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ABSTRACT 

There is growing evidence that alterations in reward rates modify timing behavior 

demonstrating the role of motivational factors in interval timing.  This study aimed to 

investigate the effects of manipulations of rewards and penalties on temporal bisection 

performance in humans.  Participants were trained to classify experienced time intervals as 

short or long based on the reference durations.  Two groups of participants were tested under 

three different bias conditions in which either the relative reward magnitude or penalty 

associated with correct or incorrect categorizations of short and long reference durations was 

manipulated.  Participants adapted their choice behavior (i.e., psychometric functions shifted) 

based on these payoff manipulations in directions predicted by reward maximization.  The 

signal detection theory-based analysis of the data revealed that payoff contingencies affected 

the response bias parameter (B’’) without altering participants’ sensitivity (A’) to temporal 

distances.  Finally, the response time (RT) analysis showed that short categorization RTs 

increased, whereas long categorization RTs decreased as a function of stimulus durations.  

However, overall RTs did not exhibit any modulation in response to payoff manipulations.  

Taken together, this study provides additional support for the effects of motivational variables 

on temporal decision-making. 

Keywords: interval timing, motivation, optimality, temporal bisection 
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ÖZET 

Ödül oranlarındaki değişimlerin zamanlama davranışını etkilediğine yönelik bulgular 

motivasyonel faktörlerin aralık zamanlama fonksiyonundaki önemini ortaya koymaktadır. Bu 

çalışma kayıp ve kazanç manipülasyonlarının insanların süre ayrıştırması performansı 

üzerindeki etkilerini incelemeyi amaçlamıştır. Katılımcılara deneyimledikleri süre aralıklarını, 

belirli referans sürelere olan benzerliklerine göre kısa ve uzun olarak ayrıştırmaları 

öğretilmiştir. İki grup katılımcı, kısa ve uzun referans sürelere dair yapılan doğru ayrıştırmalar 

ile elde edilen kazancın veya yanlış ayrıştırmaların yol açtığı ödül kaybının değiştirildiği üç 

farklı durumda test edilmiştir. Psikometrik fonksiyonlarda meydana gelen değişimler ile 

katılımcıların karar oranlarını kazanç manipülasyonlarına bağlı olarak ve ödül 

maksimizasyonu tarafından tahmin edilen yönlerde uyarladıkları bulunmuştur. Sinyal tespit 

teorisi (signal detection theory) çerçevesinde yapılan analizler, kazanç manipülasyonlarının 

yanıt eğilimi parametresinde (B’’) değişikliğe yol açarken katılımcıların zamansal mesafeleri 

ayrıştırmalarına ilişkin hassasiyet seviyelerini (A’) etkilemediğine işaret etmektedir.  Son 

olarak, tepki sürelerinin (TS) uyaran süresine bağlı gösterdiği değişime bakıldığında, kısa 

ayrıştırmaları ile ilişkili TS’lerin geçen süreyle arttığı, uzun ayrıştırmaları ile ilişkili TS’lerin 

azaldığı bulunmuştur. Buna karşın, tepki sürelerinde kazanç manipülasyonlarına bağlı olarak 

genel bir değişim gözlenmemiştir. Bu çalışma bütünüyle motivasyonel faktörlerin zamansal 

karar-verme süreçleri üzerindeki etkilerini destekler niteliktedir. 

Anahtar Sözcükler: aralık zamanlama, motivasyon, optimalite, süre ayrıştırması 
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CHAPTER 1 

INTRODUCTION 

Organisms are equipped with a mechanism that enables the timing of intervals across 

timescales of seconds and minutes, which is denoted as interval timing (Buhusi & Meck, 

2005).  Research on interval timing suggests that the characteristics of timed response patterns 

are sensitive to experimental manipulations that presumably affect the motivational states of 

subjects (e.g., Balcı, 2014; Galtress, Marshall, & Kirkpatrick, 2012).  For instance, changes in 

the payoff structures can yield facilitatory effects on timing behavior (Avlar, Kahn, Jensen, 

Kandel, Simpson, & Balsam, 2015; Çavdaroğlu, Zeki, & Balcı, 2014), expected reward 

magnitude can modulate the time to initiate anticipatory responding as evidenced by shifts in 

the timed response curves (e.g., Ludvig, Balcı, & Spetch, 2011; Galtress & Kirkpatrick, 2009; 

Ludvig, Conover, & Shizgal, 2007), or pre-feeding might lead to the flattening of the timed 

response curves (Ward & Odum, 2007).  However, since previous research investigating 

motivational factors on timing performance was mostly carried out with nonhuman animals 

(also see Bizo & White, 1994, 1995; Grace & Nevin, 2000; Guilhardi, MacInnis, Church, & 

Machado, 2007), how the same factors (e.g., payoff) affect human timing performance 

remains relatively unclear (but see Balcı, Freestone, & Gallistel, 2009; Balcı, Wiener, 

Çavdaroğlu, & Coslett, 2013; Çavdaroğlu et al., 2014; Wearden & Grindrod, 2003).  This 

study aims to fill this gap by investigating the changes in the temporal discrimination 

performance of humans as a function of either the reward or penalty attributed differentially 

to correct and incorrect categorizations of durations.  

A common procedure for studying interval timing performance is the temporal 

bisection task (e.g., Church & Deluty, 1977).  This method requires the classification of a set 

of time intervals as short and long based on their subjective temporal similarity to previously 
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acquired reference durations.  Temporal categorizations in this task rely on both retrospective 

and prospective decision dynamics (Balcı & Simen, 2014), and yield a variety of measures 

including choice proportions, the imprecision characteristics of temporal judgments as well as 

the response times associated with different temporal judgments (a relatively more recently 

appreciated behavioral endpoint of temporal bisection).  Given the advantages of this versatile 

method, the present study aimed to fill the empirical gap that relates to the lack of studies 

investigating payoff effects on temporal bisection performance of humans.  In addition, as 

recent research conducted with nonhuman animals produced evident but inconsistent biasing 

effects of reward magnitude on the shifts in choices and noise characteristics of timed 

responses in the temporal bisection task (e.g., Avlar et al., 2015; Galtress & Kirkpatrick, 

2010), we were further motivated to delineate the adjustments in temporal choice behavior 

under asymmetrical payoff matrices. 

