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ABSTRACT

Proteins are dynamic biological molecules that play important roles in cells. They may adopt
many conformations influenced by short and long range interactions. In the random coil state,
only short range (local) interactions are accounted. It is possible to analyze the random coil state

of proteins using the methods of polymer chain statistics.

The unfolded state of proteins consists of enormous number of random configurations.
Furthermore, proteins adopt many different conformations under denaturing conditions. Also, the
intrinsically disordered proteins that do not assume a stable, unique 3D structures display
characteristics of random coils. Hence, it is important to have a full understanding of random coil

states.

A statistical analysis of thermodynamic functions such as conformational free energy, mean
energy, entropy and heat capacity is given to characterize the random coil state. The approach is
based on the rotational isomeric states model that is developed for polymer theory. The explicit

expressions for the thermodynamic properties are derived.

Several computational studies for predicting peptide conformations exist in the literature.
However, most of the existing work is confined to secondary structure prediction. An approach
for determination of the high probability conformations of peptides in the random coil state is
lacking in the literature although some studies provide prediction of the most probable state for
each residue of a chain. We present a novel scheme that considers a probability distribution that
may provide a detailed analysis of the conformation space by sampling. Since this is the first
approach that provides high probability conformations of peptide sequences, we have compared
our results by calculating prediction accuracies for the most probable states of residues. Our
approach gives 9% better predictions than the existing ones based on the most probable states of

the residues.

Since proteins are dynamic structures, it is important to characterize them both structurally and
dynamically to have a complete understanding. We present a computational method to analyze



conformational transitions of the twenty amino acids based on MD simulations and the DRIS
model. The relaxation times are identified and presented for the twenty amino acids. Our results

are in good agreement with experimental data.



OZET

Proteinler hiicrelerde Onemli rollere sahip dinamik biyolojik molekiillerdir. Kisa ve uzun
aralikli etkilesimlerden etkilenerek bir¢ok yapi edinirler. Rastgele sarim halinde yalnizca kisa
aralikli (lokal) etkilesimler sorumludur. Proteinlerin rastgele sarim halini polimer zincirlerin

istatistigi yontemlerini kullanarak incelemek miimkiindiir.

Proteinlerin katlanmamis hali muazzam sayida rastgele yapidan olusur. Ayrica, proteinler dogal
yapilarin1 bozan sartlar altinda birgok farkli yapi edinir. Ayn1 zamanda, sabit ve essiz bir ii¢
boyutlu yapisi olmayan oziinde diizensiz proteinler rastgele sarim karakteristigi gosterir. Bu

nedenle, rastgele sarim hallerinin tam anlasilmasi1 6nemlidir.

Rastgele sarim hallerini karakterize etmek igin yapisal enerji, ortalama enerji, entropi ve 1s1
kapasitesi gibi termodinamik fonksiyonlarin istatistiksel analizi verilmistir. Bu yaklasim polimer
teorisi igin gelistirilmis olan donel izomeric haller modeline dayanir. Termodinamik &zellikler

icin agik ifadeler elde edilmistir.

Literatiirde peptid yapilarin1 tahmin eden farkli hesaplamali ¢aligmalar bulunmaktadir. Ancak,
mevcut calismalarin ¢ogu ikincil yapi1 tahmini ile sinirhidir. Birkag ¢alisma zincirdeki her bir
kokiin en olas1 halinin tahminini saglasa da, rastgele sarim halindeki peptidlerin yiiksek olasilikli
yapilarini elde eden bir yaklagim literatiirde eksiktir. Ornekleme ile yap1 uzaymin detayl
analizini saglayabilecek bir olasilik dagilimini ele alan yeni bir plan sunuyoruz. Bunun peptid
dizilerinin yiiksek olasilikli yapilarini saglayan ilk yaklasim olmasindan o&tiirii, sonuglarimizi
koklerin en olast halleri i¢in tahmin dogrulugunu hesaplayarak karsilastirdik. Yaklagimimiz

koklerin en olasi hallerine dayanan mevcut yaklagimlardan %9 daha iyi tahminler vermektedir.

Proteinler dinamik yapilar olduklart i¢in tam anlagilmasi i¢in hem yapisal hem de dinamik
olarak karakterize edilmeleri dnemlidir. Yirmi amino asidin yapisal gegislerini analiz etmek igin
MD simiilasyonlar1 ve DRIS modeline dayanan hesaplamali bir yontem sunuyoruz. Yirmi amino
asit i¢in gevseme siirelerini tanimladik ve sunduk. Sonuglarimiz deneysel veri ile iyi uyum

gostermektedir.
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Chapter 1

INTRODUCTION

Proteins have significant roles in cellular function and disease processes. They are dynamic
structures that assume a large ensemble of conformations around the average structure. It is
important to analyze both the probabilities of the conformational states and the energy barriers

between these states to understand proteins.

Proteins assume different stable states as folded (native), unfolded (random coil), molten

globule, or pre-molten globule. Different conformations of proteins are characterized by
backbone torsion angles (¢,) of the amino acids of the chain. Some values of the (¢,/) angles

are not allowed and some values are more popular than the other values. These preferences are

different for different types of amino acids.

- R
/7 \
B -1-;%

Random Coil f'\f\\[

Figure 1. A schematic quartet model for different states of proteins

Protein chains adopt random configurations based on the backbone torsion angles of the
residues. Configurational preferences of a given residue depend on both local and nonlocal
interactions. Short-range (local) interactions result from the effects of neighboring residues

whereas the long-range (nonlocal) interactions result from the non-neighbor residues. In the
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random coil state, only the near-neighbor effects are taken into account. The term ‘randomly
coiled proteins’ describing this state has been studied in detail by Flory and collaborators in

polymer theory [1-7].

Understanding the random coil state of proteins is important due to several reasons: Firstly,
the set of random configurations covers all possible initial conformations of proteins. Depending

on the primary sequence, some conformations emerge as highly probable due to the amino acid

specific regions of the (¢,1//) angles. Secondly, under strongly denaturing conditions, a wide

range of values become available to (¢,l//), and conformations are close to those of the random

coil [8, 9]. Thirdly, the functionally important ‘intrinsically disordered protein’ concept where the
primary sequence prohibits the folded state, may suitably be analyzed by the tools used to

understand the random conformations [10, 11].

This dissertation mainly focuses on applications of the rotational isomeric states (R1S) model

on proteins. The outline of this dissertation is as follows:

Chapter 2 presents a general review on the RIS model, determination of statistical properties
of chains based on the RIS model, intrinsically disordered proteins (IDP), hidden Markov model

and the dynamic RIS model that allows determination of transition probabilities.

Chapter 3 focuses on a statistical analysis for determination of thermodynamic properties of
proteins in the random coil state. The availability of several conformations necessitates a
statistical approach. Conformational free energy, mean energy, entropy and heat capacity

expressions are derived using the RIS model.

Chapter 4 demonstrates a computational scheme for finding high probability conformations of
peptide sequences in the random coil state. The model calculates the probability distribution of
the torsion states based on the RIS formalism. High probability conformations are then obtained
by using a hidden Markov model Viterbi algorithm.

Chapter 5 illustrates a computational method for determination of conformational transitions
of the amino acids by the dynamic rotational isomeric state (DRIS) model. Local dynamics of

amino acids resulting from rotational transitions between isomeric states are analyzed.
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In Chapter 6, the results are discussed and a short summary of major conclusions of the study
are presented.
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Chapter 2

LITERATURE REVIEW

2.1 ROTATIONAL ISOMERIC STATES MODEL

The statistical description of the denatured states of proteins based on polymer theory goes
back to the work of Flory and collaborators based on the Rotational Isomeric State (RIS)
formalism[1]. The RIS model for a protein chain consists of two major components: (1) The

statistical weights of the torsion states of the (¢#,) angles, (2) The proper matrix multiplication

operations leading to the partition function of the chain. Thermodynamics of a single chain then

follows upon matrix operations based on the partition function and its derivatives [12, 13].

The RIS formalism replaces the continuous distribution of backbone torsion angles by a
distribution over several discrete states, and integrals over the energy surface are approximated

by summations over these states.

The native state of a protein is obtained when each torsion angle selects a unique value. Two

torsion angles around the alpha carbon, C*, describe the local conformation of a residue. The
applicability of the RIS model to proteins is facilitated by the Flory isolated pair hypothesis,
which suggests that each pair of torsion angles is independent of the angles occupied by
neighboring pairs[1, 2]. Rose and coworkers investigated the validity of the hypothesis by
exhaustive enumeration and showed that the isolated pair hypothesis does not hold in general
[14]. Zaman et al. demonstrated that important interactions between neighboring residues exist
and thus the hypothesis is invalid [15]. On the other hand, Ohkuba and Brooks confirmed the
validity of Flory’s hypothesis in the context of helical peptides [16]. Generating a statistical coil
model, it has been shown that the inclusion of correlations coming from conformations of
neighboring residues improves the consistence with experimental data [17]. Jha et al. studied the
intrinsic conformational preferences of residues in a restricted coil library and showed that there
is a correlation between the conformation and chemical character of neighboring residues and the
structural preferences [18]. Keskin et al. also studied the conformational propensities of amino

acids and confirmed the existence of significant correlations between neighboring torsion angle
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pairs [19]. Esposito at al. indicated that the value of an omega torsion angle is strongly correlated
with the value of the adjacent psi angle [20]. Colubri et al. studied the contribution of neighbors

in protein folding by comparing the results of simulations with and without neighbor effects [21].
In a recent work it has been shown that the usage of (y;,® ) provides more information on

backbone behavior as opposed to independent usage of residues [22].

It has been shown that some values of torsion angles are more favorable than others, and
different amino acid types have different propensities to occur in different angles [23]. The
dependence between the torsion states of two neighboring residues is a function of the type of the

residues [19]. We elaborate further on this point in discussing the construction of energy maps.

2.2  STATISTICAL MECHANICS

A configuration {a)} of an N-bond chain is defined by torsion angles (¢,w) describing the

torsional rotations of amino acids. If we define the torsional energy when bond i-1 is in state 7

and bond i is in state £ as E then the configurational energy of the chain for a given

7g;i=1i !

configuration is
E {a’} =Ep+Eg+Ey++E L+ B+t By (2.1)

Here E _,;

is the energy corresponding to the joint occurrence of bonds i—1 and i in their

respective states where the indices  and £ indicating the corresponding states are omitted for

simplicity.
Statistical weights for corresponding to the torsional energies is defined by

u,., =exp(-E,.; /RT) (2.2)
Statistical weights may be expressed in the form of statistical weight matrix U, as

Ui=[u,] (2.3)
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where the 7™ element indicates the statistical weight bond i is when it is in state ¢ while the
bond i—1 is in state 7. The rows of the matrix represent the states for bond i—1 and the columns

represent the states for bond i.

Then, the statistical weight of a configuration {a)} of a chain is calculated a serial

multiplication of the statistical weights of individual bonds.
Q, =]]u. (2.4)
The statistical weight of a configuration shows the frequency of occurrence in a statistical
mechanical ensemble at equilibrium.

The partition function, Z , of the chain is given by
Z :{Z}:Q{w} :{Z}:Hum (2.5)

where the summations are taken over all configurations. Calculation of the partition function
using this equation would be computationally difficult as the number of bonds increasing. A
computationally efficient method is using matrix methods. The entire sum of products of

statistical weights can be determined by matrix multiplication [1, 12, 24].

The partition function of a chain of N bonds with v number of rotational states is calculated

by
Z =J{ﬁui}a (2.6)

where J* and J are the row and column vectors of order 1xv and v x1 respectively.

3=[1 0 - 0] J=|] @.7)
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The probability that a given molecule occurs in a given configuration is determined as the
statistical weight divided by the sum of statistical weights for all possible configurations. Hence,

(2.8)

The probability P, that bond i is in state 7 is calculated as the quotient of the sum of the
statistical weights for all configurations for which bond i is in state 7, divided by Z

D, :zU*{ﬁuh}u;{ﬁuj}J (2.9)

j=i+l

is the matrix obtained from U, by equating all elements to zero except the elements

where U,

of column 7. In this way, we keep only the terms satisfying the condition, = @, ; .

The probability p,,; that bonds i—-1 and i occur simultaneously in states ¢ and 7

respectively is given by

Py =Z‘1J*[ﬁuh}U'@{ﬁUj}J (2.10)

j=i+l

where U, ;

is obtained by striking all entries of U; with the exception of u,, ;.

This matrix multiplication method is also applicable to determination of derivatives of the
partition function. For example, first derivative of the partition function with respect to

temperature is
N-1 R
dz/dT =L {HUTJ L (2.11)
i=2

where
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L'=[3" 0 - 0]andL=| (2.12)

and UT;i is the super matrix that the elements of which are matrices

- u u,
U, = T 2.13
" {0 U :|i ( )
Here U, =dU, /dT .
Similarly,
. N-1 A
d’z/dT? =M {HU”}M (2.14)
i=2
where

M*=[J" 0--0 0---0 0---0]and M=column[0---0 0---0 0---0 J] (2.15)

Uu u U u

g, -2 Y o (2.16)
"o 0 U u
0 0 0 U

Here U;, =dU,/dT and U, =d’U,/dT?.

