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ABSTRACT

Multi-objective optimization aims to model and solve real life problems. In bi-

objective problems, as in the case of multi-objective problems, non-dominated solu-

tions are of interest. The bi-objective linear knapsack problem is well-studied and

is known to be a difficult problem with a lot of non-dominated solutions. We have

studied the quadratic version of this problem, the bi-objective quadratic knapsack

problem (BQKP). Our goal is to investigate the structure of the non-dominated set

in BQKP since reports on implementations in the literature are inadequate so far. We

use the epsilon constraint method to find non-dominated solutions and use a linear

scalarization to obtain supported non-dominated solutions.

Randomly generated BQKP’s with different percentage of fullness values are solved on

the commercial solver CPLEX and results of these problems are reported with illustra-

tions and coverage errors. BQKP’s with small percentage of fullness levels resembles

more to the linear version of the problem with higher number of non-dominated so-

lutions. We observe that the number of non-dominated solutions is not many for the

size of BQKP’s we had solved yet the problem is still hard to solve since some of

the test problems required long cpu times. Supported non-dominated solutions are

relatively easier to obtain by using a weighted sum scalarization. When supported

non-dominated solutions are regarded as a representation of the entire non-dominated

set, averages coverage errors are at acceptable levels for all problem types studied in

this work. BQKP’s with tri-diagonal quadratic matrices are also solved and reported.

Tri-diagonally structured problems are easier to solve and require less computation

time.
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ÖZETÇE

Çok amaçlı optimizasyon gerçek hayat problemlerini modellemeyi ve çözmeyi amaçlar.

İki amaç fonksiyonlu problemlerde de çok amaçlı optimizasyonda olduğu gibi etkin

çözümler bulunmaya çalışılır. İki amaç fonksiyonlu doğrusal sırt çantası problemi

çok sayıda etkin çözümü bulunan ve zor kabul edilen bir problemdir. Bu problemin

karesel versiyonu olan iki amaç fonksiyonlu karesel sırt çantası problemini (İKSP)

çalıştık. Bu problem üzerine literatürdeki uygulamalar yetersiz olduğundan etkin

çözüm kümesinin yapısının araştırılmasını hedefledik. Etkin çözümler kümesini bul-

mak için epsilon kısıt yöntemini, destekli etkin çözümleri bulmak için ise bir doğrusal

skalarizasyon yöntemi kullandık.

Farklı doluluk değerleri ile rassal yaratılan İKSP’leri CPLEX ile çözüp sonuçları

illüstrasyonlar ve kapsama hataları ile raporladık. Doluluk değerleri düşükken doğrusal

versiyona yaklaşan İKSP’ler daha çok sayıda etkin çözüme sahiptir. Çözdüğümüz

problemler için etkin çözüm sayılarının çok fazla olmadığını gene de yüksek cpu

zamanları gerektirdikleri için zor problemler olduklarını belirledik. Destekli etkin

çözümlerin ağırlıklı doğrusal skalarizasyon ile bulunmasının daha kolay olduğunu

söyleyebiliriz. Bu çözümler tüm çözüm kümesinin bir temsili olarak alındığında or-

talama kapsama hatalarının kabul edilebilir seviyede olduğu görülebilir. Bunların

yanında, üç köşegenli matrislerle oluşturulmuş İKSP’leri de çözüp raporladık. Bu

problemlerin çözümü ise daha kolaydı ve daha az çözüm zamanı gerektirdi.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Problems in the optimization theory deal with the optimization of an objective

function with respect to a set of constraints or restrictions. The aim here is to find

solution which will give the maximum or minimum value of the objective function

according to the problem type while satisfying constraints. This solution is called the

optimalsolution of the problem.

In real life, many aspects are needed to be considered and included in the design

and solution process of the problems. In the optimization literature, multi-objective

optimization addresses this issue. The multi-objective optimization tries to optimize

more than one objective function at the same time and finds non-dominated solutions

rather than the optimal ones. Optimal solution concept is converted into the non-

dominated solution concept in multi-objective problems.

The knapsack problem and the quadratic knapsack problem are important problems

in the optimization literature. The classical knapsack problem consists of a linear

objective function, a linear capacity constraint and binary variables. The quadratic

knapsack problem has a quadratic objective rather than a linear one. These problems

are well studied and have applications in diverse areas. Both problems have a simple

structure yet are hard to solve at the same time.

We have chosen to study a topic that had blended multi-objective optimization and

the quadratic knapsack problem in this thesis. Bi-objective quadratic knapsack prob-

lem (BQKP) is a hard problem which is also applicable to many real life problems.

BQKP has its significance since it is non-convex, quadratic and has more than one

objective function to consider.
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To the best of our knowledge, studies which address this problem directly are very

few. Therefore, in this work, we aimed to answer several questions related to BQKP

and thus understand the characteristics of BQKP in general.

In this manner, random test problems of different sizes and percentage of fullness

of quadratic matrices are generated. The number of non-supported and the sup-

ported solutions thereby the number of non-dominated solutions of these test prob-

lems are found and reported. Coverage errors are calculated for these two sets of

solutions. Moreover, illustrations of the non-dominated set and comparison of the

non-dominated sets of bi-objective linear and quadratic knapsack problems are given

for small sized problems.

In order to solve BQKP, two fundamental solution methods from the multi-objective

optimization literature are incorporated. In addition, a suitable linearization method

is applied to BQKP’s with large sizes since solution times get unreasonably long.

An extensive literature survey is also given on the subject.

Basic concepts related to our study is explained in the following. In Chapter 2, the

background is provided. Then in Chapter 3, the formulation of BQKP and solution

techniques applied to the problem are explained. In Chapter 4, we described how

these techniques are implemented for BQKP in detail. The results, comments and

illustrations are given in Chapter 5. Finally, Chapter 6 gives some insights about

further research on BQKP.
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Chapter 2

BACKGROUND

This chapter gives basic information on multi-objective optimization including the

definitions, solution techniques and applications. Also, the knapsack problem and the

quadratic knapsack problem will be defined in order to fully understand the bi-objective

quadratic knapsack problem studied in this thesis.

2.1 Multi-objective Optimization (MOO)

Single objective optimization techniques are not adequate to model and solve most

real-life problems. In order to get more realistic mathematical programming represen-

tations of these problems, more than one objective needs to be considered. Therefore,

an important field of optimization theory named the multi-objective (or multi-criteria)

optimization (MOO) arose which usually deals with several objectives in conflicting

nature.

Most of the optimization problems can be considered with multiple objectives. For

instance, the classical examples of combinatorial optimization; the shortest path,

minimum spanning tree, assignment, knapsack, traveling salesperson, or set covering

problems all have multi-objective versions [72]. These problems are generalized to

the multi-objective case since there is the need to consider more than one aspects in

many realizations.

A large literature on MOO exists since it has wide range of applications and has been

studied extensively by many researchers in the last four decades.

The multi-objective optimization problem (MOP) can be defined with the following
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formulation,

maximize (f1(x), f2(x), ..., fp(x))

subject to x ∈ X. (2.1)

Here fi : <n → < for i = 1, ..., p are simultaneously maximized, and f(x) =

(f1(x), f2(x), ..., fp(x))T denotes the objective function vector. <n and <p are finite-

dimensional Euclidean vector spaces. The decision (variable) vectors x = (x1, ..., xn)T

belong to the decision space X ⊆ <n. Z := f(X) is the objective (or criterion) space.

For p = 2, this problem is referred as the bi-objective problem (BOP).

Fundamental concepts of MOO are defined in the following subsection.

2.1.1 Basic Concepts of MOO

The fundamental conceptual difference between MOO and the classical single objec-

tive optimization is in the notion of optimality. For multi-objective problems the term

efficient solution takes the place of the term optimality for single objective problems.

Definition 1. x ∈ X is said to be an efficient or Pareto optimal solution if there

exists no x∗ ∈ X satisfying fi(x
∗) ≥ fi(x) for all i and fi(x

∗) > fi(x) for at least one

i.

The objective vector f(x) = (f1(x), f2(x), ..., fp(x))T is said to be non-dominated

if x is efficient and dominated if x is not efficient (is inefficient). The set of all

efficient solutions generates the efficient set denoted by XE, and the image of XE in

the objective space, the non-dominated set, is denoted by ZE. The set of all non-

dominated vectors are also referred to as the efficient frontier.

Definition 2. x ∈ X is said to be a weakly efficient solution if there exists no x∗ ∈ X

satisfying fi(x
∗) > fi(x) for all i.

Weakly efficient solutions are indeed not desirable. However, some methods may

be delivering weakly efficient solutions rather than efficient solutions due to some
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technicalities. These solutions can then be eliminated.

When the feasible set of MOP is not convex, for example in the case of multi-objective

integer problems, XE includes both supported and nonsupported efficient solutions.

This characterization of XE applies to the problem studied in this thesis therefore,

these terms are introduced below.

Definition 3. x ∈ XE is called a supported efficient solution if there exists some

λ ∈ <p> where <p> = {λ ∈ <p : λ > 0} such that x is an optimal solution of

maxx∈Xλ
Tf(x) and z = f(x) is called a supported non-dominated point.

XsE and ZsE denote the set of all supported efficient solutions and the set of all

supported non-dominated points, respectively. On the other hand, the set of all non-

supported efficient solutions and the set of all non-supported non-dominated points

are denoted by XnE and ZnE.

Lastly, concepts of ideal and nadir points will be introduced. These concepts have

significant importance and are utilized a lot in the literature.

Definition 4. The ideal point zI consists of the individual maximum values of p

objective functions, zI := (zI1 , ..., z
I
p)
T where zIi := max{fi(x) : x ∈ X}, i = 1, ..., p.

The ideal point is usually not feasible to MOP. The ideal point can be calculated

easily by just taking the individual maximum values of objective functions over the

feasible set, in other words, by solving p single objective optimization problems. It

usually serves as a reference point for the MOP.

Definition 5. The nadir point is defined as zN := (zN1 , ..., z
N
p )T where zNi := min{fi(x) :

x ∈ XE}, i = 1, ..., p.

Different than the calculation of the ideal point, the nadir point calculation is not

trivial for p > 2, therefore it is often estimated. zI and zN have importance in the

theory of MOO since they constitute bounds for all z ∈ ZE such that zN ≤ z ≤ zI .

This property is often used in designing algorithms for MOP’s.
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2.1.2 Exact Solution Methods for Multi-objective Problems

Solution methods for multi-objective problems can be separated in three groups as

a priori, interactive and a posteriori methods. A priori methods assume preference

information so the value function U(f(x)) is known to the decision maker (DM).

