
AN ALGORITHMIC FRAMEWORK FOR

INSTANTANEOUS AND CONVOLUTIVE BOUNDED

COMPONENT ANALYSIS

by
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A Thesis Submitted to the

Graduate School of Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Electrical & Electronics Engineering
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ABSTRACT

Bounded Component Analysis (BCA) is a recent concept proposed as an alternative

method for Blind Source Separation problem. BCA enables the separation of dependent

as well as independent sources from their mixtures under the practical assumption on

source boundedness. Therefore, Bounded Component Analysis (BCA) is a framework

that can be considered as a more general framework than Independent Component

Analysis (ICA) under the boundedness constraint on sources. In this thesis, we provide

a stationary point analysis for recently introduced instantaneous BCA algorithms. We

then extend the instantaneous BCA method providing the ability to generate a variety of

BCA algorithms. We illustrate the advantages of proposed BCA examples regarding the

correlated source separation capability over the state of the art ICA based approaches.

Furthermore, we extend the instantaneous BCA approach to the convolutive BCA prob-

lem. We first introduce a family of convolutive BCA criteria and corresponding algo-

rithms based on the stationarity assumption on sources. We prove that the global optima

of the proposed criteria, under generic BCA assumptions, are equivalent to a set of per-

fect separators. The algorithms introduced in this approach are capable of separating

not only the independent sources but also the sources that are dependent/correlated

in both component (space) and sample (time) dimensions. Therefore, under the con-

dition that the sources are bounded, they can be considered as “Extended Convolutive

ICA” algorithms with additional dependent/correlated source separation capability. We

illustrate the space-time correlated source separation capability through a Copula dis-

tribution based example. Furthermore, they have potential to provide improvement in

separation performance especially for short data records. A frequency-selective MIMO

Equalization example demonstrates the clear performance advantage of the proposed

BCA approach over the state of the art ICA based approaches in setups involving con-

volutive mixtures of digital communication sources.
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Contrary to this stochastic convolutive framework, we propose novel deterministic con-

volutive BCA frameworks for the blind source extraction and blind source separation

problems which allow the sources to be potentially non-stationary. The global maximiz-

ers of the proposed deterministic BCA optimization settings are proved to be perfect

separators. We illustrate that the iterative algorithms corresponding to these frame-

works are capable of extracting/separating convolutive mixtures of non-stationary as

well as stationary independent and/or dependent sources.
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ÖZETÇE

Sınırlı Bileşenler Analizi (BCA), kaynak ayrıştırma problemi için yeni tasarlanmış bir

metot olup kaynakların sınırlı olduğu varsayımından faydalanarak bağımlı ve bağımsız

kaynakları birbirinden ayırmaya olanak sağlamaktadır. Bu yüzden, Sınırlı Bileşenler

Analizi (BCA) kaynakların sınırlı olması varsayımı altında Bağımsız Bileşenler Anal-

izinden (ICA) daha genel bir yöntemdir. Bu tezde, yeni bir anlık BCA yönteminde öne

sürülen algoritmaların yakınsama analizini yapıyoruz. Daha sonra, bu anlık BCA yön-

temini çeşitli BCA algoritmaları üretilebilecek şekilde geliştiriyoruz. Geliştirilen yeni

metotla oluşturulan algoritma örneklerinin literatürde bulunan bazı ICA yöntemlerine

göre bağımlı kaynak ayrıştırma performanslarındaki avantajlarını gösteriyoruz.

Bu çalışmalara ilave olarak, anlık BCA metotunu geliştirerek evrişimsel BCA yöntemi

üretiyoruz. Öncelikle, kaynakların durağan olduğunu kabul ederek evrişimsel BCA

kriterleri ve karşılık gelen algoritmaları tanımlıyoruz. Tanımlanan kriterlerin, soysal

BCA varsayımları altında, evrensel maksimumlarının mükemmel ayrıştırıcılardan oluşan

bir kümeye denk geldiğini ispatlıyoruz. Bu yöntemde tanımlanan algoritmaların sadece

bağımsız değil, bileşenlerinde ve zamanda bağımlı kaynaklarında ayrıştırmasını yapa-

bildiğini gösteriyoruz. Bu yüzden, kaynakların sınırlı olduğu varsayımı altında, BCA

algoritmalarını bağımlı ve ilintili kaynakları ayırabilme özelliğine sahip genişletilmiş

evrişimsel ICA algoritmaları olarak düşünebiliriz. Copula dağılımıyla üretilen kaynaklar

örneğiyle, BCA algoritmalarının bileşenlerinde ve zamanda ilintili kaynakları ayrıştıra-

bildiğini gösteriyoruz. Ayrıca, veri sayısının az olduğu durumlarda, ayrıştırma perfor-

mansında daha iyi sonuçlar verdiklerini ortaya çıkarıyoruz. Çok girişli çok çıkışlı frekans

seçimli denkleştirme örneği, dijital iletişim kaynaklarının evrişimsel karışımlarında, öner-

ilen BCA yönteminin literatürde geçen ICA yöntemlerinden üstünlüğünü gösteriyor.

Bir önceki yöntemin tersine, evrişimsel karışımların kaynak ayrıştırma ve özütleme prob-
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lemleri için gerekirci evrişimsel BCA metotları tasarlıyoruz. Böylelikle kaynakların

durağan olmasını varsaymıyoruz. Tanımladığımız gerekirci kriterlerin evrensel mak-

simumlarının mükemmel ayrıştırıcılar kümesine denk geldiğini ispatlıyoruz. Bunun yanı

sıra, ortaya çıkan algoritmaların evrişimsel durağan yada durağan olmayan bağımlı

veya bağımsız kaynakları ayrıştırabilme ve özütleyebilme kapasitelerine sahip olduklarını

örneklerle gösteriyoruz.
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Chapter 1

Introduction

Blind Source Separation (BSS) is one of the basic problems in signal processing and

machine learning with a diverse set of applications [2]. BSS aims to extract individual

components (or sources) from their mixture samples where there is no, or very lim-

ited, prior information about their nature or the mixing process. We can state some

prominent application examples of BSS as:

� Cocktail Party Problem : A number of people are talking simultaneously in a

room resulting in a mixture of speeches.

� Brain Signal Processing : Measuring of electromagnetic signals from different

brain regions where the muscle artefacts mix with the brain signal of interest.

� Digital Communications : Transmission of the digital communication signals.

The blindness property is the key to the flexibility of this approach which leads to its

widespread use. However, the blindness feature also makes BSS a challenging problem

to solve. The hardship caused by the lack of training data and relational statistical

information is generally overcome by exploiting some “side information”/assumptions

about the model.

The most common assumption is the mutual statistical independence of sources. The

approach based on this assumption is referred to as the Independent Component Anal-

ysis (ICA) and it is the most popular and successful BSS approach [2–4]. Its success
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resides in the simple and generic nature of the independence assumption and its appli-

cability ensures that ICA has a diverse range of BSS application domains. There have

been several other assumptions mostly fortifying the independence assumption such as

time structure (e.g., [5, 6]), sparsity (e.g., [7]) and special constant modulus or finite

alphabet structure of communications signals (e.g. [8–10]).

In typical practical BSS applications source values take their values from a compact

set. This property has been exploited especially in some recent ICA algorithms. The

potential for utilizing the boundedness property as an additional assumption in the ICA

framework was first put forward in [11]. In this work, Pham reformulated the mutual

information cost function in terms of order statistics. In the bounded case, this for-

mulation leads to the effective minimization of the separator output ranges. In the

similar direction, Cruces and Duran showed that an optimization framework based on

Renyi’s Entropy leads to support length minimization to extract sources from their mix-

tures [12]. Vrins et. al, utilized range minimization approach to obtain alternative ICA

algorithms [13–15]. Parallel to these contributions, Erdogan extended the infinity norm

minimization based blind equalization approach in [16, 17] to obtain source separation

algorithms, again within ICA framework, based on infinity norm minimization [18], [19].

These algorithms assumed peak symmetry for the bounded sources, which is later aban-

doned in [20].

Following these contributions related to exploitation of boundedness of signals within

the ICA framework, recently, Cruces showed that boundedness can be utilized to replace

mutual statistical independence assumption with a weaker assumption [21]. This fact

led to a new framework, named Bounded Component Analysis (BCA), which enables

separation of independent and dependent (even correlated) sources.

For bounded sources, BCA provides a more general framework than ICA, since the joint

density factorability requirement of the mutual independence assumption is replaced by
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the weaker domain separability assumption. The domain separability assumption refers

to the condition that the convexified effective support of the joint pdf to be written as

the cartesian product of their marginal pdf counterparts. Therefore, it is a necessary

condition for the independence. However, for the independence assumption to hold

there is a more stringent requirement about the factorizability of the joint pdf in terms

of product of marginals. BCA framework removes this requirement, therefore provides

a more flexible framework for bounded sources including ICA as a special case.

Within the newly introduced BCA framework, Cruces introduced a source extraction

algorithm in [21]. A deflationary approach for BCA was recently proposed in [22].

In [23], total range minimization is posed as a BCA approach for uncorrelated sources

and the characterization of the stationary points of the corresponding symmetric or-

thogonalization algorithm are provided. More recently, Erdogan proposed a new BCA

approach which enables separation of both independent and dependent, including cor-

related, bounded sources from their instantaneous mixtures [1]. In this approach, two

geometric objects, namely principal hyperellipsoid and bounding hyperrectangle, con-

cerning separator outputs are introduced. The separation problem is posed as max-

imization of the relative sizes of these objects, in which the size of hyperellipsoid is

chosen as its volume. When the size of bounding hyperrectangle is chosen as its vol-

ume, a generalized form of Pham’s objective in [11], which was derived by manipulating

the mutual information objective in ICA framework, is obtained. When the size of the

bounding hyperrectangle is chosen as a norm of its main diagonal, this leads to a set of

BCA algorithms whose global optima correspond to a fixed relative scalings of sources

at the separator outputs.

In this thesis, we first provide a stationary point analysis for the instantaneous BCA

algorithms introduced in [1]. We prove that all stationary points of the instantaneous

BCA algorithms rather than perfect separators are saddle points. We then extend the

3



instantaneous BCA approach by considering generalized functions of ranges of separa-

tor outputs which can be used to generate a variety of instantaneous BCA algorithms.

Through simulations, we illustrate the advantages of proposed BCA examples regard-

ing the correlated source separation capability over the state of the art ICA based

approaches.

We furthermore extend the instantaneous BCA method to a convolutive BCA frame-

work where we assume the stationary of sources and utilize process based correlation

information among sources in the optimization setting. We show that with this ap-

proach, it is possible to generate algorithms that are capable of separating not only

independent sources but also dependent (even correlated) sources from their convolutive

mixtures when the sources are assumed to be stationary. We note that this is the first

convolutive BCA approach in the literature. Contrary to this stochastic convolutive

framework, we additionally propose novel deterministic convolutive BCA frameworks

for the blind source extraction and blind source separation problems where the sources

are allowed to be non-stationary. We show that the proposed scheme can generate al-

gorithms that can extract/separate convolutive mixtures of non-stationary as well as

stationary independent and/or dependent sources. We point out that even when the

sources are independent, the samples may not reflect this behaviour especially for short

data records. Hence, we show the potential for the significant performance improvement

offered by the proposed BCA approach over the state of the art ICA based approaches,

especially for short data records.

1.1 Contributions

The contributions of this thesis are as follows :
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1.1.1 Convergence Analysis for Instantaneous BCA Algorithms

� A stationary point analysis for the BCA algorithms introduced in [1] is presented.

It is shown that all stationary points of the instantaneous BCA algorithms besides

perfect separators are saddle points.

� This work is to be submitted to IEEE Transactions on Signal Processing.

1.1.2 Extension of Instantaneous BCA Approach

� The instantaneous BCA approach introduced in [1] is extended by considering gen-

eralized functions of ranges of output samples (corresponding to the side lengths of

bounding hyper-rectangle) which also covers the size of bounding hyper-rectangle.

� It is shown that the extended approach can be used to generate a variety of

instantaneous BCA algorithms.

� The advantages of proposed BCA examples regarding the correlated source sep-

aration capability over the state of the art ICA based approaches are illustrated

through simulations.

� This work is submitted to Asilomar Conference on Signals, Systems, and Com-

puters.

1.1.3 Convolutive BCA Algorithms for Stationary Indepen-

dent and/or Dependent Source Separation

� A convolutive BCA approach is proposed which can be used to generate an al-

gorithm that is capable of separating not only real independent sources but also

dependent (even correlated) sources from their convolutive mixtures when the
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sources are stationary. Therefore, for bounded sources, a more general framework

than ICA is proposed for the convolutive source separation problem which replaces

the strong mutual independence assumption with weaker and more generic domain

separability assumption leading to additional capability to separate sources which

are potentially dependent/correlated in both space and time directions.

� A convolutive BCA objective is offered whose global optima are proven to corre-

spond to perfect separators.

� This part is presented in the 38th International Conference on Acoustics, Speech

and Signal Processing.

� The optimization setting of the approach is then extended which generates a family

of convolutive BCA algorithms. Furthermore, the complex sources case is included

in the approach.

� Through a digital communications example, the potential for the significant per-

formance improvement offered by the proposed BCA approach over the state of

the art ICA based approaches, especially for short data records is illustrated.

� The framework prescribes an approach based on the update of time-domain fil-

ter parameters which is free of permutation alignment problem suffered by the

algorithms using frequency domain updates. Furthermore, unlike many time-

domain convolutive ICA approaches, the proposed approach does not require pre-

whitening operation, which is problematic in convolutive settings.

� The journal version is accepted for publication in IEEE Transactions on Neural

Networks and Learning Systems.
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1.1.4 A Convolutive BCA Analysis Framework for Potentially

Non-Stationary Independent and/or Dependent Sources

� Novel deterministic convolutive BCA approaches are proposed for the blind source

extraction and blind source separation problems where the objectives are directly

defined in terms of mixture samples rather than some stochastic measures or their

sample based estimates allowing the sources to be potentially non-stationary. The

introduced framework does not exploit any non-stationarity feature, therefore it

is applicable to both stationary/non-stationary sources.

� It is proved that the global optima of proposed BCA objectives correspond to

perfect extractors/separators.

� The capability of proposed algorithms regarding the extracting/separating con-

volutive mixtures of dependent (even correlated) sources are illustrated. The

performances of proposed algorithms with the state of the art convolutive ICA

approaches are further compared and through a digital communications example,

the potential for the significant performance improvement offered by the proposed

BCA approach is shown, especially for short data records.

� This work is submitted to IEEE Transactions on Signal Processing.

1.2 Outline

Chapter 2 begins with the notation and the BCA setups that are considered throughout

the thesis. In chapter 3, we provide an essential summary of the instantaneous BCA ap-

proach introduced in [1]. In chapter 4, we first recall the instantaneous BCA algorithms

and then provide the convergence analysis results of the algorithms considered for both
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real and complex signals. Chapter 5 extends the instantaneous BCA approach using

generalized functions of ranges of separator outputs including the size of hyperrectangle.

Chapter 6 presents the convolutive BCA approach that assumes the stationarity of

sources and produces a family of convolutive BCA algorithms. The numerical examples

illustrating the separation capability of proposed algorithms for the convolutive mixtures

of stationary independent and/or dependent sources are provided based on Copula dis-

tribution. Especially for short data records, the performance improvement offered by

the proposed BCA approach over the state of the art ICA based approaches is shown

through a digital communications example. Chapter 7 provides a deterministic approach

for the blind source extraction and blind source separation problems where the sources

are allowed to be potentially non-stationary. In this approach, there is no stationarity

assumption. The sources can be both stationary and non-stationary. It is shown that

the convolutive BCA algorithms generated by this scheme are capable of separation of

stationary as well as non-stationary independent and/or dependent sources.

Finally, Chapter 8 is for concluding comments and discussing future works.
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Chapter 2

Notation and BCA Setups

In this chapter, we will present the notation and BCA setups that we consider in our

derivations for the instantaneous and convolutive blind source separation problems.

2.1 Notation

Let A ∈ Cp×q and a ∈ Cp×1 be arbitrary. The notation used in the thesis is summarized

in Table 2.1.

Notation Meaning

Am,: (A:,m) mth row (column) of A
R{A} (I{A}) The real (imaginary) part of A

‖a‖r Usual r-norm given by (
∑p

m=1 |am|r)1/r.
diag(a) Diagonal matrix whose diagonal entries

starting in the upper left corner are a1 , . . . , ap.∏
(a) a1a2 . . . ap, i.e. the product of the

elements of a.
Sa The convex support for random vector a
em Standard basis vector pointing in the m direction.
I Identity matrix
⊗ Kronecker product

Table 2.1: Notation used in the thesis.

Indexing: m is used for (source, output) vector components, k is the sample index and

i is the algorithm iteration index.
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2.2 Instantaneous BCA Setup

The instantaneous BSS setup assumed throughout the thesis is summarized in Figure

2.1:

Figure 2.1: Instantaneous Blind Source Separation Setup.

� We consider a deterministic setup consisting of p real sources which are represented

by the vector s = [ s1 s2 . . . sp ]T . We assume that the sources are bounded

such that sm(k) ∈ [αm, βm] where αm, βm ∈ <, βm > αm for m = 1, ..., p and

k ∈ Z. We point out that we do not assume the sources are independent, or

uncorrelated. In fact, the sources are allowed to be potentially correlated.