2.3  INTRINSICALLY DISORDERED PROTEINS

A protein whose native state has undergone a main change as noncovalent, cooperative or
reversible is described as a denatured protein. The structural characteristics of denatured proteins
are directly related to the characteristics of intrinsically disordered proteins (IDP). Disordered
proteins are described as partially or completely unfolded proteins without a unique native

structure. IDPs do not have a unique stable three dimensional structure upon crowding and the



Chapter 2: Literature Review 9

rapid conversion between multiple states remains [25]. The lack of structure may yield functional

advantages like easily adapting different conformations and ability of binding to several targets.

Disordered proteins are observed ubiquitously, ranging from the totally random coil to molten
globular [26], or even they may be exchanging conformations between various states such as the
prion, a protein responsible in the mad cow disease, a-synuclein, a mutated form of which is
responsible for the Parkinson’s disease, etc (see for example DisProt: the Database of Disordered
Proteins [27]). For example the disordered a-synuclein takes a partially helical conformation
when in contact with the cell wall. The transition between the partially unfolded to partially

helical states is necessary for its function.

In many cases, disordered proteins switch their conformations from a completely or partially
disordered conformation to a more ordered structure upon binding. Dunker et al. suggested that
these disorder-to-order transitions disconnect binding energy (affinity) and the ability to
discriminate a substrate (specificity) and provide advantage to adapt different binding targets
[28]. Romero et al. showed that thousands of proteins contain disordered regions supporting the
idea that function-structure relationships need to be extended to contain unfolded or disordered
proteins [29]. In the same year, Garner et al. suggested that disordered regions are distinct from
ordered proteins and thus form a separate category [30]. Wright and Dyson pointed out the
contributions of disordered structures in cellular functions and suggested that the general
assumption of the close relation between the protein function and its folded structure should be
considered again [31]. Uversky et al. analyzed the properties of natively disordered proteins by
means of hydrophobicity and charge and made it possible to predict if the given protein sequence
leads to a structured or an unstructured protein [26]. They showed that low mean hydrophobicity
together with high net charge indicates the lack of structure in proteins. Dunker et al. classified
and analyzed disorder-function relationships. The observed functions are molecular recognition,
molecular assembly/disassembly, protein modification, and entropic chain activities [32]. In
another study, Dunker et al. predicted disorder of proteins based on the amino acid sequence and
showed the commonness of disorder in protein structure [33]. As a result, they showed that
eukaryotes have more disordered regions than archaea or bacteria suggesting that unstructured

proteins are more frequent in complex organisms.
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Tompa predicted existence of repeat regions in some known unstructured proteins and
showed that these repeat segments are functionally essential and widely occur in disordered
proteins [34]. The classification of the functional information of disordered proteins based on the
Gene Ontology (GO) classification has been given in five functional areas; (i) transcription and
transcription regulation, (ii) signal transduction and the regulation of cell cycle, (iii) the
biogenesis and functioning of nucleic acid containing organelles, (iv) messenger ribonucleic acid
(mRNA) processing, and (v) the organization and biogenesis of cytoskeleton . Also, the
classification of functional modes of disordered proteins has been given in seven categories; (i)
entropic chain functions, (ii) display site functions, (iii) chaperone functions, (iv) effector

functions, (v) scavenger functions, (vi) assembler functions, and (vii) prion functions.

Gunasekaran et al. gave another argument for existence of large proportion of disordered
proteins in eukaryotic cells in terms of physical constraints [35]. For protein stability, large
protein size is needed for having large intermolecular interfaces. However, this would cause some
critical problems. Hence, by comparing the interface sizes of ordered and disordered proteins, it
was shown that proteins in their extended states are good solutions for having large interfaces
with smaller protein sizes. On the other hand, an argument for efficient induced folding
mechanism of disordered proteins has been given as the preformed elements which enables them
an easy and fast formation. Fuxreiter et al. proposed a folding model for disordered proteins in
which the preformed elements provide an advantage for an effective interaction by making the
first contacts [36]. Tompa and Csermely reviewed high existence of disordered regions in RNA

and protein chaperones, and their functions in chaperon action [37].

Tompa reviewed recent advances in disordered proteins in 2005 [38]. The functional modes
of disordered proteins such as entropic chains, display sites, chaperons, effectors, assemblers and
scavengers, and their residual structure that explains specialized modes, and the functional
advantages provided by flexible structure are given in the review. Also, a functional classification
scheme of disordered proteins has been given such that the function originates either from
fluctuations or ability to transiently or permanently bind partner molecules. On the other hand,
Dyson and Wright reviewed the biological role of intrinsically disordered proteins and discussed
the importance of folding into an ordered structure upon binding to a target, called as coupled

folding and binding process, and conformational flexibility [39].
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Dunker et al. explained the contribution of intrinsic disorder in protein-protein interactions by
emphasizing the relation between hub connectivity and the protein structure. It has been proposed
that disorder in one or both proteins may either yield a nonselective structure for connections, or
flexible links between domains. In addition, important roles of interactions between ordered hubs

and disordered proteins have been illustrated [40].

DisProt database has extensive data on disordered proteins in which various experimental
techniques (i.e., X-ray crystallography, NMR, and circular dichroism (CD)) are used to
characterize the disordered regions [27]. Since it is difficult to identify and characterize
disordered proteins by experiments, a number of bioinformatics tools for predicting disorder
based on amino acid sequence have been developed. The links of many predictors can also be
found in the DisProt (http://www.disprot.org). The characteristics of the amino acid sequences of
disordered proteins and ordered proteins show differences in terms of amino acid composition
and sequence complexity [41, 42]. Disordered proteins contain less nonpolar, more charged
amino acids then ordered proteins and are characterized by low sequence complexity [26, 42].
Evolution of disordered proteins in terms of amino acid substitutions is also different then
ordered proteins [43]. Aromaticity, charge, hydrophobicity, and flexibility are the other
differences between the amino acid sequences of disordered and ordered proteins [44]. Although
different predictors use different approaches, they are all based on these sequence differences and
work well. Dosztanyi et al. presented a small survey of prediction methods of identification
disordered proteins or regions and discussed the methodologies [45]. An analysis on the main
ideas of different prediction methods and the difficulties of them has been given in a recent

review [46].

Disorder in proteins has also been studied in relation to drug design. It has been shown that
there are some examples indicating that protein-protein interactions with one disordered and one
ordered partner are good targets for drug discovery [44, 47]. Some proteins show significant
levels of disorder in human diseases such as cancer, cardiovascular diseases, diabetes,
autoimmune diseases, neurodegenerative diseases (i.e., Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, and Prion disease) [44, 48]. Cheng et al. indicated the role of disorder on
finding new small drug molecules that can modulate protein-protein interactions [49]. One of the
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binding proteins undergoes a disorder-to-order transition upon binding to its structured
complement and makes an ideal druggable target.

2.4 HIDDEN MARKOV MODEL

A Markov system is a system that can be in one of several states, and can pass from one state
to another each time step according to fixed probabilities. If a Markov system is in state i, there
is a fixed probability, p;, of it going into state jat the next time step. The probability p; is

called a transition probability. All transition probabilities p;, i, j=1...N in a system with N

possible states may be represented as a N xN matrix. Then, the entries in each row add up to 1
and the matrix is called the state transition matrix. The initial distribution of the states defines the
probability of the system being in each of the states at time 0. This vector of initial probabilities

is called the 7 vector.

A hidden Markov model (HMM) is a discrete-time Markov model with some additional
features. That is, when a state is visited by the Markov chain, the state ‘emits’ a letter from a

fixed time-independent alphabet. In a HMM, there is an observed sequence of emitted symbols

which is defined by 0=0,,0,,0;..., and a sequence of states visited which is defined by

Q=0,,0,,0;,...[50, 51].
An HMM consists of the following components:

1) S=S,S,,...,S, Asetof N states
2) A={a,a,,...,a, | Analphabet of M distinct observation symbols
3) P =(p;) The transition probability matrix where p, =P(q,,,=S,|q, =S))
4) b (a)=P(S; emits symbol a) for each S, and a, The emission probabilities.
5) II=(z) Aninitial distribution vector where 7, =P(g, =S;)
Hidden Markov models were introduced in a series of statistical papers by Leonard E. Baum
and others in the late 1960s. The first application of HMM is speech recognition [52]. The system

is assumed to be a Markov process with some unknown parameters in an HMM. HMMs are

being used in speech recognition, natural language processing, and bioinformatics. The model is
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applied to the analysis of biological sequences in the late 1980s [53]. Since then, HMMs have
been widely applied in several areas such as multiple sequence alignment, gene finding, modeling
protein or DNA families, predicting protein coding regions in genome sequences, predicting

secondary structure elements in proteins, etc. of computational biology.

There are three types of problems that are frequently represented with an HMM. (i)

Calculating the probability of some given sequence of observed symbols P(O|A) given the
parameters A =(P,B, ), (ii) Finding the parameter set 1= (P, B, ) that maximize P(O| 1),
(iii) Determining the hidden sequence of states Q that is most likely to have occurred, given

sequence O. That is argmax P(Q|QO). The latter can be carried out by an efficient algorithm.
Q
The Viterbi algorithm is introduced by Andrew Viterbi in 1967 [54].

This algorithm is a dynamic programming algorithm that efficiently searches for a state
sequence Q that has the highest probability P(Q|O) [50, 52, 55]. The Viterbi algorithm has two

main steps; (i) finding mgx P(Q|0O), (ii) backtracking to find a Q that satisfies this maximum.

2.5 DyYNAMIC ROTATIONAL ISOMERIC STATES MODEL

The dynamic rotational isomeric states (DRIS) model has been defined to predict local
dynamics of polymer chains by Bahar and Erman [56]. The model has been used to calculate

different dynamic properties associated with the transitions between the isomeric states [56-63].

DRIS is a mathematical model that applies the rotational isomeric states scheme to chain
dynamics for calculating the effects of neighbor correlations based on the model introduced by
Jernigan [64]. The model provides determination of the internal time correlation functions of a
chain by matrix methods that has been used in calculation of chain statistics by Flory [1].

Internal dynamics of a polyethylene chain was characterized by calculating the
autocorrelation of a vector affixed to the middle of a sequence in the chain [56]. Orientational
correlation functions, correlation times, and spectral densities of poly(ethylene oxide) segments
were determined [57]. The method was also used to determine the activation energies of the local
conformational transitions for a polyethylene chain [58]. DRIS is used to obtain the

conformational autocorrelation functions, and first and second orientational autocorrelation
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functions of a polyethylene chain and it has been shown that the results agree satisfactorily with
NMR experiments [59]. A mathematical scheme to examine the stochastic process of
conformational transitions between rotational isomeric states in polymer chains was developed
by Bahar [65]. According to the model, stochastic weights are assigned to the configurational
transitions and stochastic weight matrices are defined. A matrix multiplication scheme is adopted
to analyze the isomeric transitions by serial multiplication of stochastic weight matrices. Then,
this approach is extended to efficiently calculate the first and second orientational autocorrelation
functions [61]. The mechanism of local conformational transitions in poly(dialkylsiloxanes)
which is a typical example that has a highly flexible backbone with bulky and highly articulated
side groups is analyzed [62]. The results of DRIS method has been compared with molecular
dynamics simulations and it has been shown that DRIS provides an efficient way of analyzing the

mechanism of the local relaxation of a polymer chain rather than long simulations [24, 63].

For a given chain of N bonds, {a)} represents a given configuration where k=1,2,...,v" if

k

the chain has v discrete rotational isomeric states. Then, P™(t) is defined as a v" -dimensional

vector of time-dependent probabilities of all possible configurations {a)}k Then the “master

equation” that gives the time rate change of P™)(t) is defined as
dP™ (1) /dt = AMP™M (1) (2.17)

where A™ is the transition rate matrix of size v" xv". A}N), the ij™ element of the rate matrix,
gives the rate of transition from state {a)}J to {a)}I . The diagonal elements of the rate matrix are

equal to the negative of summation of off-diagonal elements of the corresponding column that is
AY == AL,
j#i :

The formal solution of the master equation gives

PM(t) = exp{A(N)t} PM(t=0) (2.18)
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where P™ (t =0) is the vector of the equilibrium probabilities. The term exp{A(N)t} is defined as

the time-dependent conditional (or transition) probability matrix C™(t) and represents the

conditional probability of transitions. The ij"" element of the conditional probability matrix, C{"’,
denotes the conditional probability of the occurrence of configuration {a)}I at time t, given the

initial configuration {@}, at t=0. The summation of each column of C™ is unity since they

represent all possible transitions from a given initial configuration.
The eigendecomposition of the rate matrix A™) gives
AN =BWAM BT (2.19)

where B™ is the matrix whose i"™ column is the i" eigenvector of A™ , A™ is the diagonal
matrix whose diagonal elements are the eigenvalues A, of A™, and [B(N’T is the inverse of

BN,

The exponentiation of a diagonalizable matrix A=UDU ™ yields exp{A}=Uexp{D}U™".

