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ABSTRACT

Bounded Component Analysis (BCA) is a recent concept proposed as an alternative
method for Blind Source Separation problem. BCA enables the separation of dependent
as well as independent sources from their mixtures under the practical assumption on
source boundedness. Therefore, Bounded Component Analysis (BCA) is a framework
that can be considered as a more general framework than Independent Component
Analysis (ICA) under the boundedness constraint on sources. In this thesis, we provide
a stationary point analysis for recently introduced instantaneous BCA algorithms. We
then extend the instantaneous BCA method providing the ability to generate a variety of
BCA algorithms. We illustrate the advantages of proposed BCA examples regarding the

correlated source separation capability over the state of the art ICA based approaches.

Furthermore, we extend the instantaneous BCA approach to the convolutive BCA prob-
lem. We first introduce a family of convolutive BCA criteria and corresponding algo-
rithms based on the stationarity assumption on sources. We prove that the global optima
of the proposed criteria, under generic BCA assumptions, are equivalent to a set of per-
fect separators. The algorithms introduced in this approach are capable of separating
not only the independent sources but also the sources that are dependent/correlated
in both component (space) and sample (time) dimensions. Therefore, under the con-
dition that the sources are bounded, they can be considered as “Extended Convolutive
ICA” algorithms with additional dependent /correlated source separation capability. We
illustrate the space-time correlated source separation capability through a Copula dis-
tribution based example. Furthermore, they have potential to provide improvement in
separation performance especially for short data records. A frequency-selective MIMO
Equalization example demonstrates the clear performance advantage of the proposed
BCA approach over the state of the art ICA based approaches in setups involving con-

volutive mixtures of digital communication sources.



Contrary to this stochastic convolutive framework, we propose novel deterministic con-
volutive BCA frameworks for the blind source extraction and blind source separation
problems which allow the sources to be potentially non-stationary. The global maximiz-
ers of the proposed deterministic BCA optimization settings are proved to be perfect
separators. We illustrate that the iterative algorithms corresponding to these frame-
works are capable of extracting/separating convolutive mixtures of non-stationary as

well as stationary independent and/or dependent sources.

vi



OZETCE

Sinirh Bilegenler Analizi (BCA), kaynak ayrigtirma problemi igin yeni tasarlanmig bir
metot olup kaynaklarin sinirli oldugu varsayimindan faydalanarak bagimli ve bagimsiz
kaynaklar1 birbirinden ayirmaya olanak saglamaktadir. Bu yiizden, Sinirhi Bilegenler
Analizi (BCA) kaynaklarin simirli olmasi varsaymmi altinda Bagimsiz Bilesenler Anal-
izinden (ICA) daha genel bir yontemdir. Bu tezde, yeni bir anlik BCA yonteminde 6ne
siiriilen algoritmalarin yakinsama analizini yapiyoruz. Daha sonra, bu anlik BCA yo6n-
temini gesitli BCA algoritmalar iiretilebilecek sekilde geligtiriyoruz. Geligtirilen yeni
metotla olugturulan algoritma orneklerinin literatiirde bulunan bazi ICA yontemlerine

gore bagimh kaynak ayrigstirma performanslarindaki avantajlarini gosteriyoruz.