Hence, that single value function can be optimized. However, usually the value func-

tion is not known a priori or is hard to find. In interactive methods, efficient solutions

of MOP are presented to DM and according to DM’s preferences the optimization

process continues or stops when an acceptable solution is found. The drawback of

interactive methods is that DM is not always easily reachable and a large number

of efficient solutions may not be inferable to the DM. A posteriori methods aim to

find the efficient frontier and present it to the DM after the solution process. By this

way, DM is able to observe all solution alternatives and choose the best one among

them. In this thesis, a posteriori methods will be considered. For more information

on a priori and interactive methods the reader can refer to Part II, Chapter 4 and 5

of [76].

In addition, solution techniques can be considered according to the solution quality

as exact methods or approximation methods and heuristics. Exact methods are elab-

orated on this thesis since the aim is to find the non-dominated set of the bi-objective

quadratic knapsack problem.

It can be claimed that the most important exact methods in terms of applicability

and efficiency are the weighted sum, the ε-constraint and the Tchebycheff methods.

These three methods and another exact solution method that combines the first two

methods are explained below.

Weighted Sum Method

In the weighted sum method, the idea is to multiply each objective function with

weights and then optimize the weighted sum of p objectives. In this way, the multi-

objective optimization problem is converted into a single objective optimization prob-

lem. A broad discussion of the method, also the theorems and proofs given below,
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can be found in [29]. For more on discussion of the method refer to [76].

Before starting to give information on the method, notations <p≥ and <p> will be used

in this section should be defined as <p≥ = {y ∈ <p : y ≥ 0} and <p> = {y ∈ <p : y > 0}.

The weighted sum problem P (λ) can be defined as,

maximize

p∑
i=1

λifi(x)

subject to x ∈ X, (2.2)

where λi ∈ <≥ for all i = 1, ..., p. It is also usually assumed that
∑p

i=1 λi = 1.

Several theoretical results are given below on finding efficient solutions via weighted

sum method.

Theorem 2.1.1. Let x̂ be an optimal solution of the weighted sum problem P (λ)

where λ ∈ <p≥. Then x̂ is weakly efficient.

Theorem 2.1.2. Let x̂ be an optimal solution of the weighted sum problem P (λ)

where λ ∈ <p>. Then x̂ is an efficient solution.

Theorem 2.1.3. Let x̂ be the unique optimal solution of the weighted sum problem

P (λ) where λ ∈ <p≥. Then x̂ is an efficient solution.

These theoretical results are not adequate for the characterization of XE. The

next theorem will complete the characterization with a convexity assumption which

is a weakness of the weighted sum method. A convex MOP refers to a problem in

which all objective functions are convex and the feasible set is convex.

Theorem 2.1.4. Let the multi-objective optimization problem be convex. If x̂ is

efficient, then there exists a weighting vector λ where λi ∈ <≥ for all i = 1, ..., p, and∑p
i=1 λi = 1, such that x̂ is an optimal solution of the weighted sum problem P (λ).

The weighted sum method offers a way to find efficient solutions of MOP easily

without changing the structure of the original problem. However, the previous the-

orem does not cover integer or other non-convex MOP’s. In fact, in such cases it
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has been shown that the weighted sum method cannot find the entire efficient set

XE since the non-supported solutions which exist in the non-convex regions of the

problem are missed.

In order to overcome this weakness in bi-objective problems, two-phase methods can

be applied after solving the weighted sum problem P (λ) [107]. Two-phases methods

find the set of supported solutions by solving a parameterized single objective prob-

lem in the first phase. After that, the non-supported solutions are determined with,

for example branch-and-bound approaches.

ε-Constraint Method

The ε-constraint method is a well-known solution procedure for multi-objective op-

timization problems along with the weighted sum approach. It was first introduced

by Haimes et al. [113]. In the ε-constraint problem, one of the objective functions is

selected to be maximized, and the other objectives are taken as inequality constraints.

The kth objective ε-constraint problem Pk(ε) is,

maximize fk(x)

subject to fj(x) ≥ εj, j = 1, ..., p, j 6= k,

x ∈ X (2.3)

where εj ∈ <, j = 1, ..., p, j 6= k. Since k is arbitrary, we define ε = (ε1, . . . , εp)
T ∈ <p

as a vector of possible righthand side values.

The following theorems stated here without proofs introduce the relation between

efficiency and Pk(ε). A comprehensive discussion of the method and proofs of theorems

are given in [105].

Theorem 2.1.5. Let x̂ be an optimal solution of Pk(ε) for some k. Then x̂ is weakly

efficient.

Theorem 2.1.6. Let x̂ be a unique optimal solution of Pk(ε) for some k. Then x̂ is

efficient.



Chapter 2: Background 9

Theorem 2.1.7. x̂ ∈ X efficient if and only if there exists ε ∈ <p such that x̂ is an

optimal solution to Pk(ε) for all k=1,...,p.

The strength of the method can be observed from above theorems where no con-

vexity or linearity assumptions are needed for the efficiency of the solution. Unlike the

weighted sum method, the entire efficient set including the non-supported solutions

can be generated with the ε-constraint method by changing ε values.

Yet, this method has two problems that must be fixed before implementing. The first

one is the difficulty of parameterizing ε values and the second is the need to eliminate

the weakly efficient solutions found.

Parameterizing all ε values so that no efficient solution is missed, can be done effec-

tively for bi-objective problems. However, for more than two objectives it is somewhat

challenging and computationally expensive. For instance, a scheme for parameteriz-

ing ε values in the multi-objective space is given in [66]. Although this algorithm

works for three and more objectives, the computational effort required increases dra-

matically when p is large. A more recent study that utilizes the ε-constraint method

is given in [55].

Weakly efficient solutions are also found as optimal solutions of Pk(ε) and these so-

lutions need to be eliminated when generating the efficient set. Lexicographic op-

timization, augmented ε-constraint method or two-stage approaches can be used to

eliminate these solutions. Lexicographic optimization will be discussed later. The

details of the augmented ε-constraint method is given in [73].

Other Exact Solution Methods

Two significant solution methods other than the weighted sum and the ε-constraint

method are explained in this subsection. These are the hybrid and the generalized

Tchebycheff Norm method.

The hybrid method combines the weighted sum and the ε-constraint method by opti-

mizing the weighted sum of all objectives subject to all objectives taken as constraints.

Let x̂ be an arbitrary feasible point of MOP. Then the hybrid problem (HP) can be
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stated as,

maximize

p∑
i=1

λifi(x)

subject to fi(x) ≥ fi(x̂), i = 1, ..., p,

x ∈ X (2.4)

where λ ∈ <p≥. All efficient solutions can be obtained with the hybrid method. This

result is stated in the following theorem and the proof is given in [29].

Theorem 2.1.8. Let λ ∈ <p>. A feasible solution x̂ ∈ X is an optimal solution of the

problem HP if and only if x̂ ∈ XE.

Finding efficient solutions with this method is computationally more expensive

due to the higher number of constraints and the more complex objective function

compared to the weighted sum and ε-constraint method, which is a disadvantage over

these methods.

Lastly, the method for generating the efficient frontier using the generalized Tcheby-

cheff Norm will be described. This method was first introduced by Bowman [9] and

it is also referred to as compromise programming [29]. The generalized Tchebycheff

norm of the p dimensional objective vector f(x) is denoted by ‖f(x)‖ and defined

as ‖f(x)‖β = maxi=1,...,pβi|fi(x)| where β ∈ <p>. Let zI be the ideal point as defined

before. Then (Pβ) can be defined as follows,

(Pβ) minx∈X‖f(x)− zI‖β (2.5)

According to Bowman [9] all efficient solutions of MOP can be generated by solving

(Pβ) parameterizing on β.

Theorem 2.1.9. x̂ is efficient only if it is a solution to (Pβ) for some β = β̂.

However, this result is not a complete characterization of efficient solutions since

inefficient solutions may be found with this method. A complete characterization is
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given in [9] under a slightly restrictive assumption of uniform dominance.

Definition 6. The efficient set is uniformly dominant if for every inefficient solution

x̂ there exits an efficient solution x such that fi(x̂) < fi(x) for all i.

Hence, with the uniform dominance assumption it is accepted that weakly effi-

cient solutions do not exist. The below theorem completes the characterization for

uniformly dominant efficient sets.

Theorem 2.1.10. If the efficient set is uniformly dominant then all solutions to (Pβ)

are efficient solutions.

In the absence of uniform dominance assumption, to avoid generation of inefficient

solutions the weighted augmented Tchebycheff program defined below which yields

only the efficient solutions can be applied [96].

minx∈X(maxi=1,...,pβi|fi(x)− zIi |+ ρ

p∑
i=1

fi(x)), (2.6)

where ρ is a sufficiently small positive number.

Another technique for eliminating inefficient solutions is using a two−phase approach.

In this type of approaches, the generalized Tchebycheff norm is used in the first stage

then weakly efficient solutions found in the first stage are eliminated with the second

stage optimization problem [90].

For further reading on the theory of MOO, other exact solution methods and an

extensive analysis of these methods refer to [76], [29] and [105].

2.1.3 Approximation and Heuristic Methods

Determining the efficient set of a MOP exactly is not an easy task. The number

of efficient solutions is quite large; therefore, solving MOP’s requires a considerably

large computational effort. Thus, approximations, representations and heuristics are

studied extensively in MOO literature. Some examples of these methods from the lit-

erature that are proposed for different types of problems will be given in this section.
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First, the difference between an approximation and a representation should be clar-

ified. Representing an efficient set means finding a subset of the exact efficient set

of the problem. For instance, the set of supported efficient solutions of a non-convex

MOP constitute a representation of that problem. On the other hand, solutions in an

approximation do not have to belong to the exact efficient set; they are estimations

of the exact efficient solutions.

Most of the proposed methods deal with linear MOP’s. An algorithm for linear

bi-objective programs is proposed by Solanki and Cohon in [94]. This algorithm

generates a piecewise linear approximation by connecting efficient points found with

the weighted problem. The procedure provides an approximate representation of the

efficient set. Solanki et al. then introduced the generalization of this method to the

multi-objective case [93]. Concepts of multi-objective optimization are well utilized

in both methods; however, these methods are not very practical in terms of compu-

tation.

A method is proposed for multi-objective combinatorial problems in [58] where the

non-dominated frontier is approximated by fitting a hypersurface that passes through

the extreme points in the objective space. This method can be implemented easily

and gives a good approximation of the efficient set.

The representation method proposed by Sylva and Crema [99] finds well-dispersed

subsets of non-dominated solutions for linear, integer and even mixed integer MOP’s.

The procedure generates the non-dominated solution that maximizes the infinity norm

distance to the set dominated by all the previously found solutions. This requires

adding binary variables and constraints to the problem at each iteration, making the

method inefficient even for moderate size problems.

