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ABSTRACT 

 

Proteins are dynamic biological molecules that play important roles in cells. They may adopt 

many conformations influenced by short and long range interactions. In the random coil state, 

only short range (local) interactions are accounted. It is possible to analyze the random coil state 

of proteins using the methods of polymer chain statistics. 

The unfolded state of proteins consists of enormous number of random configurations. 

Furthermore, proteins adopt many different conformations under denaturing conditions. Also, the 

intrinsically disordered proteins that do not assume a stable, unique 3D structures display 

characteristics of random coils. Hence, it is important to have a full understanding of random coil 

states. 

A statistical analysis of thermodynamic functions such as conformational free energy, mean 

energy, entropy and heat capacity is given to characterize the random coil state. The approach is 

based on the rotational isomeric states model that is developed for polymer theory. The explicit 

expressions for the thermodynamic properties are derived. 

Several computational studies for predicting peptide conformations exist in the literature. 

However, most of the existing work is confined to secondary structure prediction. An approach 

for determination of the high probability conformations of peptides in the random coil state is 

lacking in the literature although some studies provide prediction of the most probable state for 

each residue of a chain. We present a novel scheme that considers a probability distribution that 

may provide a detailed analysis of the conformation space by sampling. Since this is the first 

approach that provides high probability conformations of peptide sequences, we have compared 

our results by calculating prediction accuracies for the most probable states of residues. Our 

approach gives 9% better predictions than the existing ones based on the most probable states of 

the residues. 

Since proteins are dynamic structures, it is important to characterize them both structurally and 

dynamically to have a complete understanding. We present a computational method to analyze 
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conformational transitions of the twenty amino acids based on MD simulations and the DRIS 

model. The relaxation times are identified and presented for the twenty amino acids. Our results 

are in good agreement with experimental data. 
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ÖZET 

Proteinler hücrelerde önemli rollere sahip dinamik biyolojik moleküllerdir. Kısa ve uzun 

aralıklı etkileşimlerden etkilenerek birçok yapı edinirler. Rastgele sarım halinde yalnızca kısa 

aralıklı (lokal) etkileşimler sorumludur. Proteinlerin rastgele sarım halini polimer zincirlerin 

istatistiği yöntemlerini kullanarak incelemek mümkündür.  

Proteinlerin katlanmamış hali muazzam sayıda rastgele yapıdan oluşur. Ayrıca, proteinler doğal 

yapılarını bozan şartlar altında birçok farklı yapı edinir. Aynı zamanda, sabit ve eşsiz bir üç 

boyutlu yapısı olmayan özünde düzensiz proteinler rastgele sarım karakteristiği gösterir. Bu 

nedenle, rastgele sarım hallerinin tam anlaşılması önemlidir. 

Rastgele sarım hallerini karakterize etmek için yapısal enerji, ortalama enerji, entropi ve ısı 

kapasitesi gibi termodinamik fonksiyonların istatistiksel analizi verilmiştir. Bu yaklaşım polimer 

teorisi için geliştirilmiş olan dönel izomeric haller modeline dayanır. Termodinamik özellikler 

için açık ifadeler elde edilmiştir. 

Literatürde peptid yapılarını tahmin eden farklı hesaplamalı çalışmalar bulunmaktadır. Ancak, 

mevcut çalışmaların çoğu ikincil yapı tahmini ile sınırlıdır. Birkaç çalışma zincirdeki her bir 

kökün en olası halinin tahminini sağlasa da, rastgele sarım halindeki peptidlerin yüksek olasılıklı 

yapılarını elde eden bir yaklaşım literatürde eksiktir. Örnekleme ile yapı uzayının detaylı 

analizini sağlayabilecek bir olasılık dağılımını ele alan yeni bir plan sunuyoruz. Bunun peptid 

dizilerinin yüksek olasılıklı yapılarını sağlayan ilk yaklaşım olmasından ötürü, sonuçlarımızı 

köklerin en olası halleri için tahmin doğruluğunu hesaplayarak karşılaştırdık. Yaklaşımımız 

köklerin en olası hallerine dayanan mevcut yaklaşımlardan %9 daha iyi tahminler vermektedir.    

Proteinler dinamik yapılar oldukları için tam anlaşılması için hem yapısal hem de dinamik 

olarak karakterize edilmeleri önemlidir. Yirmi amino asidin yapısal geçişlerini analiz etmek için 

MD simülasyonları ve DRIS modeline dayanan hesaplamalı bir yöntem sunuyoruz. Yirmi amino 

asit için gevşeme sürelerini tanımladık ve sunduk. Sonuçlarımız deneysel veri ile iyi uyum 

göstermektedir. 
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Chapter 1  

 

INTRODUCTION 

Proteins have significant roles in cellular function and disease processes. They are dynamic 

structures that assume a large ensemble of conformations around the average structure. It is 

important to analyze both the probabilities of the conformational states and the energy barriers 

between these states to understand proteins. 

Proteins assume different stable states as folded (native), unfolded (random coil), molten 

globule, or pre-molten globule. Different conformations of proteins are characterized by 

backbone torsion angles  ,   of the amino acids of the chain. Some values of the  ,   angles 

are not allowed and some values are more popular than the other values. These preferences are 

different for different types of amino acids.   

 

Figure 1. A schematic quartet model for different states of proteins 

 

 

Protein chains adopt random configurations based on the backbone torsion angles of the 

residues. Configurational preferences of a given residue depend on both local and nonlocal 

interactions. Short-range (local) interactions result from the effects of neighboring residues 

whereas the long-range (nonlocal) interactions result from the non-neighbor residues. In the 
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random coil state, only the near-neighbor effects are taken into account. The term ‘randomly 

coiled proteins’ describing this state has been studied in detail by Flory and collaborators in 

polymer theory [1-7].  

Understanding the random coil state of proteins is important due to several reasons: Firstly, 

the set of random configurations covers all possible initial conformations of proteins. Depending 

on the primary sequence, some conformations emerge as highly probable due to the amino acid 

specific regions of the  ,   angles. Secondly, under strongly denaturing conditions, a wide 

range of values become available to  ,  , and conformations are close to those of the random 

coil [8, 9]. Thirdly, the functionally important ‘intrinsically disordered protein’ concept where the 

primary sequence prohibits the folded state, may suitably be analyzed by the tools used to 

understand the random conformations [10, 11]. 

This dissertation mainly focuses on applications of the rotational isomeric states (RIS) model 

on proteins. The outline of this dissertation is as follows: 

Chapter 2 presents a general review on the RIS model, determination of statistical properties 

of chains based on the RIS model, intrinsically disordered proteins (IDP), hidden Markov model 

and the dynamic RIS model that allows determination of transition probabilities.  

Chapter 3 focuses on a statistical analysis for determination of thermodynamic properties of 

proteins in the random coil state. The availability of several conformations necessitates a 

statistical approach. Conformational free energy, mean energy, entropy and heat capacity 

expressions are derived using the RIS model.  

Chapter 4 demonstrates a computational scheme for finding high probability conformations of 

peptide sequences in the random coil state. The model calculates the probability distribution of 

the torsion states based on the RIS formalism. High probability conformations are then obtained 

by using a hidden Markov model Viterbi algorithm.  

Chapter 5 illustrates a computational method for determination of conformational transitions 

of the amino acids by the dynamic rotational isomeric state (DRIS) model. Local dynamics of 

amino acids resulting from rotational transitions between isomeric states are analyzed. 
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In Chapter 6, the results are discussed and a short summary of major conclusions of the study 

are presented. 
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Chapter 2  

 

LITERATURE REVIEW 

2.1  ROTATIONAL ISOMERIC STATES MODEL 

The statistical description of the denatured states of proteins based on polymer theory goes 

back to the work of Flory and collaborators based on the Rotational Isomeric State (RIS) 

formalism[1]. The RIS model for a protein chain consists of two major components: (1) The 

statistical weights of the torsion states of the ( , )   angles, (2) The proper matrix multiplication 

operations leading to the partition function of the chain. Thermodynamics of a single chain then 

follows upon matrix operations based on the partition function and its derivatives [12, 13].  

The RIS formalism replaces the continuous distribution of backbone torsion angles by a 

distribution over several discrete states, and integrals over the energy surface are approximated 

by summations over these states. 

The native state of a protein is obtained when each torsion angle selects a unique value. Two 

torsion angles around the alpha carbon, C , describe the local conformation of a residue. The 

applicability of the RIS model to proteins is facilitated by the Flory isolated pair hypothesis, 

which suggests that each pair of torsion angles is independent of the angles occupied by 

neighboring pairs[1, 2]. Rose and coworkers investigated the validity of the hypothesis by 

exhaustive enumeration and showed that the isolated pair hypothesis does not hold in general 

[14]. Zaman et al. demonstrated that important interactions between neighboring residues exist 

and thus the hypothesis is invalid [15]. On the other hand, Ohkuba and Brooks confirmed the 

validity of Flory’s hypothesis in the context of helical peptides [16]. Generating a statistical coil 

model, it has been shown that the inclusion of correlations coming from conformations of 

neighboring residues improves the consistence with experimental data [17]. Jha et al. studied the 

intrinsic conformational preferences of residues in a restricted coil library and showed that there 

is a correlation between the conformation and chemical character of neighboring residues and the 

structural preferences [18]. Keskin et al. also studied the conformational propensities of amino 

acids and confirmed the existence of significant correlations between neighboring torsion angle 
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pairs [19]. Esposito at al. indicated that the value of an omega torsion angle is strongly correlated 

with the value of the adjacent psi angle [20]. Colubri et al. studied the contribution of neighbors 

in protein folding by comparing the results of simulations with and without neighbor effects [21]. 

In a recent work it has been shown that the usage of 1( , )i i    provides more information on 

backbone behavior as opposed to independent usage of residues [22]. 

It has been shown that some values of torsion angles are more favorable than others, and 

different amino acid types have different propensities to occur in different angles [23]. The 

dependence between the torsion states of two neighboring residues is a function of the type of the 

residues [19]. We elaborate further on this point in discussing the construction of energy maps. 

2.2  STATISTICAL MECHANICS  

A configuration   of an N-bond chain is defined by torsion angles ( , )   describing the 

torsional rotations of amino acids. If we define the torsional energy when bond 1i   is in state   

and bond i  is in state   as 
; 1,i iE 

, then the configurational energy of the chain for a given 

configuration is  

   12 23 34 1, , 1 2 1,2i i i i N NE E E E E E E            (2.1) 

Here 
1,i iE 

 is the energy corresponding to the joint occurrence of bonds 1i   and i  in their 

respective states where the indices   and   indicating the corresponding states are omitted for 

simplicity. 

Statistical weights for corresponding to the torsional energies is defined by 

 
; ;exp( )i iu E RT    (2.2) 

Statistical weights may be expressed in the form of statistical weight matrix iU  as 

 i i
U u     (2.3) 



 Chapter 2: Literature Review  6 

 

where the 
th  element indicates the statistical weight bond i  is when it is in state  while the 

bond 1i   is in state  . The rows of the matrix represent the states for bond 1i   and the columns 

represent the states for bond i . 

Then, the statistical weight of a configuration    of a chain is calculated a serial 

multiplication of the statistical weights of individual bonds. 

 
  ;i

i

u
   (2.4) 

The statistical weight of a configuration shows the frequency of occurrence in a statistical 

mechanical ensemble at equilibrium.  

The partition function, Z , of the chain is given by 

  
   

;i

i

Z u
 

     (2.5) 

where  the summations are taken over all configurations. Calculation of the partition function 

using this equation would be computationally difficult as the number of bonds increasing. A 

computationally efficient method is using matrix methods. The entire sum of products of 

statistical weights can be determined by matrix multiplication [1, 12, 24].  

The partition function of a chain of N bonds with   number of rotational states is calculated 

by 

 
1

2

N

i

i

Z J U J






 
  

 
  (2.6) 

where J   and J  are the row and column vectors of order 1   and 1   respectively. 

  

1

1
1 0 0 ;     

1

J J

 
 
  
 
 
 

 (2.7) 
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The probability that a given molecule occurs in a given configuration is determined as the 

statistical weight divided by the sum of statistical weights for all possible configurations. Hence, 

 
 

1
1

;

2

N

i

i

p Z u






   (2.8) 

The probability 
;i

p


 that bond i  is in state   is calculated as the quotient of the sum of the 

statistical weights for all configurations for which bond i  is in state  , divided by Z 

 
1 1

1 '

; ;

2 1

i N

i h i j

h j i

p Z J U U U J 

 
 

  

  
   

   
   (2.9) 

where 
'

;iU  is the matrix obtained from iU  by equating all elements to zero except the elements 

of column  . In this way, we keep only the terms satisfying the condition
;i i  . 

The probability 
;ip  that bonds 1i   and i  occur simultaneously in states   and   

respectively is given by 

 
1 1

1 '

; ;

2 1

i N

i h i j

h j i

p Z J U U U J 

 
 

  

  
   

   
   (2.10) 

where 
'

;iU  is obtained by striking all entries of iU  with the exception of 
;iu .  

This matrix multiplication method is also applicable to determination of derivatives of the 

partition function. For example, first derivative of the partition function with respect to 

temperature is  

 
1

;

2

N

T i

i

dZ dT L Û L






 
  

 
  (2.11) 

where  
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0

0 0  and 
0

L J L

J

 

 
 
      
 
 

 (2.12) 

and ;T iÛ  is the super matrix that the elements of which are matrices 

 

'

;
0

T

T i

i

U U
Û

U

 
  
 

 (2.13) 

Here 
'

;T i iU dU dT .  

