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ABSTRACT

This thesis aims to present a perspective to build a robotiwban identify the inter-
action between its human partners and assist accordingphfgsical human-robot coop-
eration. The development of robots that can physically ecate with humans has attained
interest in the last decades. Obviously, this effort rezgia deep understanding of the in-
trinsic properties of interaction. Up to now, many researsthave focused on inferring
human intents in terms of intermediate or terminal goalshyspgal tasks. On the other
hand, working side by side with people, an autonomous rotiditianally needs to come
up with in-depth information about underlying haptic irgtetion patterns that are typically
encountered during human-human cooperation. Howeveyrt&rmwledge, no study has
yet focused on characterizing such detailed informationthis sense, this work is novel
as an effort to gain deeper understanding of interactiorepet involving two or more hu-
mans in a physical task. We present an expert-labeled himmanran interaction dataset,
which captures the interaction of two humans, who collatbgely transport an object in
an haptics-enabled virtual environment. In the light obimfiation gained by studying this
dataset, we propose that the actions of cooperating partaer be examined under three
interaction types: In any cooperative task, the intergchioimans either 1) work in har-
mony, 2) cope with conflicts, or 3) remain passive duringraxtéon. In line with this con-
ception, we present a taxonomy of human interaction paiehen propose five different
feature sets, comprising force-, velocity- and powerteglanformation, for the classifica-
tion of these patterns. Our evaluation shows that using &4elaks support vector machine
(SVM) classifier, we can accomplish a correct classificatada of 86 percent for the iden-
tification of interaction patterns, an accuracy obtainedusng the selected features by

Minimum Redundancy Maximum Relevance (MRMR) feature selectiethod.



OZETCE

Bu tezin amaci, insanlar arasindaki etkilesimi anlamlaamien ve bu etkilesimedye
onlara yardim eden bir robot tasarlanmasi@lagacak bakis acisi gelistirmektir. Fiziksel
olarak insanlarla birlikte calisan robotlarin geligtnesi son yillarda byuk ilgi cekmektedir.
Suphesiz ki, bu caba insanlar arasindaki dokunma iceréssédikzetkilesimozelliklerini an-
lamayi gerektirmektedir. Bu amacla, bu zamana kadamkiagastirmaci insan niyetlerinin
arastirilmasina ve bu niyetlerin robota aktariimasirektahmistir. Halbuki, insanlarla bir-
likte calisan otonom robotlarin gelistiriimesi icirziksel etkilesimoruntilerinin de ince-
lenmesi gerekir. Etkilesindrintileri, direkli ve tekrarlanan etkilesim nitelikleridir. Bu
zamana kadar bu konu detayli olarak arastiriimamistibd&lamda, bu calisma dokunma
iceren fiziksel insan-insan etkilesimini anlamlandiyagabalayan illornektir. Ayrica bu
calisma vasitasiyla, uzmanlar tarafindan etiketlefmistkilesim veri seti de sunulmustur.
Bu veri seti, haptik (dokunsaijzellikli sanal bir dinyada obje tasiyan iki insanin etkilesimini
icermektedir. Bu veri setinden elde edilen bilgilemigida, insan etkilesimi 3 etkilesim
oruntl tipine aymrlmistir. Herhangi bir igbidi icinde, etkilesimde bulunan insanlar: 1)
uyum icinde calisirlar, 2) celiskiniisstesinden gelmeye calisirlar veya 3) etkilesim sndes|
edilgen kalirlar. Bu fikir dgrultusunda, insan etkilesigruntilerinin taksonimisini yapan
ve etkilesimoruntilerini siniflandiran bir makinégrenme yntemi gelistiriimistir. Makine
ogrenme yntemini gitmek icin bes farkhioznitelik kimesionerilmistir. Bu dznitelik
kiimeleri kuvvet, hiz ve ig¢ bazlioznitelikler olarak belirlenmistir. Cok sinifli sinifley
(support vector machine SVM) kullanarak, insan etkilegiimtiilerinin taninmasinda %86
basari orani elde edilmistir. Bu basari orani mMRMR(MinimBedundancy & Maximum

Relavance) gntemiyle fizyon edilerdznitelik kiimesi kullaniimasiyla gganmistir.
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Chapter 1

INTRODUCTION

The research presented throughout this thesis aims atmeaog the properties of in-
teraction between two humans in order to provide insightt building intelligent robotic
agents that can proactively and intuitively collaboratéhwiumans under joint action in
virtual environment. In particular, we discuss intrinsioerties of interaction during
physical task to enhance human-robot collaboration. knitinesis, we will present exten-
sive summary of the experimental study we have done to iigastinteraction patterns,
which remain latent under the interaction of two or more hasna a physical task.

With the emergence of the idea of autonomy in the roboticsaloma significant
amount of research has shifted towards discovering how tkemabots act in a more
human-like manner in terms of their social, cognitive, aratonabilities. Significant atten-
tion is now directed towards building interactive and pto&crobotic systems, which are
capable of cooperating with humans in everyday situatiosi®ad of assisting with specific
and possibly industrial tasks. In order to build cooperativbotic systems that allow nat-
ural and intuitive interaction, an understanding of humahavior and intentions, as well
as a capability for communication and coordination is resflii In this paper, we follow
a human-centric experimental approach to discover humbavi@ characteristics in ev-
eryday physical tasks. We believe that the informationaetéd from the operation of two
humans will be invaluable for developing a robgpartner that can effectively cooperate
with humans.

Humans cooperate through numerous physical activitieggluheir daily routines.
These activities cover a wide range of tasks, such as jomdying objects, assembling

machine parts, hand shaking, and dancing. In its broadeeseooperation addresses inter-



2 Chapter 1: Introduction

Figure 1.1: Daily collaboration scenario: two humans jgicarry a table.

action characteristics that provide mutual benefit to thiengas. Thus we expect partners to
work in harmony or at least without inhibiting the naturalicee of a given task. However,
from time to time, the continuous and complex nature of ptalsiasks may necessitate
partners to adopt some non-cooperative behaviors (i.dlicsh Imagine a couple, which
has trouble in synchronizing their movements while daneagz. The conflict they face
can be solved as soon as they manage to move along with the siumsiltaneously. Such
conflicts -unintentional as they are- may be due to diffeesno partners’ intentions or dis-
crepancies in reaction times to each other’s actions. Betang how and when interaction

behaviors change is a key issue in understanding humarbocdiaon.

