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ABSTRACT

This thesis aims to present a perspective to build a robot which can identify the inter-

action between its human partners and assist accordingly for physical human-robot coop-

eration. The development of robots that can physically cooperate with humans has attained

interest in the last decades. Obviously, this effort requires a deep understanding of the in-

trinsic properties of interaction. Up to now, many researchers have focused on inferring

human intents in terms of intermediate or terminal goals in physical tasks. On the other

hand, working side by side with people, an autonomous robot additionally needs to come

up with in-depth information about underlying haptic interaction patterns that are typically

encountered during human-human cooperation. However, to our knowledge, no study has

yet focused on characterizing such detailed information. In this sense, this work is novel

as an effort to gain deeper understanding of interaction patterns involving two or more hu-

mans in a physical task. We present an expert-labeled human-human interaction dataset,

which captures the interaction of two humans, who collaboratively transport an object in

an haptics-enabled virtual environment. In the light of information gained by studying this

dataset, we propose that the actions of cooperating partners can be examined under three

interaction types: In any cooperative task, the interacting humans either 1) work in har-

mony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this con-

ception, we present a taxonomy of human interaction patterns; then propose five different

feature sets, comprising force-, velocity- and power-related information, for the classifica-

tion of these patterns. Our evaluation shows that using a multi-class support vector machine

(SVM) classifier, we can accomplish a correct classificationrate of 86 percent for the iden-

tification of interaction patterns, an accuracy obtained byfusing the selected features by

Minimum Redundancy Maximum Relevance (mRMR) feature selectionmethod.
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ÖZETÇE

Bu tezin amacı, insanlar arasındaki etkileşimi anlamlandırabilen ve bu etkileşime g̈ore

onlara yardım eden bir robot tasarlanmasını sağlayacak bakış açısı geliştirmektir. Fiziksel

olarak insanlarla birlikte çalışan robotların geliştirilmesi son yıllarda b̈uyük ilgi çekmektedir.

Şüphesiz ki, bu çaba insanlar arasındaki dokunma içeren fiziksel etkileşimözelliklerini an-

lamayı gerektirmektedir. Bu amaçla, bu zamana kadar, birçok araştırmacı insan niyetlerinin

araştırılmasına ve bu niyetlerin robota aktarılmasına odaklanmıştır. Halbuki, insanlarla bir-

likte çalışan otonom robotların geliştirilmesi için fiziksel etkileşimörüntülerinin de ince-

lenmesi gerekir. Etkileşim̈orüntüleri, s̈urekli ve tekrarlanan etkileşim nitelikleridir. Bu

zamana kadar bu konu detaylı olarak araştırılmamıştır. Bubăglamda, bu çalışma dokunma

içeren fiziksel insan-insan etkileşimini anlamlandırmaya çabalayan ilk̈ornektir. Ayrıca bu

çalışma vasıtasıyla, uzmanlar tarafından etiketlenmis¸ bir etkileşim veri seti de sunulmuştur.

Bu veri seti, haptik (dokunsal)̈ozellikli sanal bir d̈unyada obje taşıyan iki insanın etkileşimini

içermektedir. Bu veri setinden elde edilen bilgiler ışığında, insan etkileşimi 3 etkileşim

örüntü tipine ayırılmıştır. Herhangi bir işbirliği içinde, etkileşimde bulunan insanlar: 1)

uyum içinde çalışırlar, 2) çelişkinin̈ustesinden gelmeye çalışırlar veya 3) etkileşim sırasında

edilgen kalırlar. Bu fikir dŏgrultusunda, insan etkileşim̈orüntülerinin taksonimisini yapan

ve etkileşimörüntülerini sınıflandıran bir makinëoğrenme ÿontemi geliştirilmiştir. Makine

öğrenme ÿontemini ĕgitmek için beş farklıöznitelik kümesi önerilmiştir. Bu öznitelik

kümeleri kuvvet, hız ve g̈uç bazlıöznitelikler olarak belirlenmiştir. Çok sınıflı sınıflayıcı

(support vector machine SVM) kullanarak, insan etkileşimörüntülerinin tanınmasında %86

başarı oranı elde edilmiştir. Bu başarı oranı mRMR(MinimumRedundancy & Maximum

Relavance) ÿontemiyle f̈uzyon edilen̈oznitelik kümesi kullanılmasıyla sağlanmıştır.
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Ömer Şirin, Yusuf Aydın, Ozan Çaldıran, Nasser Arghavani, Mohammad Ansarin, G̈okhan

Nadar, Mustafa Yılmaz,̈Ozem Kalay and Erelcan Yanık. Also I would like to thank people

who spent their time to participate my user study .
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Chapter 1

INTRODUCTION

The research presented throughout this thesis aims at recognizing the properties of in-

teraction between two humans in order to provide insight into building intelligent robotic

agents that can proactively and intuitively collaborate with humans under joint action in

virtual environment. In particular, we discuss intrinsic properties of interaction during

physical task to enhance human-robot collaboration. In this thesis, we will present exten-

sive summary of the experimental study we have done to investigate interaction patterns,

which remain latent under the interaction of two or more humans in a physical task.

With the emergence of the idea of autonomy in the robotics domain, a significant

amount of research has shifted towards discovering how to make robots act in a more

human-like manner in terms of their social, cognitive, and motor abilities. Significant atten-

tion is now directed towards building interactive and proactive robotic systems, which are

capable of cooperating with humans in everyday situations instead of assisting with specific

and possibly industrial tasks. In order to build cooperative robotic systems that allow nat-

ural and intuitive interaction, an understanding of human behavior and intentions, as well

as a capability for communication and coordination is required. In this paper, we follow

a human-centric experimental approach to discover human behavior characteristics in ev-

eryday physical tasks. We believe that the information extracted from the operation of two

humans will be invaluable for developing a roboticpartner that can effectively cooperate

with humans.

Humans cooperate through numerous physical activities during their daily routines.

These activities cover a wide range of tasks, such as jointlymoving objects, assembling

machine parts, hand shaking, and dancing. In its broader sense, cooperation addresses inter-
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Figure 1.1: Daily collaboration scenario: two humans jointly carry a table.

action characteristics that provide mutual benefit to the partners. Thus we expect partners to

work in harmony or at least without inhibiting the natural course of a given task. However,

from time to time, the continuous and complex nature of physical tasks may necessitate

partners to adopt some non-cooperative behaviors (i.e. conflicts). Imagine a couple, which

has trouble in synchronizing their movements while dancingwaltz. The conflict they face

can be solved as soon as they manage to move along with the music simultaneously. Such

conflicts -unintentional as they are- may be due to differences in partners’ intentions or dis-

crepancies in reaction times to each other’s actions. Determining how and when interaction

behaviors change is a key issue in understanding human collaboration.

A robot, which can comprehend how humans interact, would be able to either mimic the

behaviors of one of the partners, or complement the interaction of humans as an assistant.
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As a motivating example, think of a robotic system that aids two people with the installation

of a rooftop car rack. The humans stand on both sides of the carand try to place the rack in

the correct pose while the robotic system helps them with carrying the heavy load. In this

case, humans do not act as dyads just because they need help from one another, but because

dyadic interaction becomes the medium of communication. Inthis example, assume that

the robot is not fitted with tools to determine where the rack should be installed, but is

only capable of lifting the rack up or down as well as monitoring the interaction between

humans. In this scenario, the task needs to be led by the humans. However the robotic

system can effectively help in completing the task by speeding up the operation in the right

direction when it recognizes harmony between the partners and stabilizing the rack when it

infers a conflict between them. In other words, the robotic system recognizes the interaction

patterns of the humans partners, and assists them as needed only.

