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ABSTRACT

In this thesis, we design a supply chain network for blood bank distribution by integrating

strategic, tactical and operational decisions. These decisions are usually studied separately

in classical literature. However, we formulated a mixed integer nonlinear programming

(MINLP) model to combine three decisions to minimize total system cost. In blood dis-

tribution network of Istanbul, hospitals keep their own inventory and procure bloods from

main blood banks via weekly shipments. In the proposed model, some of the hospitals are

selected as local blood banks (LBBs) and serve the hospitals which are assigned to them.

Thus, our MINLP model solves a complex problem which aims to find optimal number

and location of LBBs, assignment of hospitals to opened LBBs and the weekly and daily

routes from the main blood bank to LBBs and from LBBs to hospitals. We use exact and

approximate solution methods to solve this NP-hard problem. Firstly, small sized instances

are solved by using commercial solvers. However, for mid and large sized problems, exact

solution failed to find solutions in polynomial time due to increasing complexity. Therefore,

we propose a tabu search based heuristic approach to find optimal and near optimal solu-

tions. The performance of the solution methods are analyzed by comparing with each other

and the current system costs on 65 test instances.
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ÖZETÇE

Bu tezde, kan bankası dağıtımı için stratejik, taktik ve operasyonel kararlar entegre edil-

erek bir tedarik zinciri şebeke tasarımı yapılmıştır. Bu kararlar, klasik literatürde genellikle

birbirinden bağımsız olarak çalışılmaktadır. Ancak, burada kurgulanan karışık tamsayılı

doğrusal olmayan programlama (KTDOP) modelinde toplam maliyetin enküçüklenmesi

için üç karar birleştirilmiştir. İstanbul’daki kan dağıtım şebekesinde, her hastane kendi

envanterini tutmakta ve haftalık sevkiyatlar ile ana kan bankasından kan tedarik etmek-

tedir. Önerilen modelde ise hastanelerin bazıları yerel kan bankası seçilerek, kendilerine

atanacak olan hastanelere hizmet edecektir. Bunun için, önerilen KTDOP modeli optimum

yerel kan bankası sayısı ve lokasyonu, hastanelerin hangi yerel kan bankalarına atanacağı ve

ana kan bankasından yerel kan bankasına, yerel kan bankasından hastanelere yapılacak

günlük ve haftalık sevkiyat rotalarnn belirlenmesi gibi karmaşık bir problemi çözmeye

çalışmaktadır. Bu NP-zor problemin çözülmesi için tam ve yaklaşık çözüm metotlar kul-

lanılmıştır. Öncelikle, küçük boyutlu problemler ticari çözücüler kullanlarak çözülmüştür.

Ancak, orta ve büyük boyutlu problemlerde artan karmaşıklık ile birlikte, tam çözümlü

metotlar polinom zamanda sonuç bulmakta başarısız olmuştur. Bu nedenle, en iyi ya da

en iyiye yakın çözümler bulunması için sezgisel çözüm yaklaşmlarından benzetilmiş tavlama

metodu uygulanması önerilmektedir. Çözüm metotlarının performansları 65 test problemi

kullanılarak, birbirleri ve mevcut model maliyetleri ile kıyaslanarak analiz edilmiştir.
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all the good times that we had during two years. A special thanks to Yahya Yavuz not only

for his valuable friendship and good personality, but also for his patience and support.
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Chapter 1

INTRODUCTION

In today’s competitive business environment, public and private sector companies have

to pay attention to their organizations related with the entire supply chain decisions to in-

crease their efficiency and effectiveness. Hence, managing supply chain and network design

decisions have become a major challenge for these firms as they try to reduce their costs and

improve their service level. The main decisions of a typical supply chain, are to determine

the number, location, and size of the facilities, how to procure items from suppliers and how

to distribute them from suppliers to demand points. Consequently, to have an improved

system, effective supply chain strategies should include different level of decisions and use

an integrated approach.

The supply chain, which is also called as the logistics network, traditionally has three

decision levels according to their planning horizon. These are strategic, tactical and oper-

ational level decisions. Strategic decisions include logistic network design, facility location,

capacity sizing, warehouse layout and fleets sizing that have long-lasting effects. Strategic

decisions usually use aggregated data that are based on forecasting. Tactical decisions deal

with moderate capital investments, also production and distribution planning and resource

allocation which are made on an annual, semi-annual or seasonal time basis. These decisions

are based on forecasted disaggregated data. Operational decisions include day to day oper-

ations or in real time and have a narrow scope such as daily shipments, vehicle dispatching

or order picking. These are the low cost operations and are based on very detailed data.

In our study, we aim to integrate the different level decisions to design a blood bank

network of a blood distribution system by considering facility location, inventory decisions

and vehicle routing aspect. We realized that design and analysis of blood bank networks
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from an integrated supply chain network optimization perspective is missing in literature.

The motivation of this thesis comes from the importance of blood banks and blood dis-

tribution system. Blood banks are the vital part of the health service systems. Therefore,

the applications of blood banks have significant effect on the success of medical treatment

procedures. Main functions of a blood bank are blood procurement, cross-matching, stor-

age, distribution, quality control and outdating. Moreover, blood banks are responsible for

normal and emergency case blood demand fulfillment of their regions that include hospitals

and clinics.

Human blood is the only material that can be used in medical treatments which is vol-

untarily supplied from people (donors). Hence, blood is a scarce resource that needs special

attention. There are 8 different blood types whose frequency changes with respect to pop-

ulation and regional differences. The blood is composed of more than 4000 different kinds

of components. Red cells, white cells, platelets and plasma are the most important ones.

These components are derived from the main blood after relevant processing.

Our main focus is the red blood cells which are the perishable and expensive blood

type. Its lifespan is around 20-30 days. When they are not used within that time, they are

considered as outdated and must be destroyed. They are given to patients who suffer from

blood loss. The demand for this blood type is highly variable since it is needed in several

medical situations. This leads hospitals to face overstock or stockout problems. When they

order more than their need, they destroy many units of this expensive blood product. On

the contrary, they demand emergency shipments from blood banks which bring significant

costs to the system. Hence, a better distribution network for blood banks is needed.

In Turkey, blood services were initiated by Turkish Red Crescent (TRC) in 1950s. TRC

operates more than 60 blood centers and many blood stations spread out over the country.

They also collect blood using mobile units. Blood is processed at the blood banks or at

donation centers. Then blood banks supply hospitals within their regional area. Hospitals

demand blood using fax or telephone. Blood bank sends several vehicles which have dif-
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ferent routes and fulfill the demand of the hospitals. In the current system, hospitals keep

their own inventory that leads to overstock and stockout risks mentioned above. Further-

more, managing inventory and maintaining high service level is a problem for the entire

system. Thus, we suggest localization of blood banks to increase efficiency, and benefit

from risk pooling advantages. In the proposed distribution network, some of the hospi-

tals will be selected as local blood bank (LBB) to monitor and serve the nearby hospitals.

The daily demand of hospitals will be consolidated and satisfied by these local centers via

daily shipments. The main blood bank will supply local blood banks via weekly shipments.

Therefore, there will be two different vehicle types and the routing problem of daily and

weekly shipments.

The framework of the blood bank distribution system is also applicable, with some

modifications, to the optimization of other supply chain network problems. Hospitals can

be seen as retailers, local blood banks as distribution centers and main blood bank as a

supplier. Then, our problem turns to a SCNDP with a goal to find the optimal number

and locations of distribution centers, assignment of retailers to the open DCs and inventory

levels of a perishable product that will be kept at the open DCs. Moreover, optimal routes

of the weekly vehicles that supply the DCs and the daily vehicles that supply the retailers

are found.

In conclusion, this study introduces a model for the general supply chain network de-

sign problem(SCNDP). In this model, we formulate a mixed integer nonlinear programming

problem (MINLP) to combine the strategic, tactical and operation level decisions for find-

ing an optimal network design. Our strategic decision is to find the optimal number and

location of distribution centers (DCs). In tactical level, assignment of the retailers to DCs

and inventory levels in the DCs is studied. Finally, daily and weekly transportation route

decisions are made at the operational level. The problem can be solved optimally for small

sized instances by using GAMS’s Boron and Cplex solver. However, the complex nature of

the problem makes it impossible to solve medium and large sized instances. Therefore, we

applied heuristic methods to solve these instances.
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The thesis includes six chapters. The relevant literature review for supply chain network

design problems are studied in Chapter 2. Chapter 3 introduces the current distribution

system and proposed mathematical model and assumptions of the mixed integer nonlinear

programming (MINLP) formulations in detail. We also give some insights on computational

complexity. Following this chapter, Chapter 4, we described our solution methodologies.

We try to find exact and approximate solutions to small size instances of our problem.

In addition, lower bounds are found by using piecewise linear approximation techniques.

Furhermore, we develop heuristic algorithms to solve the medium and large sized instances

of the problem. In Chapter 5, we present details about data generation and discuss the

result of computational studies. Finally, in Chapter 6, we summarize our study and provide

some future research directions.



Chapter 2: Literature Review 5

Chapter 2

LITERATURE REVIEW

Supply chain network design problems have been widely studied in different sub-problems

such as facility location, location allocation, inventory decisions, vehicle routing and schedul-

ing. All of these problems are the parts of a general problem with the objective to find the

best possible solution to maintain the flow of goods/materials from suppliers to demand

points by deciding the network structure while minimizing overall system costs.

SCNDP deals with strategic decisions like opening a facility or a distribution center

which influence tactical and operational decisions since the opened facility will affect the

inventory levels and distribution quantities. Therefore, a lot of integrated decisions are in-

volved in these problems. However, in the literature only a part of these problems related to

the complex network problem are modeled by using simplifying assumptions. For instance,

the vehicle routing problem (VRP) which considers only the routing part or Facility Loca-

tion Problems (FLPs) have been extensively studied. There is also integration of two sub

problems such as the inventory-location model, the inventory routing problems (IRP) and

the location routing Problem (LRP) in literature. But the most suitable problem type with

our model is LRP which is the problem of finding the optimal number of depots and vehicles

by determining the optimal routes from depots to customers while minimizing overall costs.

In this chapter, the relevant literature is discussed in three main sections. In first section,

inventory-location models are reviewed. In section two, inventory routing problems are dis-

cussed. In the last section, we explored LRPs which are the most relevant problems to our

model.

2.1 Inventory-Location Models

Location literature has mostly ignored the inventory related costs and has focused on finding

the optimal number of facilities, their positions and assignment to these facilities. On the
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other hand, inventory models focus on finding optimal replenishment strategies and safety

stock decisions by assuming that the number and location of the facilities are known. The

early studies that combine these two decisions are defined by Barahona and Jensen[1], and

Erlebacher and Meller[2].

Barahona and Jensen[1] proposed an integer programming model for plant location with

inventory costs. They used the Dantzig-Wolfe decomposition to solve linear programming

relaxation. They were able to derive integer solutions from fractional solutions within 4

percent optimality.

Erlebacher and Meller[2] present a location-inventory model which is a mixed integer

non-linear model. They proposed heuristics to solve the problem since it is NP-hard. The

well-known Frito-Lay Inc.’s modified data are used in numerical example part of the study.

According to computational results, heuristics performed good solutions in the existence of

the demand variation and the spatial dispersion.

Shen, Coullard and Daskin [3],[4] contributed to the inventory-location literature by

adding working inventory and safety stock costs to distribution center location models. In

[3], they present a non-linear mixed integer problem and solved it by using Lagrangian

relaxation algorithm. Moreover, a number of improvement heuristics were outlined for

the problem. Computational results indicated that the Langrangian relaxation algorithm

produced a better solution than set partitioning and column generation method for this

problem. In [4], they converted the same model to a set covering integer-programming

model. They solve the new model via the column generation method.

Miranda and Garrido[5] have proposed a simultaneous approach to incorporate economic

order quantity (EOQ) and safety stock decisions with facility location models. A non lin-

ear mixed integer programming model was developed considering stochastic demand, also

risk pooling. They solved the model using a heuristic solution approach that is based on

Lagrangian relaxation and a sub-gradient method. According to computational results,

they stated that reduction in total cost is higher when holding cost, ordering cost, lead

time/service level increases.
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A recent study was done by Sourirajan, Ozsen and Uzsoy [6]. The difference in their

model from others is the ability to capture the tradeoff between risk-pooling and lead times.

They introduce a model for a single product distribution network problem and solved it by

using a lagrangian heuristic. They obtained near optimal solutions. Romeijn, Shu and Teo

[7] have studied a multi-echelon supply chain distribution network design problem with a

single product that was distributed from a single supplier to multiple DCs and from DCs to

retailers. They formulated a set covering model under a single sourcing policy to solve the

problem. They solved the model via column generation method for practical size problems

and obtained solutions effectively in a reasonable time.

2.2 Inventory Routing Problems

The inventory routing problem (IRP) is the integration of the inventory control decisions

and vehicle routing into a cost efficient distribution system. This problem can be seen as

an extension of VRP. Due to the NP-hardness of the VRP problem, most of the papers in

this field have practical heuristic solutions even though some theoretical solutions exist.

One of the earliest studies came from Federgruen and Zipkin [8]. In their problem,

integration of inventory allocation and routing were provided by a single product, single

period problem with random demand in retailers. They designed a non linear mixed integer

programming model and solved it by a generalized Bender’s decomposition approach.

Another early study was conducted by Chien, Balakrishnan and Wong [9]. They mod-

eled a mixed integer program to integrate inventory allocation and vehicle routing. In their

problem the central depot has a supply capacity and demand need not be satisfied in each

customer. Therefore, they added a penalty cost to their formulation. The solution proce-

dure consists of a Lagrangian method that gave upper and lower bounds. They produced

good solutions with a small gap between upper and lower bounds using heuristics.

Anily and Federgruen [10] researched a problem with a depot and multiple retailers

which faced deterministic constant demands. They assumed demand at each retailer is the
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same. Inventory was held in retailers not in the depot. They aimed to find inventory rules

and routing patterns that minimize the inventory and routing costs in the long run. They

presented a two stage heuristic. In first stage they found a lower bound by partitioning the

demand points into groups. In second stage these groups combined into larger families of de-

mand groups. Then, efficient routing patterns were constructed using regional partitioning

heuristics within larger families. Finally, they showed that their heuristic is asymptotically

optimal under mild probabilistic assumptions.