A robot, which can comprehend how humans interact, wouldhbeta either mimic the

behaviors of one of the partners, or complement the interacf humans as an assistant.
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As a motivating example, think of a robotic system that antspeople with the installation
of a rooftop car rack. The humans stand on both sides of thenchiry to place the rack in
the correct pose while the robotic system helps them wittyoay the heavy load. In this
case, humans do not act as dyads just because they neednelprfe another, but because
dyadic interaction becomes the medium of communicatiorthismexample, assume that
the robot is not fitted with tools to determine where the rdokud be installed, but is
only capable of lifting the rack up or down as well as monitgrthe interaction between
humans. In this scenario, the task needs to be led by the luntdowever the robotic
system can effectively help in completing the task by spegdp the operation in the right
direction when it recognizes harmony between the partmetseabilizing the rack when it
infers a conflict between them. In other words, the robotstesy recognizes the interaction

patterns of the humans partners, and assists them as nedged o

This study is an effort to investigate interaction pattentsuman-object-human scenar-
los, where two humans cooperate to move an object (seé H)gWe focus on dyadic joint
object manipulation tasks to identify human interactiottgras when partners collaborate
in the existence of conflicts In this sense, this study is a first step towards exploring ho
the partners’ intentions change over the interaction inysigl task. In order to observe
the interaction patterns of the partners, we designed fdtarent dyadic object manip-
ulation scenarios in a haptics-enabled virtual envirorimd@wo of these scenarios were
designed to promote collaboration between the partnefowitimposing any conflict on
them, while the other two artificially invoke conflicts betsvethe partners. Real human-
human interaction data is collected through a controlled sgidy with 20 dyads. Through
offline examination of this data, we observed that partnensbé specific interaction pat-
terns during joint operation. Specifically, we first definbtee possible interaction types
(harmonious, conflicting, and neutral) and then identifizdrgeraction patterns based on
the intentions of the dyad on the object. An expert obserfrediideo recordings of the tri-
als, which were captured during the experiment, and manaahotated the data. Through
this process, we identified the meaningful parts of the ctéie data and labeled them with

the aforementioned interaction patterns to form a labededfslata for supervised learning.
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We conducted a set of statistical analyses on the data im todnd descriptive vari-
ables that are used to recognize the interaction pattetreseldescriptive variables are: 1)
forces applied by individual agents on the manipulatedaip® net force applied by the
partners on the manipulated object, 3) interactive forceragrthe partners, 4) velocity of
the manipulated object, and 5) power transferred to the poigatied object by the partners.
We have formed five different feature sets, four of which anmposed of haptic informa-
tion, by extracting features through taking the means, aregjistandard deviations, and
interquartile ranges of from these descriptive variables: the recognition of interaction
patterns, we used multi-class support vector machine (Sdlassifiers with these 5 feature
sets. Inspecting the classification results, we obsenetdetich individual feature set was
successful in recognizing at least 4 of the 6 interactiotepas.

Even though the individual feature sets fail to recognizéns&kraction patterns, when
they are used altogether to form a combined feature set, kneweca correct classification
rate of 84.2%. However, this set contains redundant antkwaat information. In order
to eliminate superfluous features, mMRMR (Minimum RedundanexiMum Relevance)
feature selection method is used to determine the optinaélife set, which, in our case,
consists of only 243 features out of 576. With this optimaltfee set, we achieve an even
higher recognition rate of 86%.

This paper is organized as follows: Chap2gpresents the related work. The experi-
mental setup used for data collection is described undert€h&pr he interaction patterns
observed in dyadic joint object manipulation and the prepgdasxonomy are discussed in
Chapterd. The machine learning method that used for the classicafiameraction pat-
terns is explained in Chaptér The results and the discussion are presented in Ch@pter
followed by conclusions in Chapt&rs finally contributions and future directions are revis-
ited in Chaptes.

Chapter Notes

DNote that even though we focus on dyadic interaction in thjsep, the ideas we present can be easily

extended to multiple human scenarios.



Chapter 2

RELATED WORK

Developing robots that can collaborate with human partdersg physical interaction
requires the robots to display proactive behavior. Solfi@widespread approach to realize
proactive behavior has been to improve the control scherhéseorobots based on an

estimation of human intentions.

In an early study, Rahman et al. programmed the robot to repkl¢specific trajec-
tories recorded in human-human experiments to generatarmlike velocity trajectories
in human-robot cooperatior2f]. Later, Tsumugiwa et al. estimated human arm stiff-
ness through the observation of measured position andsoacel adapted the admittance
parameters accordingl§]. Similarly, Duchaine and Gosselin implemented varialle a
mittance based on the velocity and force derivative infaromaobtained from the human
[6]. Corteville et al. developed a human-inspired roboticsasi, which assumed that the
humans follow a minimum jerk trajecton®] during motion, and estimated the intended
motions of the human partner based on his/her position alegityeprofile [5]. The robot

then adjusted its velocity profile to fit along with the intexdvelocity.

Alternatively, some other investigators have focused da alocation and sharing
in human-robot interaction. Evrard and Kheddar defined tigaratt extreme behaviors
(leader and follower) for partners and switched betweeré#ieviors via two distinct and
independently-varying functions]. Later, Kheddar illustrated the use of this mechanism
during collaboration with a humanoid robdty). Similarly, Bussy et al. proposed a con-
trol law for physical interaction with a humanoid robot in @pject transportation task]
Their control law enabled the robot to proactively switchween standalone (i.e. per-
forming the task alone) and collaborative (i.e. leader dov¥eer) roles depending on the

intentions of its human partner. Oguz et dl9[and Kucukyilmaz et al. 14, 15] proposed
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a method to infer the intentions of the human during a join¢dlmanipulation task. They
implemented a dynamic role exchange model, where the rabetred human’s intentions
based on the forces applied by him/her. Depending on ther@dententions, the robot
chose between leader or follower roles. Later, Moertl etpaésented a similar dynamic
role exchange mechanism for a joint object manipulatiok, teswhich a man-sized mo-
bile robot sensed the human partner’s intentions througretfaluation of an agreement
criterion based on the human’s force input, and helped dougly [18]. These studies
are effective in enhancing human-robot interaction viaegating more natural trajectories.
However, the rule based nature of the control laws utilizettiése studies makes it difficult
to generalize them for different tasks. Furthermore, etengh the robots are capable of
adapting to their human partners, they lack the ability tmpeehend how human behaviors

change during interaction, and what these changes signify.

A widely accepted perspective advocates the investigafitmman-human interaction
to learn from the behavioral mechanisms utilized by hum&ased on the insight gained
from human-human interaction data, Reed and Peshkin diiestithat two opposing inten-
tions, to accelerate or to decelerate, exist in a dyadietagguisition taskq2]. Similarly,
Stefanov et al. specified conductor and executor roles,wigar information about how
two humans cooperate in a joint manipulation ta®#][ They presented a model based
on velocities and the interaction forces applied througbtibadevices to define the roles.
Groten et al. focused on the consistency of dominance behduring a tracking task
where two humans collaborated with each othél.[] They demonstrated that the partic-
ipants’ interaction can be represented with a personal nance distribution. Later they
investigated how partners communicate through intentiand suggested that in order to
achieve a joint goal, partners need to integrate their iddal action plans in both collabo-
rative and conflicting situationd []. Even though these studies adopt a similar approach to
that of ours, in a sense that they examine human-humanati@nalata, they are inherently
different. All these studies focus on presenting the eristeof different patterns in human
behaviors, however, none of them attempt a systematicifotas®n of these behaviors

using machine learning techniques. Additionally, theymhadefine individual labels for
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human intentions, but do not focus on how partners work wattheother over time.

