinterval, for the intervals

other than ti−ti−1 the differentiation with respect to pi results in zero. For instance in order
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to find p∗1 we only deal with the interval t1 − t0 and use the Eq. 3.28 for the differentiation.

π
(1)
1 = ap1(t1 − t0)− βp21(t1 − t0)−

dp1
2

(t21 − t20)

− h
[
− a− βp1

θ2
(1− eθ(t1−t0)) + dt1

θ2
(1− eθ(t1−t0))

− d

θ3
(1− eθ(t1−t0)− a− βp1

θ
(t1 − t0) +

d

2θ
(t21 − t20)

− d

θ2
(t1 − t0)−

N∑
j=2

(a− βpj
θ2

eθ(tj) − dtj
θ2
eθ(tj)

+
d

θ3
eθ(tj) − a− βpj

θ2
eθ(tj−1) − d

θ3
eθ(tj−1)

+
dtj−1
θ2

eθ(tj−1)
)
(1− eθ(t1−t0))

]
− (k + CQ) (3.28)

After we differentiate Eq. 3.28 with respect to p1 and the result is given in Eq. 3.29.

p∗1 =
a

2β
− d

4β
(t1 + t0)−

h

2θ
+

(eθ(t1−t0) − 1)

θ(t1 − t0)
h

2θ
+
C(eθ(t1) − eθ(t0))

2θ(t1 − t0)
(3.29)

Theorem 3.1 For a given set of ti values, the optimal prices p∗i are found using the result

of first order derivative of profit function given in Eq. 3.30. Profit takes its maximum value

at the given p∗i . π is a function which is twice differentiable at pi and satisfies ∂2π
∂p2i

< 0.

Hence π has global maximum point at pi, which satisfies both Eq .(3.31) and Eq .(3.32).

p∗i =
a

2β
− d

4β
(ti + ti−1)−

h

2θ
+

(eθ(ti−ti−1) − 1)

θ(ti − ti−1)
h

2θ
+
C(eθ(ti) − eθ(ti−1))

2θ(ti − ti−1)
(3.30)

∂π

∂p1
= a(t1 − t0)− 2βp1(t1 − t0)−

d

2
(t21 − t20)

− h
[ β
θ2

(1− eθ(t1−t0) + β

θ
(t1 − t0)

]
−
(
C
∂Q

∂p1

)
(3.31)

∂Q

∂p1
=
−β
θ

(eθ(t1) − eθ(t0))

∂2π

∂p21
= −2β(t1 − t0) (3.32)

In order to find t∗i , we both deal with the intervals (ti − ti−1) and (ti − ti+1). When we take

derivative of the profit function with respect to ti, the values other than the given intervals
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(ti− ti−1) and (ti− ti+1) become zero. For instance, t1∗ can be found by using the Eq. 3.34.

π(2) = ap1(t1 − t0)− βp21(t1 − t0)−
dp1
2

(t21 − t20)

− h
[
− a− βp1

θ2
(1− eθ(t1−t0)) + dt1

θ2
(1− eθ(t1−t0))

− d

θ3
(1− eθ(t1−t0))− a− βt1

θ
(t1 − t0) +

d

2θ
(t21 − t20)

+
I(t1)

−θ
(1− eθ(t1−t0)) + [−a− βp2

θ2
(1− eθ(t2−t1))

+
dt2
θ2

(1− eθ(t2−t1))− d

θ3
(1− eθ(t2−t1)− a− βt2

θ
(t2 − t1)

+
d

2θ
(t22 − t21) +

I(t2)

−θ
(1− eθ(t2−t1))

]
− (k + CQ) (3.33)

We can write I(t1) and I(t2) explicitly in Eq. 3.34 as given below.

π(2) = ap1(t1 − t0)− βp21(t1 − t0)−
dp1
2

(t21 − t20)

+ ap2(t2 − t1)− βp22(t2 − t1)−
dp2(t

2
2 − t21)
2

− h
[
− a− βp1

θ2
(1− eθ(t1−t0)) + dt1

θ2
(1− eθ(t1−t0))

− d

θ3
(1− eθ(t1−t0)− a− βp1

θ
(t1 − t0) +

d

2θ
(t21 − t20)−

d(t1 − t0)
θ2

−
N∑
j=2

(a− βpj
θ2

eθ(tj) − dtj
θ2
eθ(tj)

+
d

θ3
eθ(tj) − a− βpj

θ2
eθ(tj−1) − d

θ3
eθ(tj−1)

+
dtj−1
θ2

eθ(tj−1)
)
(1− eθ(t1−t0))

]
+ h[−a− βp2

θ2
(1− eθ(t2−t1))

+
dt2
θ2

(1− eθ(t2−t1))− d

θ3
(1− eθ(t2−t1)− a− βt2

θ
(t2 − t1)

+
d

2θ
(t22 − t21)−

d(t2 − t1)
θ2

−
N∑
j=3

(a− βpj
θ2

eθ(tj) − dtj
θ2
eθ(tj)

+
d

θ3
eθ(tj) − a− βpj

θ2
eθ(tj−1) − d

θ3
eθ(tj−1)

+
dtj−1
θ2

eθ(tj−1)
)
(1− eθ(t2−t1))

]
− (k + CQ) (3.34)
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∂I(t1)

∂t1
= −(a− βp2)eθt1 + dt1e

θt1

∂I(t2)

∂t1
= 0

∂Q

∂t1
= eθt1(2a− βp1 − βp2)

(3.35)

After we differentiate the Eq. 3.34 with respect to ti, we obtain Eq. 3.36.

∂π(2)

∂t1
= ap1 − βp21 − dp1t1 − ap2 + bp22 + dp2t1

− h
[a− βp1

θ
eθ(t1−t0) +

d

θ2
− d

θ2
eθ(t1−t0) − dt1

θ
eθ(t1−t0)

+
deθ(t1−t0)

θ2
− a− βp1

θ
+
dt1
θ
− d

θ2
− (

a− βp2eθ(t1)

θ
− deθ(t1)

θ2

+
deθ(t1)

θ2
+
dt1e

θ(t1)

θ
)(1− eθ(t1−t0)) + I(t1)θe

θ(t1−t0)]
+ h[−a− βp2

θ
eθ(t2−t1) − dt2

θ2
eθ(t2−t1)(θ)− d

θ2
eθ(t2−t1)

+
a− βp2

θ
− d

θ
t1 +

d

θ2
+ I(t2)θe

θ(t2−t1)]− C[eθt1(2a− βp1 − βp2)] (3.36)

By using Eq. 3.36, we obtained optimal time equation for the first interval which is t∗1 given

in Eq. 3.37. t∗1 is the value making the Eq. 3.37 zero.

ap1 − βp21 − dp1t1 − ap2 + bp22 + dp2t1

− h
[a− βp1

θ
eθ(t1−t0) +

d

θ2
− d

θ2
eθ(t1−t0) − dt1

θ
eθ(t1−t0)

+
deθ(t1−t0)

θ2
− a− βp1

θ
+
dt1
θ
− d

θ2
− (

a− βp2eθ(t1)

θ
− deθ(t1)

θ2

+
deθ(t1)

θ2
+
dt1e

θ(t1)

θ
)(1− eθ(t1−t0)) + I(t1)θe

θ(t1−t0)]
+ h[−a− βp2

θ
eθ(t2−t1) − dt2

θ2
eθ(t2−t1)(θ)− d

θ2
eθ(t2−t1)

+
a− βp2

θ
− d

θ
t1 +

d

θ2
+ I(t2)θe

θ(t2−t1)]− C[eθt1(2a− βp1 − βp2)] = 0 (3.37)

In general form optimal times given by t∗i can be found by using Eq. 3.38 with the procedure
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given for the t∗1 value.

api − βp2i − dpiti − api+1 + p2i+1 + dpi+1t1

− h
[a− βpi

θ
eθ(ti−ti−1) +

d

θ2
− d

θ2
eθ(ti−ti−1) − dti

θ
eθ(ti−ti−1)

+
deθ(ti−ti−1)

θ2
− a− βpi

θ
+
dti
θ
− d

θ2
− (

a− βpi+1e
θ(ti)

θ
− deθ(ti)

θ2

+
deθ(ti)

θ2
+
dtie

θ(ti)

θ
)(1− eθ(ti−ti−1)) + I(ti)θe

θ(ti−ti−1)
]

+ h[−a− βpi+1

θ
eθ(ti+1−ti) − dti+1

θ2
eθ(ti+1−ti)(θ)− d

θ2
eθ(ti+1−ti)

+
a− βpi+1

θ
− d

θ
ti +

d

θ2
+ I(ti+1)θe

θ(ti+1−ti)
]
− C[eθti(2a− βpi − βpi+1)] = 0 (3.38)

In order to find optimal ti, the Eq. 3.38 has to be solved. Optimal time depends on instanta-

neous inventory and also on the price values all which are functions of time where exponential

and non linear terms prevent us finding explicit solutions. Hence use of heuristic algorithms

is reasonable given in Section 3.1.

3.1 Solution Methodology

In this section we apply heuristic algorithms in order to find maximum profit giving time

arrays; we propose genetic algorithm and also simulated annealing. Optimal price, inventory

and profit functions depend on time, hence we obtain all other unknown values by using time

arrays generated by heuristic algorithms.

3.1.1 Genetic Algorithm

Overview

Genetic algorithm is an optimization method based on naturally inspired genetic opera-

tions. It uses selection, mutation and crossover operations to achieve its optimization goal.

Genetic Algorithm is an adaptive strategy and a Global Optimization technique. It is an

Evolutionary Algorithm and belongs to the broader study of Evolutionary Computation.

The Genetic Algorithm is inspired by population genetics (including hereditary and gene

frequencies), and evolution at the population level, as well as the Mendelian understanding

of the structure (such as chromosomes, genes, alleles) and mechanisms (such as recombina-
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tion and mutation).

Individuals of a population contribute to their genetic material proportional to their

suitability of their expressed genome (called phenotype) to their environment, in the form

of offspring. The next generation is created through a process of mating which involves

recombination of two individual genomes in the population with the introduction of random

copying errors (called mutation). This iterative procedure may result in improved fit between

phenotypes of individuals in a population and the environment.

An implementation of Genetic Algorithm starts with a population of (typically random)

chromosomes. One then evaluates these structures and allocate reproductive opportunities

in such a way that those chromosomes which represent a better solution to the target problem

are given more chance to reproduce than other chromosomes, which are poorer solutions.

After parent selection crossover is applied by using one point variable length crossover. In

order to have diversification mutation is applied. We form mating pool with the offspring

and the original population, then by generating random numbers chromosomes are selected

into the next generation having higher fitness value. Until a termination criterion is met

this procedure is repeated and the best profit giving price array and time array are selected.

The flow of genetic algorithm is given in Figure 3.2.

Figure 3.2: Illustration of Genetic Algorithm
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Pseudocode for Genetic Algorithm

Classical approach is proposed for genetic algorithm. The outline can be summarized as

follows:

Step 1. Generate a random population of chromosomes which are constructed from feasible

solutions of time arrays formed by random numbers

Step 2. Evaluate fitness values of chromosomes by using profit functions with the corre-

sponding price functions.

Step 3. Select two chromosomes from the population according to their fitness value (bigger

fitness higher probability of selection)

Step 4. According to crossover probabilities, by crossover operator, form new offspring from

parents.

Step 5. According to the mutation probabilities, mutate new offspring at each randomly

selected locus

Step 6. Place new offspring in the population

Step 7. Select the next population according to their fitness values.

Step 8. Use new generated population for the further run of the algorithm

Step 9. If the end condition is satisfied; code stops and returns the best solution in the

population

Representation of the Chromosomes

Genetic Algorithm forms a population and operates on it containing some encoding of the

parameters set. In order to encode each solution to a chromosome one string is used for

time arrays composed of real numbers. Typically a population is formed by 30-100 indi-

viduals. There are types of chromosome representations like permutation, binary and tree

encoding, whereas for our problem most suitable one is value encoding. In value encoding

each chromosome is sequence of some real values. For totally N number of price change,

we use value string having size (1 ∗N). Chromosome A shows the time sequence at which

price adjustments are done by having reorder point as 10. For this chromosome totally six

prices are found by using optimal price functions. In our problem reorder points are taken

as floating, hence in the population time arrays can be found having size from (1 ∗ 1) to

(1 ∗N).



Chapter 3: Single Product System 28

Figure 3.3: Illustration of Chromosomes

Initial Solution Generation

As an initial population, we generate population having chromosomes for only time deter-

mination; all other values like price and profit are evaluated by functions. Each individual

chromosome in the population is a candidate solution to the problem. We use complete

random method to generate initial populations. For each N number time change, we gen-

erate value strings randomly with the amount of population size and find optimal prices by

using the optimal time functions derived from the objective function. Time strings are the

genotype of the problem. Phenotype is the objective function value giving profits which is

also taken as the fitness value of the chromosomes. Chromosomes having high fitness values

are selected as parents and given the opportunity to reproduce by crossover. Important to

note that crossover provides intensification and mutation provides diversification. We try

population size of 30, 50 and 100 with genetic algorithm and find that the results are close

to each other. Hence we decided using population size 30 is enough through the genetic

algorithm for single product system.