Viswanathan and Mathur [11] worked a different and extended version of [10]. They

deal with multiple products and periods of their problem. A new heuristic was developed to

solve the multi product version by generating nested joint replenishment policies. Moreover,

computational studies showed that their heuristics worked well with a single product case.

Lee, Bozer and White [12] studied a class of IRP that has multiple suppliers and an

assembly plant in an automotive part supply chain. They dealt with a finite horizon, multi

supplier, multi period single assembly plant network problem. The objective was to min-

imize inventory and routing costs over the planning horizon. They formulated a mixed

integer programming model and decomposed the problem into two, vehicle routing and in-

ventory control. First they used a simulated annealing heuristic to generate and evaluate

vehicle routes. Then, a linear program calculated the optimum inventory levels for a given

set of vehicle routes. They stated that the optimal solution was mainly dominated by the

transportation cost regardless of the unit inventory carrying cost.

IRPs arise in many industries and have attracted many researchers. One of these in-

dustries was the gas companies which were studied by Campbell and Savelsbergh [13]. In

this study, they developed a model by using a vendor managed resupply policies and the

stockout of customers were not allowed. They developed a two phase solution approach.

First, a delivery schedule is created by using integer programming. In phase two, delivery

routes are constructed by using routing and scheduling heuristics. Computational results

indicated that this procedure is effective while solving real life large scale instances.
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In a recent study, Zhao, Wang and Lai [14] studied integration of inventory control and

vehicle routing schedules. In this problem, a single warehouse serves retailers which are

geographically dispersed and retailers face a deterministic, customer specific demand rate.

The objective was determining inventory policies and routing strategies for the distribution

systems. A fixed partitioning policy was proposed for this problem by using the power of

two (POT) principle to warehouse and retailer replenishment intervals. They developed

a tabu search algorithm to find the optimal retailer partitioning region. Computational

results showed the robustness and effectiveness of the algorithm.

Li, Chu and Chen [15] researched a slightly different problem than others by using three-

level distribution systems with a vendor, a warehouse and multiple retailers. Inventories are

kept in the warehouse and retailers. The demand is replenished directly from the vendor

or through the warehouse. They proposed a decomposition solution approach based on the

fixed partition policy (FPP). Given fixed partitioning, the problem decomposed into three

problems. They developed efficient algorithms for the sub problems. A genetic algorithm

was proposed and found near optimal fixed partitions for the problem.

Readers can find a detailed review of IRP in Moin and Salhi [16].

2.3 Location Routing Problems

LRP is the combination of VRP and LAP and interdependence between these two prob-

lems was not recognized until the 1970s [17]. In LAP, the objective is to find the optimal

number of depots and their locations from given potential sites and allocate customers to

these opened facilities while minimizing opening depot costs and assignments costs of cus-

tomers. In VRP, the objective is to find optimal delivery routes with a given depot to its

assigned customers. Various exact and heuristic solutions approaches have been developed

as solution methods for LRP. The most common solution techniques used in the literature

are heuristics since solving LRP is NP-hard.

Or and Pierskalla [18], Jacobsen and Madsen [19], Madsen [20], Perl and Daskin [17],

Balakrishnan, Ward and Wong [21] are the earliest studies in this field. In [18], they deal
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with the transportation of blood from regional blood banks to hospitals. In this problem,

they need to decide how many blood banks to set up, where to locate them and how to

allocate hospitals to regional blood banks, also how to route periodic supply operations.

They presented algorithms to solve these problems while minimizing total transportation

costs and system costs.

Jacobsen and Madsen [19], designed a newspaper distribution system by considering

three main decisions, number of distribution points (depots), design of tours from supplier

to depots and routes from depots to retailers. They proposed three different procedures and

gave a comparison between them by using exactly same cost calculation in three heuristics.

Madsen [20] gave a survey of solving combined location routing models. Three new heuris-

tics are developed, implemented and compared with the same distribution problem in [19].

Computational results showed that an alternate location-allocation-savings procedure and

a saving-drop procedure is promising.

Perl and Daskin [17] dealt with a warehouse location routing problem (WLRP) which

is not studied in literature widely. They proposed a mixed integer linear programming

formulation to solve this WLRP. The objective of their model is to minimize the sum of

fixed warehousing cost, trunking cost, variable warehousing and delivery cost. They can-

not solve the WLRP directly with current known techniques since problem is large and

complex. They proposed a heuristic method for solving WLRP with decomposition of the

problem into three sub-problems which are multi depot vehicle dispatch problem (MD-

VDP), warehouse location-allocation problem(WLAP), and multi-depot routing allocation

problem (MDRAP). The heuristic solved these sub-problems sequentially either optimally

or heuristically. Computational results showed that proposed heuristic can generate good

solutions to WLRP.

Balakrishnan, Ward and Wong [21] discussed various modeling approaches for location

routing problems that includes mathematical programming formulations, approximations

and modified models. They presented advantages and disadvantages of these approaches

and gave directions for future research.
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Hansen et al. [22] modeled a different version of the integer linear programming formu-

lation of Perl and Daskin [17] to provide a better formulation a new set of flow variables and

flow constraints. They used this model to help a company which tries to choose location

of a plant to start a new production. Their model is used as a long term strategic decision

tool. Moreover, their heuristic improved solutions to benchmark problem.

Sirivastava and Benton [23] studied another aspect of location-routing heuristics. They

investigated impact of environmental factors that affect distribution system design. Savings-

drop heuristics, savings-add heuristic and cluster-route procedure methods are used to see

the effects of these environmental factors. Their research showed that performance of al-

ternative location routing heuristics was affected by key environment factors. Therefore,

implementation and use of solution procedures should be based on systems environment.

Siribastava [24] developed three new location-routing model and compared with [23] by

using the same heuristic methods. Results of this study indicated that new models were

superior to existing models.

Chien [25] proposed an approximate approach for LRPs that used sequential procedures

that incorporated two robust route length estimators. Procedure firstly generated and im-

proved the location-allocation. Secondly, minimum cost routes are designed depending on

the location-allocation results. They evaluated three heuristics to provide approximate so-

lutions to problem. Computational study showed that sequential procedure could produce

good solutions to practical sized problems when capacities were not restrictive.

Nagy and Salhi [26],[27] proposed a different method called ”Nested”. In this nested

method unlike iterative and sequential approaches, they treat routing as a sub-problem of

a main location problem. This technique used ideas from computational geometry to define

the concept of proximity. Furthermore a tabu search was used to improve the solutions of

current method. They obtained encouraging results with less computational effort.

Salhi and Fraser [28] proposed an iterative method that alternates between location
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phase and routing phase until a suitable stopping condition is met. In their study the

vehicles in LRP have the different capacities which was unique at that time, however the

number of vehicles for each type was unlimited that is typically assumed in literature. In

their heuristic, firstly number of depots and their locations are found. Secondly, vehicle

fleet combinations are decided and then vehicle routes are determined. They compared

their solutions with the sequential method. All of the cases showed that their solutions

were not worse than the sequential method.

Tuzun and Burkle [29] presented a new approach for LRP. They used a tabu search which

is one of the meta heuristic methods, to find solutions for LRP. In their tabu search method,

they used two-phase approach, route-first and location-allocation second. This architecture

allowed them to search the solution space efficiently without using too much time. To our

best knowledge this study was the first one that compares two different LRP heuristics. The

results of the comparative study showed that tabu search heuristics perfomed significantly

better than other heuristic and also consumed less computational time.

Wu, Low, Bai [30] presented another meta-heuristic method to solve a multi-depot

location-routing problem (MDLRP). They divided the original problem into two sub-problems

and solved sequentially by using a simulated annealing algorithm (SA). In first phase, LAP

is solved. Then, VRP is solved in the second phase. The results showed that their method

gave good quality solutions in a short time.

Ambrossino and Scutella [31] researched a complex distribution network design problem

with facility location, warehousing, transportation and inventory decisions. They proposed

two different mathematical models for several realistic scenarios. Some formulations extend

the models proposed in [17] and other formulations were based on flow variables and con-

straints. The computational results showed that optimal solution was found only in one

instance, other best solutions were not good and far from lower bound.

Beside the heuristics methods, some exact methods were also used to solve LRPs in

literature. Most of the contribution in this field comes from Laporte’s research. Laporte
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and Nobert [32] used an exact method for the problem of locating a single depot considering

several potential points while minimizing sum of depot operation costs and routing costs.

They proposed an integer linear program for the problem and used a constraint relaxation

technique to solve it. Integrality is achieved by branch and bound. Moreover, Laporte et al.

[33], [34] studied the same problem with the uncapacitated and capacitated multi-facility

LRP by using a similar approach as in [32]. In [34], they managed to solve the problems

optimally up to 20 sites within a reasonable number of iterations.

In another study that was perfomed by Laporte et al. [35], a transformation was given

from the MDVRP and LRP to an equivalent constraint assignment problem. They solved

it by using a branch and bound method up to 80 nodes within a reasonable time.

Laporte and Dejax [36] developed two solution approaches to dynamic location-routing

problems. The first one is an exact method for the small-size problems. In this method,

problem was represented by a suitable network and solved to optimally by using an integer

linear programming model. In the second approach, they determined a shortest path on a

directed graph and obtained a global solution by approximating some of the system costs.

In a recent work [37], Akca et al. proposed a branch and price algorithm based on a

set-partitioning formulation of the LRP. They investigated different pricing algorithms to

increase the speed of the pricing sub-problems’ solutions. They also described a heuristic

algorithm for the LRP based on their exact solution algorithm. The computational results

indicated that the branch and price algorithm can solve optimally instances up to 40 cus-

tomers and 5 depots.

Belenguer et al. [38] developed a branch and cut algorithm for solving LRP with ca-

pacity constraints on depots and vehicles. This method based on an integer formulation

using only binary variables and different families of valid inequalities such as depot capacity

constraints, path constraints, co-circuit constraints, and inequalities derived from CVRP.

They solved to optimality all instances considered by [37] involving up to 40 costumers and

5 depots and three instances with 50 customers.
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In summary, our study differs from the literature by combining three decision levels in a

complex supply chain network. The strategic location decisions, tactical inventory decisions

and operational weekly and daily routing decisions are integrated with our proposed model.

Furthermore, we use all demand points as potential location zones whereas in classical

literature, potential location zones are limited with several points or nodes which makes the

problem easier in those cases.
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Chapter 3

MODEL FORMULATION

3.1 Problem Definition

In classical SCNDPs, there are three layers: suppliers, distribution centers and demand

points. Suppliers send their products to DCs and DCs fulfill the demand of the customers.

A pre-determined level of inventory is kept at a DC to maintain a desired customer service

level. In our blood bank network design problem, we receive inspiration from the classical

SCNDP with some modifications. Our suppliers are the main blood banks, which supplies

blood to local blood banks (DCs) and LBB serve hospitals (demand points) on daily basis

shipments. There are weekly shipments between main blood bank and local blood banks.

A weekly vehicle distributes demand of LBB according to its route.

Figure 3.1: Present Distribution Network Model



Chapter 3: Model Formulation 16

Present blood distribution network in Istanbul (Figure 3.1) shows that hospitals keep

their own inventory and receive shipments directly from main blood bank in weekly basis.

There are several regions that a distribution vehicle supplies the demand of hospitals within

regions. Our new model aims to change the current system by adding a new layer (local

blood banks) and using the advantage of risk pooling effects. Furthermore, routing of weekly

and daily shipments between layers is considered.

Figure 3.2: New Distribution Network Model

In our proposed model, locations of hospitals and main blood bank are known and we

firstly, try to find the hospitals that will become a local blood bank and serve the nearby

hospitals. The cost of turning a hospital to local blood bank is included as a fixed annual

cost and it covers building a new storage area (warehouse) which will be sufficient to cover

demand of nearby hospitals as well as the safety stock. Other relevant costs such as the

construction costs, new equipments costs, land costs and daily shipment vehicle costs are
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also included within this fixed location cost. We also have another cost item related with

LBBs, which is variable cost. Variable cost is directly proportional with the amount of

blood that passes through the LBBs and aims to cover the cost of employees that work in

LBBs such as nurses, officers, drivers, etc.

The main purpose of turning a hospital to a LBB is to use the risk pooling advantages

which is proven by Eppen [39]. In Eppen’s work, he compares the decentralized and cen-

tralized policy for retailer supply management. The only costs considered in his model is

one period holding and penalty costs. He uses the assumption that customer demands are

normally distributed with a mean µi and standard deviation σi for retailer i. Also, assuming

that correlation coefficient of demands at retailer i and j is ρij , then expected cost under

decentralized mode for a single period model with N retailers is:

K
N∑
i=1

σi (3.1)

On the other hand, expected total system cost under the centralized model is:

K

√√√√ N∑
i=1

σ2
i +

N−1∑
i=1

N∑
j=i+1

σiσjρij (3.2)

where K is a constant depending on holding and penalty costs and standard normal loss

function.

Thus, if the demands of the N retailers are independent, ρij = 0 and optimal costs become:

K

√√√√ N∑
i=1

σ2
i (3.3)

which is less than 3.1

Eppen’s result shows us that cost savings can be achieved by consolidation of hospital

demands in a LBB under mentioned assumptions.

In our model setting, after deciding the LBBs, we try to assign hospitals to LBBs which

directly affect the inventory levels at LBBs and distribution costs of the entire system. Hos-

pitals are not keeping their own inventory and their demands are fulfilled by daily shipments
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from LBBs. Inventory holding costs at LBBs consist of cycle stock level and safety stock

levels.

In classical network design problems, for simplicity, shipments between DCs and re-

tailers are assumed as direct shipments. However, our model captures these shipments by

routing. A daily shipment vehicle travels through assigned hospitals of a LBB and returns

back to LBB after satisfying their demands. Our assumption is that the daily vehicle has

the capacity to fulfill all hospitals demand in its route on a single shipment. In addition

to daily shipments, our model considers weekly shipments between the main supplier and

LBBs. The weekly replenishment vehicle is dispatched from the main supplier and satisfies

the demand of the LBBs on its route. Therefore, we try to find daily and weekly shipment

routes.