In order to address this shortcoming, some researchersusaee statistical learning
models to infer about the intentions of the human partneraigvet al. implemented a
learning-by-demonstration techniqug fo differentiate between leader and follower roles
[7]. Their system was able to capture the role switching momesing Gaussian Mixture
Models. Takeda et al. 2p] and Wang et al. 27] proposed HMM based algorithms to
estimate human intentions in physical dyadic tasks, wheobat collaborated proactively
with its human partner. Schrempf et al. presented a new apprthat allows a robot
to plan its actions even if the human intention estimatiors wacertain 23]. In their
system, the robot computed a confidence for possible actindsexecuted the task by
selecting actions proactively. Even though these studesent task-independent solutions
to intention recognition, they fall short in interpretifgetmeaning of the intentions and the

interaction patterns.

Characterization of interaction patterns is an emerging ioghuman-human and human-
robot interaction domains. As the name implies, interacgiatterns describe the interac-
tion between agents, not the behavior of an individual. is $kense, it provides a different
perspective to the same problem. There are a few studieteratlire, which mainly fo-
cus only on identifying a taxonomy of interaction patternd @erforming task-dependent
classification. Jarrasse et al. has introduced a taxononmgayhiction patterns in physical
tasks recently]2]. They described a general taxonomy of human-robot interapatterns
and defined controllers for each pattern. The proposed framkeprovided a description
of interaction patterns of a dyad executing a joint tasknglaith an interpretation of the
patterns. Even though the utility of this taxonomy was destr@ted by simulated interac-
tions of two humans, it lacks the identification of pattemmsdal data. Melendez-Calderon
et al. defined five human interaction patterns in a trackisf teéhere two humans worked
together 7. The patterns were defined as templates, which indicatadtien of each
partner, such as one agent accelerating the movement \whitgher is braking. They pro-
posed a rule-based classification system using the intenacrques and EMG recordings

of partners’ activities to identify these patterns. Howeveeir technique is highly task-
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dependent. Besides, it requires manual construction oflegegpand a lot of fine tuning
when the task dynamics changes. Furthermore, the systeat isloust against the addi-
tion of new interaction strategies. On the contrary, thesifecation method proposed in
this paper aims at discovering the descriptive featureatefaction, hence, given training
data, our technique can be applied to a diverse set of tasks.

Even though the aforementioned studies provide valualdeladge about human in-
teraction patterns, to our knowledge, no effort has yet lpegnnto defining a systematic
way of defining and recognizing these patterns. In this semsework is a first to both
present a taxonomy and propose a recognition frameworkefdriruman-human interac-

tion data.
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EXPERIMENT

We conducted an experimental study to generate data thabearsed to identify
human-human haptic interaction patterns and learn modetsipturing salient characteris-
tics of dyadic interactions. This section presents the exysntal design and the scenarios
used in this study, as well as the physics-based engine lymdethe virtual environment

and the procedures.

3.1 Experimental Environment

In order to identify human interaction patterns, we haveettgyed an application where
two human subjects interact in a virtual environment thiotlge haptic channel. Our setup
requires the subjects to be situated in different roomshep only interact through haptic
devices.

The application requires the subjects to coordinate thatio@as in order to move the
rectangular object together in a 2D maze-like scene (see Fitfa) and 3.1(b)). Due
to the selection of friction coefficients, the object rogasasily within the environment,
resembling the motion of a table moving on four caster wheBhe goal of the task is to
move the object toward a target parking configuration ang tftere for a predetermined
period of 5 seconds. However, subjects may have the saméeredi targets but they are
not informed about their partner’s target (see Apper@jix

During the experiment, the subjects are presented with tii@rent scenes to observe
interaction patterns in both translational and rotationation. The first scene, which will
be called thestraight scendrom now on, depicts a horizontal path, whereas the second
scene, called thkifurcated scengpresents a fork-shaped path for the users to follow. Ob-

viously, the straight scene involves translation alongraigit line, while the bifurcated
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(a) Screens of Agent 1 and 2

(b) Agent 1 and 2

Figure 3.1: Two humans interact through haptic devices @eioto jointly move an object

in a virtual environment.

scene entails both translation and rotation. Screenslale @pplication for each scene

can be seen in Fig8.2and3.3.

As seen in Figs3.2 and 3.3 the jointly manipulated object is depicted as a pink rect-
angular block. The grasping points of agents are represexgdlue and green spheres
attached to the short edges of the object. The target is llysepresented with a green
rectangle that resembles the object and clearly conveydetsieed orientation for parking.
Once the object reaches the target configuration, the tangest blue and a counter appears
in the middle of the screen to alert the user. If the user dx@ staying on the target

until the end of the countdown, a new target appears someveise in the scene. In both
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Goal Object Boundary

Agents’ grasping points

Figure 3.2: The straight scene

Boundary Goal

X
)" Boundary

Agents’ grasping points

Figure 3.3: The bifurcated scene

scenes, boundaries constrain the movement of the useindHitte boundaries during the
task is considered an error. In order to signal such errotisgasers, the boundaries turn

red on object collision.

3.2 Physics-Based Engine

This section details the physics-based engine underlyiagittual environment. Note that
bold-face symbols are used to denote vectors throughowsettten.

The manipulated object is modeled as a rigid body that mev2Bj in a way similar to
the movement of a table moving on four caster wheels. Theighpsised engine conveys
the dynamic nature of the joint manipulation task to the #&génth visually and through

haptics. The agents interact with the environment via bag¢vices. The end-effector
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& K, K, o,
HIP1T NAANT Obiect RAA%Y XHip
e J Koz L |
Surface K, d
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Figure 3.4: HIPs are connected to the object with springfaamsystemsK, andKqy are

spring and damper coefficients axg; is velocity of the object.

positions of haptic styli along x- and z-axes map to the pwmsstof the individuahaptic
interface pointgHIPS). A spring and damper model is used between each agéift’and
the grasping point on the object as shown in Bgk The model is used to calculate the

individual forces applied by the agents on the object:
Frip, = Kp(XHip, —Xgy) + Ka (XHip, — Xgy) 3.1)

Frip, = Kp(XHIP, — Xg,) + Kd(XHIP, — Xg, ) (3.2)

whereK, andKy are spring and damper coefficients (see AppeAJiXHip,, XHip,, XHIP,
are the positions and velocities of HIPs, agd Xg,, Xg,, Xg, are the positions and velocities
of the grasping points of the agents.

Reciprocally, the agents are fed back with foredsy,p, and—F yp, through the haptic
devices, so that they can feel the dynamics of the oBject

In addition to the applied forces, in case the object cadlidéth the boundaries, an
impact force,F, is applied on the object to prevent penetration of the ohjsct the
boundaries. Furthermore, since the object acts as a rigigt, jorces acting on it gen-
erate moments. The moments about the y-axis due to the fappdied by the agents and

the impact force are respectively calculated by:

Muip, = luxFuip, u=12 (3.3)
|V|| = dXF| s (3.4)

wherely, u= 1,2 denote the distance between the agent’'s grasping poidttharcenter
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of mass of the object amdlis the distance between the collision point at the boundady a
the center of mass of the object. The object is also affecyeftidtional forces due to its
contact with the surface. Translational and rotationatitvh (F ¢ andM;) are calculated
using the Coulomb friction mod®! Thus, the net force and moment acting on the object

becomes:

Fret = Fuip,+Frip,+Fi+F;¢ (3.5)

Mnet = Muip, +Muip, +M +Ms . (3.6)

The state of the object at each time St (, Xobj, Oobj, Oob ) is calculated fronMnet

andF et using Euler integration.