Here the main important item to decide is population size because it changes both initial

population and also other items like mating pool, offspring and parent selection. Hence

in order to decide on the best population size, we try different values on data sets. After

deciding on the best population size parameter, we apply other GA tests with the best

population size parameter value. It is important that while deciding on the population size,

we keep all other parameters same.

Selection

Reproduction is usually the first operator applied on population. From the population,

chromosomes are selected as parents in order to apply crossover and produce offspring.
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According to the evolution theory survival of the fittest is the major issue to consider, which

means that the best ones should survive and create the new offspring. The reproduction

operators are also called selection operators. Selection means extract a subset of genes from

an existing population according to their fitness values. Fitness quantifies the optimality

of a chromosome so that a particular solution may be ranked against all other solutions.

The most commonly use methods are Roulette Wheel, Rank, Steady State, Boltzmann,

Tournament.

In selection each individual will be an offspring of the two genomes from the previous

generation. Most of the time this method works quite well, but sometimes it loses the best

individuals to crossover or mutation operation. In order to make genetic algorithm robust,

best members of the generation must be kept between generations. Number of best members

to be kept unchanged to the next generation is determined by the number of elite variable.

After initial solution is generated, it is sorted with respect to fitness values. Before crossover

and mutation are applied best chromosomes are kept unchanged by using number of elite

which has user defined value.

There are different alternatives for the selection as stated before. In tournament selection

procedure, the algorithm chooses two solutions from the mating pool randomly and puts

better one into the next population. Here randomly selected ones create diversification in

the solution. Firstly two random numbers are generated and by looking these two numbers,

the total values under these randomly generated numbers are checked to see which profit

value is higher. The next generation is formed by using chromosomes giving higher objective

function value.

Sometimes genetic algorithms tend to produce same or similar result by being stuck in

local maxima (minima), because gene pool becomes similar so there is no new or different

genome to produce different solution. One solution to this issue is introducing new individ-

uals to the gene pool at each generation. But adding new individuals to new gene pool is

not enough because if they cannot mate, new genomes cannot be introduced to the next

generation. In order to make keep gene pool diversified, roulette wheel selection mechanism

is used. Detailed explanation of the roulette wheel selection will be given in the next sec-

tion. Number of new individuals are kept proportional to size of the population to make the

algorithm scalable and defined by the variable new individual.



Chapter 3: Single Product System 30

In deterministic sampling; chromosomes are sorted according to their objective function

values and best valued chromosomes are assigned as new generation and they are also initial

solution of the next iteration. For the tournament selection, a pair of the chromosome from

mating pool is selected randomly for comparison, and the one which has the best objective

value is accepted as a parent of new generation(next initial solution).

Roulette Wheel Selection

Roulette wheel selection is one of the reproduction mechanism used in genetic algorithm.

Key difference of the roulette wheel selection is it makes the reproduction more random-

ized because every genome will have a chance to reproduce proportional to its fitness value.

Because of its randomized nature, poorly performing genomes which have important infor-

mation inside could still reproduce and therefore pass their crucial difference to the next

generation.

Roulette wheel selection performs badly on negative fitness values. In order to circumvent

this situation, fitness values of the genomes are shifted by the amount of minimum fitness

value in current generation, making fitness values of all genomes above zero, which gives

good probability scaling for reproduction. In the Roulette wheel selection method, the

first step is to calculate the cumulative fitness of the whole population through the sum

of the fitness of all individuals. After that, the probability of selection is calculated for

each individual as being wheel = fitness/total fitness. Then, an array is built containing

cumulative probabilities of the individuals. So, N random numbers are generated in the

range 0 to wheel and for each random number an array element which can have higher

value is searched for. Therefore, individuals are selected according to their probabilities of

selection.

Illustration of Selection

Evolutionary algorithms is to maximize the profit function f(x) with x in the real time string

[0, n], i.e., x=0, 1.25, 2.75, 3.48, 5 The first step is encoding chromosomes; use value string

representation for real value numbers up to predefined reorder point n. Assume population

size is 4. Generate initial population at random. They are chromosomes or genotypes; e.g.

x1 =0, 1.25, 2.75, 3.48, 5
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Table 3.3: Roulette Wheel Selection Results

String no Initial Population Fitness Probability Expected Count
1 0, 1.25, 2.75, 3.48, 5 7463.3 0.288 0.99
2 0, 2.34, 3.85, 4 7513.3 0.249 0.997
3 0, 3.41, 4.56, 8.74, 10 7551.2 0.251 1.002
4 0, 2.66, 7 7615.6 0.252 1.011
sum 30143.6 1 4
Average 7535.85 0.25 1
Max 7615.6 0.253 1.011

x2 = 0, 2.34, 3.85, 4

x3 =0, 3.41, 4.56, 8.74, 10

x4=0, 2.66, 7

Calculate fitness value for each individual

f (x1)=7463.3, f(x2)=7513.3, f(x3)=7551.2, f(x4)=7615.6

Select parents for crossover based on their fitness in wheel. In roulette wheel the probability

of the ithstring in the population is pi = fi(
∑n

j=1 fj), where

fj is fitness for the string i in the population

pi is probability of the string being selected

n is the number of individuals in the population

n ∗ pi is the expected count

As we analyze the Table 3.3, the number of expected count is maximum with chromosome;

hence,chromosome 4 selection probability would be higher.

Mutation

After crossover is performed, mutation takes place. Mutation is one of the most crucial

parts of the genetic algorithm; it makes the population diverse by changing small parts of

the genomes. In this project, mutation is made to change only one point of the genome. In

single product system, every genome is mutated by a predefined probability of 0.07 defined

by mutation probability variable. Main reason behind this number is most of the genetic

algorithm programs uses this number and it turns out to be a good ratio of keeping the

population diverse enough to produce better results
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Mutation alters one or more gene values in chromosome from its initial state. This can

be result in entirely new values being added to the gene pool. With the new gene values,

the genetic algorithm may be able to arrive at better solution than was previously possible.

Mutation is intended to prevent the search falling into a local optimum of the state space.

The mutation operators are Flip Bit, Boundary, Non Uniform, and Gaussian. In our problem

Uniform mutation operator is used. In our problem uniform mutation is used. Consider two

chromosomes are selected for mutation,

Random numbers are generated where time values are changed into new ones. The

mutated chromosomes are as follows

Crossover

Crossover is exchange of genetic material to produce offspring in genetic algorithm. Using

crossover also means reproduction in which parent selection and recombination are done

simultaneously. Crossover mainly takes two parents and cuts them at random position and

then swap them. Crossover probability is generally taken between 0.6-1. Crossover can be

one point; two-point, uniform or other crossover types can also be used compatible with the

problem nature. Crossover methods are differ greatly and could change the performance of

the program. Main difficulty is to map the problem into a genetic structure which reflects

nature of the problem. In this simulation one-point variable length crossover is used. The

main reason behind this motive is by using variable length genomes; genetic algorithm could

exploit this feature to search for a solution with different N values which greatly reduced

computation cost. If constant genome length was used, programmer has to simulate all

possible (or desired) N values in order to have a healthy comparison of performance. In order
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to apply crossover two chromosomes are selected randomly from the population excluding

the chromosomes having largest fitness value by using the number of elite hence loss of good

alleles is prevented. Chromosomes are cut at the randomly selected points and then gene

exchange is maintained. For each chromosome pair, probability of crossover is randomly

generated in each time. The pairs are selected randomly from a 30 member population.

Therefore, each iteration fifteen pairs are created and crossover is applied if default crossover

probability is less than the random number generated by code as crossover probability. One

point crossover operator randomly selects crossover point and then copies everything before

this point from the second parent and then everything after the crossover point copy from the

first parent. The crossover would then look as shown below. If we consider the two parents

selected for crossover, after interchanging the parents’ chromosomes before the crossover

points, the offspring produced would be as follows,

3.1.2 Simulated Annealing

Overview

This heuristic optimization method is inspired by mostly the thermodynamic properties of

cooling matters. In thermodynamics, every particle tries to make their internal energy as

low as possible, but in the cooling process, some particles increase their temperature by

some probability. Main principle of SA algorithm is same as the thermodynamic laws. A

solution tries to minimize (maximize) its output by changing its values. In this simulation,

the annealing process tries to maximize its output. While doing this, changes resulting in

output increase are accepted automatically. However, output decreasing changes are also
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accepted by some probability which is inverse proportional to the output difference and

proportional to the temperature of the system.

In SA Algorithm initial temperature, cooling schedule, starting solution and neighbour-

hood structure are the important points that we have to consider. Initial temperature must

be high enough to allow free exchange of neighbouring solutions. Cooling schedule deter-

mines the rate of convergence and probability of accepting non improving solutions. In order

to search adequately in fewer amounts of iterations, neighbourhood should be small, but also

it has to be large enough to obtain drastic profit improvements.

In Simulated Annealing, during iterations solutions are found and these values are com-

pared with respect to their objective function values. Improving solutions are always ac-

cepted but a fraction of non improving solutions are also accepted. The possibility of accept-

ing non improving solutions depends on the temperature parameter. Simulated annealing

allows hill climbing moves worsening objective function value, hence increases the chance of

obtaining global optimum. It differs from traditional local search by employing objective

function worsening moves. So convergence to local optima is prevented. Temperature value

decreases at each iteration, so hill climbing occurs less frequently and makes probable con-

verging to a global optimal solution. Descent strategy can be both steepest descent and also

random descent.

Pseudo Code for Simulated Annealing

Input:Problemsize, iterationmax, tempmax

Output:Sbest

Scurrent ← Create Initial solution (Problemsize);

Sbest ← Scurrent;

for i=1 to iterationmax do

Si ← Create Neighbourhood (Scurrent) ;

Tempcurrent ← Calculate Temperature (i, tempmax);

if Cost(Si) ≤ Cost (Scurrent) then

Scurrent ≤ Si

if Cost(Si) ≤ Cost(Sbest) then

Sbest ≤ Si
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end

else if exp(Cost(Scurrent)−Cost(Si)
tempcurrent

) > Rand () then ;

Scurrent ← Si;

end

end

Return Sbest;

Solution and Neighbour Representations

In the problem we take the number of price change and cycle time as variable parameters and

for each value different time arrays are generated by randomization method. If the problem

has as input of 7 as the number of price change and 10 as the cycle time, the initial solution

will be in the form of 1x9 array like given below. In every turn of simulated annealing, a

neighbour state is selected and decided to be used or not. There are 3 generally used methods

of neighbour selection. Those methods are linear perturbation, Gaussian perturbation and

randomization. Perturbation is changing a value to a new value which depends on current

value of the system. Perturbation can be described as noise insertion to the system. The

value stays more or less the same, but it can change system behaviour. The difference

between linear perturbation and Gaussian perturbation is the type of the noise introduced.

In linear perturbation, the change is selected from a uniform random distribution, whereas

in Gaussian perturbation the noise is selected from a Gaussian distribution. Randomization

is changing a point in the solution to a new random one and it is the method used in the

simulation. The reason behind this decision is randomization outperforms both Uniform

and Gaussian perturbation in terms of profit value. If the solution stuck on a local maxima,

perturbation methods came insufficient to move the solution to a new solution region and

that’s the main reason randomization outperforms perturbation.

Initial solution is composed of time series having randomly generated values. In order

to create neighbour for our current solution, a random number is generated in order to be

used as an index number in which price change is done. In order to have a neighbour the
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move operator finds an index and changes its value by a different random number. Below

random number is generated as 5; move operator changes the value in index 5 by 9.99.

Temperature

If the profit value of the newly generated time series is larger than the current value then

solution is directly accepted as the neighbour of our solution. If the result is worse than the

current one, it still has the chance of being a neighbour which is the most remarkable point

that SA differs from ordinary scatter searches.

Acceptance value is evaluated in the system by using the objective function values of

the current and new time series given as follows: acceptance=exp (new solution-current

solution)/temperature. It can be appreciated that as the temperature of the system decreases

the probability of accepting a worse move is decreased. This is the same as gradually moving

to a frozen state in physical annealing.

Also note, that if the temperature is zero then only better moves will be accepted which

effectively makes simulated annealing act like hill climbing. Temperature can be described as

how much bad change can I tolerate at this moment. A high temperature system is unstable;

various changes in output which results worse output can occur, gradually the temperature

drops and the system becomes stable and behaves like a greedy algorithm. Temperature

decreases by the principle of exponential decay. In the simulation, temperature is defined

by the variable temp and it is selected different on each simulation.