This study is an effort to investigate interaction patternsin human-object-human scenar-

ios, where two humans cooperate to move an object (see Fig.1.1). We focus on dyadic joint

object manipulation tasks to identify human interaction patterns when partners collaborate

in the existence of conflicts1. In this sense, this study is a first step towards exploring how

the partners’ intentions change over the interaction in a physical task. In order to observe

the interaction patterns of the partners, we designed four different dyadic object manip-

ulation scenarios in a haptics-enabled virtual environment. Two of these scenarios were

designed to promote collaboration between the partners without imposing any conflict on

them, while the other two artificially invoke conflicts between the partners. Real human-

human interaction data is collected through a controlled user study with 20 dyads. Through

offline examination of this data, we observed that partners exhibit specific interaction pat-

terns during joint operation. Specifically, we first defined three possible interaction types

(harmonious, conflicting, and neutral) and then identified six interaction patterns based on

the intentions of the dyad on the object. An expert observed the video recordings of the tri-

als, which were captured during the experiment, and manually annotated the data. Through

this process, we identified the meaningful parts of the collected data and labeled them with

the aforementioned interaction patterns to form a labeled set of data for supervised learning.
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We conducted a set of statistical analyses on the data in order to find descriptive vari-

ables that are used to recognize the interaction patterns. These descriptive variables are: 1)

forces applied by individual agents on the manipulated object, 2) net force applied by the

partners on the manipulated object, 3) interactive force among the partners, 4) velocity of

the manipulated object, and 5) power transferred to the manipulated object by the partners.

We have formed five different feature sets, four of which are composed of haptic informa-

tion, by extracting features through taking the means, medians, standard deviations, and

interquartile ranges of from these descriptive variables.For the recognition of interaction

patterns, we used multi-class support vector machine (SVM)classifiers with these 5 feature

sets. Inspecting the classification results, we observed that each individual feature set was

successful in recognizing at least 4 of the 6 interaction patterns.

Even though the individual feature sets fail to recognize all interaction patterns, when

they are used altogether to form a combined feature set, we achieve a correct classification

rate of 84.2%. However, this set contains redundant and irrelevant information. In order

to eliminate superfluous features, mRMR (Minimum Redundancy Maximum Relevance)

feature selection method is used to determine the optimal feature set, which, in our case,

consists of only 243 features out of 576. With this optimal feature set, we achieve an even

higher recognition rate of 86%.

This paper is organized as follows: Chapter2 presents the related work. The experi-

mental setup used for data collection is described under Chapter3. The interaction patterns

observed in dyadic joint object manipulation and the proposed taxonomy are discussed in

Chapter4. The machine learning method that used for the classicationof interaction pat-

terns is explained in Chapter5. The results and the discussion are presented in Chapter6,

followed by conclusions in Chapter7, finally contributions and future directions are revis-

ited in Chapter8.

Chapter Notes

1)Note that even though we focus on dyadic interaction in this paper, the ideas we present can be easily

extended to multiple human scenarios.



Chapter 2

RELATED WORK

Developing robots that can collaborate with human partnersduring physical interaction

requires the robots to display proactive behavior. So far, the widespread approach to realize

proactive behavior has been to improve the control schemes of the robots based on an

estimation of human intentions.

In an early study, Rahman et al. programmed the robot to replaytask-specific trajec-

tories recorded in human-human experiments to generate human-like velocity trajectories

in human-robot cooperation [21]. Later, Tsumugiwa et al. estimated human arm stiff-

ness through the observation of measured position and forces, and adapted the admittance

parameters accordingly [26]. Similarly, Duchaine and Gosselin implemented variable ad-

mittance based on the velocity and force derivative information obtained from the human

[6]. Corteville et al. developed a human-inspired robotic assistant, which assumed that the

humans follow a minimum jerk trajectory [9] during motion, and estimated the intended

motions of the human partner based on his/her position and velocity profile [5]. The robot

then adjusted its velocity profile to fit along with the intended velocity.

Alternatively, some other investigators have focused on role allocation and sharing

in human-robot interaction. Evrard and Kheddar defined two distinct extreme behaviors

(leader and follower) for partners and switched between thebehaviors via two distinct and

independently-varying functions [8]. Later, Kheddar illustrated the use of this mechanism

during collaboration with a humanoid robot [13]. Similarly, Bussy et al. proposed a con-

trol law for physical interaction with a humanoid robot in anobject transportation task [3].

Their control law enabled the robot to proactively switch between standalone (i.e. per-

forming the task alone) and collaborative (i.e. leader or follower) roles depending on the

intentions of its human partner. Oguz et al. [19] and Kucukyilmaz et al. [14, 15] proposed
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a method to infer the intentions of the human during a joint object manipulation task. They

implemented a dynamic role exchange model, where the robot inferred human’s intentions

based on the forces applied by him/her. Depending on the inferred intentions, the robot

chose between leader or follower roles. Later, Moertl et al.presented a similar dynamic

role exchange mechanism for a joint object manipulation task, in which a man-sized mo-

bile robot sensed the human partner’s intentions through the evaluation of an agreement

criterion based on the human’s force input, and helped accordingly [18]. These studies

are effective in enhancing human-robot interaction via generating more natural trajectories.

However, the rule based nature of the control laws utilized in these studies makes it difficult

to generalize them for different tasks. Furthermore, even though the robots are capable of

adapting to their human partners, they lack the ability to comprehend how human behaviors

change during interaction, and what these changes signify.

A widely accepted perspective advocates the investigationof human-human interaction

to learn from the behavioral mechanisms utilized by humans.Based on the insight gained

from human-human interaction data, Reed and Peshkin illustrated that two opposing inten-

tions, to accelerate or to decelerate, exist in a dyadic target acquisition task [22]. Similarly,

Stefanov et al. specified conductor and executor roles, which bear information about how

two humans cooperate in a joint manipulation task [24]. They presented a model based

on velocities and the interaction forces applied through haptic devices to define the roles.

Groten et al. focused on the consistency of dominance behavior during a tracking task

where two humans collaborated with each other [10]. They demonstrated that the partic-

ipants’ interaction can be represented with a personal dominance distribution. Later they

investigated how partners communicate through intentions, and suggested that in order to

achieve a joint goal, partners need to integrate their individual action plans in both collabo-

rative and conflicting situations [11]. Even though these studies adopt a similar approach to

that of ours, in a sense that they examine human-human interaction data, they are inherently

different. All these studies focus on presenting the existence of different patterns in human

behaviors, however, none of them attempt a systematic classification of these behaviors

using machine learning techniques. Additionally, they mainly define individual labels for
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human intentions, but do not focus on how partners work with each other over time.