3.3 Scenarios

In order to elicit different interaction patterns, we preteel the subjects with different
manipulation scenarios, in which conflicts between pastaee artificially invoked by pro-

viding each agent with different visual information abdut tocation of the target config-
uration. Apart from the target locations, both subjectsolesthe motion of the object and
view the same path. The subjects are not aware of the whearesaditheir partner’s target,
but they are informed that it can be different from that ofitloevn, or either they or the

other agent might not be given a target at all (see Appe@ilix

The following manipulation scenarios are considered ineti@erimental study:

Scenario 1: Harmony

In this scenario, both subjects are given the same targeicdjave expect no conflict in
terms of final goals. Fig3.5a) represent the screen visual shown to each subject for bot

straight and bifurcated scenes.

Scenario 2: Full Conflict

The subjects are presented with conflicting goals in thiaage. The target configurations

are arranged so that only one of them can be achieved at thef¢ne task. As a result,



14

Chapter 3: Experiment

Agent 1's screen:

Agent 1’s screen:
ok

Agent 1’s screen:
o<k

Agent 1's screen:
P

R R
Start Goal Start Goal Goal Start
Agent 2’s screen: Agent 2's screen: Agent 2's screen: Agent 2’s screen:
(=3 R [=] ® [=3 X
Start Goal |[( Goal Start Goal ||| Start Goal
(i) Straight scene (i) Straight scene (i) Straight scene (i) Straight scene
Agent 1’s screen Agent 1's screen Agent 1's screen Agent 1’s screen
Goal® Goal Goal
= = o o
Start Start Start Start
Agent 2's screen Agent 2's screen Agent 2's screen Agent 2's screen
Goal$ Goal Goal
= =— I = — .
Start Start Goal® Start Start

(ii) Bifurcated scene

(ii) Bifurcated scene

(ii) Bifurcated scene (ii) Bifurcated scene

(a) Scenario 1 - Harmony: The
agents are provided with the same
goals, which lie at the farthest end
of the path.

(b) Scenario 2 — Full Conflict: The
agents have conflicting goals,
which lie (i) at opposing ends of the
corridor for the straight path and (ii)
at the end of different branches of

(c) Scenario 3 - Partial Conflict: (d) Scenario 4 — Single Blind: Only
Both agents’ goals are on the one agent is provided with a goal
same path, however one of the at the farthest end of the path,
agent’s goal is closer.

whereas the other agent does not
see any goal on screen.

the bifurcated path.

Figure 3.5: Four scenarios in straight and bifurcated stene

one of the subjects needs to yield to the authority of theratherder to accomplish the

task. Fig.3.5b) shows the screen visual shown to each subject for botiesce

Scenario 3: Partial Conflict

Similar to the previous scenario, conflicting targets avewgito subjects. The achievement
of both tasks is not possible, yet the conflict manifestdfitater during the trial and the
amount of conflict is expected to be less than that of ScerRarkeig. 3.5c) represent the

screen visual shown to the subjects for both scenes.

Scenario 4: Single Blind

In this scenario, only one subject is assigned a goal. Ther aihbject (i.e. the blinded
subject) is informed that s(he) needs to observe and follmnattions of his/her partner.
It is possible to accomplish the task, but the blinded subgexpected to get confused.
Fig. 3.5(d) represents the screen visual shown to the subjects tbrdoenes. Note that in
this figure, the blinded subject is agent 1, however a dualaso® where agent 2 acts as

the blinded subject, is also considered in the experiments.



Chapter 3: Experiment 15

3.4 Procedure and Patrticipants

40 subjects (6 female and 34 male), aged between 21 and 2i@jgeted in our study. The
subjects were separated in two different rooms, so thatdbelyl not see or hear each other.
They interacted with the object and each other through thﬂ@dformerly Sensab@)
Phantor®Premium " haptic devices using a stylus attachment. The haptic devieze
connected to separate PCs and communicated through a UDRcatimmnover the local
area network.

At the beginning of the experiments, each participant wasemted with the same
goals (i.e. Scenario 1) for two practice trials in order tmilé&arize him/her with the system.
During the experiments, each manipulation scenario wasepted twice, hence, there were
a total of 10 trial® to be analyzed. In order to balance the learning effectsyttier of the
scenarios were permuted using a Latin square design. Tlecssitivere not given detailed
descriptions of the scenarios or the interaction pattdrasthey were informed that their

partners may have conflicting goals or no goal at all (see AppeC).

Chapter Notes

3Due to mechanical constraints, the forces fed back to theahsrare thresholded at 2.8 N.

b)During the experiments the values of the static and kineiitién coefficients for the translational and
rotational cases are given in Appendix

©)Note that Scenario 4 was presented in a twofold fashion se#eh agent gets to act as the blinded user

within the experiment.
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A TAXONOMY OF HAPTIC INTERACTION PATTERNS

Based on our interpretations of user interactions after xperments, we have iden-
tified a set of interaction patterns that were observed &atiy in dyadic object manipu-
lation task. They constitute our taxonomy of human inteoaicpatterns as illustrated in
Fig. 4.1 The interaction patterns, which are commonly encounterelgadic joint object

manipulation can be classified under three main types ofdotien:

1. Harmonious Interaction:

The partners move the object while agreeing on the direcifdhe movement. In other
words, the intention of both agents are the same; thus, rMbaa@xists between the agents.

We examine this interaction type in two subclasses:

a) Common intention to start/continue motion: The acceleration of the manipulated

object is greater than or equal to zero.

1) Harmonious translation (C1): The partners agree on translating the object.
In other words, both agents apply forces in the same dinre¢tidranslate the
object. Force signals of agents in the object frame duriteyaction pattern C1
segment are presented in Figs2(a)and4.2(d) Fig. 4.2(a)demonstrates the
forces of agents in the direction along the motion. It is dbahforces of agents

in the same direction.

i) Harmonious rotation with translation (C2): The partners voluntarily rotate
the object by agreeing on moving it along an arc or about itdere Force
signals of agents in the object frame during interactiongpatC2 segment are

presented in Figs4.2(b)and4.2(e) Fig. 4.2(e)demonstrates the forces of
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Figure 4.1: Taxonomy of interaction patterns in dyadic obpeanipulation
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agents in the direction perpendicular to the motion. Actaydo this figure,
agents rotate the object to the same direction by applyippsipg forces per-

pendicular to the motion.

b) Harmonious braking (C3): The acceleration of the object is negative. In this case,
one or both partners voluntarily decelerate the object thiéhpurpose of stopping the
motion. In practice, at least one agent starts applyingefardhe direction opposite
to the movement until the object is stationary. Force sgwélagents in the object
frame during interaction pattern C3 segment are presented&4.2(c)and4.2(f).

