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ABSTRACT

The utilization of optical forces at the nano-scale is progressing rapidly following

their successful employment in controlling micro-scale particles through optical traps

and tweezers. Unlike the micro-scale, the nano-scale resides in the deep subwave-

length limit, and thus, cannot benefit from the simple ray-optics based formulations.

Furthermore, the interaction of light with subwavelength structures is in general poor,

unless the structure possesses metallic behavior to harness surface-plasmons for effi-

cient coupling to light. This, in turn, requires the formulation of near field electrody-

namics by taking the surface-plasmon excitations into account. These major points

drive the basic research on the physics of optical forces at nanoscale for demanding

biomedical, chemical and integrated photonic applications.

In this thesis work, we investigate the optical forces in two different systems:

(i) The surface-plasmon enhanced optical forces on illuminated nanorod pairs, and

(ii) the optical forces between coupled dielectric and metal-strip waveguides. We

use a theoretical/numerical framework to study the electrodynamics of optical forces

starting from Maxwells equations and the Maxwell Stress Tensor. In the first system,

we determine the frequency spectrum of the optical force in a range where the surface-

plasmon resonance of the metal is present. In particular, we address the problem

of tunability of the generated optical force and demonstrate that this is possible

by incorporating a dielectric interlayer with tunable index of refraction (e.g. liquid

crystal). The effect of permittivity and dielectric layer thickness on the common and

relative forces are investigated in detail.

For the coupled waveguides, we start with the coupled mode theory and obtain

the modes of parallel dielectric waveguides. The mode profiles are used to deter-

mine the lateral stress on the waveguides. By incorporating a simple mechanical

viii



model, the structural deformation of the waveguide is obtained. Next, we set-up

the model of plasmonic metal-strip waveguides in order to investigate the effect of

surface-plasmons.
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ÖZETÇE

Mikro ölçekteki parçacıkların optik tuzak ve cımbızlarla başarılı bir şekilde kon-

trolünü takiben, optik kuvvetlerin nano ölçekte kullanımı da hızla gelişmektedir.

Mikro ölçeğin aksine, nano-ölçek dalgaboyu-altı limitinde yer aldığından, geometrik

optiğe dayalı formülasyondan yararlanamamaktadır. Buna ek olarak, ışığın dalgaboyu

altı yapılarla etkileşimi genelde zayıftır, ancak yüzey plazmonlarının uyarılabildiği

metalik özellikleri taşıdığı taktirde bu etkileşim güçlenebilir. Böylece yüzey plazmon-

larının uyarılmalarını dikkate alarak yakın alan elektrodinamiği formülasyonu gerek-

mektedir. Bu başlıca noktalar, nano ölçekte optik kuvvetlerin biyomedikal, kimyasal

ve tümleşik fotonik uygulamalarda kullanılmak üzere temel bilimsel araştırmalarına

gereksinim oluşturmaktadır.

Bu tez çalışmasında, iki farklı sistemde optik kuvvetleri araştırıyoruz: (i) Yüzey

plazmon ile kuvvetlendirilmiş nanoçubuk çifti üzerinde optik kuvvetler, ve (ii) çift

dielektrik ve metal şerit dalga kılavuzları arasındaki optik kuvvetler. Maxwell den-

klemlerinden başlayarak ve Maxwell stress tensöründen yararlanarak optik kuvvet-

lerin elektrodinamiğini çalışmak için teorik ve numerik yaklaşım kullandık. İlk sis-

temde, metalin yüzey plasmon resonansının bulunduğu bir aralıkta optik kuvvetin

frekans spektrumu belirlendi. Özellikle, oluşan optik kuvvetin ayarlanabilmesi prob-

lemi üzerinde duruldu ve değişken kırılma indisine sahip (likit kristal) bir dielektrik ara

katman koyarak yapılabileceği gösterildi. Yalıtkanlık sabitinin ve dieletrik katmanın

kalınlığının ortak ve relatif kuvvetler üzerindeki etkileri detaylı olarak incelendi.

İkincil olarak, çift dielektrik dalga kılavuzlarının modlarını elde ettik. Mod pro-

fillerine bağlı dalga kılavuzları üzerindeki yanal stresi belirleyerek dalga kılavuzlarının

yapısal deformasyonunu elde ettik. Sonrasında, yüzey plazmonlarının etkilerini araştırmak

için plazmonik metal şerit dalgakılavuzları modelini oluşturduk.
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Chapter 1

INTRODUCTION

The earliest direct manifestation of the optical forces was reported by the as-

tronomers when they noticed that the tails of comets always point away from the

Sun along their trajectory. The radiation pressure exerted by light is responsible for

this observation. Study on electromagnetic fields and radiation shows that light has

momentum and thus can exert pressure on objects [1]. Solar sail is also proposed [2]

as a possible way for space voyage using solar radiation pressure. The optical forces

exerted by light is also signifcant at very small scales [3]. Optical forces can be classi-

fied as gradient and scattering forces which are reported by Ashkin et al. on micron

sized particles in 1970 [4]. Their studies led to the first demonstration of an optical

tweezer for stable control of particles in free space [5]. While the dielectric particles

are attracted along the electric field gradient to the region of strongest electric field,

the scattering force is acting on the particles along the direction of light propagation

as shown in Fig.1 of ref. 1.1. The time-averaged scattering and gradient forces on

a sphere illuminated by a time-harmonic electromagnetic field are calculated in [6].

The time-averaged force expression in terms of the particle polarizability is shown to

be the total force which carries both the gradient and scattering force, and it gives

only the scattering force in the case of a plane wave illumination.