� The sources are mixed by a linear and instantaneous system. The mixing matrix

is assumed to be full rank and represented as H ∈ <q×p. We further assume that

q ≥ p, therefore, we consider the (over)determined BSS problem. The mixtures

are represented with y = [ y1 y2 . . . yq ]T where the sources and the mixtures

are related by y = Hs.

� W ∈ <p×q is the separator matrix of the system which produces the outputs as

o = Wy.

10



� The overall system function is defined as G = WH ∈ <p×p where the relation

between the sources and the outputs can be written as o = Gs.

Y = {y(1),y(2), . . . ,y(N)} is the finite set consisting of observations of mixture sam-

ples. The main goal in BSS problems is to adapt the separator system based on

these observations. We denote the corresponding set of unobservable source samples

by S = {s(1), s(2), . . . , s(N)}. The following assumption is introduced regarding the

set S:

Assumption: S contains the vertices of its

(non-degenerate) bounding hyper-rectangle (A1).

The separator system and the corresponding overall system produce the set of output

samples as

O = {Wy(1),Wy(2), . . . ,Wy(N)}

= {Gs(1),Gs(2), . . . ,Gs(N)}.

The optimization settings are proposed based on the set O.

2.3 Convolutive BCA Setup

The convolutive BSS setup assumed throughout the thesis is summarized in Figure 2.2:

� The setup consists of p real sources. The sources are represented by the vector

s = [ s1 s2 . . . sp ]T . We assume that ranges of the sources are bounded,

i.e., sm(k) ∈ [αm, βm] where αm, βm ∈ R, βm > αm for m = 1, ..., p and k ∈ Z.

We define γm = R(sm) = βm − αm as the range of sm where R(·) is the range

11



H(f) W(f)

s1

s2

s3

sp

y1

y2

y3

yq

o1

o2

o3

op

Figure 2.2: Convolutive Blind Source Separation Setup.

operator providing the support length for the pdf of its argument. We decompose

the sources as

s(k)
4
= Υs(k), k ∈ Z,

where Υ = diag(γ1, γ2, . . . , γp) is the range matrix of s and {s(k) ∈ Rp ; k ∈ Z} is

the normalized source process whose components have unit ranges.

� The source signals are mixed by a MIMO system with a q x p transfer matrix

H(f) =
L−1∑
l=0

H(l)e−j2πfl,

where {H(l); l ∈ {0, . . . , L−1}} are the impulse response coefficients, {H(f); f ∈

[−1
2
, 1

2
)} represents the Discrete Time Fourier Transform (DTFT) of the impulse

response. We assume that H(f) is an equalizable transfer function of order L− 1

[25]. The output of the mixing MIMO system is denoted by {y(k) ∈ Rq ; k ∈ Z}.
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We have

Y (f) = H(f)S(f),

where Y (f) represents the Discrete Time Fourier Transform (DTFT) of {y(k) ∈

Rq ; k ∈ Z}, S(f) is the DTFT of {s(k) ∈ Rp ; k ∈ Z}. Equivalently, in the time

domain

y(k) =
L−1∑
l=0

H(l)s(k − l), k ∈ Z.

Defining H̃ = [ H(0) H(1) . . . H(L− 1) ] as the mixing coefficient matrix

and s̃L(k) = [ sT (k) sT (k − 1) . . . sT (k − L+ 1) ]T , we can also write

y(k) = H̃s̃L(k), k ∈ Z.

� Separator of the system

W(f) =
M−1∑
l=0

W (l)e−j2πfl

is a p x q FIR transfer matrix of order M−1 where {W (l); l ∈ {0, . . . ,M−1}} are

the impulse response coefficients and {W(f); f ∈ [−1
2
, 1

2
)} represents the DTFT of

the coefficients. The separator output sequence is denoted by {o(k) ∈ Rp ; k ∈ Z}

whose DTFT can be written as

O(f) = W(f)Y (f).
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Equivalently, in the time domain

o(k) =
M−1∑
l=0

W (l)y(k − l), k ∈ Z.

Defining W̃ = [ W (0) W (1) . . . W (M − 1) ] as the separator coefficient ma-

trix and ỹM(k) = [ yT (k) yT (k − 1) . . . yT (k −M + 1) ]T , we can also write

o(k) = W̃
T
ỹM(k), k ∈ Z.

.

� The overall system function is defined as

G(f) = W(f)H(f) =
P−1∑
l=0

G(l)e−j2πfl,

where {G(l); l ∈ {0, . . . , P −1}} are the impulse response coefficients, {G(f); f ∈

[−1
2
, 1

2
)} represents the DTFT of the coefficients and P − 1 is the order of overall

system. Therefore, in the time domain, the sources {s(k) ∈ Rp ; k ∈ Z} and the

separator outputs {o(k) ∈ Rp ; k ∈ Z} are related by

o(k) =
P−1∑
l=0

G(l)s(k − l), k ∈ Z.

We similarly define G̃ = [ G(0) G(1) . . . G(P − 1) ] and s̃P (k) = [ s(k)

s(k − 1) . . . s(k − P + 1) ]T , we have o(k) = G̃s̃P (k), for k ∈ Z. We obtain

the range matrix of s̃ as Υ̃ = I ⊗Υ.

Similarly, Y = {y(1),y(2), . . . ,y(N)} is the finite set consisting of observations of

mixture samples . Since the mixing channel H̃ is convolutive having order of L− 1, the
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corresponding set of unobservable source samples could be denoted by S = {s(−L +

2), . . . , s(0), s(1), s(2), . . . , s(N)} such that

Y = {H̃s̃L(1), H̃s̃L(2), . . . , H̃s̃L(N)}.

We point out that the source samples in the set S could be generated from stationary

distributions.

For a given convolutive separator channel W̃ having order of M−1 with a corresponding

convolutive overall channel G̃ having order of P − 1 , the convolutive nature of channel

generates N −M + 1 outputs and we illustrate the generated set of separator outputs

O = {o(1),o(2), . . . ,o(N −M + 1)} as

O = {W̃ ỹM(M), W̃ ỹM(M + 1), . . . , W̃ ỹM(N)}

= {G̃s̃P (M), G̃s̃P (M + 1), . . . , G̃s̃P (N)}.
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Chapter 3

Review of Instantaneous BCA
Approach in [1]

In this chapter, an essential summary of the deterministic instantaneous BCA approach

introduced in [1] is provided. We recall that we will extend this approach to the convo-

lutive BCA problem. We first start with the definitions of two geometric objects used

by this approach:

� Principal Hyperellipsoid is the hyperellipse whose principal semi-axis direc-

tions are determined by the eigenvectors of the covariance matrix and whose prin-

cipal semi-axis lengths are equal to principal standard deviations, i.e., the square

roots of the eigenvalues of the covariance matrix.

� Bounding Hyperrectangle corresponds to the box defined by the Cartesian

product of the support sets of the individual components. This can be also de-

fined as the minimum volume box containing all samples and aligning with the

coordinate axes.

An example, for a case of 3-sources to enable 3D picture, is provided in Figure 3.1. In

this figure, a realization of separator output samples and the corresponding bounding

hyperrectangle and principal hyper-ellipsoid are shown.
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Figure 3.1: Bounding Hyper-rectangle and Principal Hyper-ellipsoid

The separation problem is posed as maximization of the relative sizes of these objects.

First optimization setting of this approach is given as:

maximize J1(W ) =

√
det(R̂o)∏
R̂(O)

. (3.1)

In this optimization setting, R̂o represents the sample covariance matrix of the output

samples in the set O and R̂(O) contains the range values of the components of the

output samples in the set O. Note that the numerator of (3.1) is the (scaled) volume

of the principal hyperellipse, whereas the denominator is the volume of the bounding

hyperrectangle for the output vectors.
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The principal hyperellipsoid in the output domain is the image (with respect to the in-

stantaneous overall mapping defined as G) of the principal hyper-ellipsoid in the source

domain. We note that the instantaneous overall mapping causes |det(G)| scaling in the

volume of principal hyperellipsoid. However, the image of the bounding hyperrectangle

in the source domain is a hyperparallelopiped which is a subset of the bounding hyper-

rectangle in the output domain. Hence, the volume scaling for the source and separator

output bounding boxes is more than or equal to |det(G)|. As an important observa-

tion, for the latter, the scaling would be |det(G)| if and only if G is a perfect separator

matrix. We observe this by simple geometrical reasoning that the bounding box in the

source domain is mapped to another hyper-rectangle (aligning with coordinate axes) if

and only if G can be written as G = DP , where D is a diagonal matrix with non-zero

diagonal entries, and P is a permutation matrix. The set of such G matrices is referred

as Perfect Separators. Therefore, the optimization setting given as an example provides

Perfect Separators.

When the size of the bounding hyper-rectangle is chosen as a norm of its main diagonal,

a family of alternative optimization settings is proposed as:

maximize J2,r(W ) = Cp

√
det(R̂o)

||R̂(o)||pr
. (3.2)

In this case, it is shown that the global optima set is in the form G = dP (U −

L)−1diag(σ) where d is a non-zero value, σ ∈ {−1, 1}p. Therefore, all the members

of the global optima set share the same relative source scalings, unlike the set of global

optima for J1 which has arbitrary relative scalings.
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Chapter 4

Convergence Analysis for
Instantaneous BCA Algorithms

In this chapter, we provide a stationary point analysis for the instantaneous BCA algo-

rithms introduced in [1].

4.1 Iterative BCA Algorithms

We first provide the iterative algorithms corresponding to the objective functions intro-

duced in [1] as follows:

� Objective function J1(W ):

W (t+1) = W (t) + µ(t)

((
W (t)R̂(Y )W (t)T

)−1

W (t)R̂(Y )−
p∑

m=1

1

R̂m(O(t))
emb

(t)
m

T
)
,

(4.1)

with

b(t)
m =

∑
km,+∈Km,+(O(t))

λ
(t)
m,+(km,+)y(km,+)−

∑
km,−∈Km,−(O(t))

λ
(t)
m,−(km,−)y(km,−).

where

– W (t) is the separator matrix at the tth iteration,
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– µ(t) is the step size at the tth iteration,

– Km,+(O(t)) is the set of indexes where the mth separator output reaches its

maximum value at the tth iteration,

– Km,−(O(t)) is the set of indexes where the mth separator output reaches its

minimum value at the tth iteration,

– {λ(t)
m,+(km,+) : km,+ ∈ Km,+(O(t))} is the convex combination coefficients,

used for combining the input vectors causing the maximum output, at the

tth iteration, which satisfy

λ
(t)
m,+(km,+) ≥ 0, km,+ ∈ Km,+(O(t)),

∑
km,+∈Km,+(O(t))

λ
(t)
m,+(km,+) = 1,

for m = 1, 2, . . . , p.

– {λ(t)
m,−(km,−) : km,− ∈ Km,−(O(t))} is the convex combination coefficients,

used for combining the input vectors causing the minimum output, at the tth

iteration, which satisfy

λ
(t)
m,−(km,−) ≥ 0, km,− ∈ Km,−(O(t)),

∑
km,−∈Km,−(O(t))

λ
(t)
m,−(km,−) = 1,

for m = 1, 2, . . . , p.

� Objective function J2,r(W ):

– For r = 1, 2, the update equation is

W (t+1) = W (t)+µ(t)

((
W (t)R̂(Y )W (t)T

)−1

W (t)R̂(Y )

−
p∑

m=1

pR̂m(O(t))r−1

||R̂(O(t))||rr
emb

(t)
m

T
)
. (4.2)
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– For r =∞, the update equation is

W (t+1) = W (t)+µ(t)

((
W (t)R̂(Y )W (t)T

)−1

W (t)R̂(Y )

−
∑

m∈M(O(t))

pβ
(t)
m

||R̂(O(t))||∞
emb

(t)
m

T
)
, (4.3)

where M(O(t)) is the set of indexes for which the peak range values is

achieved, i.e.,

M(O(t)) = {m : R̂m(O(t)) = ||R̂(O(t))||∞},

and β
(t)
m =

1

|M(O(t))|
.

4.2 Convergence Analysis Corresponding to Objec-

tive Function J1(W )

In order to identify stationary points, we first rewrite the iterative algorithm (4.1) in

terms of G as

G(t+1) = G(t) + µ(t)

((
G(t)R̂(S)G(t)T

)−1

G(t)R̂(S)HTH −
p∑

m=1

1

R̂m(O(t))
emb

(t)
m

T
H

)
,

= G(t) + µ(t)

((
G(t)

)−T
−

p∑
m=1

1

R̂m(O(t))
em

[ ∑
km,+∈Km,+(O

G(t) )

λ
(t)
m,+(km,+)sT (km,+)

−
∑

km,−∈Km,−(O
G(t) )

λ
(t)
m,−(km,−)sT (km,−)

])
HTH . (4.4)
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Note that under the assumption (A1), the inputs in the expression (4.4) can be written

as

s(km,+)T = sign
{
P
{
G(t)
m,:

}}
U − sign

{
N
{
G(t)
m,:

}}
L+ a(t)

m (km,+)T , (4.5)

s(km,−)T = −sign
{
N
{
G(t)
m,:

}}
U + sign

{
P
{
G(t)
m,:

}}
L+ c(t)

m (km,−)T , (4.6)

where U = diag ( max(s1), max(s2), . . . , max(sp) ) and L = diag( min(s1), min(s2),

. . . , min(sp) ) are the diagonal matrices containing maximum (minimum) values for

the components of the source samples in the set S and a
(t)
m (km,+)T and c

(t)
m (km,−)T

are additive source terms which have zero values for the components corresponding

to nonzero components of G(t)
m,: and arbitrary values (from the support) for the other

components. Therefore, the input dependent update part in the right side of (4.4) can

be written as

sign
{
G(t)
m,:

}
(U −L) +

∑
km,+∈Km,+(O

G(t) )

λ
(t)
m,+(km,+)a(t)

m (km,+)T

−
∑

km,−∈Km,−(O
G(t) )

λ
(t)
m,−(km,−)c(t)

m (km,−)T ≈ sign
{
G(t)
m,:

}
(U −L), (4.7)

where we assume that the contributions of the a and c dependent terms average out.

We identifyG∗ as a stationary point if and only if it is mapped to itself after an iteration

of the algorithm. We note that since H is assumed to be a full rank matrix HTH is

invertible hence from (4.4) and (4.7), this is equivalent to the condition that

diag(R̂1(O), . . . , R̂p(O))−1sign {G∗} (U −L)GT
∗ = I. (4.8)

DefiningQ = G∗(U−L) with noting that sign {G∗} = sign {Q} and R̂m(O) = ||Qm,:||1
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for m = 1, . . . , p yields

sign {Q}QT = diag
(
||Q1,:||1, . . . , ||Qp,:||1

)
.

We define Q̃ = diag
(
||Q1,:||1, . . . , ||Qp,:||1

)−1
Q and obtain

sign
{

Q̃
}

Q̃
T

= I. (4.9)

We provide some examples for the set of stationary points:

� Perfect Separators: If Q̃ = Pdiag(σ) where σ ∈ {−1, 1}p and P is a permutation

matrix, then sign
{

Q̃
}

= Q̃ hence sign
{

Q̃
}

Q̃
T

= I. This yields G∗ = DP hence

the corresponding G∗ is a perfect separator matrix.

� Orthogonal matrices where each row has entries with constant magnitude: Sup-

pose that Q̃ is an orthogonal matrix whose i’th row has αi non-zero values

and the magnitude of corresponding non-zero entries is 1/αi. Therefore, we can

write Q̃ = diag(1/α1, 1/α2, . . . , 1/αp)sign
{

Q̃
}

This implies that sign
{

Q̃
}

Q̃
T

=

diag(α1, α2, . . . , αp) diag(1/α1, 1/α2, . . . , 1/αp) = I.

� Matrices whose entries are powers of 0.5: Defining

T =



(0.5)n−1 (0.5)n−1 (0.5)n−2 . . . (0.5)2 0.5

(0.5)n−1 (0.5)n−1 (0.5)n−2 (0.5)2 −0.5

(0.5)n−2 (0.5)n−2 (0.5)n−3 −0.5 0

...
...

... 0
...

(0.5)2 (0.5)2 −0.5
... 0

0.5 −0.5 0 . . . 0 0


a set of stationary points

can be defined of the form Q̃ = diag(σ)P 1TP 2 where P 1 and P 1 are permutation

matrices.
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We note that we do not provide the set of all stationary points, however, we will show

that if a stationary point of the algorithm (4.1)/(4.4) is not a perfect separator, then it

is a saddle point.

Lemma : If a stationary point does not belong to the set of perfect separators, then its

rows and columns can be permuted such that upper-left 2 by 2 sub-matrix of its sign

matrix becomes

Λ1 =

 1 1

1 −1

 or Λ−1 =

 −1 −1

−1 1

 .
Proof : Let Q̃ be a stationary point which is not a perfect separator. There exists a

row of Q̃ which has more than one non-zero entries (wlog, assume Q̃1,:). From (4.9), we

have

(p.1)
{

sign
{

Q̃j,:

}
, j = 1, 2, . . . , p

}
are linearly independent.

(p.2) sign
{

Q̃j,:

}
Q̃
T

1,: = 0 for j = 2, . . . , p.