Similarly, 

 
1

2 2 *

;

2

ˆ
N

T i

i

d Z dT M Û M




 
  

 
  (2.14) 

where 

  0 0 0 0 0 0  and M=column 0 0 0 0 0 0M J J      (2.15) 

 

' ' ''

'

; '

0 0ˆ

0 0

0 0 0

T T T

T

T i

T

U U U U

U U
Û

U U

U

 
 
 
 
 
 

 (2.16) 

Here 
'

;T i iU dU dT  and 
'' 2 2

;T i iU d U dT . 

2.3  INTRINSICALLY DISORDERED PROTEINS 

A protein whose native state has undergone a main change as noncovalent, cooperative or 

reversible is described as a denatured protein. The structural characteristics of denatured proteins 

are directly related to the characteristics of intrinsically disordered proteins (IDP). Disordered 

proteins are described as partially or completely unfolded proteins without a unique native 

structure. IDPs do not have a unique stable three dimensional structure upon crowding and the 
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rapid conversion between multiple states remains [25]. The lack of structure may yield functional 

advantages like easily adapting different conformations and ability of binding to several targets. 

Disordered proteins are observed ubiquitously, ranging from the totally random coil to molten 

globular  [26], or even they may be exchanging conformations between various states such as the 

prion, a protein responsible in the mad cow disease, α-synuclein, a mutated form of which is 

responsible for the Parkinson’s disease, etc (see for example DisProt: the Database of Disordered 

Proteins [27]). For example the disordered α-synuclein takes a partially helical conformation 

when in contact with the cell wall. The transition between the partially unfolded to partially 

helical states is necessary for its function. 

In many cases, disordered proteins switch their conformations from a completely or partially 

disordered conformation to a more ordered structure upon binding. Dunker et al. suggested that 

these disorder-to-order transitions disconnect binding energy (affinity) and the ability to 

discriminate a substrate (specificity) and provide advantage to adapt different binding targets 

[28]. Romero et al. showed that thousands of proteins contain disordered regions supporting the 

idea that function-structure relationships need to be extended to contain unfolded or disordered 

proteins [29]. In the same year, Garner et al. suggested that disordered regions are distinct from 

ordered proteins and thus form a separate category [30]. Wright and Dyson pointed out the 

contributions of disordered structures in cellular functions and suggested that the general 

assumption of the close relation between the protein function and its folded structure should be 

considered again [31]. Uversky et al. analyzed the properties of natively disordered proteins by 

means of hydrophobicity and charge and made it possible to predict if the given protein sequence 

leads to a structured or an unstructured protein [26]. They showed that low mean hydrophobicity 

together with high net charge indicates the lack of structure in proteins. Dunker et al. classified 

and analyzed disorder-function relationships. The observed functions are molecular recognition, 

molecular assembly/disassembly, protein modification, and entropic chain activities [32]. In 

another study, Dunker et al. predicted disorder of proteins based on the amino acid sequence and 

showed the commonness of disorder in protein structure [33]. As a result, they showed that 

eukaryotes have more disordered regions than archaea or bacteria suggesting that unstructured 

proteins are more frequent in complex organisms.  
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Tompa predicted existence of repeat regions in some known unstructured proteins and 

showed that these repeat segments are functionally essential and widely occur in disordered 

proteins [34]. The classification of the functional information of disordered proteins based on the 

Gene Ontology (GO) classification has been given in five functional areas; (i) transcription and 

transcription regulation, (ii) signal transduction and the regulation of cell cycle, (iii) the 

biogenesis and functioning of nucleic acid containing organelles, (iv) messenger ribonucleic acid 

(mRNA) processing, and (v) the organization and biogenesis of cytoskeleton . Also, the 

classification of functional modes of disordered proteins has been given in seven categories; (i) 

entropic chain functions, (ii) display site functions, (iii) chaperone functions, (iv) effector 

functions, (v) scavenger functions, (vi) assembler functions, and (vii) prion functions. 

Gunasekaran et al. gave another argument for existence of large proportion of disordered 

proteins in eukaryotic cells in terms of physical constraints [35]. For protein stability, large 

protein size is needed for having large intermolecular interfaces. However, this would cause some 

critical problems. Hence, by comparing the interface sizes of ordered and disordered proteins, it 

was shown that proteins in their extended states are good solutions for having large interfaces 

with smaller protein sizes. On the other hand, an argument for efficient induced folding 

mechanism of disordered proteins has been given as the preformed elements which enables them 

an easy and fast formation. Fuxreiter et al. proposed a folding model for disordered proteins in 

which the preformed elements provide an advantage for an effective interaction by making the 

first contacts [36]. Tompa and Csermely reviewed high existence of disordered regions in RNA 

and protein chaperones, and their functions in chaperon action [37]. 

Tompa reviewed recent advances in disordered proteins in 2005 [38]. The functional modes 

of disordered proteins such as entropic chains, display sites, chaperons, effectors, assemblers and 

scavengers, and their residual structure that explains specialized modes, and the functional 

advantages provided by flexible structure are given in the review. Also, a functional classification 

scheme of disordered proteins has been given such that the function originates either from 

fluctuations or ability to transiently or permanently bind partner molecules. On the other hand, 

Dyson and Wright reviewed the biological role of intrinsically disordered proteins and discussed 

the importance of folding into an ordered structure upon binding to a target, called as coupled 

folding and binding process, and conformational flexibility [39].  
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Dunker et al. explained the contribution of intrinsic disorder in protein-protein interactions by 

emphasizing the relation between hub connectivity and the protein structure. It has been proposed 

that disorder in one or both proteins may either yield a nonselective structure for connections, or 

flexible links between domains. In addition, important roles of interactions between ordered hubs 

and disordered proteins have been illustrated [40]. 

DisProt database has extensive data on disordered proteins in which various experimental 

techniques (i.e., X-ray crystallography, NMR, and circular dichroism (CD)) are used to 

characterize the disordered regions [27]. Since it is difficult to identify and characterize 

disordered proteins by experiments, a number of bioinformatics tools for predicting disorder 

based on amino acid sequence have been developed. The links of many predictors can also be 

found in the DisProt (http://www.disprot.org). The characteristics of the amino acid sequences of 

disordered proteins and ordered proteins show differences in terms of amino acid composition 

and sequence complexity [41, 42]. Disordered proteins contain less nonpolar, more charged 

amino acids then ordered proteins and are characterized by low sequence complexity [26, 42]. 

Evolution of disordered proteins in terms of amino acid substitutions is also different then 

ordered proteins [43]. Aromaticity, charge, hydrophobicity, and flexibility are the other 

differences between the amino acid sequences of disordered and ordered proteins [44]. Although 

different predictors use different approaches, they are all based on these sequence differences and 

work well. Dosztanyi et al. presented a small survey of prediction methods of identification 

disordered proteins or regions and discussed the methodologies [45]. An analysis on the main 

ideas of different prediction methods and the difficulties of them has been given in a recent 

review [46].  

Disorder in proteins has also been studied in relation to drug design. It has been shown that 

there are some examples indicating that protein-protein interactions with one disordered and one 

ordered partner are good targets for drug discovery [44, 47]. Some proteins show significant 

levels of disorder in human diseases such as cancer, cardiovascular diseases, diabetes, 

autoimmune diseases, neurodegenerative diseases (i.e., Alzheimer’s disease, Parkinson’s disease, 

Huntington’s disease, and Prion disease) [44, 48]. Cheng et al. indicated the role of disorder on 

finding new small drug molecules that can modulate protein-protein interactions [49]. One of the 
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binding proteins undergoes a disorder-to-order transition upon binding to its structured 

complement and makes an ideal druggable target. 

2.4  HIDDEN MARKOV MODEL 

A Markov system is a system that can be in one of several states, and can pass from one state 

to another each time step according to fixed probabilities. If a Markov system is in state i , there 

is a fixed probability, 
ijp , of it going into state j at the next time step. The probability 

ijp  is 

called a transition probability. All transition probabilities , , 1,ijp i j N  in a system with N  

possible states may be represented as a N N  matrix. Then, the entries in each row add up to 1 

and the matrix is called the state transition matrix. The initial distribution of the states defines the 

probability of the system being in each of the states at time 0. This vector of initial probabilities 

is called the  vector. 

A hidden Markov model (HMM) is a discrete-time Markov model with some additional 

features. That is, when a state is visited by the Markov chain, the state ‘emits’ a letter from a 

fixed time-independent alphabet. In a HMM, there is an observed sequence of emitted symbols 

which is defined by 1 2 3, , ,O O O O  and a sequence of states visited which is defined by 

1 2 3, , ,Q q q q [50, 51].  

An HMM consists of the following components: 

1) 1 2, , , NS S S S  A set of N  states 

2)  1 2, , , MA a a a  An alphabet of M distinct observation symbols 

3) ( )ijP p The transition probability matrix where 
1( | )ij t j t ip P q S q S    

4) ( ) (  emits symbol a)i ib a P S  for each iS  and a , The emission probabilities. 

5) ( )i   An initial distribution vector where 1( )i iP q S    

Hidden Markov models were introduced in a series of statistical papers by Leonard E. Baum 

and others in the late 1960s. The first application of HMM is speech recognition [52]. The system 

is assumed to be a Markov process with some unknown parameters in an HMM. HMMs are 

being used in speech recognition, natural language processing, and bioinformatics. The model is 
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applied to the analysis of biological sequences in the late 1980s [53]. Since then, HMMs have 

been widely applied in several areas such as multiple sequence alignment, gene finding, modeling 

protein or DNA families, predicting protein coding regions in genome sequences, predicting 

secondary structure elements in proteins, etc. of computational biology.  

There are three types of problems that are frequently represented with an HMM. (i) 

Calculating the probability of some given sequence of observed symbols ( | )P O   given the 

parameters ( , , )P B  , (ii) Finding the parameter set ( , , )P B  that maximize ( | )P O  , 

(iii) Determining the hidden sequence of states Q  that is most likely to have occurred, given 

sequence O . That is arg max ( | )
Q

P Q O . The latter can be carried out by an efficient algorithm. 

The Viterbi algorithm is introduced by Andrew Viterbi in 1967 [54].  

This algorithm is a dynamic programming algorithm that efficiently searches for a state 

sequence Q  that has the highest probability ( | )P Q O  [50, 52, 55]. The Viterbi algorithm has two 

main steps; (i) finding max ( | )
Q

P Q O , (ii) backtracking to find a Q  that satisfies this maximum.  

2.5  DYNAMIC ROTATIONAL ISOMERIC STATES MODEL 

The dynamic rotational isomeric states (DRIS) model has been defined to predict local 

dynamics of polymer chains by Bahar and Erman [56]. The model has been used to calculate 

different dynamic properties associated with the transitions between the isomeric states [56-63].  

DRIS is a mathematical model that applies the rotational isomeric states scheme to chain 

dynamics for calculating the effects of neighbor correlations based on the model introduced by 

Jernigan [64]. The model provides determination of the internal time correlation functions of a 

chain by matrix methods that has been used in calculation of chain statistics by Flory [1]. 

Internal dynamics of a polyethylene chain was characterized by calculating the 

autocorrelation of a vector affixed to the middle of a sequence in the chain [56]. Orientational 

correlation functions, correlation times, and spectral densities of poly(ethylene oxide) segments 

were determined [57]. The method was also used to determine the activation energies of the local 

conformational transitions for a polyethylene chain [58]. DRIS is used to obtain the 

conformational autocorrelation functions, and first and second orientational autocorrelation 
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functions of a polyethylene chain and it has been shown that the results agree satisfactorily with 

NMR experiments [59]. A mathematical scheme to examine the stochastic process of 

conformational transitions between rotational isomeric states in polymer chains was developed 

by Bahar [65]. According to the model, stochastic weights are assigned to the configurational 

transitions and stochastic weight matrices are defined. A matrix multiplication scheme is adopted 

to analyze the isomeric transitions by serial multiplication of stochastic weight matrices. Then, 

this approach is extended to efficiently calculate the first and second orientational autocorrelation 

functions [61]. The mechanism of local conformational transitions in poly(dialkylsiloxanes) 

which is a typical example that has a highly flexible backbone with bulky and highly articulated 

side groups is analyzed [62]. The results of DRIS method has been compared with molecular 

dynamics simulations and it has been shown that DRIS provides an efficient way of analyzing the 

mechanism of the local relaxation of a polymer chain rather than long simulations [24, 63]. 

For a given chain of N  bonds,  
k

  represents a given configuration where 1,2, , Nk   if 

the chain has   discrete rotational isomeric states. Then, 
( ) ( )NP t  is defined as a N -dimensional 

vector of time-dependent probabilities of all possible configurations  
k

 . Then the “master 

equation” that gives the time rate change of 
( ) ( )NP t  is defined as 

 
( ) ( ) ( )( ) ( )N N NdP t dt A P t  (2.17) 

where ( )NA  is the transition rate matrix of size N N  . 
( )N

ijA , the ij
th

 element of the rate matrix, 

gives the rate of transition from state  
j

  to  
i

 . The diagonal elements of the rate matrix are 

equal to the negative of summation of off-diagonal elements of the corresponding column that is 

( ) ( )N N

ii ji

j i

A A


  . 