In order to address this shortcoming, some researchers haveused statistical learning

models to infer about the intentions of the human partner. Evrard et al. implemented a

learning-by-demonstration technique [2] to differentiate between leader and follower roles

[7]. Their system was able to capture the role switching moments using Gaussian Mixture

Models. Takeda et al. [25] and Wang et al. [27] proposed HMM based algorithms to

estimate human intentions in physical dyadic tasks, where arobot collaborated proactively

with its human partner. Schrempf et al. presented a new approach that allows a robot

to plan its actions even if the human intention estimation was uncertain [23]. In their

system, the robot computed a confidence for possible actionsand executed the task by

selecting actions proactively. Even though these studies present task-independent solutions

to intention recognition, they fall short in interpreting the meaning of the intentions and the

interaction patterns.

Characterization of interaction patterns is an emerging topic in human-human and human-

robot interaction domains. As the name implies, interaction patterns describe the interac-

tion between agents, not the behavior of an individual. In this sense, it provides a different

perspective to the same problem. There are a few studies in literature, which mainly fo-

cus only on identifying a taxonomy of interaction patterns and performing task-dependent

classification. Jarrasse et al. has introduced a taxonomy ofinteraction patterns in physical

tasks recently [12]. They described a general taxonomy of human-robot interaction patterns

and defined controllers for each pattern. The proposed framework provided a description

of interaction patterns of a dyad executing a joint task, along with an interpretation of the

patterns. Even though the utility of this taxonomy was demonstrated by simulated interac-

tions of two humans, it lacks the identification of patterns in real data. Melendez-Calderon

et al. defined five human interaction patterns in a tracking task where two humans worked

together [17]. The patterns were defined as templates, which indicate theaction of each

partner, such as one agent accelerating the movement while the other is braking. They pro-

posed a rule-based classification system using the interaction torques and EMG recordings

of partners’ activities to identify these patterns. However, their technique is highly task-
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dependent. Besides, it requires manual construction of templates and a lot of fine tuning

when the task dynamics changes. Furthermore, the system is not robust against the addi-

tion of new interaction strategies. On the contrary, the classification method proposed in

this paper aims at discovering the descriptive features of interaction, hence, given training

data, our technique can be applied to a diverse set of tasks.

Even though the aforementioned studies provide valuable knowledge about human in-

teraction patterns, to our knowledge, no effort has yet beenput into defining a systematic

way of defining and recognizing these patterns. In this sense, our work is a first to both

present a taxonomy and propose a recognition framework for real human-human interac-

tion data.



Chapter 3

EXPERIMENT

We conducted an experimental study to generate data that canbe used to identify

human-human haptic interaction patterns and learn models for capturing salient characteris-

tics of dyadic interactions. This section presents the experimental design and the scenarios

used in this study, as well as the physics-based engine underlying the virtual environment

and the procedures.

3.1 Experimental Environment

In order to identify human interaction patterns, we have developed an application where

two human subjects interact in a virtual environment through the haptic channel. Our setup

requires the subjects to be situated in different rooms, so they only interact through haptic

devices.

The application requires the subjects to coordinate their actions in order to move the

rectangular object together in a 2D maze-like scene (see Figs. 3.1(a) and 3.1(b)). Due

to the selection of friction coefficients, the object rotates easily within the environment,

resembling the motion of a table moving on four caster wheels. The goal of the task is to

move the object toward a target parking configuration and stay there for a predetermined

period of 5 seconds. However, subjects may have the same or different targets but they are

not informed about their partner’s target (see AppendixC).

During the experiment, the subjects are presented with two different scenes to observe

interaction patterns in both translational and rotationalmotion. The first scene, which will

be called thestraight scenefrom now on, depicts a horizontal path, whereas the second

scene, called thebifurcated scene, presents a fork-shaped path for the users to follow. Ob-

viously, the straight scene involves translation along a straight line, while the bifurcated
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(a) Screens of Agent 1 and 2

 

(b) Agent 1 and 2 

Figure 3.1: Two humans interact through haptic devices in order to jointly move an object

in a virtual environment.

scene entails both translation and rotation. Screenshots of the application for each scene

can be seen in Figs.3.2and3.3.

As seen in Figs.3.2 and3.3, the jointly manipulated object is depicted as a pink rect-

angular block. The grasping points of agents are represented as blue and green spheres

attached to the short edges of the object. The target is visually represented with a green

rectangle that resembles the object and clearly conveys thedesired orientation for parking.

Once the object reaches the target configuration, the targetturns blue and a counter appears

in the middle of the screen to alert the user. If the user succeeds in staying on the target

until the end of the countdown, a new target appears somewhere else in the scene. In both
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Figure 3.2: The straight scene
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Figure 3.3: The bifurcated scene

scenes, boundaries constrain the movement of the user. Hitting the boundaries during the

task is considered an error. In order to signal such errors tothe users, the boundaries turn

red on object collision.

3.2 Physics-Based Engine

This section details the physics-based engine underlying the virtual environment. Note that

bold-face symbols are used to denote vectors throughout thesection.

The manipulated object is modeled as a rigid body that moves in 2D, in a way similar to

the movement of a table moving on four caster wheels. The physics based engine conveys

the dynamic nature of the joint manipulation task to the agents both visually and through

haptics. The agents interact with the environment via haptic devices. The end-effector
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Figure 3.4: HIPs are connected to the object with spring/damper systems.Kp andKd are

spring and damper coefficients andẋxxob j is velocity of the object.

positions of haptic styli along x- and z-axes map to the positions of the individualhaptic

interface points(HIPs). A spring and damper model is used between each agent’s HIP and

the grasping point on the object as shown in Fig.3.4. The model is used to calculate the

individual forces applied by the agents on the object:

FFFHIP1 = Kp(xxxHIP1 −xxxg1)+Kd(ẋxxHIP1 − ẋxxg1) (3.1)

FFFHIP2 = Kp(xxxHIP2 −xxxg2)+Kd(ẋxxHIP2 − ẋxxg2) (3.2)

whereKp andKd are spring and damper coefficients (see AppendixA), xxxHIP2, ẋxxHIP1, ẋxxHIP2

are the positions and velocities of HIPs, andxxxg1, xxxg2, ẋxxg1, ẋxxg2 are the positions and velocities

of the grasping points of the agents.

Reciprocally, the agents are fed back with forces−FFFHIP1 and−FFFHIP2 through the haptic

devices, so that they can feel the dynamics of the objecta).

In addition to the applied forces, in case the object collides with the boundaries, an

impact force,FFF III is applied on the object to prevent penetration of the objectinto the

boundaries. Furthermore, since the object acts as a rigid body, forces acting on it gen-

erate moments. The moments about the y-axis due to the forcesapplied by the agents and

the impact force are respectively calculated by:

MHIPu = llluuu×FFFHIPu u= 1,2 (3.3)

MI = ddd×FFF I , (3.4)

wherelu, u = 1,2 denote the distance between the agent’s grasping points and the center
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of mass of the object andd is the distance between the collision point at the boundary and

the center of mass of the object. The object is also affected by frictional forces due to its

contact with the surface. Translational and rotational friction (FFF fff andM f ) are calculated

using the Coulomb friction modelb). Thus, the net force and moment acting on the object

becomes:

FFFnet = FFFHIP1 +FFFHIP2 +FFF I +FFF f (3.5)

Mnet = MHIP1 +MHIP2 +MI +M f . (3.6)

The state of the object at each time step (xxxob j, ẋxxob j, Θob j, Θ̇ob j) is calculated fromMnet

andFFFnet using Euler integration.