Using this property and the eigendecomposition of A™) | the time-dependent conditional

probability matrix C™(t) may be calculated in terms of B™, A™, and [B(N)T as

C™M(t) =exp{ ANt} =B™ exp{A‘N’t}[B(N)]_l (2.20)

The total time-dependent joint probability matrix is defined as
PM(t) =C™ (t)diag P™ (t = 0) (2.21)

The ijth element of the time-delayed joint probability matrix, P”(N) represents the joint

probability of occurrence of configuration {}, at time t and {@}, at t=0. Hence,
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P =2 B exp{ﬂkt}[B(“)]; P™ (0) (2.22)
k

Knowledge of the time-dependent joint probability matrix P™(t) gives a full description of

the stochastic of configurational transitions.
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Chapter 3

STATISTICAL MECHANICS OF PROTEINS IN THE RANDOM COIL STATE

Random configurations of protein chains are obtained under the constraints imposed by chain

connectivity and the torsion states of the backbone torsion angles ¢ and y in the absence of

sequence-distant long-range interactions. We present a statistical analysis on thermodynamic
properties to describe and characterize the random coil state of proteins. Conformational free
energy, energy, entropy and heat capacity expressions are derived using the Rotational Isomeric
States model of polymer theory. The state space and the probabilities of each state are comprised
from a coil database. Properties for the random coil state are obtained for a sample set of proteins

taken from the Protein Data Bank. Thermodynamic expressions of random coil state are derived.

As stated in Chapter 1, understanding the random configurations of proteins is important due
to several reasons. Thus, a better statistical understanding of denatured proteins is required for
answering questions referring to functional properties of proteins. The number of states available
to the denatured chain may vary from an enormous set to only a few in numbers as observed in
switches. The general statistical mechanical model that we adopt is not restricted with this
variation. The size of available states is determined by the probabilities of the latter, and several
sources for such probabilities are either available and may be extracted from various databases, or
may be generated by suitable training techniques of bioinformatics, depending on the constraints
and requirements of the problem at hand. In the present study, we extract the probabilities from
the Ramachandran plots obtained from the coil library [66] which is accepted to be representative
of the random coiled state of proteins [7, 51, 67]. Having characterized the probabilities from the
knowledge data base, we apply the matrix multiplication technique to obtain the partition
function, and the thermodynamic functions such as energy, entropy and heat capacity for the
denatured state. Finally we present random coil results for thermodynamic functions for several

proteins whose primary sequences are chosen from the Protein Data Bank.
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3.1 STATISTICAL EVALUATION

A denatured protein assumes a multitude of conformations, each subject to a certain
probability determined by the configurational features of the residues which are either of local or
nonlocal nature. Local effects result from interactions among neighboring amino acids along the
chain. We refer to this state the random coiled state of the protein. Determination of the
conformation of a chain using near neighbor interactions only reduces the problem to a Markov
process. Nonlocal effects are those among residues separated by more than two residues along the
chain. Having adopted the probabilities from the coil library, where the sequence-distant long-
range interaction are absent because secondary or tertiary structures are lacking, is a good
approximation to the Markov nature of the coiled state.

Markov statistics of denatured proteins have an important place in protein statistics in general,
because: (i) This is the first approximation to the difficult problem of non-Markov behavior, (ii)
Markov behavior is responsible for a large body of observed phenomena, (iii) There is already a
powerful and successful Markov model of characterizing the conformations of polymers, i.e., the
Rotational Isomeric States (RIS) model that has been studied in some detail. The specific aim of
the present paper is to extend the RIS model to calculate the thermodynamic properties of

denatured chains using data generated from the denatured components of chains from the PDB.

A common and most straightforward practice for determining torsion angle propensities is the
use of knowledge based potentials. The Protein Data Bank (PDB) is the most common source.
The frequency of occurrence of a given amino acid at a given torsion state leads to the
probabilities. For calculations of the random denatured conformations of proteins, a coil library
serves as the source of information where torsion angle data is taken from the set of amino acids
those are not in helical or beta structures. Although the coil library serves as a plausible source
for the denatured states of proteins, it is not the only one. One may make modifications to this
data set depending on the constraints set on the conformations of the denatured proteins. In this
paper, we use the Rose Protein Coil Library which can be downloaded from

http://www.roselab.jhu.edu/coil/ [66].
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3.1.1 STATES
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Figure 2. Torsion angles of the i amino acid.

The backbone torsion angles for the i amino acid are shown in Figure 2. Each bond can

assume different angles, with different preferences. Each residue has three torsion angles, ¢,y,
and @ . The occurrence of a residue in a given ¢ and y state, irrespective of its type is presented
in Figure 3. An examination of this figure shows that the choice of isomeric states for the ¢ and
y angles is more complicated than the choice in synthetic polymer applications. In the latter,

usually there are a few states like trans, gauche+ and gauche-, and their combinations for two
successive bonds along the chain. In the protein case, one sees several discrete states as can be
observed from the distribution of the points in Figure 3. Furthermore, the states are centered on

different regions for the successive ¢ and y angles, and for different amino acids.

We perform the construction of states separately for ¢,y, and @ angles. The states for the ¢
angles are chosen as follows: The points in Figure 3 are projected onto the ¢ axis, and 13 states

are identified visually as the following intervals:

Table 1. The states for the angle ®@

State Interval
¢ (-180,-150)
é, (-150,-120)
@, (-120,-105)
é, (-105,-75)
@, (-75,-40)
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@, (-40,-20)
@, (-20,-10)
&, (-10,30)

&, (30,70)

o (70,105)
N (105,130)
B (130,155)
s (155,180)

The choice is made such that the clusters of points seen in Figure 3 are demarcated, as
accurately as possible, by the intervals chosen. This is not a unique procedure, however, because
the clusters are centered on different angular positions for different residues and the intervals

chosen along the ¢ axis, which are not all equal to each other in magnitude, are only best
approximations. Similarly, the points are projected onto the s axis, and the thirteen intervals are

chosen as:

Table 2. The states for the angle v

State Interval
v, (-180,-160)
v, (-160,-135)
W, (-135,-105)
W, (-105,-75)
Vs (-75,-40)
Ve (-40,-15)
v, (-15, 20)
W (20, 60)
W, (60, 90)
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Wi (90,110)
Wy, (110,130)
Vi (130,160)
Wi (160,180)

For the @ angle, there are two states, one is either (-180,-160) or (160,180), and the other is
(-20, 20). The states chosen in this manner are representative of the regions given by Karplus [23]

and also in Reference [68]. Thus, we identified 13 states for the angle ¢, 13 states for y , and 2

states for @ as rotational isomeric states.
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Figure 3. Regions of the ®-¥ plane.
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Figure 4. Regions of the o-y plane.
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The distributions of the ¢, v, and @ angles are presented in Figure 5, Figure 6, and Figure 7

respectively. The differences in distribution for different amino acid types may be seen in Figure

8 and Figure 9.
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Figure 5. The distribution of the @ angles in coil database.
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Figure 6. The distribution of the y angles in coil database
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Figure 7. The distribution of the ® angles in coil database.
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Figure 8. Distributions of @ angle for ALA,

CYS, and GLY

3.1.2 STATE PROBABILITIES
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Figure 9. Distributions of y angle for ASP,

The pair wise dependent probabilities of observed states of angles PX (¢i,l//i), PX (z//i,a)i),

and PXY (a)i,t/il +1) are defined as



Chapter 3: Statistical Mechanics Of Proteins In The Random Coil State 25

N, (¢,v:)
PX(¢ial//i): )%NIX !
N, (v.,®.)
Py () = XZTIXI (3.)
Nyy (@4, 1)

Py (@.,0. )=
XYY 1' M +1
2 Nyy

where NX (¢i"//i) is the number of residue type X observed in the indicated states, and ZNX
is the total number of conformations [19, 68]. Similarly, NXY (a)i,¢i+l) is the number of
dipeptides of XY in the given conformations. Here, PX (¢i,y/i) is the probability of observing
residue X to be in state (¢i,z//i), PX (y/i,a)i) is the probability of observing residue X to be in
state (z//i,a)i), and PXY (coi,¢i+l) is the joint probability of observing residue X in state (a)i)

and Y in state (¢i +1) . The neighbor-dependence introduced in the third of (3.1) is a dependence

that originates from the residue type differences. Otherwise, (3.1) acknowledge the Flory isolated
pair hypothesis. The dependence introduced by neighbor types is clearly seen in Figure 10, where

the probabilities obtained by summing PXY(a)i’¢i+1) over for Y=ALA and

X =TRP, GLY or PRO are presented by the three curves which marked differences from each

other.



Chapter 3: Statistical Mechanics Of Proteins In The Random Coil State 26

0.050 - l : I I l : I I l l ' : —
——————— TRP-ALA

—— GLY-ALA
— PRO-ALA

0.045

0.040
0.035

0.030

0.025

Probability

0.020
0.015
0.010

0.005

0.000 s
-180 -150

120 90 60 -30 O 30 60 90 120 150 180

Figure 10. Probabilities obtained by summing Py (w;,®;+1) over w; for Y=ALA and X=TRP,GLY, or
PRO.

The conformational energies are defined as

Py (4.v;)
0 0
Py (4P (1)

Ey (4,)=—RTIn

Py (v, @)
PY (:)Py ()

EX (wi,wi):—RT In (3.2)

Py @44 0)
0 0
Pxy (@)Pyy (4 1 1)

Exy (@4 1) =—RTIn

where the superscript O indicates the uniform distribution probabilities. Hence, they are directly

proportional to the size of the angular intervals of the states; PQ (¢i):P>(2 (l//i)=]/13 and
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P)(g (coi)zj/z. Statistical weights u and u,,, corresponding to the energies may be

by ? uu/iw. !

defined by

Ui :exp(—EX (ﬁ"/’i)/RT)
U,,.x =€XP(~Ex (v, @)/ RT) (3.3)
Uy xr =€XP(~Eyy (@,,4.,)/RT)
where R is the gas constant, T is the temperature.
The statistical weight matrix for a configuration can be written as a product of statistical
weights of each bond pair (4,y), (v,@), and (®,4). For this purpose, the statistical weight
. . . . . dv © op _
matrix for a given residue X is defined as U}” _[um]x , Uy _[um ]X , and Uy _[u%l}w.
Depending on the number of states of each angle, dimensions of the statistical weight matrices

Ug ', U4, and U are 13x13, 13x2, and 2x13 respectively. The superscripts (¢,v), (v, @)

,and (@, ¢) identify the bond pairs over which statistical weights are calculated.

3.1.3 CALCULATION OF THE THERMODYNAMIC QUANTITIES

The statistical weight for a configuration specified by a set of rotational states of the several
bonds of the chain may be written as a product of statistical weights of each bond pair. The
complete set of all such products can be generated by matrix multiplication. The computational
background that is developed in this section is based on and is an extension of Flory’s

macromolecules paper [12].

The partition sum of statistical weights for all configurations of the chain is given by
Z=JUfurumuure,. urured (3.4)
where J°=[1 0 ... 0],and J=column[l 1...1].

The thermodynamic properties such as the entropy and the energy of a peptide, and the
coefficients derived from them depend not only on a single conformation of the peptide, but on
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all possible configurations. In the remaining equations, we give the relevant expressions for

calculating these averages.

3.1.4 HELMHOLTZ FREE ENERGY

Since the Helmholtz free energy in canonical formalism is additive over the energies, it can be

calculated using the partition function of the chain [13].

—pF=InZ (3.5)
where f=1/KT.
3.1.5 MEAN ENERGY
The average energy is given by
e=- 9 (nz)=-1% (3.6)
dg Zdp

The matrix multiplication formalism of the partition function leads to matrix multiplication

scheme of its derivatives in the following way

dz .. n
YR U([Tui)L (3.7)
where L :[J* 0...0], L=column[0 ... 0 J]and U is the super matrix whose elements
are matrices
G-V s (3.8)
1o U '
U _du (3.9)
dg

Therefore, the mean energy can be obtained using the following multiplication scheme

1.
E:—EL ([TG)L (3.10)
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where

u uj,
6=y | (3.11)

3.1.6 ENTROPY

The entropy of the chain can be expressed in terms of Z and its derivatives with respect to

/3 . Following the equality S/k = 5°dF/dj3,

S 1 10z
o=5 (Fan—E 3 j_InZ+,6’E (3.12)

is obtained.