The formal solution of the master equation gives 

  ( ) ( ) ( )( ) exp ( 0)N N NP t A t P t   (2.18) 
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where 
( ) ( 0)NP t   is the vector of the equilibrium probabilities. The term  ( )exp NA t is defined as 

the time-dependent conditional (or transition) probability matrix 
( ) ( )NC t  and represents the 

conditional probability of transitions. The ij
th

 element of the conditional probability matrix, 
( )N

ijC , 

denotes the conditional probability of the occurrence of configuration  
i

  at time t , given the 

initial configuration  
j

  at 0t  . The summation of each column of ( )NC  is unity since they 

represent all possible transitions from a given initial configuration. 

The eigendecomposition of the rate matrix ( )NA  gives 

 
1

( ) ( ) ( ) ( )N N N NA B B


      (2.19) 

where ( )NB  is the matrix whose i
th

 column is the i
th

 eigenvector of ( )NA , ( )N  is the diagonal 

matrix whose diagonal elements are the eigenvalues i  of ( )NA , and 
1

( )NB


    is the inverse of 

( )NB .  

The exponentiation of a diagonalizable matrix 1A UDU   yields     1exp expA U D U  . 

Using this property and the eigendecomposition of ( )NA , the time-dependent conditional 

probability matrix 
( ) ( )NC t  may be calculated in terms of 

1
( ) ( ) ( ), ,  and N N NB B



     as 

    
1

( ) ( ) ( ) ( ) ( )( ) exp expN N N N NC t A t B t B


       (2.20) 

 

The total time-dependent joint probability matrix is defined as 

 
( ) ( ) ( )( ) ( )diag ( 0)N N NP t C t P t   (2.21) 

The ijth element of the time-delayed joint probability matrix, 
( )N

ijP represents the joint 

probability of occurrence of configuration  
i

  at time t  and  
j

  at 0t  . Hence,  
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  
1

( ) ( ) ( ) ( )exp (0)N N N N

ij ik k jkj
k

P B t B P


     (2.22) 

Knowledge of the time-dependent joint probability matrix 
( ) ( )NP t  gives a full description of 

the stochastic of configurational transitions.  
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Chapter 3  

 

STATISTICAL MECHANICS OF PROTEINS IN THE RANDOM COIL STATE 

Random configurations of protein chains are obtained under the constraints imposed by chain 

connectivity and the torsion states of the backbone torsion angles   and   in the absence of 

sequence-distant long-range interactions.  We present a statistical analysis on thermodynamic 

properties to describe and characterize the random coil state of proteins. Conformational free 

energy, energy, entropy and heat capacity expressions are derived using the Rotational Isomeric 

States model of polymer theory. The state space and the probabilities of each state are comprised 

from a coil database. Properties for the random coil state are obtained for a sample set of proteins 

taken from the Protein Data Bank. Thermodynamic expressions of random coil state are derived. 

As stated in Chapter 1, understanding the random configurations of proteins is important due 

to several reasons. Thus, a better statistical understanding of denatured proteins is required for 

answering questions referring to functional properties of proteins. The number of states available 

to the denatured chain may vary from an enormous set to only a few in numbers as observed in 

switches. The general statistical mechanical model that we adopt is not restricted with this 

variation. The size of available states is determined by the probabilities of the latter, and several 

sources for such probabilities are either available and may be extracted from various databases, or 

may be generated by suitable training techniques of bioinformatics, depending on the constraints 

and requirements of the problem at hand. In the present study, we extract the probabilities from 

the Ramachandran plots obtained from the coil library [66] which is accepted to be representative 

of the random coiled state of proteins [7, 51, 67]. Having characterized the probabilities from the 

knowledge data base, we apply the matrix multiplication technique to obtain the partition 

function, and the thermodynamic functions such as energy, entropy and heat capacity for the 

denatured state. Finally we present random coil results for thermodynamic functions for several 

proteins whose primary sequences are chosen from the Protein Data Bank. 
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3.1  STATISTICAL EVALUATION 

A denatured protein assumes a multitude of conformations, each subject to a certain 

probability determined by the configurational features of the residues which are either of local or 

nonlocal nature. Local effects result from interactions among neighboring amino acids along the 

chain. We refer to this state the random coiled state of the protein. Determination of the 

conformation of a chain using near neighbor interactions only reduces the problem to a Markov 

process. Nonlocal effects are those among residues separated by more than two residues along the 

chain. Having adopted the probabilities from the coil library, where the sequence-distant long-

range interaction are absent because secondary or tertiary structures are lacking, is a good 

approximation to the Markov nature of the coiled state. 

Markov statistics of denatured proteins have an important place in protein statistics in general, 

because: (i) This is the first approximation to the difficult problem of non-Markov behavior, (ii) 

Markov behavior is responsible for a large body of observed phenomena, (iii) There is already a 

powerful and successful Markov model of characterizing the conformations of polymers, i.e., the 

Rotational Isomeric States (RIS) model that has been studied in some detail. The specific aim of 

the present paper is to extend the RIS model to calculate the thermodynamic properties of 

denatured chains using data generated from the denatured components of chains from the PDB. 

A common and most straightforward practice for determining torsion angle propensities is the 

use of knowledge based potentials. The Protein Data Bank (PDB) is the most common source. 

The frequency of occurrence of a given amino acid at a given torsion state leads to the 

probabilities. For calculations of the random denatured conformations of proteins, a coil library 

serves as the source of information where torsion angle data is taken from the set of amino acids 

those are not in helical or beta structures. Although the coil library serves as a plausible source 

for the denatured states of proteins, it is not the only one. One may make modifications to this 

data set depending on the constraints set on the conformations of the denatured proteins. In this 

paper, we use the Rose Protein Coil Library which can be downloaded from 

http://www.roselab.jhu.edu/coil/  [66]. 
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3.1.1  STATES 

 

Figure 2. Torsion angles of the i
th
 amino acid. 

 

The backbone torsion angles for the i
th

 amino acid are shown in Figure 2. Each bond can 

assume different angles, with different preferences. Each residue has three torsion angles, , ,   

and  . The occurrence of a residue in a given   and   state, irrespective of its type is presented 

in Figure 3.  An examination of this figure shows that the choice of isomeric states for the   and 

 angles is more complicated than the choice in synthetic polymer applications. In the latter, 

usually there are a few states like trans, gauche+ and gauche-, and their combinations for two 

successive bonds along the chain. In the protein case, one sees several discrete states as can be 

observed from the distribution of the points in Figure 3. Furthermore, the states are centered on 

different regions for the successive   and   angles, and for different amino acids. 

We perform the construction of states separately for , ,   and   angles. The states for the   

angles are chosen as follows: The points in Figure 3 are projected onto the   axis, and 13 states 

are identified visually as the following intervals: 

Table 1. The states for the angle Φ 

State Interval 

1  
(-180,-150) 

2  
(-150,-120) 

3  
(-120,-105) 

4  
(-105,-75) 

5  
(-75,-40) 
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6  
(-40,-20) 

7  
(-20,-10) 

8  
(-10,30) 

9  
(30,70) 

10
 

(70,105) 

11
 

(105,130) 

12
 

(130,155) 

13
 

(155,180) 

 

The choice is made such that the clusters of points seen in Figure 3 are demarcated, as 

accurately as possible, by the intervals chosen. This is not a unique procedure, however, because 

the clusters are centered on different angular positions for different residues and the intervals 

chosen along the   axis, which are not all equal to each other in magnitude, are only best 

approximations. Similarly, the points are projected onto the   axis, and the thirteen intervals are 

chosen as: 

Table 2. The states for the angle ψ 

State Interval 

1  (-180,-160) 

2  (-160,-135) 

3  (-135,-105) 

4  (-105,-75) 

5  (-75,-40) 

6  (-40,-15) 

7  (-15, 20) 

8  (20, 60) 

9  (60, 90) 
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10  (90,110) 

11  (110,130) 

12  (130,160) 

13  (160,180) 

 

For the   angle, there are two states, one is either (-180,-160) or (160,180), and the other is 

(-20, 20). The states chosen in this manner are representative of the regions given by Karplus [23] 

and also in Reference [68]. Thus, we identified 13 states for the angle  , 13 states for  , and 2 

states for   as rotational isomeric states. 

 

Figure 3. Regions of the Φ-Ψ plane. 
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Figure 4. Regions of the ω-ψ plane. 

 

The distributions of the  ,  , and   angles are presented in Figure 5, Figure 6, and Figure 7 

respectively. The differences in distribution for different amino acid types may be seen in Figure 

8 and Figure 9. 

 

Figure 5. The distribution of the Φ angles in coil database. 
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Figure 6. The distribution of the ψ angles in coil database 

 

 

Figure 7. The distribution of the ω angles in coil database. 
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Figure 8. Distributions of Φ angle for ALA, 

CYS, and GLY 

 

Figure 9. Distributions of ψ angle for ASP, 

GLU, and TYR 

 

3.1.2  STATE PROBABILITIES  

The pair wise dependent probabilities of observed states of angles ( , )P
X i i

  , ( , )P
X i i
  , 

and ( , )
1

P
XY i i

 


 are defined as 
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( , )
( , )

( , )
( , )

( , )
1( , )

1

N
X i iP

X i i N
X

N
X i iP

X i i N
X

N
XY i iP

XY i i N
XY

 
 

 
 

 
 








 

 (3.1) 

where  ( , )N
X i i

   is the number of residue type X  observed in the indicated states, and N
X

  

is the total number of conformations [19, 68]. Similarly,  ( , )
1

N
XY i i

 


 is the number of 

dipeptides of XY  in the given conformations.  Here, ( , )P
X i i

   is the probability of observing 

residue X  to be in state ( , )
i i
  , ( , )P

X i i
   is the probability of observing residue X  to be in 

state ( , )
i i

  , and ( , )
1

P
XY i i

 


 is the joint probability of observing residue X  in state ( )
i

  

and Y  in state ( )
1i




. The neighbor-dependence introduced in the third of (3.1) is a dependence 

that originates from the residue type differences. Otherwise, (3.1) acknowledge the Flory isolated 

pair hypothesis. The dependence introduced by neighbor types is clearly seen in Figure 10, where 

the probabilities obtained by summing  ( , )
1

P
XY i i

 


 over 
i

  for ALAY   and 

TRP, GLY or PROX   are presented by the three curves which marked differences from each 

other. 
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Figure 10. Probabilities obtained by summing PXY(ωi,Φi+1) over ωi for Y=ALA and X=TRP,GLY, or 

PRO. 

 

The conformational energies are defined as 
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 (3.2) 

where the superscript 0 indicates the uniform distribution probabilities. Hence, they are directly 

proportional to the size of the angular intervals of the states; 0 0
1 13( ) ( )P P

X i X i
    and 
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0 ( ) 1 2P
X i

  . Statistical weights 
i i

u , 
i i

u  , and 
1i i

u 
 corresponding to the energies may be 

defined by 
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 (3.3) 

where R is the gas constant, T is the temperature. 

The statistical weight matrix for a configuration can be written as a product of statistical 

weights of each bond pair  ,  ,  ,  , and  ,  . For this purpose, the statistical weight 

matrix for a given residue X  is defined as 
i iX

X
U u


    , 

i iX
X

U u

 
    , and 

1i iXY
XY

U u

 

    . 

Depending on the number of states of each angle, dimensions of the statistical weight matrices 

XU  , 
XU , and 

XYU  are 13 13 , 13 2 , and 2 13  respectively. The superscripts  ,  ,  , 

, and  ,   identify the bond pairs over which statistical weights are calculated. 

3.1.3  CALCULATION OF THE THERMODYNAMIC QUANTITIES 

The statistical weight for a configuration specified by a set of rotational states of the several 

bonds of the chain may be written as a product of statistical weights of each bond pair. The 

complete set of all such products can be generated by matrix multiplication. The computational 

background that is developed in this section is based on and is an extension of Flory’s 

macromolecules paper [12]. 

The partition sum of statistical weights for all configurations of the chain is given by 

 *

1 1 1 2 2 n nZ J U U U U U U U J        (3.4) 

where  * 1 0 0J  , and  1 1 1J column . 

The thermodynamic properties such as the entropy and the energy of a peptide, and the 

coefficients derived from them depend not only on a single conformation of the peptide, but on 
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all possible configurations. In the remaining equations, we give the relevant expressions for 

calculating these averages. 

3.1.4  HELMHOLTZ FREE ENERGY 

Since the Helmholtz free energy in canonical formalism is additive over the energies, it can be 

calculated using the partition function of the chain [13]. 

 lnF Z   (3.5) 

where 1/ kT  . 

3.1.5  MEAN ENERGY 

The average energy is given by 

  
1

ln
d dZ

E Z
d Z d 

     (3.6) 

The matrix multiplication formalism of the partition function leads to matrix multiplication 

scheme of its derivatives in the following way 

  * ˆ
i

dZ
L U L

d
   (3.7) 

where 
* * 0 0L J    ,  0 0L column J  and Û  is the super matrix whose elements 

are matrices 

 ˆ
0

U U
U

U


 

  
 

 (3.8) 

 
dU

U
d




   (3.9) 

Therefore, the mean energy can be obtained using the following multiplication scheme 

  *1
iE L G L

Z
    (3.10) 
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where 
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 

 (3.11) 

3.1.6  ENTROPY 

The entropy of the chain can be expressed in terms of Z  and its derivatives with respect to 

 . Following the equality 
2S k dF d  , 
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 
    

 
 (3.12) 

is obtained.  