3.3 Scenarios

In order to elicit different interaction patterns, we presented the subjects with different

manipulation scenarios, in which conflicts between partners are artificially invoked by pro-

viding each agent with different visual information about the location of the target config-

uration. Apart from the target locations, both subjects observe the motion of the object and

view the same path. The subjects are not aware of the whereabouts of their partner’s target,

but they are informed that it can be different from that of their own, or either they or the

other agent might not be given a target at all (see AppendixC).

The following manipulation scenarios are considered in theexperimental study:

Scenario 1: Harmony

In this scenario, both subjects are given the same target. Hence, we expect no conflict in

terms of final goals. Fig.3.5(a) represent the screen visual shown to each subject for both

straight and bifurcated scenes.

Scenario 2: Full Conflict

The subjects are presented with conflicting goals in this scenario. The target configurations

are arranged so that only one of them can be achieved at the endof the task. As a result,
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(c) Scenario 3 - Partial Conflict: 

Both agents’ goals are on the 

same path, however one of the 

agent’s goal is closer. 
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(d) Scenario 4 – Single Blind: Only 

one agent is provided with a goal 
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whereas the other agent does not 

see any goal on screen.  
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(ii) Bifurcated scene 

Figure 3.5: Four scenarios in straight and bifurcated scenes.

one of the subjects needs to yield to the authority of the other in order to accomplish the

task. Fig.3.5(b) shows the screen visual shown to each subject for both scenes.

Scenario 3: Partial Conflict

Similar to the previous scenario, conflicting targets are given to subjects. The achievement

of both tasks is not possible, yet the conflict manifests itself later during the trial and the

amount of conflict is expected to be less than that of Scenario2. Fig.3.5(c) represent the

screen visual shown to the subjects for both scenes.

Scenario 4: Single Blind

In this scenario, only one subject is assigned a goal. The other subject (i.e. the blinded

subject) is informed that s(he) needs to observe and follow the actions of his/her partner.

It is possible to accomplish the task, but the blinded subject is expected to get confused.

Fig. 3.5(d) represents the screen visual shown to the subjects for both scenes. Note that in

this figure, the blinded subject is agent 1, however a dual scenario, where agent 2 acts as

the blinded subject, is also considered in the experiments.
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3.4 Procedure and Participants

40 subjects (6 female and 34 male), aged between 21 and 29, participated in our study. The

subjects were separated in two different rooms, so that theycould not see or hear each other.

They interacted with the object and each other through Geomagic R©(formerly SensableR©)

PhantomR©Premium
TM

haptic devices using a stylus attachment. The haptic devices were

connected to separate PCs and communicated through a UDP connection over the local

area network.

At the beginning of the experiments, each participant was presented with the same

goals (i.e. Scenario 1) for two practice trials in order to familiarize him/her with the system.

During the experiments, each manipulation scenario was presented twice, hence, there were

a total of 10 trialsc) to be analyzed. In order to balance the learning effects, theorder of the

scenarios were permuted using a Latin square design. The subjects were not given detailed

descriptions of the scenarios or the interaction patterns,but they were informed that their

partners may have conflicting goals or no goal at all (see Appendix C).

Chapter Notes

a)Due to mechanical constraints, the forces fed back to the humans are thresholded at 2.8 N.

b)During the experiments the values of the static and kinetic friction coefficients for the translational and

rotational cases are given in AppendixB.

c)Note that Scenario 4 was presented in a twofold fashion so that each agent gets to act as the blinded user

within the experiment.
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A TAXONOMY OF HAPTIC INTERACTION PATTERNS

Based on our interpretations of user interactions after the experiments, we have iden-

tified a set of interaction patterns that were observed frequently in dyadic object manipu-

lation task. They constitute our taxonomy of human interaction patterns as illustrated in

Fig. 4.1. The interaction patterns, which are commonly encounteredin dyadic joint object

manipulation can be classified under three main types of interaction:

1. Harmonious Interaction:

The partners move the object while agreeing on the directionof the movement. In other

words, the intention of both agents are the same; thus, no conflict exists between the agents.

We examine this interaction type in two subclasses:

a) Common intention to start/continue motion: The acceleration of the manipulated

object is greater than or equal to zero.

i) Harmonious translation (C1): The partners agree on translating the object.

In other words, both agents apply forces in the same direction to translate the

object. Force signals of agents in the object frame during interaction pattern C1

segment are presented in Figs.4.2(a)and4.2(d). Fig. 4.2(a)demonstrates the

forces of agents in the direction along the motion. It is seenthat forces of agents

in the same direction.

ii) Harmonious rotation with translation (C2): The partners voluntarily rotate

the object by agreeing on moving it along an arc or about its center. Force

signals of agents in the object frame during interaction pattern C2 segment are

presented in Figs.4.2(b) and4.2(e). Fig. 4.2(e)demonstrates the forces of
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Figure 4.1: Taxonomy of interaction patterns in dyadic object manipulation
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agents in the direction perpendicular to the motion. According to this figure,

agents rotate the object to the same direction by applying opposing forces per-

pendicular to the motion.

b) Harmonious braking (C3): The acceleration of the object is negative. In this case,

one or both partners voluntarily decelerate the object withthe purpose of stopping the

motion. In practice, at least one agent starts applying force in the direction opposite

to the movement until the object is stationary. Force signals of agents in the object

frame during interaction pattern C3 segment are presented inFigs.4.2(c)and4.2(f).

Fig. 4.2(c)demonstrates the forces of agents in the direction along themotion. It

is seen that agents agree to decelerate the object by applying force in the opposite

direction of movement.

2. Conflicting Interaction:

The interaction is dominated by some form of conflict betweenthe agents. In other words,

the partners have no common intention for motion. In this type of interaction, we expect

that the partners can neither move the object smoothly nor achieve their goal. Two patterns

can be defined for this interaction type:

i) Persistent conflict (C4):The partners insists on moving the object in opposite direc-

tions and hence the object does not move much. Force signals of agents in the object

frame during interaction pattern C4 segment are presented inFigs.4.3(a)and4.3(d).

Fig. 4.3(a)demonstrates the forces of agents in the direction along themotion. It is

seen that agents apply opposing forces with approximately same magnitude.

ii) Jerky conflict (C5): The users disagree on the movement of the object, but not in a

persistent fashion. This typically causes the object to rotate involuntarily or follow

undesired trajectories, possibly ending with collisions with the environment. In more

general terms, this pattern can be thought of any apparent conflict between agents

that is not persistent. Force signals of agents in the objectframe during interaction
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Figure 4.2: Agent force signals for pattern classes C1, C2 and C3are presented in the object

frame. The x direction presents the direction along the motion, whereas z direction presents

the direction perpendicular to the motion. C1: Harmonious translation, C2: Harmonious

rotation with translation, C3: Harmonious braking.

pattern C5 segment are presented in Figs.4.3(b) and4.3(e). It is seen from these

figures that there is rapid changes in the forces of agents.