Martin et al. [70] proposed an approximation method for continuous MOP’s which

incorporates various concepts from evolutionary algorithms (EA) and stochastic op-

timization. The common underlying idea behind EA’s is to form the next generation

of solutions using genetics mechanisms such as mutation, recombination and selection

starting with an initial population of solutions. The method in [70] starts with a
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random sample of the feasible set similar to EA’s. Then the non-dominated frontier is

approximated with a discrete approximation and a curve is fitted to this approxima-

tion using regression. Non-connected non-dominated frontiers of nonlinear problems

can also be approximated with this method. Application to well known problems or

examples of problems with more than two objectives are not included in the paper;

therefore, the quality of the approximation method cannot be stated exactly.

For a survey on approximation methods the reader can refer to [87].

Metaheuristics, which are general purpose heuristic approaches, have been used ac-

tively in the last decade for MOO. EA’s have been particularly popular. The common

property of EA’s is their ability to generate multiple solutions in a single run of the

algorithm.

Strength-Pareto EA (SPEA) and Non-dominated Sorting Genetic Algorithm (NSGA)

introduced in [115] and [95] respectively are among the classical evolutionary multi-

objective optimization (EMO) algorithms. SPEA basically combines previous EA’s

characteristics. In addition, it keeps an external non-dominated set which provides

transmission of non-dominated solutions to the next generations. SPEA2 introduced

in [27] improved the earlier version of SPEA by fixing some of its weaknesses. The

main characteristic of NSGA is the calculation of non-domination levels. NSGAII

proposed in [24] over NSGA, is elitist, less expensive in computation and also does

not need a user defined sharing parameter. According to the computational results

given in [27] on problems of different characteristics, SPEA2 and NSGA2 have similar

performances.

EMO algorithms can also be used to address dynamic MOP’s as described in [32].

Some new and improved methods proposed in this field are given in [116] and [67].

Recent developments and a review of EMO algorithms can be found in [20], [47],

and [21].
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2.1.4 Applications of MOO

In this subsection, we will be giving some examples of MOO applications which are

spread over many diverse areas. Obviously, we cannot name all of them here; however,

this subsection will give an insight to better understand the importance of MOP’s.

MOO has applications in finance, energy planning, telecommunication network

planning and design, and sustainable development, each explained in [49]. For a

bibliography on applications of multi-objective decision making check out [110] and

for applications in finance see [97]. Some more examples of MOO applications are on

non-financial performance evaluation, optimal capital structure problem, marketing

and e-commerce [12].

Bhaskar et al. [104] reviewed MOO applications in chemical engineering and Handl

et al. [39] reviewed MOO applications in bio-informatics and computational biology.

MOO is also applied to the traffic assignment problem by considering total travel

time, air pollution and travel distance as objectives in [102]. Weber and Current

looked at the vendor selection problem with a multi-objective approach in [109]. The

capital budgeting problem is considered as a MOO problem in [6]. The road network

design problem featured in [14] is another application area of MOO. Moreover, MOO

is applied to motion planning, trajectory planning and navigation of robot systems

in [71], [79] and [52] respectively. Multi-objective system reliability design problem is

examined in [100]. Improving energy efficiency in buildings [26], test data generation

[64] and environmental investment decision making [42] can be counted as examples

of MOO applications to different and diverse areas.

The following applications belong to the family of bi-objective problems. Ehrgott

and Ryan [30] modeled robust crew schedules for airlines with bi-objective optimiza-

tion by minimizing cost and maximizing robustness as objectives which are in con-

flicting natures. Sayın and Karabatı [89] formulated two-machine flow shop schedul-

ing problem as a bi-objective problem by trying to minimize make-span and sum

of completion times simultaneously. The bi-objective resource-constrained project

scheduling problem is solved by using a tabu search algorithm in [2] with objectives
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of make-span minimization and robustness maximization.

EMO algorithms are used in many applications of MOP’s which will be exemplified

here. Farmani et al. [33] applied EMO techniques to the water distribution network

design problem. EMO as well as MOO strategies are applied to intensity modulated

radiation therapy (IMRT) dose optimization problem and IMRT planning in [63] and

[62] respectively. A survey on the applications of EMO algorithms to economics and

finance problems is given in [16]. Meunier et al. [75] proposed a multi-objective

genetic algorithm for radio network design problem and Islier [48] used a genetic

algorithm approach to the multi-objective facility layout design. Deb discussed EMO

algorithms for engineering design and cited applications in [23].

Applications of MOO related to the knapsack problems will be given separately

in the next section.

2.2 The Knapsack Problem

The knapsack problem (KP) is one of the most studied combinatorial optimization

problems in the literature. Despite its NP-complete [68] structure, the KP caught

the attention of many researchers since it is used in many real life applications such as

capital budgeting, cargo loading, and cutting stock [88]. Besides these direct appli-

cations, knapsack problem is also encountered as a subproblem of numerous complex

problems. A comprehensive discussion of various types of knapsack problems, solution

methods for these problems and applications can be found in the books by Martello

and Toth [88], and Kellerer et al. [38].

In the original version of the knapsack problem (KP) also known as the 0-1 (zero

one) or binary knapsack problem, the input consists of a knapsack with a certain ca-

pacity b and a set of items j = 1, ..., n, each of which has a weight and profit denoted
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by wj and pj respectively (j = 1, ..., n). The problem can be stated as follows,

maximize

n∑
j=1

pjxj

subject to
n∑
j=1

wjxj ≤ b,

xj ∈ {0, 1}, j = 1, ..., n. (2.7)

It is usually assumed, without loss of generality, that pj, wj and b are positive inte-

gers,
∑n

j=1wj > b, wj ≤ b for j = 1, ..., n. The binary variable xj = 1 means selecting

and xj = 0 means excluding the jth item. Moreover, in some cases xj are taken to be

positive integers and we will refer to that problem as the integer knapsack problem.

An insight to the mathematical formulation of the problem can be given as the fol-

lowing. Suppose an investment of b dollars will be made and n different investment

options are available. If we consider pj as the expected profit associated with invest-

ment option j and wj as the amount of dollars required to make jth investment, then

optimal solution of this problem can be found by solving the corresponding KP.

The knapsack problem has a lot of variations each called by special names. Some

of these versions will be explained in here. The multidimensional knapsack problem

(MdKP) is a generalization of the knapsack problem which has m constraints instead

of one capacity constraint and is known to be NP-hard. In the multiple knapsack prob-

lem a subset of n items are placed into m knapsacks that have different capacities.

In another version called the multiple-choice knapsack problem, items are divided into

classes and only one item has to be selected from each class.

Recent studies on different versions of the knapsack problem will be summarized and

cited here for the completeness of this thesis.

Various solution techniques are used to solve KP in the literature. Three exact algo-

rithms for solving KP; the branch-and-bound, core and dynamic programming algo-

rithms, are surveyed in [69]. Large sized uncorrelated instances up to 10, 000 variables,

where the weights wj and the profits pj are uniformly randomly distributed in the
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range [1, R], are solved in this paper. These exact algorithms will be briefly explained

in the following. The branch-and-bound procedure is based on partitioning the space

of all feasible solutions and calculating upper bounds for the solutions in that subset.

The idea is to eliminate subset A from the branching tree if the upper bound of A

is less than the lower bound of subset B. The core algorithm determines a subset of

items as the core of the problem by their efficiencies and further explore solutions in

the core problem. Lastly, dynamic programming method solves problems by reducing

complex problems down into simple subproblems like the branch-and-bound method.

KP is treated as a sequential decision making process whose states and transitions

between them are determined by the feasibility constraint.

A more recent study proposes a novel global harmony search algorithm, an evolu-

tionary algorithm, and reports its performance on large scale instances up to 1, 500

variables in [117]. Also, the problem of re-optimizing KP is examined by Archetti et

al. in [4].

An exact algorithm for MdKP is given in [8] which can solve instances with 10 con-

straints and 500 variables to optimality. Heuristics are used to solve MdKP commonly

since it is NP-hard [60], [82], and [34].

Heuristic methods for the multiple-choice multidimensional knapsack problem (McdKP)

are proposed in [18] and [1] by column generation and by constructing convex hulls,

respectively. An exact and a heuristic method is given in [41].

Several examples of knapsack problem applications chosen from literature will be

stated in here. In addition to those stated earlier, the KP has been used in the area

of cryptography [74]. The second stage of the production planning problem faced by a

small foundry is modeled with a bounded KP in [13]. The partially ordered knapsack

problem and its applications to scheduling is discussed in [59]. Mansini and Sper-

anza [84] formulated the problem of selecting assets in a securitization as a MdKP.

A variant of McdKP is used to formulate the utility model for resource allocation on

computational grids in [106].

The multi-objective knapsack problem (MOKP) is an extension of the KP and has
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applications in transportation planning, packaging and loading, conservation biology,

capital budgeting and financial management [19]. The MOKP can be formulated as

maximize

n∑
j=1

pijxj i = 1, ..., p

subject to

n∑
j=1

wjxj ≤ b,

xj ∈ {0, 1}, j = 1, ..., n. (2.8)

pij are nonnegative integers in this case. For the special case where i = 2 this problem

is called the bi-objective knapsack problem (BOKP) also referred as the linear bi-

objective knapsack problem.

Solution techniques used to solve BOKP and MOKP, and applications of these

problems to real life scenarios are given in the following paragraphs.

The core concept stated above is extended to solve BOKP exactly and approx-

imately in [22] and computational results on different types of instances are also

included. For example, uncorrelated instances with 500 variables are reported in the

paper. Eben-Chaime [28] presented an algorithm for the construction of a parametric

solution for BOKP and solved some small sized instances. Visée et al. [107] introduced

two-phases and branch-and-bound procedures to solve BOKP and computational re-

sults are presented up to 500 variables. Zhang and Ong [114] proposed a heuristic

method for BOKP and included computational results for very large instances up to

50, 000 variables. Kozanidis [61] worked on the multiple-choice bi-objective knapsack

problem. The bi-objective max-min knapsack problem is studied in [101] and a re-

port of solutions for large instances with 16, 000 items is given in the paper. BOKP

is solved with a tabu search based procedure in [37]. A new solution algorithm for

BOKP is presented in [25] based on the use of bound sets which requires less memory

than some other dynamic programming approaches.

Some examples of BOKP applications should also be included here. Jenkins [50]

modeled the problem of remediation of contaminated lightstation sites with BOKP.
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A well-known application of BOKP to the capital budgeting problem, with objectives

of maximizing the present value of the accepted projects and minimizing their risk,

is examined in [86].

Examples of studies on the MOKP, most of them considering the three objective

case, will be stated here. An approximation method is given for the multidimensional

MOKP in [31], however no computational testing is included. The same problem is

addressed also in [35] with an exact method, heuristics and computational testing.

Bazgan et al. [5] solved MOKP with a dynamic programming approach and reported

numerical results for the three objective case. A dynamic programming based ap-

proach is also used to model integer MOKP in [57].