Using the matrix multiplication formalism of Z  and its first derivative with respect to  , the 

entropy can be calculated as  

   
 

 

*

*

*
ln

i

i

i

L G LS
J U J

k J U J
 

  





 (3.13) 

3.1.7 HEAT CAPACITY 

The heat capacity is one of the most important properties of the proteins, both native and 

denatured. When force acting on the chain is taken as zero, denoted below by the subscript 0f 

, the heat capacity can be calculated as 

 

2
2

0 2

0

ln
f

f

E Z
C k

T







  
  

  
 (3.14) 

Similar to (3.7), second derivative can be obtained as 

  
2

*

2

ˆ̂
i

Z
M U M







  (3.15) 

where 
* * 0 0 0 0 0 0M J     and  0 0 0 0 0 0M column J , and 
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It is possible to write the second derivative of ln Z  on the right hand side of the equation in 

terms of the first and second derivatives of the partition function 
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 (3.18) 

The matrix multiplication form of Z and its derivatives allow the heat capacity to be 

calculated by the matrix notation 
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 (3.19) 

3.2  RESULTS 

In this section, the free energy, energy, entropy, and heat capacity of peptides of different 

sizes ranging from 10 to 800 amino acids are calculated using the RIS model, over a temperature 

range of 200-700 K. Table 3 lists the representative protein set taken from the non-redundant 

PDB. The selection of the proteins is made according to their numbers of residues which varied 

evenly between 10 and 802. 
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Table 3. The protein dataset used in calculations 

Number of Residues Protein, Chain ID Number of Residues Protein, Chain ID 

10 1FYN_B 349 3KM8_A 

40 3E7R_L 408 2WKN_A 

120 1C2A_A 456 3NPL_A 

160 1CZT_A 545 3OTQ_A 

200 1YKN_A 802 3IQM_A 

226 3K6P_A   

 

  

  

Figure 11. (a) The free energy as a function of temperature, T, for different length proteins. (b) energy 

as a function of T. (c) entropy as a function of T. (d) heat capacity as a function of T.  The curves in parts 

(a),(b), and (c) are ordered from top to bottom represent proteins with the following numbers of residues: 

10, 40, 120, 160, 226, 349, 408, 456, 545, and 802, respectively. In part (d) they are in reverse order. 
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The variation of the free energy, energy, entropy and heat capacity is evaluated by repeating 

the calculations over a temperature range of 200-700 K. Results are presented in Figure 11. 

The curves shown in the four panels of Figure 11 are not independent from each other, and 

are related by the thermodynamic relations by equations (3.5), (3.6), (3.12), and (3.14). It is seen 

that the curves in the figures all scale with the number of residues N . In order to find analytical 

functions that will give the curves shown in Figure 11, we first chose an analytical form for the 

heat capacity as 

  3

0( , ) BT DT

fC T N NT Ae Ce    (3.20) 

keeping in mind the thermodynamic postulates. We inspired the Debye model of heat capacity in 

a solid that shows the dependence of 3T . Then, by integration subject to the conditions imposed 

by (3.5), (3.6), (3.12), and (3.14), we obtain the remaining thermodynamic functions as given in 

equations (3.21)-(3.23) by curve fitting as 

A : 6 41.5 10  kJoules/K  mol  

B : 37.2 10  1/K   

C : 5 42.6 10  kJoules/K  mol  

D : 22.3 10  1/K   

E : 4083 kJoules/mol  
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In Figure 12, we compare the results obtained by (3.21)-(3.23) with the results of calculations 

for four peptides of sizes 20, 200, 408, and 802. 

  

  

 

Figure 12. Comparison of (a) free energy, (b) mean energy, (c) entropy, and (d) heat capacity 

estimates. Exact values are calculated by matrix multiplication scheme, estimated values are calculated by 

fundamental relation. The lengths of chains are shown on each curve. 

3.3  CONCLUDING REMARKS 

We adopted the RIS model for calculating the thermodynamic functions of proteins in the 

random coil state. The use of the RIS model depends critically on two items: (i) the choice of the 

states, and (ii) the choice of the database with which the probabilities of these states are 

evaluated. The states are described in terms of the populated regions on the Ramachandran map, 

and the possible states for the   and   angles of different amino acids are determined following 

the work of Karplus [23]. In order to apply the RIS model, however, the states available to the 
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torsion angles  ,  , and   are required separately. The state space is obtained in our 

formulation as 13 states for   and 13 states for  , and two states for  . Evaluation of the 

probabilities follows the choice of the state space. For proof of principle, we used a coil library 

for the determination of the probabilities. One could alternatively construct a databank of known 

denatured proteins, or a subset of them depending on the nature of the investigation, and extract 

the probabilities from that state. Once the states are determined, the RIS model is independent of 

the databases used. We observed that the per residue thermodynamic properties of proteins in the 

random coil state scales only with the temperature. While entropy and energy increases with the 

temperature, free energy decreases. Heat capacity represents a decrease around 340 Kelvin that 

implies an energy barrier for a possible transition state. The explicit expressions that we 

determined for the thermodynamic functions form a thermodynamically consistent set which may 

be used to obtain other thermodynamic potentials by applying the known Legendre 

transformation techniques [13].  
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Chapter 4  

 

PREDICTING MOST PROBABLE CONFORMATIONS OF A GIVEN PEPTIDE 

SEQUENCE IN THE RANDOM COIL STATE 

In this chapter, we present a computational scheme for finding high probability conformations 

of peptides. The scheme calculates the probability of a given conformation of the given peptide 

sequence using the probability distribution of torsion states.  

Backbone conformations of a protein can be described by    torsion angles of the amino 

acids that specify the rotational freedom. It is already known that some values of torsion angles 

are more populated than the others on the Ramachandran map and these preferences are different 

for different types of amino acids [69]. Furthermore, preferences for a given residue are 

dependent on the states of the neighboring residues [7, 14, 15, 19, 67, 70-72]. In this work, the 

problem of predicting the high probability conformations of a protein using the rotational 

preferences obtained by knowledge-based approaches is discussed. Neighbor dependence is taken 

into consideration both in constructing the probabilities and in the generation of conformations. 

Most of the computational work in predicting peptide conformations has been confined to 

secondary structure prediction for the native state. In the present work, we do not restrict the 

problem to the determination of secondary structure. We specifically focus on determining the 

high probability conformations of peptides in the random coil state. For this reason, we use a Coil 

Library for determining the probabilities [66]. Use of a secondary structure library would be more 

appropriate to use for the secondary structure prediction of a given sequence, which we do not 

pursue here. 

The torsion state of a residue is defined by a region on the Ramachandran map and these 

regions are separated by energy barriers. Existing studies on torsion angle predictions use 

different number of states with different definitions. For example, Bystroff et al., took eleven 

states covering the full Ramachandran map in their hidden Markov model for local sequence-

patterns in proteins (HMMSTR) [73]. Kuang et al. assumed a smaller number of states each of 
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which correspond to a large number of states [74]. They used four major torsion states occupying 

80% of the Ramachandran map and achieved 77.3% accuracy in predicting torsion angles using 

SVM method. Zimmermann and Hansmann emphasized that the torsion state prediction would 

provide more structural information than secondary structure predictions since the secondary 

structure has a complex definition [75]. Estimated from the work of Lovell et al. [76], they 

introduced ten regions. However, due to few number of samples, they based their results on three 

regions (right handed alpha helix, beta strand, and outside of these regions). The achieved 3-state 

accuracy is around 82% using SVMs. Xin et al. presented two probabilistic methods (MEMM 

and CRF) to predict torsion angles using sequence profiles of residues and used fifteen regions 

proposed by Shortle that covers 43% of the Ramachandran map to define different coarse-grained 

classes [77, 78]. The achieved prediction accuracies (that is below 70%) of each class are given. 

Previous studies all provide the prediction of the most probable torsion state for each residue 

and do not consider a probability distribution. However, instead of predicting only the most 

probable torsion state or the secondary structure, predicting the probability distribution of the 

states or secondary structures is an approach that may be useful for sampling the conformational 

space and may provide a detailed analysis of the space [79-81]. Along this line, Helles and 

Fonseca proposed an analysis of probability distribution of torsion angles of coil residues using 

neural networks [79]. They calculated the distribution of dihedral angles for 30 30  bins and 

showed that the prediction accuracy increases as the number of considered bins increases. Helles 

and Fonseca showed that the neural network model they adopted outperforms the basic statistical 

method that simply predicts the most populated bin in the database. 

In this work, our aim is to find a probability distribution of the torsion states of a given 

peptide sequence in the random coil state. We adopt the Rotational isomeric States (RIS) 

formalism from polymer theory [1] for calculating the probability distribution. Here, we identify 

eleven torsion states following the work of Karplus [23] that indicates the distinct regions not 

only for helices or strands but also for loops, beta bridges, etc., (See the notation in References 

[23, 51, 68]). This knowledge provides an efficient conformational sampling. We derive the 

probability distribution based on a Hidden Markov Model (HMM) and the Viterbi algorithm that 

has been described in Section 2.4. Dependence of the conformational probability of a given 
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residue on the type and conformation of its neighbors is taken into consideration in constructing 

the probabilities, in the RIS calculations and in the Viterbi algorithm. Our aim is similar to that of 

Helles and Fonseca. We depart in the method of calculations, where their approach is based on a 

neural network and ours on the generation of the partition function of a chain by the matrix 

multiplication scheme. Our ultimate aim, however, is to determine the most probable 

conformation and an ensemble of conformations that are of high probability. Recently, ensembles 

of intrinsically disordered proteins (IDP) have been constructed by Daughdrill et. al [82], which 

is similar to our approach in spirit but different in methodology, where our high probability 

conformations are generated using an appropriate library, the RIS scheme, a Hidden Markov 

Model and the Viterbi algorithm with multistep backtracking [50]. As we explain in detail in the 

following section, we base the present calculations on a coil library. However, choice of an IDP 

library would clearly lead to the generation of high probability conformations of IDP’s, which are 

known to have statistical differences than random coils as pointed out by Schweitzer-Stenner 

[83]. 

The number of occurrences of the residues in the databank in the defined states leads to the 

corresponding probabilities. The determination of high probability conformations of a given 

peptide sequence of length N  is a computationally difficult problem. Considering a state space 

of eleven torsion states leads to 11N  possible conformations from which one has to choose the 

optimum one. The Markov assumption and the use of the Viterbi algorithm simplify the problem 

significantly. 

4.1  METHODS AND MATERIALS 

4.1.1  KNOWLEDGE BASED DATABASE 

Since we consider the conformations as random denatured forms and since the Coil Library 

stores the fragments from the disordered conformations that are neither alpha-helix nor beta-

strand, the Coil Library is a good source for calculation of the probabilities [66]. We used Coil 

Library given by the Rose group http://www.roselab.jhu.edu/coil/, September 2011 version. The 

library contains fragments that have less than 20% sequence identity, better than 1.6 Ångstrom 

resolutions and a refinement factor of 0.25 or better and contains 24112 fragments extracted from 
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the Protein Data Bank. The library contains segments obtained after removal of secondary 

structures, the segments that are classified as alpha helix or beta strand and the one-residue coils. 

We remove the chains including UNK or ASX types of residues or the chains with less than 3 

residues. The remaining set contains 261548 residues. The fragment size distribution is given 

Figure 13. The probabilities depend on the choice of the state space. Since the Coil Library is a 

good representative set of proteins in the coiled state and our interest is the coiled conformations 

of proteins, occurrence probabilities of residues in torsion states are calculated over the coil 

library. 

 

Figure 13. Distribution of the sizes of the peptides in the Coil library. Total number of peptides 

is 24057. 

 

4.1.2  TORSION STATES 

We use the eleven torsion states introduced by Karplus [23]. The descriptions of the states are 

given in Table 4. 

Table 4. Description of the twelve torsion states 

State 1 '  Mirror image of the extended region   

State 2   The extensive regions, 0,  180     

State 3 
R

 

Right-handed alpha helix 
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State 4   Tight turn region 

State 5 
R  The right handed bridge region between two  -strands 

State 6 
L  Mirror image of the R  region 

State 7   Region observed mostly in residues preceding Pro 

State 8 '  Inverse tight region 

State 9 
L

 

Mirror image of R  

State 10 
S

 

Extended beta sheet forming region 

State 11 
P

 

Region with extended polyproline-like helices 

 

4.1.3  METHODS 

It has been previously shown that the torsion preferences of a residue depend on the type and 

state of neighboring residues [14, 19, 67]. In Figure 14, the left neighbor dependence of Arginine 

is shown as an example. The frequencies are plotted in the 30 30  degree regions of 

Ramachandran map. Each 30 degree   region is shown in a different color in order to increase 

the clarity. For certain pairs, neighbor dependence of state probabilities are significant and are 

included into our calculations. We treat the problem of the prediction of torsion state as a Markov 

process and consider the correlations between the near neighbor residues. 

In the following sections, we first define the Hidden Markov model of the problem and then 

we provide the calculation of the parameters of the HMM in detail. We then introduce the Viterbi 

algorithm for searching the state sequence that has the maximum probability of occurrence. The 

probability distribution of the torsion states of the residues is determined using the Viterbi 

algorithm. Lastly, we define multistep backtracking algorithm that is used to guess the high 

probability conformations. 
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Figure 14. Arginine has different    distributions depending on the previous near neighbor. 