3. Neutral Interaction:

This interaction type implies no conflict between the partners. However, the agents share

no common intention for the motion. This interaction type ismainly governed by an agent

being passive, and defines a single interaction pattern:

i) Passive agreement (C6):At least one of the partners remains passive by not con-

tributing much to the task. Force signals of agents in the object frame during in-

teraction pattern C6 segment are presented in Figs.4.3(c) and4.3(f). Fig. 4.3(c)
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demonstrates the forces of agents in the direction along themotion. It is seen that

one of the agents remains passive and does not apply significant amount of force to

move the object.
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Figure 4.3: Agent force signals for pattern classes C4, C5 and C6are presented in the object

frame. The x direction presents the direction along the motion, whereas z direction presents

the direction perpendicular to the motion. C4: Persistent conflict, C5: Jerky conflict, C6:

Passive agreement.
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RECOGNITION OF HAPTIC INTERACTION PATTERNS

Our statistical pattern classification system possesses the structure given in Fig.5.1.

First, raw data is annotated by an expert to obtain a set of meaningful labeled interaction

segments. Then, in order to avoid over-fitting, the data is split into 3 distinct parts, namely

training, validation, and test sets. The training and validation sets are used to estimate

parameters of the classifier, while the test set is used to assess the performance of the

fully trained classifier. Then, features are extracted for each dataset, and model training

is performed. Once the SVM is trained with the optimal parameters, it is used for the

classification of patterns. The steps of our learning procedure is as follows:

1. Annotate raw data

2. Divide the data into training, validation, and test sets

3. Extract features from training, validation, and test sets

4. Select model parameters

5. Train the model using the training set

6. Evaluate the model using the validation set

7. Repeat steps 4 - 6 with different model parameters

8. Select the best parameters and train the model using the training and validation sets

9. Assess the final model using the test set
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Figure 5.1: Stages of classifier learning.

5.1 Annotation of Interaction Pattens

After the experiment, we generated videos of the trials by simulating the recorded data

in MatlabR©environment. Regarding the videos, we manually annotated the data with the

interaction behaviors using the ELAN annotation tool for annotating digital audio and video

[1]. At the end of the annotation process, variable-length labeled interaction segments were

obtained.

After annotation, we get a highly unbalanced dataset. The percentage of instances per

interaction pattern class is shown in Fig.5.2. The number of instances are particularly small

in Harmonious Rotation with Translation (C2), Harmonious Braking (C3), andPersistent

Conflict (C4)classes. The small number of instances for the C2 class can be explained due

to the lack of need for rotation in the straight scene. For C3 and C4, the persistent nature

of the patterns leads to longer continuous segments, which eventually stand as a single

instance regardless of the length of the interaction.

5.2 Identification of Meaningful Features

The success of any pattern recognition system relies on the presence of informative fea-

tures. At the end of the annotation process, we obtain a bulk set of labeled data, consisting

of the agents’ forces as well as variables related to the movement of the object, such as its

position, orientation, linear and angular velocity, and acceleration. In order to infer which

of the collected variables can be used for the recognition ofinteraction patterns, we con-

duct statistical analyses. We compute the means of several variables, and investigate their
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Figure 5.2: Percentage of instances per interaction pattern class in the dataset. C1: Harmo-

nious translation, C2: Harmonious rotation with translation, C3: Harmonious braking, C4:

Persistent conflict, C5: Jerky conflict, C6: Passive agreement.

descriptive power through one-way ANOVAs. We infer that statistically significant effects

(p< 0.001) indicate descriptive features. Obviously, statistically significant differences in

the feature values across classes does not necessarily imply high recognition accuracies

during classifications. The predictive classification accuracies for each feature set are fur-

ther discussed in Section5.5. As a result of our analysis, six different descriptive variables

are detected. Fig.5.3illustrates the means and the standard errors of means for each pattern

class for each of the following variables:

5.2.1 Mean Magnitude of the Individual Forces Applied by theAgents

Individual forces exerted by the subjects (FFFHIP1 andFFFHIP2) are averaged over the duration

of the interaction:

MFHIPs =
1

2T

2

∑
u=1

T

∑
t=1

‖FFFHIPu‖ , (5.1)

where T is the length of the interaction sequence.



24 Chapter 5: Recognition of Haptic Interaction Patterns

5.2.2 Mean Magnitude of the Net Force Applied by the Agents

The net force is the vector sum of the agent forces applied on the manipulated object. The

mean magnitude of the net force exerted by the agents is calculated by:

MFnet =
1
T

T

∑
t=1

‖FFFHIP1 +FFFHIP2‖ . (5.2)

5.2.3 Mean Magnitude of the Interactive Force Acting on the Object

The interactive force,fi acting on the object reflects the internal force that acts on the

object. Interactive force is defined in the redundant task space [16] and occurs if the agents

apply “compressive or tensile forces that do not contributeto the motion of the object” [10].

Interactive force is defined as:

fi =











































FHIP1x sign(FHIP1x) 6= sign(FHIP2x)

∧|FHIP1x| ≤ |FHIP2x|

−FHIP2x sign(FHIP1x) 6= sign(FHIP2x)

∧|FHIP1x|> |FHIP2x|

0 sign(FHIP1x) = sign(FHIP2x) ,

(5.3)

whereFHIP1x and FHIP2x stand for thex components of the agent’s applied forces in the

object frame. The mean magnitude of the interactive force acting on the object (MFi) is

calculated as:

MFi =
1
T

T

∑
t=1

| fi | . (5.4)

5.2.4 Mean Magnitude of the Linear Velocity of the Object

The mean magnitude of the linear velocity of the object is calculated as follows:

Mẋob j =
1
T

T

∑
t=1

‖ẋxxob j‖ . (5.5)
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Figure 5.3: Mean values of variables for each pattern class.The error bars indicate standard

errors of the means. C1: Harmonious translation, C2: Harmonious rotation with transla-

tion, C3: Harmonious braking, C4: Persistent conflict, C5: Jerky conflict, C6: Passive

agreement.

5.2.5 Mean Magnitude of the Angular Velocity of the Object about the y-axis

The mean magnitude of the angular velocity of the object (θ̇ob j) about the y-axis is calcu-

lated as follows:

Mθ̇ob j =
1
T

T

∑
k=1

∣

∣θ̇ob j
∣

∣ . (5.6)

5.2.6 Mean Normalized Power Transferred by the Agents to the Object

The power transferred by agents to the object is calculated as follows:

PHIPu =
∫

P

(

FFFHIPu ·dxxxob j+
∣

∣MHIPudθob j
∣

∣

)

,u= 1,2, (5.7)



26 Chapter 5: Recognition of Haptic Interaction Patterns

whereP is the path traversed by the object during the interaction segment. Keeping this

in mind, the mean normalized power transferred by the agentsto the object (MPHIPs) is

calculated as:

MPHIPs =
1

2T

2

∑
u=1

PHIPu , (5.8)

5.3 Dataset Generation and Feature Extraction

The annotation process results in variable length interaction segments. However, in order

to be used in classification, we need to represent the data using a fixed number of features

for each annotated interaction segment. We compute features over 12 different regions of

support (R1, R2, ..., R12). Time interval of regions (tint), which indicates the beginning and

end time of regions, are presented as:

tint =































T
2 ± T

2 R1

0±500ms R2

T ±500ms R3

iT
k ±500ms R4,5, ..,12 ,

(5.9)

where T is the length of interaction segment, 2< k< 5 and 1< i < k−1. These regions

of support are sampled over: 1) whole interaction segment, 2) the beginning and end of

the segment, 3) different positions along the segment (see Fig. 5.4). R1 is sampled over

whole interaction segment, while R2 and R3 are sampled over thebeginning and end of

the segment. And R4, R5,..., R12 are sampled over different positions along the segment.