Initial temperature selection is also made after trying several temperatures as 2,10,30 and

100.Initial temperature should be high enough to allow a move to almost all neighbourhoods.

If it is not so, final solution may be so close to initial solution. It means initial temperature

should allow a hill climbing moves. However, if the initial temperature starts too high values,

search may move disorderly and transform into a random search.The cooling schedule graph

is given in Figure 3.4 whose value changes according to the exponential temperature function
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given below where Temp is temperature.

Figure 3.4: Cooling Schedule Graph of Simulated Annealing

In single product system, temperature is set to 2 because of trivial nature of the problem;

a small temperature leads to more aggressive approach and forces the algorithm to look for

better solutions constantly without sacrificing its current position. Such simulations show

greedy behaviour in solving of the problem.

Pseudocode for Simulated Annealing

Step 1.: Generate time arrays randomly for both single and double product system taking

cycle time n as the end point and ”0” as the starting point. These arrays shows the intervals

during which price adjustments are done.

Step 2. Evaluate optimal price values By using the time intervals. These price functions

are the found by using the first derivative of profit values.

Step 3. Evaluate holding costs, revenues, fixed and variable costs for each time interval

Step 4. Find index numbers and assign real time values to those preceding indexes randomly

Step 5. Evaluate profit value of the time array. If profit value is smaller than the previous

solution’s than it is accepted as the neighbour solution.

Step 6.Repeat procedure until termination criteria is met
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Chapter 4

TWO PRODUCT SYSTEM

We analyze perishable two product system where products are substitutable. Each prod-

uct’s demand is affected from each other’s due to substitution property when these products’

value and also freshness change. The problem formulation is very similar with the single

product case. We assume replenishment cycle same for both of the products, which is also

a very close assumption to the real life case where generally similar products are supplied

from a single supplier and orders are given during the same replenishment cycles. Due to

high fix costs it would be also illogical to order at different cycle times. On the other hand,

in order to obtain higher profit and use the perishable products’ inventory more efficiently,

we can change their prices at multiple points. We denote times as t1i , t
2
i and prices as pi, qi

for the first and second product respectively. During each time interval prices are changed

but change for which product is unknown. As a result, it is hard to write the profit function

without knowing where t1i lies with respect to t2i values. Because without this data, it will

be wrong when we try decide on the demand values for each product during time intervals.

Hence all t1i and t2i values are taken into single time array denoted by ti containing all pi

and qi in order with respect to the given time array. When we construct the price arrays

matching with the time values, there is an important point; while searching for each time

value in the first or second product’s time set, price should be taken constant if the searched

time value could not be found in the related product’s time set. We use same procedure with

single product case in order to find profit, price and inventory values as given in previous

section. Details are given below.

In two product system, we assume demand values of the products depend on each other.

Evaluation of revenue and cost is same with the single product system. In this system,we take

both linear and exponential price responses. The important thing is substitution between the

products and we take this into account by analysing the interaction between the prices. In

the linear case, when substitute product’s price is increased then demand for the first product
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increases. In the formulation this is provided by using opposite price signs. Deterioration is

again used in the formulation by using time factor. Linear Price response for two product

system

D1(pi, qi, t) = a1 − β1pi + c1qi − d1ti D2(pi, qi, t) = a2 − β2qi + c2pi − d2ti

formation of the two product pricing system: pricing at equal time intervals and also pricing

at different time intervals. When we deal with pricing at different time intervals, we form

price and time arrays different from the pricing at equal time intervals.For instance lets

assume t1i and t2i are the given sets of time arrays which are taken into one single array

whose starting and end points are 0 and tN respectively. Length of the time array is the

sum of t1i and t
2
i and given by N . In the Figure 4.1 visualize the idea of price and time array

formation. If we assume all the price and time arrays are given like below, first step is to

form T array composed of first and second product’s time array, hence we can combines all

values in a single size. Time 1 and Time 2 are the values for t1i and t2i and tN = 10. Along

time line T we search for the intervals whether the they belong to the Time 1 or Time 2

array. Such that, in this example first interval is [0− 1.25], we look for the value in the sets

and find that it belongs to Time 1 set. Hence first product’s price value is changed from

98 to 94, then look for the second interval [1.25 − 2.5] which is in the Time 2 set. As a

result first product’s price is kept same with the preceding interval which is 94 and second

product’s price is changed from 88 to 86.

Figure 4.1: Time and Price Array Creation Flow
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All the price sets are formed according to this general idea. By keeping in mind, in

this system we assume all the price sets and time values are given. We can not find any

optimal time or price values as in the other models. Demand value of each product affects

the other one as stated before, hence without knowing the exact time periods it is hard

to deal with the application of pricing at different time intervals. When we try to apply

local maximum theory by taking derivative of profit function with respect to both price and

time, no explicit result can be found without knowing the time values. There can be any

possibility for a product in a single time interval; its price may change or stay constant

both of the conditions affect profit function in a different way. On the other hand, when we

adjust prices at the same periods for both of the products, we can get optimal price values

by using the results of first derivative of the profit function knowing that profit has a local

maximum point. Time values are found by heuristic methods with the same procedure given

in single product system. Hence in this thesis, we deal with double product system with

price adjustments at equal time intervals. Details are given below.

4.1 Pricing at Equal Time Intervals

In two product system, if products are substitute and we price them at the same time

intervals, then inventory level graph behaves as if there exists a single product in the system.

Let I1(t) and I2(t) be the instantaneous inventory level at any time t ≥ 0 for the first and

second product. Demand rates for the products D1(pi, qi, t) and D2(pi, qi, t) are assumed to

be positive having a negative derivative in its entire domain. The inventory is partly depleted

to satisfy demand and partly for deterioration. For tε[0, tN ], the net stock is positive.

Inventory Level Equations

As a first step, we derive the instantaneous state of I1(t). The procedure is the same for the

second product, hence we don’t give detailed information for the second product formulation.

The general solution for I1(t) is given in Eq. 4.1.

I1(t) = e−θ1t
∫ tN

t
eθ1sD1(pi, qi, s)ds+ ce−θ1t (4.1)



Chapter 4: Two Product System 41

Table 4.1: Parameter Values for Double Product System

I1(t) net stock at time t for the first product, (units).
I10 = I1(0) maximum net stock for the first product, (units).
Q1 = I10 the batch size for the first product, (units).
D1(pi, qi, t) demand rate at time t for the first product, (units/period).
σ1(t) wastage coefficient at time t for the first product.
ω1(t) = σ1(t).I

1(t) wastage rate at time t for the first product, (units/period).
I2(t) net stock at time t for the second product, (units).
I20 = I2(0) maximum net stock for the second product, (units).
Q2 = I20 the batch size for the second product, (units).
D2(pi, qi, t) demand rate at time t for the second product, (units/period).
σ2(t) wastage coefficient at time t for the second product.
ω2(t) = σ2(t).I

2(t) wastage rate at time t for the second product, (units/period)

Along the time line, tN gives reorder point and for each N different price adjustments,

inventory levels can be evaluated at N different points.For each time interval i boundary

value c is the amount of inventory at beginning of the proceeding time interval given by Ii.

We take demand as D(pi, qi, t) = a1 − β1pi + c1qi − d1t where pi gives price amount at

ith price adjustment point for the first product and qi gives the price of the second product.

During time products perish at a certain amount, hence product’s demand decreases with

respect to decay amount which is included as d1t in the demand equation and also demand

increases when there is a price increase in the second product due to their substitution

property given by c1qi. When we use demand in open form Eq. 4.1 takes the form

I(t) =

∫ ti

t
(a1 − β1pi + c1qi − d1s)eθ1(s−t)ds+ I1(ti)e

θ1(ti−t) (4.2)

Integral in Eq. 4.2 gives the amount of sell and decay amount of product between t and ti,

I1(ti) is the inventory amount at the beginning of the following interval. When we integrate

the Eq. 4.2, we obtain general inventory level equation for both single and double product

given in Eq. 4.3 and Eq. 4.4.

I1i (t) =
a1 − β1pi + c1qi

θ1
eθ1(ti−t) − d1ti

θ1
eθ1(ti−t)+

+
d1
θ21
eθ1(ti−t) − a− β1pi + c1qi

θ1
+
d1t

θ1
− d1
θ21

+ I1(ti)e
θ1(ti−t) (4.3)
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I2i (t) =
a2 − β2qi + c2pi

θ2
eθ2(ti−t) − d2ti

θ2
e(ti−t)+

+
d2
θ22
eθ2(ti−t) − a2 − β2qi + c2pi

θ2
+
d2t

θ2
− d2
θ22

+ I2(ti)e
θ2(ti−t) (4.4)

The selling amounts of the first product and the second product at ith interval, denoted

by S1
i and S2

i , is the total demand belonging to that interval found by Eq. 4.5 and Eq. 4.6.

S1
i =

∫ ti

ti−1

(a− βpi + c1qi − d1t)dt

= a1(ti − ti−1)− β1pi(ti − ti−1)−
d1
2
(t2i − t2i−1) (4.5)

S2
i =

∫ ti

ti−1

(a2 − β2qi + c2pi − d2t)dt

= a2(ti − ti−1)− β2qi(ti − ti−1) + c2pi(ti − ti−1)−
d2
2
(t2i − t2i−1) (4.6)

We find total amount of first product sold for the whole inventory cycle by summing up all

S1
i values for each time interval, given by Eq. 4.7 and for the second product we find by

summing up all S2
i values given by Eq. 4.8

S1 =
N∑
i=1

∫ ti

ti−1

(a1 − β1pi + c1qi − d1t)dt

=
N∑
i=1

a1(ti − ti−1)− β1pi(ti − ti−1)+

+ c1qi(ti − ti−1)−
d1
2
(t2i − t2i−1) (4.7)

S2 =

N∑
i=1

∫ ti

ti−1

(a2 − β2qi + c2pi − d2t)dt

=

N∑
i=1

a2(ti − ti−1)− β2qi(ti − ti−1)+

+ c2pi(ti − ti−1)−
d2
2
(t2i − t2i−1) (4.8)

Total inventory for the first product Q1 and for the second product Q2 are the inventory

levels at time t = 0 giving the initial inventory levels for the whole inventory cycle, given by
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Eq. 4.9 and Eq. 4.10 which can be also found by Eq. 4.13 and Eq. 4.14.

I1(0) = Q1 =
a1 − β1p1 + c1q1

θ1
eθ1t1 − d1t1

θ1
eθ1t1 +

d1
θ21
eθ1t1

− a1 − β1p1 + c1q1
θ1

− d1
θ21

+
d1t0
θ1

+ I1(t1)e
θ1t1 (4.9)

I2(0) = Q2 =
a2 − β2q1 + c1p1

θ2
et1 − d2t1

θ2
et1 +

d2
θ22
eθ2t1

− a2 − β2q1 + c2p1
θ2

− d2
θ22

+
d2t0
θ2

+ I2(t1)e
θ2t1 (4.10)

Q1 =
N∑
i=1

a1 − β1pi + c1qi
θ1

eθ1(ti) − d1tie
θ1(ti)

θ1

+
d1e

θ1(ti)

θ21
− a1 − β1pi + c1qi

θ1
eθ1ti−1 − d1

θ21
eθ1ti−1 +

d1ti−1
θ1

eθ1ti−1 (4.11)

Q2 =
N∑
i=1

a2 − β2qi + c2pi
θ2

eθ2(ti) − d2tie
θ2(ti)

θ2

+
d2e

θ2(ti)

θ22
− a2 − β2qi + c2pi

θ2
eθ2ti−1 − d2

θ22
eθ2ti−1 +

d2ti−1
θ2

eθ2ti−1 (4.12)

Inventory equations can also be written as follows,

I1(j) =
N∑

i=j+1

a1 − β1pi + c1qi
θ1

eθ1(ti) − d1tie
θ1(ti)

θ1

+
d1e

θ1(ti)

θ21
− a1 − β1pi + c1qi

θ1
eθ1ti−1 − d1

θ21
eθ1ti−1 +

d1ti−1
θ1

eθ1ti−1 (4.13)

I2(j) =
N∑

i=j+1

a2 − β2qi + c2pi
θ2

eθ2(ti) − d2tie
θ2(ti)

θ2

+
d2e

θ2(ti)

θ22
− a2 − β2qi + c2pi

θ2
eθ2ti−1 − d2

θ22
eθ2ti−1 +

d2ti−1
θ2

eθ2ti−1 (4.14)

In two product system total revenue comes from both the first product and the second

product. As a consequence, we evaluate revenue values separately for the products. Total

revenue is the sum of the two different values gained from the products. In each case, revenue

is the multiplication of demand with its corresponding price.
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Revenue for the first and second product

Revenue1 =
N∑
i=1

∫ ti

ti−1

(a1 − β1pi + c1qi − d1t)pidt

=
N∑
i=1

a1pi(ti − ti−1)− β1p2i (ti − ti−1)+

+ c1qipi(ti − ti−1)−
d1pi
2

(t2i − t2i−1) (4.15)

Revenue2 =

N∑
i=1

∫ ti

ti−1

(a2 − β2qi + c2pi − d2t)qidt

=
N∑
i=1

a2qi(ti − ti−1)− β2q2i (ti − ti−1)+

+ c2piqi(ti − ti−1)−
d2qi
2

(t2i − t2i−1) (4.16)

Total revenue is sum of revenue gained from first and second product

Total Revenue =
N∑
i=1

a1pi(ti − ti−1)− β1p2i (ti − ti−1)+

+ c1qipi(ti − ti−1)−
d1pi
2

(t2i − t2i−1)+

+
N∑
i=1

a2qi(ti − ti−1)− β2q2i (ti − ti−1)+

+ c2piqi(ti − ti−1)−
d2qi
2

(t2i − t2i−1) (4.17)

We evaluate cost values with the same procedure used in single product system. Total cost

for the whole inventory cycle is addition of cost values from first and second products.