Lastly, methods belong to the heuristics family are used a lot in the literature

to solve different versions of knapsack problems including BOKP’s and MOKP’s.

Wilbaut et al. presented a survey on heuristics applied to a variety of knapsack

problems [111].

2.2.1 The Quadratic Knapsack Problem

The quadratic knapsack problem (QKP), which belongs to the class of nonlinear knap-

sack problems, is first introduced by Gallo et al. in [36] as maximizing a quadratic

objective function subject to a linear knapsack capacity constraint.

QKP is a generalization of the knapsack problem when pij = 0 for all i 6= j, and it is

also a constrained version of the quadratic 0− 1 programming problem.

As in the linear case, we have n items to pick from, each of which has a nonnegative

integer profit and a positive integer weight. The profit matrix P = {pij} is a non-

negative symmetric square matrix of order n. It can be assumed without any loss

of generality that profit matrix is symmetric, i.e. pij = pji for all i, j, j > i. This

assumption can be made since P can be converted to the symmetric form easily by

using (P+PT )
2

. The capacity b is a positive integer.
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QKP is NP-hard in the strong sense [80] and formulated as follows:

maximize

n∑
i=1

n∑
j=1

pijxixj

subject to
n∑
j=1

wjxj ≤ b,

xj ∈ {0, 1}, j = 1, ..., n. (2.9)

QKP is sometimes formulated with a linear part in the quadratic objective function,

where ci is a positive integer, as shown below:

maximize
n∑
i=1

n∑
j=1

pijxixj +
n∑
i=1

cixi

subject to
n∑
j=1

wjxj ≤ b,

xj ∈ {0, 1}, j = 1, ..., n. (2.10)

In our case, the linear terms in the objective of the formulation can be implicitly taken

into account in the quadratic part by adding these coefficients to the corresponding

diagonal elements of the quadratic matrix P since xi = x2i for xi = {0, 1}.

In QKP, different than the KP, an item has its own profit and an additional profit

when selected with another item, where pjj is the profit achieved if item j is selected,

and for j > i, pij + pji is the profit achieved if both items i and j are selected. This

characterization of QKP can be interpreted as the interdependence of items with each

other, which has realizations in applications.

The version we are dealing with is called the supermodular case where all coefficients

are integer and nonnegative. Moreover, our objective function is nonseparable. In

general, problems with a nonseparable objective function are much harder to solve

than those with a separable one. Karush-Kuhn-Tucker conditions get complicated for

the nonseparable problem since the objective function of QKP has elements in the

form xixj where i 6= j.
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Many versions of QKP and the nonlinear knapsack problem have been addressed in the

literature. These versions include continuous, integer or binary variables, nonsepara-

ble or separable functions, convex or non-convex functions and additional constraints

such as bounds on the variables [10].

2.2.2 Solution Techniques and Applications of the QKP

Different solution techniques and applications of QKP will be discussed in this sub-

section.

A lot of work has been done on QKP since the 1980’s. QKP has applications in

many areas, and hence it is important to develop exact and heuristic algorithms for

solving QKP. Techniques of relaxation, linearization, reformulation, Lagrangian relax-

ation, Lagrangian decomposition, and semi-definite programming are used to com-

pute bounds for the problem. Heuristics, reduction techniques, branch-and-bound

algorithms and approximations are also used to solve QKP.

An exact branch-and-bound algorithm for QKP, where upper bounds are computed

by considering a Lagrangian relaxation, is introduced by Caprara et al. in [15]. The

proposed method can solve QKP’s with up to 400 binary variables and this is realized

through tight upper bounds found which are typically within 1% of the optimum

according to [15].

A recent paper by Wang et al. [108] compares three different linearizations of QKP

from the literature with the mixed integer quadratic programming (MIQP) solver of

CPLEX and reports their performances up to 800 variables and 75% percentage full-

ness. In this paper, the quadratic matrix is transformed to a positive semi-definite

matrix to ensure that the required convexity conditions were satisfied before starting

the optimization process with CPLEX’s MIQP solver. Moreover, x2i ’s are directly

taken as xi’s in this paper since xi = {0, 1}. It has been shown that the quadratic

model outperforms linearized models for large instances.

Billionnet and Sourour also applied different linearization techniques to QKP and

reported some results in [7]. The quadratic matrix is again transformed to a positive
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semi-definite matrix with two different preprocessing methods and (MIQP) solver of

CPLEX is used in this paper. The quadratic 0-1 programming problem is solved with

up to 200 variables. With the first preprocessing technique, no instance which has

larger than 100 variables could be solved to optimality in three hours cpu time and

only 4 instances out of 10 with 100 variables could be solved within the time limit.

With the second preprocessing technique which uses semi-definite programming, only

one instance out of 10 with 150 variables and 6 instances out of 10 with 120 variables

could be solved within three hours cpu time.

Quadri et al. [83] developed a branch-and-bound algorithm coded in C language to

solve large scale separable quadratic multi-knapsack problem up to 2000 variables.

The upper bound and preprocessing techniques incorporated allow large problems to

be solved. Again a branch-and-bound algorithm for the separable integer quadratic

knapsack problem with bounds on variables is generated in [11] and results of imple-

mentations with up to 100 variables are reported.

Helmberg et al. [40] used a semi-definite programming approach to solve QKP and

reported some results for up to 60 variables. Apart from being theoretically inter-

esting, it is concluded that semi-definite approach is probably too expensive to solve

pure quadratic knapsack problems to optimality.

Pardalos et al. presented three different algorithms to solve quadratic problems with

a knapsack constraint and continuous variables in [78]. Kiwiel [56] solved large scale

continuous quadratic knapsack problems where the quadratic matrix only has positive

diagonal elements making the objective function strictly convex. Breakpoint search-

ing algorithms are proposed for this separable problem. The continuity, convexity

and separability characteristics of the problem made it possible to solve large scale

instances.

Hua et al. presented different heuristics for integer QKP with real objective function

coefficients including approximate dynamic programming approaches in [44]. Narayan

and Patvardhan [77] proposed a quantum evolutionary algorithm (QEA) for solving

QKP. Sun et al. proposed an algorithm for the minimization of separable concave
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knapsack problems with bounded integer variables which is able to solve large-scale

problems up to 1200 variables [98].

We will discuss some applications of QKP in the following paragraphs.

The problem of selecting a number of sites for satellite stations such that the global

traffic between these stations is maximized subject to a budget constraint in telecom-

munications is a QKP [112]. Similar models arise when considering the location of

airports, railway stations or freight handling terminals [85].

Another application of QKP is the capital budgeting problem where the decision

maker is confronted with a set of investments from which he must select a portfolio

[65]. Here, the problem includes restrictions requiring that each project be accepted

or rejected in its entirety. The decision maker’s expected utility function includes as

arguments the mean portfolio return and, as a measure of risk, portfolio variance.

The multi-commodity network model is formulated with QKP with bounds on vari-

ables [92]. Multi-commodity network flow problems arise when several items share

arcs in a capacitated network.

Kellerer and Strusevich offered a fully polynomial approximation scheme for symmet-

ric QKP defined in the presented papers and stated its scheduling applications [54],

[53]. Scheduling problems addressed in these papers have the following characteris-

tics. Given a set N = {1, 2, ..., n} of jobs to be proceeded without preemption on a

single machine; the processing of job j ∈ N takes pj time units and positive weight

wj is associated with job j, which indicates its relative importance. It is required to

minimize a function Z(S) that depends on the completion times Cj(S).

Also, several graph-theoretic interpretations can be given to QKP and it can be seen

that this problem is a generalization of the clique problem, which checks whether for

a given integer k, a given undirected graph G = (V, E) contains a complete subgraph

on k nodes. The most famous optimization version of clique is Max Clique, and

can be solved through a QKP algorithm [15]. Pseudo-polynomial time algorithms for

QKP where the underlying graph structure is edge series-parallel is given in [51].

Iasemidis et al. [45], determined predictability of epileptic seizures by using a quadratic 0−
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1 programming model equivalent to the k − clique problem. The possibility of pre-

diction of epileptic seizures well in advance of their occurrence is shown in this paper

by applying the proposed procedure to epilepsy research for the first time.

Bretthauer and Shetty [10] offered a review of the literature on nonlinear knapsack

problems and for a survey on QKP check [80].
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Chapter 3

PROBLEM FORMULATION AND SOLUTION

TECHNIQUES

The bi-objective quadratic knapsack problem (BQKP) studied in this thesis is

stated in this chapter. The lexicographic ε-constraint method used to solve the prob-

lem and the linearization method incorporated in this formulation are explained. Also,

a special weighted sum algorithm which is used to determine the supported efficient

solutions of the problem is discussed.

3.1 The Bi-objective Quadratic Knapsack Problem (BQKP)

BQKP can be considered both with and without linear parts in two objectives. We

will give the formulation without linear parts here however, the reader should know

that the linear parts can be added to the diagonal elements of quadratic matrices and

the problem can be handled without considering the linear parts, since as discussed

before, xi = x2i for xi = {0, 1}.

The formulation of BQKP without the linear parts in objectives is as follows;

maximize f1(x) =
n∑
i=1

n∑
j=1

pijxixj

maximize f2(x) =
n∑
i=1

n∑
j=1

qijxixj

subject to
n∑
j=1

wjxj ≤ b,

xj ∈ {0, 1}, j = 1, ..., n. (3.1)
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All coefficients are nonnegative integers in these formulations. The profit matrices

P = {pij} and Q = {qij} are nonnegative symmetric square matrices of order n. The

aim is to determine which k items where k ≤ n to choose from these n items that will

give non-dominated solutions of the problem.

The properties of the profit matrices stated above are not sufficient for the convexity

of the problem. Here, we want to maximize quadratic objectives so we need concave

objective functions and therefore negative semi-definite (NSD) quadratic matrices. A

real square symmetric matrix is negative semi-definite if and only if all of its eigen-

values are non-positive. This NSD requirement can always be satisfied for the class

of problems considered here by modifying P using standard diagonal perturbation

techniques [108].

As an example of these techniques, the minimum eigenvalue transformation described

in [7] for generating PSD quadratic matrices can be used with a little change in the

formulation for the purpose of generating NSD matrices by making all eigenvalues

non-positive, which will be explained here.

The perturbed function qu(x) is defined in the following way

qu(x) = xT (Q− diag(u))x+ uTx (3.2)

where diag(u) is the diagonal matrix obtained from vector u and u ∈ <. It can be

seen that qu(x) can also be written as q(x) +
∑n

i=1 ui(xi − x2i ), and that qu(x) = q(x)

for all x ∈ {0, 1}n. The expression qu(x) is equivalent to our quadratic objective

function.