Using the matrix multiplication formalism of Z and its first derivative with respect to /g, the

entropy can be calculated as

S . :
E:|n(J ([TU)9)-B—— 5 (3.13)
3.1.7 HEAT CAPACITY

The heat capacity is one of the most important properties of the proteins, both native and

denatured. When force acting on the chain is taken as zero, denoted below by the subscript f =0

, the heat capacity can be calculated as

OE o’InzZ
C..=|—| =kp? 3.14
(aij_o o o0

Similar to (3.7), second derivative can be obtained as

2;22 _ M*(Htji)M (3.15)

where M"=[J" 0.0 0...0 0..0]and M =column[0...0 0...0 0..0 J],and
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u u, u, U
s o0 U 0 U
U= P (3.16)
0 0 U U
0 0 0 U
2
u, =y _9Y (3.17)
g’ " op

It is possible to write the second derivative of InZ on the right hand side of the equation in

terms of the first and second derivatives of the partition function

0°Inz _ 0 (oInzZoz
op

0’ 0z op
:i(la_zj (3.18)
op\z op

The matrix multiplication form of Z and its derivatives allow the heat capacity to be

calculated by the matrix notation
Cf0:kﬂz{—%[L*(HUi)LT+%[M*(Hlji)M}}
2 10, YR CALY (3.19)
Y ! (HLLJJ.; ] ( ug

'

3.2 RESULTS

In this section, the free energy, energy, entropy, and heat capacity of peptides of different
sizes ranging from 10 to 800 amino acids are calculated using the RIS model, over a temperature
range of 200-700 K. Table 3 lists the representative protein set taken from the non-redundant
PDB. The selection of the proteins is made according to their numbers of residues which varied

evenly between 10 and 802.
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Table 3. The protein dataset used in calculations

Number of Residues Protein, Chain ID Number of Residues Protein, Chain ID
10 1FYN_B 349 3KM8_A
40 3E7R_L 408 2WKN_A
120 1C2A A 456 3NPL_A
160 1CZT A 545 30TQ_A
200 1YKN_A 802 3IQM_A
226 3K6P_A
SR g m— m——— o
g |
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g of — — ————| S ————————
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Figure 11. (a) The free energy as a function of temperature, T, for different length proteins. (b) energy

as a function of T. (c) entropy as a function of T. (d) heat capacity as a function of T. The curves in parts

(a),(b), and (c) are ordered from top to bottom represent proteins with the following numbers of residues:
10, 40, 120, 160, 226, 349, 408, 456, 545, and 802, respectively. In part (d) they are in reverse order.
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The variation of the free energy, energy, entropy and heat capacity is evaluated by repeating
the calculations over a temperature range of 200-700 K. Results are presented in Figure 11.

The curves shown in the four panels of Figure 11 are not independent from each other, and
are related by the thermodynamic relations by equations (3.5), (3.6), (3.12), and (3.14). It is seen
that the curves in the figures all scale with the number of residues N . In order to find analytical
functions that will give the curves shown in Figure 11, we first chose an analytical form for the

heat capacity as
Cyo(T,N)=NT*(Ae® +Ce™) (3.20)

keeping in mind the thermodynamic postulates. We inspired the Debye model of heat capacity in
a solid that shows the dependence of T®. Then, by integration subject to the conditions imposed
by (3.5), (3.6), (3.12), and (3.14), we obtain the remaining thermodynamic functions as given in
equations (3.21)-(3.23) by curve fitting as

A: 1.5x107° kJoules/K* mol
B: —7.2x107° 1/K

C: 2.6x10~° kJoules/K* mol
D: -2.3x107 UK

E: —4083 kJoules/mol

3NIeBT (R2T2 _ 3NeDT (2T 2 _
5(7, Ny AD°Ne" (BT* ~ 2BT +2) + CBNe® (DT 2DT+2)_2N(A3+£

S DJ(3.21)

AD*Ne®" (B*T?—4T +g) +CB°Ne® (D*T? 4T +[6))

A C
F(T,N)=- D +2NT[§+§j+EN
(3.22)
AD*Ne® (B*T® —3BT? +6T — ) + CB*Ne® (D*T* ~3DT? +6T - 0)
U=F+TS= B D4 EN

B°D?
(3.23)
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In Figure 12, we compare the results obtained by (3.21)-(3.23) with the results of calculations
for four peptides of sizes 20, 200, 408, and 802.
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Figure 12. Comparison of (a) free energy, (b) mean energy, (c) entropy, and (d) heat capacity
estimates. Exact values are calculated by matrix multiplication scheme, estimated values are calculated by

fundamental relation. The lengths of chains are shown on each curve.

3.3 CONCLUDING REMARKS

We adopted the RIS model for calculating the thermodynamic functions of proteins in the
random coil state. The use of the RIS model depends critically on two items: (i) the choice of the
states, and (ii) the choice of the database with which the probabilities of these states are
evaluated. The states are described in terms of the populated regions on the Ramachandran map,

and the possible states for the ¢ and y angles of different amino acids are determined following

the work of Karplus [23]. In order to apply the RIS model, however, the states available to the
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torsion angles ¢, v, and @ are required separately. The state space is obtained in our
formulation as 13 states for ¢ and 13 states for y, and two states for @ . Evaluation of the

probabilities follows the choice of the state space. For proof of principle, we used a coil library
for the determination of the probabilities. One could alternatively construct a databank of known
denatured proteins, or a subset of them depending on the nature of the investigation, and extract
the probabilities from that state. Once the states are determined, the RIS model is independent of
the databases used. We observed that the per residue thermodynamic properties of proteins in the
random coil state scales only with the temperature. While entropy and energy increases with the
temperature, free energy decreases. Heat capacity represents a decrease around 340 Kelvin that
implies an energy barrier for a possible transition state. The explicit expressions that we
determined for the thermodynamic functions form a thermodynamically consistent set which may
be used to obtain other thermodynamic potentials by applying the known Legendre

transformation techniques [13].
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Chapter 4

PREDICTING MOST PROBABLE CONFORMATIONS OF A GIVEN PEPTIDE
SEQUENCE IN THE RANDOM COIL STATE

In this chapter, we present a computational scheme for finding high probability conformations
of peptides. The scheme calculates the probability of a given conformation of the given peptide
sequence using the probability distribution of torsion states.

Backbone conformations of a protein can be described by ¢—y torsion angles of the amino

acids that specify the rotational freedom. It is already known that some values of torsion angles
are more populated than the others on the Ramachandran map and these preferences are different
for different types of amino acids [69]. Furthermore, preferences for a given residue are
dependent on the states of the neighboring residues [7, 14, 15, 19, 67, 70-72]. In this work, the
problem of predicting the high probability conformations of a protein using the rotational
preferences obtained by knowledge-based approaches is discussed. Neighbor dependence is taken

into consideration both in constructing the probabilities and in the generation of conformations.

Most of the computational work in predicting peptide conformations has been confined to
secondary structure prediction for the native state. In the present work, we do not restrict the
problem to the determination of secondary structure. We specifically focus on determining the
high probability conformations of peptides in the random coil state. For this reason, we use a Coil
Library for determining the probabilities [66]. Use of a secondary structure library would be more
appropriate to use for the secondary structure prediction of a given sequence, which we do not

pursue here.

The torsion state of a residue is defined by a region on the Ramachandran map and these
regions are separated by energy barriers. EXxisting studies on torsion angle predictions use
different number of states with different definitions. For example, Bystroff et al., took eleven
states covering the full Ramachandran map in their hidden Markov model for local sequence-
patterns in proteins (HMMSTR) [73]. Kuang et al. assumed a smaller number of states each of
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which correspond to a large number of states [74]. They used four major torsion states occupying
80% of the Ramachandran map and achieved 77.3% accuracy in predicting torsion angles using
SVM method. Zimmermann and Hansmann emphasized that the torsion state prediction would
provide more structural information than secondary structure predictions since the secondary
structure has a complex definition [75]. Estimated from the work of Lovell et al. [76], they
introduced ten regions. However, due to few number of samples, they based their results on three
regions (right handed alpha helix, beta strand, and outside of these regions). The achieved 3-state
accuracy is around 82% using SVMs. Xin et al. presented two probabilistic methods (MEMM
and CRF) to predict torsion angles using sequence profiles of residues and used fifteen regions
proposed by Shortle that covers 43% of the Ramachandran map to define different coarse-grained

classes [77, 78]. The achieved prediction accuracies (that is below 70%) of each class are given.

Previous studies all provide the prediction of the most probable torsion state for each residue
and do not consider a probability distribution. However, instead of predicting only the most
probable torsion state or the secondary structure, predicting the probability distribution of the
states or secondary structures is an approach that may be useful for sampling the conformational
space and may provide a detailed analysis of the space [79-81]. Along this line, Helles and

Fonseca proposed an analysis of probability distribution of torsion angles of coil residues using

neural networks [79]. They calculated the distribution of dihedral angles for 30" x30" bins and
showed that the prediction accuracy increases as the number of considered bins increases. Helles
and Fonseca showed that the neural network model they adopted outperforms the basic statistical

method that simply predicts the most populated bin in the database.

In this work, our aim is to find a probability distribution of the torsion states of a given
peptide sequence in the random coil state. We adopt the Rotational isomeric States (RIS)
formalism from polymer theory [1] for calculating the probability distribution. Here, we identify
eleven torsion states following the work of Karplus [23] that indicates the distinct regions not
only for helices or strands but also for loops, beta bridges, etc., (See the notation in References
[23, 51, 68]). This knowledge provides an efficient conformational sampling. We derive the
probability distribution based on a Hidden Markov Model (HMM) and the Viterbi algorithm that

has been described in Section 2.4. Dependence of the conformational probability of a given
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residue on the type and conformation of its neighbors is taken into consideration in constructing
the probabilities, in the RIS calculations and in the Viterbi algorithm. Our aim is similar to that of
Helles and Fonseca. We depart in the method of calculations, where their approach is based on a
neural network and ours on the generation of the partition function of a chain by the matrix
multiplication scheme. Our ultimate aim, however, is to determine the most probable
conformation and an ensemble of conformations that are of high probability. Recently, ensembles
of intrinsically disordered proteins (IDP) have been constructed by Daughdrill et. al [82], which
Is similar to our approach in spirit but different in methodology, where our high probability
conformations are generated using an appropriate library, the RIS scheme, a Hidden Markov
Model and the Viterbi algorithm with multistep backtracking [50]. As we explain in detail in the
following section, we base the present calculations on a coil library. However, choice of an IDP
library would clearly lead to the generation of high probability conformations of IDP’s, which are
known to have statistical differences than random coils as pointed out by Schweitzer-Stenner
[83].

The number of occurrences of the residues in the databank in the defined states leads to the
corresponding probabilities. The determination of high probability conformations of a given

peptide sequence of length N is a computationally difficult problem. Considering a state space

of eleven torsion states leads to 11" possible conformations from which one has to choose the
optimum one. The Markov assumption and the use of the Viterbi algorithm simplify the problem

significantly.

41 METHODS AND MATERIALS

4.1.1 KNOWLEDGE BASED DATABASE

Since we consider the conformations as random denatured forms and since the Coil Library
stores the fragments from the disordered conformations that are neither alpha-helix nor beta-
strand, the Coil Library is a good source for calculation of the probabilities [66]. We used Coil
Library given by the Rose group http://www.roselab.jhu.edu/coil/, September 2011 version. The
library contains fragments that have less than 20% sequence identity, better than 1.6 Angstrom

resolutions and a refinement factor of 0.25 or better and contains 24112 fragments extracted from
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the Protein Data Bank. The library contains segments obtained after removal of secondary
structures, the segments that are classified as alpha helix or beta strand and the one-residue coils.
We remove the chains including UNK or ASX types of residues or the chains with less than 3
residues. The remaining set contains 261548 residues. The fragment size distribution is given
Figure 13. The probabilities depend on the choice of the state space. Since the Coil Library is a
good representative set of proteins in the coiled state and our interest is the coiled conformations
of proteins, occurrence probabilities of residues in torsion states are calculated over the coil

library.
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Figure 13. Distribution of the sizes of the peptides in the Coil library. Total number of peptides
is 24057.

4.1.2 TORSION STATES

We use the eleven torsion states introduced by Karplus [23]. The descriptions of the states are

given in Table 4.