C(tN ) = (k1 + C1Q1)OF1 + h1I1 + (k2 + C2Q2)OF2 + h2I2

We assume cycle times equal to each other for both of the products where

OF1 =
1

tN
and OF2 =

1

tN

Total holding cost is sum of the costs resulting from first and second product. By using
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Eq. 4.3and Eq. 4.4,

h1I1 =
h1
tN

N∑
i=1

[
− a1 − β1pi + c1qi

θ21
(1− eθ1(ti−ti−1)) +

d1ti
θ21

eθ1(ti−ti−1)

− d1
θ31
eθ1(ti−ti−1) − a1 − β1pi + c1qi

θ1
(ti − ti−1)

+
d1
2θ1

(t2i − t2i−1)−
d1
θ21

(ti − ti−1) +
I1(ti)

−θ1
(1− eθ1(ti−ti−1))

]
(4.18)

h2I2 =
h2
tN

N∑
i=1

[
− a2 − β2qi + c2pi

θ22
(1− eθ2(ti−ti−1)) +

d2ti
θ22

(1− eθ2(ti−ti−1)

− d2
θ32

(1− eθ2(ti−ti−1))− a2 − β2qi + c2pi
θ2

(ti − ti−1)

+
d2
2θ2

(t2i − t2i−1)−
d2
θ22

(ti − ti−1) +
I2(ti)

−θ2
(1− eθ2(ti−ti−1))

]
(4.19)

Profit is the difference between total revenue and total cost. So profit function for the

first and second product are given in Eq. 4.20 and Eq. 4.21 where total profit is sum of π(N)
1

and π(N)
2 , π(N) = π

(N)
1 + π

(N)
2 .

π
(N)
1 =

1

tN

[ N∑
i=1

(
a1pi(ti − ti−1)− β1p2i (ti − ti−1)+

+ c1qipi(ti − ti−1)−
d1pi
2

(t2i − t2i−1)

− h1[−
a1 − β1pi + c1qi

θ21
(1− eθ1(ti−ti−1)) +

d1ti
θ21

eθ1(ti−ti−1)

− d

θ31
(1− eθ1(ti−ti−1))− a1 − β1pi + c1qi

θ1
(ti − ti−1) +

d1
2θ1

(t2i − t2i−1)

− d1
θ21

(ti − ti−1) +
I1(ti)

−θ1
(1− eθ1(ti−ti−1))]

)
− (k1 + C1Q1)

]
(4.20)
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π
(N)
2 =

1

tN

[ N∑
i=1

(
a2qi(ti − ti−1)− β2q2i (ti − ti−1)+

+ c2qipi(ti − ti−1)−
d2qi
2

(t2i − t2i−1)

− h2[−
a2 − β2qi + c2pi

θ22
(1− eθ2(ti−ti−1)) +

d2ti
θ22

(1− eθ2(ti−ti−1))

− d2
θ32

(1− eθ2(ti−ti−1))− a2 − β2qi + c2pi
θ2

(ti − ti−1) +
d2
2θ2

(t2i − t2i−1)

− d2
θ21

(ti − ti−1) +
I2(ti)

−θ2
(1− eθ2(ti−ti−1))]

)
− (k2 + C2Q2)

]
(4.21)

Model Formulation of the Problem

In the model, price adjustments in any time interval effect both of the products. Hence

model behave as if there is a single product in the system. Model formulation is very close

to the form of single product, only difference is profit function. Price adjustment in one

product affects the other product’s demand value. As a result main profit function includes

both profit values coming from products with their associated demands. We use two stage

system, firstly second stage is carried out for a given number of price adjustment for both

of the products. During the stage, we obtain profit values for the given number of price

values, and then we use these values at the first stage of the model with their associated

price change cost values, K(N). As a result,we can both maximize profit and also optimize

number of price adjustments. In this model number of price adjustments and also inventory

cycle time is same for both of the products. If we denote number of price adjustment for the

first product as N1 and for the second product N2, we take N1 equal to N2 and we denote

by N in the given model. Hence we use same time array and we evaluate profit values for

both of the products for each time interval.

For a given time array that denotes the timings of the price changes,the optimal prices

are found as given in Theorem 4.1. However finding the optimal times are not as easy.

Thus, we use heuristic algorithms to find the optimal price changing times. As in the single

product case, we start from second stage. For a given number of time setting, we evaluate

price arrays giving highest profit by the heuristic methods. Then, we use these given number

of price settings and their associated profits in the first stage of the model in order to obtain

best profit giving number of price and it’s corresponding profit,timing and pricing arrays.

Heuristic approach is explained in the following section.
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Stage1 : (4.22)

π∗ = max π(N) −K(N) (4.23)

Stage2 : (4.24)

π(N) =
1

tN

N∑
i=1

(
a1pi(ti − ti−1)− β1p2i (ti − ti−1)+

+ c1qipi(ti − ti−1)−
d1pi
2

(t2i − t2i−1)

− h1[−
a1 − β1pi + c1qi

θ21
(1− eθ1(ti−ti−1)) +

d1ti
θ21

(1− eθ1(ti−ti−1))

− d

θ31
(1− eθ1(ti−ti−1))− a1 − β1pi + c1qi

θ1
(ti − ti−1) +

d1
2θ1

(t2i − t2i−1)

− d1
θ21

(ti − ti−1)−
N∑

j=i+1

{a1 − β1pj + c1qj
θ1

eθ1(tj) − d1tje
θ1(tj)

θ1

+
d1e

θ1(tj)

θ21
− a1 − β1pj + c1qj

θ1
eθ1tj−1 − d1

θ21
eθ1tj−1 − d1tj−1

θ1
eθ1ti−1)(1− eθ1(ti−ti−1))}]

+ a2qi(ti − ti−1)− β2q2i (ti − ti−1) + c2qipi(ti − ti−1)−
d2qi
2

(t2i − t2i−1)

− h2[−
a2 − β2qi + c2pi

θ22
(1− eθ2(ti−ti−1)) +

d2ti
θ22

(1− eθ2(ti−ti−1))

− d2
θ32

(1− eθ2(ti−ti−1))− a2 − β2qi + c2pi
θ2

(ti − ti−1) +
d2
2θ2

(t2i − t2i−1)

− d2
θ21

(ti − ti−1)−
N∑

j=i+1

{a2 − β2qj + c2pj
θ2

eθ2(tj) − d2tje
θ2(tj)

θ2

+
d2e

θ2(tj)

θ22
− a2 − β2qj + c2pj

θ2
eθ2tj−1 − d2

θ22
eθ2tj−1

− d2tj−1
θ2

eθ2tj−1)(1− eθ2(ti−ti−1))}]
)
− (k2 + C2Q2)− (k1 + C1Q1) (4.25)

s.t D1
i ≥ 0 and D2

i ≥ 0 ∀i ∈ i = 1, · · · , N (4.26)

ti−1 − ti ≤ 0 ∀i ∈ i = 1, · · · , N (4.27)

tN ≥ 0 (4.28)

Theorem 4.1 For a given set of ti values, the optimal prices p∗i and q∗i are found using the

result of first order derivative of profit function given in Eq. 4.25. Profit takes its maximum

value at the given p∗i and q∗i . π is a function which is twice differentiable at pi and qi and
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satisfies ∂2π
∂p2i

< 0,∂
2π
∂q2i

< 0.Hence π has local maximum point at pi and qi, which satisfies both

Eq .(4.32) and Eq .(4.33).

∂π

∂pi
= a1(ti − ti−1)− 2β1pi(ti − ti−1) + c1qi(ti − ti−1) + c2qi(ti − ti−1)

−
d1(t

2
i − t2i−1)
2

− h1
(β1(1− eθ1(ti−ti−1)

θ21
+
β1(ti − ti−1)

θ1

)
− ∂Q1

∂pi
C1

− h2
(−c2(1− eθ2(ti−ti−1))

θ22
− c2(ti − ti−1)

θ2

)
− ∂Q2

∂pi
C2 (4.29)

∂π

∂qi
= a2(ti − ti−1)− 2β2qi(ti − ti−1) + c2pi(ti − ti−1) + c1pi(ti − ti−1)

− d2(ti − ti−1)
2

− h2
(β2(1− eθ2(ti−ti−1)

θ22
+
β2(ti − ti−1)

θ2

)
− ∂Q2

∂qi
C2

− h1
(−c1(1− eθ1(ti−ti−1))

θ21
− c1(ti − ti−1)

θ1

)
− ∂Q1

∂qi
C1 (4.30)

∂Q1

∂pi
=
β1(e

θ1(ti−1) − eθ1(ti))
θ1

∂Q2

∂pi
=
c2
θ2

(eθ2(ti) − eθ2(ti−1))

∂Q1

∂qi
=
β2(e

θ2ti−1 − eθ2(ti))
θ2

∂Q2

∂qi
=
c1
θ1

(eθ1(ti) − eθ1(ti−1))

(4.31)

pi =
a1
2β1

+
c1qi
2β1
− d1(ti + ti−1)

2β1
− h1[

1− eθ1(ti−ti−1)

θ212(ti − ti−1)
+

1

θ1
]

+
c2qi
2β1
− h2[−

c2
θ22

1− eθ2(ti−ti−1)

2β1(ti − ti−1)

− c2
θ22β1

]− C2
c2
θ2

eθ2ti − eθ2ti−1

2β1(ti − ti−1)
− c1
θ1

(eθ1ti−1 − eθ1ti)
ti − ti−1

(4.32)



Chapter 4: Two Product System 49

qi =
a2
2β2

+
c2pi
2β2
− d2(ti + ti−1)

2β2
− h2[

1− eθ2(ti−ti−1)

θ222(ti − ti−1)
+

1

θ2
]

+
c1pi
2β2
− h1[−

c1
θ21

1− eθ1(ti−ti−1)

2β2(ti − ti−1)

− c1
θ12β2

]− C1
c1
θ1

eθ1ti − eθ1ti−1

2β2(ti − ti−1)
− c2
θ2

(eθ2ti−1 − eθ2ti)
ti − ti−1

(4.33)

4.1.1 Solution Methodology

Genetic Algorithm

Solution method for the double product system is nearly same with the single product

system, when price adjustments are done at the same intervals for each product. We find

time arrays by the heuristic algorithms and best profit giving ones selected as the optimal

solution. The only difference is the functions used throughout the algorithm such that profit,

price and also inventory. Two product heuristic algorithms are created with the same idea

in single product, hence only distinct points are highlighted in the following parts.

Representation of the Chromosomes

We use chromosomes with real values, which gives time adjustment points. In our case, n1

and n2 are same; as a result only one input parameter is taken as the number of price change

which is denoted by N and tN is the replenishment point for both products. Hence while

generating chromosomes, at each iteration end point is taken as tN . For instance if tN = 20

and N = 8, then randomly generated chromosome can be as in Figure 4.2.

Figure 4.2: Illustration of Chromosomes

Initial Solution Generation

We generate initial solutions with the randomization method, where only input is given as

the number of price change and the replenishment point. As in the single product system,

the important point is population size. If too many chromosomes are generated,this may lead

to excessive diversification and unnecessary usage of computational time. We try population
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sizes of 30,50 and 100 in order to decide on the best size, and choose population size of 30

as in the single product system.

Mutation

We apply one point mutation which is selecting randomly one point along the chromosome

and changing its value by a randomized number. In double product system, mutation

operator changes only one component of genome, the reason is that mutation of both parts

of the genome could be harmful. Because beneficial effect of one mutation can be neutralized

by the other mutation. The mutation probability is 0.8 which is very high compared to

normal genetic algorithm approaches. The reason is purely experimental; we obtain better

performance in these circumstances. Mutation operator is uniform as in single product case,

hence there is no need to visualize the mutation.