Note that (p.1) implies that at least one Q̃j,: has a non-zero entry overlapping with

one of the non-zero entries of Q̃1,:. Otherwise, non-overlap condition restricts span of{
sign

{
Q̃j,:

}
, j = 2, . . . , p

}
to at most p − 2 dimensional space which conflicts with

linear independence.

Furthermore, (p.2) implies that number of overlapping entries should be greater than

one with an alternating sign.

Therefore, rows and columns of a stationary point which is not a perfect separator can

be permuted such that upper-left 2 by 2 sub-matrix of its sign matrix becomes Λ1 or

Λ−1.

The following theorem shows that the stationary points other than perfect separators

are saddle points:

24



Theorem 1: If a stationary point of the algorithm (4.1)/(4.4) does not belong to the

set of perfect separators, then it is a saddle point.

Proof : We note that G is a perfect separator matrix implies that Q̃ is a perfect

separator matrix and vice versa. Therefore, it is equivalent to show that all Q̃ matrices

satisfying (4.9) are saddle points if they are not perfect separators.

We note that the cost function in terms of Q̃ is equivalent to

J1(Q̃) = |det(Q̃)|.

From Lemma, Q̃ can be permuted such that upper-left 2 by 2 sub-matrix of its sign

matrix becomes Λ1 or Λ−1. We define the permuted matrix as Q̆ and wlog we assume

sign
{

Q̆1:2,1:2

}
= Λ1. We also observe that J(Q̃) = J(Q̆).

We partition

Q̆ =

 Q̆(a) Q̆(b)

Q̆(c) Q̆(d)

 , Q̆(a) = Q̆1:2,1:2, Q̆(b) = Q̆1:2,3:p

Q̆(c) = Q̆3:p,1:2, Q̆(d) = Q̆3:p,3:p

Note that, sign
{

Q̆(a)
}

= Λ1. We will prove that Q̆(d) is non-singular. From (4.9), we

have  Q̆(a) Q̆(b)

Q̆(c) Q̆(d)


 sign

{
Q̆(a)T

}
sign

{
Q̆(c)T

}
sign

{
Q̆(b)T

}
sign

{
Q̆(d)T

}
 = I,

which yields

Q̆(c)sign
{

Q̆(a)T
}

+ Q̆(d)sign
{

Q̆(b)T
}

= 0.
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If Q̆(d) is singular, then there exists a non-zero vector x ∈ <p−2 such that xT Q̆(d) = 0.

Therefore,

xT Q̆(c)sign
{

Q̆(a)T
}

= 0,

which yields xT Q̆(c) = 0 since sign
{

Q̆(a)
}

= Λ1 is non-singular. Defining the non-zero

vector x̂ ∈ <p such that x̂ = [0 0 xT ]T , we have

 Q̆(a)T Q̆(c)T

Q̆(b)T Q̆(d)T

 x̂ = 0.

This yields contradiction since Q̆T is non-singular. Therefore, Q̆(d) is non-singular.

We now prove that Q̆ is a saddle point. Using Schur’s Complement, we have

J1(Q̆) =

∣∣∣∣ det
(
Q̆(d)

)
det

(
Q̆(a) − Q̆(b)

(
Q̆(d)

)−1

Q̆(c)

) ∣∣∣∣.
Defining ∆ = Q̆(a) − Q̆(b)

(
Q̆(d)

)−1

Q̆(c), we note that

∆−1 =
(
Q̆−1

)
1:2,1:2

= sign
{

Q̃
T
}

1:2,1:2
= Λ1.

Hence we obtain ∆ =

 0.5 0.5

0.5 −0.5

.

� If we perturb Q̆(a) matrix with

 ε −ε

−ε −ε

, we then note that det(Q̆(d)) does not

change and | det(∆)| becomes | det(∆)|+ 2ε2. Hence, we have J1(Q̃ε) > J1(Q̃).
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� If we perturb Q̆(a) matrix with

 ε −ε

ε ε

, we then note that det(Q̆(d)) does not

change and | det(∆)| becomes | det(∆)| − 2ε2. Hence, we have J1(Q̃ε) < J1(Q̃).

Therefore, if a stationary point of the algorithm (4.1)-(4.4) does not belong in the set

of perfect separators, then it is a saddle point.

4.3 Convergence Analysis Corresponding to Objec-

tive Function J2,1(W )

Following similar steps as in the previous section, we have

G(t+1) = G(t) + µ(t)

((
G(t)

)−T
−

p∑
m=1

p

||R̂(O(t))||1
em[ ∑

km,+∈Km,+(O(t))

λ
(t)
m,+(km,+)sT (km,+)−

∑
km,−∈Km,−(O(t))

λ
(t)
m,−(km,−)sT (km,−)

])
HTH .

(4.10)

The stationary points in this case satisfies

p

||R̂(O)||1
sign {G∗} (U −L)GT

∗ = I. (4.11)

Similarly, we define Q = G∗(U − L) with noting that sign {G∗} = sign {Q} and

||R̂(O)||1 =
∑p

m=1 ||Qm,:||1 yields

sign {Q}QT =

(∑p
m=1 ||Qm,:||1

p

)
I.
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This implies that

||Q1,:||1 = ||Q2,:||1 = . . . = ||Qp,:||1.

We define Q̃ =
1

||Q1,:||1
Q and obtain

sign
{

Q̃
}

Q̃
T

= I. (4.12)

We note that we reach the same condition as (4.9) for the objective function J2,1(W ),

therefore, the examples of the Q̃ matrices also applies here. However, the difference

is that for the objective function J1(W ) corresponding Q matrices can be obtained

by arbitrary scaling of the rows of Q̃ whereas here we should multiply the rows of Q̃

matrices with the same parameter.

Similar to the objective function J1(W ), we will show that if a stationary point of the

algorithm (4.2)/(4.10) is not a perfect separator, then it is a saddle point.

Theorem 2: If a stationary point of the algorithm (4.2)-(4.10) does not belong to the

set of perfect separators, then it is a saddle point.

Proof : In this case, we note that the cost function in terms of Q̃ is equivalent to

J(Q̃) =
|det(Q̃)|

pp
.

Therefore, the proof of the Theorem 1 also applies here.
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4.4 Convergence Analysis Corresponding to Objec-

tive Function J2,2(W )

For the objective function J2,2(W ), we have

G(t+1) = G(t) + µ(t)

((
G(t)

)−T
−

p∑
m=1

pR̂m(O(t))

||R̂(O(t))||22
em[ ∑

km,+∈Km,+(O(t))

λ
(t)
m,+(km,+)sT (km,+)−

∑
km,−∈Km,−(O(t))

λ
(t)
m,−(km,−)sT (km,−)

])
HTH .

(4.13)

The stationary points in this case satisfies

p

||R̂(O)||22
diag(R̂1(O), . . . , R̂p(O))sign {G∗} (U −L)GT

∗ = I.

Similarly, we define Q = G∗(U −L) and obtain

diag
(
||Q1,:||1, . . . , ||Qp,:||1

)
sign {Q}QT =

(∑p
m=1 ||Qm,:||21

p

)
I.

This implies that

||Q1,:||1 = ||Q2,:||1 = . . . = ||Qp,:||1.

Similarly, defining Q̃ =
1

||Q1,:||1
Q yields

sign
{

Q̃
}

Q̃
T

= I. (4.14)

We note that this condition is equivalent to the condition for the objective function

J2,1(W ).
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4.5 Convergence Analysis Corresponding to Objec-

tive Function J2,∞(W )

For the objective function J2,∞(W ), we have

G(t+1) = G(t) + µ(t)

((
G(t)

)−T
−

∑
m∈M(O(t))

pβ
(t)
m

||R̂(O(t))||∞
em[ ∑

km,+∈Km,+(O(t))

λ
(t)
m,+(km,+)sT (km,+)−

∑
km,−∈Km,−(O(t))

λ
(t)
m,−(km,−)sT (km,−)

])
HTH .

(4.15)

The stationary points satisfies

∑
m∈M(O)

pβm

||R̂(O)||∞
emsign

{
(G∗)m,:

}
(U −L)GT

∗ = I.

Defining Q = G∗(U −L) yields

∑
m∈M(O)

pβm

||R̂(O)||∞
emsign

{
Qm,:

}
QT = I. (4.16)

We note that in order to satisfy (4.29), we must have M(O) = {1, 2, . . . , p} which

implies that the ranges of outputs are equal, i.e.,

||Q1,:||1 = ||Q2,:||1 = . . . = ||Qp,:||1.

Hence, βm = 1/p for m = 1, 2, . . . , p. We similarly define Q̃ =
1

||Q1,:||1
Q and obtain

from (4.29) that

sign
{

Q̃
}

Q̃
T

= I. (4.17)
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We note that this condition is equivalent to the condition for the objective function

J2,1(W ).

4.6 Extension to Complex Signals

In the complex case, the source vectors and output vectors belong to Cp and the mixture

vectors belong to Cq. The mixing and separator matrices are complex matrices, i.e.,H =

Cq×p and W = Cp×q. For a given complex vector x ∈ Cp, we define the corresponding

isomorphic real vector x̀ ∈ R2p as x̀ =
[
R(xT ) I(xT )

]T
. We also define the operator

ψ : Cp×q → R2p×2q as

ψ(X) =

 R(X) −I(X)

I(X) R(X)

 .
We note that since o = Wy, we have ò = ψ(W )ỳ.

Using these definitions, J1 objective function in (3.1) has been modified for the complex

case as

Jc1(ψ(W )) = Cp

√
det(R̂ò)∏
R̂(Ò)

, (4.18)

where in this case Ò = {ò(1), ò(2), . . . , ò(N)}.

For the modified objective function, it is proved that the global optima for (4.18) (in
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terms of G) is given by

Oc = {G = DP : P ∈ Rp×p is a permutation matrix,

D ∈ Ip×p is a full rank diagonal matrix with,

Dii = αie
jπki
2 , αi ∈ R, ki ∈ Z, i = 1, . . . , p},

which corresponds to a subset of complex perfect separators with discrete phase ambi-

guity.

Similar to the real case, complex approach is extended to the Jc2 family by defining

Jc2,r(ψ(W )) = Cp

√
det(R̂ò)

||R̂(Ò)||2pr
. (4.19)

The corresponding iterative updates for ψ(W ) can similarly be written as

� Objective function Jc1(ψ(W )):

ψ(W (t+1)) = ψ(W (t)) + µ(t)

((
ψ(W (t))R̂(Ỳ )ψ(W (t))T

)−1

ψ(W (t))R̂(Ỳ )

−
2p∑
m=1

1

R̂m(Ò(t))
emb

(t)
m

T
)
, (4.20)

where

b(t)
m =

∑
km,+∈Km,+(Z(t))

λ
(t)
m,+(km,+)ỳ(km,+)−

∑
km,−∈Km,−(Z(t))

λ
(t)
m,−(km,−)ỳ(km,−),

for m = 1, 2, . . . , 2p.

� Objective function Jc2,r(ψ(W )):
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For r = 1, 2, the update equation is

ψ(W (t+1)) = ψ(W (t)) + µ(t)

((
ψ(W (t))R̂(Ỳ )ψ(W (t))T

)−1

ψ(W (t))R̂(Ỳ )

−
2p∑
m=1

2pR̂m(Ò(t))r−1

||R̂(Ò(t))||rr
emb

(t)
m

T
)
. (4.21)

For r =∞, the update equation is

ψ(W (t+1)) = ψ(W (t)) + µ(t)

((
ψ(W (t))R̂(Ỳ )ψ(W (t))T

)−1

ψ(W (t))R̂(Ỳ )

−
∑

m∈M(Ò(t))

2pβ
(t)
m

||R̂(Ò(t))||∞
emb

(t)
m

T
)
. (4.22)

4.7 Convergence Analysis Corresponding to Objec-

tive Function Jc1(ψ(W ))

We rewrite the iterative algorithm (4.20) in terms of ψ(G) as

ψ(G(t+1)) = ψ(G(t)) + µ(t)

(
ψ(G(t))−T −

2p∑
m=1

1

R̂m(Ò(t))
em[ ∑

km,+∈Km,+(Ò(t))

λ
(t)
m,+(km,+)̀sT (km,+)−

∑
km,−∈Km,−(Ò(t))

λ
(t)
m,−(km,−)̀sT (km,−)

])
ψ(H)Tψ(H).

(4.23)

We can similarly write the input dependent update part in the right side of (4.23) as

sign
{
ψ(G(t))m,:

}
(UT −LT ), (4.24)
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where UT =

 UR 0

0 U I

 and LT =

 LR 0

0 LI

 such that

UR = diag (max(R(s1)),max(R(s2)), . . . ,max(R(sp))) ,

LR = diag (min(R(s1)),min(R(s2)), . . . ,min(R(sp))) ,

U I = diag (max(I(s1)),max(I(s2)), . . . ,max(I(sp))) ,

LI = diag (min(I(s1)),min(I(s2)), . . . ,min(I(sp))) .

Here we assume that max(R(si)) > 0, min(R(si)) < 0, max(I(si)) > 0 and min(I(si)) <

0 for i = 1, 2, . . . , p. Therefore, the stationary points satisfies

diag(R̂1(Ò), . . . , R̂2p(Ò))−1sign {ψ(G)∗} (UT −LT )ψ(G)T∗ = I. (4.25)

DefiningQ = ψ(G)∗(UT−LT ) with noting that sign {ψ(G)∗} = sign {Q} and R̂m(Ò) =

||Qm,:||1 for m = 1, . . . , 2p yields

sign {Q}QT = diag
(
||Q1,:||1, . . . , ||Q2p,:||1

)
.

We define Q̃ = diag
(
||Q1,:||1, . . . , ||Q2p,:||1

)−1
Q and obtain

sign
{

Q̃
}

Q̃
T

= I. (4.26)

We first provide the set of perfect separators in this case and then prove that if a

stationary point of the algorithm (4.20)/(4.23) is not a perfect separator, then it is a

saddle point.

� Perfect Separators: We note that in this case, due to the structure of ψ(G),
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positions of non-zero values of Q̃:,1:p suffices to have the positions of non-zero

values of Q̃. If Q̃1:p,: = Pdiag(σ), then sign
{

Q̃
}

= Q̃ hence sign
{

Q̃
}

Q̃
T

= I.

This yields G∗ = DP where Dii = αie
jπki
2 , αi ∈ R, ki ∈ Z, i = 1, . . . , p. We note

that the entries of G matrices’ can only be real or purely imaginary due to the

structure of ψ(G).

Theorem 3: If a stationary point of the algorithm (4.20)/(4.23) does not belong to the

set of perfect separators, then it is a saddle point.

Proof : We note that G is a perfect separator matrix implies that Q̃ is a perfect

separator matrix and vice versa. Therefore, it is equivalent to show that all Q̃ matrices

satisfying (4.26) are saddle points if they are not perfect separators.

From (4.18), the cost function in terms of Q̃ is equivalent to

Jc1(Q̃) = |det(Q̃)|.

Therefore, the proof of the Theorem 1 also applies here.

4.8 Convergence Analysis Corresponding to Objec-

tive Function Jc2,1(ψ(W ))

Following similar steps as in the previous section, the stationary points satisfy

2p

||R̂(Ò)||1
sign {ψ(G)∗} (UT −LT )ψ(G)T∗ = I.
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We define Q = ψ(G)∗(UT − LT ) with noting that sign {ψ(G)∗} = sign {Q} and

||R̂(Ò)||1 =
∑2p

m=1 ||Qm,:||1 and obtain

sign {Q}QT =

(∑2p
m=1 ||Qm,:||1

2p

)
I.

This implies that

||Q1,:||1 = ||Q2,:||1 = . . . = ||Q2p,:||1.

We define Q̃ =
1

||Q1,:||1
Q and obtain

sign
{

Q̃
}

Q̃
T

= I. (4.27)

We note that this is the same condition (4.26) for the objective function Jc2,1(ψ(W )),

therefore, the derivations also apply here. However, the difference is that for the ob-

jective function Jc1(ψ(W )), corresponding Q matrices can be obtained by arbitrary

scaling of the rows of Q̃ whereas here we should multiply the rows of Q̃ matrices with

the same parameter.

4.9 Convergence Analysis Corresponding to Objec-

tive Function Jc2,2(ψ(W ))

The stationary points in this case satisfies

2p

||R̂(Ò)||22
diag(R̂1(Ò), . . . , R̂2p(Ò))sign {ψ(G)∗} (UT −LT )ψ(G)T∗ = I.
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Similarly, we define Q = ψ(G)∗(UT −LT ) and obtain

diag
(
||Q1,:||1, . . . , ||Q2p,:||1

)
sign {Q}QT =

(∑2p
m=1 ||Qm,:||21

2p

)
I.

This implies that

||Q1,:||1 = ||Q2,:||1 = . . . = ||Q2p,:||1.

Similarly, defining Q̃ =
1

||Q1,:||1
Q yields

sign
{

Q̃
}

Q̃
T

= I. (4.28)

We note that this condition is equivalent to the condition for the objective function

J2,1(ψ(W )).

4.10 Convergence Analysis Corresponding to Ob-

jective Function Jc2,∞(ψ(W ))

The stationary points satisfies

∑
m∈M(Ò)

2pβm

||R̂(Ò)||∞
emsign

{
(ψ(G)∗)m,:

}
(UT −LT )ψ(G)T∗ = I.