As mentioned throughout this section, proposed model’s main advantage comes from

the holding inventory costs by centralizing the safety stock locations. However, emerging

daily routes which occur between newly located LBBs and the hospitals which are assigned

to them increases the system costs. Therefore, there is a tradeoff between inventory holding

costs and daily routing costs.

In conclusion, our problem finds answers to make the following decisions:

• Which hospitals should be selected as LBB,

• How to allocate hospitals to LBB,

• Vehicle routes of daily shipments from LBB to hospitals,

• Vehicle routes of weekly shipments from the main blood bank to LBBs,

• Quantity of blood units distributed from the main supplier to LBBs and LBBs to

hospitals,

• Inventory levels at LBBs,

under the following assumptions:
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• The location of the main blood bank and hospitals are known

• The main blood bank has no capacity limit

• The LBBs have no capacity limit

• There is only one main blood bank

• All hospitals can be selected as LBB

• Demands of hospitals are normally distributed and independent from each other

• Maximum number of weekly replenishment vehicles are available and the capacity of

each vehicle is known.

• Each LBB has exactly one daily replenishment vehicle.

• Daily replenishment vehicle capacity is enough to satisfy all hospitals of its route.

• Each route is served by one daily/weekly vehicle.

• Each route begins and ends at the same point.

• LBBs and hospitals replenish using a single sourcing strategy, i.e. each LBB will be

replenished from a single supplier and each hospital will be replenished from a single

LBB.

3.2 MINLP Formulation of the SCNDP

The problem is modeled to find the optimal number and locations of local blood banks,

assignment of hospitals to the local blood banks, inventory levels at the LBB and routes of

the weekly and daily vehicles which supply the LBB and hospitals. The problem parameters

and decision variables are stated as follows:

Index Set

O: denotes the main blood bank indexed by o,

I: set of retailers (hospitals) indexed by i,

J: set of candidate DC (local blood bank) sites indexed by j,

L: set of all replenishment vehicles, indexed by l,

Ĩ= I
∪

J
∪

O
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Parameters

µi: mean daily demand at hospital i,

σi: variance of mean daily demand at hospital i,

dij : distance between location i and j,

fj : fixed annual cost of locating a local blood bank at hospital i,

cj : variable cost for a unit at local blood bank j,

h: weekly inventory holding cost at a local blood bank,

t: Lead time in days,

α: probability of stocking out during a replenishment cycle,

β: weight factor associated with the transportation cost of weekly replenishment vehicle,

θ: weight factor associated with the transportation cost of daily replenishment vehicle,

γ: cost of owning and running a replenishment vehicle,

Cr: Capacity of weekly replenishment vehicle,

Cd: Capacity of daily replenishment vehicle,

Decision Variables

Xj =

 1 If hospital j is selected as a local blood bank

0 otherwise. j ∈ J

Yij =

 1 If hospital i is served by a local blood bank j

0 otherwise. ∀i∈ I, ∀j∈ J

Uikj =

 1 If hospital k succeds hospital i in a daily route of blood bank j

0 otherwise. ∀i, k ∈ I, ∀j ∈ J

Wjm =

 1 If local blood bank m succeeds blood bank j in a weekly replenishment cycle

0 otherwise. ∀j,m ∈ J
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Zjl =

 1 If local blood bank j is assigned to replenishment vehicle l

0 otherwise. ∀j ∈ J,∀l ∈ L

Dj : demand assigned to local blood bank j,

Sj : standard deviation of demand assigned to local blood bank j,

SSj : safety stock at local blood bank at hospital i,

FDij : truckload carried out from hospital i on a daily route of blood bank j,

FWjl: truckload carried out from blood bank j of replenishment vehicle l,

The objective function becomes:

Minimize

∑
∀j∈J

fjXj + h(
∑
∀j∈J

[
Dj

2
+ SSj ]) +

∑
∀j∈J

cjDj +
∑
∀l∈L

γZol+∑
∀j,m∈Ĩ

βdjmWjm +
∑
∀j∈J

∑
∀i,k∈I

θdikUikj

(3.4)

subject to

∑
∀i∈I

Yij ≤ Xj , ∀j ∈ J (3.5)∑
∀j∈J

Yij = 1, ∀i ∈ I (3.6)

∑
∀k∈I

Uikj = Yij , ∀i ∈ I, ∀j ∈ J (3.7)∑
∀k∈I

Ukij = Yij , ∀i ∈ I, ∀j ∈ J (3.8)∑
∀k∈I

Uikj =
∑
∀k∈I

Ukij , ∀i ∈ I, ∀j ∈ J (3.9)
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Xj =
∑
∀i∈I

Ujij , ∀j ∈ J (3.10)

Xj =
∑
∀i∈I

Uijj , ∀j ∈ J (3.11)

Xj =
∑
∀l∈L

Zjl, ∀j ∈ J (3.12)

Xj =
∑
∀m∈Ĩ

Wmj , ∀j ∈ J (3.13)

∑
∀m∈Ĩ

Wmj =
∑
∀m∈Ĩ

Wjm, ∀j ∈ J (3.14)

∑
∀j∈I

Woj =
∑
∀l∈L

Zol (3.15)

Wmj + Zml − Zjl ≤ 1, ∀m ∈ Ĩ , ∀j ∈ Ĩ (3.16)

Wjm + Zml − Zjl ≤ 1, ∀m ∈ Ĩ , ∀j ∈ Ĩ (3.17)

Dj =
∑
∀i∈I

µiYij , ∀j ∈ J (3.18)∑
∀j∈J

ZjlDj ≤ Cr, ∀l ∈ L (3.19)

Sj =

√
t
∑
∀i∈I

σ2Yij , ∀j ∈ J (3.20)

SSj = F−1(CSL)Sj , ∀j ∈ J (3.21)

FDi,j − FDkj − CdUikj ≥ µk − Cd − CdXk, ∀i, k ∈ I, ∀j ∈ J (3.22)

FWml − FWjl − CrWmj ≥ Dj − Cr, ∀m, j ∈ J,∀l ∈ L (3.23)

Xj , Yij , Uikj ,Wmj , Djl, Zjl ∈ {0, 1} ∀i, j, k, l (3.24)

Dj , Sj , SSj , FDij , FWjl ≥ 0 ∀i ∈ I, ∀j ∈ J,∀l ∈ L (3.25)

The objective function (3.4) tries to minimize the fixed cost of locating a LBB (
∑

∀j∈J fjXj),

cost of owning replenishment vehicles (
∑

∀l∈L γZol), inventory costs at LBBs (h(
∑

∀j∈J [
Dj

2 +

SSj ])), variable costs of LBBs (
∑

∀j∈J cjDj), transportation cost of weekly deliveries
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(
∑

∀j,m∈Ĩ βdjmWjm) and daily deliveries (
∑

∀j∈J
∑

∀i,k∈I θdikUikj) while satisfying the con-

straint set between (3.5) - (3.25).

Constraint (3.5) indicates that hospital-local blood bank assignment can only be done

in the hospitals which are selected as local blood bank. Constraint (3.6) ensures that all

hospitals must be assigned to a local blood bank. Constraint set (3.7) and (3.8) states that

if hospital i is assigned to LBB j, then in a daily route of LBB j, a retailer k succeed

by retailer i, and i is succeeded by retailer k. Constraint (3.9) guarantees that number of

daily vehicle that enters and leaves hospital i is the same. Constraint set (3.10) and (3.11)

indicates that if a LBB j is opened than there is a daily vehicle enters the LBB k and

respectively a vehicle leaves the k. Constraint (3.12) shows that a weekly replenishment

vehicle is assigned to every LBB. Similarly, (3.13) states that there must be a inbound

flow from a LBB or main blood bank in a weekly replenishment route if LBB j is opened.

Constraint (3.14) guarantees that a LBB j is proceeded by local blood bank or main blood

in a weekly replenishment route is proceed to a LBB or main blood bank in the same

weekly replenishment route. Constraint (3.15) states that number of weekly replenishment

vehicle leaves from main blood bank must be equal to vehicles which are assigned to LBBs.

Constraint set (3.16) and (3.17) force to combine routing and allocation components such

that if LBB m succeed LBB j in a weekly replenishment route, same vehicle must be

assigned to LBB m and j. Constraint (3.18) is the calculation of aggregated demand

in LBB j. Constraint (3.19) guarantees that capacity of the weekly replenishment vehicle

cannot exceed the total demand assigned to itself. Constraint set (3.20) and (3.21) indicates

the standard deviation and safety stock calculations of a LBB j. Constraint set (3.22) and

(3.23) is the classical sub-tour elimination constraints and prevent calculation of unnecessary

moves of daily and weekly replenishment routes. Finally, remaining (3.24) and (3.25) are

the nonnegativity and integrality constraints.
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Chapter 4

SOLUTION METHODOLGY

As we stated in Literature Review, our problem can be seen as the combination of LRP,

IRP and the inventory-location problems. Therefore, it has more complexity than its sub-

problems. Our literature review research showed us that even the classical LRP problems

are NP-hard and finding an exact solution in polynomial time is not easy. Moreover, our

model has non-linear terms and binary variables in square root operator which make it more

difficult to solve. Nevertheless, we try to find exact solutions in part 4.1 to our model for

small-sized problems using GAMS/BARON. In addition to that, in part 4.2 we modified

our model to eliminate nonlinearity in constraints 3.19 and 3.20 by adding new variables

and using piecewise linear approximation. Then we use GAMS/CPLEX solver to find a

lower bound to our inventory cost part of the objective function.Lastly, we used simulated

annealing heuristic to find good solutions to mid and large sized problem instances. Details

of the heuristic method are explained in 4.3

4.1 Exact Solution Method

Exact solution method evaluates all possible feasible solutions among the solution space

and finds the global optimum for the problem. In our case, this method is only useful for

small-size instances since the combination of the possible solutions increases exponentially

with the increasing number of hospitals.

In this problem, any of the hospitals can be selected as a LBB. The hospitals can be

assigned to any LBB and not necessarily to the closest LBB. The solver considers routing

costs and inventory holding costs while making the assignments of hospitals. Therefore, for

all opened LBB, it solves a VRP and gives the best route of daily blood distribution.

Hence, the existence of binary variables within root operator to find safety stock level,
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rapid increase of the number of constraints and the number of decision variables that needs

to be answered limit the exact solution to small size instances. Finding optimal solution for

the problem will be very time consuming with this computational complexity. Therefore,

we firstly, solve the problem by linearizing the non-linear constraints. Then, we developed

heuristic algorithms to find good solutions in a reasonable time.

4.2 Piecewise Approximation Method

We introduce the mathematical formulation for SCNDP in chapter 3 by describing the ob-

jective and constraints. In the model, there are two constraints with non-linear terms that

makes problem even more difficult to solve in exact methods.

In Constraint 3.19 nonlinearity is encountered from the multiplication of the two decision

variables, Zjl and Dj . As mentioned before, Zjl is the assignment of weekly vehicle l to

LBB j and Dj is the total demand of LBB j.

∑
∀j∈J

ZjlDj ≤ Cr, ∀l ∈ L

This constraint indicates that the demand assigned to weekly replenishment vehicle can’t

exceed the vehicle capacity.

In order to deal with the nonlinearity, a new decision variable and two constraints are

introduced:

DRjl :total demand of local blood bank j which is assigned to weekly replenishment

vehicle l,

∑
∀j∈J

Djl ≤ Cr, ∀l ∈ L (4.1)

Djl ≥ Dj − Cr(1− Zjl), ∀j ∈ J,∀l ∈ L (4.2)

Djl ≥ 0, ∀j ∈ J,∀l ∈ L (4.3)

Constraint 4.1 impose the capacity restriction for the weekly replenishment vehicles and

Total demand distributed by vehicle l can not exceed the vehicle capacity. Constraint 4.2
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guarantees that if vehicle l is assigned to LBB j, then total amount distributed by weekly

replenishment vehicle l is greater than or equal to total demand of LBB j. Last constraint

4.3 indicates the nonnegativity.

Thus, we replaced constraint 3.19 with 4.1, 4.2 and 4.3 to deal with the first non-linear

term.

Second non-linearity which is in constraint 3.20, comes from the binary variable in the

square root operator.

Sj =

√
t
∑
∀i∈I

σ2Yij , ∀j ∈ J

Standard deviation of the the demand assigned to LBB j is calculated with this formu-

lation. To get rid of the nonlinearity, we suggest to use piecewise linear approximation to

find approximate Sj values.

Piecewise approximation technique can be used with different approximation schemes

depending on the number of segments in the function. The number of breakpoints in the

function determines the approximation error and the computational complexity. Therefore,

number of pieces in the function have been chosen wisely to keep the balance between error

range and complexity.

As you can see from Figure 4.1, we define a new index set t = 1, 2, ....10 to divide vari-

ance range into 10 parts. Then, slope of the function in every segment is calculated.

Thus, our new parameters become:

alint: denote the break points,

∆t: the slope of the linear approximation function in part t,

S’: value inside the root operator,
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Figure 4.1: Piecewise Approximation Scheme

These parameters are calculated as follows:

alint =
∑
∀j∈J

var(j)
t

10
, (4.4)

∆t =

√∑
i var(i)

t
10 −

√∑
i var(i)

t−1
10

alint − alint−1
, (4.5)

S′ = Le

∑
∀i∈I

σ2Yij , (4.6)

Then, two new decision variable introduced:

Xlint: is the amount in part t,
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Y lint =

 1 If part t is fully filled

0 otherwise.

To find the approximate value of Sj by

Sapprox =

10∑
t=1

Xlint∆t (4.7)

while the constraint set below is satisfied.

S′ =

10∑
t=1

Xlint, (4.8)

Xlint ≤ alint − alint−1, (4.9)

Xlin1 ≤ alin1, (4.10)

M(Y lint) ≥ Xlint+1, (4.11)

Xlin1 ≥ alin1Y lin1, (4.12)

Xlint ≥ (alint − alint−1)Y lint (4.13)

In order to have a better understanding, we will show the piecewise approximation

method in an example.