Despite discrepancies in the reported outcomes of reward manipulations in the 

temporal bisection procedure, motivation-mediated changes in temporal choices implicate an 

important role for non-temporal factors in time-based responses.  Probabilistic information 

regarding the occurrence of different standard durations is another such parameter that has 

been shown to shape temporal bisection performance by leading participants to prefer one 

temporal choice over another (Akdoğan & Balcı, 2015; Çoşkun et al., 2015; Jozefowiez et al., 

2014).  Although similar payoff and stimulus probability manipulations have been shown to 

produce biasing effects in perceptual decision-making (e.g., Hanks, Mazurek, Kiani, Hopp, & 

Shadlen, 2011; Leite & Ratcliff, 2011; Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 

2012; Noorbaloochi, Sharon, & McClelland, 2015; Simen et al., 2009), several studies posited 

systematic differences in the integration of these two sources of information into choices 

which led to varying degrees of bias (e.g., Lynn & Barrett, 2014; Maddox & Bohil, 1998; 

Mulder et al., 2012).  Therefore, the investigation of whether unbalanced payoffs yield similar 
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adaptive changes in temporal decisions and associated response times as those manifested due 

to stimulus probabilities (Akdoğan & Balcı, 2015; Çoşkun et al., 2015; Jozefowiez, 2014) is 

useful in understanding how these exogenous factors impact temporal judgments. 

Temporal decision-making is also susceptible to substantial internal temporal 

uncertainty (for review see Balcı et al., 2011).  An integral component of interval timing 

ability is indeed the imprecision exhibited in timing behavior despite the, on average, high 

accuracy in timed responses.  The scalar property of interval timing defines this feature, and 

assumes that the standard deviation of time estimates grows proportionally to their mean as 

indicated by constant coefficient of variations (CVs) within individual subjects (Gibbon, 

1977).  Therefore, the investigation of the effects of rewards and penalties on timing behavior 

should also incorporate timing uncertainty (as indexed by CV values) to understand how 

payoff contingencies and internal timing imprecision produce concomitant changes in 

temporal choice behavior. 

One such framework that is based on the statistical decision theory evaluates the 

optimality of timing performance when it is essential to assess (1) the presentation probability 

of standard durations (stimulus probabilities), (2) gains and losses attributed to different 

response outcomes, and (3) the levels of internal timing uncertainty to achieve reward 

maximization (Balcı et al., 2009, 2011).  In light of the previous work showing both humans 

and nonhuman animals are indeed able to adopt reward-maximizing temporal strategies (e.g., 

Akdoğan & Balcı, 2015; Balcı et al., 2009; Çavdaroğlu et al., 2014; Çoşkun et al., 2015; 

Kheifets & Gallistel, 2012; Jazayeri & Shadlen, 2010), we also evaluated the optimality of 

temporal decisions under varying payoff structures in the temporal bisection task. 

Specifically, we manipulated either the relative reward or penalty associated with 

correct and incorrect short and long categorizations, respectively.  In one group of participants 

we altered the gain for correct categorizations of the reference durations and in another group, 
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we manipulated the loss associated with incorrect categorizations of reference durations 

across three different experimental sessions.  We expected the participants to be biased 

towards the temporal options associated with higher reward magnitude for correct 

categorizations or with higher penalty for incorrect categorizations.  The effects of these 

critical manipulations were quantified in terms of changes in the choice proportions, the 

sensitivity and response bias parameters of the signal detection theory (SDT; Green & Swets, 

1966), and in relation to optimality.  

 Finally, since temporal bisection task performance has been shown to involve 

evidence accumulation process (e.g., Balcı & Simen, 2014), we also analyzed the response 

times (RTs) associated with temporal categorizations (also see Akdoğan & Balcı, 2015; 

Çoşkun et al., 2015; Lindbergh & Kieffaber, 2013; Rodríguez-Gironés & Kacelnik, 1998; 

Tipples, 2015).  Based on the sequential drift-diffusion model of temporal bisection (Balcı & 

Simen, 2014), we expected the short categorization RTs to increase and long categorization 

RTs to decrease as stimulus durations grow longer.  Furthermore, previous research on the 

biasing effects of the alternations in the frequency of temporal referents presented in the 

temporal bisection task substantiated the presumed asymmetry between short and long 

decisions in terms of the pre-commitment to these decisions before the end of stimulus 

duration presentation (Akdoğan & Balcı, 2015; Çoşkun et al., 2015).  These studies supported 

the assumption that participants can commit to long but not to short decisions before the 

termination of the stimulus duration presentation, and showed that short categorization RTs 

were more sensitive to probabilistic manipulations.  In a similar vein, we predicted the similar 

relations to hold true for the biasing effects of unequal rewards and penalties, and expected 

specifically the short categorization RTs to be modulated as a function of the changes in the 

payoff structures. 
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CHAPTER 2 

METHODS 

2.1. Participants 

A total of 40 adults (28 females, Mage = 21.6, SDage = 2.9 yrs), studying or working at 

Koç University, were recruited for the experiment.  Participation was compensated with a 

maximum of 45 TRY (~16 USD) depending on the task performance.  Participants had no 

history of neurological or psychiatric disorder, and they provided informed consent prior to 

their participation in the study.  All experimental procedures were approved by the 

Institutional Review Board at Koç University. 

2.2. Stimuli and apparatus 

Participants were seated at a distance of approximately 60 cm from the monitor.  