Fig. 4.2(c)demonstrates the forces of agents in the direction alongnibteon. It
is seen that agents agree to decelerate the object by agftyice in the opposite

direction of movement.

2. Conflicting Interaction:

The interaction is dominated by some form of conflict betwenenagents. In other words,
the partners have no common intention for motion. In thigtgpinteraction, we expect
that the partners can neither move the object smoothly noeae their goal. Two patterns

can be defined for this interaction type:

i) Persistent conflict (C4): The partners insists on moving the object in opposite direc-
tions and hence the object does not move much. Force siginadeots in the object
frame during interaction pattern C4 segment are presenteid#4.3(a)and4.3(d)

Fig. 4.3(a)demonstrates the forces of agents in the direction alongitit®n. It is

seen that agents apply opposing forces with approximasshesnagnitude.

i) Jerky conflict (C5): The users disagree on the movement of the object, but not in a
persistent fashion. This typically causes the object tateoinvoluntarily or follow
undesired trajectories, possibly ending with collisionthwhe environment. In more
general terms, this pattern can be thought of any apparerilictdoetween agents

that is not persistent. Force signals of agents in the olfjacte during interaction
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Figure 4.2: Agent force signals for pattern classes C1, C2 arat€@resented in the object
frame. The x direction presents the direction along theongivhereas z direction presents
the direction perpendicular to the motion. C1: Harmonioagsgtation, C2: Harmonious

rotation with translation, C3: Harmonious braking.

pattern C5 segment are presented in Figs3(b)and4.3(e) It is seen from these

figures that there is rapid changes in the forces of agents.

3. Neutral Interaction:

This interaction type implies no conflict between the pagnélowever, the agents share
no common intention for the motion. This interaction typenainly governed by an agent

being passive, and defines a single interaction pattern:

i) Passive agreement (C6)At least one of the partners remains passive by not con-
tributing much to the task. Force signals of agents in theabjame during in-

teraction pattern C6 segment are presented in Fg3(c) and4.3(f). Fig. 4.3(c)
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demonstrates the forces of agents in the direction alongntbteon. It is seen that

one of the agents remains passive and does not apply signifioaount of force to

move the object.
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Figure 4.3: Agent force signals for pattern classes C4, C5 arat€presented in the object

frame. The x direction presents the direction along the ongtivhereas z direction presents

the direction perpendicular to the motion. C4: Persistentlmd, C5: Jerky conflict, C6:

Passive agreement.
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RECOGNITION OF HAPTIC INTERACTION PATTERNS

Our statistical pattern classification system possessestthcture given in Figs.1
First, raw data is annotated by an expert to obtain a set ohimgful labeled interaction
segments. Then, in order to avoid over-fitting, the datalisispo 3 distinct parts, namely
training, validation, and test sets. The training and \alah sets are used to estimate
parameters of the classifier, while the test set is used tsadbe performance of the
fully trained classifier. Then, features are extracted frhedataset, and model training
Is performed. Once the SVM is trained with the optimal paramse it is used for the

classification of patterns. The steps of our learning proced as follows:

1. Annotate raw data

2. Divide the data into training, validation, and test sets

3. Extract features from training, validation, and tess set

4. Select model parameters

5. Train the model using the training set

6. Evaluate the model using the validation set

7. Repeat steps 4 - 6 with different model parameters

8. Select the best parameters and train the model usingatinéy and validation sets

9. Assess the final model using the test set
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TRAINING AND VALIDATION

H FEERLE H '\l/'°d_e' HTraining
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Figure 5.1: Stages of classifier learning.

Dataset
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data
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5.1 Annotation of Interaction Pattens

After the experiment, we generated videos of the trials byusating the recorded data
in Matlab® environment. Regarding the videos, we manually annotateddite with the
interaction behaviors using the ELAN annotation tool fonatating digital audio and video
[1]. Atthe end of the annotation process, variable-lengtbldbinteraction segments were
obtained.

After annotation, we get a highly unbalanced dataset. Theepéage of instances per
interaction pattern class is shown in Psg2 The number of instances are particularly small
in Harmonious Rotation with Translation (GZlarmonious Braking (C3)andPersistent
Conflict (C4)classes. The small number of instances for the C2 class catplzred due
to the lack of need for rotation in the straight scene. For GB@#, the persistent nature
of the patterns leads to longer continuous segments, whiehteally stand as a single

instance regardless of the length of the interaction.

5.2 Identification of Meaningful Features

The success of any pattern recognition system relies onrgsepce of informative fea-
tures. At the end of the annotation process, we obtain a latl&fdabeled data, consisting
of the agents’ forces as well as variables related to the mewe of the object, such as its
position, orientation, linear and angular velocity, andederation. In order to infer which
of the collected variables can be used for the recognitiomtefaction patterns, we con-

duct statistical analyses. We compute the means of sevatiables, and investigate their
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C6 : 43%

C5:23%

Figure 5.2: Percentage of instances per interaction pattass in the dataset. C1: Harmo-
nious translation, C2: Harmonious rotation with transkati@3: Harmonious braking, C4:

Persistent conflict, C5: Jerky conflict, C6: Passive agreement

descriptive power through one-way ANOVAs. We infer thatistecally significant effects
(p < 0.001) indicate descriptive features. Obviously, sta8lycsignificant differences in
the feature values across classes does not necessarily gl recognition accuracies
during classifications. The predictive classification aacies for each feature set are fur-
ther discussed in Sectidn5. As a result of our analysis, six different descriptive aates
are detected. Figh.3illustrates the means and the standard errors of meansdoipadtern

class for each of the following variables:

5.2.1 Mean Magnitude of the Individual Forces Applied byAlgents

Individual forces exerted by the subjecEs{;p, andFHp,) are averaged over the duration

of the interaction:

MFyips = 2T Z ZHFHIPUH ; (5.1)

where T is the length of the interaction sequence.
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5.2.2 Mean Magnitude of the Net Force Applied by the Agents

The net force is the vector sum of the agent forces applieti@mianipulated object. The

mean magnitude of the net force exerted by the agents islatddlby:

1 T
MFnet:?ZiHFHIPl‘FFHIPZH : (5.2)
=

5.2.3 Mean Magnitude of the Interactive Force Acting on thogeCt

The interactive forcef; acting on the object reflects the internal force that actshen t
object. Interactive force is defined in the redundant tasicsfiL6] and occurs if the agents
apply “compressive or tensile forces that do not contrilboitbe motion of the object™][(].