Table 4. Description of the twelve torsion states
State 1 £ Mirror image of the extended region ¢
State 2 & The extensive regions, ¢ >0, y ~+180°

State 3 o Right-handed alpha helix
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State 4 /4 Tight turn region
State 5 Oy The right handed bridge region between two /3 -strands
State 6 o, Mirror image of the J; region
State 7 4 Region observed mostly in residues preceding Pro
State 8 4 Inverse tight region
State 9 a, Mirror image of a,
State 10 Ji Extended beta sheet forming region
State 11 i Region with extended polyproline-like helices

4.1.3 METHODS

It has been previously shown that the torsion preferences of a residue depend on the type and
state of neighboring residues [14, 19, 67]. In Figure 14, the left neighbor dependence of Arginine
is shown as an example. The frequencies are plotted in the 30x30 degree regions of

Ramachandran map. Each 30 degree y region is shown in a different color in order to increase

the clarity. For certain pairs, neighbor dependence of state probabilities are significant and are
included into our calculations. We treat the problem of the prediction of torsion state as a Markov
process and consider the correlations between the near neighbor residues.

In the following sections, we first define the Hidden Markov model of the problem and then
we provide the calculation of the parameters of the HMM in detail. We then introduce the Viterbi
algorithm for searching the state sequence that has the maximum probability of occurrence. The
probability distribution of the torsion states of the residues is determined using the Viterbi
algorithm. Lastly, we define multistep backtracking algorithm that is used to guess the high

probability conformations.
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Figure 14. Arginine has different ¢ —y/ distributions depending on the previous near neighbor.

4.1.4 HIDDEN MARKOV MODEL

An introduction to hidden Markov models is given in 2.4. Here we describe the model and its

parameters in terms of our problem. In a hidden Markov model there is an observed sequence of
emitted symbols which is defined by O=0,,0,,0,,..., and a sequence of states visited which is
defined by Q=q,,0,,0,,.... Further information on Hidden Markov models can be found in [50,

51]. The observed sequence of our model is the given peptide sequence and the torsion state

sequence is the hidden state sequence to be determined. The definitions of components of the
model are given below:

1) A={a,a,,...,a,} The setof 20 amino acids

2) S=35,,S,,...,5,; The set of 11 torsion states
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3) P=(p;) The transition probability matrix where p; =P(q,,=S;[q, =S;) that is the
probability of t+1% amino acid is in state S; given that t amino acid is in the state S;.

4) b(a)=P(S, emits symbol a) for each S, and a, The emission probabilities that is the

probability of state S; emits amino acid a..

5) IT1=(x) Aninitial distribution vector where 7, =P(q, =S;)

4.1.5 EVALUATION OF A PRIORI PROBABILITIES

Here we adopt the transition probabilities for each dipeptide of the given sequence and the

emission probabilities of each residue from the Coil Library.

The pair wise dependent probabilities P,, (S;,S;) where S, is a torsion state defined by the

two torsion angles (4,) and i, j =1,2,...,11 are determined according to

Ny (S:,5))

ZNXY

Here, N,, (S;,S;) indicates the number of residue pairs observed having the indicated values of

Pyy (Si’Sj) = (3.24)

the argument. The term Z N,, in the denominator is the total number of observed dipeptides of

XY in all possible states. The probabilities calculated in this manner are the a priori
probabilities; because the conditionality of the dipeptide under consideration that being

embedded into the given specific amino acid sequence of the protein has not been used.
We define a conformational energy for a given residue Y in the dipeptide XY along the
primary sequence of the protein as

(3.25)

( Pu (S::S;) J
E, (S;,S;)=—RTIn| o211

PL(S)PI(S))

where the superscript zero denotes the uniform distribution probabilities, i.e., those valid when all

angles are equally probable that is 1/11.
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In this study, we use the rotational isomeric state formalism in which each residue is treated

as occurring in one or another of several discrete torsion states to obtain the statistics of the chain

[1].
4.1.6 CALCULATION OF A POSTERIORI PROBABILITIES

The statistical weight matrix U, =[u,d for a given residue pair i—1 and i is determined by

statistical weights u, . corresponding to the energies E, . following the work of Flory [1]. The

details these definitions are given in 2.2.

U, ; =exp(-E,.; /RT) (3.26)

néii

So, a priori probabilities led us to statistical weights that would be the primary quantities for
characterizing the partition function. The partition function, Z , of the chain of N repeat units is

given by
N
Z= J*{Hui]] (3.27)
i=2

where J'=[1 1 --- 1], and J=column[l 1 --- 1] of order 1x11 and 11x1 respectively.
We choose all elements of J” as ones to allow all possible states in the first residue as opposed to

Flory’s notion, J"=[1L 0 --- 0], that fixes the first residue’s state as the first state.

The probability p,; that residue i will be in state 7 is estimated as the fraction of the sum of

the statistical weights for all configurations for which residue i is in state  over partition

function Z

Py 2213*{ﬁUm}U;{lﬁ[Um}J (3.28)

m=i+1

Here, U 'mi is the matrix obtained by equating the entries of all of its columns to zero except those

of column 7.
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Similarly, the joint probability p, ., ,;that residue i—1is in state 7and residue iis in state &
simultaneously is given by

i-1 N
Py = ZlJ*{HUm}U;M;i {H Um]] (3.29)
m=2

m=i+1

where Urlyé’ is the matrix obtained by vanishing all elements of U; with the exception of u, . .

The transition probability p, . is simply the conditional probability that residue i will be in state

¢, given that residue i—1 is in state nis determined as the quotient of the joint probability,

divided by p

mi-1"

Pocicvi
Poc = P(g, =0, =mn)= = (3.30)

i1

4.1.7 THE VITERBI ALGORITHM

Using the Viterbi algorithm is an efficient way of calculating the most probable state

sequence. The problem is to find a state sequence Q=¢,,d,,...,dy given an observed sequence

0=0,0,,...0, that maximizes P(Q|O). That is argmax P(Q|O) meaning the given amino
Q

acid sequence takes its most probable conformation. Here, argmax denotes the maximum over the

full state sequence set Q of the arguments of the probability function. In the first part of the

algorithm, we obtain mgx P(Q|0O). For arbitrary t and i,
o, (i) = 04,5",‘.".‘3&, P(q,,9,,...,0,4,0 =S, and O,,0,,...,0,) (3.31)

is defined. That is the maximum probability of all ways to end in state S; at t™ amino acid and

given the amino acids O,,0,,...0,.
&) =P(q, =S, and 0, (332)

Then, the joint probability of Q and O is maximized over all Q as
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mgx P(Qand O) = max oy (1) (3.33)

Since the maximum conditional probability is given as

maxP(Q|0) - mg\x% (3.34)
and P(O)is fixed for all Q,
mgx P(Q|O) = mgx P(Q and O) (3.35)
Hence,
arg gnax P(Q|0O)=arg gnax P(Q and O) (3.36)
a) First part of the algorithm
6,()=7b(0), 1<i<1l (3.37)

In the initialization step, o, is calculated as an array of size eleven holding the probabilities of
eleven torsion states for the first amino acid O, of the given peptide sequence. The probability o,

is calculated by multiplying the initial probability of first residue is in state i with the emission
probability that state i emits the first residue. The elements of initial probability vector are

chosen as 1 so that each state has equal probability. Then, we calculate all o, ’s inductively.
&(1)=max & ,(i)pyb;(Q), 2<t<N, 1<j<11 (3.38)
Here N denotes the number of residues of the given peptide sequence.

b) Second part of the algorithm

The states ¢, ’s are obtained by backtracking technique that searches for the path with the

highest probability. We define
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w, =argmaxd, (i) (3.39)

1<i<11

and determine the most probable state of last residue as g, =S, . The remaining states are then

obtained by successive backtracking

w, =argmax s, (i) p,,. (3.40)

I<i<11

and then equating g, =S, .

Example

We may consider a simple example to visualize the steps of the Viterbi algorithm. Assume
that we have an observed sequence of amino acids ALA-GLY-VAL of length N=3. Let

S ={«, 3, 7} be the set of torsion states. The scheme may be seen in Figure 15.

Figure 15. The hidden and observed states for a toy example. The arrows show the probability of
transition from one hidden state to another.

In the first part of the algorithm we calculate the partial probabilities, ¢ ’s, and partial best
paths. For each intermediate and terminating state, there is a specific most probable path to that
state. For each of the three states of VAL the most probable paths may be found as given in

Figure 16.
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Figure 16. &,(i) are shown for i=1,2,3. That is the maximum probability of all sequences ending at

state i at time t=3 and the partial best path is the sequence which achieves the maximum probability.

In the second part, we search for the most probable state sequence given the observed
sequence after calculating the partial probabilities J,(i) . For each state we hold a back pointer v,

via finding the states that maximize the probability.

4.1.8 CONFORMATIONS OF LOWER PROBABILITIES

Changing preferences during backtracking allows for the generation of conformations with

lower probabilities. Thus, for the t’th residue, we define

. =argmax® 5,(i)p,, , (3.41)

I<i<ll

where the superscript (k) denotes the k th maximum value. Here, k =1 refers to the maximum
value, k =2 refers second maximum, etc. For each residue, besides the most probable state, we
also determine the 2™,3",...,11™ maximum probable state. We use this definition to determine

conformations of lower probabilities during the backtracking stage. We refer to this method of
generating conformations of lower probabilities as multistep backtracking.

4.1.9 MULTISTEP BACKTRACKING

In this algorithm, we keep the n conformations with highest probability. The multistep

backtracking algorithm proceeds as follows:

1. We define
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vy (§) =argmaxP 5, (i), 1< j<11
I<i<11 (342)

A (D) =max\V 5, (i), 1< j<11

where the superscript (j) denotes the jth maximum value. In 4, , we keep the probabilities of

states of the last residue in decreasing order; in v, we keep the corresponding states. Then,

2. For the remaining amino acids we define

v (J)=argmax? 4,.,()5, (i) py,,,y» 1SN

1<i<11

A (D) =max? 7, ()6, (1) Py, 0 1< <N (3.43)

Here, we calculate the probability of the state sequence of the region going backward from N™ to
the t™ residue by multiplying the probability of the state sequence of the region from N™ to the

t+1% residue by the transition probability from t™ residue to t+1% residue. The probabilities are

stored in decreasing order.

There are a total of 11" possible conformations for the sequence of N residues. In order to
keep the number of conformations to be considered at a manageable level, we apply some
pruning techniques. (i) We remove the state sequences with zero probability of occurring to
decrease the complexity. Those are the impossible paths of the HMM. (ii) At each t’th step, if the
number of stored sequences becomes larger than a specified threshold value m, we remove the
state sequences those have lowest probabilities and continue with the m sequences with highest
probability. The prediction accuracy increases if one keeps the number of stored paths, m, large.

On the other hand, it is not feasible when considering long peptides (number of residues > 20).

For an amino acid sequence O =a, —a, —a, —a, —a, —a, of length 6, assume that the size of
the state setis 3, S = {sl, 52,53}. Then, to find n=2 most probable state sequences we may select

m=4, m>n. Then, we keep a list of maximum probable state sequences and a list of occurrence
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probabilities of the corresponding state sequences. A schematic representation of the example

may be given as follows
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Figure 17. The steps of multistep backtracking for finding the 2 conformations with highest
probability of an observed sequence of length 6.

4.2 RESULTS AND DISCUSSION

Using equation (3.41), we calculate the probability distribution of the eleven states for each
amino acid in a given peptide sequence. Thus, given a peptide sequence of length N, and an
amino acid at the k™ position, we can estimate the probability of its observed state, with

1<k < N. Prediction accuracy is defined as the fraction of amino acids that are predicted to be in
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the most probable state. More specifically, it is calculated as the number of correctly predicted
residues of type X in the predicted most probable state sequences using the Viterbi algorithm,

over total number of residues of type X .

prediction accuracy =N, .., /N (3.44)

total

Most populated states are determined as the number of residues of type X in the most

populated state in the Coil library over total number of residues of type X .

We ran 5-fold cross validation for training and testing. The dataset is randomly divided into

five subsets, then 4/5 of the fragments are used to obtain training parameters, and 1/5 are used

for testing. The procedure is repeated five times, and the prediction accuracy is calculated by
averaging the five accuracies. The training parameters, the transition and the emission
probabilities, are derived each time by equations (3.24)-(3.30) using the corresponding training
set. Then, the torsion states are predicted using (3.37)-(3.41) for each peptide in the
corresponding test set. Lastly, the prediction accuracies determined for each test set and the

average is calculated.