Defining Q = ψ(G)∗(UT −LT ) yields

∑
m∈M(Ò)

2pβm

||R̂(Ò)||∞
emsign

{
Qm,:

}
QT = I. (4.29)

We note that in order to satisfy (4.29), we must have M(Ò) = {1, 2, . . . , 2p} which
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implies that the ranges of outputs are equal, i.e.,

||Q1,:||1 = ||Q2,:||1 = . . . = ||Q2p,:||1.

Hence, βm = 1/2p for m = 1, 2, . . . , 2p. We similarly define Q̃ =
1

||Q1,:||1
Q and obtain

from (4.29) that

sign
{

Q̃
}

Q̃
T

= I. (4.30)

We note that this condition is equivalent to the condition for the objective function

J2,1(ψ(W )).

4.11 Conclusion

In this section, we presented the stationary points of instantaneous BCA algorithms

introduced in [1]. We provide some examples for the set of stationary points, however,

we prove that all the stationary points of the algorithms are saddle points except perfect

separators for each algorithm.
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Chapter 5

Extension of Instantaneous BCA
Approach

In this chapter, we extend the instantaneous BCA approach introduced in [1] by consid-

ering generalized functions of ranges of separator outputs. We recall that the approach

in [1] exploits two geometric objects defined on output samples which are principal

hyper-ellipsoid and bounding hyper-rectangle. The approach is the optimization of the

relative sizes of these objects where the volume and the main diagonal length is con-

sidered to determine the size of bounding hyper-rectangle. In this chapter, we consider

more general functions of ranges of output samples (corresponding to the side lengths of

bounding hyper-rectangle) which also covers the size of bounding hyper-rectangle. It has

been proved that when the assumption (A1) holds, the global maxima of the introduced

objective functions which are the perfect separators are reached. However, in some real

world applications, this assumption may not hold or we may not know if this assumption

holds or not which can cause a variation in the performances of the introduced algo-

rithms. Therefore, in this chapter, we define a more general optimization framework

and correspondingly a variety of objective functions and prove that the corresponding

global maxima are in the set of perfect separators under same conditions. Hence, with

this approach, we are able to generate a variety of instantaneous BCA algorithms that

can be exploited to obtain better performances in different applications.
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5.1 Extended BCA Optimization Framework

We provide the updated instantaneous BCA optimization framework by considering the

objective functions of [1] in a general case as

J(W ) =

√
det(R̂o)

f
(
R̂(o1), R̂(o2), . . . , R̂(op)

) , (5.1)

where R̂o = 1
N

∑N
l=1(o(l) − µ̂(o))(o(l) − µ̂(o))T , µ̂(o) = 1

N

∑N
l=1 o(l) is the sample

covariance matrix of o, R̂(om) is the range of the m’th component of the vectors in the

set O and f is any function that satisfies the following:

f
(
R̂(o1), R̂(o2), . . . , R̂(op)

)
≥ cp

p∏
m=1

R̂(om), (5.2)

such that the equality is achievable for a finite constant cp and the ranges R̂(o1), R̂(o2),

. . . , R̂(op) with some specific requirements. In the proposed objective function, the

modification is in the denominator where we consider generalized functions of ranges of

outputs. Here, we recall the assumption regarding the set S:

Assumption: S contains the vertices of its (non-degenerate) bounding hyper-rectangle

(A1).

In the following theorem, we show that the global maxima of the objective function

(5.1) correspond to the perfect separators.

Theorem: Assuming the setup in Section 2.2, H is a full rank matrix and R̂s � 0,

the set of global maxima for J in (5.1) is equal to a set of perfect separator matrices.

Proof: We first note that since o = Gs, we have R̂o = GR̂sG
T where R̂s is the

sample covariance matrix of s. Therefore,

√
det(R̂o) = |det(G)|

√
det(R̂s).
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When assumption (A1) holds, we can write the range of mth component of o as R̂(om) =

||Gm,:Υ||1 where Gm,: is the mth row of G and Υ = diag(R̂(s1), R̂(s2), . . . , R̂(sp)) is

the diagonal matrix containing range values of the source samples in the set S. We can

further define A = GΥ and write the objective function (5.1) in terms of A as

J(W ) =
|det(AΥ−1)|

√
det(R̂s)

f (||A1,:||1, ||A2,:||1, . . . , ||Ap,:||1)
,

=

√
det(R̂s)∏p

m=1 R̂(sm)

|det(A)|
f (||A1,:||1, ||A2,:||1, . . . , ||Ap,:||1)

Using the Hadamard inequality [26] and the ordering ||q||1 ≥ ||q||2 for any q yields

det(A) ≤
p∏

m=1

||Am,:||2 (5.3)

≤
p∏

m=1

||Am,:||1. (5.4)

Since the function f satisfies (5.2), we obtain

|det(A)|
f (||A1,:||1, ||A2,:||1, . . . , ||Ap,:||1)

≤
∏p

m=1 ||Am,:||1
cp
∏p

m=1 ||Am,:||1
,

which further implies

J(W ) ≤ 1

cp

√
det(R̂s)∏p

m=1 R̂(sm)
. (5.5)

To achieve the equality in (5.5), the equalities in (5.2), (5.3) and (5.4) must be achieved.

The equality in (5.3) is achieved if and only if the rows of A are orthogonal to each other

and the equality in (5.4) is achieved if and only if the rows ofA align with the coordinate

axes. Therefore, the equality in (5.3) and (5.4) holds if and only if A = PD, hence,

G = PDΥ−1 where P is a permutation matrix and D is a nonsingular diagonal matrix
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which corresponds to the perfect separators. Hence, with the specific requirement of

(5.2) to achieve the equality in (5.5), the global maxima of the objective function (5.1)

correspond to the perfect separators or a subset of perfect separators.

We here give some examples for the function f :

� f1

(
R̂(o1), R̂(o2), . . . , R̂(op)

)
=
∏p

m=1 R̂(om):

This is a trivial example where the equality in (5.2) is achieved for cp = 1. Hence,

the global maxima is achieved when G = PDΥ−1 which corresponds to perfect

separators. We note that this function corresponds to the volume of the bounding

hyperrectangle of outputs and is equivalent to the objective function J
(W )
1 (W )

of [1].

� f2,r

(
R̂(o1), R̂(o2), . . . , R̂(op)

)
=

∥∥∥∥[R̂(o1) R̂(o2) ... R̂(op)
]T∥∥∥∥p

r

where r ≥ 1:

In this example, due to the ordering ||q||r ≥ p
1−r
r ||q||1 for any q ∈ <p and the

Arithmetic-Geometric-Mean-Inequality yields

f2,r

(
R̂(o1), R̂(o2), . . . , R̂(op)

)
≥ p

p(1−r)
r

∥∥∥∥[R̂(o1) R̂(o2) ... R̂(op)
]T∥∥∥∥p

1

,

≥ p
p
r

p∏
m=1

R̂(om),

where the equality is achieved when cp = p
p
r and the ranges R̂(om) for m =

1, 2, . . . p are equal to each other or equivalently, the non-zero entries in the rows

of A are equal in magnitude. Hence, the global maxima is achieved when G =

kdiag(ρ)PΥ−1 where k is a non-zero value and ρ ∈ {−1, 1}p which correspond

to a subset of perfect separators. We note that these functions correspond to the

length of the main diagonal of the bounding hyperrectangle of outputs and are

equivalent to the objective functions J
(W )
2,r (W ) of [1] for r = 1, 2,∞.

� f3

(
R̂(o1), R̂(o2), R̂(o3)

)
=
(

2R̂(o1)R̂(o2) + 2R̂(o1)R̂(o3) + 2R̂(o2)R̂(o3)
) 3

2
:
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This example illustrates the surface area of the bounding hyperrectange of outputs

for p = 3. Using the Arithmetic-Geometric-Mean-Inequality (AGMI) yields

f3

(
R̂(o1), R̂(o2), R̂(o3)

)
≥ 63/2

3∏
m=1

R̂(om),

where the equality is achieved in the same condition with the norm example for

cp = 63/2. We can generalize this by choosing f3

(
R̂(o1), R̂(o2), . . . , R̂(op)

)
=(∑p

t=1 R̂(o1)mt,1R̂(o2)mt,2 . . . R̂(op)
mt,p
)p/x

where
∑p

t=1mt,j = x for j = 1, 2, . . . p

and x ∈ <+. According to the equality requirement of AGMI, the global maxima

correspond to a subset of perfect separators.

� f4

(
R̂(o1), R̂(o2), . . . , R̂(op)

)
= log

(
eR̂(o1) + eR̂(o2) + . . .+ eR̂(op)

)2p

:

In this case, using the AGMI yields

f4

(
R̂(o1), R̂(o2), . . . , R̂(op)

)
≥ log

(
p
(
eR̂(o1)+R̂(o2)+...+R̂(op)

)1/p
)2p

,

=

(
log(p) +

1

p

(
R̂(o1) + R̂(o2) + . . .+ R̂(op)

))2p

,

≥
(
log(p) +

(
R̂(o1)R̂(o2) . . . R̂(op)

)1/p
)2p

,

≥ 22plog(p)p
p∏

m=1

R̂(om),

where the equality is achieved when cp = 22plog(p)p and the ranges R̂(om) for

m = 1, 2, . . . p are equal to each other and log(p) =
(
R̂(o1)R̂(o2) . . . R̂(op)

)1/p

,

yielding R̂(om) = log(p) for m = 1, 2, . . . p. Hence, the global maxima is achieved

when G = log(p)PΥ−1 which correspond to a subset of perfect separators.
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5.2 Adaptive Implementations

In this section, we provide the adaptive algorithms corresponding to the examples of

objective functions presented in the previous section. We note that rather than maxi-

mizing J , we maximize its logarithm since with the logarithm operation, we utilize the

conversion of ratio expression to the difference expression since it simplifies the update

components in the iterative algorithm. Therefore, the new objective function is modified

as

J̄(W ) = log (J(W )) =
1

2
log
(
det
(
WR̂yW

T
))
− log

(
f
(
R̂(o1), R̂(o2), . . . , R̂(op)

))
.

The derivative of the first part of J̄(W ) with respect to W is

1

2

∂log
(
det
(
WR̂yW

T
))

∂W
=
(
WR̂yW

T
)−1

WR̂y.

We note that since f1 and f2,r functions for r = 1, 2,∞ are covered in [1], we only

provide the adaptive algorithms for f3 and f4 functions.

� Iterative algorithm for f3:

The subgradient based adaptive algorithm maximizing J̄(W ) using the function

f3 can be written as

W (i+1) = W (i)+µ(i)

((
W (i)R̂yW

(i)T
)−1

W (i)R̂y−

3

2

3∑
m=1

gmem
(
y(lmax(i)

m )− y(lmin(i)
m )

)T )

where gm =
R̂(o

(i)
1 ) + R̂(o

(i)
2 ) + R̂(o

(i)
3 )− R̂(o

(i)
m )

R̂(o
(i)
1 )R̂(o

(i)
2 ) + R̂(o

(i)
1 )R̂(o

(i)
3 ) + R̂(o

(i)
1 )R̂(o

(i)
3 )

, µ(i) is the step-size

at the ith iteration and l
max(i)
m (l

min(i)
m ) is the sample index for which the maximum
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(minimum) value for the mth separator output is achieved at the ith iteration.

� Iterative algorithm for f4:

The subgradient based adaptive algorithm maximizing J̄(W ) using the function

f4 can be written as

W (i+1) = W (i)+µ(i)

((
W (i)R̂yW

(i)T
)−1

W (i)R̂y − 2p

p∑
m=1

eR̂(o
(i)
m )

log (h)h
em
(
y(lmax(i)

m )− y(lmin(i)
m )

)T )

where h = eR̂(o
(i)
1 ) + eR̂(o

(i)
2 ) + . . .+ eR̂(o

(i)
p ).

5.3 Numerical Examples and Conclusion

In this section, we provide the following scenario to illustrate the separation capability of

the algorithms corresponding to the examples given in the Section 5.1 for the dependent-

correlated sources: We generate the sources through the zero-mean adjusted Copula-t

distribution, a perfect tool for generating vectors with controlled correlation, with 4

degrees of freedom whose correlation matrix parameter is given by a Toeplitz matrix

Rs whose first row is

[
1 ρs . . . ρp−1

s

]
, where the correlation parameter is varied in

the range 0 to 1. Here, we consider a scenario with 3 sources and 5 mixtures and the

coefficients of the 5 × 3 mixing matrix are randomly generated, based on i.i.d. Gaussian

distribution.

Figure 5.1 shows the output total Signal energy to total Interference energy (over

all outputs) Ratio (SIR) obtained for the BCA algorithm examples (corresponding to

f1, f2,1, f3, f4) for various correlation parameters ρs ∈ [0, 0.9] for the mixture length of

N = 100000. The same procedure is repeated for FastICA [3], [27] and JADE [28], [29]
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algorithms, as representative ICA approaches.

We consider the performance criteria as the output total Signal energy to total Inter-

ference energy (over all outputs) Ratio (SIR) which is defined as

SIR =
Total Signal Power

Total Residual Power
=

Trace(GsigR̂sG
T
sig)

Trace(GresR̂sG
T
res)

,

where Gsig is defined as the matrix obtained from G by keeping the maximum entries

of each row and making the other entries 0 and Gres is defined as the matrix obtained

from G by making the maximum entries of each row 0 and keeping the other entries so

that we will have the total signal power and total residual power.
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Figure 5.1: Result of the proposed BCA algorithms’ performances for the mixtures of
dependent sources for various correlation parameters when the mixture length is 100000.

In the second example, we generate the sources from exponentially distributed random

variables by the inverse CDF method used on the first setup. Figure 5.2 illustrates the

separation performances when the mixture length is N = 10000.

We observe from the figures that the BCA algorithms maintain high separation perfor-
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Figure 5.2: Result of the proposed BCA algorithms’ performances for the mixtures of
exponentially distributed dependent sources for various correlation parameters when the
mixture length is 10000.

mance for a wide range of correlation parameters especially for the longer sample size

case (i.e., N = 100000). However, both FastICA and JADE algorithms’ performances

degrades substantially along with increasing correlation since the independence assump-

tion does not hold. We also point out that for ρs = 0, the performances of the BCA

algorithms are better than FastICA and JADE even though the independence assump-

tion holds. This is due to the fact that the sample sizes are sufficient for the assumption

(A1) to hold, whereas they may not be sufficient to reflect the stochastic independence

of the sources. We also note that in the second example proposed BCA algorithms have

different performances, therefore, the variety of BCA algorithms which can be produced

from this analysis might be useful in different scenarios. We finally note that expo-

nential distribution decreases the likeliness of (A1) to hold, however, proposed BCA

algorithms still have good separation performances and with the longer data records

the BCA algorithms become more successful in separating correlated sources.
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Chapter 6

Convolutive BCA Algorithms for
Stationary Independent and/or
Dependent Source Separation

In this chapter, we extend the instantaneous or memoryless BCA approach introduced

in [24] for the convolutive BCA problem. We extend the objective functions proposed

in [24] to cover the more general case where the observations are space-time mixtures of

the original sources. In particular, we show that the algorithms corresponding to these

extensions are capable of separating not only independent sources but also sources which

are potentially dependent and even correlated in both space and time dimensions. This

is a remarkable feature of the proposed approach which is due to a proper exploitation

of the boundedness property of sources.

6.1 A Family of Convolutive BCA Algorithms

6.1.1 A Convolutive BCA Optimization Framework

In this section, we extend the instantaneous BCA approach introduced in [24] to the con-

volutive BSS separation problem. We modify the first (volume ratio) objective function
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of [24] as

J1(W̃ ) =
1

2

∫ 1
2

− 1
2

log(det(Po(f)))df − log

(
p∏

m=1

R(om)

)
, (6.1)

where Po(f) is the PSD of the separator output sequence. In the proposed objective

function, we only modify the log volume of the principal hyper-ellipse, i.e., the first term.

The definition of the volume of the principal hyper-ellipse is extended from sample based

correlation information to process based correlation information, capturing inter-sample

correlations. We note that the objective in (6.1) is the asymptotic extension of the J1

objective in [24]. This extension is obtained by concatenating source vectors in the

source process and invoking the wide sense stationarity property of the sources along

with the linear-time-invariance property of mixing and separator systems such that the

determinant of the covariance in [24] converges to the integral term in (6.1). We also

note that this integral term or its modified forms (due to the diagonality of the PSD

for independent sources) appear in some convolutive ICA approaches such as [30], [31].

However, unlike ICA, the sources are not assumed to be independent, or uncorrelated,

therefore implying that Ps(f) is allowed to be non-diagonal. We assume sources satisfy

“the domain separability” assumption (C1) which is stated as follows:

� (C1) The (convex hulls of the) domain of the extended source vector (Ss̃) can

be written as the cartesian product of (the convex hulls of the) the individual

components of the extended source vector (Ss̃m for m = 1, 2, . . . , Pp), i.e., Ss̃ =

Ss̃1 × Ss̃2 × . . .× Ss̃Pp .

Note that s̃ corresponds to the collection of all random variables from all p sources in

a time window of length P . Therefore, the domain separability assumption (C1) in

effect states that the convex support of the joint pdf corresponding to all of these source

random variables in a given P-length time window, is separable, i.e., it can be written
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as the cartesian product of convex supports of the marginals of these random variables.