The contribution of surface plasmons (SPs) can not be neglected in calculations

of optical forces on conducting particles. Optical forces are enhanced due to field

enhancement near the structures as metal spheres, cylinders at their surface plasmon
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Figure 1.1: Optical trapping is shown using ray-optics. (a) The focused light is refracted
through the transparent particle and imparts momentum to the particle which conserves
the change in direction experienced by the light. The particle moves under this action until
it reaches an equilibrium position at the centre of the symmetric beam. Similar ray-tracing
arguments (b) may be applied to predict the stable trapping position in the z-direction
near the focus. Additionally radiation pressure (c) tends to destabilise the trap moving the
particle along the propagation direction. For the Rayleigh particles (d) the polarisability of
the particle is important for optical trapping . The electric field of the light produces an
induced dipole in the particles which align to regions of high field gradient (in the static
field approximation) [35].

resonances [7, 8, 9, 10]. Other than the gold nanospheres or nanorods coupled to a

gold slab [11, 12], the optical forces on dielectric, plasmonic and hybrid waveguides

are also studied [13, 14, 15, 16, 17]. In hybrid plasmonic waveguides, optical force

is shown to be stronger than the optical force created in a dielectric waveguide on

a dielectric substrate. The optical force enhancement in integrated metal-dielectric

hybrid plasmonic waveguide is demonstrated experimentally in ref. [17] and results

confirmed the optical force enhancement. Then optical force is also investigated on a

metamaterial film attracted to a dielectric surface exceeding the radiation pressure[18]
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or on the waveguides combined with metamaterials [19] showing enhanced optical

gradient force between the waveguides.

Optical forces are utilized growingly in biomedical, chemical, integrated photonic

applications [20, 21, 22, 23]. In biological studies, optical forces demonstrate them-

selves as optical tweezers which have a significant role to investigate the properties

of DNA, proteins, cells. Optical traps open the way of manipulation and control

the position of micro/nano-particles for the fabrication of photonic crystals, for the

transportation in the integrated photonic device or for the creation of a crystalline

structure [24, 25, 26]. Optical fields can also induce significant forces between mi-

croscopic aggregates of dielectric matter. The researchers have shown that micron

(and submicron) particles in colloidal suspensions can be controlled and ordered on

being illuminated by a laser beam [26, 27]. The scattering force which is parallel to

the direction of radiation propagation is employed in cavity optomechanics in cooling

the mechanical oscillator [29]. Plasmonic resonance dependence on the particle size is

used in optical sorting of nanoparticles as an application of optical forces taking the

advantage of plasmonic fields [28].

Optical forces are also considered between coupled waveguides. The gradient

optical forces are exploited for all-optical actuation of nanomechanical systems such as

waveguides, integrated resonators resulting in nanometre level displacements [14, 20,

21, 30]. The freely-hanging coupled dielectric waveguides are studied experimentally

[13, 31]. They showed that the sign of the force applied by one waveguide to the

other can be tuned from attractive to repulsive by controlling the relative phase of

the optical fields injected into the waveguides. Moreover, using resonant structures

the effect of the optical forces enhanced as shown by Anetsberger et al [32]. Also, the

forces arising from coupled surface plasmon polaritons in planar waveguides composed

of a finite or infinite thick metal slab separated by air are studied [33].

In this thesis, we investigate tailoring the magnitude and direction of the surface-
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plasmon enhanced optical forces. The optical forces between gold, silver nanoparticles

and nanorods are explored in recent studies [8, 9, 10, 36]. We investigate the effect of

a dielectric interlayer incorporated between the gold nanorods.

The thesis is organized as follows: The second chapter presents the theoretical

formulation of the optical forces in terms of the Maxwell stress tensor and it shows

the scattering and gradient forces in the dipole approximation. The third chapter

begins with a brief introduction on the theory of surface plasmons and then presents

the main outcomes of this study. We characterize the optical force with respect to the

parameters of the dielectric slab. We also discuss the tunability of the optical force

by a liquid crystal dielectric slab for dynamic control. The fourth chapter is devoted

to the optomechanical forces between coupled waveguides. We present briefly the

coupled mode theory of the waveguides and calculate the optical forces generated by

the coupled modes. The resulting spatial displacement of the waveguides are also

calculated by employing a structural mechanics model.
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Chapter 2

OPTICAL FORCES

2.1 The Maxwell stress tensor

Both the gradient and scattering type optical forces can be calculated using the

Maxwell stress tensor formalism. In the following, we briefly present the deriva-

tion of the Maxwell’s stress tensor starting from Maxwell’s equations and formulate

the optical force, as can be found in standart electrodynamics textbooks [1].

∇ · E = 4πρ (2.1)

∇ ·B = 0 (2.2)

∇× E = −1

c

∂B

∂t
(2.3)

∇×B =
4π

c
j +

1

c

∂E

∂t
(2.4)

From the Lorentz force, we can define the force density f , then total force in a

volume V will be

f = ρE +
1

c
j×B (2.5)

F =

∫
V

[ρE +
1

c
j×B]dV (2.6)
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We can eliminate ρ and j using Maxwell equations(1st and 4th)

f =
1

4π
[E(∇ · E) +

1

c
B× ∂E

∂t
−B× (∇×B) (2.7)

Now, we can write that

∂

∂t
(E×B) =

(
E× ∂B

∂t

)
−
(

B× ∂E

∂t

)
(2.8)

and we obtain

f =
1

4π
[E(∇ · E) + B(∇ ·B)− E× (∇× E)−B× (∇×B)]− 1

4πc

∂

∂t
(E×B)

(2.9)

The ith component of the following expression can be written as

[E(∇ · E)− E× (∇× E]i =
∑
j

∂

∂j
(EiEj −

1

2
E · Eδij) (2.10)

At this stage we introduce the Maxwell stress tensor as follows

Ti j =
1

4π
[(EiEj −

1

2
δi jE

2) + (BiBj −
1

2
δi jB

2)] (2.11)

where δi j is the Kronecker delta and the indices i, j are space coordinates (x, y, z).