Table 5. Prediction accuracies for each residue type

Amino Acid Type Most Populated Viterbi Improvement
ALA 24.32 31.96 31.41
GLU 28.67 34.01 18.61
LYS 26.22 33.67 28.40
MET 33.72 35.21 4.40
GLN 26.77 32.39 20.99
ARG 29.72 33.2 11.71
LEU 31.66 35.51 12.18
PHE 41.14 41.09 0.00
TYR 40.65 41.68 2.54
TRP 35.58 34.69 0.00
CYS 38.71 39.41 1.81

HIS 32.36 34.74 7.35
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ASN 28.24 27.9 0.00
ASP 28.96 35.66 23.15
SER 28.23 35.21 24.74
THR 35.04 38.66 10.33
ILE 55.43 55.8 0.67
VAL 55.59 55.83 0.44
GLY 34.58 38.6 11.62
PRO 55.36 59.93 8.25
Average 35.55 38.76 9.03

In Table 5, the prediction accuracies of each amino acid type using the Viterbi algorithm are
provided. Simply, we consider the improvement gained by using the Viterbi algorithm comparing
to guessing the most populated state in the library. Since the near neighbor effects are taken into
account using the Viterbi algorithm, prediction accuracies of some amino acid types are
considerably higher. This comparison approach is first applied by Helles and Fonseca to
determine the accuracy of neural networks method that is used to predict dihedral angle
probability distribution for protein coil residues [79]. They compared the accuracies with the
probabilities of guessing the most populated state in the data set for each amino acid type. Here,
we show the performance of the Viterbi algorithm comparing the accuracies with the most

populated state percentages for each amino acid type in a similar manner.

4.2.1 CONSIDERATION OF LESS PROBABLE STATES OF RESIDUES

It is possible to generalize the prediction accuracy definition as the number of correctly

predicted residues of type X in the k™ most probable state sequences using the Viterbi

algorithm, over total number of residues of type X .

prediction accuracy (k) =n%__ /n_, (3.45)

correct

Then, we may add up the prediction accuracies and define the success rate as

success rate (i) = Z prediction accuracy (k) (3.46)

k=0
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Since we know the probability of each state for each residue in a given peptide sequence, we
can tell the probability of seeing the residue in either the most or the next most probable states,
and so on. In Figure 18, we present the improvements when considering not only the most
probable states but also the second, third, etc., most probable states. Increasing values of the

abscissa values correspond to considering less and less probable states in the prediction.

—f—ALA
=l Y5
GLN

Improvement

i ASP

i SER

1 z 3 4 5 6 7 g8 9 10 11

Torsion States

Figure 18. Percentage of improvements of Ala, Lys, GIn, Asp, and Ser are shown.

In Figure 19, we present the success rates of each amino acid type. The well predicted amino
acids are proline, valine, and isoleucine. On the other hand, the small amino acids glycine, and
asparagine shows lower rates of success. It is observed that the prediction method works better on
hydrophobic residues. For example the three hydrophobic residues, Pro, Val, and lle have ¢—w
distributions that are sharply peaked. This decreases the total number of accessible regions in the
Ramachandran plot. Majority of the states have zero probability leaving behind only a small
region over which the predictions are to be made. The better prediction of hydrophobic residues

may be related to this characteristic distribution on the Ramachandran map.
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In Figure 20, we present the success rates of each torsion states. Clearly, prediction of the
torsion states that represents the tight turn regions (¥ and y ) is not successful. This is not
surprising because these states are the rarest torsion states in the database. The well predicted

states are f5,0,,¢€,0;, and 3, .

100 | - NS — =
. ——

Val, lle

BO

60 -

Success Rate

a0 F.
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0 i 1 i 1 i i 1 i

1 2 3 4 5 -] 7 8 ] 10 11
Number of States
— NS m— |5 — UGN m— 5P SER ==—=THR ILE VAL GLy PRO

Figure 19. Success rates of each amino acid types. x axis shows the number of included states.
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Figure 20. Success rates of each torsion states. x axis shows the number of included states.

4.2.2 DETERMINATION OF HIGH PROBABILITY CONFORMATIONS

The most probable torsion state sequence is predicted using the Viterbi algorithm. The
transition and emission probabilities are calculated from the Coil database. In the first step of the
Viterbi algorithm, the state sequences (Q ’s) that maximize P(Q|QO) given the peptide sequence

O are determined. Then, in the second step, the sequence Q=q,,q,,...,0, that has the
maximum probability is backtracked where each g, represents the torsion state of the i" residue.
Therefore, after the first step, we may also designate a list of g, ’s for each residue ordered by the

probability of occurring. However, our main goal is to find most probable “n” conformations of
a given peptide sequence. Hence, using the Viterbi algorithm with multistep backtracking

described in Methods section we derive most probable “n” conformations of the peptide.

As an example, consider the sequence “GLN-VAL-CYS-ALA-ASN-PRO-GLU-LYS-LYS-
TRP”. The most probable twelve conformations are predicted as shown in Figure 21. It is clear

that some conformations repeat although the torsion states of some residues in the state sequences
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are different. Examination of the states listed below each figure shows that the differences are all
in the first residue, which results in the similarity of the conformations. The repeating

conformations indicate high entropy for that conformation.

1) Bs-Bs-Bs-Br-aL-Br-ar-0r-0r-Ps 2) Or-Ps-Bs-Pe-oL-Pp-or-0r-0r-Ps  3) Pp-Ps-Bs-Pe-oi-Pr-0r-0r-0r-Ps

4) or-Bs-Ps-Pr-aL-Pr-or-0r-0r-Bs  5) Bs-Bs-Br-Br-Pr-0r-0r-0r-Ps-Bs  6) Or-Ps-Pr-Pr-Pr-or-0r-0r-Bs-Ps

7) Bs-Bs-Pr-Or-0l -Pp-0r-0r-0r-Ps  8) Sr-Ps-Pr-Or-0l -Pp-0r-0r-0r-Ps  9) Ps-Ps-Ps-Or-Pr-Or-0r-0r-0R-Ps

10) SR'BS'BS'SR'BP'SR'QR'GR'GR'BS 11) BS'BS'ﬁP'GR'BP'SR'GR'GR'GR-BS 12) 6R'BS'BP'GR'BP'SR'GR'GR'GR-BS

Figure 21. Most probable 12 conformations of the sequence “Gln-Val-Cys-Ala-Asn-Pro-Glu-Lys-Lys-
Trp”. From top left to bottom right the state sequences are ordered from the most probable to the 12™ most
probable conformation. The symbols indicate the torsion states of the residues for the respective
conformations. The conformations are determined using the Viterbi algorithm with multistep backtracking
with n=12, and m=1000.
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In previous studies, the prediction of most probable torsion state of a residue has been
considered [74, 75]. Helles et al. considered the problem of predicting the probability distribution
of the states of the coil residues in a given peptide instead of predicting only the most probable
state [79]. As a different approach, we predict the high probable conformations rather than the
probabilities of torsion states of the individual residues. Therefore, this is the first study that

handles the prediction of high probability conformations.

The predictive capability of a given method depends on the nature of the library used, and the
number of states that are used to define the probability space. The non-redundant PDB data set
contains information on secondary structures, information on structural motifs and their relation
to conformations which may be incorporated into the probability space to be used for predictions.
A coil database contains less information, only on residue types and neighbor dependences. An
IDP database contains information on the specific structural features of the disordered chains.
Comparing the predictions from different data sets is not meaningful. However, just in order to
see the relative performances of other methods and ours, we use results of Bystroff et al. [73] and
Kuang et al. [74]. Both of these studies use the non-redundant PDB data base. Bystroff et al. [73]
used eleven states using a different definition from our torsion state definition and proposed an
HMM model based on a library of sequence-structure motifs rather than the coil regions. Kuang
et al. [74] defined four states ( A,B,G, E) and used an SVM method based on protein sequence

profiles. Since these methods use different torsion state definitions, Kuang et al. [74] suggested to
group the states given by Bystroff et al. [73] into four states (A,B,G,E’) for comparison. The

grouped states are only approximately equivalent. Then, the prediction accuracies are determined
as 74% for HMMSTR and 77.3% for SVM methods. We follow the same idea and group our

eleven torsion states into four states as (A" =ag +65, B =B+ B+ +y +¢, G = +6, +y

, E" =¢). Then, the prediction accuracy of the Viterbi algorithm is 59.2% for predicting the most
probable state of a residue in a given peptide sequence of the coil library. The additional 15%
improvement may approximately be ascribed to the additional structural information content in

the non-redundant PDB data set over that of the coil dataset.

Predicting highly probable conformations of a given peptide sequence is an important issue in
targeted drug design. To be effective, a short peptide must match a given region of the surface of
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a protein, producing a change in the activities of proteins that can affect certain diseases [68]. The
conformations of the peptide that fulfil this constraint have to be among the most probable ones

for maximum stability.

Another important concept is the intrinsically disordered proteins those don’t naturally adopt
a unique three dimensional structure. Therefore, their structure ranges from the totally random
coil to molten globular [83, 84]. Use of a torsion state library for IDP’s and the present
computational model will lead to the prediction of high probability conformations of disordered

proteins.

4.3 CONCLUDING REMARKS

Predicting “n” high probability conformations of a given peptide problem is discussed. The
proposed method is based on RIS model and Viterbi algorithm with multistep backtracking. The
necessary parameters of the HMM are derived from a coil library depending on the residue types

and the near neighbor effects.

While using the Viterbi algorithm the long-range interactions are not included and may be
essential for the state prediction. One may introduce second, or third neighbor effects that also
would improve the prediction accuracies, since the coil regions are not exactly random [85].

Also, the scarcity of data for some torsion states in the Coil library lead to difficulty in prediction.

The present work discusses the prediction of conformations of random coiled proteins from
primary sequence. We showed that for certain amino acid types, introduction of residue type and
neighbor dependence improved the predictions of conformations of proteins in the coil state.

Thus, we showed that the Flory Isolated Pair Hypothesis does not hold in general.
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Chapter 5

CONFORMATIONAL TRANSITIONS IN THE RAMACHANDRAN SPACE OF
AMINO ACIDS BY THE DYNAMIC ROTATIONAL ISOMERIC STATE (DRIS)
MODEL

The dynamic rotational isomeric state (DRIS) approach is utilized to predict local dynamics
of 20 amino acids. An exhaustive sampling of amino acid conformations is given to understand
the intrinsic properties of the amino acids. The transition rates between rotational isomeric states
are calculated from molecular dynamics (MD) simulations of Gly-Gly-X-Gly-Gly pentapeptides
where X represents one of the 20 amino acids. A computational approach is given for measuring
relaxation times of the amino acids. The results are in good agreement with fluorescence

guenching rate measurements [86].

Proteins are not rigid structures, they are dynamic molecules and characterized by
conformational ensembles at equilibrium. Proteins perform most of their function through
rearrangements of their conformations, such as allosteric rearrangements, large scale fluctuations,
tail motions etc. Therefore, the knowledge of only the average structure of a protein does not
provide a complete description. The knowledge of the popularity of the states, the transition rates
and the pathways are all necessary for a full understanding of a protein [87]. Proteins exhibit both
internal motions including bond vibrations, bond stretching, side-chain motions, rotational
transitions and global motions as rotational and translational motions [63, 88]. In this study, we
consider dynamics at the single residue level and focus on the internal motions resulting from
conformational transitions exhibited by the twenty amino acids. We adopt the dynamic rotational
isomeric states (DRIS) formalism in explaining and interpreting the residue dynamics. The DRIS
approach has been developed for predicting local internal dynamics of polymer chains by Bahar
and Erman [56]. The model requires the knowledge of the exact locations and probabilities of all
torsion states of each amino acid and the transition rates between torsion states. These parameters

are determined in this work by an exhaustive sampling of amino acid Ramachandran plots by
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Molecular dynamics (MD) simulations. In a sense, the DRIS formalism is used to organize the

MD simulations results in a compact and efficient way as explained in detail in Chapter 2.

The DRIS model is an extension of the equilibrium theory of chain statistics by Flory [1] to
the dynamic domain by Jernigan [64] and is conveniently used to calculate the internal time
correlation functions of a chain and different dynamic properties associated with the transitions

between the isomeric states [56-63].

A computational approach is given for measuring relaxation times of the amino acids. Here,
the aim is to investigate the conformations of the twenty amino acids whose dynamics evolves
only from transitions from one torsion minimum to another as it would obtain in the random coil
state. The preferences of the amino acids extracted from the Protein Data Bank are biased by the
presence of secondary and tertiary structure, and long range interactions such as contacts and
hydrogen bonds of a given residue with the rest of the protein [89]. Hence, instead of analyzing
the protein structures from the protein data bank (PDB) or running simulations of proteins we
perform MD simulations of Gly-Gly-X-Gly-Gly pentapeptides. Here X represents the amino acid
to be examined. The GGXGG peptides have been commonly used as models for the random coil
state [89-94].

We use MD simulations to identify isomeric states of the amino acids and to calculate the
equilibrium probabilities of the corresponding states. Then, the rates of the transitions between
the isomeric states are calculated using the DRIS approach based on the parameters obtained via
MD simulations. The relaxation rates determined via DRIS model are compared with the
fluorescence quenching rate constants obtained experimentally by Huang and Nau [86]. Results

of our calculations agree with their experimental findings.

51 METHODS AND MATERIALS

The details of the generalized DRIS model are already given in Section 2.5. Here we apply
the DRIS model to analyze the dynamics of the transitions of (¢,y) angles of the amino acids.
These transitions are determined by the transitions between the specified regions of the

Ramachandran map. Those regions are separated by energy barriers. We have defined v =8
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discrete regions for this purpose based on the molecular dynamics simulations we have

performed.