This assumption essentially states that the range of values for each of these random

variables is not determined by the values other random variables, whereas the probabil-

ity distribution defined over this range may be dependent. Therefore, the assumption

(C1) is a quite flexible constraint, allowing arbitrary joint densities (corresponding to

dependent or independent random variables) over this separable domain. The samples

can, in fact, be correlated, i.e., Ps(f) can change with frequency. We point out that

(C1) is a much weaker assumption than the assumption of independence of sources in

both time and space dimensions. In fact, the domain separability, which is a require-

ment about the support set of the joint distribution, is a necessary condition for the

mutual independence. However, the mutual independence assumption further dictates

that the joint distribution is equal to the product of the marginals, which is rather a

strong additional requirement on top of the domain separability.

6.1.2 The Global Optimality of the Perfect Separators

In this section, we show that the global optima of the objective function (6.1) corre-

sponds to perfect separators. The following theorem shows that the proposed objective

is useful for achieving separation of convolutive mixtures whose setup is outlined in

Section 2.3.

Theorem: Assuming the setup in Section 2.3, H(f) is equalizable by an FIR separator

matrix of order M − 1 and Ps(f) � 0 for all f ∈ [−1
2
, 1

2
), the set of global maxima for

J1 in (6.1) is equal to a set of perfect separator matrices.

Proof: Using the fact that

Po(f) = G(f)ΥPs(f)ΥTG(f)H ,
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we obtain

∫ 1
2

− 1
2

log(det(Po(f)))df =

∫ 1
2

− 1
2

log
(
|det(G(f)Υ)|2det(Ps(f))

)
df

=

∫ 1
2

− 1
2

log
(
|det(G(f)Υ)|2

)
df +

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.2)

Using the Hadamard inequality [26] yields

∫ 1
2

− 1
2

log
(
|det(G(f)Υ)|2

)
df ≤

∫ 1
2

− 1
2

log

(
p∏

m=1

|| (G(f)Υ)m,: ||
2
2

)
df

=

∫ 1
2

− 1
2

p∑
m=1

log
(
|| (G(f)Υ)m,: ||

2
2

)
df =

p∑
m=1

∫ 1
2

− 1
2

log
(
|| (G(f)Υ)m,: ||

2
2

)
df, (6.3)

where (G(f)Υ)m,: is the mth row of G(f)Υ. From Jensen’s inequality [32], for m =

1, ..., p, we have

∫ 1
2

− 1
2

log
(
|| (G(f)Υ)m,: ||

2
2

)
df ≤ log

(∫ 1
2

− 1
2

|| (G(f)Υ)m,: ||
2
2df

)
. (6.4)

The use of Parseval’s theorem yields

∫ 1
2

− 1
2

|| (G(f)Υ)m,: ||
2
2df = ||(G̃Υ̃)m,:||22. (6.5)

Thus, from (6.3-6.5), we obtain

∫ 1
2

− 1
2

log
(
|det(G(f)Υ)|2

)
df ≤

p∑
m=1

log
(
||(G̃Υ̃)m,:||22

)
, (6.6)

which further implies,

∫ 1
2

− 1
2

log(det(Po(f)))df ≤
p∑

m=1

log
(
||(G̃Υ̃)m,:||22

)
+

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.7)
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As a result,

J1(W̃ ) ≤ 1

2

p∑
m=1

log
(
||(G̃Υ̃)m,:||22

)
− log

( p∏
m=1

R(om)

)
+

1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df.

(6.8)

Under the BCA’s domain separability assumption (C1) stated in Section 6.1.1, we can

write the range of mth component of o as R(om) = ||G̃m,:Υ̃||1. We can further define

Q
4
= G̃Υ̃, the range vector for the separator outputs can be rewritten as

R(o) =
[
||Q1,:||1 ||Q2,:||1 ... ||Qp,:||1

]
. (6.9)

If we rewrite the inequality (6.8) in terms of Q we obtain

J1(W̃ ) ≤
p∑

m=1

log
(
||Qm,:||2

)
−

p∑
m=1

log
(
||Qm,:||1

)
+

1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.10)

Note that,

p∑
m=1

log
(
||(Qm,:)||2

)
≤

p∑
m=1

log
(
||Qm,:||1

)
, (6.11)

due to the ordering ||q||1 ≥ ||q||2 for any q. Therefore,

J1(W̃ ) ≤ 1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.12)

We note that the equalities in (6.3) and (6.11) must be achieved in order to achieve the

equality in (6.12). The equality in (6.11) is achieved if and only if each row ofQ has only

one non-zero element which results in each row of G̃ has only one non-zero element and

the inequality in (6.3) is achieved if and only if the rows of G(f) are perpendicular to

each other. Since G(f) =
∑P−1

l=0 G(l)e−j2πfl and G̃ =

[
G(0) G(1) . . . G(P − 1)

]
,
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the combination of these two requirements yield that the only one non-zero elements

in the rows of G̃ must not be positioned in the same indexes with respect to mod p,

otherwise, the rows of G(f) would not be perpendicular to each other.

As a result, the inequality in (6.12) is achieved if and only if G̃ corresponds to perfect

separator transfer matrix in the form

G(f) = diag(α1e
−j2πfd1 , α2e

−j2πfd2 , . . . , αpe
−j2πfdp)P (6.13)

where αk’s are non-zero real scalings, dk’s are non-negative integer delays, and P is a

Permutation matrix. The FIR equalizability of the mixing system implies the existence

of such parameters.

Here, we point out that virtual delayed source problem does not exist in the proposed

framework: In case, if one of the separator outputs is the delayed version of another

output Po(f) becomes rank deficient, and therefore, its determinant becomes zero.

Therefore, the maximizing solution for the proposed objective will avoid such cases as

they will actually minimize the PSD dependent term in the objective (6.1). This fact is

also reflected by the proof of the Theorem above.

6.1.3 Extension of Convolutive BCA Optimization Framework

The framework introduced in section 6.1.1 is extended by proposing different alter-

natives for the second term of the objective function (6.1) (measure of the bounding

hyperrectangle for the output vectors). Example of such alternatives can be achieved by

choosing the length of the main diagonal of the bounding hyperrectangle. As a result,

we obtain a family of alternative objective functions in the form
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J2,r(W̃ ) =
1

2

∫ 1
2

− 1
2

log(det(Po(f)))df − log (||R(o)||pr) , (6.14)

where r ≥ 1. By modifying (6.10), we can obtain the corresponding objective expression

in terms of scaled overall mapping Q as

J2,r(W̃ ) ≤
p∑

m=1

log
(
||Qm,:||2

)
− log

(∥∥∥[||Q1,:||1 ||Q2,:||1 ... ||Qp,:||1
]T∥∥∥p

r

)
+

1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.15)

The results of analyzing this objective function, for some special r values:

� r = 1 Case: In this case, we can write

∥∥∥∥∥
[
‖Q1,:‖1 ‖Q2,:‖1 . . . ‖Qp,:‖1

]T∥∥∥∥∥
p

1

≥ pp
p∏

m=1

‖Qm,:‖1,

where the inequation comes from Arithmetic-Geometric-Mean-Inequality, and the

equality is achieved if and only if all the rows of Q have the same 1-norm. In

consequence, we can write

J2,1(W̃ ) ≤
p∑

m=1

log
(
||Qm,:||2

)
−

p∑
m=1

log
(
||Qm,:||1

)
− log(pp)

+
1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.16)

Similarly, from (6.11), we have

J2,1(W̃ ) ≤ 1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df − log(pp). (6.17)
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As a result, Q is a global maximum of J2,1(W̃ ) if and only if it is a perfect

separator matrix of the form

Q = kPdiag(ρ),

where k is a non-zero value, ρ ∈ {−1, 1}p and P is a permutation matrix. This

implies G̃ is a global maximum of J2,1(W̃ ) if and only if it can be written in the

form

G̃ = kPΥ̃−1diag(ρ).

� r = 2 Case: In this case, using the basic norm inequality, for any a ∈ Rp, we have

||a||2 ≥
1
√
p
||a||1,

where the equality is achieved if and only if all the components of a are equal in

magnitude. As a result, we can write

J2,2(W̃ ) ≤
p∑

m=1

log
(
||Qm,:||2

)
−

p∑
m=1

log
(
||Qm,:||1

)
− log(pp/2)

+
1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df. (6.18)

Similarly, J2,2 has the same set of global maxima as J2,1.

� r =∞ Case: Using the basic norm inequality, for any a ∈ Rp,

||a||∞ ≥
1

p
||a||1,
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and Arithmetic-Geometric-Mean-Inequality yields

||R(o)||p∞ ≥
1

pp
||R(o)||p1 ≥

p∏
m=1

R(zm).

where the equality is achieved if and only if all the components of R(o) are equal

in magnitude. Based on this inequality, we obtain

J2,∞(W̃ ) ≤
p∑

m=1

log
(
||Qm,:||2

)
−

p∑
m=1

log
(
||Qm,:||1

)
+

1

2

∫ 1
2

− 1
2

log (det(Ps(f))) df.

(6.19)

Therefore, J2,∞ also has the same set of global optima as J2,1 and J2,2.

Hence, to attain the global maximum of J2,1, J2,2 and J2,∞, there is also a condition

that all the rows of Q have the same 1-norm. This implies G̃ is a global maximum of

J2,1, J2,2 and J2,∞ if and only if it can be written in the form

G̃ = kPΥ̃−1diag(ρ).

where k is a non-zero value, ρ ∈ {−1, 1}p and P is a permutation matrix which corre-

sponds to a subset of perfect separators defined by (6.13).

6.2 Iterative BCA Algorithms

In this section, we provide the adaptive algorithm corresponding to the optimization

settings presented in the previous section.

� Objective Function J1(W̃ ):
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In the adaptive implementation, we assume a set of finite observations of mixtures

{y(0),y(1), ...,y(N − 1)} and modify the objective as

J̄1(W̃ ) =
1

2η

ν∑
l=−ν

log(det(P̂o(l)))− log

(
p∏

m=1

R̂(om)

)
, (6.20)

where ν = N +M − 1, η = 2ν + 1 is the DFT size and we use the PSD estimate

for the separator outputs given by

P̂o(l) =
ν∑

k=−ν

R̂o(k)e−j2πlk/η,

for l ∈ {−ν, ..., ν}, where N is the number of samples and R̂o is the output sample

autocovariance function, defined as

R̂o(k) =
1

ν + 1− |k|

min(ν,ν−k)∑
q=max(0,−k)

o(q)oT (q + k),

for k = −ν, ..., ν. We point out that we use R̂(o) for the range vector of the

sample outputs for which we have

R̂(om) = max
k∈{1,2,...,N}

om(k)− min
k∈{1,2,...,N}

om(k),

for m = 1, 2, ..., p.

Note that the derivative of the first part of J̄1(W̃ ) with respect to W (n) is

1

2η

∂
∑ν

l=−ν log(det(P̂o(l)))

∂W(n)
=

1

η

ν∑
l=−ν

R
{

P̂o(l)−1Ŵ(l)P̂y(l)ej2πnl/η
}
, (6.21)
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where

Ŵ(l) =
ν∑

k=−ν

W (k)e−j2πlk/η,

and

P̂y(l) =
ν∑

k=−ν

R̂y(k)e−j2πlk/η.

Following the similar steps as in [24] for the derivative of log
(∏p

m=1 R̂(om)
)

, the

subgradient based iterative algorithm for maximizing objective function (6.20) is

provided as

W (i+1)(n) = W (i)(n) + µ(i)

(
1

η

ν∑
l=−ν

R
{

P̂o(l)−1Ŵ(i)(l)P̂y(l)ej2πnl/η
}

−
p∑

m=1

1

eTmR̂(oW(i))
em
(
y(lmax(i)

m )− y(lmin(i)
m )

)T )
, (6.22)

where µ(i) is the step-size at the ith iteration and l
max(i)
m (l

min(i)
m ) is the sample

index for which the maximum (minimum) value for the mth separator output is

achieved at the ith iteration.

� Objective Function J2,r(W̃ ):

In the adaptive implementation, we modify the family of alternative objective

functions as

J̄2,r(W̃ ) =
1

2η

ν∑
l=−ν

log(det(P̂o(l)))− log
(
||R̂(o)||pr

)
(6.23)

58



For r = 1, 2, we can write the update equation as

W (i+1)(n) = W (i)(n) + µ(i)

(
1

η

ν∑
l=−ν

R
{

P̂o(l)−1Ŵ(i)(l)P̂y(l)ej2πnl/η
}
−

p∑
m=1

pR̂m(oW(i))r−1

||R̂(oW(i))||rr
em
(
y(lmax(i)

m )− y(lmin(i)
m )

)T )
. (6.24)

For r =∞, the update equation has the form

W (i+1)(n) = W (i)(n) + µ(i)

(
1

η

ν∑
l=−ν

R
{

P̂o(l)−1Ŵ(i)(l)P̂y(l)ej2πnl/η
}
−

∑
m∈M(o

W(i) )

pβ
(i)
m

||R̂(oW(i))||∞
em
(
y(lmax(i)

m )− y(lmin(i)
m )

)T
(6.25)

where M(oW(i)) is the set of indexes for which the peak range value is achieved,

i.e.,

M(oW(i)) = {m : R̂m(oW(i)) = ‖R̂(oW(i))‖∞}, (6.26)

and β
(i)
m s are the convex combination coefficients.

6.3 Extension to Complex Signals

In the complex domain, we consider p complex sources with finite support, i.e., real and

imaginary part of the sources have finite support. We define the operator Φ : Cp → R2p,

Φ(a) =

[
R{aT} I{aT}

]T
(6.27)
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as an isomorphism between p dimensional complex domain and 2p dimensional real

domain. For any complex vector a, we introduce the corresponding isomorphic real

vector as à, i.e., à = Φ{a}. We also define the operator Γ : Cp×q → R2p×2q as

Γ(A) =

 R{A} −I{A}

I{A} R{A}

 . (6.28)

In the complex domain, both mixing and separator coefficient matrices are complex

matrices, i.e., H̃ ∈ Cq×pL and W̃ ∈ Cp×qM . The set of source vectors S and the set of

separator outputs O are subsets of Cp and the set of mixtures Y is a subset of Cq. We

also note that since

y(k) = G̃s̃(k),

we have

ỳ(k) = Γ(G̃)`̃s(k).

where Γ(G̃) =

[
Γ(G(0)) Γ(G(1)) . . . Γ(G(P − 1))

]
and `̃s(k) = [ s̀(k) s̀(k − 1)

. . . s̀(k − P + 1) ]T .

6.3.1 Complex Extension of the Convolutive BCA Optimiza-

tion Framework

We can extend the framework introduced in the Section 6.1 to the complex signals by

following similar steps with the real vector ò. We define the subset of R2p vectors which
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are isomorphic to the elements of O as

Ò = {ò : o ∈ O}.

Similarly, we define

S̀ = {s̀ : s ∈ S},

Ỳ = {ỳ : y ∈ Y }.

By these definitions, we modify the objective function J1 in (6.1) for the complex case

as

Jc1(W̃ ) =
1

2

∫ 1
2

− 1
2

log(det(Pò(f)))df − log

(
2p∏
m=1

R(òm)

)
. (6.29)

Note that the mapping between Φ(s) and Φ(o) is given by Γ(Q), thus the theorem

proved in Section 6.1.2 implies that the set of global maxima for the objective function

(6.29) have the properties that the corresponding Γ(G̃) satisfies (6.13) and the structure

imposed by (6.28). Therefore, the set of global optima for (6.29) (in terms of G̃) is given

by

GOc = {G̃ = PD : P ∈ Rp×pP is a permutation matrix,

D ∈ CpP×pP is a full rank diagonal matrix with

Dii = αie
jπki
2 , αi ∈ R, ki ∈ Z, i = 1, . . . pM},

which corresponds to a subset of complex perfect separators with discrete phase ambi-

guity.
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In the adaptive implementation, we modify the objective as

J̄c1(W̃ ) =
1

2η

ν∑
l=−ν

log(det(P̂ò(l)))− log

(
2p∏
m=1

R̂(òm)

)
. (6.30)

Note that the derivative of the first part of J̄c1(W̃ ) with respect to W (n) is

1

2η

∂
∑ν

l=−ν log(det(P̂ò(l)))

∂W(n)
= Λ11 + Λ22 + j(Λ21 − Λ12), (6.31)

where we define

1

η

ν∑
l=−ν

R
{

P̂ò(l)−1Γ(Ŵ)(l)P̂ỳ(l)ej2πnl/η
}

=

 Λ11 Λ21

Λ21 Λ22

 Λ11,Λ12,Λ21,Λ22 ∈ Rp×q

where

Γ(Ŵ)(l) =
ν∑

k=−ν

Γ(W (k))e−j2πlk/η.