Since, concave objective functions and therefore NSD quadratic matrices are needed

for our problem λmin in the formulation given in the referenced paper should be taken

as λmax.

Let λmax ∈ < be the largest eigenvalue of matrix Q. Here, if at least one term of Q

is nonzero then λmax is a real positive number. If we consider the perturbed function
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qu where u = λmaxe and e is the vector of all ones then we get

qλmaxe(x) = xT (Q− diag(λmaxe))x+ (λmaxe)
Tx (3.3)

Matrix (Q−diag(λmaxe)) is negative semi-definite and then function qλmaxe is concave.

CPLEX itself also transforms the quadratic matrices to NSD matrices before starting

the optimization process. After some experimentation, we did not interfere with this

step and let CPLEX deal with the NSD requirement on the quadratic matrices.

We have discussed before the NP completeness of KP and stated that QKP is NP

hard in the strong sense. Therefore, it can be concluded that BQKP is a difficult

problem.

There are not any particular algorithms intended to solve BQKP in the literature,

to the best of our knowledge. We have not encountered any empirical studies that

investigate the non-dominated solutions of BQKP. Therefore, understanding the per-

formance of a commercial solver such as CPLEX on BQKP and reporting the related

computational results are important which we have addressed in this thesis.

3.2 The Lexicographic ε-Constraint Method for Bi-objective Optimiza-

tion Problems

In this section, the lexicographic variant of the ε-constraint method, which is used to

generate the non-dominated set of the BQKP, will be described and the formulation

of the method for bi-objective optimization problems will be given.

We have discussed the ε-constraint method in the second chapter. The lexicographic

ε-constraint method yields efficient solutions as opposed to weakly efficient ones in

the ε-constraint approach. Moreover, any efficient solution can be obtained with

the lexicographic ε-constraint method with a proper choice of ε [43]. The theorem

given below states this fact and gives the lexicographic ε-constraint formulation of a

bi-objective optimization problem.

Theorem 3.2.1. A feasible solution x∗ ∈ X is efficient if and only if it is a solution
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of the problems

z∗1 = maximize f1(x)

subject to f2(x) ≥ ε1,

x ∈ X (3.4)

and

maximize f2(x)

subject to f1(x) ≥ ε2,

x ∈ X (3.5)

where ε2 = z∗1.

The first model (3.4) in the above theorem will be referred as (P1) and the second

model (3.5) will be referred as (P2) in the following sections.

These two models can be interpreted as described in the following. The first objec-

tive is maximized on the feasible set of the bi-objective optimization problem with

the second objective bounded below as a constraint. Then, the second objective is

maximized over the feasible set of the bi-objective problem plus the first objective as

a constraint taking the value obtained from the first stage as a right hand side. In

the lexicographic ε-constraint method solving these two single objective optimization

problems will give an efficient solution of the bi-objective problem. Other efficient

solutions can be found by changing the right hand side of the objective constraints.

The need to solve two single objective optimization problems to find one efficient so-

lution is a drawback of the method. Moreover, the problem structure is changed when

solving BQKP since a quadratic constraint is added now, which makes the problem

dramatically harder to solve.

In the following subsection, we will discuss a special weighted sum algorithm which

can find all supported non-dominated solutions of a bi-objective problem with an
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effective weight search. Maintaining the structural properties of BQKP is the advan-

tage of this method however, the disadvantage is that non-supported solutions could

not be found.

3.3 A Special Weighted Sum Algorithm

A special weighted sum algorithm which is designed to find all supported non-dominated

solutions of a bi-objective optimization problem from the literature and its applica-

tion to BQKP will be explained in this section.

Aneja and Nair [3] introduced an algorithm which finds all supported non-dominated

solutions of a bi-objective optimization problem. This algorithm uses the weighted

sum method and presents an intelligent way to search the whole weight space.

The algorithmic statement of the method proposed is given below. The validity of

the algorithm is also stated with a theorem and its proof in the cited paper. The

Algorithm 1 Aneja and Nair’s Weighted Sum Algorithm

Step 0: Find zI1 and zN2 . Record these as (z11 , z
1
2) and set k = 1.

Similarly find zN1 and zI2 .
If (z11 , z

1
2) = (zN1 , z

I
2), stop.

Otherwise, record (zN1 , z
I
2) as (z21 , z

2
2) and set k = k + 1.

Define sets L = {(1, 2)} and E = ∅, and go to Step 1.

Step 1: Choose an element (r, s) ∈ L and set a
(r,s)
1 =| zs2−zr2 | and a

(r,s)
2 =| zs1−zr1 |.

Solve the weighted problem

maximize a
(r,s)
1 z1(x) + a

(r,s)
2 z2(x)

subject to x ∈ X. (3.6)

Let x∗ be the optimal solution to the weighted problem.
Calculate z1(x

∗) and z2(x
∗).

If (z1(x
∗), z2(x

∗)) is equal either to (zr1, z
r
2) or (zs1, z

s
2) set E = E ∪ {(r, s)}

and go to Step 2.
Otherwise record (zk1 , z

k
2 ) such that zk1 = z1(x

∗) and zk2 = z2(x
∗) and set

k = k + 1, L = L ∪ {(r, k), (k, s)} and go to Step 2.
Step 2: Set L = L− {(r, s)}. If L = ∅, stop.

Otherwise go to Step 1.

points recorded by the algorithm in set E gives all the supported efficient solutions
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of the problem.

The fact that the problem structure stays the same is an advantage of this method.

However, only the supported non-dominated solutions of BQKP can be found with

this algorithm since the problem is not convex. Moreover, the algorithm will not find

non-extreme supported efficient solutions unless it is modified to solve for all alterna-

tive optimal solutions in Step 1.

This algorithm is applied to BKQP and a representation of the non-dominated set

consisting of all the supported non-dominated solutions is found by this way. The

details of the application to our problem is given in the next chapter.

3.4 Linearization

Quadratically constrained quadratic (QCQ) subproblems that arose in the lexico-

graphic ε-constraint formulation of BQKP increase the degree of difficulty of the

problem. Especially, the quadratic constraint added to the model dramatically af-

fects the performance of the CPLEX solver. As a consequence, to solve the problem

for higher number of variables a linearization technique introduced in the literature

is incorporated in the lexicographic ε-constraint formulation.

The linearization technique given in [17] fits the submodels of our lexicographic ε-

constraint formulation. Linearization is given for the following problem (P) in the

cited paper.

(P ) minimize f(x) = xTAx,

s.t. Bx ≥ b,

xTCx ≥ α,

x ∈ {0, 1}n.

Here, α is a constant, A and C are general n × n matrices, i.e., aij, cij ∈ <. B is an

m × n matrix, b is a constant vector, m and n are some integer numbers. So, (P )

is a binary QCQ model like our submodels. Although the linear parts in quadratic
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objectives can be added easily with the method we have explained before, we applied

this linearization method to BQKP’s without linear parts in objectives.

Let e be a vector of all ones, i.e., e = (1, . . . , 1)T . The below formulation is introduced

in [17] as the linearization of (P );

(P ′) minimize g(s, x) = eT s−MeTx,

s.t. Ax− y − s+Me = 0,

Bx ≥ b,

y ≤ 2M(e− x),

Cx− z +M ′e ≥ 0,

eT z −M ′eTx ≥ α,

z ≤ 2M ′x,

x ∈ {0, 1}n,

yi, si, zi ≥ 0,

where M ′ = maxi

n∑
j=1

|cij | and M = maxi

n∑
j=1

| aij | .

The equivalence of the formulations (P ) and (P ′) is stated in the following theorem.

Theorem 3.4.1. (P ) has an optimal solution x0 if and only if there exists y0, s0, z0

such that (x0, y0, s0, z0) is an optimal solution of (P ′).

The proof of the above theorem is given in [17].

Our QCQ subproblems in the lexicographic ε-constraint formulation of BQKP are in

the following form;

maximize f1(x) = xTPx,

s.t. wTx ≤ b,

xTQx ≥ f1(x
∗),

x ∈ {0, 1}n. (3.7)
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So, if we modify our problem in a suitable way we can apply the linearization (P’).

The modified version of our QCQ subproblem is given below;

minimize f1(x) = xT (−P )x,

s.t. (−wT )x ≥ −b,

xTQx ≥ f1(x
∗),

x ∈ {0, 1}n,

f1(x
∗) is a constant. (3.8)

It can be noticed that this formulation is equivalent to the one defined as (P ). Hence,

the resulting linearization equivalent to the above problem is as follows;

minimize g(s, x) = eT s−MeTx,

s.t. (−P )x− y − s+Me = 0,

(−wT )x ≥ −b,

y ≤ 2M(e− x),

Qx− z +M ′e ≥ 0,

eT z −M ′eTx ≥ α,

z ≤ 2M ′x,

x ∈ {0, 1}n,

yi, si, zi ≥ 0, (3.9)

where M ′ = maxi

n∑
j=1

|qij | and M = maxi

n∑
j=1

| pij | .

We used the above formulation to linearize our QCQ submodels. With this lineariza-

tion, a binary QCQ subproblem with n variables and two constraints (one knapsack

and one quadratic constraint) is turned into a mixed binary linear problem with 4n

variables and 4n+ 2 constraints.

The insight behind this linearization can be stated as in the following. Newly added
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variables and constraints in the linearization take the place of quadratic terms in the

QCQ formulation. For example, from the third constraint we see that for every i,

where xi = 1, we need to have yi = 0; for every i, where xi = 0, the value of yi does

not depend on this constraint but is upper bounded by the value of 2M . The opposite

of this relationship between xi’s and yi’s exists for xi’s and zi’s. With these additional

variables and constraints the minimization of the objective function defined in this

linearization provides the optimal solution for the QCQ subproblem defined above.

In conclusion, the lexicographic ε-constraint formulation of BQKP is linearized with

this approach and we were able to solve problems with higher number of variables

using CPLEX.
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Chapter 4

GENERATING THE NON-DOMINATED SOLUTION SET

OF BQKP

Two different approaches both incorporating the lexicographic ε-constraint method

in their core, are used to generate the entire non-dominated solution set of BQKP in

this thesis. The first approach involves implementation of lexicographic ε-constraint

method directly to the problem. In the second approach, a linearization technique for

QCP’s is applied to the lexicographic ε-constraint submodels. In addition, supported

non-dominated solutions are generated with the special weighted sum algorithm dis-

cussed in the previous chapter.

Implementations of these methods will be explained in this chapter.

4.1 Quadratically Constrained Quadratic Model

The lexicographic ε-constraint method is coded in CPLEX to generate the non-

dominated set of BQKP. The aim here is to determine and to report the performance

of CPLEX on solving BQKP when the problem is directly submitted to the commer-

cial solver. Therefore, extant settings on CPLEX are not changed. This code will be

referred as the LexECM code.