Interactive force is defined as:

(

Fripy,  SIGN(FHIPy,) 7# SIgN(FHip,,)
A Faipy | < [FHipy]

fi=q —FHipy  SION(Fuipy) # SigN(FHip,,) (5.3)
A [FHipy | > [FHipy]

0 sign(FHipy,) = sign(Fuip,)

\

whereFyp,, and Fyip,, stand for thex components of the agent’s applied forces in the
object frame. The mean magnitude of the interactive for¢m@on the objectNIF) is

calculated as:

MF; = il (5.4)

HM—|

1
T2

5.2.4 Mean Magnitude of the Linear Velocity of the Object

The mean magnitude of the linear velocity of the object iswalted as follows:

. L
M%bj:?Z||%bj|| : (5.5)
t=
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(@) Mean magnitude of the (b) Mean magnitude of the (c) Mean magnitude of the
individual forces applied by net force applied by the interactive force acting on
the agents agents the object
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(d) Mean magnitude of the (e) Mean magnitude of the (f) Mean normalized power
linear velocity of the object  angular velocity of the ob- transferred by the agents to
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Figure 5.3: Mean values of variables for each pattern clBss.error bars indicate standard
errors of the means. C1: Harmonious translation, C2: Harnusniotation with transla-
tion, C3: Harmonious braking, C4: Persistent conflict, C5: yenflict, C6: Passive

agreement.

5.2.5 Mean Magnitude of the Angular Velocity of the Objeddlthe y-axis

The mean magnitude of the angular velocity of the objé@gjli about the y-axis is calcu-

lated as follows:
) 1T .
M 6Bopj = ?k;\eobj\ . (5.6)

5.2.6 Mean Normalized Power Transferred by the Agents to thedDb

The power transferred by agents to the object is calculaddli@ws:

m.pu:/P(Fmpu-dxob;+\MH.pudeob,-D,u=1,2, (5.7)



26 Chapter 5: Recognition of Haptic Interaction Patterns

whereP is the path traversed by the object during the interactigmsant. Keeping this
in mind, the mean normalized power transferred by the agentise object MPyps) is
calculated as:

1 2
MPyips = > > Ruiry (5.8)
u=1

5.3 Dataset Generation and Feature Extraction

The annotation process results in variable length intenagegments. However, in order
to be used in classification, we need to represent the datg adixed number of features
for each annotated interaction segment. We compute fesatwer 12 different regions of
support (R1, R2, ..., R12). Time interval of regiohg), which indicates the beginning and

end time of regions, are presented as:

(T, T
T+l R1
0+500ns R
tint: (5-9)
T+500ms R
T +500ns R,5,..,12

where T is the length of interaction segment; R < 5 and 1< i < k— 1. These regions
of support are sampled over: 1) whole interaction segmgnhe2beginning and end of
the segment, 3) different positions along the segment (gge34). R1 is sampled over
whole interaction segment, while R2 and R3 are sampled oveaganing and end of
the segment. And R4, R5,..., R12 are sampled over differentigosialong the segment.

Same number of features are computed from each region obgupp

We compute the mean, median, interquartile range, and atamigviation of the vari-
ables summarized in Tabf1 over all regions of support. Then we use the result of this
computation as our features. Each row of this table defineparate feature set, which will
be assessed for its discriminative power. Each feature satiacted over all 12 regions of

support.
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Figure 5.4: 12 different regions of support are demongirater the interaction segment.

Equal number of features are computed over each region.

Table 5.1: Feature sets

Set Feature
Id Set Name Features Count
Set 1| Agent force-related Frip,, Frip, | 192
Set 2| Net force-related F et 96

Set 3| Interactive force-related fj 48
Set 4| Velocity-Related Xobj» Bob] 144
Set 5| Power-Related Paip,, Paip, | 96
Total 576
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5.4 Classifier Design

We utilize a multi-class Support Vector Machine (SVM) ciéiss with a Gaussian radial
basis function kernel to recognize interaction patterns.order to deal with the multi-
class learning problem, we adopt the one-against-onegtratvhich builds one SVM for
each/every pair of class@sIn order to obtain the optimal hyper-parameters, c6}afid

y of the model, we perform model selection by 5-fold crosseledion using grid search.

5.5 Evaluation

For the evaluation of the classifier performance, we utilieefollowing metrics:

5.5.1 Normalized Confusion Matrix:

The normalized confusion matrix is a table which displaysdbrrect and incorrect classi-
fication rates of each class. The values in the columns ansl respectively represent the
number of instances in the predicted and the actual classesafized by the class size.

Hence, it clearly displays the classifier's confusion betivo classes, if exists.

5.5.2 Correct Classification Rate (Accuracy):

The accuracy of classification is assessed by comparindaksiftcation rate with ground
truth labeling of the test set. The accuracy is defined asuh®er of correct classifications

divided by the total number of examples in the test set.

5.5.3 Balanced Error Rate (BER):

BER is the average of the number of incorrect classificationséch class, normalized
by the class size. The BER criteria is especially useful whemumber of instances vary

highly among different classes.
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Chapter Notes

)During the analysis, the SVM implementation provided wittiie LIBSVM toolbox for Matlab is used
[4].
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RESULTS AND DISCUSSION

This section presents the classification results along avitscussion of them.

6.1 Classification Results Individual Feature Sets

Initially, we investigate the utility of using isolated fe@e sets for classifying the pattern
classes. A separate model is trained with each feature akte[.1) to discover how well
these features capture the significant characteristidseointeraction pattern classes. The
recognition performance of training with individual feegusets can be seen in Fig.l,

along with the confusion matrices in Fig.2

80.6
e 71.2 704 05
3 .
2 60! 0.4}
=% v 033
@©® L 0.3¢
5 40 m
8 0.2}
<C 20/ 01l
Set! Set2 Set3 Setd Set5 0 Set1 Set2 Set3 Setd Setd
(a) Accuracy (b) Balanced Error Rate

Figure 6.1: Classification results of individual featuresseSet 1: Agent force-related
feature set, Set 2: Net force-related feature set, Set 8rdctive force-related feature set,

Set 4: Velocity-related feature set, Set 5: Power-relatatlire set.

The classifier trained with Set 1 (agent force-related feafuachieves the highest clas-

sification performance with an accuracy of.8% and a BER of (83. On the other hand,
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(a) Agent force-related feature se{b) Net force-related feature sefc) Interactive force-related feature

set
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(d) Velocity-related feature set  (e) Power-related feature set (f) Combined feature set

Figure 6.2: Confusion matrices of classifiers trained witthvidual feature sets and the
combined set. C1: Harmonious translation, C2: Harmoniowsioot with translation, C3:

Harmonious braking, C4: Persistent conflict, C5: Jerky canflié: Passive agreement.

the classifier trained with Set 3 (interactive force-raddatures) yields the lowest perfor-

mance with 647% accuracy and BER of 2.

Note that even though all classifiers achieve recognitiaui@cies higher than 60%,
the BERs are comparatively high>(0.3). Examining the confusion matrices in depth
(see Fig6.2), we observe that each individual feature set is succésgfulecognizing at
least 4 interaction patterns, but have confusions in onevordlasses. Specifically, the
classifiers trained individually with Sets 1 and 2 perfornogyp in the classification of
C3. In particular, agent-force related features in Set lesdfbm confusion between C3
and C5, whereas net force-related features in Set 2 confusestiCBoth C5 and C6. As
seen in Fig5.3 the mean magnitudes of individual forces are close to edudr dor C3
and C5, and so does the net force magnitudes of C3, C5, and C6. Henckssifiers
trained with these features are indeed expected to cortiesgeatterns as isolated features
are not descriptive on their own for differentiating betwaieese pattern classes. Similarly,
it is no surprise for the classifier trained with the interaeforce related features in Set

3 to confuse C2 and C3 with C5 and C6. Finally, a similar case hd¢dsfar the Set 4’s
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velocity- and Set 5's power-related features not being tthtéfferentiate between C4 and
C6.