Let’s assume that we have a inside root value of 35 and the sum of all variances is 50.

For simplicity we use five break points (instead of 10) in range 0 to 50.

Then our parameters become:

S’=35

alin1 = 10, alin2 = 20, alin3 = 30, alin4 = 40, alin5 = 50,

∆1 = 0.316, ∆2 = 0.131, ∆3 = 0.1, ∆4 = 0.085, ∆5 = 0.075,

and the constraint set below is defined to find the Xlin and Y lin
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S’=Xlin1+Xlin2+Xlin3+Xlin4+Xlin5 = 35

Xlin1 ≤ 10,

:

Xlin5 ≤ 10,

999(Y lin1) ≥ Xlin2,

:

999(Y lin4) ≥ Xlin5,

Xlin1 ≥ 10Y lin1,

:

Xlin5 ≥ 10Y lin5,

Xlin and Y lin values become:

Xlin1 = Xlin2 = Xlin3 = 10,

Xlin4 = 5

Xlin5 = 0,

Y lin1 = Y lin2 = Y lin3 = 1,

Y lin4 = Y lin5 = 0,

Approximation of the values becomes:

Sapprox =10(0.316) + 10(0.131) + 10(0.1) + 5(0.085)

=5,895

Therefore, approximation method found value of
√
35 as 5.895 whereas the real value of

√
35 is 5.916.

As it can seen from the example above, when we use piecewise linearization of the square

root function, the total inventory cost will be lower than the actual cost. Thus, the exact

solution of the problem with piecewise linearization will be a lower bound for the original

problem. In addition, the solution obtained by the piecewise linearization is a feasible

solution for the original problem. Thus, if we take this solution and calculate the actual

cost of the system, it will give us an approximate result and this solution can be used as an

approximate solution for the original problem.
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4.3 Heuristic Solution Method

In previous sections, we clarified that the complex nature of the problem makes it impos-

sible to solve our model in a reasonable time for mid and large size problems. Due to the

exponential grow of decision variables and constraints, even the small size problems is hard

to solve with exact methods. Therefore, we use heuristics methods to find good solutions

for our problem.

Throughout this chapter, we give insights about Simulated annealing (SA) method which

is one of the popular meta-heuristic methods in the literature. Then, we explained proposed

simulating annealing algorithm (SA) for SCNDP in details.

4.3.1 Simulated Annealing

The Simulated Annealing (SA) is one of the oldest among meta-heuristics and the first

algorithm that have the strategy (hill climbing moves) to escape from local optima. It uses

a stochastic relaxation which has its origins in statical mechanics (Metropolis et al.,[44]).

The SA firstly used for solving combinatorial optimization by Kirkpatrick et al. [45] in

1983 and Cerny [46] in 1985. Since then, SA has been applied successfully to variety of

highly complicated combinatorial optimization (CO) problems as well as various real-world

problems. We refer interested readers to Osman and Laporte [41] where they can find many

different application of the SA in literature.

The general framework of a SA algorithm can be seen from the figure 4.2. In this figure,

s denotes solution and T denotes temperature, both are initially set. Then, new solution s
′

is selected from neighborhood of solutions N(s) and improving solutions are accepted with

respect to a probability function until a finishing condition met.

The SA algorithm search for a optimum or near optimum solutions by using slow cool-

ing procedure described above. Firstly, it starts with a random or heuristic based initial

solution S and initial temperature Ti. At each iteration a new solution is taken from the

neighborhood N(S) of the current solution by using predefined moves. Then, objective
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Figure 4.2: General SA Algorithm (Blum and Roli [43])

cost of the new solution S
′
is compared with the current cost. If there is an improvement

in objective cost, the new solution is always accepted and new solution becomes current

solution. On the other hand, a new solution without improvement may also be accepted

with a small probability computed by the Boltzmann distribution.

exp(
∆

kT
)

where ∆ is the difference between new and current solution C(S
′
) − C(S), k is a physical

constant known as Boltzmanns constant and T is the temperature of the current state.

This algorithmic mechanism of SA allow uphill moves that may help escaping from local

optimum to reach global optimum. The value of the T is the critical in this part since it

determines the occurrence of uphill moves. T starts with high values at the beginning of

the search and probability of accepting uphill moves is high. This lead to exploration of the

search space (intensification). Then T is decreased gradually to small value close to zero

which permits exploitation of the search space (diversification). When T is constant,lower

δ values leads to higher probability of accepting uphill moves.

4.3.2 SA Heuristics Algorithm for SCNDP (SA-SCNDP)

In operations research literature, SA methodology is used in location, location-allocation,

vehicle routing, location routing problems and many more as it is shown in [41]. Therefore,

we decided to use a SA based approach to solve our SCNDP in this study. As mentioned in

chapter 3, we try to solve a complex problems with decisions of the location of a LBB, assign-
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ment of hospitals to opened LBBs, routing of the weekly and daily vehicles together. Thus,

our algorithm needs to solve a location, allocation and multiple routing problems all in once.

We design the SA algorithm in a way that it uses four consecutive phase to find the best

solution to SCNDP. These are Initialization, Location-Allocation, Weekly Route Improve-

ment and Daily Route Improvement phases. In location-allocation and daily route improve-

ment phases, SA methodology is used to find improved solutions by searching neighborhood

of current solutions. Before, explaining the SA phases,algorithms and procedures used in

SA-SCNDP in detail, we firstly introduce our solution representation as follows:

Solution Representation

In our algorithm, we use 4 different matrix representation to define our decision variables,

Xj , Yij , Uikj ,Wmj , Djl, Zjl. X matrix is used for the location decisions. Y is for the assign-

ments and WR for weekly routes and DR for daily routes

Example below show a case with 5 hospitals and 1 main blood banks solution representation.

X=
(

0 0 1 0 1 0
)

0th node represents the main blood bank and always zero and 2nd, 4th are the hospitals

which was selected as LBB.

Y=



0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 1 0


shows that1st and 3rd hospital is assigned to hospital 2 (LBB) and 5th is assigned to hospital

4.

WR=
(

0 2 4 0
)

means that one vehicle begins its route from main blood bank (0) and first it visits hospital

2, then 4 and return to main blood bank. If there is more than one route, then we’ll have
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more than one row in the matrix. Therefore, row number represents the weekly number

used in solution.

SR=

 2 3 1 2

4 5 4 0


indicates that there are two daily routes that begin and end at the same LBBs that are

represented by hospital numbers 2 and 4.

SA-SCNDP Phases

The initialization phase starts with the Randomfacilityopen procedure to open LBBs ran-

domly with respect to minimum facility limitation. Then, Allocation procedure assign the

hospitals to opened LBBs by looking at the shortest distances. After that, BigRoute Algo-

rithm and SmallRoute Algorithm construct the initial routes for weekly and daily vehicle

routes respectively. Finally, Savings Algorithm and 2 Opt Algorithm is applied to daily

routes to have better initial solutions.

In location-allocation phase, initial solution is improved by Add-Drop and Swap moves.

At the beginning of this part, SA parameters are set and initial solution from first phase is

accepted as current and best solution. At each iteration one of the moves are applied upon

the dynamic probability selection rule. Probability of the moves are close to each other

at the beginning of the iterations, but probabilities change dynamically at upcoming itera-

tions. If the selected move is applied and current solution is improved, then the probability

of the move increases and vice versa. Moves are applied according to SA methodology as

explained in previous chapter. Best solution found during the iterations are recorded and

become the input of the weekly improvement and daily improvement phases.

Third phase begins with the best solution found in location-allocation phase. Optimal

number and location of LBB and hospital assignment are taken as input. Bigroute algo-

rithm construct the best weekly distribution route from main blood bank to opened LBBs.

After that 2-Opt Algorithm is applied to this route until there is no improvement in route.

Thus, this phase can be seen a local search for route improvement.
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In final phase, depending on the number of the opened LBBs two of the following cases

occur. In the first case, if there is only one opened LBB, then due to our assumption of

each LBB has only one daily replenishment vehicle, we’ll have only one route. Therefore,

we use Savings algorithm and then same route improvement logic as third phase by using 2

Opt Algorithm. In second case, we have more than one opened LBB and cost improvements

can occur due to insertion of one hospital to another LBB’s serving route. Thus, second

SA procedure algorithm begins with this case. Best solution from second and third phase

taken as input. Initial smallroute and related costs such as daily routing costs, inventory

holding cost and variable costs are aggregated and accepted as initial cost. At each itera-

tion, an insert move is applied after the feasibility check. Every feasible move that improve

the current costs is accepted. Non-improving moves are also accepted with a small proba-

bility. Best daily distribution route found during the iterations are returned as final solution.

SA-SCNDP procedure is explained step by step as follows:

Step 1: Calculate minimum LBBs needed by considering vehicle capacity and total de-

mand,Open at least LBBs by using Randomfacilityopen procedure,

Step 2: Use Allocation procedure to assign hospitals to opened closest LBBs by considering

weekly replenishment vehicle capacities.

Step 3: Construct weekly and daily vehicle routes by using Bigrouting(), SmallRouting(),use

Savings and 2-Opt algorithm to improve the routes.

Step 4: Set cooling parameters, random selection parameters, best cost and initial cost.

Step 5: Apply Add-Drop move or Swap move according to random selection probability.

Step 6: Compute ∆=C(S
′
)− C(S) (the difference between new and current solution)

Step 7: If ∆ < 0 or ∆ > 0 and exp( ∆
kT ) > x, where x is a random number between [0,1]

Then, set new cost as the current cost. S = S
′
and increase the selection probability

of applied move by 1%
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Else, increase the nonimprovement counter by 1 and decrease the selection probability

of applied move by 5%

Step 8: If new cost is less than the best cost found so far, Sbest

Then, set new cost as the best cost. Sbest = S
′
and increase selection probability of

applied move by 5%

Step 9: Set nrep=nrep+1, iteration=iteration+1

Step 10: If max nrep number is reach withing the current temperature go to Step 11,

Else go to Step 5.

Step 11: Update the current temperature by Tk+1 = αTk, where α ∈ (0, 1) and go to Step

5.

Step 12: Terminate SA procedure for Location-Allocation phase if the stopping conditions

are met.

Step 13: Construct weekly routing by using best solution found between step4-step12.

Step 14: Calculate weekly route cost and set to currentRoutecost.

Step 15: Apply 2 opt algorithm to current weekly routing solution.

Step 16: If currentRoutecost is improved,

Then, set new cost as current cost and new solution as current weekly route solution

and the go to step 15.

Else, terminate the Weekly route improvement phase and return the current weekly

route solution.

Step 17: Check the daily route number of the best solution found.

If there is more than one daily route go to step 18

Else go to step 28.

Step 18: Set cooling parameters, random selection parameters, best cost and initial cost.



Chapter 4: Solution Methodolgy 36

Step 19: Apply Insertion move

Step 20: Check feasibility of the new solutions.

If new solution is feasible go to step 21.

Else increase the nonfeasibiliy counter by 1 and go to step 24.

Step 21: Compute ∆=C(S
′
)− C(S)

Step 22: If ∆ < 0 or ∆ > 0 and exp( ∆
kT ) > x, where x is a random number between [0,1]

Then, set new cost as the current cost. S = S
′

Step 23: If new cost is less than the best cost found so far, Sbest

Then, set new cost as the best cost. Sbest = S
′
.

Step 24: Set nrep=nrep+1, iteration=iteration+1

Step 25: If max nrep number is reach withing the current temperature go to Step 26,

Else go to Step 19.

Step 26: Update the current temperature by Tk+1 = αTk, where α ∈ (0, 1) and go to Step

19.

Step 27: Terminate SA procedure for SmallRouting phase if the stopping conditions are

met.

Step 28: Calculate daily route cost and set to currentRoutecost.

Step 29: Apply 2 opt algorithm to current daily routing solution.

Step 30: If currentRoutecost is improved,

Then, set new cost as current cost and new solution as current daily route solution

and the go to step 15.

Else, terminate the Daily route improvement phase and return the daily route solution.
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The moves, procedures and algorithms which are mentioned in SA-procedure above, ex-

plained in detail as follows:

Initialization

The aim of this phase is to construct initial solutions that lead our algorithm to find optimal

or near optimal solutions in short time. Therefore, the algorithm uses Randomfacilityopen

procedure to open LBBs randomly. We use this initialization since it’s fact and intuitive. We

initialize with the lower bound on facility number, since the number of LBB that needs to be

opened can be calculated with the knowledge of the total demand and weekly replenishment

capacity of the replenishment trucks in advance. Then, hospitals are assigned to nearest

opened LBB by considering the capacity limits. Allocation procedure is applied for this

assignments.Improvement algorithms like savings and 2-opt are also used to start with good

initial weekly and daily routes. Details of the procedures and algorithms are explained as

follows:

Randomfacilityopen procedure

This procedure takes weekly replenishment capacity, total demand as input and returns the

opened facility matrix, X.

Firstly, summation of the all hospital demands are divided to replenishment vehicle capacity

to find a lower bound on opened LBB number. Then, facilities are opened randomly while

considering the minimum number of LBB that should be opened to have a feasible solution.

Allocation Procedure

Allocation procedure uses inputs as opened LBB matrix X, vehicle capacity and distance

matrix between hospitals. The aim of this procedure to assign hospitals which are not se-

lected as LBB to nearest LBB without violating the weekly replenishment capacity. The

weekly capacity is important for feasibility of assignment and the final solution. therefore,

total demand of a LBB consisting the have to be less than weekly replenishment vehicle’s

capacity.
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Firstly, procedure checks the capacity limits and total demand. If there is enough opened

LBB, a distance matrix between LBBs and hospitals are constructed. The hospital with

the shortest distance to a LBB is selected as a candidate. Then, demand of the candidate

hospital is added to LBB’s total demand. If the demand is less than capacity limits then

assignment is made. This procedure repeats until all of the hospitals assigned to a LBB.

Finally, procedure returns the assignment matrix Y for the upcoming phases.