The LexECM randomly generates BQKP’s with user determined number of vari-

ables and percentage of fullness of quadratic matrices. The lexicographic ε-constraint

method is applied in the code as described in the previous chapter. In the code, all

efficient solutions are found in a while loop which starts with zI1 , the ideal z1 value

and ε1 = 0 as the righthand side of the first model and iterates until ideal z2 is found.

At first zI2 , the ideal z2 is calculated to be given as the end parameter to the while

loop.
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The algorithmic statement of LexECM is given below.

Algorithm 2 LexECM
ε2 ← 0
Solve (P2) with ε2
zI2 ← z∗2
ε1 ← 0
while ε1 ≤ zI2 do

Solve (P1) with ε1
ε2 ← z∗1
Solve (P2) with ε2
ε1 ← z∗1 + 1
Keep (z∗1 , z

∗
2)

end while

We will state two models in the while loop. (P1) is in the form given below.

z∗1 = maximize
n∑
i=1

n∑
j=1

pijxixj

subject to
n∑
j=1

wjxj ≤ b,

n∑
i=1

n∑
j=1

qijxixj ≥ ε1,

xj ∈ {0, 1}, j = 1, ..., n. (4.1)

The second model below takes the optimal value z1(x
∗) of the first model and uses it

in the righthand side of the quadratic constraint. This model is named (P2).

maximize

n∑
i=1

n∑
j=1

qijxixj

subject to
n∑
j=1

wjxj ≤ b,

n∑
i=1

n∑
j=1

pijxixj ≥ ε2,

xj ∈ {0, 1}, j = 1, ..., n. (4.2)
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Figure 4.1: LexECM algorithm steps

LexECM algorithm will be explained with the help of Figure 4.1.

Before starting the while loop, ideal z2 value is determined by solving (P2) with ε2 = 0.

This value is shown with the straight line in Figure 4.1 and is used as the stopping

level for ε1 in the loop since this it sets a boundary for the non-dominated set.

The loop in the first iteration starts with ε1 = 0 and solving (P1) will give the ideal z1

value. The optimal solution x∗ of (P1) is used in determining ε2 for (P2) as ε2 = f1(x
∗).

This way the nadir value of z2 where z1 is equal to f1(x
∗) is calculated. This point is

marked with the ring shape in Figure 4.1.

Then, in the second iteration the optimal value z2 of the second model in the previous

iteration is used in the righthand side of the quadratic constraint. Doing so lets us

find a new non-dominated solution, the closest one to the ring shape shown in Figure

4.1, which has a worse z1 and a better z2 value than the previously found one.

The procedure continues by obtaining a non-dominated solution at each iteration

closer to the level marked with the straight line and ends when (zN1 , z
I
2) is found.

It has been observed that the quadratic constraint in the formulation of the lexico-

graphic ε-constraint method for BQKP, increases the cpu times seriously. The time
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required to solve even a small sized problem gets unreasonably long. Therefore, Lex-

ECM is operated only on small sized problems. Computational results of LexECM

are reported in the results chapter.

We did not find solving only small sized BQKP’s adequate for this thesis. For this

reason, we searched the literature for appropriate linearization methods that can be

applied to QCQ subproblems in LexECM. Related work is explained in Chapter 3.4

and the implementation is explained in the following section.

Assume that the number of non-dominated solutions of one specific BQKP is α then

the minimum number of single optimization problems CPLEX needs to solve to gen-

erate all non-dominated solutions is 2α. In addition, these 2α number of problems

required to be solved are quadratically constrained quadratic (QCQ) models. From

this, the computational challenge on finding the non-dominated solution set of the

BQKP can be inferred. Therefore, a linearization method is also applied to the lexi-

cographic ε-constraint code which will be explained in the next chapter.

4.2 Linearized LexECM

The LexECM code explained in the previous section is linearized with the method

described in Chapter 3.4. The algorithmic structure of LexECM, which incorporates

lexicographic ε-constraint method, is the same except the subproblem definitions (P1)

and (P2) in it.

We will state the linearized subproblems in the while loop. (P1) is in the form given
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below.

minimize g(s, x) = eT s−MeTx,

s.t. (−P )x− y − s+Me = 0,

(−wT )x ≥ −b,

y ≤ 2M(e− x),

Qx− z +M ′e ≥ 0,

eT z −M ′eTx ≥ ε1,

z ≤ 2M ′x,

x ∈ {0, 1}n,

yi, si, zi ≥ 0. (4.3)

Here, M ′ and M is defined as M ′ = maxi
∑n

j=1 | qij | and M = maxi
∑n

j=1 | pij |.

The second subproblem is named again as (P2) and is stated below.

minimize g(s, x) = eT s−M ′eTx,

s.t. (−Q)x− y − s+M ′e = 0,

(−wT )x ≥ −b,

y ≤ 2M ′(e− x),

Px− z +Me ≥ 0,

eT z −MeTx ≥ z∗1 ,

z ≤ 2Mx,

x ∈ {0, 1}n,

yi, si, zi ≥ 0. (4.4)

The problem of determining the ε values is addressed in the same way again. The

non-dominated z∗2 value found in the previous iteration is used as the right hand side

to the first model. This means searching for a smaller z1 value, which gives the next
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non-dominated solution.

4.3 Finding Supported Non-dominated Solutions

In this subsection, the aforesaid algorithm by Aneja and Nair will be explained in the

way we implemented it.

In our implementation, first (z11 , z
1
2) ideal and (z21 , z

2
2) nadir points are calculated with

weights (1, 0)T and (0, 1)T . If these points are equal, the algorithm stops with only one

non-dominated solution. If these points are not equal, they are recorded in a structure

array named list together which means that they constitute the first element of the

list as a pair.

Then, the iteration through the list starts. The size of list gets bigger dynamically

while the algorithm works. w
(1,2)
1 = |z12− z22 | and w

(1,2)
2 = |z11− z21 | are calculated from

the first pair of supported non-dominated solutions in the list. BQKP is optimized

by using the weights w1 and w2 in the weighted sum formulation for the first and the

second objective functions, respectively.

If a different solution other than the parents is found, then it is recorded with its

parents to the list. Here, two new elements are added to the structure array list, the

new solution with one parent and the other.

If the new solution found in some iteration is equal to one of its parents, then no

addition to the list is made. This procedure continues until all elements of the list is

checked.

Eventually, BQKP is optimized with all the different weights calculated from the pair

of solutions in the list. The distinct elements of the list gives the set of all supported

non-dominated solutions.

The algorithmic expression of this procedure is given in Algorithm 3.

It is known that Aneja and Nair’s algorithm may not find non-extreme supported

solutions unless (4.5) is solved for all alternative optimal solutions. In this work we

do not find alternative solutions of (4.5) and we may be missing non-extreme solutions.

Nonetheless, since these solutions are rare in random experiments we use the term
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Algorithm 3 A Special Weighted Sum Algorithm

Step 0: Calculate ideal and nadir points. Record these two solutions to the weight
array list if different from each other, else stop.

Step 1: Choose a pair of solutions (r, s) ∈ list. Calculate weights w
(r,s)
1 =| zs2 − zr2 |

and w
(r,s)
2 =| zs1 − zr1 |.

Solve the weighted problem

maximize w
(r,s)
1 z1(x) + w

(r,s)
2 z2(x)

subject to x ∈ X. (4.5)

Let x∗ be the optimal solution to the weighted problem.
Calculate z1(x

∗) and z2(x
∗).

If (z1(x
∗), z2(x

∗)) is not equal to an element in list record this pair
with its parents to the list.

Step 2: If list is not empty go to Step 1. If list is empty, stop.

supported solution here [81].

The properties of test problems, the results and comments on them will be included

in the next chapter.
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Chapter 5

RESULTS

In this chapter, implementation characteristics and results of the study will be

detailed. Summary tables of performance indicators such as the number of non-

dominated solutions, cpu times will be given. Illustrations and coverage errors will

also be included.

5.1 Implementation Characteristics

We will state the characteristics of randomly generated BQKP’s in this section.

Elements of quadratic matrices; pij and qij, and all of the coefficients; elements of

the constraint matrix wj, are randomly generated nonnegative integers in the interval

[1, 100] in this study. The righthand side of the knapsack constraint is equal to the

closest integer value of b =
∑n

j=1 wj

2
, which makes the knapsack constraint harder to

satisfy.

N is the number of variables and Pct is the percentage of the nonzero elements in

quadratic matrices. Pct takes the values 25, 50, 75 and 100 in random problems. For

each problem size N and Pct value, the percentage fullness of quadratic matrices,

thirty randomly generated problems are solved.

The LexECM code on CPLEX, which solves quadratically constrained quadratic sub-

models, does not perform well. Sizes of the problems solved with LexECM are small

because CPLEX can only handle up to 30 variables when the quadratic constraint

is involved. Therefore, only problems of N = 10, 15, 20 with four different Pct val-

ues and N = 25 with Pct = 25, 50 are solved with this code. The addition of the

quadratic constraint here significantly affects the difficulty of the problem and gives

rise to this situation. The cpu times are dramatically increased, therefore we stopped
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the tests for LexECM for more than N = 25 variables.

Larger problems are solved with the linearized LexECM code. These include problems

of size N = 50, 60, 70 with four different Pct values and N = 80 with Pct = 25, 50. It

is observed that the memory limit determined the size of the problems we have solved

in this category.

The number of supported non-dominated solutions of these set of bigger sized prob-

lems is also found with the special weighted sum algorithm explained in the previous

chapters.

All implementations of the LexECM, the linearized LexECM, the special weighted

sum algorithm and the linearization of it are done in C using CPLEX Callable Li-

brary version 12.3 [46]. All tests are completed under a 4.00 GB memory limit and

the time limit of queued jobs on the cluster we used for these implementations unless

stated otherwise.

CPLEX’s mixed integer quadratic problem (MIQP) solver is used in these applica-

tions. This routine is designed mainly to solve linearly constrained quadratic binary

problems where the quadratic matrix is PSD (NSD for maximization problems). Our

method of generating quadratic matrices does not guarantee these matrices to be

NSD. CPLEX converts these matrices into the required NSD form before starting the

MIQP solver.

The results of the tests are given in the next section.

5.2 Test Results and Comments

Performance indicators of the problems; the number of non-dominated, supported

and non supported non-dominated solutions, and cpu times will be reported in this

section. The analysis of these results will also be made.

The average, minimum, and maximum cpu times of the quadratically constrained

quadratic problems solved with the LexECM code are given in the summary Table

5.1 for N = 10, 15, 20 with four different Pct values and N = 25 with Pct = 25, 50.