Same number of features are computed from each region of support.

We compute the mean, median, interquartile range, and standard deviation of the vari-

ables summarized in Table5.1 over all regions of support. Then we use the result of this

computation as our features. Each row of this table defines a separate feature set, which will

be assessed for its discriminative power. Each feature set is extracted over all 12 regions of

support.
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Figure 5.4: 12 different regions of support are demonstrated over the interaction segment.

Equal number of features are computed over each region.

Table 5.1: Feature sets

Set Feature

Id Set Name Features Count

Set 1 Agent force-related FFFHIP1, FFFHIP2 192

Set 2 Net force-related FFFnet 96

Set 3 Interactive force-related fi 48

Set 4 Velocity-Related ẋxxob j, θ̇ob j 144

Set 5 Power-Related PHIP1, PHIP2 96

Total 576
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5.4 Classifier Design

We utilize a multi-class Support Vector Machine (SVM) classifier with a Gaussian radial

basis function kernel to recognize interaction patterns. In order to deal with the multi-

class learning problem, we adopt the one-against-one strategy, which builds one SVM for

each/every pair of classesc). In order to obtain the optimal hyper-parameters, cost (C) and

γ of the model, we perform model selection by 5-fold cross-validation using grid search.

5.5 Evaluation

For the evaluation of the classifier performance, we utilizethe following metrics:

5.5.1 Normalized Confusion Matrix:

The normalized confusion matrix is a table which displays the correct and incorrect classi-

fication rates of each class. The values in the columns and rows respectively represent the

number of instances in the predicted and the actual classes normalized by the class size.

Hence, it clearly displays the classifier’s confusion between two classes, if exists.

5.5.2 Correct Classification Rate (Accuracy):

The accuracy of classification is assessed by comparing the classification rate with ground

truth labeling of the test set. The accuracy is defined as the number of correct classifications

divided by the total number of examples in the test set.

5.5.3 Balanced Error Rate (BER):

BER is the average of the number of incorrect classifications for each class, normalized

by the class size. The BER criteria is especially useful when the number of instances vary

highly among different classes.
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Chapter Notes

c)During the analysis, the SVM implementation provided within the LIBSVM toolbox for Matlab is used

[4].



Chapter 6

RESULTS AND DISCUSSION

This section presents the classification results along witha discussion of them.

6.1 Classification Results Individual Feature Sets

Initially, we investigate the utility of using isolated feature sets for classifying the pattern

classes. A separate model is trained with each feature set (Table5.1) to discover how well

these features capture the significant characteristics of the interaction pattern classes. The

recognition performance of training with individual feature sets can be seen in Fig.6.1,

along with the confusion matrices in Fig.6.2.
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Figure 6.1: Classification results of individual feature sets. Set 1: Agent force-related

feature set, Set 2: Net force-related feature set, Set 3: Interactive force-related feature set,

Set 4: Velocity-related feature set, Set 5: Power-related feature set.

The classifier trained with Set 1 (agent force-related features) achieves the highest clas-

sification performance with an accuracy of 80.6% and a BER of 0.33. On the other hand,
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  Set1
PREDICTED INSTANCES

C1 C2 C3 C4 C5 C6

A
C

T
U

A
L
 

IN
S

T
A

N
C

E
S C1 0.94  0.01 0.01 0.00 0.02 0.02

C2 0.03 0.41 0.02 0.01 0.43 0.10

C3 0.05 0.03 0.14 0.10 0.45 0.23

C4 0.00 0.00 0.05 0.80 0.15 0.00

C5 0.00 0.03 0.03 0.04 0.78 0.12

C6 0.00 0.00 0.00 0.00 0.03 0.97

(a) Agent force-related feature set

  Set2
PREDICTED INSTANCES

C1 C2 C3 C4 C5 C6

A
C

T
U

A
L
 

IN
S

T
A

N
C

E
S C1 0.95 0.03 0.00 0.00 0.00 0.02

C2 0.05 0.45 0.05 0.00 0.32 0.13

C3 0.03 0.05 0.16 0.00 0.36 0.40

C4 0.00 0.00 0.00 0.17 0.11 0.72

C5 0.00 0.08 0.03 0.02 0.60 0.27

C6 0.00 0.00 0.00 0.01 0.10 0.89

(b) Net force-related feature set

  Set3
PREDICTED INSTANCES

C1 C2 C3 C4 C5 C6

A
C

T
U

A
L
 

IN
S

T
A

N
C

E
S C1 0.75 0.00 0.00 0.00 0.03 0.22

C2 0.05 0.10 0.03 0.00 0.47 0.35

C3 0.08 0.01 0.03 0.06 0.49 0.33

C4 0.00 0.01 0.10 0.55 0.30 0.04

C5 0.02 0.06 0.04 0.04 0.59 0.25

C6 0.11 0.01 0.00 0.00 0.02 0.86

(c) Interactive force-related feature

set

  Set4
PREDICTED INSTANCES

C1 C2 C3 C4 C5 C6

A
C

T
U

A
L
 

IN
S

T
A

N
C

E
S C1 0.88 0.02 0.01 0.00 0.04 0.05

C2 0.06 0.60 0.02 0.00 0.20 0.12

C3 0.08 0.02 0.62 0.00 0.07 0.21

C4 0.00 0.00 0.00 0.00 0.12 0.88

C5 0.01 0.02 0.02 0.00 0.61 0.34

C6 0.00 0.01 0.01 0.00 0.11 0.87

(d) Velocity-related feature set

  Set5
PREDICTED INSTANCES

C1 C2 C3 C4 C5 C6

A
C

T
U

A
L
 

IN
S

T
A

N
C

E
S C1 0.86 0.05 0.04 0.00 0.03 0.02

C2 0.11 0.25 0.10 0.00 0.47 0.07

C3 0.02 0.04 0.64 0.00 0.16 0.14

C4 0.00 0.00 0.02 0.04 0.10 0.84

C5 0.02 0.08 0.05 0.01 0.58 0.26

C6 0.00 0.01 0.01 0.00 0.05 0.93

(e) Power-related feature set

Combined
Set

PREDICTED INSTANCES

C1 C2 C3 C4 C5 C6

A
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T
U

A
L
 

IN
S

T
A

N
C

E
S C1 0.95 0.00 0.00 0.00 0.02 0.03

C2 0.03 0.73 0.00 0.02 0.14 0.08

C3 0.00 0.01 0.70 0.03 0.14 0.12

C4 0.00 0.00 0.02 0.86 0.08 0.04

C5 0.00 0.01 0.03 0.05 0.74 0.17

C6 0.00 0.00 0.01 0.00 0.07 0.92

(f) Combined feature set

Figure 6.2: Confusion matrices of classifiers trained with individual feature sets and the

combined set. C1: Harmonious translation, C2: Harmonious rotation with translation, C3:

Harmonious braking, C4: Persistent conflict, C5: Jerky conflict, C6: Passive agreement.

the classifier trained with Set 3 (interactive force-related features) yields the lowest perfor-

mance with 64.7% accuracy and BER of 0.52.