BigRoute Algorithm

Bigroute algorithm basically construct the weekly route (called as bigroute) of the replen-

ishment truck. A replenishment route starts from the main blood bank. It distributes the

weekly demand of the LBBs on its route and returns the starting point, main blood bank.

There could be several routes and therefore many trucks depending on the problem struc-

ture. Therefore, number of feasible routes determines the replenishment truck number. The

algorithm takes assignment matrix Y, vehicle capacity, distance matrix and demands of the

hospitals as input and returns the feasible weekly delivery routes.

Bigroute algorithm has mainly two phases. In the first phase, it uses a classical Clark-

Wright savings algorithm [55] to construct the savings matrix between main blood bank

and LBBs. Then, depending on the savings, it begins to construct feasible routes case by

case. The Clark-Write Savings algorithm will be explained in upcoming Savings Algorithm

subsection, therefore we mentioned only the routing phase of the algorithm in this part.

At the beginning, the algorithm constructs a separate route for every opened LBB based

on the direct shipment from main blood bank to LBB. Then, savings algorithm reveals the

saving costs of LBBs in a matrix form depending on the distance between locations. De-

signing of new routes begin with LBBs with the highest savings number. An example of

the savings matrix used in algorihm shown below.

LBB1 LBB2 Savings

4 7 6011

2 4 2924

2 7 1789
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Three of the following cases can occur before combining the two of LBB in a weekly rote,

• LBB1 and LBB2, both have a direct route from only the main blood bank

• One of the LBB has a route that consists of other LBBs, and the other one has only

route including the main blood bank.

• Both have different routes that consists of other LBBs.

In the first case, algorihm check the weekly routing vehicle capacity and summation of

total demand of LBB1 and LBB2. If there is enough capacity then, it combines them in a

route. For example, node 4 and node 7 has the highest savings as it shown in matrix above.

They have only direct route with main blood bank, 0-4-0 and 0-7-0. Then, after capacity

check, it construct the new route 0-4-7-0.

In second case, one of the LBBs in saving matrix is assigned to a route and other one

is only assigned to main blood bank. Algorithm checks again the capacity of the route

consisting route and demand of the unassigned LBB. If it is feasible, unassigned LBB is

added to the route depending on the position of other LBB. If you look at the previous

example, we have a route 0-4-7-0 and in second iteration combining node 2 and 4 seems the

optimal. Node 2 has only route with main blood bank 0-2-0, on the other hand node 4 have

a different route. After,capacity check new route 0-2-4-7-0 can be constructed. If, weekly

routing vehicle don’t have enough capacity then we have, two different route 0-4-7-0, and

0-2-0 and number of weekly vehicle is determined as 2.

In final case two of the LBBs have different routes, then algorithm checks the capacity

of the two routes. If it is feasible, then it combines them. For example we have two routes

0-4-7-0 and 0-2-5-0. Let’s say combining 2 and 4 gives the highes savings and weekly routing

vehicle have enough capacity. Then, algorithm construct the 0-5-2-4-7-0 route as the new

solutions.

In the end, all of the node couples in savings matrix is analyzed case base case with

respect to methods explained above. Then, algorithm construct and returns the BR matrix

which consist the all weekly routes.
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Smallroute Algorithm

The purpose of this algorithm is to construct the daily route (called as smallroute)of the

daily distribution truck. Every LBB have exactly one daily truck due to our assumption

mentioned in chapter 3. The daily truck begins its tour from the LBB and delivers daily

demand of the hospitals which are assigned to that LBB and returns to LBB. The algorithm

takes opened facility matrix X and allocation assignment matrix Y as input and returns

the daily routes.

The algorithm firstly calculates the number of daily routes in the problem by checking

the number of LBBs given in opened facility matrix. Then, it uses allocation assignment

matrix to find how many hospital assigned to each LBB. The daily route number and max

hospital assignment are used to determine the size of the daily route matrix DR at the

end of the algorithm. Secondly, allocation assignments are accepted as the daily routes and

some modification are done depending on the position of the LBB in the allocation matrix.

Three cases can occur as follows:

• The selected hospital (LBB) is the first element in the row

• The selected hospital (LBB) is the last element in the row

• The selected hospital (LBB) is neither first nor last element in the row.

A daily route begins and ends at the same point. Therefore, in the first case, LBB added

to last element of the row and a daily route completed. In second case all elements in the

row shifted to right and LBB assined as the first element of the row. In last case, LBB

is swapped with the first element of the row and also add to last element. An example is

presented below to have a better understanding of this modification phase.

Let’s assume that hospital 2, 5 and 8 are selected as LBB and hospitals 1, 3, 4, 6, 7

are assigned to these three LBB. Then we have a pre-route matrix constructed by looking

assignment matrix, 
1 2 3

5 6 9

4 7 8
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In first route, hospital 2 (LBB) is not the first nor the last row so we swap it with the

first element and then enlarge the matrix size by one and add hospital 2 as last element.

Therefore we have a daily route 2-1-3-2. (Case3), In second route hospital 5 (LBB) is the

first element, so we enlarge the row size by one and added hospital 5 to last row. Then,

5-6-9-5 becomes our second daily route (Case1). In last route, hospital 8 is the LBB and

last element in the row, algorithm increase the row size by one, shift all element to right

and add hospital 8 to first element’s position in the row. Then, we have 8-4-7-8 as our last

daily route. Lastly algorithm return the daily route matrix DR as follows.
2 1 3 2

5 6 9 5

8 4 7 8


As it seen from the example, the algorithm do no consider the distance between the hospitals,

daily routes found in this stage are not the optimal ones.Therefore, savings algorithm and

2-opt algorithm are applied to daily routes every time after using this algorithm to improve

current routes.

Savings Algorithm

Savings algoritm is used to minimize the distance traveled by daily vehicles in their routes.

Algorithm takes the daily route matrix and distance matrix as input and return the daily

route matrix by rearranging the routes based on savings concepts. In this part, classical

clark-wright algorithm [55] is applied which is a heuristics algorithm that yields good solu-

tions for VRPs.

The idea of the savings algorithm express that the savings can occur by joining two

routes into one route. The figure shows the before and after case of joining routes.

In this figure, 0 represents the LBB, i and j are the hospitals which are assigned to LBB.

The algorithm firstly construct the savings matrix by using following formula:

S(i, j) = Dist(0, i) +D(0, j)−D(i, j) (4.14)
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Figure 4.3: Savings Concept

Then, all i and j pairs are sorted in descending order of savings value. Each of the routes

are considered one by one and combined until there is no hospital pairs to assign that route.

Since there is no capacity constraint on daily vehicle, algorithm always returns one route

for one LBB. Same steps are applied to all LBBs in the SR matrix.

2-Opt Algorithm

2-opt algorithm is an improvement method that start from a given solution and tries to

improve this solution by erasing two edges that cross and reconnect the resulting two paths

by edges that do not cross. The figure 4.4 illustrates 2-opt move to a route. In our problem,

2 opt takes one or multiple routes represented by a matrix SR or BR and return same

matrix with an in-route improvement if possible.

Figure 4.4: 2-Opt Move
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The algorithm firstly checks the number of hospitals in the route and if there is more

than 3 hospital which means, there must be at least 3 edge to continue. Then, it begins

to calculate the distance improvement of erasing 2 of the edges and constructing the two

possible edges with following formulas:

Dold = Dist(i, i+ 1) +D(j − 1, j) (4.15)

Dnew = Dist(i, j − 1) +D(i+ 1, j) (4.16)

Dimp = Dnew −Dold (4.17)

All of the possible edges are calculated in this manner and the move that gives the best

Dimp value is applied. The iteration ends with only one improvement move.

Location-Allocation

In this phase, initial solution is improved by using SA algorithm. Two move is designed to

search the neighborhood solution of the initial solution by changing the location decisions

matrix X. Add-Drop and Swap moves is used depending on their selection probability. The

aim is to favor the best move for their time. For instance, Probability of Add-Drop move

is expected to be high at the beginning of the iterations to find minimum number of LBBs.

On the other hand, after reaching the correct number of facilities, swap move would lead to

find correct locations of the LBBs.

As previously mentioned, at the end of a location move whether it is a Add-Drop or

Swap , allocation procedure begins to assign hospitals to LBBs. Then, Bigroute, Smallroute

,savings and 2-opt algorithms applied consequently as it’s applied in the initialization phase

to calculate new routes and finally new solution cost. This procedure continues until SA

algorithm for this phase stops and return the best solution found during the iterations.

Add-Drop Move

Add-Drop is a location move that opens or close the selected hospital/LBB depending their

current state. Move randomly selects one of the hospitals in location decision matrix and

checks if it is open or close. If selected hospital is closed which means not selected as LBB,

it change it’s state and opens that hospital. In other case, when selected hospital is a LBB,
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then it firstly checks the total demand and vehicle capacity and if the move is feasible, LBB

is closed.

Swap Move

Swap move open one of the hospitals and close one that is currently closed simultaneously.

Number of open facilities remain constant and move allow to find correct hospitals to be

opened. Therefore, feasibility check is not necessary in this move.

Weekly Route Improvement

Weekly route improvement starts with the result of the location-allocation phase. Best

weekly route found in location-allocation phase becomes the current solution of this pro-

cess. Improvement in the route derived from the 2-Opt algorithm which is explained in

previous subsection.

2-opt algorithm makes only one move after searching the best improvement route within

the route. Therefore, we applied 2-opt algorithm consequently until there is no improvement

in weekly route cost.

Daily Route Improvement

The goal of the daily route improvement phase is to improve the daily route which is con-

structed from the best solution of the location allocation phase. As it is explained earlier,

location allocation phase determines the optimal number of LBBs and the assignment of

hospitals to opened LBBs. Therefore, daily routes between LBB and hospitals was con-

stituted in this phase by applying SmallRoute algorithm to best solution. This solution

becomes the current solution of the daily route improvement.

Current solution is improved in two ways depending on the number of the opened LBB.

If there is only one LBB, thus only one route, weekly route improvement methodology

is applied to this route and 2-opt algorithm provides the within route improvement. In

second case, there could be more than one LBB and more route accordingly. The route

improvements achieved by SA algorithm by using only insert move in this phase. Insert
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move allow us to search improvements between routes if it exists. Since, hospitals are

assigned to nearest open LBBs, route structure and the cost only considers the minimum

distance, but there’s also a inventory holding cost aspect. Therefore, Insert move can assign

a hospital to a LBB which is not the closest one. Insert move is applied until SA algorithm

ends. At the end of this phase optimal daily route is returned.

Insert Move

One of the hospitals is randomly chosen and randomly inserted to any other open LBB if

there is enough capacity in that LBB’s route.
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Chapter 5

COMPUTATIONAL STUDIES

This chapter presents the generation of the data, selection of the parameters of our heuristic

algorithms and the computational results through numerical experiments. As mentioned in

previous chapters, three methods are used to solve and evaluate the SCNDP model. Exact

and piecewise approximate methods are coded in GAMS whereas the proposed SA based

meta-heuristic was implemented in C language. All of the methods was run on a PC Intel

Core i5-2520M CPU (2.50 GHz) and 4 GB RAM.

The SA-SCNDP Algorithm is evaluated by comparing exact and approximate solution

results since there was no study directly related with our problem to benchmark with. The

performance of the SA-SCNDP algorithm is evaluated in terms of solution quality which is

best solution found and computational efficiency in CPU time.

The computational studies chapter include three sections. Firstly,in section 5.1 we ex-

plained how we generate our data and give information about our test instances. Then, in

Section 5.2.2,we presents the parameters settings for SA-SCNDP heuristics. Lastly, results

of the numerical experiments are discussed in section 5.3.

5.1 Data Generation

In model formulation part, current model and proposed model of the Istanbul’s blood dis-

tribution network are explained in detail. Since, both models are not studied before, we

generated new test instances with different parameter values and problem sizes. In order

to prove our new model’s efficiency we need to know real parameter values of the current

system, but we are unable to get the information of parameters from TRC officials. Never-

theless, we try to generate data as close as the real parameter values.
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In test bed, we created 13 instances for each problem size. This problem sizes are

expressed as ixj=(10x10),(20x20), (50x50), (75x75) and (100x100) where i is the number

of hospitals and j is the number of candidate LBBs. Since all hospitals can be selected as

LBB in our model, number of hospitals are always equal to nunber of LBB j, thus (i=j) for

all instances. While we are creating the different instances, we firstly select instance 1 as

our original setting and change only one parameter value to create another instance. Three

level is used to change one parameter as Medium, High and Low shown as M, H, L. The

structure of the instance setting can bee seen in Table 5.1.

Table 5.1: Parameters Settings

Instance CSL Demand Std. Deviation Facility Holding Routing

1 M M M M M M

2 M M M M M H

3 M M M M M L

4 M M M M H M

5 M M M M L M

6 M M M H M M

7 M M M L M M

8 M M H M M M

9 M M L M M M

10 M H M M M M

11 M L M M M M

12 H M M M M M

13 L M M M M M

The location of the main blood bank and 100 hospitals in asian side of the Istanbul

are collected in terms of latitude and longitude. Then,distance matrix for 101 points are

calculated by finding distance between two points using formula below:

Di,j = K
√

(latitutei − latitutej)2 + (longitudei − longitdej)2 (5.1)

where K is a constant which allow us to convert distance in meters and set as 141. After all

distance are generated, we check that all distances’ are satisfying the triangle inequality.

Distance table for size 10 is given in table 5.2 in terms of meters.