The results are of 30 randomly generated problems for each problem type.
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According to the results in Table 5.1, minimum and maximum cpu times of the

Table 5.1: Cpu Times (secs) of Quadratic LexECM

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

10 59 12 133 44 8 88
15 66 8 177 104 6 890
20 979 113 2,863 2,936 36 34,721
25 40,853 572 383,998 374,280 401 6,609,925

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

10 33 9 95 456 2 59
15 126 2 912 137 2 411
20 4,180 22 46,257 26,135 49 250,116

same sized problems differ noticeably. However, this is not surprising since the test

problems are randomly generated. The maximum cpu time observed for the problem

set N = 25 and Pct = 50 is unreasonably high. Problems of larger sizes could not be

solved with quadratic LexECM because the time limit in the queue is reached on the

cluster which is used for the implementations. Also, it was irrational to wait for this

long solution times.

Table 5.2 shows the average, minimum and the maximum number of non-dominated

solutions of the same problems solved with the quadratic LexECM.

The fact that few number of non-dominated solutions is found for these problem sets

is noticed from Table 5.2. This can be expected since the problem sizes are small.

Moreover, it can be said that two objectives in these cases are not in highly conflicting

nature, and this could be an explanation of this situation. The minimum number of

non-dominated solutions is equal to one for ten of fourteen problem sets of different

types. This also indicates the nonconflicting nature of some of the randomly gener-

ated problems.

Problems with smaller Pct levels have more non-dominated solutions on average than

bigger size of problems with larger Pct levels. The percentage fullness values of the
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Table 5.2: # of Non-dominated Solutions of Quadratic LexECM

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

10 3.97 1 8 3.67 1 7
15 6.77 2 14 5.00 2 16
20 8.57 3 15 6.53 1 14
25 11.60 5 22 6.70 1 22

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

10 3.07 1 7 2.70 1 6
15 4.47 1 19 4.10 1 9
20 4.63 1 9 3.97 1 11

quadratic matrices may have an impact on the conflict characteristics of quadratic

objectives.

The summary in Table 5.3 shows the average, minimum and maximum cpu times for

randomly generated 30 problem sets of size N = 50, 60, 70 with four different Pct

values and N = 80 with Pct = 25, 50. These problems are solved with the linearized

version of the code LexECM. Problems with Pct = 75, 100 for N = 80 could not be

solved. The main reason for this is reaching the 4.00 GB memory limit of the queue.

If we interpret cpu times of the linearized LexECM, we observe that the average

solution times of larger problems are less than the cpu times of smaller problems

solved with quadratic version of LexECM. Moreover, none of the maximum solution

times of these problems is close to the solution time of the problem set of size N = 25,

Pct = 50. Therefore, we can conclude that the linearization we applied to the QCQ

submodels dramatically reduced the cpu times required to solve these problems. Also,

from our tests with the weighted sum algorithm, we can state that the elimination

of the quadratic constraint in the LexECM is the main reason behind this reduced

cpu times. Larger quadratic problems can be solved with the weighted sum algorithm

since a quadratic constraint is not involved as in the LexECM.

Another reason which affects cpu times is the number of non-dominated solutions.
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Table 5.3: Cpu Times (secs) of the Linearized LexECM

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 1,054 192 3,817 11,362 110 236,964
60 2,534 251 22,357 88,911 745 1,580,073
70 19,874 1,480 124,504 54,252 245 946,137
80 130,335 797 931,633 178,568 20 2,724,783

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 79,503 31 1,565,712 5,957 18 31,443
60 75,846 195 672,989 119,680 52 833,409
70 168,292 45 1,226,883 167,720 25 1,766,202

When the number of non-dominated solutions is large for the same sized problems,

cpu time required gets larger usually. This can easily be deducted since existence

of larger number of non-dominated solutions mean that the algorithm has to iterate

many times.

It is also evident that the difficulty of the specific random problem has an impact on

cpu times.

Figure 5.1 shows cpu time distributions of four biggest problem sets N = 70 with

Pct = 75, 100 and N = 80 with Pct = 25, 50. It can be observed that cpu times are

below 500, 000 for most of the random problems. Most probably structural properties

of these problems or queuing issues in the cluster cause these high outlier cpu times.

The number of random problems in different cpu time intervals for four biggest

problem sets N = 70 with Pct = 75, 100 and N = 80 with Pct = 25, 50 are given

in Figure 5.2. 40 random problems in 160 are solved in less than 5, 000 cpu seconds

and 11 of them required more than 500, 000 cpu seconds in the cluster.

The details on the number of non-dominated solutions; average, minimum, and

maximum, for the problems solved with the linearized LexECM are given in Table

5.4. The average number of non-dominated solutions gets bigger when the size N of

the problem gets larger. Moreover, for higher Pct values of same sized problems the
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Figure 5.1: Cpu time plots of N=70 with Pct=75,100 and N=80 with Pct=25,50
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Figure 5.2: Count of random problems in cpu time intervals

average number of non-dominated solutions is decreased.

The summary in Table 5.5 shows the average, minimum and maximum cpu times for

the same randomly generated 30 problem sets of size N = 50, 60 with four different

Pct values and N = 70 with Pct = 25, 50, 75. These problems are solved again with

the Special Weighted Sum Algorithm described in the previous chapters in order to

generate the supported non-dominated solution set of BQKP.

It should be clarified that test problems bigger than N = 70 and Pct = 75 could

not be solved with the Special Weighted Sum Algorithm since the memory limit on

the cluster is exceeded. The summary in Table 5.6 shows the average, minimum

and maximum cpu times for the same randomly generated 30 problem sets of size

N = 50, 60, 70 with four different Pct values and N = 80 with Pct = 25, 50. These

problems are solved with the linearized version of the Special Weighted Sum Algo-

rithm. Therefore, the cpu times of these instances are low compared to the quadratic

version of the algorithm.
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Table 5.4: # of Non-dominated Solutions of the Linearized LexECM

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 20.87 10 54 15.53 5 32
60 24.27 9 39 15.77 6 27
70 30.67 16 59 14.6 5 32
80 37.63 12 63 20.57 6 48

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 10.73 2 28 9.4 2 24
60 11.7 2 32 13.7 1 27
70 13.6 3 29 12.13 2 25

Table 5.5: Cpu Times (secs) of the Special Weighted Sum Algorithm

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 437 15 3,026 5,463 52 79,970
60 3,798 96 28,339 89,037 172 1,868,775
70 89,608 2,409 793,437 92,500 1,208 490,037

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 18,973 13 322,046 4,243 69 25,774
60 59,400 225 643,393 75,416 492 521,041
70 299,170 363 2,289,104 - - -

Solution times are strongly related to the number of iterations the algorithm incor-

porates until finding all solutions. Moreover, the minimum and the maximum cpu

times differ dramatically for all tests in general. Mainly, these random hard instances

prevented us from solving large instances. If a cpu time limit is incorporated then

bigger sized problems can be solved with these algorithms.

The average, minimum and maximum number of supported non-dominated solutions

found are given in Table 5.7. The average number of supported non-dominated solu-

tions is less than half of the average number of non-dominated solutions for all types
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Table 5.6: Cpu Times (secs) of the Linearized Special Weighted Sum Algorithm

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 39 3 276 440 5 8,714
60 126 7 758 2,229 3 43,389
70 1,176 52 8,731 1,807 20 16,801
80 6,535 97 48,549 25,095 11 288,172

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 2,821 1 67,803 672 1 5,131
60 1,163 4 13,207 3,351 7 30,351
70 8,481 35 77,095 13,802 18 157,065

of test problems. We examined how well these supported non-dominated solutions

represent the entire non-dominated set in the next section by using quality metrics

of representations.

Additional testing is done regarding the cpu times of the Linearized Special Weighted

Table 5.7: # of Supported Non-dominated Solutions

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 6.63 4 10 5.63 3 11
60 7.37 5 12 6.07 2 10
70 8.83 5 12 5.50 3 9
80 8.47 5 14 6.07 2 11

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 4.57 2 9 4.13 2 7
60 4.47 2 7 5.10 1 9
70 5.23 3 11 4.77 2 7

Sum Algorithm (WSA). We wanted to observe how the solution times will differ when

these problems are solved on a personal computer (PC) not on the cluster with pos-

sible queuing issues. The average, minimum and maximum cpu times for the same
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randomly generated 30 problem sets of size N = 50, 60 with four different Pct values

are showed in Table 5.8. Average solution times on the personal computer are less

than the average solution times on the cluster for all of the tested problem types.

Before, we had discussed the possibility of queueing issues on the cluster we worked

on. It can be said that these results justifies this discussion.

In quadratic problems the structure of quadratic matrices determines the charac-

Table 5.8: Cpu Times (secs) of the Linearized Special WSA - on PC

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 11 1 76 178 1 3,909
60 53 3 352 1,070 1 21,585

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 1,505 0 36,816 86 1 462
60 605 2 6,422 2,220 3 19,607

Table 5.9: Cpu Times (secs) of the Tri-diagonal Linearized LexECM - on PC

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 4 0.44 12.14 8 3.31 16.68
60 6 0.03 13.14 15 5.20 40.53
70 9 2.24 21.21 28 11.90 78.60
80 11 0.02 22.25 37 12.67 103.02

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 8 2.72 23.90 5 1.69 17.06
60 12 4.47 36.78 14 1.94 32.82
70 20 7.51 50.17 10 3.49 18.08

teristics of the problem. In order to observe this effect tri-diagonal symmetric random

matrices are generated. A tri − diagonal matrix has nonzero elements only on the
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Table 5.10: # of Non-dominated Solutions of the Tri-Diagonal Problems

N/Pct 25 50
Avr. Min. Max. Avr. Min. Max.

50 33 9 72 40 19 69
60 40 1 67 57 25 96
70 96 1 94 79 43 131
80 56 1 94 92 51 172

N/Pct 75 100
Avr. Min. Max. Avr. Min. Max.

50 32 14 68 17 7 35
60 37 17 80 24 9 46
70 50 26 83 25 9 40

main diagonal, the first diagonal below, and the first diagonal above the main diago-

nal.

Problems with these matrices are solved with the Linearized LexECM Algorithm on

the personal computer. The cpu time results are shown in Table 5.9. The solution

times are dramatically reduced. The structural matrices made BQKP easier to solve

compared with the nonstructural version.

The number of non-dominated solutions of these problem sets are showed in Table

5.10. BQKP with symmetric tri-diagonal quadratic matrices have higher number of

non-dominated solutions compared with the nonstructural matrices version. The rea-

son behind this may be the fact that the problem resembles the linear version more

with tri-diagonal matrices.