Crossover

Crossover mechanism is same with the single product case, where we use variable length

crossover operator giving us the flexibility to search along the time line with N different

points. Alleles are changed between the chromosomes from the crossover cut points.After

crossover and mutation, we apply selection mechanism in order to obtain best offspring.

Selection

We try deterministic and roulette wheel selection methods; and decide on that best profit

giving values are obtained by the roulette wheel method. After the application of roulette

wheel, next generation is formed with randomly selected pairs having higher probability of

selection due to having larger ratio of profit in the population.

Simulated Annealing

Solution and Neighbour Representation

Both double and single product systems are based on the same idea of generating initial

solution. Arrays with randomized numbers are the initial time solutions and in order to

have a neighbour firstly an index is assigned, then the time number is changed into another

random one. If the objective function value of the new array is greater than the current
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one, then it is directly our neighbour. There are some situations when while the objective

function value smaller but it is also accepted as our another solution. Acceptance value is

used in order to decide whether or not take the array in to neighbour set with the same

procedure in single product algorithm.As the temperature value decreases, probability of

acceptance also diminishes.

Temperature

As a cooling schedule, exponential decay is used. Double product systems are much compli-

cated by their nature. Because each part of the solution can effect the other, the problem

becomes a wicked problem which is by definition, changes its objective while assessing the

problem itself. The chaotic behaviour of the solution function requires more elaborate search,

which can be done at increased temperatures. Keeping that in mind and experimental re-

sults, temperature is set to 10.
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Chapter 5

COMPUTATIONAL STUDIES

In this chapter, we give details about the parameter settings, heuristic algorithm and

also sensitivity analysis results.In Section 5.1, parameters for both single and double prod-

uct system can be found.In Section 5.1, we explain the parameter settings for the genetic

algorithm and also simulated algorithm. In Section 5.2.3, we give detailed explanation for

the computational results.

5.1 Data Generation

For both single and double product system one set of parameters is chosen as a basis for

the experimental studies. Demand function parameters, inventory costs, fixed costs and also

price change costs are included in this parameter set. In Table 5.1 and Table 5.2 we give the

parameters and their values with their related abbreviations. Demand both depends on time

and price; as price increases demand decreases. Due to perishability, as time passes product

loses its freshness; so demand decreases. These factors are all included in demand by “β”

and “d” values. In double product system we include “c1” and “c2” giving the substitution

property of two products; if we increase one the product’s price then, demand for the second

product increases.This correlation is maintained in demand by using “c1” and “c2”. Order

costs are given for each replenishment cycle, closely related with the total inventory for the

whole cycle. As a result, if we give an order by size “Q” at the end of “tN”, a total cost

of “CQ” incurs. In double product system, unit order costs are given by “C1” and “C2”.

Fixed costs are independent of size of the inventory, hence whenever an order is given a total

fixed cost takes place with an amount of “k” in single system or “k1” and “k2” in double

product system. Decay coefficients determines the perishability ratio given by “θ” in single

product system and in double product system given by “θ1” and “θ2”.
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Table 5.1: Single Product System Parameters

Parameter Abbreviation Unit value

Time Dependency d 0.1

Market Potential a 100

Price Sensitivity β 0.3

Unit Holding Cost h 1

Decay Coefficient θ 0.01

Fixed Cost k 500

Unit Order Cost C 10

Price Change Cost f 10

Table 5.2: Double Product System Parameters

Parameter Abbreviation Unit Value

1st Product Market Potential a1 100

2nd Product Market Potential a2 100

1st Product Sensitivity β1 0.3

2ndProduct Price Sensitivity β2 0.3

1st Product Unit Order Cost C1 10

2nd Product Unit Order Cost C2 10

1st Product Price Dependency c1 0.1

2nd Product Price Dependency c2 0.1

1st Product Time Dependency d1 0.1

2nd Product Time Dependency d2 0.1

1st Product Price Change Cost f1 10

2nd Product Price Change Cost f2 10

1st Product Fixed Cost k1 500

2nd Product Fixed Cost k2 500

1st Product Unit Holding Cost h1 1

2nd Product Unit Holding Cost h2 1

1st Product Decay Coefficient θ1 0.01

2nd Product Decay Coefficient θ2 0.01
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5.2 Parameter Settings for the Algorithms

For both genetic algorithm and simulated annealing in order to achieve best objective func-

tion value, different algorithm parameter values are tested; such as temperature, selection,

population size or cooling schedule. It is important to decide on the best parameters which

directly affects the performance of the heuristic algorithms, so well tuning is a must. Below

you can find parameter setting results for both single and double product system.

5.2.1 Parameter Setting for Genetic Algorithm

Population size

In genetic algorithm population size, selection methods, crossover and mutation probabilities

are the main parameters that we deal with. We try different population sizes in order to

achieve best results by taking into account some specific informations. Such that, if larger

population sizes are used, this can result in high amount of diversification or small population

may result in inadequate search of solution space which are undesired conditions for the

heuristic algorithms. Hence, diversification and intensification should be well managed. We

try population sizes of 30, 50 and 100 for both single and double product systems; results

are given in Table 5.3

Table 5.3: Population Size Determination for Single and Double Product System

Population Size Profit Single Profit Double

Popsize 30 7755,00 11377,00

Popsize 50 7754,78 11377,00

Popsize 100 7755,00 11377,00

After the application of different population sizes, we’ve decided to use population size of

30, which is enough for the genetic algorithm for both single and double product system. We

do not choose 50 or 100, because best results can be achieved at lower sizes which leads us

having computational efficiency and having less CPU time by maintaining balance between

diversification and intensification.
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Selection

After crossover and mutation applied, we need to form off-springs in order to maintain gene

continuity giving higher profit results. We try two methods for both single and double

product system; roulette wheel and deterministic selection. Compared values for single and

double product system are given in Table 5.4; both of which reach the largest amount of

profit when we use roulette wheel selection.

Table 5.4: Selection Methods for Single and Double Product System

Selection Single Profit Double Profit

Roulette Wheel 7509,40 10953,00

Deterministic 7507,45 10951,00

Mutation

Genetic algorithm diversification is maintained by mutation operator, which can have differ-

ent values specific to the model. We try different mutation probabilities given in Table 5.5.

In single system mutation probability is set to 0.07 and in double product system it is set

to 0.8, which give better results with respect to other mutation probabilities. We have also

tried lower values such as 0.07 for double product system; however we obtained worse results

compared to higher probabilities.

Table 5.5: Single and Double Product Mutation Probabilities Comparison

Probability Profit Single Probability Profit Double
0.07 7509,40 0.8 10953,20

0.02 7509,20 0.7 10952,80

0.05 7509,30 0.9 10952,70

0.08 7509,10 0.95 10953,00
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5.2.2 Parameter Setting for Simulated Annealing

Temperature

In simulated annealing temperature values provide the necessary intensification and diver-

sification for the problem. If too high temperatures are selected, then simulated annealing

will have no difference from the scatter search. Hence fine tuning is a necessary action for us

to obtain good results. In Table 5.6 you can find temperature values where at temperature 2

single product system and at 10 double product system take their highest objective values.

Table 5.6: Single Product Simulated Annealing Results at Different Temperatures

Temperature Profit Single Profit Double
2 7705,30 11350,00

10 7604,20 11361,00

30 7604,20 11358,00

100 7604,20 11350,78

5.2.3 Analysis of the Single Product System

In this section we share the experimental results obtained by the heuristics for both single

and double product system. In addition to the heuristic results, constant pricing values and

its comparisons with single and double product system are also given.

Analysis of the Single Product System

Experiments are done on a workstation with an Intel(R) Core(TM)2 Duo processor, 2.53

GHz speed, and 2GB of RAM. Heuristic methods are coded in Matlab 7.12.0. The first

case is constant pricing; we only set prices at the beginning of the cycle and do not change

again until the proceeding replenishment time. The constant pricing results for the given

parameters in Table 5.1 are shown in Table 5.7 and detailed sensitivity results are given in

Table 5.14.
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Table 5.7: Single Product Constant Pricing Results for the Base Parameters

Parameter Profit Decay Inventory Price Holding Cost Cycle Revenue

Base Case 7437,80 0,015 146,71 172,25 221,85 3,00 8315,40

Results for the Number of Price Adjustment Change

The number of price change is the main issue in order to see the effects on the profit and also

other parameters. Hence, we try different numbers of price change by using the parameters

given in Table 5.1 and share the results in Table 5.8 giving profit, order and holding cost

and also average price values. Holding cost is the value of keeping inventory throughout the

cycle found by h ∗ I; order cost is the procurement cost of the material which depends on

unit procurement cost and initial inventory evaluated by “CQ”. Figure 5.1 gives the profit

Table 5.8: Comparisons of optimal pricing strategies regarding N

N Profit K(N) Holding Cost Order Cost Total

1 7502,268 10,000 157,853 698,944 866,797

2 7518,194 20,000 131,343 699,350 850,693

3 7521,900 30,000 158,050 658,421 846,471

4 7521,900 40,000 147,550 658,577 846,127

5 7518,595 50,000 140,429 658,681 849,110

6 7518,094 60,000 135,668 658,753 854,421

7 7506,475 70,000 132,102 658,805 860,907

8 7499,263 80,000 129,181 658,587 867,768

9 7491,550 90,000 126,717 658,888 875,605

10 7482,736 100,000 125,501 658,899 884,399

change with respect to number of price adjustments. Profit value increases up to a certain

N = 4, then starts to decrease; increase in operational and price change costs result in a

decrease of profit value. Optimal price change with respect to time at N = 4 is given in

Figure 5.3 which has a decreasing pattern.In this figure you can also find the constant price

result given with red line having cycle time tN = 3. There are two main reasons for the

different tN value; one which is higher initial inventory in multi price case, the other one
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is lower holding cost. Hence optimal solution tends to keep inventory for a longer time in

multi pricing case which leads to longer cycle length. As a result by using lower price values

and larger cycle lengths we can obtain higher profits.

Figure 5.1: Profit Change with respect to N

For each number of price change, average prices are enumerated given in Figure 5.2

which is a comparison between “N” and “averageprice”. As the number of price change

increases, we obtain lower price average. Order and holding costs are given in Figure 5.4

and Figure 5.5; both show a decreasing pattern and take their minimum values at N = 3

and N = 2. However without considering price change cost, making a conclusion would be

wrong. Hence, total change costs are evaluated. Total cost change including price change

with respect to N is given in Figure 5.6, showing that up to optimal N∗ total cost decreases;

profit shows a parallel pattern with the total cost. In our model, the optimal N∗ = 4 is

the point where we obtain maximum profit, 7509.60 where model gets minimum total cost.

When we analyze order and holding cost figures and do not consider price change costs, we

may come up with a result that as “N” increases holding and order cost decrease. For this

reason profit values should increase. However when include price change costs, we would

face a total cost change pattern as given by Figure 5.6 having parabolic structure where it

gets its minimum value at N = 4. As a result in real case profit increases up to some point

then starts to decrease due to total cost rise. We can see the effects of K(N) in the following
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Figure 5.2: Average Price Change with respect to N

Figure 5.3: Optimal Price Change with respect to Time, N=4
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section.

Figure 5.4: Order Cost Change with respect to N
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Figure 5.5: Holding Cost Change with respect to N

Figure 5.6: Total Cost Change Change with respect to N
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Price Change Cost Results

Price change cost is an important parameter that directly effects “N”, profit, initial inventory

and the other parameters. We make experiments with three different “f”, and analyze their

results. In these tables “Profit” gives the profit values for different “N” and “f”. Cycle is

the replenishment time for the inventory. At each time interval different optimal price values

are found, in tables these prices are given as average. Such that for N = 4, “Price” is the

average of four optimal prices. Inventory gives the initial inventory values used throughout

the cycle. Hold gives the inventory holding cost, hI. Order cost is the procurement cost of

inventory which is evaluated by “CQ” where “Q” is the initial inventory.

Figure 5.7 illustrates the profit change at different “f” values. f = 0 is the case of

continuous pricing, where profit value always increases due to lack of price change cost.

On the other hand at f = 5, graph shows a parabolic structure with both increments and

decrements having maximum value at N∗. At constant pricing case, profit value displays

stable pattern. During f = 50, the rate of profit decrease is greater than f = 5, which is a

result of higher price change and total costs (order and holding costs), given in Figure 5.7.

Price change at f = 0 with respect to optimal times are also given in Figure 5.8 having

N = 30 and tN = 4, where prices decrease in both simulated and genetic algorithm, even

below the optimal constant price by getting higher profits due to lower operational costs

like order or holding cost. Here the important point is that at each time price change is

applied genetic algorithm or simulated annealing gets lower price than the preceding one

which makes us to have higher profit in the end which is a typical result for continuous

pricing case. All the results are evaluated with the parameter set given in Table 3.1.