The corresponding iterative update equation for W(n) can be written as

W(i+1)(n) = W(i)(n) + µ(i)

(
Λ

(i)
11 + Λ

(i)
22 + j(Λ

(i)
21 − Λ

(i)
12 )

−
2p∑
m=1

1

eTmR̂(òW(i))
vm
(
y(lmax(i)

m )− y(lmin(i)
m )

)H )
, (6.32)

where we define

vm =

 em m ≤ p,

jem−p m > p.
(6.33)

A variation on the approach considered for the complex case can be obtained by ob-
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serving that in the Jc1 objective function

log(det(Pò(f))) = log
(
|det(Γ(G)(f)Γ(Υ))|2det(Ps̀(f))

)
, (6.34)

where Γ(G)(f) =
∑P−1

l=0 Γ(G(l))e−j2πfl. We also note that

|det(Γ(G)(f)Γ(Υ))| = |det(G(f)Υ)|2. (6.35)

Therefore, if we define an alternative objective function

Jc1a(W̃ ) =

∫ 1
2

− 1
2

log(det(Po(f)))df − log

(
2p∏
m=1

R(òm)

)
, (6.36)

it would have the same set of global optima. In the adaptive implementation, the

modified objective will be as

J̄c1a(W̃ ) =
1

η

ν∑
l=−ν

log(det(P̂o(l)))− log

(
2p∏
m=1

R̂(òm)

)
. (6.37)

The convenience of Jc1a is in terms of the simplified update expression for (6.31), which

results in the derivative of the first part of J̄c1a(W̃ ) with respect to W (n) is

1

η

∂
∑ν

l=−ν log(det(P̂o(l)))

∂W(n)
=

1

η

ν∑
l=−ν

P̂o(l)−1Ŵ(l)P̂y(l)ej2πnl/η. (6.38)

Therefore, the corresponding iterative update equation for W(n) in (6.32) is updated

accordingly.
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6.3.2 Complex Extension of the Alternative Objective Func-

tions

Similar to the complex extension of J1 provided in the previous subsection, we can

extend the J2 family by defining

Jc2,r(W̃ ) =
1

2

∫ 1
2

− 1
2

log(det(Pò(f)))df − log
(
||R(ò)||2pr

)
, (6.39)

or alternatively,

Jca2,r(W̃ ) =

∫ 1
2

− 1
2

log(det(Po(f)))df − log
(
||R(ò)||2pr

)
, (6.40)

and in the adaptive implementation by modifying these objective functions as

J̄c2,r(W̃ ) =
1

2η

ν∑
l=−ν

log(det(P̂ò(l)))− log
(
||R(ò)||2pr

)
, (6.41)

or alternatively,

J̄ca2,r(W̃ ) =
1

η

ν∑
l=−ν

log(det(P̂o(l)))− log
(
||R(ò)||2pr

)
. (6.42)

The update equation is similar to (6.32) where the derivative of first part of (6.41) or

(6.42) is given by either (6.31) or (6.38) depending on the choice and the derivative of

the second part depends on the selection of r, e.g.,

� r = 1, 2 Case: In this case

∂log (||R(ò)||2pr )

∂W(n)
=

2p∑
m=1

pR̂m(òW(i))r−1

||R̂(òW(i))||rr
vm
(
y(lmax(i)

m )− y(lmin(i)
m )

)H
, (6.43)

where vm is as defined in (7.15).
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� r =∞ Case: In this case

∂log (||R(ò)||2pr )

∂W(n)
=

∑
m∈M(ò

W(i) )

pβ
(i)
m

||R̂(òW(i))||∞
vm
(
y(lmax(i)

m )− y(lmin(i)
m )

)H
(6.44)

where vm is as defined in (7.15),

M(òW(i)) = {m : R̂m(òW(i)) = ‖R̂(òW(i))‖∞}, (6.45)

and β
(i)
m s are the convex combination coefficients.

6.4 Numerical Examples

In this section, we illustrate the separation capability of the proposed algorithms for the

convolutive mixtures of both independent and dependent sources.

6.4.1 Separation of Space-Time Correlated Sources

We first consider the following scenario to illustrate the performance of the proposed

algorithms regarding the separability of convolutive mixtures of space-time correlated

sources: In order to generate space-time correlated sources, we first generate a samples

of a τp size vector, d, with Copula-t distribution in [33], a perfect tool for generating

vectors with controlled correlation, with 4 degrees of freedom whose correlation ma-

trix parameter is given by R = Rt ⊗ Rs where Rt (Rs) is a Toeplitz matrix whose

first row is

[
1 ρt . . . ρτ−1

t

]
(

[
1 ρs . . . ρp−1

s

]
) (Note that the Copula-t distri-

bution is obtained from the corresponding t-distribution through the mapping of each

component using the corresponding marginal cumulative distribution functions, which

leads to uniform marginals [33]). Each sample of d is partitioned to produce source
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vectors, d(k) =

[
s(kτ) s(kτ + 1) . . . s((k + 1)τ − 1)

]
. Therefore, we obtain the

source vectors as samples of a wide-sense cyclostationary1 process whose correlation

structure in time direction and space directions are governed by the parameters ρt and

ρs, respectively.

In the simulations, we considered a scenario with 3 sources and 5 mixtures, an i.i.d.

Gaussian convolutive mixing system with order 3 and a separator of order 10. At each

run, we generate 50000 source vectors where τ is set as 5. The results are computed

and averaged over 500 realizations.

Figure 6.1 shows the output total Signal energy to total Interference+Noise energy (over

all outputs) Ratio (SINR) obtained for the proposed BCA algorithms (J̄1, J̄2,1, J̄2,∞) for

various space and time correlation parameters under 45dB SNR. SINR performance of

Minimum Mean Square Error (MMSE) filter of the same order, which uses full infor-

mation about mixing system and source/noise statistics, is also shown to evaluate the

relative success of the proposed approach. A comparison has also been made with a gra-

dient maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2 of [35]

where we take kmax = 50 and lmax = 20. We have obtained these methods from [2], [36].

We consider the performance criteria as the output total Signal energy to total Inter-

ference+Noise energy (over all outputs) Ratio (SINR) which is defined as

SINR =
Total Signal Power

Total Residual Power + Total Noise Power
=

Trace(GsigR̂sG
T
sig)

Trace(GresR̂sG
T
res) + σ2||W ||2F

,

where Gsig is defined as the matrix obtained from G by keeping the maximum entries

of each row and making the other entries 0 and Gres is defined as the matrix obtained

from G by making the maximum entries of each row 0 and keeping the other entries so

1This actually violates the stationarity assumption on sources when ρt 6= 0. However, we still use
this as a convenient method to generate space-time correlated sources
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that we will have the total signal power and total residual power. The variance of the

noise is σ2 and ||W ||F is the Frobenius norm of matrix W .
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Figure 6.1: Dependent convolutive mixtures separation performance results for SNR =
45dB.

For the same setup, Figure 6.2 shows the output total Signal energy to total Inter-

ference+Noise energy (over all outputs) Ratio (SINR) obtained for the proposed BCA

algorithms (J̄1, J̄2,1, J̄2,∞), gradient maximization of the criterion (kurtosis) of [34] (Kur-

tosisMax.), Alg.2 of [35], and MMSE for various space correlation parameters under

20dB SNR.

In Figure 6.3, we provide the output total Signal energy to total Interference+Noise

energy (over all outputs) Ratio (SINR) obtained for the proposed BCA algorithms

(J̄1, J̄2,1, J̄2,2, J̄2,∞), gradient maximization of the criterion (kurtosis) of [34] (Kurtosis-

Max.), Alg.2 of [35], and MMSE for various space correlation parameters under 5dB

SNR.

These results demonstrate that the performance of proposed algorithms closely follows
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Figure 6.2: Dependent convolutive mixtures separation performance results for SNR =
20dB.

its MMSE counterpart for a wide range of correlation values. Therefore, we obtain

a convolutive extension of the BCA approach introduced in [24], which is capable of

separating convolutive mixtures of space-time correlated sources.

We also point out that the proposed BCA approaches maintains high separation per-

formance for various space and time correlation parameters. On the other hand, the

performance of gradient maximization of the criterion (kurtosis) of [34] (KurtosisMax.)

and Alg.2 of [35] degrades substantially with increasing correlation, since in the corre-

lated case, independence assumption simply fails.

6.4.2 MIMO Blind Equalization

We next consider the following scenario to illustrate the performance of the proposed

method for the convolutive mixtures of digital communication sources. We consider 3

complex QAM sources such that 2 sources are 16-QAM signals and 1 source is 4-QAM
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Figure 6.3: Dependent convolutive mixtures separation performance results for SNR =
5dB.

signal. We take 5 mixtures, an i.i.d. Gaussian convolutive mixing system with order 3

and a separator of order 10. The results are computed and averaged over 500 realizations.

We use the objective functions J̄c1, J̄c2,1 and J̄c2,2 as the BCA algorithms introduced in

Section 6.3 for this simulation. The resulting Signal to Interference Ratio is plotted with

respect to the sample lengths in Figure 6.4. We have also compared our algorithms with

a gradient maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2

of [35].

According to Figure 6.4, the proposed BCA approaches achieve better performance

than ICA based approaches. As it is mentioned earlier, the proposed method does not

assume/exploit statistical independence. The only impact of short data length is on

accurate representation of source box boundaries. The simulation results suggest that

the shorter data records may not be sufficient to reflect the stochastic independence

of the sources, and therefore, the compared algorithms require more data samples to

achieve the same SIR level as the proposed approach.
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Figure 6.4: Signal to Interference Ratio as a function of Sample Length

6.5 Conclusion

In this chapter, we introduce an algorithmic framework for the convolutive Bounded

Component Analysis problem. The utility of the proposed algorithms are mainly twofold:

� The proposed algorithms are capable of separating not only independent sources

but also dependent, even correlated sources. The dependence/correlation is al-

lowed to be in both source (or space) and in sample (or time) directions. The pro-

posed framework’s capability in terms of separating space-time correlated sources

(as well as independent sources) from their convolutive mixtures favors it as a

widely applicable approach under the practical constraint on the boundedness of

sources. In fact the proposed approach can be considered as a more general convo-

lutive approach than ICA with additional dependent source separation capability,

under the condition that the sources are bounded and satisfy domain separability

assumption.

� Even though the source samples may be drawn from a stochastic setting where
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they are mutually independent, especially for short data records, the estimation

of sources based on domain separability is expected to be more robust than the

estimation based on the independence feature. As illustrated in the previous

section, this feature results in superior separation performances, relative to some

state of the art Convolutive ICA methods, in convolutive MIMO equalization

problem, which is more pronounced especially for shorter packet sizes.

We note that the dimension of the extended vector of sources (s̃) increases with the order

of the overall system and with the number of sources. This implies that the proposed

convolutive BCA approaches’ performances will depend on the sample length as the

order of the convolutive system and/or the number of sources increase. We finally note

that for the applications where the sources have tailed distributions, the performances

of the proposed convolutive BCA algorithms are likely to suffer, which can be considered

as one drawback of the algorithms.
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Chapter 7

A Convolutive BCA Analysis
Framework for Potentially
Non-Stationary Independent and/or
Dependent Sources

In this chapter, we extend the instantaneous or memoryless BCA approach introduced

in [1] for the convolutive BCA problem. We propose deterministic frameworks for the

blind source extraction and blind source separation problems which allows the sources

to be potentially non-stationary. We point out that the sources could be stationary or

non-stationary and we do not exploit non-stationary property of sources. However, the

proposed scheme works for both stationary and non-stationary sources. We show that

the algorithms corresponding to these frameworks are capable of extracting/separating

convolutive mixtures of not only independent sources but also dependent (even corre-

lated) sources where the correlation can be in both space and time dimensions.

7.1 Blind Source Extraction

In this section, we first introduce the objective function for the blind source extraction of

real signals. We then prove that the global maxima of the introduced objective function

correspond to perfect extractors. We provide the iterative algorithm corresponding to

the objective function. We conclude with the complex sources extension of the proposed
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approach.

In this case, the mixtures are passed through an extractor system and produce the

single output as o(k) = w̃T ỹM(k) where w̃ = [ wT (0) wT (1) . . . wT (M − 1) ]T

is the extractor coefficient vector. Therefore, the sources {s(k) ∈ Rp ; k ∈ Z} and

the single extractor output {o(k) ∈ R ; k ∈ Z} are related by o(k) = g̃T s̃P (k) where

g̃ = [ gT (0) . . . gT (P − 1) ]T is defined as the overall system coefficient vector. The

generated set of extractor output is illustrated as o = {o(1), o(2), . . . , o(N −M + 1)}.

7.1.1 Criterion

We introduce the objective function for the blind source extraction method as

Je(w̃) =

√
1
N1

∑N1

l=1 (o(l)− µ̂o)2

R̂(o)
, (7.1)

where µ̂o = 1
N1

∑N1

l=1 o(l), N1 = N −M + 1 and R̂(o) is the range of the single output

in set o. We note that this objective function is deduced from the instantaneous BCA

objectives introduced in [1].

We define

µs̃P
=

1

N1

N∑
l=M

s̃P (l),

R̂s̃P
=

1

N1

N∑
l=M

(s̃P (l)− µs̃P )(s̃P (l)− µs̃P )T ,

as the sample covariance matrix of s̃P . If sources are stationary, then R̂s̃P
is a block

Toeplitz matrix. However, sources are allowed to be non-stationary, therefore, R̂s̃P
may

not be a block Toeplitz matrix. Note that this approach does not exploit any structure

on R̂s̃P
(i.e., the sources can be stationary or non-stationary). Under the condition
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R̂s̃P
� 0, the following theorem shows that maximizing the proposed objective function

(7.1) achieves the blind source extraction of convolutive mixtures whose setup is outlined

in Section 2.3.

Theorem 1: Assuming the setup in Section 2.3, H̃ is equalizable by an FIR extractor

matrix of order M − 1 and under the validity of (C1), the set of global maxima for Je

in (7.1) is equal to the set of perfect extractors.

Proof: The proof is provided in Appendix 7.5.1.

7.1.2 Algorithm

In this section, we provide the iterative algorithm corresponding to the optimization

setting presented in the previous section.

Rather than maximizing Je, we maximize its logarithm since with the logarithm oper-

ation, we utilize the conversion of ratio expression to the difference expression since it

simplifies the update components in the iterative algorithm. Therefore, the new objec-

tive function is modified as

J̄e(w̃) = log (Je(w̃)) =
1

2
log
(
w̃T R̂ỹM

w̃
)
− log

(
R̂(o)

)
, (7.2)

where R̂ỹM
is the sample covariance matrix of ỹM .

Note that the derivative of the first part of J̄e(w̃) with respect to w̃ is

∂ log
(
w̃T R̂ỹM

w̃
)

∂w̃
=

2R̂ỹM
w̃

w̃T R̂ỹM
w̃
.

Following the similar steps as in [1] for the derivative of log
(
R̂(o)

)
, the subgradient
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based iterative algorithm for maximizing objective function (7.2) is provided as

w̃(i+1) = w̃(i) + µ(i)

( R̂ỹM
w̃

w̃T R̂ỹM
w̃
− 1

R̂(o(i))

(
ỹM(lmax(i))− ỹM(lmin(i))

))
, (7.3)

where µ(i) is the step-size at the ith iteration and lmax(i) (lmin(i)) is the sample index for

which the maximum (minimum) value for the extractor output is achieved at the ith

iteration.

7.1.3 Extension to Complex Signals

In the complex domain, both mixing and extractor coefficient matrices are complex

matrices, i.e., H̃ ∈ Cq×pL and w̃ ∈ CqM×1. The set of source vectors S is a subset of

Cp, the set of single extractor output o is a subset of C and the set of mixtures Y is a

subset of Cq.

In this section, we extend the approach introduced in the Section 7.1.1 to the complex

signals. We modify the objective function as

Jce(w̃) =

√
1
N1

∑N1

l=1 (R{o(l)} − R{µ̂o})2

R̂ (R{o})
, (7.4)

where R{µ̂o} = 1
N1

∑N1

l=1 R{o(l)} and R̂ (R{o}) is the range of real parts of single output

o. We define R̂s̀P
as the sample covariance matrix of s̀P where s̀P (k) = [ R{sT (k)}

I{sT (k)} . . . R{sT (k − P + 1)} I{sT (k − P + 1)} ]T . Under the condition R̂s̀P
�

0, the following theorem shows that maximizing the modified objective function (7.4)

achieves the blind source extraction of convolutive mixtures of complex signals.

Theorem 2: Assuming the setup in Section 2.3, H̃ is equalizable by an FIR extractor

matrix of order M − 1 and under the validity of (C1), the set of global maxima for Jce
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in (7.4) is equal to a subset of perfect extractors.

Proof: The proof is provided in Appendix 7.5.2.

In the iterative algorithm, we maximize the logarithm of Jce, therefore, the objective

function is modified as

J̄ce(ẁ) = log (Jce(ẁ)) =
1

2
log
(
ẁT R̂ỳM

ẁ
)
− log

(
R̂(R{o})

)
, (7.5)

where

ẁ = [ R{wT (0)} − I{wT (0)} . . . − I{wT (M − 1)} ]T ,

and R̂ỳM
is the sample covariance matrix of ỳM . Following similar steps, the iterative

algorithm for maximizing objective function (7.5) is provided as

ẁ(i+1) = ẁ(i) + µ(i)

( R̂ỳM
ẁ

ẁT R̂ỳM
ẁ
− 1

R̂(R{o}(i))

(
ỳM(lmax(i))− ỳM(lmin(i))

))
, (7.6)

where µ(i) is the step-size at the ith iteration and lmax(i) (lmin(i)) is the sample index

for which the maximum (minimum) value of the real part of the extractor output is

achieved at the ith iteration. Finally, we can obtain w̃ from ẁ using a simple transition

w̃mq+1:(m+1)q = ẁ2mq+1:2(m+1)q−q − jẁ2(m+1)q−q+1:2mq for m = 0, 1, . . . ,M − 1.