The demand of each hospital generated by using the yearly blood demand data of 80

hospitals which is found in the annual health statistics report 2006 of the ministry of health.
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Table 5.2: Node 10 Distance Table

(ixj) 0 1 2 3 4 5 6 7 8 9 10

0 0 2815 1516 14917 11281 2370 12572 3944 8517 2841 8881

1 2815 0 2168 12103 8936 2374 9836 1616 6324 1926 6128

2 1516 2168 0 13948 9873 865 11929 3700 7084 1373 8220

3 14917 12103 13948 0 7208 13587 4027 11344 8760 12803 6470

4 11281 8936 9873 7208 0 9172 8535 9213 2811 8501 7160

5 2370 2374 865 13587 9172 0 11798 3988 6366 784 8112

6 12572 9836 11929 4027 8535 11798 0 8682 8825 11046 3711

7 3944 1616 3700 11344 9213 3988 8682 0 6864 3514 5044

8 8517 6324 7084 8760 2811 6366 8825 6864 0 5711 6301

9 2841 1926 1373 12803 8501 784 11046 3514 5711 0 7372

10 8881 6128 8220 6470 7160 8112 3711 5044 6301 7372 0

Firstly, we calculated 2012’s yearly demand data by assuming 5% increase at each year’s

blood demand from 2006 to 2012. Moreover, we generated 20 new demand without chang-

ing the average and standard deviation of 80 hospitals demands. The values converted to

weekly demand data and set as the medium level for demand parameter. High and low

demand levels are generated by taking twice and half of the medium demand. Finally, we

generated three different level of standard deviation by multiplying demand with 0.5, 0.3

and 0.1 for the high, medium and low levels respectively. Tables presents the demand and

std.deviations can be found in Appendix.

The establishment cost of a LBB is calculated by assuming that one of the rooms in a

hospital turn into a warehouse/stocking room or the current room where they keep their

blood stock can be expanded. In both cases, cost of the opening a LBB in that hospital

would be less than constructing a new warehouse building. Therefore, we assumed that the

cost of new warehouse area would be 120000 TL. The weekly payment of this investment

calculated as 300 TL/week by considering these payments continues for the next 10 years.

As we stated in earlier chapters, cost of blood is high due to expensive processes during

the procurement, quality control and mandatory tests. Therefore, we estimated 1500 TL

cost for per blood unit. Then, holding cost is calculated due to weekly opportunity cost of

this price by considering %10 interest rate. Thus, holding cost set to 3. The weight factor



Chapter 5: Computational Studies 49

Table 5.3: Parameter levels used in experiments

Parameters
Levels

High Medium Low

LBB locating cost 600 300 150

Inventory holding cost 9 3 1

Transportation cost of weekly vehicle 0.010 0.005 0.0025

Transportation cost of daily vehicle 0.006 0.003 0.0015

Customer service level 0.99 0.97 0.95

associated with the transportation cost of weekly and daily trucks is calculated based on the

oil prices and the fuel consumption of the vehicles. Basically, the weekly trucks consumes

more than daily truck and costs more. Therefore, we suggest to set 0.005 and 0.003 for the

weekly and daily transportation costs respectively. The probability of a stock out during

replenishment is set to 0.03. Therefore, desired customer service level (CSL) is become 0.97

for which the corresponding F−1(CSL) is equal to 1.88. High and low CSL is set to 0.99 and

0.95. Table 5.3 represents the different levels of the parameters mentioned above.There are

also constant cost parameters which are used throughout the computational experiments.

One of them is the variable cost per unit passes through a LBB which is 0.4. The lead time

in days is set to 1. Owning a weekly replenishment vehicle is 325. The daily and weekly

replenishment vehicles are assumed uncapacitated for simplicity. All constant parameters

presented in table 5.4.

Table 5.4: Constant parameters values used in experiments

Parameters Value

Variable cost 0.4

Lead time in days 1

Owning a replenishment vehicle 325
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5.2 Parameters

5.2.1 Piecewise Approximation Parameters

In piecewise approximation method, the number of the pieces, also the number of break-

points, in the function determines the approximation error and the computational com-

plexity. Therefore we tried three different parameter values 10, 20 and 50 to find the best

solution in terms of solution quality and CPU time. Test results with selected parameter

values for instance 1 are shown in Table 5.5

Table 5.5: Test results for number of pieces in approximation function

Number of pieces =10 Number of pieces =20 Number of pieces =50

Problem Size LB GAMS Cost CPU time LB GAMS Cost CPU time LB GAMS Cost CPU time

10x10 2624,67 2624,67 32,49 2624,67 2624,67 43,12 2624,67 2624,67 75,12

20x20 4055,65 4473,86 7200 4055,65 4473,86 7200 4055,65 4473,86 7200

As you can see from table below, number of pieces only increases the solution time for

10x10 size problem and have no effect on solution quality. Since for all of the parameters,

optimal solution is found regardless of the piece number. In 20x20 sized problem, method

couldn’t find optimal in a reasonable time, therefore we put a time limit, 3 hr, and again

the number of pieces have no effect on solution quality. Therefore, we selected number of

pieces parameters as 10.

5.2.2 Heuristic Parameters

The parameters setting for heuristic algorithms is highly critical since the solution quality

of the problem depends on the correctness of these values. The generic decisions of the

Simulated Annealing algorithm is the initial temperature values, cooling schedule,cooling

rate, replication numbers and the stopping condition values. These decisions controls the

balance between diversification and intensification during the search. In order to test the

effectiveness of heuristic parameters, we selected instance 1 parameters for all problem sizes.

Heuristic parameters initially set as follows:

The initial temperature value Ti must be high enough to allow almost free exchange

of neighboring solutions. Therefore, we try four different high temperature values for each
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Table 5.6: Initial value of parameters in SA-SCNDP

Ti 100

Tf 0.01

cooling schedule Tk+1 = αTk, α = 0.90

maximum replication number (Nrep) L/5

population size. Tested initial temperatures are shown in Table 5.7.

Table 5.7: Candidate values used as Ti for SA

Problem Size Candidate Initial Temperature Values

10x10 100, 250, 500 ,1000

20x20 100, 250, 500 ,1000

50x50 100, 250, 500 ,1000

75x75 100, 250, 500 ,1000

100x100 100, 250, 500 ,1000

The selection of the suitable cooling schedule is highly important for the performance of

the SA algorithm. T values are updated according to a defined cooling schedule. Therefore,

a good cooling schedule will lead to near optimal/optimal solutions. In our case, one of the

most used cooling schedule that follows a geometric law is selected as the cooling schedule

since it’s practical, fast and easy to use in applications. We tested four different cooling

rates as α = 0.85, 0.90, 0.95, 0.99. The effect of different To’s and α values can be seen in

Table 5.8. Each value shown in the table are averaged over 30 experiments.

Table 5.8 indicates that initial temperature value increase effects positively on the objec-

tive value up to some level. It can be seen that initial temperatures which is more than 250

has worsened the objective value almost all of the problem sizes. Therefore, Ti is set as 250

and used for all of the problem sizes throughout the experiments. We see that the initial

temperature does not significantly effect the CPU time. On the other hand, the increase

in cooling rate, change the CPU time. The increase in cooling rate leads to slow cooling

which means increase in the iteration number. Moreover, the dominant α level on solution

quality is found 0.95 and set as the cooling rate for all problem size.
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Table 5.8: Preliminary test results for Ti and cooling rate ”α” setting

α = 0.85 α = 0.90 α = 0.95 α = 0.99

Problem Size Ti Cost Runtime Cost Runtime Cost Runtime Cost Runtime

10x10

100 2708 0,04 2682 0,04 2638 0,05 2625 0,08

250 2626 0,04 2632 0,04 2624 0,05 2624 0,08

500 2624 0,05 2624 0,04 2625 0,06 2659 0,10

1000 2632 0,05 2624 0,04 2624 0,06 2633 0,12

20x20

100 5113 0,04 5092 0,04 4795 0,07 4805 0,35

250 5013 0,03 4820 0,04 4591 0,07 4838 0,35

500 5046 0,03 4932 0,05 4758 0,07 5444 0,45

1000 5127 0,04 4897 0,05 4860 0,08 5832 0,45

50x50

100 15815 0,62 15768 0,98 14967 1,55 15403 7,52

250 15748 0,64 15431 1,02 14686 1,99 15973 9,67

500 16670 0,59 17835 0,98 16839 2,02 16855 9,83

1000 18195 0,61 18099 1,22 17982 2,24 18122 13,45

75x75

100 24456 0,98 23941 1,75 23584 3,82 24319 15,52

250 23579 1,21 24416 2,11 23358 3,98 24724 18,34

500 24888 1,28 25058 2,32 25995 4,13 26598 19,16

1000 26241 1,37 26244 2,64 27920 5,30 28075 25,21

100x100

100 34361 1,91 33744 3,20 32750 6,40 32841 32,80

250 33787 2,23 34218 3,20 34063 6,90 33604 35,30

500 35291 2,50 33505 3,90 36329 7,20 36995 41,20

1000 37021 2,53 37750 4,10 38781 8,90 38014 48,40

The number of maximum iterations (Nrep) at each temperature is imposed to limit

the time spend at very low temperatures. The iteration numbers are chosen with respect

to length of the solution representation (L). Thus, Nrep number is unique for each of the

problem sizes. The effect of the three different Nrep values are shown at table 5.9.

From Table 5.9, it can be observed that the increase in nrep number, results in an in-

crease on computational times. Moreover, this increase also yield slightly better results in

terms of objective function values. Therefore, L/2 which represents the half of the solution

representation is selected as the nrep for all problem sizes.

The stopping condition of the system is expressed in terms of the final value of temper-
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Table 5.9: Test results for Nrep settings

L/10 L/5 L/2

Problem Size Cost RunTime Cost RunTime Cost RunTime

10x10 2627 0,02 2624 0,02 2624 0,03

20x20 4701 0,07 4690 0,13 4934 0,28

50x50 15797 0,54 15706 0,92 15297 1,78

75x75 24891 1,36 25266 2,93 24898 5,42

100x100 34908 3,36 34982 6,13 34346 16,43

ature up to this point. However, we also tested two different stopping condition to see the

effects on objective value. The total number of iterations performed and maximum number

of consecutive iterations while best solution does not improve. The parameters for stopping

conditions can be seen in Table 5.10.

According to the preliminary test results, stopping condition with maximum number

of iterations gives slightly better result than maximum number of non-improving iteration

number despite the fact that it consumes more time. Moreover, it is clear that the increasing

number of iterations, yields an increase in CPU time but it does not provide better cost

values at all time. Therefore, we selected best number of iterations which gives the most

effective objective values for each of the problem size. The stopping condition values which

used for the rest of the experiments are shown in Table 5.11

The final parameter values selected for SA heuristic are summarized in Table 5.12 .

The parameters used for all instances and problems sizes throughout the computational

experiments.
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Table 5.10: Preliminary test results for stopping condition setting

Maximum iterations Maximum non-improving iterations

Problem Size Iteration # Cost Runtime Iteration # Cost Runtime

10x10

500 2630 0,02 250 2630 0,02

1000 2624 0,03 500 2624 0,03

2000 2624 0,04 1000 2624 0,04

20x20

1000 5092 0,14 250 5102 0,11

2000 4839 0,32 500 4923 0,15

4000 4892 0,48 1000 5080 0,43

50x50

2500 14882 1,11 250 15782 0,62

5000 15332 2,14 500 15420 0,70

10000 15763 4,32 1000 15448 0,91

75x75

3500 24206 4,23 500 25068 2,18

7000 23588 7,07 750 24440 2,76

15000 24822 12,25 1500 24242 3,67

100x100

5000 35032 10,78 1000 35185 6,13

10000 34707 17,82 1500 35102 9,34

20000 34024 38,21 2000 34734 14,92

5.3 Computational Results

In this section, results of the numerical experiments are explained in terms of solution quality

and computational run time. The solutions of the exact, piecewise and heuristics solutions

are compered for small size problems. Moreover, current distribution system which is ex-

plained in Chapter 3 is also studied and total system costs are compared with the proposed

system costs.

For the mid-size problems, lower bound of the piecewise approximation solution is used

for comparing the efficiency of the heuristics solutions. The percentage deviation of ob-

jective function from lower bounds is used as a performance parameter for each problem

instance. The performance of the heuristics algorithm evaluated by using the best, average

and worst solution of the objective function values obtained by SA-SCNDP algorithm over

30 experiments. The deviation from LB is calculated as follows.
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Table 5.11: Final values used as stopping condition

Problem Size Max. # of iterations

10x10 1000

20x20 2000

50x50 5000

75x75 7000

100x100 10000

Table 5.12: Final value of parameters in SA-SCNDP

Ti 250

Tf 0.01

cooling schedule Tk+1 = αTk, α = 0.95

maximum replication number (Nrep) L/2

%deviation =
ObjectiveV alue− LB

ObjectiveV alue
(5.2)

Lastly, computational results and effect of parameters on test instance are shown in large

size problems. Since, the exact and approximate methods do not provide optimal or lower

bound solutions for large size problems, comparison is made between the current system

costs and proposed cost which is calculated as:

%difference =
CurrentSystemCost−ObjectiveV alue

CurrentSystemCost
(5.3)

5.3.1 Results

Firstly, we try to solve all problem sizes for instance one by applying three solutions methods

that we mentioned earlier. All parameters’ levels are selected as medium in instance one as

it shown in parameters setting (Table 5.1). Solutions obtained by the exact, piecewise and

best solution of heuristic algorithm is represented in Table 5.13. The best solution of the

heuristic algorithm is found after 30 replications. For problem size 50 and more, we applied

8 hour time limit for exact and approximate solution methods.
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Table 5.13: Test Results for Instance 1

Current System Exact Solution Piecewise Method Heuristic Solution

Problem Size Cost Cost CPU time LB GAMS Cost Actual Cost CPU time Cost CPU time

10x10 2865,19 2624,67 3240 2624,67 2624,67 2624,67 32,49 2624,67 0,03

20x20 5658,00 - - 4055,65 4473,86 4473,86 7200 4463,09 0,21

50x50 23607,73 - - 9532,82 14838,42 15274,07 28800 14204,24 1,63

75x75 39232,07 - - - - - 28800 22846,87 7,12

100x100 57446,91 - - - - - 28000 31195,36 27,23

As we mentioned earlier, system costs of the current distribution network is theoretically

calculated to compare with the proposed new system. The related costs with the current

system includes the inventory holding costs of the all hospitals, the weekly routing costs,

replenishment vehicle costs and variable costs. First column of table above represents the

total current system costs for all problem sizes for instance 1.