 

4.1.4  HIDDEN MARKOV MODEL 

An introduction to hidden Markov models is given in 2.4. Here we describe the model and its 

parameters in terms of our problem. In a hidden Markov model there is an observed sequence of 

emitted symbols which is defined by 1 2 3, , ,O O O O , and a sequence of states visited which is 

defined by 1 2 3, , ,Q q q q . Further information on Hidden Markov models can be found in [50, 

51]. The observed sequence of our model is the given peptide sequence and the torsion state 

sequence is the hidden state sequence to be determined. The definitions of components of the 

model are given below: 

1)  1 2 20, , ,A a a a  The set of 20 amino acids 

2) 1 2 11, , ,S S S S  The set of 11 torsion states 
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3) ( )ijP p The transition probability matrix where 
1( | )ij t j t ip P q S q S    that is the 

probability of t+1
st
 amino acid is in state Sj given that t

th
 amino acid is in the state Si. 

4) ( ) (  emits symbol a)i ib a P S  for each iS  and a , The emission probabilities that is the 

probability of state Si emits amino acid a.. 

5) ( )i   An initial distribution vector where 1( )i iP q S    

4.1.5  EVALUATION OF A PRIORI PROBABILITIES 

Here we adopt the transition probabilities for each dipeptide of the given sequence and the 

emission probabilities of each residue from the Coil Library. 

The pair wise dependent probabilities ( , )XY i jP S S  where iS  is a torsion state defined by the 

two torsion angles ( , )   and , 1,2, ,11i j   are determined according to 

 
( , )

P ( , )
XY i j

XY i j

XY

N S S
S S

N



 (3.24) 

Here, ( , )XY i jN S S  indicates the number of residue pairs observed having the indicated values of 

the argument. The term XYN  in the denominator is the total number of observed dipeptides of 

XY  in all possible states. The probabilities calculated in this manner are the a priori 

probabilities; because the conditionality of the dipeptide under consideration that being 

embedded into the given specific amino acid sequence of the protein has not been used. 

We define a conformational energy for a given residue Y  in the dipeptide XY  along the 

primary sequence of the protein as 

 
0 0

P ( , )
( , ) ln

P ( ) P ( )

XY i j

XY i j

X i Y j

S S
E S S RT

S S

 
    

 

 (3.25) 

where the superscript zero denotes the uniform distribution probabilities, i.e., those valid when all 

angles are equally probable that is 1 11 . 
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In this study, we use the rotational isomeric state formalism in which each residue is treated 

as occurring in one or another of several discrete torsion states to obtain the statistics of the chain 

[1]. 

4.1.6  CALCULATION OF A POSTERIORI PROBABILITIES 

The statistical weight matrix iU u     for a given residue pair 1i   and i  is determined by 

statistical weights u  corresponding to the energies E  following the work of Flory [1]. The 

details these definitions are given in 2.2.  

 
; ;exp( / )i iu E RT    (3.26) 

So, a priori probabilities led us to statistical weights that would be the primary quantities for 

characterizing the partition function. The partition function, Z , of the chain of N  repeat units is 

given by 

 
*

2

N

i

i

Z J U J


 
  

 
  (3.27) 

where 
* [1 1 1]J  , and [1 1 1]J column  of order 1 11  and 11 1  respectively. 

We choose all elements of *J  as ones to allow all possible states in the first residue as opposed to 

Flory’s notion, 
* [1 0 0]J  , that fixes the first residue’s state as the first state. 

The probability 
;ip  that residue i  will be in state   is estimated as the fraction of the sum of 

the statistical weights for all configurations for which residue i  is in state   over partition 

function Z  

 
1

1 * '

; ;

2 1

i N

i m i m

m m i

p Z J U U U J 




  

   
    

   
   (3.28) 

Here, 
'

;iU is the matrix obtained by equating the entries of all of its columns to zero except those 

of column  . 
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Similarly, the joint probability 
; 1,i ip 

that residue 1i  is in state  and residue i is in state 

simultaneously is given by 

 
1

1 * '

; 1, ;

2 1

i N

i i m i m

m m i

p Z J U U U J 






  

   
    

   
   (3.29) 

where 
'

;iU  is the matrix obtained by vanishing all elements of iU  with the exception of u . 

The transition probability 
|p  is simply the conditional probability that residue i  will be in state 

 , given that residue 1i   is in state  is determined as the quotient of the joint probability, 

divided by 
; 1ip 

. 

 
; 1,

| 1

; 1

P( | )
i i

i i

i

p
p q q

p



 



 






     (3.30) 

4.1.7  THE VITERBI ALGORITHM 

Using the Viterbi algorithm is an efficient way of calculating the most probable state 

sequence. The problem is to find a state sequence 1 2, , , NQ q q q  given an observed sequence 

1 2, , NO O O O  that maximizes ( | )P Q O . That is arg max ( | )
Q

P Q O  meaning the given amino 

acid sequence takes its most probable conformation. Here, argmax denotes the maximum over the 

full state sequence set Q  of the arguments of the probability function. In the first part of the 

algorithm, we obtain max ( | )
Q

P Q O . For arbitrary t  and i , 

 
1 2 1

1 2 1 1 2
, , ,

( ) max P( , , , ,  and , , , )
t

t t t i t
q q q

i q q q q S O O O


   (3.31) 

is defined. That is the maximum probability of all ways to end in state iS  at tht  amino acid and 

given the amino acids 1 2, , tO O O . 

 1 1 1( ) P(  and )ii q S O    (3.32) 

Then, the joint probability of Q  and O  is maximized over all Q  as 
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 max P(  and ) max ( )N
Q i

Q O i  (3.33) 

Since the maximum conditional probability is given as 

 
P(  and )

max P( | ) max
P( )Q Q

Q O
Q O

O
  (3.34) 

and ( )P O is fixed for all Q , 

 max P( | ) max P(  and )
Q Q

Q O Q O  (3.35) 

Hence, 

 arg max P( | ) arg max P(  and )
Q Q

Q O Q O  (3.36) 

a) First part of the algorithm 

 1 1( ) ( ),   1 11i ii b O i     (3.37) 

In the initialization step, 1  is calculated as an array of size eleven holding the probabilities of 

eleven torsion states for the first amino acid 1O  of the given peptide sequence. The probability i  

is calculated by multiplying the initial probability of first residue is in state i  with the emission 

probability that state i  emits the first residue. The elements of initial probability vector are 

chosen as 1 so that each state has equal probability. Then, we calculate all t ’s inductively. 

 1
1 11

( ) max ( ) ( ),   2 ,  1 11t t ij j t
i

j i p b O t N j  
 

      (3.38) 

Here N  denotes the number of residues of the given peptide sequence. 

b) Second part of the algorithm 

The states iq ’s are obtained by backtracking technique that searches for the path with the 

highest probability. We define 
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1 11

arg max ( )N N
i

i 
 

  (3.39) 

and determine the most probable state of last residue as 
NNq S . The remaining states are then 

obtained by successive backtracking 

 
1

1 11

arg max ( )
tt t i

i

i p 


 

  (3.40) 

and then equating 
ttq S . 

Example 

We may consider a simple example to visualize the steps of the Viterbi algorithm. Assume 

that we have an observed sequence of amino acids ALA-GLY-VAL of length 3N  . Let 

{ , , }S     be the set of torsion states. The scheme may be seen in Figure 15. 

 

Figure 15. The hidden and observed states for a toy example. The arrows show the probability of 

transition from one hidden state to another. 

 

In the first part of the algorithm we calculate the partial probabilities,  ’s, and partial best 

paths. For each intermediate and terminating state, there is a specific most probable path to that 

state. For each of the three states of VAL  the most probable paths may be found as given in 

Figure 16. 
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Figure 16. 
3 ( )i  are shown for i=1,2,3. That is the maximum probability of all sequences ending at 

state i at time t=3 and the partial best path is the sequence which achieves the maximum probability. 

 

In the second part, we search for the most probable state sequence given the observed 

sequence after calculating the partial probabilities ( )t i . For each state we hold a back pointer t  

via finding the states that maximize the probability. 

4.1.8  CONFORMATIONS OF LOWER PROBABILITIES 

Changing preferences during backtracking allows for the generation of conformations with 

lower probabilities. Thus, for the t ’th residue, we define 

 
1

( ) ( )

1 11

arg max ( )
t

k k

t t i
i

i p 


 

  (3.41) 

where the superscript ( )k  denotes the k th maximum value. Here, 1k   refers to the maximum 

value, 2k   refers second maximum, etc. For each residue, besides the most probable state, we 

also determine the 2 ,3 , ,11nd rd th
 maximum probable state. We use this definition to determine 

conformations of lower probabilities during the backtracking stage. We refer to this method of 

generating conformations of lower probabilities as multistep backtracking. 

4.1.9  MULTISTEP BACKTRACKING 

In this algorithm, we keep the n  conformations with highest probability. The multistep 

backtracking algorithm proceeds as follows: 

1. We define 
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( )

1 11

( )

1 11

( ) arg max ( ),   1 11

( ) max ( ),   1 11

j

N N
i

j

N N
i

j i j

j i j

 

 

 

 

  

  

 (3.42) 

where the superscript (j) denotes the j th maximum value. In N , we keep the probabilities of 

states of the last residue in decreasing order; in N  we keep the corresponding states. Then, 

2. For the remaining amino acids we define 

 

1

1

( )

1 ( )
1 11

( )

1 ( )
1 11

( ) arg max ( ) ( ) ,  1 t<N

( ) max ( ) ( ) ,  1 t<N

t

t

j

t t t j i
i

j

t t t j i
i

j i j p

j i j p





  

  






 


 

 

   (3.43)   

Here, we calculate the probability of the state sequence of the region going backward from thN  to 

the tht  residue by multiplying the probability of the state sequence of the region from thN  to the 

1stt   residue by the transition probability from tht  residue to 1stt   residue. The probabilities are 

stored in decreasing order. 

There are a total of 11N  possible conformations for the sequence of N  residues. In order to 

keep the number of conformations to be considered at a manageable level, we apply some 

pruning techniques. (i) We remove the state sequences with zero probability of occurring to 

decrease the complexity. Those are the impossible paths of the HMM. (ii) At each t ’th step, if the 

number of stored sequences becomes larger than a specified threshold value m , we remove the 

state sequences those have lowest probabilities and continue with the m  sequences with highest 

probability. The prediction accuracy increases if one keeps the number of stored paths, m , large. 

On the other hand, it is not feasible when considering long peptides (number of residues > 20).   

For an amino acid sequence 1 2 3 4 5 6O a a a a a a       of length 6, assume that the size of 

the state set is 3,  1 2 3, ,S s s s . Then, to find 2n   most probable state sequences we may select 

4,  m m n  . Then, we keep a list of maximum probable state sequences and a list of occurrence 
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probabilities of the corresponding state sequences. A schematic representation of the example 

may be given as follows 

  

  

 
 

 

Figure 17.  The steps of multistep backtracking for finding the 2 conformations with highest 

probability of an observed sequence of length 6. 

 

4.2  RESULTS AND DISCUSSION 

Using equation (3.41), we calculate the probability distribution of the eleven states for each 

amino acid in a given peptide sequence. Thus, given a peptide sequence of length N , and an 

amino acid at the thk position, we can estimate the probability of its observed state, with 

1 k N  . Prediction accuracy is defined as the fraction of amino acids that are predicted to be in 
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the most probable state. More specifically, it is calculated as the number of correctly predicted 

residues of type X in the predicted most probable state sequences using the Viterbi algorithm, 

over total number of residues of type X . 

 correct totalprediction accuracy =n n  (3.44) 

Most populated states are determined as the number of residues of type X in the most 

populated state in the Coil library over total number of residues of type X . 

We ran 5-fold cross validation for training and testing. The dataset is randomly divided into 

five subsets, then 4 5  of the fragments are used to obtain training parameters, and 1 5  are used 

for testing. The procedure is repeated five times, and the prediction accuracy is calculated by 

averaging the five accuracies. The training parameters, the transition and the emission 

probabilities, are derived each time by equations (3.24)-(3.30) using the corresponding training 

set. Then, the torsion states are predicted using (3.37)-(3.41) for each peptide in the 

corresponding test set. Lastly, the prediction accuracies determined for each test set and the 

average is calculated. 

Table 5. Prediction accuracies for each residue type 

Amino Acid Type Most Populated Viterbi Improvement 

ALA 24.32 31.96 31.41 

GLU 28.67 34.01 18.61 

LYS 26.22 33.67 28.40 

MET 33.72 35.21 4.40 

GLN 26.77 32.39 20.99 

ARG 29.72 33.2 11.71 

LEU 31.66 35.51 12.18 

PHE 41.14 41.09 0.00 

TYR 40.65 41.68 2.54 

TRP 35.58 34.69 0.00 

CYS 38.71 39.41 1.81 

HIS 32.36 34.74 7.35 
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ASN 28.24 27.9 0.00 

ASP 28.96 35.66 23.15 

SER 28.23 35.21 24.74 

THR 35.04 38.66 10.33 

ILE 55.43 55.8 0.67 

VAL 55.59 55.83 0.44 

GLY 34.58 38.6 11.62 

PRO 55.36 59.93 8.25 

Average 35.55 38.76 9.03 

 

In Table 5, the prediction accuracies of each amino acid type using the Viterbi algorithm are 

provided. Simply, we consider the improvement gained by using the Viterbi algorithm comparing 

to guessing the most populated state in the library. Since the near neighbor effects are taken into 

account using the Viterbi algorithm, prediction accuracies of some amino acid types are 

considerably higher.  This comparison approach is first applied by Helles and Fonseca to 

determine the accuracy of neural networks method that is used to predict dihedral angle 

probability distribution for protein coil residues [79]. They compared the accuracies with the 

probabilities of guessing the most populated state in the data set for each amino acid type. Here, 

we show the performance of the Viterbi algorithm comparing the accuracies with the most 

populated state percentages for each amino acid type in a similar manner.   