Force per unit volume can be written as

f = ∇ ·
↔
T−

1

4πc

∂

∂t
(E×B) (2.12)
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Then the total force on the charges in the volume V is given by

F =

∫
V

∇ ·
↔
TdV −

1

4πc

d

dt

∫
V

(E×B)dV (2.13)

The volume integral of the first term can be converted to a surface integral using the

divergence theorem, so the mechanical force is equal to

F =

∮
∂V

↔
T · nda−

1

4πc

d

dt

∫
V

(E×B)dV (2.14)

where ∂V denotes the surface enclosing the volume V, n is the unit vector perpendic-

ular to the surface, da is the infinitesimal area element, and the second term of the

equation 2.14 is proportional to the Poynting vector S = c
4π

(E×H).

We can show also the conservation of momentum starting with the Newton’s

second law

F =
dpmech
dt

(2.15)

, then we write

dpmech
dt

=

∮
∂V

↔
T · nda−

1

4πc

d

dt

∫
V

(E×B)dV (2.16)

where pmech is the mechanical momentum of the particles contained in volume V. The

second term of the right-hand-side of the expression is the field momentum, which is

the momentum carried by electromagnetic fields.

pfield =
1

4πc

∫
V

(E×B)dV (2.17)

Hence, total momentum which is the sum of the mechanical and field momentum can
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be written as

d

dt
[pmech + pfield] =

∮
∂V

↔
T · nda (2.18)

For time-harmonic fields, the average of the field momentum term over one oscil-

lation period vanishes. The remaining expression for the time-averaged force is

〈F〉 =

∮
∂V

〈
↔
T〉 · nda (2.19)

↔
T is actually the force per unit area acting on the surface, and the diagonal elements

represent pressures and off-diagonal elements represent shears. Equation 2.20 allows

one to calculate the mechanical force on a body within the closed surface. The force

is determined by the electric and magnetic fields on the surface ∂V .

For macroscopic media, the field momentum density g and the Maxwell stress

tensor is

g =
1

4πc
(E×H) (2.20)

Ti j =
1

4π
[EiDj −

1

2
δi j(E ·D) +HiBj −

1

2
δi j(B ·H)] (2.21)

The medium is assumed to be linear, but it is not necessary to be isotropic in i-

direction. There is no restriction in size (except few atoms sizes) and shape of the

body, as to its dielectric properties. This method is widely applicable, such as for

purely electric, purely magnetic or fully electromagnetic effects, and for traveling or

evanescent wave fields.

Rayleigh particles, that are having dimensions much smaller than the incident

wavelength, can be described by a dipole as a simple model. The time-averaged force

for the Rayleigh particles in the dipole approximation is given in the Appendix 1.
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Chapter 3

THE SURFACE PLASMON ENHANCED OPTICAL

FORCE ON A NANOROD PAIR

In this chapter, we investigate the surface plasmon enhanced optical force on a sub-

wavelength nanorod pair in the presence of a dielectric interlayer. We first describe

the plasmons and the surface plasmons generally. We work on the characterization of

the optical force with respect to the permittivity and the thickness of the dielectric

interlayer.

3.1 Surface plasmons

The electrons of a metal oscillate in response to the applied electric field and their

motion is damped by the collisions. The damped oscillation is given by

mẍ+mγẋ = −eE (3.1)

where m is the mass of the electron and γ is the collision frequency, the time harmonic

dependence exp(−iωt) is assumed. The displaced electrons result in polarization.

Then

D = ε0(1−
ω2
p

ω2 + iγω
)E (3.2)

ωp =
ne2

ε0m
(3.3)
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The frequency dependent, complex dielectric function of the free electron gas is given

by

ε(ω) = 1−
ω2
p

ω2 + iγω
(3.4)

In the case of negligible damping, for large frequencies close to plasma frequency, the

dielectric function can be described simply by

ε(ω) = 1−
ω2
p

ω2
(3.5)

Instead of dielectric function of the material, refractive index can be used to describe

the optical properties , the dielectric function can be derived by the relation ñ =
√
ε.

If the dielectric function related to the refractive index is complex, then ñ = n + ık

where n is the real part and k is the imaginary part (loss in the material) of the

refractive index.

Surface plasmon polaritons are electromagnetic surface waves which propagate

along a metal-dielectric interface and evanescently confined in perpendicular direc-

tion.[Fig 3.1] They result from the coupling between electromagnetic fields and col-

Figure 3.1: Surface plasmon propagating along the metal-dielectric interface and the evanes-
cent decay of electric field perpendicular to the interface where δm is the skin depth of the
metal and δd is the decay length of the field into the dielectric [37].
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lective oscillations of the electron plasma of the conductor. Following the derivation

given in [38], the surface plasmon polaritons at single interface can be excited only by

the TM polarization. The dispersion relation of SPPs propagating at the interface is

given by

β = k0

√
ε1ε2
ε1 + ε2

(3.6)

where k0 is free space propagation constant, ε1 is the dielectric constant of the con-

ductor and ε2 is the dielectric constant of the dielectric medium. For large wave

vectors, the frequency of the surface plasmon polaritons approaches the characteristic

surface plasmon frequency, and can be found by inserting the dielectric function into

the dispersion relation,

ωsp =
ωp

1 + ε2
(3.7)

Figure3.2 shows the dispersion relation of SPPs at the interface of a metal with

negligible damping and two possible media as air(ε2 = 1) and silica(ε2 = 2.25) On

the contrary, in the case of subwavelength particles we encounter localized surface

plasmons which are non-propagating excitations of electrons coupled to the electro-

magnetic field. When the particle size is much smaller than the wavelength of light,

the quasi-static approximation is used to study localized surface plasmon on the par-

ticles in an harmonically oscillating electromagnetic field. The problem is treated as

in an electrostatic field with an harmonic time dependence added to the solution.