Exact solution method is able to solve our problem optimally only for problem size

10x10. For the medium and large sized problem instances we use piecewise and heuristic

methods to find solutions. As results of 10x10 problem indicates, exact method is the slow-

est method in terms of CPU time. On the other hand heuristic solution found same optimal

solution less than 1 second.

As it can be seen, piecewise approximation has three solution representation (LB, GAMS

and Actual) which GAMS and Actual gave the same results for 10x10 and 20x20 problem

size. When we solve the problem in Cplex solver, it gives best possible and final solution

which construct LB and GAMS solution in our table. Then, we manually recalculate the

safety stocks to find actual inventory costs to use in our solution rather than using approx-

imate costs. However, for 10x10 and 20x20 problem size, model opens only one LBB as an

optimal solution. Therefore, approximation methods estimates safety stock values precisely

rather than giving an approximate value which is less than actual cost. Moreover, the dif-

ference between actual and gams can be seen for 50x50 problem size which is also prove our

claim that the piecewise approximation is a LB to actual cost. As the problem size is in-

creased further, piecewise methods begins to fail and not able to find solutions. In terms of
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CPU time, approximation gives faster solutions than exact but slower than heuristic method.

Table 5.13 indicates that the heuristic solution is the only method which solves the prob-

lem with all problem sizes in a reasonable time. In terms of computational results, heuristics

manage the find optimal solution for 10x10 and find better solutions than then piecewise

approximation for 20x20 and 50x50 problem size. Furthermore, for the problem size 75x75

and 100x100, heuristic is the only method which give solution for this instance. There-

fore, comparison between current system and proposed system is made by using heuristic

method’s solution. The improvements achieved at every problem size for instance one is

shown in Table 5.14.

Table 5.14: Cost Improvements % of the Proposed Network Model

Current System Proposed System

Problem Size Cost Cost % Imp.

10x10 2865,19 2624,67 8,39%

20x20 5658,00 4463,09 21,12%

50x50 23607,73 14204,24 39,83%

75x75 39232,07 22846,87 41,76%

100x100 57446,91 31195,36 45,70%

As table above indicates, cost improvements are achieved by using the proposed model.

The improvement percentage increases as the problem size increase. Thus, we conclude that

risk pooling advantage for this problem greater than the cost disadvantage caused by the

daily routing for this instance. Cost improvements change from 8,39% to 45,70%.

Lastly, in Table 5.15, hospitals which are selected as a blood bank and the number of

hospitals assigned to opened LBBs of the best solutions are presented. The results show us

that the number of LBB increases as the number of hospitals increase. In 10x10 and 20x20

sized problems, only one hospital is selected as a LBB and all other hospitals assigned to this

LBB. The assumption of each route served by a one daily vehicle makes problem possible to

serve 19 hospitals in a daily route. In 50x50 sized problem, problem is solved with heuristic

method and three hospitals are selected as LBB and on average 15 hospitals are assigned
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to one LBB. For 75x75 and 100x100 sized problems, 6 and 11 LBBs are located. In these

solutions, some of the LBBs are selected without hospitals assignments due to their high

demand or their location with respect to main blood bank and other hospitals.

Table 5.15: Blood bank and Hospital Assignments

Problem Size # of opened hospitals LBB # of hospitals assigned to LBB

10x10 1 Hospital 2 9

20x20 1 Hospital 19 19

50x50 3

Hospital 19 16

Hospital 28 13

Hospital 42 18

75x75 6

Hospital 16 8

Hospital 30 12

Hospital 31 13

Hospital 43 18

Hospital 63 18

Hospital 71 0

100x100 11

Hospital 2 1

Hospital 15 24

Hospital 23 1

Hospital 24 15

Hospital 30 9

Hospital 42 19

Hospital 58 1

Hospital 60 4

Hospital 68 15

Hospital 71 0

Hospital 88 0
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5.3.2 Sensitivity Analysis of parameters

In data generation, we introduce 13 different problem instance. All instances are created

by keeping all parameters of the original setting (instance 1) same and change only one

parameter value as high or low to create new instance.(Table 5.1) To examine the effects

of different parameter levels, we tested all problem size with 13 instances and presented

difference of solutions methods and differences of current and proposed system costs.

Since the commercial solvers are able to solve MINLP optimally for small size problems

(10x10), we use the problem instances of the small size problem to compare the exact, piece-

wise approximate and heuristics solution methods. The table 5.16 represents the objective

value (costs) of the proposed system and the CPU time in terms of seconds.

Table 5.16: Optimal Solutions of 10x10 Problem Size

Current System
Proposed System

Exact Solution Piecewise Method Heuristics Solution

Instances Cost Cost CPU time Cost CPU time Cost CPU time

1 2865,19 2624,67 3240 2624,67 32,49 2624,67 0,03

2 2996,26 3352,78 7260 3352,78 58,81 3352,78 0,03

3 2725,41 2260,62 3120 2260,62 29,37 2260,62 0,03

4 6543,13 4274,99 3582 4274,99 33,91 4274,99 0,03

5 1573,21 2074,56 9960 2074,56 76,18 2074,56 0,03

6 2865,19 2924,67 2178 2924,67 15,06 2924,67 0,03

7 2865,19 2474,67 16860 2474,67 148,77 2474,67 0,03

8 4071,19 3175,85 1197 3175,85 37,16 3175,85 0,03

9 1576,93 2075,26 4005 2075,26 31,12 2075,26 0,03

10 5142,55 3897,98 708 3897,98 29,75 3897,98 0,03

11 1661,03 1088,69 2477 1088,69 53,46 1088,69 0,03

12 3282,92 2831,54 3566 2831,54 33,13 2831,54 0,03

13 2600,06 2529,21 3045 2529,21 28,59 2529,21 0,03

As it can be seen from the Table 5.16 all of the methods solve the problem optimally for

all of the instances. However, the computational time causes the main difference between

the methods. Exact method which is found by using GAMS Baron solver is the slowest

method among them. The CPU time of this method varies from 20 minute to 5 hour de-
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pending on the problem instances. On the other hand, piecewise approximation method

which is constructed by eliminating the non-linear terms of the MINLP gives faster solutions

than exact method. One can expect that there should be a difference between exact and

approximate method in terms of cost but for this problem size model opens only one LBB.

Therefore, approximation model estimates safety stock value precisely rather than giving a

approximate value. Lastly, we observe that heuristic solutions solve problem faster than all

of other methods. CPU time shows that it solve the problem less than 1 second.

Another comparison is made between the solution of the proposed model and current

system. As you can see from table5.17, proposed model gives better costs than the current

system for the 7 of the 13 instances. For the instance 2, 5, 6 and 9, it would be wise the stay

with the current system and do not open any LBB. Since, our model force to open LBB,

cost associated with this four instance is higher than the current system. The comparison

results also show us that for problem size 10x10, high routing cost, low inventory holding

cost, high LBB location cost and low variance structure makes the proposed model worse

than the current system. Because, cost savings from inventory aggregation are not better

than the daily routing cost and LBB opening cost increase.

The computational complexity of the problems increases due to the increasing problem

size. As mentioned above tables, exact methods are struggling even for the small size prob-

lems when we compare to approximation and heuristics methods. Thus, we are unable to

use exact method for medium and large size problems to find solutions. Therefore, we begin

to use lower bounds by using the approximation method and compare the quality of the

solutions obtained by heuristics solutions. Table 5.18 represents the Lower bounds found

by GAMS Cplex with 2hr time limit and the heuristic solutions for problem size (20x20).

Heuristic solutions are shown as the best, average and the worst solutions of 30 replications

for each instance. Furthermore, % difference from current system and % deviation from the

lower bounds are shown in Table 5.19 to evaluate the performance of both Piecewise and

Heuristic methods.

According to the results of the Table 5.18, average values of the heuristic solutions is
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Table 5.17: Current vs Proposed Model for problem size 10x10

Current System Proposed System

Instances Cost Cost % Difference

1 2865,19 2624,67 8,39%

2 2996,26 3352,78 -11,90%

3 2725,41 2260,62 17,05%

4 6543,13 4274,99 34,66%

5 1573,21 2074,56 -31,87%

6 2865,19 2924,67 -2,08%

7 2865,19 2474,67 13,63%

8 4071,19 3175,85 21,99%

9 1576,93 2075,26 -31,60%

10 5142,55 3897,98 24,20%

11 1661,03 1088,69 34,46%

12 3282,92 2831,54 13,75%

13 2600,06 2529,21 2,72%

better than the solutions of the Piecewise methods obtained in two hours for the most of

the instances. The best solutions found in 30 replications of the heuristic algorithm also

indicates that the heuristic’s best solutions are superior than the piecewise methods almost

for all instances. Moreover, the worst solutions found by heuristic is not too far from the

piecewise solutions. On the other hand, heuristics algorithm did not find better values than

the lower bound found by piecewise method in any of the instances. In terms of the com-

putational time, we clearly see that heuristic algorithm provide fastest solutions. The time

spent to find a solution for 20x20 size problem is always below one second for all instances.
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When we compare the solutions of heuristic and piecewise method with the current

system costs, we see that proposed model is better than the current for the nine of the

instances. Current system still better off in some cases such as routing cost is high, inventory

holding cost is low, standard deviation of average weekly demand is low and the average

weekly demand is low. The performance of the proposed system can be observed from

table 5.19 more easily. For the instance one which all of parameter levels are medium,

proposed model is better %20,929 than the current according to piecewise solution. As it

can be recall from Table 5.17 the difference between current and proposed was %8,39 for

10x10 problem sized and when we look at the best solution of the heuristic algorithm, the

percentage increases and %21,119. Therefore, we can conclude that with the current cost

parameters, proposed model is better than current system. Furthermore,we conclude that

cost savings increases with the increasing problem size.

Table 5.19: Performance of Piecewise and Heuristics methods for problem size 20x20

% Difference from Current System Cost % Deviation from Lower Bound

Instance Piecewise Method
Heuristic Solution

Piecewise Method
Heuristic Solution

Average Best Worst Average Best Worst

1 20,929% 19,383% 21,119% 11,625% 9,348% 11,086% 9,129% 18,891%

2 -35,003% -10,345% -4,371% -12,460% 39,538% 26,027% 21,792% 27,418%

3 26,577% 29,995% 34,510% 18,144% 15,678% 11,561% 5,463% 24,364%

4 48,172% 47,556% 48,080% 44,455% 6,202% 7,304% 6,368% 12,479%

5 -32,614% -20,597% -14,985% -44,035% 27,390% 20,156% 16,259% 33,148%

6 8,730% 13,862% 15,817% 4,695% 12,677% 7,475% 5,326% 16,374%

7 19,943% 21,481% 23,770% 16,141% 21,245% 19,702% 17,291% 24,816%

8 25,162% 34,457% 35,635% 31,039% 22,622% 11,648% 10,032% 16,028%

9 -52,018% -19,506% -14,836% -28,986% 38,454% 21,710% 18,526% 27,464%

10 35,813% 40,568% 41,827% 33,309% 17,753% 11,172% 9,250% 20,840%

11 -25,882% -17,110% -14,105% -38,416% 26,643% 21,148% 19,071% 33,286%

12 22,290% 24,715% 27,730% 19,115% 17,714% 15,064% 11,521% 20,944%

13 13,743% 14,488% 17,186% 6,401% 15,121% 14,381% 11,592% 21,779%

The best cost improvement can be seen in instance 4 which is the case that inventory

holding cost is triple of the medium level. On the other hand worst difference is observed

in instance 9 which the standard deviation of average weekly demand is at low level. Thus,



Chapter 5: Computational Studies 64

we conclude that the holding cost is the most effective indicator that determines the per-

formance of proposed system for the problem.

The performance of the heuristic algorithm with respect to lower bounds are also shown

in Table 5.19. Again for the instance 1, heuristic algorithm’s best solution is % 9,129 away

from the LB whereas the piecewise solution is %9,348 away. On the other hand worst and

average solution of the heuristic is worst than the piecewise solution. The minimum gap

between LB and best of heuristic is obtained for instance 6 which is %5,326 away whereas

piecewise solution is % 12,677 away from the optimal. On the other hand, greatest gap

is seen in instance 2 with % 21,792. When, we consider all of the instances together, on

average piecewise solutions are %21, best of the heuristics are %12,60 , average of heuristics

% 15,36 and worst of the heuristics are %23,19 away from the LB.

The model is also solved for the 50x50, 75x75 and 100x100 problem size by using SA-

based heuristic algorithm. The performance of them model is evaluated by comparing the

cost of the current system with the best solution found after 30 replications of heuristic

solution. As Table 5.20 presents, proposed system is better than current in all of the

instances. In 50x50 improvements range from 14,59% to 59,12%. Improvement percentage

improves as the number of hospitals in the system increase as it seen from the table below.