4.2.1  CONSIDERATION OF LESS PROBABLE STATES OF RESIDUES 

It is possible to generalize the prediction accuracy definition as the number of correctly 

predicted residues of type X in the thk  most probable state sequences using the Viterbi 

algorithm, over total number of residues of type X . 

 ( )

correct totalprediction accuracy ( ) kk n n  (3.45) 

Then, we may add up the prediction accuracies and define the success rate as 

 
0

success rate ( ) prediction accuracy ( )
i

k

i k


  (3.46) 
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Since we know the probability of each state for each residue in a given peptide sequence, we 

can tell the probability of seeing the residue in either the most or the next most probable states, 

and so on. In Figure 18, we present the improvements when considering not only the most 

probable states but also the second, third, etc., most probable states. Increasing values of the 

abscissa values correspond to considering less and less probable states in the prediction. 

 

Figure 18. Percentage of improvements of Ala, Lys, Gln, Asp, and Ser are shown. 

 

In Figure 19, we present the success rates of each amino acid type. The well predicted amino 

acids are proline, valine, and isoleucine. On the other hand, the small amino acids glycine, and 

asparagine shows lower rates of success. It is observed that the prediction method works better on 

hydrophobic residues. For example the three hydrophobic residues, Pro, Val, and Ile have    

distributions that are sharply peaked. This decreases the total number of accessible regions in the 

Ramachandran plot. Majority of the states have zero probability leaving behind only a small 

region over which the predictions are to be made. The better prediction of hydrophobic residues 

may be related to this characteristic distribution on the Ramachandran map. 
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In Figure 20, we present the success rates of each torsion states. Clearly, prediction of the 

torsion states that represents the tight turn regions (   and 
' ) is not successful. This is not 

surprising because these states are the rarest torsion states in the database. The well predicted 

states are , , , ,  and S L R P     . 

 

Figure 19. Success rates of each amino acid types. x axis shows the number of included states. 
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Figure 20. Success rates of each torsion states. x axis shows the number of included states. 

 

4.2.2  DETERMINATION OF HIGH PROBABILITY CONFORMATIONS 

The most probable torsion state sequence is predicted using the Viterbi algorithm. The 

transition and emission probabilities are calculated from the Coil database. In the first step of the 

Viterbi algorithm, the state sequences ( Q ’s) that maximize P( | )Q O  given the peptide sequence 

O  are determined. Then, in the second step, the sequence 1 2, , , NQ q q q  that has the 

maximum probability is backtracked where each iq  represents the torsion state of the thi  residue. 

Therefore, after the first step, we may also designate a list of iq ’s for each residue ordered by the 

probability of occurring. However, our main goal is to find most probable “ n ” conformations of 

a given peptide sequence. Hence, using the Viterbi algorithm with multistep backtracking 

described in Methods section we derive most probable “ n ” conformations of the peptide. 

As an example, consider the sequence “GLN-VAL-CYS-ALA-ASN-PRO-GLU-LYS-LYS-

TRP”. The most probable twelve conformations are predicted as shown in Figure 21. It is clear 

that some conformations repeat although the torsion states of some residues in the state sequences 
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are different. Examination of the states listed below each figure shows that the differences are all 

in the first residue, which results in the similarity of the conformations. The repeating 

conformations indicate high entropy for that conformation. 

     

1) βS-βS-βS-βP-αL-βP-αR-αR-αR-βS 2) δR-βS-βS-βP-αL-βP-αR-αR-αR-βS 3) βP-βS-βS-βP-αL-βP-αR-αR-αR-βS 

   

4) αR-βS-βS-βP-αL-βP-αR-αR-αR-βS 5) βS-βS-βP-βP-βP-αR-αR-αR-βS-βS 6) δR-βS-βP-βP-βP-αR-αR-αR-βS-βS 

   

7) βS-βS-βP-δR-αL-βP-αR-αR-αR-βS 8) δR-βS-βP-δR-αL-βP-αR-αR-αR-βS 9) βS-βS-βS-δR-βP-δR-αR-αR-αR-βS 

   

10) δR-βS-βS-δR-βP-δR-αR-αR-αR-βS 11) βS-βS-βP-αR-βP-δR-αR-αR-αR-βS 12) δR-βS-βP-αR-βP-δR-αR-αR-αR-βS 

Figure 21. Most probable 12 conformations of the sequence “Gln-Val-Cys-Ala-Asn-Pro-Glu-Lys-Lys-

Trp”. From top left to bottom right the state sequences are ordered from the most probable to the 12
th
 most 

probable conformation. The symbols indicate the torsion states of the residues for the respective 

conformations. The conformations are determined using the Viterbi algorithm with multistep backtracking 

with n=12, and m=1000. 
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In previous studies, the prediction of most probable torsion state of a residue has been 

considered [74, 75]. Helles et al. considered the problem of predicting the probability distribution 

of the states of the coil residues in a given peptide instead of predicting only the most probable 

state [79]. As a different approach, we predict the high probable conformations rather than the 

probabilities of torsion states of the individual residues.  Therefore, this is the first study that 

handles the prediction of high probability conformations. 

The predictive capability of a given method depends on the nature of the library used, and the 

number of states that are used to define the probability space. The non-redundant PDB data set 

contains information on secondary structures, information on structural motifs and their relation 

to conformations which may be incorporated into the probability space to be used for predictions. 

A coil database contains less information, only on residue types and neighbor dependences. An 

IDP database contains information on the specific structural features of the disordered chains. 

Comparing the predictions from different data sets is not meaningful. However, just in order to 

see the relative performances of other methods and ours, we use results of Bystroff et al. [73] and 

Kuang et al. [74]. Both of these studies use the non-redundant PDB data base.  Bystroff et al. [73] 

used eleven states using a different definition from our torsion state definition and proposed an 

HMM model based on a library of sequence-structure motifs rather than the coil regions. Kuang 

et al. [74] defined four states ( , , ,A B G E ) and used an SVM method based on protein sequence 

profiles. Since these methods use different torsion state definitions, Kuang et al. [74] suggested to 

group the states given by Bystroff et al. [73] into four states (
' ' ' ', , ,A B G E ) for comparison. The 

grouped states are only approximately equivalent. Then, the prediction accuracies are determined 

as 74% for HMMSTR and 77.3% for SVM methods. We follow the same idea and group our 

eleven torsion states into four states as ( ''

R RA    , '' ' '

P SB          , ''

L LG     

, ''E  ). Then, the prediction accuracy of the Viterbi algorithm is 59.2% for predicting the most 

probable state of a residue in a given peptide sequence of the coil library.  The additional 15% 

improvement may approximately be ascribed to the additional structural information content in 

the non-redundant PDB data set over that of the coil dataset. 

Predicting highly probable conformations of a given peptide sequence is an important issue in 

targeted drug design. To be effective, a short peptide must match a given region of the surface of 
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a protein, producing a change in the activities of proteins that can affect certain diseases [68]. The 

conformations of the peptide that fulfil this constraint have to be among the most probable ones 

for maximum stability. 

Another important concept is the intrinsically disordered proteins those don’t naturally adopt 

a unique three dimensional structure. Therefore, their structure ranges from the totally random 

coil to molten globular [83, 84]. Use of a torsion state library for IDP’s and the present 

computational model will lead to the prediction of high probability conformations of disordered 

proteins.    

4.3  CONCLUDING REMARKS 

Predicting “ n ” high probability conformations of a given peptide problem is discussed. The 

proposed method is based on RIS model and Viterbi algorithm with multistep backtracking. The 

necessary parameters of the HMM are derived from a coil library depending on the residue types 

and the near neighbor effects. 

While using the Viterbi algorithm the long-range interactions are not included and may be 

essential for the state prediction. One may introduce second, or third neighbor effects that also 

would improve the prediction accuracies, since the coil regions are not exactly random [85]. 

Also, the scarcity of data for some torsion states in the Coil library lead to difficulty in prediction.  

The present work discusses the prediction of conformations of random coiled proteins from 

primary sequence. We showed that for certain amino acid types, introduction of residue type and 

neighbor dependence improved the predictions of conformations of proteins in the coil state. 

Thus, we showed that the Flory Isolated Pair Hypothesis does not hold in general. 
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Chapter 5  

 

CONFORMATIONAL TRANSITIONS IN THE RAMACHANDRAN SPACE OF 

AMINO ACIDS BY THE DYNAMIC ROTATIONAL ISOMERIC STATE (DRIS) 

MODEL 

The dynamic rotational isomeric state (DRIS) approach is utilized to predict local dynamics 

of 20 amino acids. An exhaustive sampling of amino acid conformations is given to understand 

the intrinsic properties of the amino acids. The transition rates between rotational isomeric states 

are calculated from molecular dynamics (MD) simulations of Gly-Gly-X-Gly-Gly pentapeptides 

where X represents one of the 20 amino acids. A computational approach is given for measuring 

relaxation times of the amino acids. The results are in good agreement with fluorescence 

quenching rate measurements [86]. 

Proteins are not rigid structures, they are dynamic molecules and characterized by 

conformational ensembles at equilibrium. Proteins perform most of their function through 

rearrangements of their conformations, such as allosteric rearrangements, large scale fluctuations, 

tail motions etc. Therefore, the knowledge of only the average structure of a protein does not 

provide a complete description. The knowledge of the popularity of the states, the transition rates 

and the pathways are all necessary for a full understanding of a protein [87]. Proteins exhibit both 

internal motions including bond vibrations, bond stretching, side-chain motions, rotational 

transitions and global motions as rotational and translational motions [63, 88]. In this study, we 

consider dynamics at the single residue level and focus on the internal motions resulting from 

conformational transitions exhibited by the twenty amino acids. We adopt the dynamic rotational 

isomeric states (DRIS) formalism in explaining and interpreting the residue dynamics. The DRIS 

approach has been developed for predicting local internal dynamics of polymer chains by Bahar 

and Erman [56]. The model requires the knowledge of the exact locations and probabilities of all 

torsion states of each amino acid and the transition rates between torsion states. These parameters 

are determined in this work by an exhaustive sampling of amino acid Ramachandran plots by 
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Molecular dynamics (MD) simulations. In a sense, the DRIS formalism is used to organize the 

MD simulations results in a compact and efficient way as explained in detail in Chapter 2.  

The DRIS model is an extension of the equilibrium theory of chain statistics by Flory [1] to 

the dynamic domain by Jernigan [64] and is conveniently used to calculate the internal time 

correlation functions of a chain and different dynamic properties associated with the transitions 

between the isomeric states [56-63].  

A computational approach is given for measuring relaxation times of the amino acids. Here, 

the aim is to investigate the conformations of the twenty amino acids whose dynamics evolves 

only from transitions from one torsion minimum to another as it would obtain in the random coil 

state. The preferences of the amino acids extracted from the Protein Data Bank are biased by the 

presence of secondary and tertiary structure, and long range interactions such as contacts and 

hydrogen bonds of a given residue with the rest of the protein [89]. Hence, instead of analyzing 

the protein structures from the protein data bank (PDB) or running simulations of proteins we 

perform MD simulations of Gly-Gly-X-Gly-Gly pentapeptides. Here X represents the amino acid 

to be examined. The GGXGG peptides have been commonly used as models for the random coil 

state [89-94]. 

We use MD simulations to identify isomeric states of the amino acids and to calculate the 

equilibrium probabilities of the corresponding states. Then, the rates of the transitions between 

the isomeric states are calculated using the DRIS approach based on the parameters obtained via 

MD simulations. The relaxation rates determined via DRIS model are compared with the 

fluorescence quenching rate constants obtained experimentally by Huang and Nau [86]. Results 

of our calculations agree with their experimental findings. 

5.1  METHODS AND MATERIALS  

The details of the generalized DRIS model are already given in Section 2.5. Here we apply 

the DRIS model to analyze the dynamics of the transitions of ( , )   angles of the amino acids. 

These transitions are determined by the transitions between the specified regions of the 

Ramachandran map. Those regions are separated by energy barriers. We have defined 8 
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discrete regions for this purpose based on the molecular dynamics simulations we have 

performed. 