7.2 Blind Source Separation

In this section, we first introduce an objective function for the blind source separation of

real signals. We then prove that the global maxima of the introduced objective function

correspond to the perfect separators. We next provide a family of alternative objective
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functions. After producing the iterative algorithms corresponding to the introduced

objective functions, we conclude with the complex extension of the proposed approaches.

7.2.1 Criteria

In order to define the first objective function, we use a similar geometric setting in-

troduced in [1]. Defining the set OK = {õK(K), õK(K + 1), . . . , õK(N −M + 1)}, we

introduce the following objects corresponding to the sets of output samples OK and O:

� P(OK) : This is the hyper-ellipsoid whose center is given by the sample mean of

the set OK , its principal semiaxes directions are determined by the eigenvectors of

the sample covariance matrix R̂õK corresponding to OK and its principal semiaxes

lengths are equal to the principal standard deviations, i.e., the square roots of the

eigenvalues of R̂õK .

� B(O) : This is the bounding hyper-rectangle which is defined as minimum volume

box covering all the samples in O and aligning with the coordinate axes.

The first objective function that we introduce for blind source separation is

Js1(W̃ ) =

(√
det(R̂õK )

)1/K

∏p
m=1 R̂(om)

, (7.7)

where

µõK =
1

N2

N1∑
l=K

õK(l),

R̂õK =
1

N2

N1∑
l=K

(õK(l)− µõK )(õK(l)− µõK )T ,
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N2 = N1 −K + 1 such that R̂õK is the sample covariance matrix of õK . R̂(om) is the

range of the m’th component of the output vectors in the set O and we choose K ≥ P

where P is the order of the overall system.

We note that, as defined in [1],

�

√
det(R̂õK ) refers to the scaled volume of principal hyper-ellipse for the extended

output vector õK .

�

∏p
m=1 R̂(om) is the volume of the bounding hyper-rectangle for the output vector

o.

Under the condition R̂s̃K+P−1
� 0, the following theorem shows that maximizing the

objective function (7.7) achieves the blind source separation of convolutive mixtures

whose setup is outlined in Section 2.3.

Theorem 3: Assuming the setup in Section 2.3, H̃ is equalizable by an FIR separator

matrix of order M − 1 and under the validity of (C1), the set of global maxima for Js1

in (7.7) is equal to the set of perfect separator matrices.

Proof: The proof is provided in Appendix 7.5.3.

We can propose different alternatives for the denominator of the objective function (7.7)

(measure of the size of the bounding hyperrectangle for the output vectors). We can

choose the length of the main diagonal of the bounding hyperrectangle as a measure of

the size instead of its volume. As a result, we obtain a family of alternative objective

functions in the form

Js2,r(W̃ ) =

(√
det(R̂õK )

)1/K

||R̂(o)||pr
, (7.8)
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where r ≥ 1. We provide the results of analysing this family of objective functions, for

some special r values (i.e., r = 1, 2,∞) in Appendix 7.5.4.

7.2.2 Algorithms

In this section, we provide the iterative algorithms corresponding to the optimization

settings presented in the previous section.

� Objective Function Js1(W̃ ):

Similar to the approach in blind source extraction, rather than maximizing Js1(W̃ ),

we maximize its logarithm. Therefore, the new objective function is modified as

J̄s1(W̃ ) = log
(
Js1(W̃ )

)
=

1

2K
log
(

det
(

ΓK(W̃ )R̂ỹK+M−1
ΓK(W̃ )T

))
− log

(
p∏

m=1

R̂(om)

)
,

(7.9)

where R̂ỹK+M−1
is the sample covariance matrix of ỹK+M−1 . Note that the

derivative of the first part of J̄s1(W̃ ) with respect to W̃ is

∂ log
(

det
(

ΓK(W̃ )R̂ỹK+M−1
ΓK(W̃ )T

))
∂W̃

= 2
K−1∑
l=0

Alp+1:(l+1)p,lq+1:(l+M)q

where A =
(

ΓK(W̃ )R̂ỹK+M−1
ΓK(W̃ )T

)−1

ΓK(W̃ )R̂ỹK+M−1
. Following the simi-

lar steps as in [1] for the derivative of log
(∏p

m=1 R̂(om)
)

, the subgradient based
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iterative algorithm for maximizing objective function (7.9) is provided as

W̃
(i+1)

= W̃
(i)

+ µ(i)

(
1

K

K−1∑
l=0

Alp+1:(l+1)p,lq+1:(l+M)q−

p∑
m=1

1

eTmR̂(o(i))
em
(
ỹM(lmax(i)

m )− ỹM(lmin(i)
m )

)T )
, (7.10)

where µ(i) is the step-size at the ith iteration and l
max(i)
m (l

min(i)
m ) is the sample

index for which the maximum (minimum) value for the mth separator output is

achieved at the ith iteration.

� Objective Function Js2,r(W̃ ):

We note that for the family of objective functions (7.8), the update equation is

similar to (7.10) where the change is in the derivative of logarithm of the denom-

inator depending on the selection of r. For r = 1, 2, we can write the update

equation as

W̃
(i+1)

= W̃
(i)

+µ(i)

(
1

K

K−1∑
l=0

Alp+1:(l+1)p,lq+1:(l+M)q−

p∑
m=1

pR̂m(o(i))r−1

||R̂(o(i))||rr
em
(
ỹM(lmax(i)

m )− ỹM(lmin(i)
m )

)T )
.

For r =∞, the update equation has the form

W̃
(i+1)

= W̃
(i)

+µ(i)

(
1

K

K−1∑
l=0

Alp+1:(l+1)p,lq+1:(l+M)q−

∑
m∈M(oi)

pβ
(i)
m

||R̂(o(i))||∞
em
(
ỹM(lmax(i)

m )− ỹM(lmin(i)
m )

)T )

where M(o(i)) is the set of indexes for which the peak range value is achieved,
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i.e.,

M(o(i)) = {m : R̂m(o(i)) = ‖R̂(o(i)‖∞}, (7.11)

and β
(i)
m s are the convex combination coefficients.

7.2.3 Extension to Complex Signals

In the complex domain, both mixing and separator coefficient matrices are complex

matrices, i.e., H̃ ∈ Cq×pL and W̃ ∈ Cp×qM . The set of source vectors S and the set of

separator outputs O are a subset of Cp, the set of mixtures Y is a subset of Cq.

In this section, we extend the approach introduced in the Section 7.2.1 to the complex

signals. We modify the first objective function for the blind source separation of complex

signals as

Jcs1(W̃ ) =

(√
det(R̂òK )

)1/K

∏2p
m=1 R̂(òm)

, (7.12)

where R̂òK is the sample covariance matrix of òK where òK(k) = [ R{oT (k)} I{oT (k)}

. . . R{oT (k−K+ 1)} I{oT (k−K+ 1)} ]T and
∏2p

m=1 R̂(òm) is the product of ranges

of real and imaginary parts of all separator outputs.

Under the condition R̂s̀K+P−1
� 0, the following theorem shows that maximizing the

modified objective function (7.12) achieves the blind source separation of convolutive

mixtures of complex signals.

Theorem 4: Assuming the setup in Section 2.3, H̃ is equalizable by an FIR separator

matrix of order M − 1 and under the validity of (C1), the set of global maxima for Jcs1

in (7.12) is equal to a subset of perfect separator matrices.
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Proof: The proof is provided in Appendix 7.5.5.

In the iterative algorithm, we maximize the logarithm of Jcs1, therefore, the first objec-

tive function is modified as

J̄cs1(W̃ ) = log
(
Jcs1(W̃ )

)
=

1

2K
log
(

det
(

Γ2K(Ẁ )R̂ỳK+M−1
Γ2K(Ẁ )T

))
− log

(
2p∏
m=1

R̂(òm)

)
, (7.13)

where Ẁ =

 R{W 0} −I{W 0} . . . R{WM−1} −I{WM−1}

I{W 0} R{W 0} . . . I{WM−1} R{WM−1}

 and R̂ỳK+M−1
is

the sample covariance matrix of ỳK+M−1.

The corresponding iterative update equation of W (n) for n = 0, 1, . . . ,M − 1 can be

written as

W (i+1)(n) = W (i)(n) + µ(i)

(
C1:p,2nq+1:(2n+1)q +Cp+1:2p,(2n+1)q+1:2(n+1)q+

j
(
Cp+1:2p,2nq+1:(2n+1)q −C1:p,(2n+1)q+1:2(n+1)q

)
−

2p∑
m=1

1

eTmR̂(ò(i))
vm
(
ỹM(lmax(i)

m )− ỹM(lmin(i)
m )

)H )
, (7.14)

where C =
1

K

∑K−1
l=0 F 2lp+1:2(l+1)p,2lq+1:2(l+M)q

and F =
(

Γ2K(Ẁ )R̂ỳK+M−1
Γ2K(Ẁ )T

)−1

Γ2K(Ẁ )R̂ỳK+M−1
and

vm =

 em m ≤ p,

iem−p m > p.
(7.15)
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Similar to the complex extension of Js1, we can extend the Js2 family by modifying

Jcs2,r(W̃ ) =

(√
det(R̂òK )

)1/K

||R̂(ò)||2pr
. (7.16)

The update equation is similar to (7.14) where the change is in the derivative of loga-

rithm of the denominator depending on the selection of r, e.g.,

� r = 1, 2 Case: In this case

∂ log (||R(ò)||2pr )

∂W̃
=

2p∑
m=1

pR̂m(ò(i))r−1

||R̂(ò(i))||rr
vm
(
ỹM(lmax(i)

m )− ỹM(lmin(i)
m )

)H
where vm is as defined in (7.15).

� r =∞ Case: In this case

∂ log (||R(ò)||2pr )

∂W̃
=

∑
m∈M(ò(i))

pβ
(i)
m

||R̂(ò(i))||∞
vm
(
ỹM(lmax(i)

m )− ỹM(lmin(i)
m )

)H

where vm is as defined in (7.15),

M(ò(i)) = {m : R̂m(ò(i)) = ‖R̂(ò(i))‖∞},

and β
(i)
m s are the convex combination coefficients.

7.3 Examples

In this section, we illustrate the extraction/separation capability of the proposed algo-

rithms for the convolutive mixtures of both independent and dependent sources.
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7.3.1 Blind Source Extraction

We first consider the following scenario to illustrate the performance of the proposed

blind source extraction algorithm regarding the convolutive mixtures of space-time cor-

related sources: In order to generate space-time correlated sources, we first generate a

samples of a τp size vector, d, with Copula-t distribution, a perfect tool for generating

vectors with controlled correlation, with 4 degrees of freedom whose correlation matrix

parameter is given by R = Rt⊗Rs where Rt (Rs) is a Toeplitz matrix whose first row

is

[
1 ρt . . . ρτ−1

t

]
(

[
1 ρs . . . ρp−1

s

]
). Each sample of d is partitioned to pro-

duce source vectors, d(k) =

[
s(kτ) s(kτ + 1) . . . s((k + 1)τ − 1)

]
. Therefore, we

obtain the source vectors as samples of a wide-sense cyclostationary process whose cor-

relation structure in time direction and space directions are governed by the parameters

ρt and ρs, respectively.

In the simulations, we consider a scenario with 7 sources and 20 mixtures, an i.i.d.

Gaussian convolutive mixing system with order 7 and a extractor of order 8. We set

ρs = 0.5, ρt = 0.5 and τ = 5. We note that the sources are non-stationary in this case

(we will cover stationary sources in the digital communication sources scenario).

Figure 7.1 shows the output total Signal energy to total Interference+Noise energy (over

all outputs) Ratio (SINR) obtained for the proposed BCA algorithm (J̄e) for various

sample lengths under 45dB SNR. SINR performance of Minimum Mean Square Error

(MMSE) filter of the same order, which uses full information about mixing system and

source/noise statistics, is also shown to evaluate the relative success of the proposed

approach. A comparison has also been made with a gradient maximization of the

criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2 of [35] where we take kmax =

50 and lmax = 20. We have obtained these methods from [2], [36]. As we did not

encounter any convolutive BSS algorithm with correlated source separation capability,
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we compared our algorithm with some well known convolutive ICA approaches.
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Figure 7.1: Result of the proposed blind source extraction algorithm performance for
the convolutive mixtures of dependent sources (ρs and ρt is set as 0.5) for various sample
lengths under SNR = 45dB.

For the same setup, Figure 7.2 shows the output total Signal energy to total Inter-

ference+Noise energy (over all outputs) Ratio (SINR) obtained for the proposed BCA

algorithm (J̄e), gradient maximization of the criterion (kurtosis) of [34] (KurtosisMax.),

Alg.2 of [35], and MMSE for various sample lengths under 20dB SNR.

These results demonstrate that the performance of the proposed blind source extraction

algorithm is approaching fast to its MMSE counterpart as the sample length increases.

On the other hand, the performance of gradient maximization of the criterion (kurtosis)

of [34] (KurtosisMax.) and Alg.2 of [35] is far from the performance of MMSE filter

even when the sample length is increased (Figure 7.1) or they require more sample

lengths to reach the same SINR performance (Figure 7.2) since in the correlated case,

independence assumption simply fails. Therefore, we observe that the proposed BCA

approach is capable of blind source extraction of convolutive mixtures of space-time

correlated sources.
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Figure 7.2: Result of the proposed blind source extraction algorithm performance for
the convolutive mixtures of dependent sources (ρs and ρt is set as 0.5) for various sample
lengths under SNR = 20dB.

7.3.2 Blind Source Separation

We first consider a similar scenario as in the blind source extraction examples to illus-

trate the performance of the proposed blind source separation algorithms regarding the

separability of convolutive mixtures of space-time correlated sources.

Here, we consider a scenario with 5 sources and 15 mixtures, an i.i.d. Gaussian convo-

lutive mixing system with order 5 and a separator of order 6 where the sample size is

50000.

Figure 7.3 shows the output total Signal energy to total Interference+Noise energy (over

all outputs) Ratio (SINR) obtained for proposed BCA algorithms (J̄s1, J̄s2,1, J̄s2,2J̄s2,∞)

for various space correlation parameters under 45dB SNR. The performances of MMSE,

gradient maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2

of [35] are also plotted for comparison. We note that the algorithm J̄s1 yields better

performance than the other algorithms.
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Figure 7.3: Results of the proposed blind source separation algorithms’ performances for
the convolutive mixtures of dependent sources for various space correlation parameters
under SNR = 45dB.

For the same setup, Figure 7.4 shows the output total Signal energy to total Interfer-

ence+Noise energy (over all outputs) Ratio (SINR) obtained for the BCA algorithm

(J̄s1), gradient maximization of the criterion (kurtosis) of [34] (KurtosisMax.), Alg.2

of [35], and MMSE for various space correlation parameters under 20dB SNR.

These results demonstrate that the performance of proposed blind source separation

algorithms closely follow its MMSE counterpart for a wide range of correlation values.

Therefore, we obtain a convolutive extension of the BCA approach introduced in [1],

which is capable of separating convolutive mixtures of space-time correlated sources.

Also note that the proposed blind source separation algorithms maintain high separa-

tion performance for various space parameters. However, the performance of gradient

maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2 of [35] de-

grades substantially with increasing correlation since the independence assumption does

not hold. We point out that when ρs = 0 the sources are independent, yet BCA algo-

rithms still outperforms other ICA algorithms. This result can be attributed to the finite
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Figure 7.4: Results of the proposed blind source separation algorithms’ performances for
the convolutive mixtures of dependent sources for various space correlation parameters
under SNR = 20dB.

sample effects. In other words, although the sources are stochastically independent, fi-

nite samples may not reflect this behaviour and the sources may even have non-zero

sample correlation. BCA algorithms being robust to such correlations can offer better

performance. Effect of the sample size will be investigated in the next scenario.

We next consider the following scenario to illustrate the performance of the proposed

blind source separation algorithm for the convolutive mixtures of digital communication

sources. We consider 5 complex 4-QAM sources where we take 15 mixtures, an i.i.d.

Gaussian convolutive mixing system with order 5 and a separator of order 6. The sources

are stationary in this case. We use the objective function J̄cs1 as the BCA algorithm

for this simulation. The resulting Signal to Interference Ratio is plotted with respect to

the sample lengths in Figure 7.5. We have also compared our algorithm with a gradient

maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2 of [35].

As it can be observed from Figure 7.5, the proposed BCA approach achieves better

performance than ICA based approaches. We again note that, the proposed method
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Figure 7.5: Result of the proposed blind source separation algorithm performance for
the convolutive mixtures of digital communication sources for various sample lengths.

does not assume/exploit statistical independence. The only impact of short data length

is on accurate representation of source box boundaries. The simulation results suggest

that the shorter data records may not be sufficient to reflect the stochastic independence

of the sources, and therefore, the compared algorithms require more data samples to

achieve the same SIR level as the proposed approach.

7.4 Conclusion

In this section, we introduced deterministic and geometric frameworks for the convolu-

tive BCA problem. We proposed blind source extraction and blind source separation

algorithms based on certain deterministic measures obtained from the geometric objects

of samples which can be used for the extraction/separation of both independent and

dependent (even correlated) sources. The numerical examples illustrate that the pro-

posed frameworks are capable of extracting/separating space-time correlated sources
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from their convolutive mixtures. Moreover, even when the sources are independent,

having short sample lengths may not reflect the independence behaviour. Hence, the

proposed approaches expectedly provide better performances than the ICA based ap-

proaches regarding separation of independent sources especially for short sample records.