Stimulus durations were signaled with a blue square (100 x 100 pixels) centered on a dark 

gray background.  Experimental stimuli were generated using Matlab (Mathworks, Natick, 

MA) supported by the Psychophysics toolbox extension (Brainard 1997; Pelli, 1997).  

Responses were collected via standard iMac keyboard. 

2.3. Procedure 

2.3.1. Duration discrimination training.  Prior to each experimental session, 

participants were presented with two reference durations (i.e., 1000 vs. 1500 ms) four times in 

an alternating order with a text display indicating whether they were short or long reference 

durations.  After the familiarization trials, participants were asked to categorize these 

durations as short and long by pressing the “V” and “N” keys, respectively.  Feedback was 

provided for each correct categorization by a text display of “Correct” lasting for a second, 

whereas incorrect categorizations immediately terminated the trial.  The inter-trial interval 
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(ITI) was 1.75 s.  The duration discrimination training lasted for a minimum of 25 trials, and 

continued until participants achieved a 90% discrimination accuracy level in the last 20 trials.  

2.3.2. Temporal bisection testing.  In the test phase, participants were presented 

with intermediate durations along with the reference durations, and asked to classify all 

durations as short or long according to their subjective temporal proximity to the reference 

durations.  Prior to testing, participants were instructed to respond as accurately and quickly 

as possible for indicating their temporal judgments.  In total, they were tested with nine 

durations that were spaced at logarithmically equal distances (i.e., 1000, 1052, 1107, 1164, 

1225, 1288, 1355, 1426, 1500 ms).  The overall proportion of reference durations (defined 

over all trials) was set to .36 in all sessions.  

The gains and losses associated with duration categorizations were manipulated across 

two payoff groups.  In the reward group (n = 20, 15 females), correct categorizations of 

reference durations were differentially rewarded, whereas in the penalty group (n = 20, 13 

females), incorrect categorizations of reference durations were differentially penalized.  Both 

groups were tested separately under three bias conditions in separate sessions, and the order 

for bias conditions was randomized across participants.  Prior to each testing phase, 

participants were informed about the payoff structure in the upcoming session, and were 

reminded of the payoff structure prior to each test block within a session. 

In the long-bias condition, the reward group received 8 points for correctly 

categorizing the long reference duration as long, and 2 points for correctly categorizing the 

short reference duration as short.  On the other hand, the penalty group had 8 points deducted 

after incorrectly categorizing the long reference duration as short, and 2 point after incorrectly 

categorizing the short reference duration as long.  Conversely in the short-bias condition, the 

reward group gained respectively 8 and 2 points after correct, whereas the penalty group lost 

respectively 8 and 2 points after incorrect categorizations of short and long reference 
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durations.  In both bias conditions, the reward group was penalized by 5 points after incorrect 

categorizations, whereas the penalty group gained 5 points for correct categorizations of each 

reference duration.  In the unbiased condition, the payoff structures were symmetrical and 

identical in both the reward and penalty groups.  Participants gained 5 points and lost 5 points 

for correctly and incorrectly categorizing each reference duration, respectively.  

Participants were informed about the accuracy of their categorizations of reference 

durations after each trial.  On the other hand, neither feedback nor reward was provided for 

the categorizations of intermediate durations in order to capture the perceptual aspects of 

temporal information processing.  The ITIs were sampled from a uniform distribution ranging 

between 1.5 to 2 s.  Each experimental session contained 495 trials divided into five test 

blocks, and lasted approximately 50 min. 

2.4. Data Analysis 

Cumulative Gaussian distribution functions were fit to choice proportions which were 

produced by plotting the proportion of long responses as a function of stimulus durations.   

We used the best-fit mean parameter to compute the point of subjective equality (PSE) which 

represents the stimulus duration that yields 50% of long responses.  Moreover, in order to 

obtain an estimate of trial-to-trial variability in temporal judgments, we computed the 

coefficient of variation (CV) by taking the ratio between the best-fit standard deviation and 

mean parameters.  Additionally, we analyzed the response times (RTs) associated with short 

and long categorizations.  For the RT analyses, trials with RTs below 0.15 s and above 2.5 s 

were excluded (1.18% of trials in the reward group, and 0.99% of trials in the penalty group). 

These measures were then submitted to separate mixed ANOVAs with bias condition 

as the within-subjects factor (long-bias, unbiased, and short-bias) and the type of payoff 

manipulation as the between-subjects factor (reward and penalty).  When necessary, 
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Greenhouse-Geisser correction was applied to account for the violation of sphericity 

assumption, and Holm-Bonferroni correction was used to adjust for multiple comparisons.   

For all statistical analyses, an alpha level of .05 (two-tailed) was used. 

2.4.1. Signal detection theory-based analysis.  In order to further investigate how 

payoff manipulations shaped temporal choices, we evaluated the short and long responses 

within the SDT framework (Green & Swets, 1966) according to different possible response 

categories.  The “signal” and “noise” were arbitrarily defined as short and long durations, 

respectively (see also the Bayet et al. (2015) study for a similar approach in a two-alternative 

forced choice paradigm).  The first four stimulus durations (1000, 1052, 1107, 1164 ms) and 

the last four stimulus durations (1288, 1355, 1426, 1500 ms) composed the short (signal) and 

long (noise) durations, respectively.  We excluded the fifth stimulus duration (1225 ms) from 

the SDT-based analysis, as the PSE is assumed to be near the geometric mean of the reference 

durations when the spacing of test intervals is logarithmic (e.g., Wearden & Ferrara, 1995).  

With the remaining eight durations, we then quantified the hit rate (HR) and false alarm rate 

(FAR).   