To achieve the surface plasmon resonance condition, the interaction between a metal

nanoparticles and an electromagnetic wave is studied. So we are dealing with the so-

lution of the Laplace equation, and then calculation of the electric field. We assume

that a spherical particle is placed in an electric field having the field lines parallel
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Figure 3.2: The dispersion relation of SPPs at the interface between metal and dielectric
chosen to be air (gray curves) and silica (black curves). The real (continuous curves) and
the imaginary part (broken curves) of the wave vector β is plotted [38].

Figure 3.3: Near-field coupling between metallic nanoparticles [38]

to the z-direction. Following the solution from section 4.4 of [1], applying boundary

conditions, the potentials inside and outside the sphere is

Φin =
−3εm
ε+ 2εm

E0rcos(θ) (3.8)

Φout = −E0rcos(θ) +
ε− εm
ε+ 2εm

E0a
3 cos(θ)

r2
(3.9)

where a is the radius of the sphere, ε is the dielectric function of the sphere and εm

is the dielectric constant of the surrounding medium. Φout is the sum of the applied



Chapter 3: The Surface Plasmon Enhanced Optical Force On A Nanorod Pair 13

field and that of a dipole located at the particle center. Introducing the polarizability

α of the sphere in which a dipole moment p is induced by the electric field

p = ε0εmαE0 (3.10)

α = 4πa3
ε− εm
ε+ 2εm

(3.11)

we lead the resonance condition which is known as the Fröhlich condition. It is

achieved when the real part of the frequency dependent dielectric function of the metal

particle is equal to negative of two times the dielectric constant of the nonabsorbing

surrounding medium

Re[ε(ω)] = −2εm (3.12)

Here the factor (2) for the resonance condition is for the spherical particles. However,

it can be generalized defining the geometrical factor for differently shaped particles

like ellipsoids, cylinders. The polarizability shows a resonant enhancement when its

denominator is a minimum, so for the small or slowly-varying imaginary part of the

dielectric function around the resonance, we can take only the real part of the dielectric

function and then the Fröhlich condition is obtained. A consequence of the resonance

is the enhancement of the fields. For gold and silver nanoparticles, the resonances are

at the visible wavelengths.

The localized plasmon resonance frequency of the metallic nanoparticle can be

shifted depending on size and shape of the nanoparticle as well as the physical en-

vironment as discussed in ref [39]. In [38], we see that the extinction cross section

calculation for a silver sphere immersed in two different media displays two different

single peaks respective to each medium. The scattering spectra is given for different

shapes showing shifted peaks at their plasmon resonance frequencies. As all these
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discussions summarized in reference [40], the coupling between the nanoparticles is

responsible for changing the spectrum. The near field produced by the dipole excited

in the nanoparticle is effecting the closely spaced another nanoparticle(Fig 3.3). This

coupling between the nanoparticles is the cause of the shift in resonance frequency.

For these small particles, the interaction is of a dipolar nature. Furthermore, de-

pending on the polarization of the illuminating wave, the plasmon resonance can be

blue or red shifted. Other than the explanation given by dipolar interaction, the hy-

bridization model has been applied to nanoparticle dimers to calculate the resonance

frequency [41].

3.2 Computational procedure

We employ Comsol Multiphysics, which is a finite element method, to solve the scat-

tering problem of the subwavelength metallic particle illuminated by a plane wave.

We perform a 3D simulation. The geometry is constructed for the vacuum case.

The nanostructure’s center of mass is placed at the origin of a large spherical compu-

tational domain where the most outer layer is chosen to be Perfectly Matched Layer

(PML). PML is a layer absorbing the incident radiation on it without creating re-

flections from the boundary. It is absorbing radiation coming from wide range of

incidence angles. The size of the computational domain is set to be equal to one half

of the excitation wavelength, so that the computational size is adjusted with respect

to the excitation wavelength in order to reduce memory and execution time.

For reducing the computational memory, the mesh is defined differently on the

domains with different sizes and materials. The maximum mesh size for the domains

except the nanostructures, are one sixth of the wavelength. For the nanostructures,

a much refined mesh is selected. Also, we are more careful for mesh distribution to

be symmetric around the nanorods, because the Maxwell stress tensor integration
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around the nanorods are very sensitive to mesh.

The THz frequencies corresponding to a wavelength range 600-800 nm are stud-

ied. We employ a parametric sweep node under the frequency domain study. The

incident plane wave is given as an input for the background electric field under the

”electromagnetic waves” node which solves for the scattered field. The electric field

polarized along the z-axis is given as E0exp(−jk0x), where k0 is the vacuum wave

vector.

The gold permittivity values are taken from the Johnson and Christy [42] and

interpolated to construct a frequency dependent dielectric function in the relevant

frequency range.

The dimensions of the dielectric interlayer in the next step are carefully chosen.

A touching dielectric slab with the nanorods causes some numerical problems about

the boundary and domain definitions.

The optical force calculation are done on the surface defined as a cylinder with

hemispherical caps encapsulating each nanorod separately. Theoretically, any integra-

tion surface should work, such as a simple rectangular box. However we experienced

numerical difficulties due to the discontinuities at the box edges, hence a smooth

surface is better for numerical purposes. The force calculation can be done directly

on the nanorod. However as mentioned in ref. [43], we need an integration surface

where all fields are well-defined. We verify this requirement by calculating the force

components on the surface of the nanorod, we see that the all forces are exactly equal

to zero. Moreover, the integration surface encapsulating a single nanorod is restricted

not to intersect with any other boundary such as the dielectric interlayer or the other

nanorod. Again the mesh is carefully designed between the nanorod surface and the

integration surface.

A typical simulation is based on a discrete mesh with approximately 9x105 nodes.

The total computation time for 40 frequency values through a parametric sweep
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requires approximately 40 minutes on a PC (Intel Core i7 processor and 8 GB system

memory). In order to reduce the time and memory requirements, it is possible to use

symmetry planes, however the calculated force results were not matching the expected

ones in our construction. Hence we employed a full 3D computation.