6.2 Classification Results with the Combined Feature Set

The approach described above emphasizes the performamsmatéd individual feature
sets. However, some features can be used in combinatiorhtmea the accuracy of the
recognition of interaction patterns. We construcoanbined feature setomprising of all
of the features in the aforementioned 5 feature sets fromegibns of support. Using the
combined feature set, we achieve an increased accuracy.2%:82nd a reduced BER of
0.19. The reduced BER value illustrates the increased distaitine power of the com-
bined set in inhibiting the misclassifications. The condusnatrix of the classifier trained
with the combined feature set is given in F&2(f). Upon closer inspection, we observe
that unlike the classifiers with individual feature setss thodel is able to recognize all of
the interaction patterns without significant confusion.s&en in Fig6.2, combined feature
set achieves the highest improvement for the classes C2 @@ rotation with trans-
lation), C3 (Harmonious braking) and C4 (Persistent confli¢tich had poor recognition

performance with individual feature sets.

6.3 Selection of the Optimal Feature Set

The final step in our learning approach is to select the méstrirative features in the com-
bined feature set and to find the most informative regionsippert. This is motivated by
the fact that the combined set gets quite large as a resuigpégating 5 individual feature
sets from different regions of support. The combined set owaain some unnecessary
and even irrelevant features, which may lead to inferiossifecation performance. Such
features should be removed to enhance the recognition agcuHence, we utilize the
Minimum Redundancy Maximum Relevance (MRMR) feature seleetigorithm to select
most promising feature2().

The mRMR algorithm yields th& maximally relevant and minimally redundant fea-



Chapter 6: Results and Discussion 33

tures from a larger feature space of skeconsisting of 576 features in our case, where
k=12, .....,K. In the end, the feature set that yields the highest accusagdgclared as
the optimal feature set for the recognition of interactiatt@rns. Fig6.3 shows the clas-
sification accuracies against the number of features ingherfis diagram illustrates that
the optimal feature set consists of 243 features. This @btemat achieves a performance
even better than that of the combined feature set with anracgwf 86% and a BER of
0.18. The confusion matrix of the classifier trained with thémpl feature set is given in

Fig. 6.4. We observe that the classifier can successfully recogtiizexaf the interaction

patterns.
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Figure 6.3: Classification accuracies for the feature sekéctware built incrementally
using MRMR, plotted against the number of features in the featsets. The red circle

denotes the optimum feature set, which yields the highestracy.

Fig. 6.5presents the percentage of the features in the optimalréesét computed over
the different regions of support explained in SectthB 48 features are extracted from
each region of support in the combined set. Although we docoatluct any statistical
analysis, this figure gives an idea about the superiorith@féegions of support. According
to this figure, R1, which is sampled over whole interactiomsexgt, is a superior region

to recognize patterns, because of its large contributiotihéooptimal feature set. Also,
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Optimal PREDICTED INSTANCES
Set C1 ] C2 C3|C4|C5)  Co
C1/0.94 0.00/0.01/0.00|0.03/0.02
C2/0.03/0.72|0.02/0.03/0.15/0.05
C3/0.00/0.01/0.72/0.04/0.12/0.11
C4/0.00/0.00/0.00/0.85/0.080.07
C5/0.00/0.02/0.01/0.04/0.77 |0.16
C610.00/0.00/0.00/0.00/0.04 |0.96

ACTUAL
INSTANCES

Figure 6.4: Confusion matrix of classifier trained with theimgl feature set. C1: Harmo-
nious translation, C2: Harmonious rotation with transkatio3: Harmonious braking, C4:

Persistent conflict, C5: Jerky conflict, C6: Passive agreement

42 42 42 44

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12
Regions of support

Figure 6.5: Percentage of features from different regidnsupport, contributing to the

optimal feature set.

R4, R5,..., R12, which are sampled over different positionsgline segment, are also
informative regions, since they contribute to the optinedtéire sets moderately. On the
other hand, R2 and R3, which are sampled over the beginning rathdfethe segment,

contribute slightly to the optimal feature set. Thus R2 and3aor regions for extraction
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of features.
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Figure 6.6: Number and percentage of features from indalifieature sets, contributing
to the optimal feature set. Set 1. Agent force-related feaset, Set 2: Net force-related
feature set, Set 3: Interactive force-related featureSett4: Velocity-related feature set,

Set 5: Power-related feature set.

Fig. 6.6 presents the number and the percentage of the features aptineal feature
set taken from the individual sets. At first glance, Fog6(a)gives the impression that
Set 4 (velocity-related features) is a superior featureesgmtation because of its large
contribution to the optimal feature set; however this isleading and is partly due to
the high number of features in the initial set. The percesdagf features contributed by
each individual feature set provides more meaningful mfron about the superiority of
feature representations. As demonstrated in &§(b) almost all of the features in Set 3
(interactive force-related features) eventually coniieto the optimal feature set. On the
other hand, almost half of Set 4 is discarded during feateiecson.

In this study, we demonstrate that feature sets presenteedtion5.3are complemen-
tary. Moreover, we illustrate the significance of featurkeston in accomplishing higher
recognition accuracies. As happened in our case, the inole$ many features may actu-
ally diminish recognition performance unless all are atlieely relevant. Also, in addition
to the improvement in the recognition accuracy, balanceat eate decreases. However, it

is worth noting that there is a trade-off among the procgssaquired for optimal feature
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selection and the resulting gain in the accuracy and deeia&3ER.

Chapter Notes

dWe consider a classification to be unsuccessful in casehbatdrrect classification rate is lower than

random recognition rate, which ig@ in our case.
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CONCLUSIONS

The thesis presents the results of the experimental stuttlyA0idyads who collabora-
tively manipulate an object, to identify haptic interactipatterns. This work is a first step
discovering patterns in dyadic haptic interaction betwe@mans. Specifically, this study
presents a taxonomy of conflict-originated interactionigzas and a method for the clas-
sification of these patterns in physical collaboration sc&s, where two humans commu-
nicate through the haptic channel. Six different inte@actatterns were identified based
on the interaction of 20 human dyads who transport a virtbgai to certain goal posi-
tions in a haptics-enabled simulation environment. Tirees data of the human-human
interaction was divided into segments, each of which waslébby an expert, who mon-
itored the interaction from outside. We proposed five dddtieature sets, four of which
consist of haptic features, to recognize the interactidtepas. We demonstrate that haptic
features exhibit significant information about the intéi@tbetween partners, and the clas-
sifier trained with a combination of haptic and velocityateld features achieves a correct

classification rate of 86% when recognizing human-humaaragation patterns.