Let the torsion state of an amino acid be defined by 

    ,i ii
    (4.1) 

Based on the interdependence between the neighbor amino acids, the transitions may be defined 

as (i) first order (independent), According to this, the statistics of  
i

  is independent of the 

statistics of its neighbors, (ii) second order (pairwise dependent), where the statistics of  
i

  

depends on the statistics of its preceding neighbor, and (iii) third order (triplewise dependent) 

where the statistics of  
i

  depends on the statistics of its preceding two neighbors. In this work, 

we adopt the Flory independence hypothesis and assume first order statistics [1]. For a first order 

transition of an amino acid, we define the master equation as 

 
( )

( )
dP t

AP t
dt

  (4.2) 

where the vector ( )P t  is the 8 -dimensional vector of the probabilities of 8 states, and the 

transition rate matrix A  is the 8 8  dimensional matrix. The state of a given amino acid is 

defined by one of the torsion states   ,  1, ,8
k

k  . Then, 
ijA , the ij

th
 element of the rate 

matrix, denotes the rate of the transition from state  
j

  to the state  
i

 . 

The formal solution of the master equation gives 

 ( ) exp{ } ( 0)P t At P t   (4.3) 

( 0)P t   represents the vector of the equilibrium probabilities of the 8 states. The 

eigendecomposition of the matrix A  gives 1A B B  . Here B  is the matrix whose i
th

 column is 

the i
th

 eigenvector of A ,   is the diagonal matrix whose diagonal elements are the eigenvalues 

i , and 1B  is the inverse of B . Then, 
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1( ) exp{ } ( 0)P t B t B P t    (4.4) 

The term 1tBe B   defines the time-delayed conditional probability matrix ( )C t . The element 
ijC  

denotes the probability of being at state  
i

  at time t, given the initial state  
j

  at t=0. The 

elements of each column of 
ijC  comprise all possible transitions from a given initial state to one 

of the 8 possible states. Hence, the summation of each column is unity. 

 
1( ) exp{ }C t B t B   (4.5) 

The total time-dependent joint probability matrix ( )P t  is defined as  

 ( ) ( ) diag ( 0)P t C t P t   (4.6) 

The element 
ijP  represents the joint probability of occurrence of state  

i
  at time t and  

j
  at 

t=0. 
ijP  may be defined as 

   1exp (0)ij ik k kj j

k

P B t B P   (4.7) 

Knowledge of the joint probability matrix ( )P t , or alternatively knowledge of conditional 

probability matrix ( )C t  with the equilibrium probabilities ( 0)P t   gives a complete description 

of the dynamics of a given amino acid. 

For any dynamic property 
ijf  which is a function of the conformations  

i
  and  

j
 , the 

average of the property ijf  over all possible transitions taking place from conformation j  to i  

can be calculated by assigning a stochastic weight to each transition 

 ( )ij ij ij

i j

f P t f    (4.8) 
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5.1.1  MOLECULAR DYNAMICS SIMULATIONS FOR DETERMINATION OF THE STATES AND 

EQUILIBRIUM PROBABILITIES 

A capped Gly-Gly-X-Gly-Gly peptide model is used for the analysis of the amino acid X. The 

simulations are performed using Gromacs 4.5.5 package [95]. The –N and the –C termini of the 

pentapeptide models Gly-Gly-X-Gly-Gly are capped with ACE and NME respectively. The 

initial conformation is selected as extended. 

OPLS/AA all atom force field is used and the system is solvated using four-atom water model 

TIP4P [96, 97]. The electrostatic interactions are calculated using PME-Switch method with 

Coulomb cut-off 1.0 nm. The Van der Waals interactions are calculated using Switch method 

with VDW cut-off 1.0 nm. 

An energy minimization using the conjugate gradient method with 5000 maximum number of 

steps and 0.001 ps time step is performed. Then to assure that the solvent configuration matches 

the peptide, the solvent and the hydrogen atoms are relaxed for 2500 steps while the peptide was 

restrained. 

Before the production MD step, first a 20 ps temperature coupling MD simulation and then a 

40 ps pressure coupling MD simulation is performed. During the 20 ps NVT ensemble simulation 

the Berendsen temperature coupling method is used [98]. The coupling constant is assigned as 

0.1 ps. Then, during a 40 ps NPT ensemble simulation Berendsen temperature and pressure 

coupling methods are used. The temperature coupling constant is again assigned as 0.1 ps and the 

pressure coupling constant is taken as 0.5 ps. 

A simulated annealing procedure is necessary to avoid a local minimum and to sample the 

energy surface properly [99]. We used 80 ps simulated annealing cycles during the production 

MD simulation.  In each cycle, the temperature of the system is increased from 310 K to 1010 K 

in the first 20 ps. Then in the second 20 ps part the temperature of the system is decreased from 

1010 K to 310 K. Finally in the last 40 ps part the temperature of the system is kept constant at 

310 K. This equilibration part is necessary since the collected data should be sampled from a 

Boltzmann distribution. Using the simulated annealing method, a different initial conformation is 
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selected in each cycle. Since the system is equilibrated after heating and cooling procedures, we 

assure that the selected conformations are sampled from Boltzmann distribution.   

5.1.2  DETERMINATION OF THE ROTATIONAL ISOMERIC STATES 

The Ramachandran plots showing the distributions of the populated regions of 20 amino acids 

in the Gly-Gly-X-Gly-Gly peptide are constructed. The Ramachandran plot of each amino acid is 

obtained directly from the simulation trajectories. The common populated regions are selected as 

the torsion states. 
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Figure 22. Ramachandran plots for the twenty amino acids. The populations are obtained from MD 

simulations of GGXGG peptides.  
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In Figure 22, a contour plot for each amino acid plotted using 5 5 grids where the x-, y-

axes represent φ and ψ angle distributions, respectively. The percentage of points in each grid are 

colored as:  0,0.05 :  gray ;  0.05,0.2 :  green ;  0.2,0.4 :  blue ;  0.4,0.8 :  red ;  0.8,1 :  black

that has been used by Beck et al. [89]. Based on the Ramachandran plots, 8 torsion states are 

determined. The selected regions are shown in Figure 23. We have defined 7 states based on the 

popularity of the regions and identified th8  state as the all other regions. Since Proline has a 

constrained phi angle, we have determined 4 torsion states for Proline. The identified states of the 

Proline are shown in Figure 24. Again, the th4 state is defined as the all other allowed regions.  

The regions are not so different from the regions introduced by Karplus [23]. Unal et al. also 

defined eleven states based on a knowledge based database which are similar to the regions we 

have defined by MD simulations [51, 68, 100]. In a knowledge based database, the preferences of 

the amino acids are biased by the presence of the protein. Furthermore, a coil library that is 

constructed by removing helical or beta structures may still include influences of conformations 

of proteins [89]. Therefore we perform MD simulations of pentapeptides which would present 

better representatives for the random coil structures. The boundaries of the states are selected in 

such a way that the transitions between these states would be analyzed explicitly. We have 

defined rectangular shaped states centered on the most populated regions. 

 

Figure 23. The representation of 8 states on Ramachandran map. 
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Figure 24. The representation of 4 states of Proline. 

 

5.1.3 CALCULATING THE EQUILIBRIUM PROBABILITIES 

The equilibrium probabilities are calculated from the equilibrium conformations data 

collected via MD simulations. For each amino acid, we simply count the number of states visited. 

The probability of observing an amino acid X  in a state i  is calculated as 

 
( )

( )
( )

X
X i

i X

i

i

N s
P s

N s



 (4.9) 

where ( )X

iN s  represents the number of occurrences of amino acid X  in a state i  during the 

simulation ant the summation term indicates the total number of occurrences in all possible states 

by amino acid X . 

The equilibrium probabilities of each amino acid obtained by MD simulations are presented 

in Table 6. 

Table 6. The equilibrium probabilities of the amino acids based on 8 states 

States: 1 2 3 4 5 6 7 8 

ALA 0.14 0.08 0.03 0.33 0.21 0.01 0.05 0.13 

ARG 0.17 0.11 0.02 0.30 0.19 0.01 0.07 0.13 
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ASN 0.20 0.11 0.03 0.31 0.18 0.01 0.05 0.11 

ASP 0.21 0.05 0.04 0.37 0.19 0.02 0.03 0.08 

CYS 0.22 0.16 0.03 0.23 0.16 0.01 0.05 0.14 

GLN 0.17 0.10 0.02 0.33 0.21 0.01 0.04 0.12 

GLU 0.17 0.04 0.04 0.40 0.21 0.01 0.04 0.09 

GLY 0.10 0.07 0.14 0.09 0.07 0.13 0.16 0.25 

HIS 0.16 0.06 0.02 0.37 0.23 0.01 0.04 0.11 

ILE 0.16 0.10 0.01 0.39 0.22 0.01 0.03 0.08 

LEU 0.14 0.08 0.03 0.34 0.23 0.01 0.05 0.11 

LYS 0.20 0.13 0.03 0.27 0.18 0.01 0.05 0.12 

MET 0.17 0.10 0.02 0.32 0.19 0.01 0.06 0.12 

PHE 0.21 0.13 0.02 0.28 0.18 0.01 0.05 0.12 

PRO 0.00 0.00 0.01 0.65 0.25 0.00 0.00 0.10 

SER 0.21 0.13 0.04 0.22 0.19 0.02 0.06 0.15 

THR 0.20 0.14 0.04 0.23 0.22 0.01 0.04 0.11 

TRP 0.22 0.11 0.03 0.30 0.20 0.01 0.03 0.10 

TYR 0.20 0.13 0.03 0.26 0.18 0.02 0.07 0.12 

VAL 0.19 0.10 0.02 0.35 0.23 0.01 0.02 0.08 

5.2  CALCULATION OF THE RATES 

In the previous applications of the DRIS, the rate constants related to transitions were 

calculated by using a kinetic scheme [56, 57]. The rates were determined by the activation 

energies aE  and a front factor 0A . 

 0 exp{ }ar A E RT   (4.10) 

The activation energies are calculated from the heights of the saddle points in energy maps. 

The front factor 0A  is represented by Kramers’ expression for high-friction Brownian motions 

[56]. It is the frequency of passing the energy barrier at a given temperature. Then the similarity 

transformation of the rate matrix A  whose elements are the rates leads to the conditional 

probability matrix ( )C t . 
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Alternatively, MD simulation trajectories of the chains may be used to determine the time-

delayed conditional probability curves ( )C t  [63]. We follow this approach and obtain the 

conditional probability curves for each amino acid. Then, the initial slopes of the curves give the 

transition rates following the equation (4.5). Eeach curve converges to the equilibrium 

probabilities of the final state at infinite time. 

5.2.1  CALCULATION OF THE TIME-DELAYED CONDITIONAL PROBABILITIES 

Given that we observe a state is  at time 0t  , the probability of observing a state 
js  at time t  

is given as 

 
( ,0; , )

( , ; ,0)
( ,0)

i j

j i

i

P s s t
C s t s

P s
  (4.11) 

where ( ,0; , )i jP s s t  is the joint probability that the system is in state i  at 0t   and in state j  at 

time t . 

For a chosen time step t  , we record the joint observations of is  and 
js  in time interval   

throughout the simulation. Then, the joint probability that the system is in state is  at 0t   and in 

state 
js  at t   is 

 ( ,0; , )
ij

i j

total

N
P s s

N
   (4.12) 

Here 
ijN  is the number of times when the system is in is  at a time t  and in 

js  at time t  , and 

totalN  is the total number of observations. 

After repeating the counting scheme for different chosen ,2 ,3 ,t     we obtain the joint 

probabilities. Then the joint probabilities lead determination of the time-delayed conditional 

probabilities. 

The time-delayed conditional probability curves C  are obtained for each amino acid using 

this approach. The transition probabilities for all possible transition between eight states are 
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represented. All of the curves are expected to approach to the equilibrium probability at infinite 

time. However, this condition is not satisfied in reasonable time for MD simulations at lower 

temperatures. Hence, the simulations are performed for higher temperatures as 400 K, 600 K, 800 

K, and 1000 K. Then, the aim is to estimate the rates for 310 K based on the values obtained for 

higher temperatures. 

In Figure 25, the conditional probability curves are given for Alanine evaluated by MD 

simulations at 400 K, 600 K, 800 K, and 1000 K. It is evident that the curves converge to the 

equilibrium probability faster for the higher temperatures. Based on this fact, the calculations are 

performed for higher temperatures. Then, the dynamical behavior at 310 K is estimated for each 

amino acid. 

 

 

Figure 25. Time-delayed conditional (transition) probabilities for Alanine at 1000 K, 800 K, 

600 K, and 400 K. The probabilities are shown for all possible transitions from the eight states to 

the state 4. The black solid lines represent the equilibrium probability of the state 4 for Alanine. 
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5.2.2 DETERMINATION OF THE RATE MATRICES 

The initial slopes of the time-delayed conditional probability curves give the transition rate 

matrix elements. Since  expC A  , 

  
0

0

exp
dC

A A A
d







 



   (4.13) 

One may derive the derivative at 0   using the finite differences. The forward difference is 

defined by 

 ( ) ( ) ( )f x f x h f x     (4.14) 

Furthermore, the higher order differences are derived by  

 
1 1( ) ( ) ( )k k kf x f x h f x       (4.15) 

Therefore, ( 0)f x   may be estimated by the sum of forward differences as follows 

 
2 3

0

1 1 1
(0) (0) (0)

2 3x

df
f f f

dx h

 
       

 
 (4.16) 

The rates are estimated using finite differences up to 5 order, using only the first six data 

points of the conditional probability curves. After construction of the rate matrices, the matrices 

of eigenvectors and eigenvalues are determined using the eigenvalue decomposition (4.2)-(4.4). 

Then, any dynamic property may be obtained by going through equations  (4.7) and (4.8) . 