3.3 Optical force on a gold nanorod pair in vacuum

We begin by calculating a reference force spectrum for the gold nanorods in vacuum.

Figure 3.4 shows the geometrical parameters of the nanorod pair with an inter-rod

dielectric layer. The diameter of the nanorods is D = 25 nm, length is L = 100 nm,

distance between the nearest sides of nanorods is d = 35 nm. A plane wave polarized

along the long z-axis of the nanorods is propagating along the x-direction as shown in

the figure. We label the nanorod to which the electromagnetic wave is incident, as ”2”

and the other nanorod as ”1”. The common force is defined as (Fcommon = (F1 +F2))

Figure 3.4: The geometrical parameters of the two gold nanorods with an inter-rod dieletric
layer, which can be taken as air to model the vacuum case,are denoted. The side, top, and
isometric view of the model is plotted. The polarization and the propagation direction of
the incident em radiation is shown.

which is acting on the center of mass .The relative force between nanorods is defined

as (Frelative = (F1 − F2)/2). According to this definition, a negative relative force
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tends to decrease the distance between the nanorods, hence it is attractive, whereas

a positive relative force between the nanorods implies a repulsive behavior. The

relative force exhibits two resonance, one of which corresponds to the resonance of

the electric dipole moment and the other corresponds to the resonance of the magnetic

dipole moment. The electric dipole moment is calculated using

pz =

∫∫∫
V

PzdV =

∫∫∫
V

(Dz − ε0Ez)dV (3.13)

where Pz is the z-component of the polarization and Dz is the z-component of the

displacement field. The magnetic moment is calculated from r× Jp (r is the position

vector pointing the volume element that contains the current density) , which yields

my =

∫∫∫
V

(z
∂Px
∂t
− x∂Pz

∂t
)dV (3.14)

= −iω
∫∫∫

V

[z(Dx − ε0Ex)− x(Dz − ε0Ez)]dV (3.15)

where ω is the frequency of the time harmonic fields. We also include the common

and relative forces for a perfect electric conductor (PEC) in Fig. 3.6 which does not

display any resonance and smaller in magnitude with respect to the force spectra of

the two gold nanorods.

At 422 THz, the magnetic dipole moment has a maximum as antisymmetric eigen-

mode leading to an attractive Coulomb force, since the antisymmetric mode causes

a charge distribution such that the charges with opposite sign accumulates at the

same end of each nanorod Fig. 3.5 a. At 445 THz, the electric dipole moment has a

maximum as symmetric mode leading a repulsive force (Fig. 3.6). We studied also

optical forces for different interwire distances. The magnitude of the peak increases

for smaller inter-rod distance, and the resonance peaks shifts towards the higher fre-

quencies.



Chapter 3: The Surface Plasmon Enhanced Optical Force On A Nanorod Pair 18

Figure 3.5: (a)The Ez is plotted at magnetic dipole resonance (422 THz) corresponding
to an attractive force. (b) The Ez is plotted at the electric dipole resonance (445 THz)
resulting in a repulsive force.

Figure 3.6: (a) The frequency spectra of the relative (solid blue curve) and common (dashed
red cuve) force in the nanorod pair system. The nanorods are of length 100 nm, diameter
25 nm and interwire distance 35nm. The common (green dashed) and relative (solid black
curve) force for PEC. (b-c) The real (solid blue curve) and imaginary (dashed red curve)
parts of the (b) electric and (c) magnetic dipole moment of the nanorod pair.
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3.4 Optical force on gold nanorods with a dielectric interlayer slab

We introduce a dielectric interlayer between the nanorods and we investigate its effect

on the optical force. For this system, all the geometrical parameters of the reference

system (i.e. rod pair in vacuum) are kept fixed. The inserted dielectric slab has length

100 nm, depth 25 nm, and thickness w which varies from 15 nm to 30 nm. Another

parameter for the characterization of the optical force is the dielectric constant ε

of the inter-rod slab. We assume that the dispersion of the dielectric material is

constant and the dissipation is negligible, which may be justified for a nanometer

thick dielectric layer subject to THz frequency fields. If the dielectric material is not

highly lossy, dissipation would not have a significant effect. The dispersion of the

dielectric materials is smooth in THz frequencies. The common and relative forces

are calculated in the same way defined in previous section.

In the first part of our analysis, we keep the dielectric constant of the interlayer

constant at ε = 3, and study the system for different interlayer thicknesses. We plot

the individual calculated forces on each of the nanorods(Fig 3.7). The figure shows

that the peak position of the force F1 is redshifted as the thickness of the dielectric slab

increases. Like F1 peak values, the F2 resonances are redshifted, but the interesting

point is that the electric dipole associated peak exceeds the F1 increasing the dielectric

interlayer thickness w. As a result, in the relative force graph we observe the sign

change (Fig 3.8). The results show that filling more space between nanorods with

dielectric material, the resonances are both magnified and red shifted. The shift is

greater for the peak corresponding to magnetic resonance.

In the second part of the analysis, we study the optical forces when the thickness

of the slab is kept constant at w = 25 nmand the dielectric constant ε is varied.

We plot the individual force spectra in Fig. 3.9, and the common and relative forces

in Fig. 3.10. Again the peak in the F2 corresponding to electric dipole resonance
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Figure 3.7: calculated individual force (F1 solid curves,F2 dashed curves) spectra of
nanorods in the presence of a dielectric interlayer for fixed ε = 3 w = 15, 25, 30 nm.