Let the torsion state of an amino acid be defined by
(@} ={av (41)

Based on the interdependence between the neighbor amino acids, the transitions may be defined

as (i) first order (independent), According to this, the statistics of {d)}i is independent of the

statistics of its neighbors, (ii) second order (pairwise dependent), where the statistics of {CD}i
depends on the statistics of its preceding neighbor, and (iii) third order (triplewise dependent)
where the statistics of {d)}i depends on the statistics of its preceding two neighbors. In this work,

we adopt the Flory independence hypothesis and assume first order statistics [1]. For a first order

transition of an amino acid, we define the master equation as

dP(t) _

where the vector P(t) is the 8 -dimensional vector of the probabilities of 8 states, and the
transition rate matrix A is the 8x8 dimensional matrix. The state of a given amino acid is

defined by one of the torsion states {CD}k, k=1...,8. Then, A, the ij™ element of the rate

matrix, denotes the rate of the transition from state {CD}J. to the state {CD}

The formal solution of the master equation gives
P(t) =exp{At}P(t =0) (4.3)

P(t=0) represents the vector of the -equilibrium probabilities of the 8 states. The

eigendecomposition of the matrix A gives A=BAB™. Here B is the matrix whose i column is

the i™ eigenvector of A, A is the diagonal matrix whose diagonal elements are the eigenvalues

A, and B™ is the inverse of B. Then,
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P(t) = Bexp{At}B'P(t =0) (4.4)

The term Be™B™ defines the time-delayed conditional probability matrix C(t). The element C;
denotes the probability of being at state {®} at time t, given the initial state {CD}J. at t=0. The
elements of each column of C; comprise all possible transitions from a given initial state to one
of the 8 possible states. Hence, the summation of each column is unity.
C(t) = Bexp{At}B™ (4.5)
The total time-dependent joint probability matrix P(t) is defined as

P(t) = C(t) diagP(t = 0) (4.6)

The element P, represents the joint probability of occurrence of state {d)}i at time t and {d)}j at

t=0. P. may be defined as

j
P, =2 By exp{4tB,'P;(0) @.7)
k
Knowledge of the joint probability matrix P(t), or alternatively knowledge of conditional

probability matrix C(t) with the equilibrium probabilities P(t =0) gives a complete description

of the dynamics of a given amino acid.

For any dynamic property f; which is a function of the conformations {(I)}i and {q)}j , the

average of the property <fij> over all possible transitions taking place from conformation j to i

can be calculated by assigning a stochastic weight to each transition

( fij> = ZZ Pij (t) fij (4.8)
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5.1.1 MOLECULAR DYNAMICS SIMULATIONS FOR DETERMINATION OF THE STATES AND
EQUILIBRIUM PROBABILITIES

A capped Gly-Gly-X-Gly-Gly peptide model is used for the analysis of the amino acid X. The

simulations are performed using Gromacs 4.5.5 package [95]. The —N and the —C termini of the

pentapeptide models Gly-Gly-X-Gly-Gly are capped with ACE and NME respectively. The

initial conformation is selected as extended.

OPLS/AA all atom force field is used and the system is solvated using four-atom water model
TIP4P [96, 97]. The electrostatic interactions are calculated using PME-Switch method with
Coulomb cut-off 1.0 nm. The Van der Waals interactions are calculated using Switch method
with VDW cut-off 1.0 nm.

An energy minimization using the conjugate gradient method with 5000 maximum number of
steps and 0.001 ps time step is performed. Then to assure that the solvent configuration matches
the peptide, the solvent and the hydrogen atoms are relaxed for 2500 steps while the peptide was

restrained.

Before the production MD step, first a 20 ps temperature coupling MD simulation and then a
40 ps pressure coupling MD simulation is performed. During the 20 ps NVT ensemble simulation
the Berendsen temperature coupling method is used [98]. The coupling constant is assigned as
0.1 ps. Then, during a 40 ps NPT ensemble simulation Berendsen temperature and pressure
coupling methods are used. The temperature coupling constant is again assigned as 0.1 ps and the

pressure coupling constant is taken as 0.5 ps.

A simulated annealing procedure is necessary to avoid a local minimum and to sample the
energy surface properly [99]. We used 80 ps simulated annealing cycles during the production
MD simulation. In each cycle, the temperature of the system is increased from 310 K to 1010 K
in the first 20 ps. Then in the second 20 ps part the temperature of the system is decreased from
1010 K to 310 K. Finally in the last 40 ps part the temperature of the system is kept constant at
310 K. This equilibration part is necessary since the collected data should be sampled from a

Boltzmann distribution. Using the simulated annealing method, a different initial conformation is
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selected in each cycle. Since the system is equilibrated after heating and cooling procedures, we

assure that the selected conformations are sampled from Boltzmann distribution.

5.1.2 DETERMINATION OF THE ROTATIONAL ISOMERIC STATES

The Ramachandran plots showing the distributions of the populated regions of 20 amino acids
in the Gly-Gly-X-Gly-Gly peptide are constructed. The Ramachandran plot of each amino acid is
obtained directly from the simulation trajectories. The common populated regions are selected as

the torsion states.
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Dynamic Rotational Isomeric State (Dris) Model

ds. The populations are obtained from MD

1IN0 acl

Figure 22. Ramachandran plots for the twenty am

simulations of GGXGG peptides.
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In Figure 22, a contour plot for each amino acid plotted using 5° x5° grids where the x-, y-

axes represent ¢ and y angle distributions, respectively. The percentage of points in each grid are
colored as: [0,0.05): gray; [0.05,0.2): green; [0.2,0.4): blue; [0.4,0.8): red; [0.8,1]: black

that has been used by Beck et al. [89]. Based on the Ramachandran plots, 8 torsion states are

determined. The selected regions are shown in Figure 23. We have defined 7 states based on the

popularity of the regions and identified 8" state as the all other regions. Since Proline has a

constrained phi angle, we have determined 4 torsion states for Proline. The identified states of the

Proline are shown in Figure 24. Again, the 4" state is defined as the all other allowed regions.

The regions are not so different from the regions introduced by Karplus [23]. Unal et al. also
defined eleven states based on a knowledge based database which are similar to the regions we
have defined by MD simulations [51, 68, 100]. In a knowledge based database, the preferences of
the amino acids are biased by the presence of the protein. Furthermore, a coil library that is
constructed by removing helical or beta structures may still include influences of conformations
of proteins [89]. Therefore we perform MD simulations of pentapeptides which would present
better representatives for the random coil structures. The boundaries of the states are selected in
such a way that the transitions between these states would be analyzed explicitly. We have

defined rectangular shaped states centered on the most populated regions.
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Figure 23. The representation of 8 states on Ramachandran map.
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Figure 24. The representation of 4 states of Proline.

5.1.3 CALCULATING THE EQUILIBRIUM PROBABILITIES

The equilibrium probabilities are calculated from the equilibrium conformations data
collected via MD simulations. For each amino acid, we simply count the number of states visited.

The probability of observing an amino acid X inastate i is calculated as

N"(s)

P (Si):m

(4.9)

where N*(s;) represents the number of occurrences of amino acid X in a state i during the

simulation ant the summation term indicates the total number of occurrences in all possible states

by amino acid X .

The equilibrium probabilities of each amino acid obtained by MD simulations are presented
in Table 6.

Table 6. The equilibrium probabilities of the amino acids based on 8 states

States: ‘ 1 2 3 4 5 6 7 8
ALA 0.14 0.08 0.03 0.33 0.21 0.01 0.05 0.13
ARG 0.17 0.11 0.02 0.30 0.19 0.01 0.07 0.13
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ASN 0.20 0.11 0.03 0.31 0.18 0.01 0.05 0.11
ASP 0.21 0.05 0.04 0.37 0.19 0.02 0.03 0.08
CYS 0.22 0.16 0.03 0.23 0.16 0.01 0.05 0.14
GLN 0.17 0.10 0.02 0.33 0.21 0.01 0.04 0.12
GLU 0.17 0.04 0.04 0.40 0.21 0.01 0.04 0.09
GLY 0.10 0.07 0.14 0.09 0.07 0.13 0.16 0.25
HIS 0.16 0.06 0.02 0.37 0.23 0.01 0.04 0.11
ILE 0.16 0.10 0.01 0.39 0.22 0.01 0.03 0.08
LEU 0.14 0.08 0.03 0.34 0.23 0.01 0.05 0.11
LYS 0.20 0.13 0.03 0.27 0.18 0.01 0.05 0.12
MET 0.17 0.10 0.02 0.32 0.19 0.01 0.06 0.12
PHE 0.21 0.13 0.02 0.28 0.18 0.01 0.05 0.12
PRO 0.00 0.00 0.01 0.65 0.25 0.00 0.00 0.10
SER 0.21 0.13 0.04 0.22 0.19 0.02 0.06 0.15
THR 0.20 0.14 0.04 0.23 0.22 0.01 0.04 0.11
TRP 0.22 0.11 0.03 0.30 0.20 0.01 0.03 0.10
TYR 0.20 0.13 0.03 0.26 0.18 0.02 0.07 0.12
VAL 0.19 0.10 0.02 0.35 0.23 0.01 0.02 0.08

5.2 CALCULATION OF THE RATES

In the previous applications of the DRIS, the rate constants related to transitions were
calculated by using a kinetic scheme [56, 57]. The rates were determined by the activation

energies E, and a front factor A, .

r=A exp{-E,/RT} (4.10)

The activation energies are calculated from the heights of the saddle points in energy maps.
The front factor A, is represented by Kramers’ expression for high-friction Brownian motions
[56]. It is the frequency of passing the energy barrier at a given temperature. Then the similarity
transformation of the rate matrix A whose elements are the rates leads to the conditional

probability matrix C(t).
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Alternatively, MD simulation trajectories of the chains may be used to determine the time-

delayed conditional probability curves C(t) [63]. We follow this approach and obtain the

conditional probability curves for each amino acid. Then, the initial slopes of the curves give the
transition rates following the equation (4.5). Eeach curve converges to the equilibrium

probabilities of the final state at infinite time.

5.2.1 CALCULATION OF THE TIME-DELAYED CONDITIONAL PROBABILITIES

Given that we observe a state s; at time t =0, the probability of observing a state s; at time t

IS given as
P(s;,0;s.,t)
C(s;t;s;, 0)=——1 17 (4.12)
P(s,0)
where P(s;,0;s;,t) is the joint probability that the system is in state i at t=0 and in state | at
time t.

For a chosen time step t =7, we record the joint observations of s; and s; in time interval ¢

throughout the simulation. Then, the joint probability that the system is in state s, at t=0 and in

state s; at t=71is

P(s;,0;s8;,7) =

(4.12)

total

Here Nj is the number of times when the system is in s; atatime t and in s; at time t+7, and

N, is the total number of observations.

After repeating the counting scheme for different chosen t =7,27,3r,... we obtain the joint

probabilities. Then the joint probabilities lead determination of the time-delayed conditional

probabilities.

The time-delayed conditional probability curves C_ are obtained for each amino acid using

this approach. The transition probabilities for all possible transition between eight states are
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represented. All of the curves are expected to approach to the equilibrium probability at infinite
time. However, this condition is not satisfied in reasonable time for MD simulations at lower
temperatures. Hence, the simulations are performed for higher temperatures as 400 K, 600 K, 800
K, and 1000 K. Then, the aim is to estimate the rates for 310 K based on the values obtained for

higher temperatures.

In Figure 25, the conditional probability curves are given for Alanine evaluated by MD
simulations at 400 K, 600 K, 800 K, and 1000 K. It is evident that the curves converge to the
equilibrium probability faster for the higher temperatures. Based on this fact, the calculations are
performed for higher temperatures. Then, the dynamical behavior at 310 K is estimated for each
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Figure 25. Time-delayed conditional (transition) probabilities for Alanine at 1000 K, 800 K,
600 K, and 400 K. The probabilities are shown for all possible transitions from the eight states to

the state 4. The black solid lines represent the equilibrium probability of the state 4 for Alanine.
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5.2.2 DETERMINATION OF THE RATE MATRICES

The initial slopes of the time-delayed conditional probability curves give the transition rate

matrix elements. Since C. =exp{Ar},

dc.
dT =0

= Aexp{Ac}| =A (4.13)

7=l

One may derive the derivative at 7 =0 using the finite differences. The forward difference is
defined by

Af (x) = f(x+h)—f(X) (4.14)
Furthermore, the higher order differences are derived by
A F(X) = A (x+h) =AM (%) (4.15)
Therefore, f’'(x=0) may be estimated by the sum of forward differences as follows

df

dx

-1

1, 1,
. h(Af(O)—EA f(0)+3A f(0)+---j (4.16)

The rates are estimated using finite differences up to 5 order, using only the first six data
points of the conditional probability curves. After construction of the rate matrices, the matrices
of eigenvectors and eigenvalues are determined using the eigenvalue decomposition (4.2)-(4.4).