In this work, we propose a machine learning algorithm, wignhbles classification of
human interaction patterns in dyadic tasks involving faptieractions. We believe that
the ideas we present here are generic for any kind of phytsisk) and given training data,
can be generalized to a plethora of different tasks andmgst®r both human-human and
human-robot interaction. One shortcoming of this techaiguits being offline. In the
future, we intend to apply different learning methods tol#@@nline intention prediction
during an ongoing collaboration between two humans. Adidiily, we intend to inves-
tigate the use of more sophisticated features in all fore&goity and power domains to

enhance classification accuracy. Our final goal is to devalogbot, which can infer hu-
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man interaction patterns in real-time and collaborate wsthuman partner(s) accordingly

in complex object manipulation tasks.



Chapter 8

CONTRIBUTIONS AND FUTURE DIRECTIONS

This thesis has explored intrinsic properties of human-dnumteraction, which is de-
fined as interaction patterns. A method trained with fivestléht feature sets to classify the
interaction patterns and a taxonomy of these patterns apoped. Our contributions can

be summarized as follows

1. An expert-labeled human interaction dataset is gergtatgain the machine learn-
ing method for classification of the patterns. Interactioh0 dyads, who collabo-
ratively carry an object in an haptics-enabled virtual emwnent, are observed from
outside and time-series data from these interactions beddd with interaction pat-

terns manually.

2. A taxonomy of human interaction patterns is proposed énligfht of information

gained by studying the expert-labeled dataset.

3. Five different feature sets which are force-, velocipewer-related information are

proposed for the classification of these patterns.

4. Our evaluation suggests that each individual set is sstglein recognizing at least

4 of 6 interaction patterns.

5. Utilizing multi-class SVM classifiers, a correct clagsation rate up to 86% is ac-
complished for the identification of the interaction patterwhich is obtained by
fusing all feature sets by mRMR algorithm, even though irdiial feature sets fail

to recognize some interaction patterns.



40 Chapter 8: Contributions and Future Directions

Our contributions enable to comprehend how humans intéogaerform dyadic joint
object manipulation tasks. This study demonstrates thelubiy of the proposed machine
learning technique in classifying human interaction pageiutomatically, almost as good
as a human expert does manually. According to our study,ldedsiture works can be
summarized as follows

e The same experiment without providing any haptic feedbacthé¢ users could be
conducted in order to compare the recognition results mighrésults of the current study.

e Clustering algorithms could be utilized in the future for@uated segmentation of
interaction between two humans, after reducing noise omtkeaction data.

e It would be a good idea to investigate different learning hods to enable online
intention prediction during ongoing collaboration betwé&o humans.

e More sophisticated features in all the force, velocity aoavgr domains could be
investigated to improve the recognition accuracy.

e New experiments could be designed in order to test theyutlithe proposed ap-
proach in different settings.

¢ An intelligent robot, which comprehends how humans inteaad assist accordingly,
could be developed. This robot could either mimic the irteoa patterns of one of the

partners or interfere in the interactions of humans as astass
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Table A.1: Object and board information for both scened{Se8.1)

Scene Object Mass(kg) Object Dimensions(mm) Board Dimensions(mm
Straight Scene | 4 24 x9 200 x 30
Bifurcated Scene 4 24 x9 200 x 82

Table A.2: Spring and damper coefficients of the physical @h@8ectior3.2) used in the

experiment to model the forces of users

Variable | Value
Kp 0.25N/mm
Kd 0.001INs/mm

Table A.3: Static and kinetic friction coefficient values fwoth force and moment (Sec-
tion3.2)

Force| Moment

Static | 0.19 | 0.20

Kinetic | 0.15 | 0.19
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Figure B.1: Detailed physical model of the interaction betwbumans during dyadic joint

object manipulation (Sectiod.2)
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e Thank you for agreeing to participate in this study.

¢ Please read through these instructions and ask any qugstiomay have before the
experiment begins.

¢ Please turn off any electronic devices before the expetitmegins.

¢ This experiment requires you to manipulate a virtual obyath a partner.

e Your partner will sit in the opposite room, as a result heisbat be able to hear you
and vice versa. However you will be able to monitor his/hevements through the motion
of the jointly manipulated object.

e The object you will manipulate in this experiment is a regtdar block as shown in
the figure.

e The interaction point you will be able to move will be colorBlUE\GREEN,
whereas that of your partner will be colored GREBNLUE.

Your
interaction
point
Jointly Your partner’s
manipulated interaction
object point

¢ You will need to coordinate with your partner in order to gette smooth movements.

e There will be a force feedback device on the table that esaldar interaction with
the scene.

¢ You need to hold the stylus and move your hand right / left waond / backward to
move your interaction point and the jointly manipulatedemij

e There might be occasional sudden small jumps when workitig the device.

¢ Please do not panic, and hold the stylus between your fingerkyfas shown in the

picture).
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e The device will stabilize momentarily.

INITALIZATION OF DEVICE

e Before starting the experiment, you will be asked to calirthie device using a
“Phantom Test” application.

¢ In order to calibrate, please hold the device in neutraltmosiand iterate as the
application instructs you.

THE GOAL

e Throughout the experiment, you will be asked to translagebibck to a certain posi-
tion

¢ A typical translation task is shown in FigZe

e Here, your goal position is marked with a green rectangle.

¢ When you reach the target rectangle it will turn blue.

e Your goal is to stay on this target to the count of 5.

e Beware: The target configuration contains orientation mfatron!

Correct placement

=

$ o

TRIALS

¢ A trial ends successfully when you and your partner reacharget rectangle and
wait for it to the count of 5.

e In case you cannot reach the target after a long time thewirieénd abruptly, indi-

cating unsuccessful task completion.
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¢ Please note that unsuccessful task completion is not tésitaence try to complete
the task by achieving the goals as instructed to the bestwfafaility.

HOW TO MOVE THE OBJECT

e The object moves as a rigid body.

¢ You can apply forces on the object by moving the haptic device

Translating the object Rotating the object

The parallel component of| The perpendicular component of

a force produces translatigna force produces rotation

THE GOAL

¢ Note that the goal of your partner may be different than thgbars.

e If there is severe conflict during your operation, a warninty lwe displayed: CON-
FLICT!

e Your aim is to finish the task quickly and without conflicts.

e Hence, if you face a conflict with your partner try to obsenstter movements and
resolve the conflict.

¢ You should avoid hitting the boundaries and obstacles whadging on your path.

e In case of collisions, the collided boundaries and/or atbstawill be highlighted.

INSTRUCTIONS

e You will be asked to perform the task in two different scenes.

-

Scene 1

Scene 2
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e In the first scene, you will be asked to translate the block sinaaght path.

e The second scene will require you to turn a corner (withotitrigg boundaries) in
order to reach the correct parking location.

¢ During the experiment, you will perform 2 sets per sceneaftotal of 4 sets.

e Sets 1 and 3 will be practice sets, where you will have the ohda familiarize

yourself with the scenes.

Scenel Scene2
Setl(2-6 trials) Set3(2-6 trials)
Set2(14 trials) | Set4(19 trials)

¢ During the experiment, you will perform 2 sets per sceneaftotal of 4 sets. Sets 1
and 3 will be practice sets, where you will have the chancartalfarize yourself with the
scenes.

e The current trial number will be indicated on top of the gammresn

Thank you for your participation
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