Figure 3.8: The (a) relative and (b) common force spectra of nanorod pair with a dielectric
interlayer of different thicknesses and of a constant permittivity ε = 3.

experiences a sign change from negative to positive with increasing permittivity of

the dielectric slab,which in turn leads to reversal of the relative force at 440 THz.
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The relative force peak values are at 422 THz and 445 THz for ε = 1, at 408 THz

Figure 3.9: The calculated individual force spectra of nanorods in the presence of a dielectric
interlayer for fixed w = 25 nm, ε = 1, 3, 5.

and 441 THz for ε = 3, and at 402 THz and 436 THz for ε = 5. In Figures 3.11 (a)

Figure 3.10: The (a) relative and (b) common force spectra of nanorod pair with a dielectric
interlayer of different permittivities and of a constant thickness w = 25 nm.
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and (b), we plot the force at two selected frequencies as a function of the permittivity

with fixed thickness (w = 25 nm) and as a function of the thickness with fixed

permittivity (ε = 3), respectively. In Figure 3.11 (a), the relative force as a function

of dielectric constant is all attractive for 427 THz (dashed lower curve), whereas it

exhibits a sign change for 445 THz and it crosses the zero approximately at ε = 3

(solid lower curve). The common force at 427 THz (upper dashed curve ) is increasing

monotonically with increasing permittivity. The common force at 445 THz (upper

solid curve) increases up to ε = 3, and decreases afterwards. In Figure 3.11 (b), the

relative force with respect to thickness of the interlayer decreases monotonically and

reverses sign at w = 24.5 nm for 445 THz (lower solid curve). The relative force at

427 THz (lower dashed curve) is attractive throughout the range. The common force

at both frequencies (upper two curves) increases with increasing thickness.

Figure 3.11: The common- (upper two curves) and the relative force (lower two curves) as
a function of permittivity for a 25 nm thick dielectric interlayer at 427 THz (dotted) and
445 THz (solid); (b) Same as in (a) but as a function of thickness of a dielectric interlayer
of ε = 3.

We can conclude that increasing the electromagnetic field energy between the rods

either by increasing the permittivity or the volume of the dielectric material occupying
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the space between the nanorods enhances the common force which is always repulsive.

The direction of the relative force may not be explained solely from the symmetry of

the excitation mode of the nanorods as it was in the absence of the dielectric layer.

The polarization of the dielectric layer contribute to the local field distribution at the

nanorod surfaces where the optical forces are calculated. The relative force at the

magnetic dipole resonance remains attractive and increases in magnitude, whereas the

relative force at the electric dipole resonance changes sign from positive to negative.

3.5 Tunable relative force by the use of liquid crystals

These results suggest that a tunable optical force may be achieved by incorporating

a dielectric material whose refractive index can be controlled externally. Here, we

propose the use of a birefringent liquid crystal. Birefringent liquid crystals exhibit

ordinary and extraordinary refractive indices determined by the polarization of the

incident radiation (perpendicular or parallel respectively) to the director. In the

presence of an external field, the re-orientation of the director axis occurs. Therefore

applying voltage externally to the slab, the change in refractive index can be achieved.

If we place a liquid crystal with its director along the x-direction, and then applying

voltage in z-direction we can align the director parallel to the polarization of the

incident em wave. In Figure 3.12, we plot the optical forces obtained in the presence

of a liquid crystal interlayer of thickness w = 25 nm. The refractive index data of the

liquid crystal is taken from Ref. [44]. As shown in Fig. 3.12 (c), it is possible tune the

relative optical forces in an attractive/repulsive regime at a frequency of 440 THz.

In this chapter, we studied the optical force provided by an incident plane wave on

the nanorod pair and the effect of a dielectric interlayer on the optical forces. The rel-

ative optical force exhibits both repulsive and attractive behavior due to asymmetric

placement of the nanostructure with respect to the propagation of the electromag-
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Figure 3.12: The (a) relative and (b) common force spectra with a liquid crystal interlayer
of thickness w = 25 nm with the two extreme values of its refractive index from 1.55 to
1.79 under the voltage effect. (c) The relative (blue solid) and common force (red dotted)
plotted as a function of refractive index at 440 THz.

netic radiation. In the next chapter, we will investigate the optical force between

coupled dielectric waveguides, however in this case the optical force exerted on each

waveguide is due to the gradient forces.
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Chapter 4

OPTOMECHANICAL FORCES BETWEEN COUPLED

WAVEGUIDES

In this chapter, I present two coupled dielectric waveguides and the simulation

results for mode solutions of the coupled system. For two eigenmodes of the system,

we calculate optical forces on the waveguides. In the last part of this chapter, the

deformation of the waveguides due to the optical force is studied.

The modes of the coupled system can be explained by the coupled mode theory

given in Appendix 2. The eigenvalues of the system are the symmetric and anti-

symmetric propagation constants βs and βa in terms of the individual propagation

constants of the waveguides and the coupling coefficient.

In our study, we should note that we directly excite the coupled modes (sym-

metric and antisymmetric mode) and we do not expect any power transfer along the

propagation which is given by

Lc =
π

βs − βa
(4.1)

We will investigate the power transfer between the waveguides for the metal dielectric

strip waveguides system.

4.1 Optical force between coupled waveguides

In this section, we study the optical forces between two coupled linear dielectric

waveguides. This system was studied by Povinelli and her group in 2005 [14]. The
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evanescent tails of the guided modes of the waveguides overlap and result in either

attractive or repulsive optical force. The model consist of two parallel, silicon (refrac-

tive index 3.45) waveguides which are separated by a distance d. Each waveguide has

a square cross section having side dimension a = 310 nm (Fig 4.1).The wavelength is

1550nm.

Figure 4.1: Two rectangular silicon waveguides of side length a is plotted. The distance
between them is d.

For infinite separation between the waveguides, no coupling occurs. Modes of the

two isolated waveguides are degenerate; as the waveguides come closer, the degener-

acy is broken, and two distinct eigenmodes appear. We first consider two-dimensional

waveguides ( translational invariance along the propagation direction) and then in-

vestigate the three-dimensional coupled waveguide system.