Total cost change with respect to “N” is given in Figure 5.9; at f = 0 total cost decreases

as “N” increases. Continuous profit increase is the main result of having decreasing total

cost. In both f = 5 and f = 50, graphs have an increasing structure, especially for f = 50

there is a sharp increase resulting in rapid profit decrease as shown in Figure 5.7. Average

price change has same decreasing structure at all given “f” values,shown in Figure 5.10; all

of which are below the optimal constant price. Especially for f = 5 and f = 0 we obtain

higher profits with lower average price given in Table 5.8. Detailed numerical results are

shown in Table 5.9, Table 5.10 and Table 5.11 for f = 0, f = 5 and f = 50.
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Figure 5.7: Total Profit Change with respect tof

Figure 5.8: Price Change Pattern with Simulated Annealing, Genetic Algorithm and Con-
stant Pricing at f = 0, h = 1; tN = 4, N = 30

Figure 5.9: Total Cost Change with respect to f
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Figure 5.10: Average Price Change with respect to f

Table 5.9: Numerical Results with f=0

N Profit Cycle Average Price Initial Inventory Holding Cost Order Cost Total Cost
1 7725,82 3,00 171,79 156,15 156,40 692,50 848,90

2 7751,68 3,00 171,60 156,35 130,14 692,89 823,03

3 7765,79 4,00 171,59 209,44 156,58 652,34 808,92

4 7775,99 4,00 171,53 209,50 146,25 652,49 798,74

5 7782,99 4,00 171,50 209,54 139,20 652,60 791,80

6 7787,83 4,00 171,47 209,57 134,25 652,67 786,93

7 7791,44 4,00 171,45 209,59 130,55 652,73 783,28

8 7794,83 4,00 171,44 209,61 130,60 652,76 783,37

9 7796,28 4,00 171,42 209,62 125,62 652,80 778,42

10 7797,92 4,00 171,41 209,63 124,01 652,82 776,83

Table 5.10: Numerical Results with f=5

N Profit Cycle Average Price Initial Inventory Holding Cost K(N) Order Cost Total Cost
1 7720,67 3,00 171,80 156,25 156,40 5,00 697,65 859,05

2 7741,38 3,00 171,67 156,37 130,13 10,00 703,19 843,33

3 7750,34 4,00 171,59 209,44 156,60 15,00 667,79 839,39

4 7755,59 4,00 171,53 209,50 146,10 20,00 673,10 839,19

5 7757,24 4,00 171,50 209,54 139,11 25,00 678,35 842,46

6 7756,72 4,00 171,49 209,57 134,47 20,00 683,57 838,03

7 7755,49 4,00 171,46 209,59 130,48 35,00 688,78 854,26

8 7752,71 4,00 171,44 209,60 128,11 40,00 693,96 862,07

9 7749,62 4,00 171,43 209,62 126,00 45,00 699,14 870,14

10 7746,42 4,00 171,42 209,63 123,97 50,00 704,32 878,29
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Table 5.11: Numerical Results with f=50

N Profit Cycle Average Price Initial Inventory Holding Cost K(N) Order Cost Total Cost
1 7674,32 3,00 171,80 156,25 156,40 50,00 744,00 950,40

2 7648,68 3,00 171,67 156,37 130,13 100,00 795,89 1026,03

3 7611,29 4,00 171,59 209,44 156,59 150,00 806,84 1113,43

4 7570,19 4,00 171,53 209,50 146,05 200,00 858,50 1204,55

5 7525,39 4,00 171,49 209,54 139,29 250,00 910,10 1299,39

6 7478,83 4,00 171,48 209,57 134,19 300,00 961,67 1395,87

7 7430,32 4,00 171,46 209,58 131,26 350,00 1013,21 1494,47

8 7381,91 4,00 171,46 209,60 128,04 400,00 1064,71 1592,75

9 7332,67 4,00 171,44 209,62 125,73 450,00 1116,31 1692,05

10 7282,72 4,00 171,39 209,63 124,23 500,00 1167,81 1792,05

Sensitivity Results

In order to see the effects of parameter change, we apply sensitivity analysis on both genetic

and simulated annealing algorithms. Basis parameters are given in Table 3.1. Below you can

find Table 5.16,Table 5.15 and Table 5.18 giving sensitivity analysis results. In Table 5.16

and Table 5.19 give the comparison between constant pricing and heuristic algorithms, which

is found by (heuristic value−constant value)/constant price value. In Table 5.17, we share

genetic algorithm’s sensitivity results compared with the base case, hence how much change

is obtained with parameter revise can be discussed. Table 5.17 is formed according to

the equation (new parameter value− base case value)/base case value. In all tables “Profit”

gives the maximum profit reached by heuristic algorithms and constant pricing. “Decay ratio”

is the ratio of perished inventory to the total inventory. “Inventory” gives the initial amount of

material at the beginning of replenishment cycle. In multi pricing case “Price” is the average

of the prices found by the heuristic algorithms for different time intervals. “Holding Cost”

is evaluated by h ∗ I, which is multiplication of average inventory and holding cost giving

total holding cost for the whole inventory cycle. “N” is the number of price adjustments.

“Cycle length” is the end of the inventory cycle where new order has to be given due to zero

on hand inventory. “Revenue” is the total gain found by the multiplication of demand and

prices for each time interval.

The constant “a” includes the effects of all factors other than price that affect demand.
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Such that if income were to change, the effect of the demand would be represented by a

change in the value of “a” and can be reflected graphically as a shift of the demand curve.

As we increase “a” profit,revenue and also price per unit increases which is an intuitive

result that we expect. However cycle length decreases due to large amount of demand which

fosters high amount of sale. As a result reorder time and decay amount decreases by 25%,

whereas stock value increases by 50% due to large amount of material need which is given

in Table 5.17.

The parameter “β”, which is the price sensitivity of material; if β increases, material

becomes more price dependent hence the unit profit gain decreases. This issue is directly

correlated with price elasticity. If a material has a higher price elasticity constant, than

any unit increase in the prices will cause demand decrease in the market. As “β” increases

(β = 0.6), profit gain and total revenue decrease by 50% on average; on the other hand cycle

time,decay ratio and inventory keep same. You can find details in Table 5.15.

Fixed set up cost is independent of order size which has to be paid every time we give an

order. As a result if its value increases, it directly effects cycle length, inventory and decay

amount. As the set up cost increases, cycle time increases by 25% which leads to 25% more

inventory in the system. When fixed cost is higher k = 1000, the optimal system tries to

extend the cycle time in order to prevent high set up expense. When inventory is high but

demand is not high as much as the inventory, then decay amount increases by 25%.

The “C” is the unit order cost changing with the total inventory in the system. If the

total inventory ordered is high, then the total order cost will also be higher. As the unit

value increases C = 20, optimal system tries to hold inventory as low as possible. Hence the

cycle length and decay ratio decreases by 25%. Revenues with respect to “C” are close to

each other but due to the higher variable cost, C = 20 has the minimum profit value which

is a 7% loss from the basis value. Cycle length decreases by 25% and decay ratio by 25%

as “C” increases from 5 to 20. When we analyze the sensitivity result with respect to “d”,

we figure out that giving values from 0.05 − 0.1 have very little impact on the profit. The

major point here is if we change the time dependency of material “d” between 0.01-0.2, this

will result in a lower holding cost in the system which leads to decrease in decay ratio by

1% as given in Table 5.17 and Table 5.15.

Holding cost is the another parameter which have the most influence on the optimal
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result of the model. When we take h = 2, the profit directly gets smaller by 1% due to

the total cost increase by 50% on average. In addition to that cycle time also decreases by

25% in order not to carry too much inventory in the system resulting in lower efficiency ;

also system tends to adjust prices more than once during the time array so as to get higher

profit. When we change h = 1 to h = 2 cycle time decreases by 25% and inventory decreases

by 25%.

Decay constant is the parameter which determines primarily initial inventory and decay

amount in the economical model. When we change its value from 0.01 to 0.02 the inventory

decreases by 24% ,cycle length decreases by 25%. If we change “θ” to 1, the cycle length

decreases by 75% and profit decreases by 8%.

In Genetic Algorithm for all parameter changes, profit values show an improvement

compared to the constant pricing case. Most improvement is achieved with the profit when

β = 0.6 and a = 50 by 2.5% and 3.2% respectively given in Table 5.16. Price values decrease

by 0.1 on average. Inventory held over the cycle increases by 30.1% due to the reorder time

extension by 24.8%. Consequently the inventory amount increase by 30.1%%, make us to

think that holding cost will also increase. Whereas, we achieve directly an opposite result,a

32% reduction on average, due to the different strategy in the computation of inventory

costs; such that finding costs for each time interval explicitly rather than only multiplying

initial inventory with holding cost. Using pricing strategy at different time intervals make

us to have smaller order cost and larger profit for the whole inventory system. You can see

from Table 5.17 that we get noticeable amount of holding cost reduction (from 19.7% to

59.5%) in the system which is the biggest advantage of multi pricing cases.

We can also achieve this result by examining the cycle time values in multi price system;

we can achieve on average 24.8% cycle length increase. Decay ratios also rise due to cycle

time and inventory increase in the system. Decay ratio increases by 26.2% on average with

respect to the constant pricing case. This is an obvious result which can be deduced by just

analyzing the inventory rise which is 30.1% and also cycle length increase by 24.8% which

contribute to both larger inventory and waiting time in the system; hence larger amount of

perishability. Detailed results are shared in Table 5.16.

We also try time values which are equidistant and give their results in Table 5.20. In

order to make its comparison between heuristic algorithms and constant pricing, we form
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Table 5.13. Equidistant time arrays are used with genetic algorithm and we find out that

it gives better results than any other case like simulated, genetic or constant pricing. It

gives 1.1361% higher profit value than the constant pricing case for the base parameters.

However genetic algorithm with random numbers and simulated annealing gives 1.1307%

and 0.48% better result compared to constant pricing values. The algorithm having equally

spaced time interval performs its maximum profit change at a = 50 and β = 0.6 by 3.15%

and 2.5% respectively. In addition it gives its lowest profit at k = 0. Genetic algorithm takes

its maximum profit value change at a = 50 and its lowest change at a = 200; for simulated

annealing maximum change is obtained at f = 5 by 1.41% and lowest change at d = 0.8.

Genetic algorithm results given in Table 5.17 point out that we have an improvement

in profit values changing from 0.5% to 3.2% and also holding cost reduction by 32%, cycle

length increase by 24.8%, average price reduction by 0.1%, rise in decay amount by 26.2%.

When we analyze the simulated annealing results in Table 5.19, the improvement ratios are

smaller. Profit values take their maximum improvement with respect to the constant pricing

sensitivity results at k = 1000 by 1.15% and f = 5 by 1.59%. For the base case, it provides

a profit increase by 0.48%, which is much smaller ratio compared to 1.1% obtained by the

genetic algorithm. Genetic algorithm give a rise to profit up to 3.2% at a = 50, on the other

hand simulated annealing can give a rise of 1.41% at maximum when f = 5.

We also examine the profit values by using the equally spaced time lines, a simple heuristic

that searches over equally spaced time lines in order to obtain best profit giving time array,

and also genetic algorithm having equally spaced time line population. When we compare

the values equal interval time line simple heuristic solutions are found to be better than

the constant pricing, but worse than the heuristic algorithms. In order to have an insight

about the genetic algorithm improvements when we use random population and also equally

spaced time line population, we form the Table 5.12. In Table 5.12 you can clearly see that

we obtain better objective function value when we use equally spaced time line rather than

using only random time line population; when we use the base case parameters, we reach

an improvement of 0.69%. In Table 5.13 we give all the sensitivity results with respect to

the genetic algorithm, simulated annealing, genetic algorithm with equally spaced time line

population, constant pricing and equally spaced time line simple heuristic solutions and they

are compared with the constant pricing where % difference gives the difference from the
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constant pricing case. Genetic algorithm with equally spaced time line population gives the

maximum improvement from constant pricing case by 1.1361%. On the other hand when we

use only equally spaced time line simple heuristic, we can reach an improvement of 0.44%.

By summing all of these, we can conclude that genetic algorithm with equally spaced time

line population outperforms simulated annealing and other solution methods with respect

to their objective function values.