Since the scalar property of interval timing assumes that the standard deviation of 

temporal estimates will grow in proportion to their mean, thus resulting in constant CV values 

for different stimulus durations (Gibbon, 1977), we used the nonparametric indices of 

sensitivity, A’, and response bias, B’’ (Stanislaw & Todorov, 1999).  When HR ≥ FAR, 

𝐴’ = .5 + [(𝐻𝑅 − 𝐹𝐴𝑅)(1 + 𝐻𝑅 − 𝐹𝐴𝑅)/4HR(1 − FAR)],  and 𝐵′′ = [HR(1 − HR) −

FAR(1 − FAR)]/[𝐻𝑅(1 − 𝐻𝑅) + 𝐹𝐴𝑅(1 − 𝐹𝐴𝑅)].  When HR < FAR, 𝐴’ = .5 − [(𝐹𝐴𝑅 −

𝐻𝑅)(1 + 𝐹𝐴𝑅 − 𝐻𝑅)/4FAR(1 − HR)], and 𝐵′′ = [FAR(1 − FAR) − HR(1 − HR)]/

[𝐹𝐴𝑅(1 − 𝐹𝐴𝑅) + 𝐻𝑅(1 − 𝐻𝑅)].  A’ ranges from 0 to 1, in which .5 corresponds to the 

discrimination performance at chance-level and 1 indicates perfect discrimination between 

short and long durations.  B’’ ranges from -1 to 1, and negative values provide an indication 
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of participants’ tendency to report the experienced duration as short (i.e., liberal criterion). A’ 

and B’’ were calculated for each individual separately for three bias conditions and both 

payoff groups, and were then submitted to mixed ANOVAs.  Note that, we also computed the 

d’ and c parameters, parametric measures of sensitivity and response bias, and obtained very 

similar results.    

2.4.2. Optimality analysis.  We evaluated the optimal temporal strategy in the 

temporal bisection task (Akdoğan & Balcı, 2015; Çoşkun et al., 2015).  For each individual, 

we calculated the expected gain for different hypothetical PSEs (�̂�) given the CV estimate 

(𝜔�), payoff matrix, and the probability of short and long reference duration.  Since the 

presentation probability of each reference duration was fixed at .5, we excluded the stimulus 

probabilities from the expected gain function and used the following equation (for the 

generalized form of the function, refer to Balcı et al. 2009). 

 

𝐸𝐺(�̂�) =  𝑔(~𝑇𝑆)Φ(𝑇𝑆, �̂�,𝜔��̂�) + 𝑔(𝑇𝑆)�1 − Φ(𝑇𝑆, �̂�,𝜔��̂�)� 

+𝑔(𝑇𝐿)Φ(𝑇𝐿 , �̂�,𝜔��̂�) + 𝑔(~𝑇𝐿)(1 − Φ(𝑇𝐿 , �̂�,𝜔��̂�)) 

 

where 𝜔� is the ratio of the standard deviation (𝜎�) to the PSE (�̂�) which are obtained from the 

best-fit cumulative Gaussian distribution function.  Short and long reference durations are 

denoted as 𝑇𝑆 and 𝑇𝐿, respectively.  The payoff matrix is represented with 𝑔, such that 𝑔(𝑇𝑆) 

and 𝑔(𝑇𝐿) are the gains associated with correct categorizations, and 𝑔(~𝑇𝑆) and 𝑔(~𝑇𝐿) are 

the losses associated with incorrect categorizations of the short and long reference durations, 

respectively.  The normal cumulative distribution function, Φ = 0.5[1 + 𝑒𝑟𝑓((𝑥 −

�̂�)/(√2𝜔��̂�))] with mean �̂� and standard deviation 𝜔��̂�, is evaluated for various hypothetical �̂�s 

at 𝑇𝑆 and 𝑇𝐿.  As a consequence, given the level of timing uncertainty and task parameters, the 
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optimal PSE can be defined for each participant as the �̂� that maximizes the expected gain 

function, thus yields the maximum possible expected gain (MPEG). 

 Based on this analysis, the proportions of MPEG (obtained by comparing the actual 

amount of gain that the participants attained to the MPEG) were subjected to a mixed 

ANOVA.  Furthermore, we conducted paired-samples t-tests for the PSEs obtained from the 

best-fitting cumulative Gaussian distribution (denoted hereafter as empirical PSEs) and 

optimal PSEs in each bias condition separately for payoff groups.  For these pairwise 

comparisons, we integrated the framework of Bayesian inference to be able to provide 

evidence for the theoretically critical null hypothesis regarding the equivalence of the 

empirical and optimal strategies (Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wetzels 

et al., 2011).  Following Rouder et al. (2009), we used a Cauchy prior distribution with a 

scaling factor r = 1, and calculated the Jeffreys, Zellner and Siow (JZS) Bayes factor using the 

R package “BayesFactor” (Morey, Rouder, & Jamil, 2015).  A Bayes factor (BF01) represents 

the likelihood of data under null hypothesis (H0) relative to the likelihood of data under 

alternative hypothesis (H1).  Therefore, BF01 = 1 is interpreted as favoring neither the H1 nor 

H0, whereas, for instance, BF01 between 3-10 provides substantial evidence in favor of the H0, 

and BF01 between 1/10-1/3 provides substantial evidence in favor of the H1 (Jeffreys, 1961; 

see also Wetzels et al. 2011).   

CHAPTER 3 

RESULTS 

3.1. Choice Proportions 

Figure 1A and 1B depict the average choice proportions separately for three bias 

conditions along with the best-fit cumulative Gaussian distribution functions for the reward 

and penalty groups, respectively.  All R2 values for the average fits were over .99 in both the 
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reward and penalty groups.  The mean R2 values for the individual fits were over .96 in both 

payoff groups. 

 

 
Figure 1. Choice proportions as a function of stimulus durations separately for different bias 

conditions for the reward (A) and penalty groups (B). Curves represent the best-fit cumulative 

Gaussian distribution functions to average choice proportions.  Error bars represent SEM. 