Then, any dynamic property may be obtained by going through equations (4.7) and (4.8) .

5.2.3 MOLECULAR DYNAMICS SIMULATIONS FOR DETERMINATION OF THE RATES

The same peptide model Gly-Gly-X-Gly-Gly and the same parameters that have been used in
MD simulations for determinations of the states are used. However, this time we don’t use a
simulated annealing procedure since the aim is to collect data for the transitions happened during
the simulations. 1 ns simulations are performed for each type of amino acids and the data

collected in 1 ps periods.
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5.3 INTERNAL FLEXIBILITY

Any dynamic property associated with conformational transitions, (f(r)), may be computed

by using the rate matrices. Similarity transformation of the rate matrix (A= BAB™) leads to the

determination of a mean transient property as follows

(f(2)) =Dk, exp(4,7) (4.17)
Y
where 4 is the ;/t“ eigenvalue of A and k, denotes the amplitude factor given by
K, ZZ;BW[Bllﬁ Fo (@) T (D, D) (4.18)

We are interested in calculation of the local relaxation properties of the amino acids. The
internal dynamics of a given residue X may be analyzed by a function that is associated with

conformational transitions taking place between the torsion states. Hence, we consider two

vectors; (i) |, between the atoms C. , and N., and (ii) |, between the atoms N, , and C?, of the

i+1

backbone of Gly, ,—Gly, , — X, —-Gly,, —Gly, , for this purpose. The conformations of the

vectors will change with time related to the values of (¢,y).

GLY GLY X GLY GLY

Figure 26. 1; and |, vectors of the GGXGG peptide

For this purpose we define two functions;
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i <f1(l')> that gives the average cosine of the angle between |, vectorsat t=0and t=7
when the vector |, is kept fixed,

ii. (fz(r)) that gives the average cosine of the angle between the cross product of the
two vectors, I, =1 xl,, that gives information on conformational change in the

normal.

Here, ( ) means averaging over all time steps. Then, { f,(z)) is evaluated by

o) B

B Lo (s;:s,)
=22 RO T (420

Here I+l (s;;s.) is the dot product of the |, vector with itself when the transition takes place from

i1 9]

state s j to state s; .

Similarly, the cross product of the two vectors, |, =1, x1,, is analyzed by calculating (f2 (r)) .

(1,(z)) = <Iﬁ?)|||;|(||f)> Zk exp{/, 7} (4.21)

4 RACH)
22 RO (422
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5.4 RESULTS AND DISCUSSION

Figure 27 and Figure 28 show the two correlation functions ( f,(t)) and ( f,(t)) over time for

some amino acids (Asn, Cys, Gly, Trp) at T=400, 600, 800, 1000 Kelvin respectively. The decay
curves presented in the figure show that these functions exhibit exponential decay behavior.

Hence, it is possible to obtain the relaxation times by fitting the curves with formula
A+Bexp(-t/C). Then, the parameter C that gives the relaxation time 7, is determined for all

amino acids at different temperatures.

Arrhenius’ equation is a mathematical expression that gives the relation between rate
constants and temperature. The equation was proposed by Svante Arrhenius in 1889 [101] by

means of experiments. That is
k = Aexp(-E, /k;T) (4.23)

where k is the rate constant of a chemical reaction. A is the pre-exponential factor or the
frequency factor of the reaction. E, is the activation energy, k; is the Boltzmann constant and T

is the absolute temperature. Taking the natural logarithm of the equation yields

In(k) = In(A) kEf‘I_

B

(4.24)

When In(k) is plotted as a function of 1/T , this relation, called the Arrhenius’ equation,

gives a straight line since it is in the form of y=mx+Db.

Hence, our aim is to estimate the straight lines by linear least squares fitting technique after
obtaining the relaxation times. These lines determined for each amino acid at different

temperatures lead to relaxation times at 310 K by extending the lines until 1/T =1/310~0.003.
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Figure 27. The mean dynamic properties <f;(t)> for Asn, Cys, Gly, Trp at 400, 600, 800 and 1000

Kelvin.
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Figure 28. The mean dynamic properties <f,(t)> for Asn, Cys, Gly, Trp at 400, 600, 800 and 1000

Kelvin.
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The relaxation times determined via fitting (fl(t)) to exponential decays are shown in Figure

29 for some amino acids. Curve fitting the natural logarithm of relaxation times to linear lines
yield the red lines shown in the graphs. The relaxation times at T=310 K are estimated by this

lines since the dynamic functions obey Arrhenius’ equation.
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Figure 29. Relaxation times for amino acids Asn, Cys, Gly, and Trp calculated via <f1(t)>. Red line

represents the linear curve fitting.



Chapter 5: Conformational Transitions In The Ramachandran Space Of Amino Acids By The

Dynamic Rotational Isomeric State (Dris) Model

76

Similarly, the relaxation times obtained via fitting ( f,(t)) are presented in Figure 30.

Figure 30. Relaxation times for amino acids Asn, Cys, Gly, and Trp calculated via <f2(t)>. Red
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In Table 7, the estimated relaxation times 7, and 7, for T=310 K are presented. Glycine and

Serine that are known as small amino acids relax faster than the other amino acids. Glycine is the

least restricted amino acid while Proline has restrictions in Ramachandran map and has the

largest relaxation time.

Isoleucine and Threonine relax more slowly than the other amino acids. These amino acids

are restricted in the conformations since they contain two non-hydrogen substituent attached to

their C-beta carbon. They are known as C-beta branched amino acids. Hence, it is not surprising

that these amino acids relax slower than the other amino acids.
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Table 7. Estimated relaxation times for twenty amino acids at 310 Kelvin.

Amino Acid

Relaxation timel (7,)

Relaxation time2 (7, )

ALA
ARG
ASN
ASP
CYS
GLN
GLU
GLY
HIS
ILE
LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

0.33
0.32
0.36
0.29
0.28
0.54
0.39
0.19
0.45
0.55
0.27
0.49
0.40
0.41
1.51
0.23
0.72
0.50
0.39
0.37

0.40
0.38
0.48
0.33
0.28
0.81
0.56
0.22
0.61
1.12
0.33
0.70
0.58
0.54
1.51
0.21
1.05
0.78
0.53
0.52

Huang and Nau determined the fluorescence lifetimes of unstructured peptides as a function

of the amino acid type [86]. It has been reported that the quenching rate constant is a scale for the

flexibility of amino acids. The rate constants of sixteen amino acids are given except for Trp, Tyr,

Cys, and Met since these four amino acids are themselves are known as efficient quenchers [102].

In Figure 31, we compare our results with the fluorescence results of Huang and Nau [86]. In

general, the results are in good agreement. The quenching rates are determined as a measure for

flexibility and the results are related with the residue size.
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In Figure 32, we provide a comparison of quenching time with molecular weight. We
removed Proline since it is an outlier with a relaxation time value of more than 10 microseconds.
The quenching times of Ile and Val are higher than the others. These amino acids are p-branched
amino acids that have restricted main chain conformations. On the other hand, p-branched Thr
seems to be more flexible than Ile and Val. Huang and Nau proposed that since Thr has a
secondary hydroxyl group, it limits the flexibility of Thr but much less than Val and lle.
Furthermore, if we compare Leu and lle; Leucine seems to be more flexible than Isoleucine.

Huang and Nau state that this is because lle is a B-branched amino acid.
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Figure 31. Comparison of the relaxation rates determined via DRIS with the quenching rates
obtained experimentally by [86].

The scale between relaxation time determined by DRIS and molecular weight is given in
Figure 33. The relation is determined by excluding Thr since it is an outlier. Here two C-beta
branched amino acids, Thr and lle, relax more slowly than the other amino acids while the other
C-beta branched amino acid Val relaxes faster than these and our explanation parallels that of

Huang and Nau.
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The order of relaxation time z; is Gly< Ser< Leu< Cys< Asp< Arg< Ala< Asn< Val<

Tyr,Glu< Met< Phe< His< Lys< Trp< GIn< lle< Thr< Pro. Similarly, the order of relaxation time

7, 1S Ser< Gly< Cys< Asp, Leu< Arg< Ala< Asn< Val< Tyr< Phe< Glu< Met< His< Lys< Trp<

GlIn< Thr< lle< Pro.

Although the results fit together with the data given by Huang and Nau [86], there are some
differences. This may be a consequence of different macrocyclization probabilities of different
amino acid sequences, which plays a role in the experiments of Huang and Nau but is not
consequential in our single amino acid calculations. The proportion of macrocyclic constituents at
equilibrium is related to the macrocyclizatiion probability that is the probability of coincidence of
the two ends of a sequence [103-105]. Hence, it effects the statistical configurations of the chain.
Therefore, it is related to chain flexibility and the choice of chain length may affect

measurements of the quenching.
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Figure 32. The relation between quenching time [86] and molecular weight of the fifteen

amino acids. Pro is excluded.
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Figure 33. The relation between relaxation time determined by DRIS and molecular weight of
all amino acids except Pro and Thr. The relation is determined by excluding Thr since it is an

5.5 CONCLUDING REMARKS
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outlier.

The rotational transitions between the torsion states of the bonds have an important role in

local dynamics. DRIS is an efficient computational method that yields determination of a

dynamic property of the chain as a function of local transitions based on the frequencies of each

state.

In this study, the rates of first order transitions between the specified states are determined by

the conditional probability curves that obtained from MD simulation trajectories of amino acids.

Since the probability curves converges to the equilibrium probabilities faster at higher

temperatures, the calculations are performed for 400, 600, 800, and 1000 K. The initial slopes of

the time-delayed conditional probability curves give the transition rates that to be implemented in

the rate matrices. The identified dynamic properties ( f,(t)) and ( f,(t)) are determined based on
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the DRIS method. Since these functions decays exponentially, respective relaxation times at

different temperatures are obtained.

Our calculations showed that ( f,(t)) and (f,(t)) have Arrhenius behavior. Based on this

observation, we extrapolated the rates for higher temperatures and obtain the relaxation times at
310 K for all amino acids.

Relaxation times of the amino acids are related to the flexibility of the molecules, smaller
relaxation times indicating higher flexibility while larger relaxation times indicating higher

rigidity.

We applied the DRIS method to analyze the internal dynamics of the amino acids. The DRIS
method is a general method that can be applied to determine the internal dynamics of the
peptides. One may adopt the same method to analyze dynamics of different length peptides in the

random coil state.
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Chapter 6

CONCLUSION

In this dissertation, we analyzed the properties of the protein in the random coil state. Having
a complete description of the random coil state is motivated by (i) understanding primary
sequence of the proteins, (ii) characterization of the denatured proteins, (iii) analyzing the
intrinsically disordered proteins. The functional, structural and dynamical properties for the

random coil state are investigated.

The statistical thermodynamics properties of the proteins are obtained using rotational
isomeric states (RIS) model of polymer theory and based on the knowledge based data. The
method is utilized to determine conformational energy, entropy, mean energy and heat capacity
for the random coil state. The explicit thermodynamic expressions are derived for these functions
using a curve fitting technique. The results show that per residue thermodynamic properties scale
only with the temperature for the proteins in the random coil state. We provided a computational
scheme to analyze the thermodynamic properties for the random coil state. This scheme can be
extended to determine other thermodynamic potentials by using existing Legendre transformation

techniques of the thermodynamic theory.

In the second study, we proposed a computational method for predicting “n” high probability
conformations of a given peptide sequence in the random coil state. The presented scheme is
based on a hidden Markov model and Viterbi algorithm. A priori probabilities are determined
from a knowledge based database, and a posteriori probabilities are obtained using rotational
isomeric states (RIS) model. Existing studies are mainly focused on predicting the most probable
state of the residues that does not provide a conformational sampling. However, prediction of a
probability distribution is necessary for a proper analysis of the conformational space. The
proposed method is the first study that predicts the high probability conformations of a given
peptide sequence in the random coil state. This approach would be useful in targeted drug design

since finding the conformation that matches a given surface area is necessary to be effective.
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Furthermore, using a torsion state library for the intrinsically disordered proteins one may predict
the high probability conformations using the proposed scheme.

In the last study, we have analyzed conformational transitions of amino acids by DRIS model.
The torsion states of the amino acids and the probabilities of the states are determined by MD
simulations of Gly-Gly-X-Gly-Gly pentapeptides where X represents a given amino acid.
Dynamic properties are important for a full description of the amino acids. The DRIS model
based on the MD simulations is an efficient computational scheme for providing local dynamic
properties. The relaxation times of the amino acids for given dynamic properties are calculated.
The results are in good agreement with experimental results and indicate that the relaxation time

of the amino acids scale with the flexibility of the molecule.
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