Chapter 5: Computational Studies 65

T
ab

le
5
.2
0
:
T
es
t
R
es
u
lt
s
fo
r
5
0
x
5
0
,
7
5
x
7
5
a
n
d
1
0
0
x
1
00

5
0
x
5
0
P
ro
b
le
m

S
iz
e

7
5
x
7
5
P
ro
b
le
m

S
iz
e

1
0
0
x
1
0
0
P
ro
b
le
m

S
iz
e

C
u
rr
en

t
S
y
st
em

P
ro
p
o
se
d
S
y
st
em

C
u
rr
en

t
S
y
st
em

P
ro
p
o
se
d
S
y
st
em

C
u
rr
en

t
S
y
st
em

P
ro
p
o
se
d
S
y
st
em

In
st
a
n
ce

C
o
st

C
o
st

%
D
iff
er
en

ce
C
o
st

C
o
st

%
D
iff
er
en

ce
C
o
st

C
o
st

%
D
iff
er
en

ce

1
2
3
6
0
7
,7
1

1
4
2
0
4
,2
2

3
9
,8
3
%

3
9
2
3
2
,0
7

2
2
8
4
6
,8
7

4
1
,7
6
%

5
7
4
4
6
,9
1

3
1
1
9
5
,3
6

4
5
,7
0
%

2
2
4
7
4
7
,1
4

1
7
5
9
0
,9
1

2
8
,9
2
%

4
1
5
5
6
,9
5

2
8
3
3
8
,2
8

3
1
,8
1
%

6
0
9
0
3
,7
1

3
8
1
1
7
,3
2

3
7
,4
1
%

3
2
3
0
3
8
,0
0

1
2
1
3
7
,4
2

4
7
,3
2
%

3
8
0
6
9
,6
4

2
1
3
9
6
,7
2

4
3
,8
0
%

5
5
7
1
8
,5
2

3
0
5
5
1
,7
9

4
5
,1
7
%

4
5
7
2
5
5
,1
1

2
3
4
0
8
,5
7

5
9
,1
2
%

9
5
1
4
3
,6
7

4
1
5
3
0
,4
2

5
6
,3
5
%

1
4
0
4
1
0
,3
6

5
6
7
3
8
,9
3

5
9
,5
9
%

5
1
2
3
9
1
,9
2

1
0
5
8
3
,8
6

1
4
,5
9
%

2
0
5
9
4
,8
8

1
7
6
4
5
,3
2

1
4
,3
2
%

2
9
7
9
2
,4
4

2
5
0
2
9
,5
3

1
5
,9
9
%

6
2
3
6
0
7
,7
1

1
6
1
2
5
,2
5

3
1
,6
9
%

3
9
2
3
2
,0
7

2
8
3
8
9
,2
4

2
7
,6
4
%

5
7
4
4
6
,9
1

3
3
3
9
3
,0
2

4
1
,8
7
%

7
2
3
6
0
7
,7
1

1
3
9
5
0
,8
6

4
0
,9
1
%

3
9
2
3
2
,0
7

2
2
9
1
7
,9
4

4
1
,5
8
%

5
7
4
4
6
,9
1

3
2
9
2
2
,1
2

4
2
,6
9
%

8
3
4
8
8
4
,9
0

1
8
3
4
0
,0
8

4
7
,4
3
%

5
7
9
4
7
,3
9

2
9
0
5
5
,3
1

4
9
,8
6
%

8
5
2
1
3
,0
0

3
9
1
4
8
,6
1

5
4
,0
6
%

9
1
2
3
9
7
,5
0

1
0
3
5
0
,8
9

1
6
,5
1
%

2
0
6
0
0
,4
6

1
6
6
2
2
,1
8

1
9
,3
1
%

2
9
7
9
8
,0
2

2
3
8
9
3
,5
4

1
9
,8
2
%

1
0

4
6
5
5
7
,8
0

2
4
2
9
3
,6
3

4
7
,8
2
%

7
7
4
1
4
,4
6

3
9
8
2
9
,1
5

4
8
,5
5
%

1
1
1
9
1
7
,7
4

5
4
7
9
8
,7
7

5
1
,0
4
%

1
1

1
2
1
8
0
,9
7

1
0
0
8
2
,4
6

1
7
,2
3
%

2
0
4
1
8
,8
1

1
5
5
5
7
,2
2

2
3
,8
1
%

3
0
5
1
6
,4
6

2
2
1
3
6
,0
9

2
7
,4
6
%

1
2

2
7
8
2
5
,4
1

1
6
5
7
4
,0
5

4
0
,4
4
%

4
6
3
0
9
,4
3

2
5
9
6
1
,4
6

4
3
,9
4
%

6
8
2
4
2
,0
8

3
4
5
8
0
,8
8

4
9
,3
3
%

1
3

2
1
6
6
1
,2
4

1
3
5
7
3
,8
6

3
7
,3
4
%

3
6
0
6
6
,4
8

2
1
9
1
6
,6
5

3
9
,2
3
%

5
3
0
4
3
,2
5

3
1
4
9
2
,2
1

4
0
,6
3
%



Chapter 5: Computational Studies 66

Moreover, we analyze the effect of the parameters on the total cost by using the problems

instances setting which we showed in Table 5.1. The total cost of the current system and

proposed system is analyzed by using the 50x50 problem size. Figure 5.1 and 5.2 presents

the cost structures.

Figure 5.1: Bar Chart Graph of Current System Costs for 50x50 Problem Size

As it seen from above figure, the total cost of the current system is composed of four main

cost components including replenishment truck owning cost, variable cost, inventory cost

and weekly routing costs. Since daily routing cost in current system is not considered and

there is no need for LBB establishment, facility cost and daily routing cost is set 0 for all of

the instances in current system. On the other hand, in proposed model, all of the six cost

components are included in total system cost.

In instance 1, we set all parameter levels as medium and inventory, variable, truck own

and weekly route cost becomes % 70,91, % 16,94, % 6,85 and % 5,30 of the current total

cost respectively. However, in proposed model, inventory cost becomes % 39,46, variable

cost %28,30, daily routing cost % 19,51, facility cost % 8,45, truck owning cost %2,29 and

weekly route cost %2,00 of the total cost. As expected, inventory cost which is the main

cost component of the system, decreases when we change our decentralized structure to

more centralized structure by LBBs are holding inventory instead of hospitals. The weekly
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routing and truck owning cost are also diminished since we use less replenishment trucks

and only couple of LBB in a weekly routes instead of all hospitals. Despite the fact that,

percentage of variable cost increases,in reality variable cost remain same. Since the variable

cost directly related with the total demand of the system and not changed, decrease in total

system cost lead an increase in variable cost percentage. Finally, as explained facility cost

and daily routing costs emerge with the new system.

Figure 5.2: Bar Chart Graph of Proposed System Costs for 50x50 Problem Size

When we consider all of the instances, inventory cost ranges between 45-87%, variable

cost 7-32% , truck owning 3-13% and weekly routing cost 2-10% as the percent of total cost

in current system structure. On the other hand, in proposed model, inventory cost range

between 18-52%, variable cost 17-38%, daily routing cost 9-32%, facility cost 3-15%, truck

owning 2-3%, and weekly routing cost 1-3% as the percent of the total cost. The percentage

of the total cost components for all of the instances can be seen in Appendix.
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

Supply chain network design problems traditionally have strategic, tactical and operational

decision levels. These decisions mainly include facility locations, size of the facilities, pro-

curement and distribution of items, daily shipments etc. In literature, this decisions have

been studied in different sub-problems such as facility location, LRP, IRP and VRPs.

In this study, we aim to integrate these three different decision levels and design a com-

plex supply chain network for blood distribution in Istanbul. In proposed model, we modeled

a mixed integer nonlinear programming model that finds optimal number and locations of

LBBs, assign hospitals to open LBBs, decide safety stock levels in opened LBBs and routes

weekly and daily distributions together. The objective of our model is to minimize total

system costs which include fixed cost of locating a LBB, cost of owning weekly replenish-

ment vehicles, inventory costs at LBBs, variable cost of per unit passes through a LBB

and transportation cost of weekly and daily deliveries while satisfying the pre-determined

customer service level. Our problem differentiated from classical SCNDP by the integration

of location, allocation, inventory and routing decisions are done together. Moreover, instead

of having a couple of potential hospitals or LBB zones, all of the hospitals in problem can

be selected as LBB. Therefore, our model is more complex and different than the problems

seen in literature and strongly NP-hard.

We use three different methods to solve our model. Firstly, we use exact and piecewise-

approximation methods by using commercial solves like GAMS Baron and CPLEX. We

realized that exact methods can only solve the small size problem instances. Therefore,

we modify non-linear terms of the model and apply an piecewise approximation to find

lower bounds and approximate solutions. Furthermore, we provide a simulated annealing
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based heuristic (SA-SCNDP) to solve the model for mid and large size problem instances.

The SA-SCNDP use four consecutive phase, initialization, location-allocation, weekly route

improvement and daily route improvement to find optimal/near optimal solutions to the

problem.

The performance of the SA-SCNDP heuristic are evaluated at three level with com-

putational experiments. At first optimal solutions found by exact methods are compared

with the Heuristic algorithm. Since, problem was not studies before, we don’t have avail-

able data for the problem. Therefore, we generate new data set which can also be used in

further studies. Computational study show that our heuristic solve the problem optimally

for small-size problems of 11 instances and much faster than the exact methods. Then,

for mid-size problems best-worst and average solutions obtained by heuristic is compared

with the lower bounds found by the piecewise approximation method. Results indicate that

heuristic solutions are better than the piecewise solutions for almost all of instances. Finally,

for large size problems effects of parameters are examined in terms of the components of

total system costs for current distribution network and proposed distribution network.

In summary, we manage to model a complex supply chain network for blood distribution

that integrates facility location, allocation, inventory decisions and routing decisions. We

solve the MINLP model by using GAMS and heuristic methods. The SA-based heuristic al-

gorithm provide optimal and near optimal solutions in less than 1 minute. The framework of

the blood distribution system which we modeled is also applicable with some modifications,

to optimization of other supply chain network problems.

6.2 Future Research

The proposed model studied in this thesis is a relaxed distribution network which is suitable

for real-word applications. There are many assumptions which is mentioned in chapter 3.

One of them is the average weekly blood demands of the hospitals which considered de-

terministic and assumed as known. The problem with stochastic demand and uncertainty

would be a good case for further studies and more suitable for real-life cases.
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The SA based heuristic solution obtained optimal and good solutions for small and mid

size problems but we cannot test or compare the success of the algorithm for large problem

size. Therefore, new heuristic algorithms like tabu search (TS), genetic algorithm (GE),

ant colony optimization (ACO) or variable neighborhood search (VNS) can be applied to

obtain different solutions than our findings. Alternatively, approximation techniques which

gives better lower bounds for mid and large problem size may be found for further studies.
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Appendix A

Table A.1: Weekly Demands for Node 10 Problem

Hospitals High Demand Medium Demand Low Demand

1 800 400 200

2 56 28 14

3 122 61 31

4 84 42 21

5 182 91 46

6 80 40 20

7 200 100 50

8 36 18 9

9 320 160 80

10 352 176 88

Table A.2: Standard Deviation of Weekly Demands for Node 10 Problem

Hospitals
High Demand Std.Dev Medium Demand Std.Dev Low Demand Std.Dev

H M L H M L H M L

1 200 120 40 400 240 80 100 60 20

2 14 8 3 28 17 6 7 4 1

3 31 18 6 61 37 12 16 9 3

4 21 13 4 42 25 8 11 6 2

5 46 27 9 91 55 18 23 14 5

6 20 12 4 40 24 8 10 6 2

7 50 30 10 100 60 20 25 15 5

8 9 5 2 18 11 4 5 3 1

9 80 48 16 160 96 32 40 24 8

10 88 53 18 176 106 35 44 26 9
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Table A.3: Main Blood Bank and Hospital Locations & Medium Level Demands

Hospital Latitude Longtitude Demand (M) Hospital Latitude Longtitude Demand (M)

0 41,015144 29,024942 0 51 40,918969 29,308176 111

1 41,007302 29,043303 400 52 41,017909 29,169838 457

2 41,019947 29,034559 28 53 41,025006 29,058409 212

3 40,976399 29,123383 61 54 40,84836 29,294363 469

4 41,023893 29,104468 42 55 40,866964 29,267766 576

5 41,023686 29,039419 91 56 41,011709 29,135789 139

6 40,963729 29,097784 40 57 40,98682 29,099242 883

7 40,996031 29,045362 100 58 41,117553 29,098341 255

8 41,0249 29,084555 18 59 41,004152 29,025139 73

9 41,020926 29,044247 160 60 41,0054 29,02123 222

10 40,98074 29,077699 176 61 41,015879 29,037911 105

11 40,907302 29,159968 58 62 40,97004 29,103277 419

12 41,004678 29,03487 100 63 40,915848 29,172285 46

13 40,988605 29,026619 42 64 41,00912 29,036848 109

14 40,995091 29,04283 65 65 41,018523 29,04666 412

15 40,890645 29,177842 60 66 40,950047 29,138815 84

16 40,920777 29,137588 30 67 40,877725 29,228822 147

17 40,879646 29,261506 395 68 41,01223 29,041647 108

18 40,987997 29,061778 109 69 40,925358 29,134462 239

19 40,997618 29,032896 111 70 40,965345 29,265737 100

20 40,900993 29,16736 94 71 41,17474 29,616924 194

21 40,878754 29,236658 177 72 40,976044 29,082843 310

22 41,024099 29,084126 109 73 40,975203 29,085389 181

23 41,025928 29,021888 84 74 40,985768 29,066211 627

24 40,963146 29,084437 396 75 40,949191 29,140358 164

25 40,883101 29,236057 28 76 40,916347 29,170444 213

26 41,006816 29,07285 35 77 41,118048 29,098794 187

27 41,021444 29,119906 481 78 40,946495 29,143907 575

28 40,946438 29,125158 353 79 40,918669 29,220479 1092

29 40,945644 29,125528 125 80 40,848245 29,305687 857

30 41,052415 29,076219 161 81 41,033115 29,102955 404

31 40,982619 29,064943 27 82 40,969757 29,10333 323

32 40,976885 29,093299 776 83 40,880587 29,237183 111

33 40,969343 29,257801 825 84 40,825038 29,325482 149

34 40,966711 29,269617 525 85 40,816174 29,271615 304

35 40,909896 29,203001 881 86 41,002427 29,019313 282

36 40,970559 29,260164 14 87 40,979015 29,133092 166

37 40,883775 29,244404 33 88 41,142742 29,369588 10

38 40,91031 29,138875 241 89 41,00326638 29,0641525 358

39 41,027134 29,1151 140 90 40,97661088 29,08107875 38

40 41,028559 29,114006 79 91 40,93506613 29,14496925 466

41 41,025378 29,02104 186 92 40,977077 29,10874375 234

42 40,941381 29,129112 9 93 40,971759 29,1688215 549

43 40,98181 29,04179 102 94 40,97111325 29,13306138 147

44 41,009309 29,036817 661 95 40,98482575 29,11617013 80

45 40,966143 29,10332 81 96 40,961579 29,17846613 261

46 41,008807 29,212046 84 97 41,0031015 29,07428413 160

47 40,884022 29,243937 564 98 40,991636 29,18873938 471

48 40,990297 29,077742 254 99 41,0052295 29,17560875 182

49 41,021323 29,119563 264 100 40,90476 29,21382975 461

50 41,016895 29,094146 174
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