 

Figure 1 reveals that participants modulated their temporal categorizations with 

respect to the changes in payoff structures.  Specifically, psychometric functions shifted 

leftward with the increasing gain associated with correct and loss associated with incorrect 

categorizations of the long reference duration in the reward and penalty groups, respectively.  

Visual inspection of Figure 1 further suggests that, decreasing the gain associated with correct 

long categorizations (reward group) and the loss associated with incorrect long 

categorizations (penalty group) led to an increase in the empirical PSEs (points of intersection 

between horizontal straight lines and psychophysical curves).  The average empirical PSEs 
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obtained from the cumulative Gaussian distribution fits to choice proportions can be found in 

Table 1. 

The comparison of empirical PSEs revealed a main effect of the bias manipulation, 

F(2, 76) = 14.97, p < .001, 𝜂𝑝2 = .28.  There was not a main effect of the type of payoff 

manipulation (rewards or penalties), F(1, 38) = 0.07, p = .80, or a significant interaction, F(2, 

76) = 0.39, p = .68.  Pairwise comparisons revealed that the empirical PSE estimates differed 

significantly between all bias condition pairs (all ps < .02) and were higher in the short-bias 

condition (M = 1.25) than those in both the unbiased (M = 1.23) and the long-bias (M = 1.20) 

conditions.  These results suggest that altering the gain associated with correct temporal 

categorizations, or the loss associated with incorrect temporal judgments had biasing effects 

in participants’ preference of one temporal choice over another. 

We also investigated whether there was a change in participants’ trial-to-trial 

variability in different bias conditions by using the CV estimates obtained from the best-fit 

cumulative Gaussian distribution (Table 1).  Our findings showed no significant (a) main 

effect of bias, F(2, 76) = 0.24, p = .79, (b) main effect of the type of payoff manipulation, F(1, 

38) = 0.37, p = .55, or (c) interaction between bias and payoff, F(2, 76) = 0.15, p = .86.  

Taken together, these findings indicate that the reward/penalty contingencies had biasing 

effects on choice proportions but no effect on the trial-to-trial variability exhibited in temporal 

choices. 
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Table 1 

The Mean Empirical PSEs, CVs, A’s, and B’’s Depicted Separately for Bias Conditions and 

Payoff Groups 

 Reward  Penalty 
Bias condition PSE CV A’ B’’  PSE CV A’ B’’ 

Long-bias 1.20 
(0.04) 

.13 
(.04) 

.70 
(.06) 

.16 
(.27)  1.20 

(0.04) 
.12 

(.02) 
.69 

(.04) 
.18 

(.26) 

Unbiased 1.23 
(0.04) 

.13 
(.04) 

.69 
(.06) 

-0.03 
(.28)  1.23 

(0.05) 
.13 

(.03) 
.69 

(.05) 
0.01 
(.29) 

Short-bias 1.25 
(0.04) 

.13 
(.03) 

.70 
(.06) 

-0.09 
(.23)  1.26 

(0.04) 
.13 

(.03) 
.70 

(.05) 
-0.18 
(.33) 

Note. The values in parentheses are standard deviations. 

 

3.2. Sensitivity and Response Bias 

A mixed ANOVA was conducted to investigate whether payoff manipulation altered 

sensitivity (Table 1). We found that A’s did not differ across bias conditions, F(2, 76) = 0.26, 

p = .78, or between payoff groups, F(1, 38) = 0.02, p = .89.  We also did not find a significant 

interaction between bias condition and type of payoff manipulation, F(2, 76) = 0.04, p = .96.  

As can be visualized in Figure 2A, these results indicate that participants were able to 

discriminate stimulus durations with high accuracy in all test conditions and their sensitivity 

levels did not differ as a function of the alterations in the reward or penalty structures. 
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Figure 2.  SDT-based analysis of temporal choices.  A’s (A) and B’’s (B) are depicted as a 

function of bias conditions separately for two payoff groups.  Error bars represent SEM. 

 

In order to further evaluate how bias was manifested in participants’ subjective 

temporal estimates, we also computed the response bias parameter (B’’; Table 1).  The visual 

inspection of Figure 2B suggests that the change in the B’’s had a decreasing trend as a 

function of the increase in the gain or loss associated with the correct or incorrect 

categorizations of the short reference duration, respectively (liberal criterion).  The mixed 

ANOVA results indicated a main effect of bias on B’’s, F(2, 76) = 15.70, p < .001, 𝜂𝑝2 = .29.  

Pairwise comparisons revealed that B’’s in the long-bias condition (M = .17) were higher than 

those in both the unbiased (M = -.01) and the short-bias (M = -.13) conditions, and the 

differences between all three bias condition pairs were significant (all ps < .04).  There was no 

main effect of the type of payoff manipulation, F(1, 38) = 0.02, p = .89, or significant bias-

payoff interaction, F(2, 76) = 0.74, p = .48.   

When B’’s in each bias condition were compared to 0 (no response bias) with one-

sample t-tests, B’’s in the long-bias condition indeed differed from 0, t(19) = 2.62, p = .02, d 

= 0.59, in the reward group, and t(19) = 3.05, p = .01, d = 0.68 in the penalty group.  In the 
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short-bias condition, B’’s in the reward group did not differ significantly from 0, t(19) = -

1.74, p = .10, whereas the short response bias in the penalty group reached significance, t(19) 

= -2.38, p = .03, d = 0.53.  As expected, no response bias was exhibited in the unbiased 

conditions, t(19) = -0.43, p = .67 in the reward group, and t(19) = 0.13, p = .90 in the penalty 

group.  These SDT-based analysis results collectively suggest that testing under unequal 

rewards or penalties caused participants to be inclined to exhibit response biases without 

affecting their sensitivity in discriminating between different stimulus durations. 