For 2D simulation, we construct the geometry, that is only the rectangular cross

section of the waveguides. We set the material properties of the waveguides as sil-

icon and the surrounding domain as air. After meshing the computational domain,

we decide the desired number of the modes under the mode analysis node of the

software. We get the possible eigenmodes of the coupled waveguides system and the

corresponding the effective indices. The resulting field profiles for the symmetric and

antisymmetric modes are plotted on the cross section of the waveguides where the

ratio r = d/a = 0.6 in the Fig. 4.2. The y-component of the force, as a function of the

ratio r with fixed parameter a, is plotted in Fig. 4.3. The two coupled modes lead to

either attractive or repulsive force on each other depending on the distance between
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Figure 4.2: Ez field is plotted for symmetric and antisymmetric modes.

Figure 4.3: Force per unit length is calculated integrating Maxwell stress tensor on the
surface of the waveguide as a function of the ratio r for symmetric (green) and antisymmetric
(blue) modes. The comparison with the force calculation from Ref. [14].

the waveguides. The antisymmetric mode results in an attractive force for r/a < 0.2

separation. For larger separations, the force is repulsive and it has maximum value

for the ratio r = 0.4, and it decays to zero. For the symmetric mode, the force is
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negative for all rs (i.e. separations) and similarly it approaches to zero where the

degeneracy broken due to coupling is reconstituted.

In reference [14], it is demonstrated that the mechanical force can be calculated

using the following expression. It is assumed that energy U = Nh̄ω is coupled into an

eigenmode with frequency ω and wavevector k of the system of two waveguides sepa-

rated by a distance ξ. An adiabatic change in separation ∆ξ will shift the eigenmode

frequency by ∆ω. Then the force is given by

F = −dU
dξ

∣∣
k

= −d(Nh̄ω)

dξ

∣∣
k

(4.2)

= −Nh̄dω
dξ

∣∣
k

= − 1

ω

dω

dξ

∣∣
k
U (4.3)

The full derivation leading to Eq.s 4.16 and 4.17 can be found in Ref. [30]. However,

we stress that this method is not accurate in plasmonic systems as discussed in [33].

Our ongoing research is on the coupled metal dielectric strip waveguides. The gold

(Au) strip has width 8 µm and heigth 12 nm, the silicon-nitride (SiN) waveguide has

width 6 µm and heigth 32 nm (Fig. 4.4). As shown in Ref. [47], for TM polarization,

the coupling occurs when the metal strip can support the long range surface plasmon

polariton (LRSPP) waveguide mode. We directly excite the eigensolution of the

coupled waveguides and we determine the modes of the coupled system (Fig. 4.5).

Next, we will solve the problem of the power coupling between the waveguides and we

will study the optical forces between plasmonic metal strip and dielectric waveguide.
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Figure 4.4: Schematic structure of the hybrid coupler with Au strip (yellow) and SiN strip
(gray) surrounded by silica. The refractive indices are nd = 1.871, nsup = 1.448, nb = 1.453
and nsub = 1.446 [47].

Figure 4.5: The two eigenmodes (symmetric (a) and antisymmetric (b) profiles) of the
coupled Au-SiN waveguide system is shown. The power flow along the propagation direction
is plotted.
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4.2 Mechanical deformation effects

The optomechanical results are studied using structural mechanics module of Comsol

Multiphysics. The (elasticity) poisson ratio and young modulus of the material form-

ing waveguides are taken as 0.22 and 169[GPa] respectively. The attractive optical

force resulted from coupled symmetric mode of the waveguides is provided as a load

on the waveguide structure in air which is clamped at both ends. The displacement

of ends of the waveguides are zero taking the ends fix. We take d/a = 0.15, and the

length of the waveguides set to be 30µm. The force load per unit length is 0.7nN/um

read from the force spectrum for given ratio r. Under static equilibrium, the waveg-

uides are bent. The plot depicts the bend in comparison to the straight position of the

waveguides (Fig 4.6). . For a load of 0.7 nN/µm, the displacement at the midpoint

Figure 4.6: At a distance of 46.5 nm, the attractive force result in bend waveguides toward
each other.
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of the waveguides is about 21 nm.

Figure 4.7: The total displacement experienced by the waveguide along the propagation
direction when the attractive force of 0.7nN/µm is applied.
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Figure 4.8: The schema of the self-consistent calculation.

The significant displacement from the axial direction of the waveguide may in turn

affect the propagating modes since the coupling between the waveguides would change

along the axis. Here we outline a self-consistent procedure that we will be working on

in the future. The procedure that we want to follow is depicted in Fig. 4.8. We start by

solving the modes of the coupled waveguides employing the mode analysis module.

Using the solution data, we calculate the optical force by integrating the Maxwell

stress tensor on the surface of the waveguide. Then, we apply the resulting force

and obtain the deformed waveguides. Next, we recalculate the modes propagating

in the deformed waveguides system. At present, we are working on implementing

the self consistent calculation between the electrodynamics and structural mechanics

modules.
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Chapter 5

CONCLUSION

In this thesis, we have investigated the optical forces in two separate systems: (i)

The surface-plasmon enhanced optical forces in illuminated coupled metallic nanorod

pairs and (ii) the optical forces arising from coupled modes of dielectric waveguide

pairs. Here, we summarize our major results and conclusions. For metallic nanorod

pairs with a dielectric interlayer, we have found that the optical forces generated by

an external electromagnetic plane wave depend on the permittivity or the thickness

of the dielectric interlayer. In particular, when the optical forces acting on individual

nanorods are combined as common and relative force components of the nanorod pair,

we found that the relative force can be altered to become attractive or repulsive. This

reversal in the relative force can be utilized as a tunable optical force in plasmonic

nanostructures employing liquid crystals. The common force is always repulsive and

its magnitude gets enhanced with increasing the permittivity or the thickness of the

dielectric interlayer.