Table 5.12: The Comparison of Profit Values between Equal Interval Time Line Simple
Heuristic Solution and GA with Equal Interval Time Line Population

Parameter Equal Interval Equal Interval with GA % difference

Base Case 7470,71 7522,30 0,69

a=200 31830,16 31935,77 0,33

a=50 1538,36 1602,65 4,18

k=1000 7355,32 7406,30 0,69

k=0 7723,04 7776,24 0,69

k=250 7532,29 7604,74 0,96

β=0,6 3277,57 3353,25 2,31

β=0,15 15773,17 15860,20 0,55

C=20 6964,39 7014,03 0,71

C=5 7703,37 7776,64 0,95

d=0,2 6916,62 7515,39 8,66

d=0,05 7446,18 7525,71 1,07

d=0 7477,60 7529,11 0,69

f=20 7495,95 7498,76 0,04

f=5 7540,01 7543,14 0,04

h=2 7332,61 7412,11 1,08

h=0.5 7521,07 7601,04 1,06

θ=0.02 7417,39 7511,78 1,27

θ=0.005 7457,38 7528,81 0,96

θ=1 6342,61 6889,41 8,62



Chapter 5: Computational Studies 70

T
ab

le
5.
13
:
T
he

C
om

pa
ri
so
n
of

P
ro
fit

V
al
ue
s
fo
r
Si
ng

le
P
ro
du

ct
Sy

st
em

P
ar
am

et
er

E
qu

al
In
te
rv
al

%
di
ffe

re
nc
e

E
qu

al
In
te
rv
al

w
it
h
G
A

%
di
ffe

re
nc
e

G
A

%
di
ffe

re
nc
e

SA
%

di
ffe

re
nc
e

C
on

st
an

t

B
as
e
C
as
e

74
70
,7
1

0,
44

75
22
,3
0

1,
13
61

75
21
,9
0

1,
13
07

74
73
,6
9

0,
48

74
37
,8
0

a=
20
0

31
83
0,
16

0,
06

31
93
5,
77

0,
39
48

31
93
4,
07

0,
38
95

31
84
2,
87

0,
10

31
81
0,
17

a=
50

15
38
,3
6

-0
,9
8

16
02
,6
5

3,
15
74

16
02
,5
6

3,
15
20

15
38
,9
7

-0
,9
4

15
53
,5
9

k=
10
00

73
55
,3
2

1,
11

74
06
,3
0

1,
81
16

74
05
,9
1

1,
80
62

73
58
,2
6

1,
15

72
74
,5
2

k=
0

77
23
,0
4

-0
,5
0

77
76
,2
4

0,
18
91

77
75
,8
2

0,
18
37

77
26
,1
2

-0
,4
6

77
61
,5
6

k=
25
0

75
32
,2
9

0,
34

76
04
,7
4

0,
61
43

76
04
,3
4

0,
60
90

75
35
,2
9

-0
,3
0

75
58
,3
1

β
=
0,
6

32
77
,5
7

0,
19

33
53
,2
5

2,
50
60

33
53
,0
7

2,
50
05

32
78
,8
7

0,
23

32
71
,2
7

β
=
0,
15

15
77
3,
17

-0
,0
1

15
86
0,
20

0,
53
78

15
85
9,
36

0,
53
24

15
77
9,
47

0,
03

15
77
5,
36

C
=
20

69
64
,3
9

0,
46

70
14
,0
3

1,
17
71

70
13
,6
6

1,
17
18

69
67
,1
7

0,
50

69
32
,4
2

C
=
5

77
03
,3
7

0,
17

77
76
,6
4

1,
12
08

77
76
,2
2

1,
11
55

77
06
,4
4

0,
21

76
90
,4
4

d=
0,
2

69
16
,6
2

-6
,9
2

75
15
,3
9

1,
13
99

75
14
,9
9

1,
13
45

69
19
,3
8

-6
,8
8

74
30
,6
9

d=
0,
05

74
46
,1
8

0,
07

75
25
,7
1

1,
13
42

75
25
,3
1

1,
12
88

74
49
,1
6

0,
11

74
41
,3
1

d=
0

74
77
,6
0

0,
44

75
29
,1
1

1,
13
23

75
28
,7
1

1,
12
69

74
80
,5
9

0,
48

74
44
,8
1

f=
20

74
95
,9
5

0,
78

74
98
,7
6

0,
81
96

74
98
,3
6

0,
81
42

74
98
,9
4

0,
82

74
37
,8
0

f=
5

75
40
,0
1

1,
37

75
43
,1
4

1,
41
62

75
42
,7
3

1,
41
08

75
43
,0
3

1,
41

74
37
,8
0

h=
2

73
32
,6
1

0,
68

74
12
,1
1

1,
76
67

74
11
,7
2

1,
76
13

73
35
,5
3

0,
72

72
83
,4
3

h=
0.
5

75
21
,0
7

-0
,4
0

76
01
,0
4

0,
65
47

76
00
,6
3

0,
64
93

75
24
,0
7

-0
,3
6

75
51
,6
0

θ=
0.
02

74
17
,3
9

-0
,1
1

75
11
,7
8

1,
15
95

75
11
,3
8

1,
15
42

74
20
,3
5

-0
,0
7

74
25
,6
8

θ=
0.
00
5

74
57
,3
8

0,
18

75
28
,8
1

1,
13
65

75
28
,4
1

1,
13
11

74
60
,3
6

0,
22

74
44
,2
1

θ=
1

63
42
,6
1

-6
,6
8

68
89
,4
1

1,
35
98

68
89
,0
5

1,
35
44

63
45
,1
5

-6
,6
5

67
96
,9
9



Chapter 5: Computational Studies 71

Table 5.14: Sensitivity Analysis with Constant Pricing

Parameter Profit Decay Ratio Inventory Price Holding Cost Cycle Length Revenue
Base Case 7437,800 0,015 146,713 172,250 221,850 3,000 8315,400

a=200 31810,171 0,010 194,147 343,801 294,750 2,000 33278,980

a=50 1553,595 0,020 96,659 86,564 147,463 4,000 2076,628

k=1000 7274,517 0,020 194,910 172,428 297,485 4,000 8315,300

k=0 7761,562 0,005 48,294 171,900 73,115 1,000 8315,500

k=250 7558,309 0,010 96,878 172,071 147,067 2,000 8315,400

β=0,6 3271,274 0,015 145,083 86,515 220,835 3,000 4157,450

β=0,15 15775,361 0,015 146,083 343,720 222,357 3,000 16631,000

C=20 6932,423 0,015 145,750 172,250 221,850 3,000 8315,400

C=5 7690,438 0,015 145,750 172,250 221,850 3,000 8315,400

d=0,2 7430,688 0,015 145,527 171,992 221,439 3,000 83071,095

d=0,05 7441,306 0,015 145,861 172,379 222,055 3,000 8319,495

d=0 7444,812 0,015 145,972 172,508 222,261 3,000 8323,691

f=20 7437,800 0,015 145,750 172,250 221,850 3,000 8315,400

f=5 7437,800 0,015 145,750 172,250 221,850 3,000 8315,400

h=2 7283,432 0,010 96,584 172,593 293,231 2,000 8315,200

h=0.5 7551,597 0,020 195,508 171,906 149,200 4,000 8315,500

θ=0.02 7425,679 0,020 97,844 172,071 149,384 2,000 8315,400

θ=0.005 7444,211 0,008 14,656 172,246 219,266 3,000 8315,400

θ=1 6796,989 0,418 82,502 172,011 177,404 1,000 8315,500
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Table 5.15: Sensitivity Analysis Results with Genetic Algorithm

Parameter Profit Decay Ratio Inventory Price Holding Cost Cycle Length Revenue

Base Case 7521,90 0,02 197,08 172,00 147,55 4,00 8317,20

a=200 31934,07 0,01 294,72 343,83 223,37 3,00 33285,78

a=50 1602,56 0,02 122,95 86,22 109,52 5,00 2077,25

k=1000 7405,91 0,02 247,30 172,08 198,27 5,00 8317,20

k=0 7775,82 0,01 48,63 171,95 52,15 1,00 8317,20

k=250 7604,34 0,01 97,69 171,99 87,46 2,00 8317,20

β=0,6 3353,07 0,02 196,71 86,16 158,25 4,00 4158,60

β=0,15 15859,36 0,02 197,17 343,83 158,82 3,11 16634,40

C=20 7013,66 0,01 147,15 171,99 118,20 3,00 8317,20

C=5 7776,22 0,02 226,09 172,03 158,36 4,00 8317,20

d=0,2 7514,99 0,02 196,62 171,97 157,63 4,00 8308,21

d=0,05 7525,31 0,02 197,22 172,08 158,34 4,00 8321,40

d=0 7528,71 0,02 198,51 172,13 158,60 4,00 8325,19

f=20 7498,36 0,01 147,10 172,03 131,17 3,00 8317,20

f=5 7542,73 0,02 197,10 172,00 141,43 4,00 8317,20

h=2 7411,72 0,01 147,05 172,14 221,25 3,00 8317,20

h=0.5 7600,63 0,02 247,46 171,94 110,24 5,00 8317,20

θ=0.02 7511,38 0,03 149,39 171,99 119,91 3,00 8317,20

θ=0.005 7528,41 0,01 195,05 172,03 156,62 4,00 8317,20

θ=1 6889,05 0,42 83,15 171,94 71,91 1,00 8317,20
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Table 5.16: Sensitivity Comparison with Genetic Algorithm and Constant Pricing

Parameter Profit Decay Ratio Inventory Price Holding Cost Cycle Length Revenue

Base Case 0,011 0,336 0,343 -0,001 -0,335 0,333 0,0002

a=200 0,004 0,490 0,518 0,000 -0,242 0,500 0,0002

a=50 0,032 0,247 0,272 -0,004 -0,257 0,250 0,0003

k=1000 0,018 0,253 0,269 -0,002 -0,333 0,250 0,0002

k=0 0,002 0,000 0,007 0,000 -0,287 0,000 0,0002

k=250 0,006 0,000 0,008 0,000 -0,405 0,000 0,0002

β=0,6 0,025 0,336 0,356 -0,004 -0,283 0,333 0,0003

β=0,15 0,005 0,336 0,350 0,000 -0,286 0,037 0,0002

C=20 0,012 0,000 0,010 -0,002 -0,467 0,000 0,0002

C=5 0,011 0,336 0,551 -0,001 -0,286 0,333 0,0002

d=0,2 0,011 0,329 0,351 0,000 -0,288 0,333 -0,9000

d=0,05 0,011 0,336 0,352 -0,002 -0,287 0,333 0,0002

d=0 0,011 0,336 0,360 -0,002 -0,286 0,333 0,0002

f=20 0,008 0,000 0,009 -0,001 -0,409 0,000 0,0002

f=5 0,014 0,342 0,352 -0,001 -0,362 0,333 0,0002

h=2 0,018 0,490 0,522 -0,003 -0,245 0,500 0,0002

h=0.5 0,006 0,253 0,266 0,000 -0,261 0,250 0,0002

θ=0.02 0,012 0,492 0,527 0,000 -0,197 0,500 0,0002

θ=0.005 0,011 0,333 12,309 -0,001 -0,286 0,333 0,0002

θ=1 0,014 0,000 0,008 0,000 -0,595 0,000 0,0002
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Table 5.17: The Comparison Ratios of Genetic Algorithm Sensitivity Results with the Base
Case

Parameter Profit Decay Ratio Inventory Price Holding Cost Cycle Length Revenue

Base Case 7521,90 0,02 197,08 172,00 147,55 4,00 8317,20

a=200 3,25 -0,25 0,50 1,00 0,51 -0,25 3,00

a=50 -0,79 0,24 -0,38 -0,50 -0,26 0,25 -0,75

k=1000 -0,02 0,25 0,25 0,00 0,34 0,25 0,00

k=0 0,03 -0,75 -0,75 0,00 -0,65 -0,75 0,00

k=250 0,01 -0,50 -0,50 0,00 -0,41 -0,50 0,00

β=0,6 -0,55 0,00 0,00 -0,50 0,07 0,00 -0,50

β=0,15 1,11 0,00 0,00 1,00 0,08 -0,22 1,00

C=20 -0,07 -0,25 -0,25 0,00 -0,20 -0,25 0,00

C=5 0,03 0,00 0,15 0,00 0,07 0,00 0,00

d=0,2 0,00 -0,01 0,00 0,00 0,07 0,00 0,00

d=0,05 0,00 0,00 0,00 0,00 0,07 0,00 0,00

d=0 0,00 0,00 0,01 0,00 0,07 0,00 0,00

f=20 0,00 -0,25 -0,25 0,00 -0,11 -0,25 0,00

f=5 0,00 0,01 0,00 0,00 -0,04 0,00 0,00

h=2 -0,01 -0,25 -0,25 0,00 0,50 -0,25 0,00

h=0.5 0,01 0,25 0,26 0,00 -0,25 0,25 0,00

θ=0.02 0,00 0,49 -0,24 0,00 -0,19 -0,25 0,00

θ=0.005 0,00 -0,50 -0,01 0,00 0,06 0,00 0,00

θ=1 -0,08 20,01 -0,58 0,00 -0,51 -0,75 0,00
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Table 5.18: Sensitivity Analysis Results with Simulated Annealing