3.3. Expected Gains 

The expected gain calculated for hypothetical PSEs and the localization of the average 

empirical PSE on the expected gain curve in each bias condition can be visualized in Figure 3 

both for the reward (A) and the penalty (B) groups.  When we compared the expected gain 

values with the MPEGs, we found that the reward group gained 98.7 (SD = 0.02), 98.5 (SD = 

0.02), and 98.7% (SD = 0.01) of the MPEG for increasing reward associated with correct 

categorizations of the short reference duration.  Similarly, the penalty group gained 98.3 (SD 

= 0.02), 98.2 (SD = 0.02), and 98.8% (SD = 0.02) of the MPEG for increasing loss associated 

with incorrect categorizations of the short reference duration.  The proportions of MPEG did 

not vary as a function of bias, F(2, 76) = 0.62, p = .54, or the type payoff manipulation, F(1, 

38) = 0.36, p = .55.  The interaction between bias and payoff also was not significant, F(2, 76) 

= 0.22, p = .80.  In another set of analyses, we adopted a more conservative approach by 

integrating the minimum gain associated with random responding into the computation of 

proportion of MPEG (i.e., Expected gain – Minimum gain)/(MPEG – Minimum gain), and 

found that the average proportions of MPEG were over 98.2% and 97.9% in the reward group 

and penalty group, respectively. 
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Figure 3.  Expected gain as a function of hypothetical PSEs in different bias conditions 

depicted separately for the reward (A) and penalty (B) groups.  Expected gains were 

calculated with average empirical CV estimates obtained from the corresponding bias 

conditions in each payoff group.  Filled symbols represent the average empirical PSEs 

obtained in the corresponding bias conditions and payoff groups. 

 

These results suggest a high correspondence between the empirical and optimal PSEs. 

To elucidate this relationship, we first investigated the change in the optimal PSEs as a 

function of bias conditions.  Optimal PSEs increased with gain associated with correct short 

categorizations in the reward group.  The mean optimal PSEs were 1.20 (SD = 0.03) in the 

long-bias, 1.23 (SD = 0.01) in the unbiased, and 1.26 (SD = 0.01) in the short-bias condition.  

These changes were supported with a one-way repeated-measures ANOVA, F(1.19, 22.70) = 

58.31, p < .001, 𝜂𝑝2 = .75, and with the follow-up pairwise tests showing that optimal PSEs 

differed significantly between all three pairs of bias conditions (all ps < .001).  A similar 

relation in the optimal PSEs were observed in the penalty group in which the mean optimal 

PSEs were 1.20 (SD = 0.02) in the long-bias, 1.23 (SD = 0.01) in the unbiased, and 1.26 (SD 
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= 0.01) in the short-bias condition.  We found a significant change in the optimal PSEs as a 

function of bias conditions, F(1.34, 25.47) = 150.76, p < .001, 𝜂𝑝2 = .89, and the follow-up 

pairwise tests revealed that the differences in the optimal PSEs across all three pairs of bias 

conditions were significant (all ps < .001). 

We also compared the slope values obtained from the orthogonal regression of each 

individual’s empirical PSE on the optimal PSE in the corresponding bias condition.  In the 

reward group, the mean slope value (M = .60, SD = 2.09) did not differ, either from 0, t(19) = 

1.30, p = .21, or from 1, t(19) = -0.85, p = .41.  In the penalty group, the mean slope value (M 

= 1.41, SD = 1.73) differed significantly from 0, t(19) = 3.64, p = .002, d = 0.81, but not from 

1, t(19) = 1.05, p = .31.  The correspondence between the empirical and optimal PSEs was 

substantiated by paired-samples t-tests of empirical and optimal PSEs in each bias condition 

which did not reveal any significant differences, either in the reward group (all ps > .10) or in 

the penalty group (all ps > .70).  Additionally, in order to assess the evidence for the null 

hypothesis which predicts no difference between empirical and optimal PSEs, we conducted 

Bayesian t-tests (Rouder et al., 2009).  The JZS Bayes factor BF01 ranged from 1.65 to 5.46 in 

the reward group and from 5.46 to 5.86 in the penalty group.  Except for the BF01 of 1.65 

(anectodal evidence in favor of the null hypothesis) obtained in the reward group, these 

values provide strong evidence for the null hypothesis. Taken together, our optimality 

analysis of the adjustments in temporal choices as a function of payoff contingencies revealed 

that both payoff groups were able to maximize their gain to a great extent in all of the bias 

conditions.   

3.4. Response Times 

To further investigate the modulation of timing performance as a function of unequal 

rewards and penalties, we also analyzed the response times associated with short and long 

judgments.  We first examined the RTs for short and long categorizations made for each 
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stimulus duration in different bias conditions.  Visual inspection of Figure 4 reveals that short 

categorization RTs slowed down, whereas long categorization RTs speeded up with elapsing 

time.  In order to quantify this change in the RTs as a function of stimulus durations, we 

conducted linear regressions of short and long categorization RTs on stimulus durations in 

different bias conditions.  The statistical results of the linear regression analyses corroborated 

our observations in all cases for both payoff groups (all ps < .01; Table 2). 

 

 
Figure 4.  Average short and long categorization response times as a function of stimulus 

durations separately for three bias conditions for the reward (A-C) and penalty (D-F) groups.  