Note that even though all classifiers achieve recognition accuracies higher than 60%,

the BERs are comparatively high (≥ 0.3). Examining the confusion matrices in depth

(see Fig.6.2), we observe that each individual feature set is successfuld) in recognizing at

least 4 interaction patterns, but have confusions in one or two classes. Specifically, the

classifiers trained individually with Sets 1 and 2 perform poorly in the classification of

C3. In particular, agent-force related features in Set 1 suffer from confusion between C3

and C5, whereas net force-related features in Set 2 confuses C3with both C5 and C6. As

seen in Fig.5.3, the mean magnitudes of individual forces are close to each other for C3

and C5, and so does the net force magnitudes of C3, C5, and C6. Hencethe classifiers

trained with these features are indeed expected to confuse the patterns as isolated features

are not descriptive on their own for differentiating between these pattern classes. Similarly,

it is no surprise for the classifier trained with the interactive-force related features in Set

3 to confuse C2 and C3 with C5 and C6. Finally, a similar case holds also for the Set 4’s
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velocity- and Set 5’s power-related features not being ableto differentiate between C4 and

C6.

6.2 Classification Results with the Combined Feature Set

The approach described above emphasizes the performance ofisolated individual feature

sets. However, some features can be used in combination to enhance the accuracy of the

recognition of interaction patterns. We construct acombined feature set, comprising of all

of the features in the aforementioned 5 feature sets from allregions of support. Using the

combined feature set, we achieve an increased accuracy of 84.2% and a reduced BER of

0.19. The reduced BER value illustrates the increased discriminative power of the com-

bined set in inhibiting the misclassifications. The confusion matrix of the classifier trained

with the combined feature set is given in Fig.6.2(f). Upon closer inspection, we observe

that unlike the classifiers with individual feature sets, this model is able to recognize all of

the interaction patterns without significant confusion. Asseen in Fig.6.2, combined feature

set achieves the highest improvement for the classes C2 (Harmonious rotation with trans-

lation), C3 (Harmonious braking) and C4 (Persistent conflict)which had poor recognition

performance with individual feature sets.

6.3 Selection of the Optimal Feature Set

The final step in our learning approach is to select the most informative features in the com-

bined feature set and to find the most informative regions of support. This is motivated by

the fact that the combined set gets quite large as a result of aggregating 5 individual feature

sets from different regions of support. The combined set maycontain some unnecessary

and even irrelevant features, which may lead to inferior classification performance. Such

features should be removed to enhance the recognition accuracy. Hence, we utilize the

Minimum Redundancy Maximum Relevance (mRMR) feature selectionalgorithm to select

most promising features [20].

The mRMR algorithm yields thek maximally relevant and minimally redundant fea-
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tures from a larger feature space of sizeK, consisting of 576 features in our case, where

k = 1,2, ....,K. In the end, the feature set that yields the highest accuracyis declared as

the optimal feature set for the recognition of interaction patterns. Fig.6.3 shows the clas-

sification accuracies against the number of features in the set. This diagram illustrates that

the optimal feature set consists of 243 features. This optimal set achieves a performance

even better than that of the combined feature set with an accuracy of 86% and a BER of

0.18. The confusion matrix of the classifier trained with the optimal feature set is given in

Fig. 6.4. We observe that the classifier can successfully recognize all six of the interaction

patterns.
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Figure 6.3: Classification accuracies for the feature sets, which are built incrementally

using mRMR, plotted against the number of features in the features sets. The red circle

denotes the optimum feature set, which yields the highest accuracy.

Fig. 6.5presents the percentage of the features in the optimal feature set computed over

the different regions of support explained in Section5.3. 48 features are extracted from

each region of support in the combined set. Although we do notconduct any statistical

analysis, this figure gives an idea about the superiority of the regions of support. According

to this figure, R1, which is sampled over whole interaction segment, is a superior region

to recognize patterns, because of its large contribution tothe optimal feature set. Also,
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Optimal
Set
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Figure 6.4: Confusion matrix of classifier trained with the optimal feature set. C1: Harmo-

nious translation, C2: Harmonious rotation with translation, C3: Harmonious braking, C4:

Persistent conflict, C5: Jerky conflict, C6: Passive agreement.
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Figure 6.5: Percentage of features from different regions of support, contributing to the

optimal feature set.

R4, R5,..., R12, which are sampled over different positions along the segment, are also

informative regions, since they contribute to the optimal feature sets moderately. On the

other hand, R2 and R3, which are sampled over the beginning and end of the segment,

contribute slightly to the optimal feature set. Thus R2 and R3 are poor regions for extraction
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of features.
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Figure 6.6: Number and percentage of features from individual feature sets, contributing

to the optimal feature set. Set 1: Agent force-related feature set, Set 2: Net force-related

feature set, Set 3: Interactive force-related feature set,Set 4: Velocity-related feature set,

Set 5: Power-related feature set.

Fig. 6.6 presents the number and the percentage of the features in theoptimal feature

set taken from the individual sets. At first glance, Fig.6.6(a)gives the impression that

Set 4 (velocity-related features) is a superior feature representation because of its large

contribution to the optimal feature set; however this is misleading and is partly due to

the high number of features in the initial set. The percentages of features contributed by

each individual feature set provides more meaningful information about the superiority of

feature representations. As demonstrated in Fig.6.6(b), almost all of the features in Set 3

(interactive force-related features) eventually contribute to the optimal feature set. On the

other hand, almost half of Set 4 is discarded during feature selection.

In this study, we demonstrate that feature sets presented inSection5.3are complemen-

tary. Moreover, we illustrate the significance of feature selection in accomplishing higher

recognition accuracies. As happened in our case, the inclusion of many features may actu-

ally diminish recognition performance unless all are collectively relevant. Also, in addition

to the improvement in the recognition accuracy, balanced error rate decreases. However, it

is worth noting that there is a trade-off among the processing required for optimal feature
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selection and the resulting gain in the accuracy and decrease in BER.

Chapter Notes

d)We consider a classification to be unsuccessful in case that the correct classification rate is lower than

random recognition rate, which is 1/6 in our case.



Chapter 7

CONCLUSIONS

The thesis presents the results of the experimental study with 20 dyads who collabora-

tively manipulate an object, to identify haptic interaction patterns. This work is a first step

discovering patterns in dyadic haptic interaction betweenhumans. Specifically, this study

presents a taxonomy of conflict-originated interaction patterns and a method for the clas-

sification of these patterns in physical collaboration scenarios, where two humans commu-

nicate through the haptic channel. Six different interaction patterns were identified based

on the interaction of 20 human dyads who transport a virtual object to certain goal posi-

tions in a haptics-enabled simulation environment. Time-series data of the human-human

interaction was divided into segments, each of which was labeled by an expert, who mon-

itored the interaction from outside. We proposed five distinct feature sets, four of which

consist of haptic features, to recognize the interaction patterns. We demonstrate that haptic

features exhibit significant information about the interaction between partners, and the clas-

sifier trained with a combination of haptic and velocity-related features achieves a correct

classification rate of 86% when recognizing human-human interaction patterns.