Parameter Profit Decay Ratio Inventory Price Holding Cost Cycle Length Revenue

Base Case 7473,69 0,02 197,11 172,02 139,53 4,00 8317,00

a=200 31842,87 0,01 420,68 343,50 207,81 4,20 33285,78

a=50 1538,97 0,02 177,73 86,75 162,10 7,00 2077,25

k=1000 7358,26 0,02 247,37 172,13 126,25 5,00 8317,20

k=0 7726,12 0,01 48,63 171,95 52,15 1,00 8317,20

k=250 7535,29 0,01 139,30 172,72 81,28 2,80 8317,20

β=0,6 3278,87 0,02 288,91 85,92 150,14 5,71 4158,60

β=0,15 15779,47 0,02 273,84 343,26 144,43 4,22 16634,40

C=20 6967,17 0,01 147,16 172,00 76,49 3,00 8317,20

C=5 7706,44 0,02 319,68 171,51 142,98 5,47 8317,20

d=0,2 6919,38 0,02 211,51 170,49 170,05 4,29 8308,21

d=0,05 7449,16 0,02 275,62 172,69 142,99 5,43 8321,40

d=0 7480,59 0,02 198,51 172,12 102,44 4,00 8324,89

f=20 7498,94 0,01 147,13 172,13 44,44 3,00 8317,00

f=5 7543,03 0,02 197,10 172,03 67,33 4,00 8317,00

h=2 7335,53 0,01 204,23 171,74 198,34 4,07 8317,20

h=0.5 7524,07 0,02 343,62 172,29 37,29 6,79 8317,20

θ=0.02 7420,35 0,03 199,99 171,77 102,24 3,90 8317,20

θ=0.005 7460,36 0,01 277,57 171,43 145,39 2,60 8317,20

θ=1 6345,15 0,42 83,15 171,95 37,05 1,00 8317,20
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Table 5.19: Sensitivity Comparison with Simulated Annealing and Constant Pricing

Parameter Profit Decay Ratio Inventory Price Holding Cost Cycle Length Revenue

Base Case 0,0048 0,336 0,34 -0,001 -0,37 0,33 0,00

a=200 0,0010 0,490 1,17 -0,001 -0,29 1,10 0,00

a=50 -0,0094 0,247 0,84 0,002 0,10 0,75 0,00

k=1000 0,0115 0,253 0,27 -0,002 -0,58 0,25 0,00

k=0 -0,0046 0,000 0,01 0,000 -0,29 0,00 0,00

k=250 -0,0030 0,000 0,44 0,004 -0,45 0,40 0,00

β=0,6 0,0023 0,336 0,99 -0,007 -0,32 0,90 0,00

β=0,15 0,0003 0,336 0,87 -0,001 -0,35 0,41 0,00

C=20 0,0050 0,000 0,01 -0,001 -0,66 0,00 0,00

C=5 0,0021 0,336 1,19 -0,004 -0,36 0,82 0,00

d=0,2 -0,0688 0,329 0,45 -0,009 -0,23 0,43 -0,90

d=0,05 0,0011 0,336 0,89 0,002 -0,36 0,81 0,00

d=0 0,0048 0,336 0,36 -0,002 -0,54 0,33 0,00

f=20 0,0082 0,000 0,01 -0,001 -0,80 0,00 0,00

f=5 0,0141 0,342 0,35 -0,001 -0,70 0,33 0,00

h=2 0,0072 0,490 1,11 -0,005 -0,32 1,04 0,00

h=0.5 -0,0036 0,253 0,76 0,002 -0,75 0,70 0,00

θ=0.02 -0,0007 0,492 1,04 -0,002 -0,32 0,95 0,00

θ=0.005 0,0022 0,333 17,94 -0,005 -0,34 -0,13 0,00

θ=1 -0,0665 0,000 0,01 0,000 -0,79 0,00 0,00
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Table 5.20: Sensitivity Comparison with Genetic Algorithm Having Equally Spaced Time
Intervals

Parameter Profit Decay Ratio Initial Inventory Price Holding Cost Cycle Length Revenue

Base Case 7522,30 0,02 197,15 172,00 137,44 4,00 8317,30

a=200 31935,77 0,01 294,83 343,83 208,06 3,00 33286,18

a=50 1602,65 0,02 122,99 86,22 102,01 5,00 2077,28

k=1000 7406,30 0,02 247,39 172,08 184,69 5,00 8317,30

k=0 7776,24 0,01 48,65 171,95 48,57 1,00 8317,30

k=250 7604,74 0,01 97,73 171,99 81,47 2,00 8317,30

β=0,6 3353,25 0,02 196,78 86,16 147,41 4,00 4158,65

β=0,15 15860,20 0,02 197,24 343,83 147,93 3,00 16634,60

C=20 7014,03 0,01 147,20 171,99 110,10 3,00 8317,30

C=5 7776,64 0,02 226,17 172,03 147,50 4,00 8317,30

d=0,2 7515,39 0,02 196,69 171,97 146,83 4,00 8308,31

d=0,05 7525,71 0,02 197,29 172,08 147,49 4,00 8321,50

d=0 7529,11 0,02 198,58 172,13 147,73 4,00 8325,29

f=20 7498,76 0,01 147,15 172,03 122,18 3,00 8317,30

f=5 7543,14 0,02 197,17 172,00 131,74 4,00 8317,30

h=2 7412,11 0,01 147,10 172,14 206,08 3,00 8317,30

h=0.5 7601,04 0,02 247,55 171,94 102,69 5,00 8317,30

θ=0.02 7511,78 0,03 149,45 171,99 111,70 3,00 8317,30

θ=0.005 7528,81 0,01 195,12 172,03 145,88 4,00 8317,30

θ=1 6889,41 0,42 83,18 171,94 66,98 1,00 8317,30
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5.2.4 Analysis of the Double Product System

When we analyze sensitivity analysis results, we obtain similar results with the single product

system; hence only different parts are highlighted in this section. In double product case,

most remarkable increase in profit is obtained when we double “a” and halve the parameter

“β”. Market share increase and price sensitivity decrease are the main reasons for the high

amount of profit change. The other issue that affects objective value tremendously is “c1”

which determines the ratio of customers who chooses actual product in the case of price rise

with the substitute material. Then if we increase “c1”, then more customers will choose the

actual material; as a result sale of the material will rise.

In our model when we change “c1” from 0.1 to 0.2, profit rises by 71%. On the other hand

when we change from 0.1 to 0.05, profit reduces by 27% as given in Table 5.25. In Table 5.23,

Table 5.26 and Table 5.22, we share the sensitivity analysis results with constant pricing,

genetic and also simulated annealing algorithm simultaneously. The comparison between

simulated annealing-constant pricing and genetic algorithm-constant pricing are given in

Table 5.27 and Table 5.24 respectively which are found by according to the (heuristic value−

constant value)/constant price value.

Furthermore, for the genetic algorithm base case and sensitivity results are compared in

order to point out the value changes when we tune any of the parameter, which is given in

Table 5.25 found according to the (new parameter value− base case value)/base case value.

When we analyze Table 5.25, we figure our that; profit and holding costs are sensitive to all

parameters,cycle length and decay amount are insensitive to “d1”, “f1” and “g1” parameter

value change. Total inventory is insensitive to “f1” change and average price insensitive to

“d1”.

When we analyze sensitivity analysis results in Table 5.23, the change in “a1” from 100

to 200 leads to profit increase which especially comes from the first product due to higher

market potential. As a result more need arises for the first product resulting in 1.21% rise

in the initial inventory with respect to the base case. This can be directly deduced from

the amount revenue rise coming from the first and the second product which are 1.67% and

0.42% respectively.

When “β” is decreased, profit gain rises by 1.05%. “β” is related with price sensitivity,

so when a material is less price sensitive then profit and demand values will be effected from
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the price fluctuations less. So revenues will also increase by 3.25% and 2.21% for the first

and second product respectively.

“C1” change is related with the order cost, hence any increase in its value will result in

lower profit. “c1” is price dependency of the first product, when it is increased then any

small increment in competitors’ product price will give a rise to the demand of the first

product. In Table 5.25 you can see that when “‘c1” is changed from 0.1 to 0.2 profit increase

is obtained by 71%, revenue for the first product is increased by 70%.

Table 5.24 gives us the comparison between constant pricing and genetic algorithm mul-

tiple pricing case. Mainly genetic algorithm outperforms constant pricing giving a rise in

profit by 2.7% on average. For the base case we encounter a profit rise by 2.6%, cycle time

increase by 0.5%, holding cost decrease by 26.1% and finally revenue increase by 63.4%. By

using all these results, we can say that increase in revenue and decrease in holding costs are

the main reasons for the profit increase.

When we examine carefully Table 5.27 and Table 5.26, we figure out that there is an

increase in profit by 3%, cycle times for the first and second product rises by 77%. However

decay amounts decrease by 2.97% on average. Revenue increase is directly correlated with

profit gain which makes us to have 2% profit increase with the 60% revenue rise.

The comparison between genetic algorithm and simulated annealing reveals that genetic

algorithm gives better results with respect to the simulated annealing and constant pricing.

Profit changes from 1.8% to 4.5% in genetic, whereas in simulated profit changes from 2%

to 4%. Most profit increments are achieved with the change of “a1”, “β” and “h1” in both

of the algorithms. For the base parameters profit values are as follows: 10963 for genetic

algorithm, 10948.38 for simulated annealing and finally 10689 for constant pricing case.

Simulated annealing obtains a lower profit compared to genetic algorithm; for the base

case its profit value is 10948, which is a 2.43% profit increase compared to constant pricing,

given in Table 5.27 and also in Table 5.21. However genetic algorithm profit value is 10963

which is an increase by 2.57% with respect to the constant pricing case. Simulated annealing

gives a better result when a1 = 50 and k1 = 250. Overall in double product case we obtain

best results with genetic algorithm as in the single product system which as illustrated in

Table 5.21.
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Table 5.21: The Comparison of Profit Values for Double Product System

Parameter Genetic Profit % difference SA Profit % difference Constant Profit

Base 10963,80 2,57 10948,38 2,43 10689,00

a1=200 23554,19 1,79 23535,90 1,71 23140,00

a1=50 5161,38 4,37 5163,23 4,41 4945,30

k1=1000 10723,56 2,69 10705,55 2,51 10443,00

k1=250 11047,88 2,16 11048,75 2,17 10814,00

β1=0,6 6211,62 4,52 6193,61 4,22 5942,90

β1=0,15 22465,12 0,52 22448,28 0,45 22348,00

C1=20 10021,87 -2,63 10010,42 -2,75 10293,00

C1=5 10112,96 -13,46 10095,84 -13,61 11686,00

d1=0,2 10852,69 -3,18 10833,55 -3,35 11209,00

d1=0,05 10974,81 -2,25 10956,52 -2,41 11227,00

c1=0,05 8005,18 -0,20 7993,32 -0,35 8021,10

c1=0,2 18750,46 -6,41 18731,83 -6,50 20034,00

f1=20 10963,80 -2,29 10998,62 -1,98 11221,00

f1=5 10986,82 -2,09 10960,75 -2,32 11221,00

h1=0.05 11121,95 -3,00 11115,10 -3,06 11466,00

h1=2 10862,70 -1,16 10843,61 -1,33 10990,00

θ1=0.02 12064,88 -0,41 12043,63 -0,58 12114,00

θ1=0.005 11932,75 -23,01 11910,43 -23,16 15500,00
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Chapter 6

CONCLUSIONS

In this study we analyze the problem of jointly determining the profit maximizing pricing

and lot sizing decisions with intertemporal price discrimination in a deterministic setting in

which demand not only depends on the price but also on the freshness of the products.

Furthermore, it is also assumed that products decay at a certain rate which increases the

complexity of the problem. Besides providing evidence for the benefits of the dynamic

pricing, we especially show its impact on operational costs (order and holding cost) and also

order cycle decisions.

We explicitly find results for the optimal order size, optimal number of times the prices

should be changed and the optimal price values at each time for the single product and

double product cases. Heuristic algorithms are proposed in order to find best profit giving

time values. Throughout the experiments we compare the results of dynamic pricing with

constant pricing case. When we take price change cost zero, then we obtain continuous

pricing where both continuous and constant pricing cases are the extreme points that we

test. In numerical experiments we show the effect of parameter change on the profit, order

and holding costs, revenues and also other parameters. When we concern about lot size,

we observe that optimal lot size increases with increasing holding cost. Same effect is also

observed with the cycle length which increases with the fixed cost and decreases with the

holding cost and decay coefficient value.

Our model can be extended in several ways. Firstly, different types of demand functions

or decay processes can be analyzed in detail and explicit results can be obtained. In addition,

this problem can be analyzed in the stochastic setting in which the demand and also the

decaying process is random. Even though our results can form a basis for developing coor-

dinated pricing and inventory policies that can be also applied in stochastic environments,

the performances of such policies need to be investigated and effective policies need to be

developed for stochastic systems.
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