For two planar dielectric waveguides coupled by their evanescent waves, we have

obtained optical forces according to mode solutions. The optical force is attractive

and repulsive for symmetric and antisymmetric modes respectively. As a result of

an attractive force, the structural mechanics simulation showed that the waveguides

which are extending in air with fixed ends deform towards each other.

Optical forces can be explored in other configurations of nanorod pair such as

periodic array of nanorods. We are investigating that the optical forces can affect

the mode profile significantly due to the non-uniform coupling distance between the
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deformed waveguides. Furthermore, we are investigating the effect of the surface

plasmons on optical forces between a metal strip waveguide coupled to a dielectric

waveguide.
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Appendix 1

FORCES IN DIPOLE APPROXIMATION

The electromagnetic force on a dipole formed by two oppositely charged particles

separated by a small distance is given by

F = (µ · ∇)E + µ̇×B + ṙ× (µ · ∇)B (A.1)

where µ is the dipole moment, and r is the position vector pointing the center of

mass of the two-body system.

To obtain time-averaged forces, we can write the second term as

µ̇×B = −µ× dB

dt
+
d(µ×B)

dt
(A.2)

= µ× (∇× E) +
d(µ×B)

dt
(A.3)

Since the third term in the force expression is much smaller than the other two terms,

it can be neglected, then

F = (µ · ∇)E + µ× (∇× E) +
d(µ×B)

dt
(A.4)

Time averaging the equation 2.24, the last term vanishes, the resulting time-



Appendix A: Forces in dipole approximation 43

averaged force is

〈F〉 =
∑
i

〈µi(t)∇Ei(t)〉 (A.5)

Now, we consider a dipolar particle illuminated by a monochromatic electromag-

netic wave for which the time dependende can be given simply by exp(−iωt) added

to E(r, t) and B(r, t). Similarly, the dipole will have same time dependent part.

The induced dipole moment in the particle is given by

µ = α(ω)E (A.6)

where α is polarizability of the particle.

The time- averaged force using equation 2.21, and neglecting last term, is given

by

〈F〉 =
1

2
Re(µ∗ · ∇)E− iω(µ∗ ×B) (A.7)

Then,

〈F〉 =
1

4
∇(µ∗ · É + µ · É∗) (A.8)

where ∇ acts only on E′. We can write complex electric field as

E(r) = E0(r)exp(iφ(r))nE (A.9)

where nE is the unit vector in the direction of polarization, φ(r) is the phase and E0

is the real amplitude.
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We end up with the time-averaged force in terms of complex polarizability α =

α′ + iα′′ and electric fields as follows

〈F〉 =
α′

4
∇E2

0 +
α′′

2
E2

0∇φ (A.10)

Here, the first term is the gradient force which arises from the gradient of the

field. The second term corresponds to scattering force which is proportional to the

imaginary part of the polarizability. The scattering force exist due to the momentum

transfer from the radiation field to the particle.
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Appendix 2

COUPLED MODE THEORY

The conventional coupled mode theory is mainly based on the modes of the indi-

vidual uncoupled waveguides. The simplest model for the coupled-waveguide system

is a directional coupler consisting of two uniform, parallel waveguides which are suf-

ficiently close such that their fields overlap. We consider guided modes along the

x-direction of two rectangular dielectric waveguides to have implicit time dependence

exp(jwt). When the waveguides are infinitely far apart, they are uncoupled. In the

case of coupling, the total fields can be written as linear combinations of the individual

waveguide modes as given in [51]

E = a(x)E(1) + b(x)E(2) (B.1)

H = a(x)H(1) + b(x)H(2) (B.2)

The variation of amplitudes a(z) and b(z) satisfy

da

dx
= iβaa+ iKabb (B.3)

db

dx
= iKbaa+ iβbb (B.4)

where Kab and Kba are mutual coupling coefficients, βa and βb are the propagation

constants of individual waveguides.
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The total guided power is

P (z) = |a(x)|2 + |b(x)|2 +Re[a(x)b∗(x)Cba + b(x)a∗(x)Cab] (B.5)

where Cab and Cba are cross overlap integrals. If the coupling is weak, the cross

overlap integrals are negligible, and for the lossless system the total power obeys

P (z) = |a(x)|2 + |b(x)|2 (B.6)

dP (x)

dx
= 0 (B.7)

The coupled mode equations can be written in a matrix form

d

dx

a
b

 = iH̄

a
b

 (B.8)

where H =

 βa Kab

Kba βb

.

The eigenstate solutions can be found by

a(x)

b(x)

 =

A
B

 exp(iβx) (B.9)

and there are two eigenvalues for β:

βs =
βa + βb

2
+ ψ (B.10)

βa =
βa + βb

2
− ψ (B.11)
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where

δ =
βb − βa

2
(B.12)

ψ = (δ2 +KabKba)
1/2 (B.13)

The corresponding eigenvectors are

v1 =

 Kab

δ + ψ

 (B.14)

v2 =

 Kab

δ − ψ

 (B.15)

The solutions can be expressed by a matrix S̄ and the initial conditions

a(x)

b(x)

 = S̄

a(0)

b(0)

 (B.16)

S̄ =

cosψx− i δψsinψx iKab

ψ
sinψx

iKba

ψ
sinψx cosψx+ i δ

ψ
sinψx

 ei(βa+βb)x/2 (B.17)

We assume that initially only the first waveguide is excited, e.g. a(0) = 1, b(0) = 0,

and if βa = βb, the solutions are

a(x) = cosKxeiβx (B.18)

b(x) = isinKxeiβx (B.19)

where K = Kab = Kba and β = βa = βb



Chapter 5: Coupled mode theory 48

An important parameter of the coupling is the power length Lc at which maximum

power transfer from the excited waveguide to the second coupled waveguide will occur.

The coupling length is given by

Lc =
π

βs − βa
(B.20)

where βs and βa denote the symmetric (even) and the antisymmetric(odd) propagation

constants.
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