Lines are best-fit linear regression lines.  Error bars represent SEM. 
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Table 2 

The Statistical Results of Linear Regression of Short and Long Categorization RTs on 

Stimulus Durations 

 Reward  Penalty 
 t(7) β R2  t(7) β R2 

Long-bias        
Short RT 10.23*** .97 .94  3.69** .81 .66 
Long RT -23.77*** -.99 .99  -12.94*** -.98 .96 

Unbiased        
Short RT 19.57*** .99 .98  10.84*** .97 .94 
Long RT -9.84*** -.97 .93  -13.62*** -.98 .96 

Short-bias        
Short RT 17.74*** .99 .98  9.97*** .97 .93 
Long RT -21.49*** -.99 .99  -10.67*** -.97 .94 

Note.  βs are the standardized coefficient estimates 

** p < .01. *** p < .001 

 

In the reward group, the mean RTs for short categorizations were 0.59 (SD = 0.17), 

0.58 (SD = 0.19), and 0.59 s (SD = 0.21), and the mean RTs for long categorizations were 

0.52 (SD = 0.18), 0.51 (SD = 0.16), and 0.51 s (SD = 0.18) with the increasing gain associated 

with correct categorizations of the short reference duration.  In the penalty group, the mean 

RTs for short categorizations were 0.68 (SD = 0.17), 0.69 (SD = 0.15), and 0.69 s (SD = 0.17), 

and the mean RTs for long categorizations were 0.59 (SD = 0.15), 0.58 (SD = 0.11), and 0.60 

s (SD = 0.16) with the increasing loss associated with incorrect categorizations of the short 

reference duration.   

Differences in the RTs were investigated with a three-factor mixed ANOVA.  The 

within-subjects factors were the bias condition (long-bias, unbiased, and short-bias) and 

categorization type (short and long), the between-subjects factor was the type of payoff 

manipulation (reward or penalty).  We found a main effect of categorization type on response 

times, F(1, 38) = 47.99, p < .001, 𝜂𝑝2 = .56.  Pairwise comparisons revealed that long 

categorization RTs were significantly faster than short categorization RTs, p < .001.  There 
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were not any significant changes in the RTs as a function of the bias conditions, F(2, 76) = 

.10, p = .90, or they did not differ between payoff groups, F(1, 38) = 3.44, p = .07.  

Collectively, these RT patterns indicate that, although RTs associated with short and long 

responses showed a systematic relation to the timing stimulus, altering the reward or penalty 

associated with temporal categorizations had no effect on average response times. 

CHAPTER 4 

DISCUSSION 

This experiment aimed to investigate the payoff effects on the temporal bisection 

performance by manipulating the differential reward and penalty associated with correct and 

incorrect categorizations of reference durations, respectively.  Our results indicated that 

participants were biased towards the response options associated with the higher reward rate 

for correct categorizations or with the higher penalty for incorrect categorizations.  

Specifically, participants made more frequent short choices with the increasing gain or loss 

associated with correct or incorrect categorizations of the short reference duration, 

respectively.  Conversely, participants were inclined to report more frequent long choices 

when correct categorizations of the long reference duration yielded more gain, or incorrect 

categorizations of the long reference duration resulted in greater loss.  

The changes in the choice behavior were illustrated with two sets of findings.  The 

first one was based on the psychometric functions, and it revealed that payoff manipulations 

led to shifts in the PSEs.  Moreover, these adaptive changes in choices were not accompanied 

by alterations in timing precision, as indicated by no modulation of CVs as a function of 

payoff structures, which is in line with the scalar property of interval timing (Gibbon, 1977).  

In addition to the quantification of the shifts observed in psychometric functions, in a second 

set of analyses, we integrated the signal detection theory framework (Green & Swets, 1966) to 
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understand how the sensitivity and response bias parameters changed as a function of reward 

or penalty configurations.  Consistent with our analysis of the PSE and CV estimates, we 

found that the sensitivity levels of participants to discriminate between time intervals did not 

differ across test conditions.  On the other hand, the participants exhibited propensity to favor 

the response option that yielded higher gain (for correct categorizations) or imposed greater 

penalty (for incorrect categorizations), which were illustrated by the adjustments in the 

decision criterion placement.  Taken together, the use of both the conventional measures of 

temporal bisection performance and the signal detection theory-based analysis rendered a 

more thorough assessment of the temporal choice behavior under unequal rewards or 

penalties. 

Time-based decision-making implicates an important role also for the integration of 

inherent uncertainty characteristics of interval timing.  Therefore, in order to elucidate how 

payoff structures and internal timing uncertainty collectively govern temporal decisions, we 

also assessed the adaptive changes in choice behavior within the optimality framework based 

on the statistical decision theory.  Our participants were able to maximize their gain to a great 

extent in all bias conditions by taking normative account of their timing uncertainty as well as 

monitoring changes in the payoff contingencies.  These findings not only corroborated 

previous studies illustrating the optimal temporal performance of humans and nonhuman 

animals in a variety of interval timing tasks (e.g., Akdoğan & Balcı, 2015; Balcı et al., 2009; 

Çavdaroğlu et al., 2014; Jazayeri & Shadlen, 2010; Kheifets & Gallistel, 2012), but also 

substantiated the optimality of temporal decisions in experimental scenarios where differential 

gain or loss was attributed to correct or incorrect temporal categorizations. 

In addition to the assessment of temporal choices, the speed with which those 

judgments are made or reported also provides valuable information about temporal decision-

making in various temporal discrimination settings (e.g., Balcı & Simen, 2014; Klapproth & 



22 
 

 
 

Wearden, 2011).  To better characterize the nature of temporal decisions, we analyzed the 

RTs associated with choices.  As expected, short categorization RTs slowed down, whereas 

long categorization RTs speeded up as stimulus durations grew longer in all bias conditions.  

Moreover, overall RT patterns revealed that RTs associated with short judgments were slower 

than the RTs associated with long judgments.  These results lend further evidence for a 

temporal decision-making process that evolves over the course of a trial, and consolidates the 

presumed asymmetry in short and long temporal judgments (see Balcı & Simen, 2014 for a 

detailed discussion). 