In this work, we propose a machine learning algorithm, whichenables classification of

human interaction patterns in dyadic tasks involving haptic interactions. We believe that

the ideas we present here are generic for any kind of physicaltask, and given training data,

can be generalized to a plethora of different tasks and systems, for both human-human and

human-robot interaction. One shortcoming of this technique is its being offline. In the

future, we intend to apply different learning methods to enable online intention prediction

during an ongoing collaboration between two humans. Additionally, we intend to inves-

tigate the use of more sophisticated features in all force, velocity and power domains to

enhance classification accuracy. Our final goal is to developa robot, which can infer hu-
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man interaction patterns in real-time and collaborate withits human partner(s) accordingly

in complex object manipulation tasks.



Chapter 8

CONTRIBUTIONS AND FUTURE DIRECTIONS

This thesis has explored intrinsic properties of human-human interaction, which is de-

fined as interaction patterns. A method trained with five different feature sets to classify the

interaction patterns and a taxonomy of these patterns are proposed. Our contributions can

be summarized as follows

1. An expert-labeled human interaction dataset is generated to train the machine learn-

ing method for classification of the patterns. Interactionsof 20 dyads, who collabo-

ratively carry an object in an haptics-enabled virtual environment, are observed from

outside and time-series data from these interactions are labeled with interaction pat-

terns manually.

2. A taxonomy of human interaction patterns is proposed in the light of information

gained by studying the expert-labeled dataset.

3. Five different feature sets which are force-, velocity-,power-related information are

proposed for the classification of these patterns.

4. Our evaluation suggests that each individual set is successful in recognizing at least

4 of 6 interaction patterns.

5. Utilizing multi-class SVM classifiers, a correct classification rate up to 86% is ac-

complished for the identification of the interaction patterns, which is obtained by

fusing all feature sets by mRMR algorithm, even though individual feature sets fail

to recognize some interaction patterns.
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Our contributions enable to comprehend how humans interactto perform dyadic joint

object manipulation tasks. This study demonstrates the capability of the proposed machine

learning technique in classifying human interaction patterns automatically, almost as good

as a human expert does manually. According to our study, possible future works can be

summarized as follows

• The same experiment without providing any haptic feedback to the users could be

conducted in order to compare the recognition results with the results of the current study.

• Clustering algorithms could be utilized in the future for automated segmentation of

interaction between two humans, after reducing noise on theinteraction data.

• It would be a good idea to investigate different learning methods to enable online

intention prediction during ongoing collaboration between two humans.

• More sophisticated features in all the force, velocity and power domains could be

investigated to improve the recognition accuracy.

• New experiments could be designed in order to test the utility of the proposed ap-

proach in different settings.

• An intelligent robot, which comprehends how humans interact and assist accordingly,

could be developed. This robot could either mimic the interaction patterns of one of the

partners or interfere in the interactions of humans as an assistant.
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PARAMETERS USED IN THE EXPERIMENT
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Table A.1: Object and board information for both scenes(Section 3.1)

Scene Object Mass(kg) Object Dimensions(mm) Board Dimensions(mm)

Straight Scene 4 24 x 9 200 x 30

Bifurcated Scene 4 24 x 9 200 x 82

Table A.2: Spring and damper coefficients of the physical model (Section3.2) used in the

experiment to model the forces of users

Variable Value

Kp 0.25N/mm

Kd 0.001Ns/mm

Table A.3: Static and kinetic friction coefficient values for both force and moment (Sec-

tion3.2)

Force Moment

Static 0.19 0.20

Kinetic 0.15 0.19
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Figure B.1: Detailed physical model of the interaction between humans during dyadic joint

object manipulation (Section3.2)
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• Thank you for agreeing to participate in this study.

• Please read through these instructions and ask any questionyou may have before the

experiment begins.

• Please turn off any electronic devices before the experiment begins.

• This experiment requires you to manipulate a virtual objectwith a partner.

• Your partner will sit in the opposite room, as a result he/shewont be able to hear you

and vice versa. However you will be able to monitor his/her movements through the motion

of the jointly manipulated object.

• The object you will manipulate in this experiment is a rectangular block as shown in

the figure.

• The interaction point you will be able to move will be coloredBLUE\GREEN,

whereas that of your partner will be colored GREEN\BLUE.

• You will need to coordinate with your partner in order to generate smooth movements.

• There will be a force feedback device on the table that enables your interaction with

the scene.

• You need to hold the stylus and move your hand right / left / forward / backward to

move your interaction point and the jointly manipulated object.

• There might be occasional sudden small jumps when working with the device.

• Please do not panic, and hold the stylus between your fingers firmly(as shown in the

picture).
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• The device will stabilize momentarily.

INITALIZATION OF DEVICE

• Before starting the experiment, you will be asked to calibrate the device using a

“Phantom Test” application.

• In order to calibrate, please hold the device in neutral position and iterate as the

application instructs you.

THE GOAL

• Throughout the experiment, you will be asked to translate the block to a certain posi-

tion

• A typical translation task is shown in FigureC

• Here, your goal position is marked with a green rectangle.

• When you reach the target rectangle it will turn blue.

• Your goal is to stay on this target to the count of 5.

• Beware: The target configuration contains orientation information!

TRIALS

• A trial ends successfully when you and your partner reach thetarget rectangle and

wait for it to the count of 5.

• In case you cannot reach the target after a long time the trialwill end abruptly, indi-

cating unsuccessful task completion.
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• Please note that unsuccessful task completion is not desirable; hence try to complete

the task by achieving the goals as instructed to the best of your ability.

HOW TO MOVE THE OBJECT

• The object moves as a rigid body.

• You can apply forces on the object by moving the haptic device.

Translating the object Rotating the object

The parallel component of The perpendicular component of

a force produces translationa force produces rotation

THE GOAL

• Note that the goal of your partner may be different than that of yours.

• If there is severe conflict during your operation, a warning will be displayed: CON-

FLICT!

• Your aim is to finish the task quickly and without conflicts.

• Hence, if you face a conflict with your partner try to observe his/her movements and

resolve the conflict.

• You should avoid hitting the boundaries and obstacles whilemoving on your path.

• In case of collisions, the collided boundaries and/or obstacles will be highlighted.

INSTRUCTIONS

• You will be asked to perform the task in two different scenes.

 !"#"$%

 !"#"$%
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• In the first scene, you will be asked to translate the block on astraight path.

• The second scene will require you to turn a corner (without hitting boundaries) in

order to reach the correct parking location.

• During the experiment, you will perform 2 sets per scene, fora total of 4 sets.

• Sets 1 and 3 will be practice sets, where you will have the chance to familiarize

yourself with the scenes.

Scene1 Scene2

Set1(2-6 trials) Set3(2-6 trials)

Set2(14 trials) Set4(19 trials)

• During the experiment, you will perform 2 sets per scene, fora total of 4 sets. Sets 1

and 3 will be practice sets, where you will have the chance to familiarize yourself with the

scenes.

• The current trial number will be indicated on top of the game screen

Thank you for your participation
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