5.3 Coverage Error Calculations

We obtained the representation set for BQKP, which consists of all the supported

non-dominated solutions, with the special weighted sum algorithm. The analysis of

the quality of the representation set should be made. For this purpose, we calculated

coverage errors between these two sets; the entire non-dominated solution set and the

set of supported non-dominated solutions.
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The quality of the representation set can be measured in different ways. As proposed

in [91], three dimensions are needed to be checked when determining the quality

of the discrete representation of a set. These dimensions are coverage, uniformity

and cardinality. The coverage dimension controls whether or not, all of the elements

of the original set is well represented. The uniformity requires the elements of the

representation to be distributed uniformly, in the sense that the elements of the repre-

sentation does not form clusters. Lastly, the number of elements of the representation

set should be reasonable and this is expressed with the cardinality dimension.

Two different coverage error calculations from different papers are described in the

following. Actually, the insight behind these methods is close in a sense. The second

method is chosen to be applied to our problem.

First method is given in the paper cited above. Before we give the coverage error

definition in [91], we need some definitions. These two definitions are given below.

Definition 7. Let C > 0 be a real number. Let D ⊆ Z be a discrete set. D is called

a dC-representation of Z if for any z ∈ Z, there exists y ∈ D such that d(z, y) ≤ C.

Given a dC-representation D of a set Z, the coverage error is defined in [91] as

C = maxz∈Zminx∈Dd(z, x). (5.1)

In our case, the set Z is the non-dominated solutions set and the representation set

D is the set of all supported non-dominated solutions.

The coverage error is used to compare different representations, usually. The method

described above is more appropriate for such use. Therefore, another coverage error

calculation is applied in this thesis.

We incorporated two different coverage error calculations d1 and d2, and the ratio of

these values, all defined in [103]. The interpretation here is; the lower this ratio, the

higher the quality of the representation.

To be able to define d1(ZsE, ZE) and d2(ZsE, ZE), let ZE be the set of non-dominated

solutions and ZsE be the set of supported non-dominated solutions. Let x ∈ ZE and
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y ∈ ZsE. d(x, y) is defined as below.

d(x, y) =

p∑
i=1

wi|fi(x)− fi(y)| (5.2)

Here, wi is the weight related to criterion fi, and p is the number of criteria.

wi =
1

∆i

with ∆i = maxx∈ZE
fi(x)−minx∈ZE

fi(x) (5.3)

d′(ZsE, x) the distance between x ∈ ZE and the closest solution y ∈ ZsE is given as

such;

d′(ZsE, x) = miny∈ZsE
d(y, x). (5.4)

Finally, with the help of above definitions formulations of d1(ZsE, ZE) and d2(ZsE, ZE)

can be given.

d1(ZsE, ZE) =
1

|ZE|
∑
x∈ZE

d′(ZsE, x) (5.5)

d2(ZsE, ZE) = maxx∈ZE
d′(ZsE, x) (5.6)

d1(ZsE, ZE) represents the average distance between ZsE and ZE. d2(ZsE, ZE) repre-

sents the worst case distance between ZsE and E. Therefore, it is clear that lower the

ratio of d2(ZsE, ZE) and d1(ZsE, ZE) higher the quality of the representation set ZsE.

Ratio =
d2(ZsE, ZE)

d1(ZsE, ZE)
(5.7)

Table 5.11 shows d1, d2 and Ratio values for the supported efficient set and the entire

efficient set of our test problems. Averages of these three indicator values are close

for all problem types. d1 the average distance between the supported efficient set and

the efficient set and d2 the worst case distance between the supported efficient set
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Table 5.11: Coverage Results

N/Pct 25 50
d1 d2 Ratio d1 d2 Ratio

50 0.12 0.30 2.76 0.14 0.35 2.89
60 0.10 0.28 2.87 0.12 0.34 2.99
70 0.08 0.23 3.01 0.13 0.35 3.01
80 0.09 0.24 2.83 0.13 0.35 2.74

N/Pct 75 100
d1 d2 Ratio d1 d2 Ratio

50 0.11 0.31 2.61 0.13 0.37 2.69
60 0.17 0.42 2.80 0.14 0.38 2.94
70 0.12 0.32 2.72 0.17 0.43 2.81

and the efficient set, take highest average values 0.17 and 0.43, respectively, for the

random problem set of size N = 70 and percentage of fullness Pct = 100. d1 and d2

take the minimum average values 0.08 and 0.23, respectively, for the random problem

set of size N = 70 and percentage of fullness Pct = 25. However, when we consider

the ratio of d1 and d2 for these two problem sets, the one with the worst d1 and d2

values have the smallest coverage ratio value Ratio = 2.81 on average.

These three coverage indicator values d1, d2 and Ratio should be interpreted by

considering what features are expected primarily from the representation set. In this

case, d1 values are low which indicates that on average ZsE represents ZE well. On

the other hand, d2 values are not very low which may cause large errors.

5.4 Comparison of Non-dominated Sets

The number of non-dominated solutions in our calculations is small. There are two

probable reasons for this situation. The first reason is the fact that the size of the

random problems are not so big. Secondly, the nonconflicting nature of quadratic

objectives might cause this situation.

We tried to examine this outcome by enumerating all feasible solutions for small sized

bi-objective linear and quadratic knapsack problems. The illustration of these solu-
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Figure 5.3: Bi-objective Linear Knapsack Problem Pct=100

tions is observed to see how the feasible solutions are distributed in the solution space.

In this study, we are also interested in how the non-dominated set of our prob-

lem BQKP looks like. The insight behind the non-supported and supported non-

dominated solutions will be clarified by observing plots of the non-dominated set.

Therefore, we have included some illustrations of test problems in this section.

In order to see the difference between the appearance of the feasible solution sets of

the bi-objective linear and the quadratic knapsack problems, we enumerate and plot

the feasible solutions of these problems in the MATLAB environment. The distri-

bution of the feasible solutions in the solution space can be observed by these plots.

Moreover, comparison between the plots of bi-objective linear and quadratic knapsack

problems can be made.

The feasible solution set of a bi-objective linear knapsack problem with N = 10 and

Pct = 100 can be seen in Figure 5.3.

The distribution of the feasible solution set of the same bi-objective linear knap-

sack problem with N = 10 and decreased percentage of fullness values Pct = 50 and
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Figure 5.4: Bi-objective Linear Knapsack Problem Pct=50

Figure 5.5: Bi-objective Linear Knapsack Problem Pct=25
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Figure 5.6: BQKP Pct=100

Pct = 25 are given in Figure 5.4 and Figure 5.5, respectively. From these figures,

we can observe that the feasible solution set expands when the percentage of fullness

is decreased.

BQKP’s with N = 10 and percentage fullness of Pct = 100, Pct = 50 and Pct = 25

are illustrated in Figures 5.6, 5.7 and 5.8, respectively. It should be noted that

these BQKP’s have the same knapsack constraint as the bi-objective linear knapsack

problems included above.

Comparing with the linear form of the problem for the same Pct values, the feasible

solution set and the non-dominated frontier of the quadratic version are more com-

pact. It can also be seen from these figures that the feasible solution set expands when

the percentage of fullness is decreased, which means that the problem approaches the

linear form.

The plots of the non-dominated sets of our test problems will be given here. The non-

dominated set of the random BQKP with N = 80 and percentage fullness of Pct = 50
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Figure 5.7: BQKP Pct=50

Figure 5.8: BQKP Pct=25
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Figure 5.9: Non-dominated Set of N=80, Pct=50

can be observed in Figure 5.9. The rings represent the supported non-dominated so-

lutions and the crosses represent the non-supported non-dominated solutions. This

problem has a total number of 33 non-dominated solutions and 8 of them belong to

the supported non-dominated set.

The non-supported non-dominated solutions cannot be found with linear weights.

This characteristic of non-supported solutions can be realized from Figure 5.9. The

ideal and the nadir solution pairs are the ones at the bottom and the top of the

plot. The coverage values for this random problem are d1 = 0.09, d2 = 0.2 and

Ratio = 2.39. As we have pointed out before, d1 and d2 represent the average and

the worst case distances between the supported non-dominated set and the entire

non-dominated set, respectively.

Figure 5.10 shows the non-dominated set of the random BQKP of size N = 80

and percentage fullness of Pct = 25. This problem has a total number of 48 non-

dominated solutions and 9 of them are supported non-dominated solutions. The

coverage values for this random problem are d1 = 0.09, d2 = 0.26 and Ratio = 2.89.
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Figure 5.10: Non-dominated Set of N=80, Pct=25

It can be observed that non-supported solutions are heaped up in some parts of the

non-dominated frontier.

The last non-dominated frontier illustration we will include again belongs to a ran-

dom BQKP of size N = 80 and percentage fullness of Pct = 50. This problem has a

total number of 15 non-dominated solutions and only 3 of them are supported non-

dominated solutions. The coverage values for this random problem are d1 = 0.23,

d2 = 0.58 and Ratio = 2.51.

According to these last three plots, the first example’s non-dominated frontier can

be best represented with the supported non-dominated set since the coverage ratio

is the minimum for this problem. d2, the worst case distance between the supported

non-dominated set and the entire non-dominated set is the maximum for the last

problem. The fewer number of supported non-dominated solutions might cause this

situation.
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Figure 5.11: Non-dominated Set of N=80, Pct=50
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Chapter 6

CONCLUSIONS

Bi-objective quadratic knapsack problem is studied in this thesis. The entire

non-dominated solution set and the supported non-dominated solutions are found by

incorporating different exact solution methods in the literature. Results and cover-

age errors of random problems are reported and some illustrations are given on the

subject.

BQKP is a challenging problem to solve in general. It requires a considerable effort

and time when trying to solve the problem with the commercial solver CPLEX. More-

over, large sized instances can not be solved. We will state some research areas that

can be improved or developed concerning BQKP in this section.

Further research improvements on this topic may include studies on solving large in-

stances of BQKP in a more efficient way with less solution times. In order to solve

large sized instances of BQKP, we proposed two methods in the following paragraphs.

Exact solution methods are used in this thesis. Approximations or heuristics specif-

ically designed for BQKP may be developed for further research. Since BQKP is a

computationally challenging problem despite its simple structure, studying on devel-

oping approximations or heuristics for BQKP is reasonable.

More can be done on the exact solution methods side. Developing a specific and effi-

cient algorithm to solve BQKP could be the next step on this study. Some structural

properties of BQKP and the characteristics of the random problems generated can be

used in this algorithm. In this manner, BQKP can be solved in a more effective way.

Another idea which can be implemented to widen the discussions on this thesis may

be the comparison with the literature. Some known random test problems given in

the literature can be solved and thus the performance of the algorithms in this thesis
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can be reported and compared.

Moreover, multi-objective versions of QKP with three or more objective functions

can be addressed in detail as further research. Again, specifically designed exact al-

gorithms for this problem can be proposed or approximations can be generated.

In conclusion, BQKP is a significant problem in the multi-objective literature. Its

core problems KP and QKP are well studied in their fields. These problems will

continue to appeal to researchers in the optimization discussions for the forthcoming

years.
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