However, even though we expected the modulation of RT patterns as a function of 

reward and penalty manipulations to resemble the biasing effects of stimulus probabilities 

(modulation of short categorization RTs; Akdoğan & Balcı, 2015; Çoşkun et al., 2015), we 

failed to find such an effect.  In one of the previous studies that manipulated probabilistic 

information in the temporal bisection task, it was argued that one of the indicators of 

diminished response biases caused by testing under high overall reinforcement rate was the 

lack of RT modulation (Akdoğan & Balcı, 2015).  Although there was no change in the 

overall reinforcement rate in the current study, the absence of changes in the overall RTs 

under unequal reward or penalty conditions might simply indicate that our experimental 

protocol have not been influential enough also to bias the response times associated with 

choices.  One approach to enhance the biasing effects of payoffs in the temporal bisection task 

might include increasing the absolute point difference and/or the ratio between the amount of 

gain (or loss) attributed to the correct (or incorrect) categorization of one reference duration 

relative to the other.  Future studies, especially those with more distinct gain and loss 

parameterizations, are thus needed to delineate whether and how payoffs affect response times 

and processing dynamics underlying temporal choices.   
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Additionally, the differences in the biasing effects of probabilistic manipulations and 

unequal payoffs might indicate that two sources of response bias might operate differently in 

shaping decision outputs.  Previous studies utilizing a variety of decision-making scenarios 

suggest that reward and penalty structures, when compared to the effects of probabilistic 

information, create less pronounced biases in accuracy and the RTs associated with choices 

(e.g., Leite & Ratcliff, 2011; Mulder et al., 2012).  One possible explanation is that when 

probabilistic information varies in neutral payoff conditions, adjustments in choice behavior 

occur more readily as alterations in the accuracy performance result in parallel changes in the 

amount of gain earned (Lynn & Barrett, 2014).  On the other hand, under payoff 

manipulations, the accuracy and reward attained are not as tightly related together as in the 

case of probabilistic manipulations.  Specifically, unequal payoff structures induce a tradeoff 

between reward and accuracy maximization (Bohil & Maddox, 2001; Maddox & Bohil, 1998) 

and require an estimation of the payoff parameters to gauge the bias in behavior (Lynn & 

Barrett, 2014).  These, in turn, might also interact with decision-makers’ sensitivity to reward 

or accuracy (Mulder et al., 2012), and thus result in distinct biasing effects of probabilistic 

and payoff manipulations.   

Payoff manipulations alone might also exert different amounts of influence on choice 

behavior.  Even though the expected gain was identical in both payoff groups, a number of 

our findings suggest that the biasing effects of unbalanced payoffs on choices were more 

pronounced in the penalty group than in the reward group.  For instance, the SDT-based 

analyses revealed that, compared to the penalty group, alterations in decision criterion 

(indexed by B’’s) were less evident in the short-bias condition of the reward group. 

Moreover, the close inspection of the relation between the empirical and optimal PSEs 

revealed by the orthogonal regression fits and pairwise comparisons suggests that the 

correspondence was less obvious in the reward group.  The differences in the amount of shifts 
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in the psychometric curves across bias conditions in both payoff groups (Figure 1) also 

corroborates these indications, suggesting that manipulating the relative loss associated with 

incorrect categorizations resulted in more marked adjustments in the choices than the relative 

gain associated with correct categorization of reference durations.  These findings are in line 

with previous research demonstrating the importance of framing effects, and implicate that 

individuals’ inclination to avoid loss might have led the penalty manipulations to engender 

greater impact on the adaptations in their decisions than reward manipulations (Kahneman & 

Tversky, 1979; Tversky & Kahneman, 1981). 

These presumed differences in the payoff effects indicate that motivation itself is a 

multifaceted concept.  Therefore, it is not surprising that previous manipulations of payoff 

structures (without changing the stimulus probabilities) in different temporal discrimination 

tasks yielded inconsistent results (e.g., Avlar et al., 2015; Galtress & Kirkpatrick, 2010; 

Wearden & Grindrod, 2003).  In the Wearden and Grindrod (2003) study, human participants 

received differential incentive to emit a specific type of temporal response in the temporal 

generalization procedure.  The adjustments in the decision processes were evidenced by the 

shifts in the frequency of reporting different types of responses but not in the trial-to-trial 

variability of temporal judgments.  On the other hand, Galtress and Kirkpatrick (2010) 

reported that changes in the reward magnitude led to an increase in timing imprecision of rats 

as evidenced by the flattening of psychophysical curves without revealing consistent effects 

on the location of PSEs.  Additional research has recently depicted that in control mice, both 

the PSEs and precision in timing were modulated by the reward magnitude manipulation 

(Avlar et al., 2015).  Collectively, studies comparing timing performance under different 

payoff contingencies indeed point at the link between motivation and temporal processing.  

However, contradictory findings regarding the locus of motivational effects, which could be 

simply due to species differences, necessitate further investigation of how payoff 
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manipulations affect the interval timing behavior and temporal decision-making.  Such studies 

in turn would also increase our understanding of the interaction between payoffs and other 

sources of bias in shaping timing behavior. 

CONCLUSION 

This study contributes to the growing body of evidence indicating that motivational 

factors as investigated by manipulating the differential gain or loss associated with temporal 

choices alter temporal processing.  As revealed by the shifts in temporal choices and the 

response bias parameter of the signal detection theory (Green & Swets, 1966), participants 

exhibited a clear tendency to report the temporal judgment that produced more gain or 

incurred higher loss.  In addition, these adaptations in the choice data were nearly optimal; 

Participants not only monitored the payoff contingencies, but were also able to assess their 

levels of internal timing uncertainty, which enabled them to maximize their gain to a great 

extent.  Although response times associated with short and long categorizations exhibited a 

systematic change throughout the presentation of the timing stimulus, the lack of modulation 

in the response times as a function of payoff structures might necessitate more distinct biasing 

conditions where the differentiation between rewards and penalties is more apparent.  

Furthermore, future studies investigating motivational effects by providing 

neurophysiological evidence would be particularly useful in enhancing our understanding of 

the brain circuitry of both interval timing and motivation given the assumed overlap in the 

neural underpinnings of these cognitive phenomena (e.g., Avlar et al., 2015; Balcı, 2014; 

Kirkpatrick, 2014).  
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