7.5 Appendix

7.5.1 Proof of Theorem 1

We first note that, following similar steps as in [1], when the assumption (C1) holds,

we can write the range of o as R̂(o) = ||g̃T Λ̃||1 where Λ̃ = I ⊗ Λ is the range matrix of

s̃P .

Since o(l) = g̃T s̃P (l +M − 1) for l = 1, 2, . . . , N1, we have

1

N1

N1∑
l=1

(o(l)− µ̂o)2 =
1

N1

N∑
l=M

g̃T (s̃P (l)− µs̃P )(s̃P (l)− µs̃P )T g̃

=
1

N1

N∑
l=M

g̃T Λ̃(s̃P (l)− µs̃P )(s̃P (l)− µs̃P )T Λ̃T g̃ = g̃T Λ̃R̂s̃P
Λ̃T g̃, (7.17)

where µs̃P = 1
N1

∑N
l=M s̃P (l), µs̃P

= 1
N1

∑N
l=M s̃P (l) and R̂s̃P

is defined as the sample

covariance matrix of s̃P .

We can further define qT = g̃T Λ̃ and rewrite the equality (7.1) in terms of q as

Je(q) =

√
qT R̂s̃P

q

||q||1
. (7.18)
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Note that, maximizing Je(q) is equivalent to the corresponding optimization setting

maximize
√
qT R̂s̃P

q

s.t. ||q||1 ≤ γ

where γ is a constant. Also note that, assuming R̂s̃P
� 0,

√
qT R̂s̃P

q is a convex

function and the region of ||q||1 ≤ γ corresponds to a convex polytope. From the

definition of a convex polytope (Vertex Representation [37]), this is the convex hull of

the vertices of polytope. Therefore, the maximum of
√
qT R̂s̃P

q will be attained at one

of the vertices (whichever has the maximum value) and therefore, the maximum will

be attained when q has only one non-zero component. To see that, we can take any

vector qi inside the convex polytope (i.e., satisfying ||qi||1 ≤ γ). From the definition of

vertex representation [37], qi = α1qv1 +α2qv2 + . . .+αpPqvpP where qv1 , qv2 , . . . , qvpP are

vertices of polytope and
∑pP

l=1 αl = 1. Defining f(q) =
√
qT R̂s̃P

q and using Jensen’s

inequality, we have

f(q) ≤ α1f(qv1) + α2f(qv2) + . . .+ αpPf(qvpP ) ≤ max{f(qv1), f(qv2), . . . , f(qvpP )}.

Therefore, the maximum is attained at the vertex which has the maximum value and

this yields that q has only one non-zero component.

To observe that from a geometric point of view, assuming R̂s̃P
� 0, for any constant γ,

the vectors q satisfying
√
qT R̂s̃P

q = γ constitutes an hyper-ellipsoid. Note that, for

any constant value of ||q||1, the maxima of
√
qT R̂s̃P

q will be attained at one of the

corner points ( i.e., where q has only one non-zero component ). A two dimensional

example is illustrated in Figure 7.6.

Since g̃T = qT Λ̃−1, g̃ will also have only one non-zero component, therefore, the global
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Figure 7.6: Two dimensional example for the global maxima of (4.63).

maxima of (7.1) correspond to perfect extractors.

7.5.2 Proof of Theorem 2

We begin with noting that

R{o(k)} =
P−1∑
l=0

R{gT (l)}R{s(k +M − 1− l)} − I{gT (l)}I{s(k +M − 1− l)}.

Defining g̀ =
[
R{gT (0)} − I{gT (0)} . . . − I{gT (P − 1)}

]T
and s̀P (k) = [ R{sT (k)}

I{sT (k)} . . . I{sT (k − P + 1)} ]T , we obtain

R{o(k)} = g̀T s̀P (k +M − 1),

for k = 1, 2, . . . , N1. Following similar steps, we can write the range of R{o} as

R̂ (R{o}) = ||g̀T Λ̀||1 where Λ̀ = I ⊗ Λ is the range matrix of s̀P . Similar to (7.17),
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we have

1

N1

N1∑
l=1

(R{o(l)} − R{µ̂o})2 = g̀T Λ̀R̂s̀P
Λ̀T g̀,

where R̂s̀P
is defined as the sample covariance matrix of s̀P . Defining q̀T = g̀T Λ̀ and

rewriting the equality (7.4) in terms of q̀ yields

Jce(q̀) =

√
q̀T R̂s̀P

q̀

||q̀||1
. (7.19)

Following similar analogy, as a result, the maximum of (7.4) is attained when g̀ has only

one non-zero component which also implies that g̃ has only one non-zero component.

Note that the non-zero component of g̃ will be real or purely imaginary. Therefore, the

global maxima of (7.4) correspond to a subset of perfect extractors for complex signals.

7.5.3 Proof of Theorem 3

We define the operator ΓK such that ΓK(G̃) is a block Toeplitz matrix of dimension

Kp× (K +P − 1)p whose first block row is [G(0) G(1) ... G(P − 1) 0 ... 0] and

first block column is
[
GT (0) 0 ... 0

]T
where the zero matrices (0) have the size p×p

same as the matrices G(l) for l = 0, . . . , P − 1. This yields,

õK(l) = ΓK(G̃)s̃K+P−1(l +M − 1),

for l = K,K + 1, . . . , N1. Defining A = K + P − 1, we have

R̂õK = ΓK(G̃)Λ̆R̂s̃A
Λ̆TΓK(G̃)T ,
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where Λ̆ = I ⊗Λ is the range matrix of s̃A and R̂s̃A
is the sample covariance matrix of

s̃A. Defining Q = ΓK(G̃)Λ̆ yields R̂õK = QR̂s̃A
QT .

Following similar steps as in [1], under the assumption (C1), we can write the range

of mth component of o as R̂(om) = ||G̃m,:Λ̃||1. Note that, ||G̃m,:Λ̃||1 = ||Qm,:||1 for

m = 1, 2, . . . , p. Therefore, the range vector for the separator outputs can be rewritten

as

R̂(o) =
[
||Q1,:||1 ||Q2,:||1 ... ||Qp,:||1

]
.

Rewriting the equality (7.7) in terms of Q, we obtain

Js1(W̃ ) =

(√
det(QR̂s̃A

QT )
)1/K

∏p
m=1 ||Qm,:||1

. (7.20)

For any G̃ whose rows are not linearly independent, we have det
(
QR̂s̃A

QT
)

= 0,

therefore, corresponding G̃ can not be global maxima of (7.7). Hence for any G̃ whose

rows are linearly independent, assuming R̂s̃K+P−1
= R̂s̃A � 0, to complete Q into a

full rank square matrix we introduce a (P − 1)p × Ap matrix M = DP where D =

diag(a1, a2, . . . , a(P−1)p) is a full rank diagonal matrix and P is a permutation matrix

such that det
(
MBMT

)
= 1 where we defineB = R̂s̃A

−R̂s̃AQ
T
(
QR̂s̃A

QT
)−1

QR̂s̃A
.

This yields,

det


 Q

M

 R̂s̃A
[
QT MT

] = det
(
QR̂s̃A

QT
)

det

(
M

(
R̂s̃A

− R̂s̃AQ
T
(
QR̂s̃A

QT
)−1

QR̂s̃A

)
MT

)
= det

(
QR̂s̃A

QT
)

det
(
MBMT

)
= det

(
QR̂s̃A

QT
)
.
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We note that

 Q

M

 R̂s̃A
[
QT MT

]
� 0 and MBMT is the Schur complement of

QR̂s̃A
QT , therefore, MBMT � 0. We also note that det

(
MBMT

)
= a2

1a
2
2 . . . a

2
(P−1)p

det ([B]per) where [B]per has the chosen rows and columns of B depending on the posi-

tions of a1, a2, . . . , a(P−1)p. Hence by choosing appropriate values for a1, a2, . . . , a(P−1)p

we can obviously introduce a matrix M such that

det


 Q

M

 R̂s̃A
[
QT MT

] = det
(
QR̂s̃A

QT
)
.

Using Hadamard’s Inequality [26] yields

det


 Q

M

 R̂s̃A
[
QT MT

] ≤ Kp∏
m=1

||Qm,:||22
(P−1)p∏
n=1

||Mn,:||22 det(R̂s̃A
). (7.21)

Note that
∏Kp

m=1 ||Qm,:||22 =
(∏p

m=1 ||Qm,:||22
)K

since Q is block Toeplitz matrix. Hence,

(√
det(QR̂s̃A

QT )
)1/K

≤

(
p∏

m=1

||Qm,:||2

)(P−1)p∏
n=1

||Mn,:||2

1/K

det(R̂s̃A
)1/2K .

Therefore, we have

Js1(W̃ ) =

(√
det(QR̂s̃A

QT )
)1/K

∏p
m=1 ||Qm,:||1

≤
∏p

m=1 ||Qm,:||2∏p
m=1 ||Qm,:||1

(P−1)p∏
n=1

||Mn,:||2

1/K

det(R̂s̃A
)1/2K

≤

(P−1)p∏
n=1

||Mn,:||2

1/K

det(R̂s̃A
)1/2K , (7.22)

due to the ordering ||q||1 ≥ ||q||2 for any q.

To achieve the equality in (7.22), the equalities ||Qm,:||1 = ||Qm,:||2 for m = 1, 2, . . . p
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and the equality in (7.21) should be achieved. The equalities ||Qm,:||1 = ||Qm,:||2 for

m = 1, 2, . . . p are achieved if and only if the first p rows of Q has only one non-

zero element. Since ΓK(G̃) = QΛ̆−1, this implies that each row of G̃ has only one

non-zero element. The inequality in (7.21) is achieved if and only if the rows of Q

are perpendicular to each other and to the rows of M which yields that the rows

of ΓK(G̃) are perpendicular to each other and to the rows of M . Note that since

K ≥ P , the structure of ΓK(G̃) guarantees that there is a block column which contains

G(0),G(1), . . . ,G(P −1), therefore, the non-zero entries of G̃ would not be in the same

position with respect to mod p, since otherwise Js1(W̃ ) would be simply 0.

As a result, the maximum is achieved if and only if G̃ corresponds to perfect separator

transfer matrix in the form G(z) = diag(α1z
−d1 , α2z

−d2 , . . . , αpz
−dp)P where G(z) is the

Z-transform of the overall system function {G(l); l ∈ {0, . . . , P − 1}}, αk’s are non-zero

real scalings, and dk’s are non-negative integer delays.

Here, we point out that the blind source extraction problem is a special case of the blind

source separation problem. Therefore, this proof can simply be also applied to the blind

source extraction method. However, we treat the blind source extraction problem as a

separate case to provide alternative geometric intuition.

7.5.4 Analysis of the Family of Objective Functions (Js2,r)

Before analysing this family of objective functions for some special r values, similar to

the proof of Theorem 3, we can rewrite (7.8) in terms of Q and obtain

Js2,r(W̃ ) =

(√
det(QR̂s̃A

QT )
)1/K

∥∥∥[||Q1,:||1 ||Q2,:||1 ... ||Qp,:||1
]T∥∥∥p

r

.
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Following similar steps, by modifying (7.22), we can obtain the corresponding inequality

Js2,r(W̃ ) ≤
∏p

m=1 ||Qm,:||2∥∥∥[||Q1,:||1 ||Q2,:||1 ... ||Qp,:||1
]T∥∥∥p

r

(P−1)p∏
n=1

||Mn,:||2

1/K

det(R̂s̃A
)1/2K .

The results of analysing this family of objective functions, for some special r values:

� r = 1 Case: In this case, we have

∥∥∥∥∥
[
‖Q1,:‖1 ‖Q2,:‖1 . . . ‖Qp,:‖1

]T∥∥∥∥∥
p

1

=

(
p∑

m=1

‖Qm,:‖1

)p

≥ pp
p∏

m=1

‖Qm,:‖1,

where the inequality comes from Arithmetic-Geometric-Mean-Inequality, and the

equality is achieved if and only if all the rows Q have the same 1-norm. Hence,

we have

Js2,1(W̃ ) ≤
∏p

m=1 ||Qm,:||2
pp
∏p

m=1 ‖Qm,:‖1

(P−1)p∏
n=1

||Mn,:||2

 1
K

det(R̂s̃A
)

1
2K

≤ 1

pp

(P−1)p∏
n=1

||Mn,:||2

 1
K

det(R̂s̃A
)

1
2K .

As a result, Q is a global maximum of Js2,1(W̃ ) if and only if it is a perfect

separator matrix of the form

Q = kPdiag(ρ),

where k is a non-zero value, ρ ∈ {−1, 1}p and P is a permutation matrix. This

implies G̃ is a global maximum of Js2,1(W̃ ) if and only if the corresponding form
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is satisfied

ΓK(G̃) = kPΛ̆−1diag(ρ).

Therefore, the global maxima of the objective function Js2,1 corresponds to a

subset of perfect separators.

� r = 2 Case: In this case, using the basic norm inequality and Arithmetic-

Geometric-Mean-Inequality, for any x ∈ Rp, we have

(||x||2)p ≥
(

1
√
p
||x||1

)p
≥ pp/2

p∏
m=1

|xm|

where the equality is achieved if and only if all the components of x are equal in

magnitude. As a result, this yields

Js2,2(W̃ ) ≤
∏p

m=1 ||Qm,:||2
pp/2

∏p
m=1 ‖Qm,:‖1

(P−1)p∏
n=1

||Mn,:||2

 1
K

det(R̂s̃A
)

1
2K

≤ 1

pp/2

(P−1)p∏
n=1

||Mn,:||2

 1
K

det(R̂s̃A
)

1
2K .

Similarly, Js2,2 has the same set of global maxima as Js2,1.

� r =∞ Case: Following similar steps, using the basic norm inequality and Arithmetic-

Geometric-Mean-Inequality, for any x ∈ Rp, we have

(||x||∞)p ≥
(

1

p
||x||1

)p
≥

p∏
m=1

|xm|,

98



where the equality is achieved if and only if all the components of x are equal in

magnitude. Based on this inequality, we obtain

Js2,∞(W̃ ) ≤
∏p

m=1 ||Qm,:||2∏p
m=1 ‖Qm,:‖1

(P−1)p∏
n=1

||Mn,:||2

 1
K

det(R̂s̃A
)

1
K

≤

(P−1)p∏
n=1

||Mn,:||2

 1
2K

det(R̂s̃A
)

1
2K .

Therefore, Js2,∞ also has same set of global optima as Js2,1 and Js2,2.

7.5.5 Proof of Theorem 4

We begin with observing that

R{o(k)} =
P−1∑
l=0

R{GT (l)}R{s(k +M − 1− l)} − I{GT (l)}I{s(k +M − 1− l)},

I{o(k)} =
P−1∑
l=0

I{GT (l)}R{s(k +M − 1− l)}+ R{GT (l)}I{s(k +M − 1− l)}.

Defining G̀ =

 R{G0} −I{G0} . . . R{GP−1} −I{GP−1}

I{G0} R{G0} . . . I{GP−1} R{GP−1}

 and s̀K+P−1(k) =

[ R{sT (k)} I{sT (k)} . . . R{sT (k −K − P + 2)} I{sT (k −K − P + 2)} ]T yields

òK(k) = Γ2K(G̀)s̀K+P−1(k). Thus,

R̂òK = Γ2K(G̀)Λ̀R̂s̀K+P−1
Λ̀
T

Γ2K(G̀)T ,

where Λ̀ = I ⊗ Λ is the range matrix of s̀K+P−1 and R̂s̀K+P−1
is defined as the sample

covariance matrix of s̀K+P−1.

Defining Q̀ = Γ2K(G̀)Λ̀ and following similar steps, we can write
∏2p

m=1 R̂(òm) =
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∏2p
m=1 ||Q̀m,:||1. Rewriting (7.12) in terms of Q̀ yields

Jcs1(W̃ ) =

(√
det(Q̀R̂s̀A

Q̀
T

)

)1/K

∏2p
m=1 ||Q̀m,:||1

.

Note that we have the similar expression as (7.20). Hence, the proof of Theorem 3 also

applies here. Note that the structure of Γ2K(G̀) implies that the non-zero entries of

G̃ can only be real or purely imaginary. Therefore, the set of global maxima for the

objective function (7.12) corresponds to a subset of complex perfect separators.
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Chapter 8

Conclusion and Future Work

This dissertation has presented the convergence analysis of recently introduced instanta-

neous BCA algorithms. Moreover, the instantaneous BCA approach has been extended

by providing a general optimization framework which can be used to produce numerous

instantaneous BCA algorithms. Additionally, a convolutive BCA framework has been

introduced which can produce a family of convolutive BCA algorithms that are able to

separate stationary independent and/or dependent sources. We point out that this is

the first convolutive BCA method in the literature. Besides, a deterministic BCA anal-

ysis framework has been proposed which does not assume any stationarity of sources.

With this approach, it is possible to separate convolutive mixture of non-stationary as

well as stationary independent and/or dependent sources.

Further research might explore the convergence behaviour of the instantaneous BCA

algorithms. Another possible area of future research would be to investigate a BCA

method that can incorporate the pdf information of sources to provide a better separa-

tion performance for tailed distributions.
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