5.2.3  MOLECULAR DYNAMICS SIMULATIONS FOR DETERMINATION OF THE RATES 

The same peptide model Gly-Gly-X-Gly-Gly and the same parameters that have been used in 

MD simulations for determinations of the states are used. However, this time we don’t use a 

simulated annealing procedure since the aim is to collect data for the transitions happened during 

the simulations. 1 ns simulations are performed for each type of amino acids and the data 

collected in 1 ps periods. 
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5.3  INTERNAL FLEXIBILITY 

Any dynamic property associated with conformational transitions, ( )f  , may be computed 

by using the rate matrices. Similarity transformation of the rate matrix ( 1A B B  ) leads to the 

determination of a mean transient property as follows 

 ( ) exp( )f k 


    (4.17) 

where   is the 
th eigenvalue of   and k  denotes the amplitude factor given by 

 
1

0 ( ) ( ; )k B B P f    
 

       (4.18) 

We are interested in calculation of the local relaxation properties of the amino acids. The 

internal dynamics of a given residue X  may be analyzed by a function that is associated with 

conformational transitions taking place between the torsion states. Hence, we consider two 

vectors; (i) 1l  between the atoms 1iC   and iN , and (ii) 2l  between the atoms 1iN   and 
1iC


 of the 

backbone of 2 1 1 2i i i i iGly Gly X Gly Gly        for this purpose. The conformations of the 

vectors will change with time related to the values of ( , )  . 

 

Figure 26. l1 and l2 vectors of the GGXGG peptide 

 

For this purpose we define two functions; 
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i. 1( )f   that gives the average cosine of the angle between 1l  vectors at 0t   and t   

when the vector 2l  is kept fixed, 

ii. 2 ( )f   that gives the average cosine of the angle between the cross product of the 

two vectors, 3 1 2l l l  , that gives information on conformational change in the 

normal. 

Here,  means averaging over all time steps. Then, 1( )f   is evaluated by 

 1 1
1

1 1

(0) ( )
( ) exp{ }

l l
f k

l l
 




     (4.19) 

 

 
1 11

0

1 1

( ; )
( )

i j

i jj
i j

l l s s
k B B P s

l l
  

     (4.20) 

 

Here 
1 1( ; )i jl l s s  is the dot product of the 1l  vector with itself when the transition takes place from 

state 
js  to state is . 

Similarly, the cross product of the two vectors, 3 1 2l l l  , is analyzed by calculating 2 ( )f  . 

 3 3
2

3 3

(0) ( )
( ) exp{ }

l l
f k

l l
 




     (4.21) 

 
3 31

0

3 3

( ; )
( )

i j

i jj
i j

l l s s
k B B P s

l l
  

     (4.22) 
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5.4  RESULTS AND DISCUSSION 

Figure 27 and Figure 28 show the two correlation functions 1( )f t  and 2 ( )f t  over time for 

some amino acids (Asn, Cys, Gly, Trp) at T=400, 600, 800, 1000 Kelvin respectively. The decay 

curves presented in the figure show that these functions exhibit exponential decay behavior. 

Hence, it is possible to obtain the relaxation times by fitting the curves with formula 

exp( / )A B t C  . Then, the parameter C  that gives the relaxation time R  is determined for all 

amino acids at different temperatures.  

Arrhenius’ equation is a mathematical expression that gives the relation between rate 

constants and temperature. The equation was proposed by Svante Arrhenius in 1889 [101] by 

means of experiments. That is  

 exp( / )a Bk A E k T   (4.23) 

where k  is the rate constant of a chemical reaction. A  is the pre-exponential factor or the 

frequency factor of the reaction. aE  is the activation energy, Bk  is the Boltzmann constant and T 

is the absolute temperature. Taking the natural logarithm of the equation yields 

 ln( ) ln( ) a

B

E
k A

k T
   (4.24) 

When  ln k  is plotted as a function of 1/ T , this relation,  called the Arrhenius’ equation, 

gives a straight line since it is in the form of y mx b  . 

Hence, our aim is to estimate the straight lines by linear least squares fitting technique after 

obtaining the relaxation times. These lines determined for each amino acid at different 

temperatures lead to relaxation times at 310 K by extending the lines until 1/ 1/ 310 0.003T   .    
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Figure 27. The mean dynamic properties <f1(t)> for Asn, Cys, Gly, Trp at 400, 600, 800 and 1000 

Kelvin. 
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Figure 28. The mean dynamic properties <f2(t)> for Asn, Cys, Gly, Trp at 400, 600, 800 and 1000 

Kelvin. 
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The relaxation times determined via fitting 1( )f t  to exponential decays are shown in Figure 

29 for some amino acids. Curve fitting the natural logarithm of relaxation times to linear lines 

yield the red lines shown in the graphs. The relaxation times at T=310 K are estimated by this 

lines since the dynamic functions obey Arrhenius’ equation.   

 

 

Figure 29. Relaxation times for amino acids Asn, Cys, Gly, and Trp calculated via <f1(t)>. Red line 

represents the linear curve fitting. 
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Similarly, the relaxation times obtained via fitting 2 ( )f t  are presented in Figure 30. 

 

 

Figure 30. Relaxation times for amino acids Asn, Cys, Gly, and Trp calculated via <f2(t)>. Red 

line represents the linear curve fitting. 

In Table 7, the estimated relaxation times 1  and 2  for T=310 K are presented. Glycine and 

Serine that are known as small amino acids relax faster than the other amino acids. Glycine is the 

least restricted amino acid while Proline has restrictions in Ramachandran map and has the 

largest relaxation time. 

Isoleucine and Threonine relax more slowly than the other amino acids. These amino acids 

are restricted in the conformations since they contain two non-hydrogen substituent attached to 

their C-beta carbon. They are known as C-beta branched amino acids. Hence, it is not surprising 

that these amino acids relax slower than the other amino acids.  
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Table 7. Estimated relaxation times for twenty amino acids at 310 Kelvin. 

Amino Acid Relaxation time1 ( 1 ) Relaxation time2 ( 2 ) 

ALA 0.33 0.40 

ARG 0.32 0.38 

ASN 0.36 0.48 

ASP 0.29 0.33 

CYS 0.28 0.28 

GLN 0.54 0.81 

GLU 0.39 0.56 

GLY 0.19 0.22 

HIS 0.45 0.61 

ILE 0.55 1.12 

LEU 0.27 0.33 

LYS 0.49 0.70 

MET 0.40 0.58 

PHE 0.41 0.54 

PRO 1.51 1.51 

SER 0.23 0.21 

THR 0.72 1.05 

TRP 0.50 0.78 

TYR 0.39 0.53 

VAL 0.37 0.52 

 

Huang and Nau determined the fluorescence lifetimes of unstructured peptides as a function 

of the amino acid type [86]. It has been reported that the quenching rate constant is a scale for the 

flexibility of amino acids. The rate constants of sixteen amino acids are given except for Trp, Tyr, 

Cys, and Met since these four amino acids are themselves are known as efficient quenchers [102].  

In Figure 31, we compare our results with the fluorescence results of Huang and Nau [86]. In 

general, the results are in good agreement. The quenching rates are determined as a measure for 

flexibility and the results are related with the residue size.  
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In Figure 32, we provide a comparison of quenching time with molecular weight. We 

removed Proline since it is an outlier with a relaxation time value of more than 10 microseconds. 

The quenching times of Ile and Val are higher than the others. These amino acids are β-branched 

amino acids that have restricted main chain conformations. On the other hand, β-branched Thr 

seems to be more flexible than Ile and Val. Huang and Nau proposed that since Thr has a 

secondary hydroxyl group, it limits the flexibility of Thr but much less than Val and Ile. 

Furthermore, if we compare Leu and Ile; Leucine seems to be more flexible than Isoleucine. 

Huang and Nau state that this is because Ile is a β-branched amino acid. 

 

Figure 31. Comparison of the relaxation rates determined via DRIS with the quenching rates 

obtained experimentally by [86]. 

 

The scale between relaxation time determined by DRIS and molecular weight is given in 

Figure 33. The relation is determined by excluding Thr since it is an outlier. Here two C-beta 

branched amino acids, Thr and Ile, relax more slowly than the other amino acids while the other 

C-beta branched amino acid Val relaxes faster than these and our explanation parallels that of 

Huang and Nau.  
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The order of relaxation time 
1  is Gly< Ser< Leu< Cys< Asp< Arg< Ala< Asn< Val< 

Tyr,Glu< Met< Phe< His< Lys< Trp< Gln< Ile< Thr< Pro. Similarly, the order of relaxation time 

2  is Ser< Gly< Cys< Asp, Leu< Arg< Ala< Asn< Val< Tyr< Phe< Glu< Met< His< Lys< Trp< 

Gln< Thr< Ile< Pro. 

Although the results fit together with the data given by Huang and Nau [86], there are some 

differences. This may be a consequence of different macrocyclization probabilities of different 

amino acid sequences, which plays a role in the experiments of Huang and Nau but is not 

consequential in our single amino acid calculations. The proportion of macrocyclic constituents at 

equilibrium is related to the macrocyclizatiıon probability that is the probability of coincidence of 

the two ends of a sequence [103-105]. Hence, it effects the statistical configurations of the chain. 

Therefore, it is related to chain flexibility and the choice of chain length may affect 

measurements of the quenching. 

 

Figure 32. The relation between quenching time [86] and molecular weight of the fifteen 

amino acids. Pro is excluded. 
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Figure 33. The relation between relaxation time determined by DRIS and molecular weight of 

all amino acids except Pro and Thr. The relation is determined by excluding Thr since it is an 

outlier. 

 

5.5  CONCLUDING REMARKS 

The rotational transitions between the torsion states of the bonds have an important role in 

local dynamics. DRIS is an efficient computational method that yields determination of a 

dynamic property of the chain as a function of local transitions based on the frequencies of each 

state. 

In this study, the rates of first order transitions between the specified states are determined by 

the conditional probability curves that obtained from MD simulation trajectories of amino acids. 

Since the probability curves converges to the equilibrium probabilities faster at higher 

temperatures, the calculations are performed for 400, 600, 800, and 1000 K. The initial slopes of 

the time-delayed conditional probability curves give the transition rates that to be implemented in 

the rate matrices. The identified dynamic properties 1( )f t  and 2 ( )f t  are determined based on 
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the DRIS method. Since these functions decays exponentially, respective relaxation times at 

different temperatures are obtained.  

Our calculations showed that 1( )f t  and 2 ( )f t  have Arrhenius behavior. Based on this 

observation, we extrapolated the rates for higher temperatures and obtain the relaxation times at 

310 K for all amino acids. 

Relaxation times of the amino acids are related to the flexibility of the molecules, smaller 

relaxation times indicating higher flexibility while larger relaxation times indicating higher 

rigidity. 

We applied the DRIS method to analyze the internal dynamics of the amino acids. The DRIS 

method is a general method that can be applied to determine the internal dynamics of the 

peptides. One may adopt the same method to analyze dynamics of different length peptides in the 

random coil state. 
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Chapter 6  

 

CONCLUSION 

In this dissertation, we analyzed the properties of the protein in the random coil state. Having 

a complete description of the random coil state is motivated by (i) understanding primary 

sequence of the proteins, (ii) characterization of the denatured proteins, (iii) analyzing the 

intrinsically disordered proteins. The functional, structural and dynamical properties for the 

random coil state are investigated. 

The statistical thermodynamics properties of the proteins are obtained using rotational 

isomeric states (RIS) model of polymer theory and based on the knowledge based data. The 

method is utilized to determine conformational energy, entropy, mean energy and heat capacity 

for the random coil state. The explicit thermodynamic expressions are derived for these functions 

using a curve fitting technique. The results show that per residue thermodynamic properties scale 

only with the temperature for the proteins in the random coil state. We provided a computational 

scheme to analyze the thermodynamic properties for the random coil state. This scheme can be 

extended to determine other thermodynamic potentials by using existing Legendre transformation 

techniques of the thermodynamic theory. 

In the second study, we proposed a computational method for predicting “ n ” high probability 

conformations of a given peptide sequence in the random coil state. The presented scheme is 

based on a hidden Markov model and Viterbi algorithm. A priori probabilities are determined 

from a knowledge based database, and a posteriori probabilities are obtained using rotational 

isomeric states (RIS) model. Existing studies are mainly focused on predicting the most probable 

state of the residues that does not provide a conformational sampling. However, prediction of a 

probability distribution is necessary for a proper analysis of the conformational space. The 

proposed method is the first study that predicts the high probability conformations of a given 

peptide sequence in the random coil state. This approach would be useful in targeted drug design 

since finding the conformation that matches a given surface area is necessary to be effective. 
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Furthermore, using a torsion state library for the intrinsically disordered proteins one may predict 

the high probability conformations using the proposed scheme. 

In the last study, we have analyzed conformational transitions of amino acids by DRIS model. 

The torsion states of the amino acids and the probabilities of the states are determined by MD 

simulations of Gly-Gly-X-Gly-Gly pentapeptides where X represents a given amino acid. 

Dynamic properties are important for a full description of the amino acids. The DRIS model 

based on the MD simulations is an efficient computational scheme for providing local dynamic 

properties. The relaxation times of the amino acids for given dynamic properties are calculated. 

The results are in good agreement with experimental results and indicate that the relaxation time 

of the amino acids scale with the flexibility of the molecule. 
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