Bu galigmalara ilave olarak, anlik BCA metotunu geligtirerek evrigimsel BCA yontemi
{iretiyoruz. Oncelikle, kaynaklarin duragan oldugunu kabul ederek evrisimsel BCA
kriterleri ve kargilik gelen algoritmalari tanimliyoruz. Tanimlanan kriterlerin, soysal
BCA varsayimlar: altinda, evrensel maksimumlarinin miitkemmel ayrigtiricilardan olugan
bir kiimeye denk geldigini ispatliyoruz. Bu yontemde tanimlanan algoritmalarin sadece
bagimsiz degil, bilesenlerinde ve zamanda bagimli kaynaklarinda ayrigtirmasini yapa-
bildigini gosteriyoruz. Bu yiizden, kaynaklarin sinirli oldugu varsayimi altinda, BCA
algoritmalarini bagimli ve ilintili kaynaklar1 ayirabilme ozelligine sahip genisletilmis
evrigimsel ICA algoritmalar: olarak diigiinebiliriz. Copula dagilimiyla iiretilen kaynaklar
ornegiyle, BCA algoritmalarinin bilegenlerinde ve zamanda ilintili kaynaklar1 ayrigtira-
bildigini gosteriyoruz. Ayrica, veri sayisinin az oldugu durumlarda, ayristirma perfor-
mansinda daha iyi sonuglar verdiklerini ortaya ¢ikariyoruz. Cok girisli ¢cok ¢ikigh frekans
se¢imli denklegtirme 6rnegi, dijital iletigim kaynaklarinin evrigimsel karigimlarinda, 6ner-

ilen BCA yonteminin literatiirde gecen ICA yontemlerinden {istiinliigiinii gosteriyor.

Bir 6nceki yontemin tersine, evrigimsel karigimlarin kaynak ayrigtirma ve oziitleme prob-
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lemleri igin gerekirci evrigimsel BCA metotlar1 tasarliyoruz. Boylelikle kaynaklarin
duragan olmasini varsaymiyoruz. Tamimladigimiz gerekirci kriterlerin evrensel mak-
simumlarinin miitkemmel ayrigtiricilar kiitmesine denk geldigini ispatliyoruz. Bunun yani
sira, ortaya cikan algoritmalarin evrigimsel duragan yada duragan olmayan bagimlh
veya bagimsiz kaynaklar1 ayrigtirabilme ve 6ziitleyebilme kapasitelerine sahip olduklarini

orneklerle gosteriyoruz.
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CHAPTER 1

Introduction

Blind Source Separation (BSS) is one of the basic problems in signal processing and
machine learning with a diverse set of applications [2]. BSS aims to extract individual
components (or sources) from their mixture samples where there is no, or very lim-
ited, prior information about their nature or the mixing process. We can state some

prominent application examples of BSS as:

e Cocktail Party Problem : A number of people are talking simultaneously in a

room resulting in a mixture of speeches.

e Brain Signal Processing : Measuring of electromagnetic signals from different

brain regions where the muscle artefacts mix with the brain signal of interest.

e Digital Communications : Transmission of the digital communication signals.

The blindness property is the key to the flexibility of this approach which leads to its
widespread use. However, the blindness feature also makes BSS a challenging problem
to solve. The hardship caused by the lack of training data and relational statistical
information is generally overcome by exploiting some “side information”/assumptions

about the model.

The most common assumption is the mutual statistical independence of sources. The
approach based on this assumption is referred to as the Independent Component Anal-

ysis (ICA) and it is the most popular and successful BSS approach [2—1]. Its success



resides in the simple and generic nature of the independence assumption and its appli-
cability ensures that ICA has a diverse range of BSS application domains. There have
been several other assumptions mostly fortifying the independence assumption such as
time structure (e.g., [, 0]), sparsity (e.g., [7]) and special constant modulus or finite

alphabet structure of communications signals (e.g. [3—10]).

In typical practical BSS applications source values take their values from a compact
set. This property has been exploited especially in some recent ICA algorithms. The
potential for utilizing the boundedness property as an additional assumption in the ICA
framework was first put forward in [I1]. In this work, Pham reformulated the mutual
information cost function in terms of order statistics. In the bounded case, this for-
mulation leads to the effective minimization of the separator output ranges. In the
similar direction, Cruces and Duran showed that an optimization framework based on
Renyi’s Entropy leads to support length minimization to extract sources from their mix-
tures [12]. Vrins et. al, utilized range minimization approach to obtain alternative ICA
algorithms [13-15]. Parallel to these contributions, Erdogan extended the infinity norm
minimization based blind equalization approach in [16,17] to obtain source separation
algorithms, again within ICA framework, based on infinity norm minimization [18], [19].
These algorithms assumed peak symmetry for the bounded sources, which is later aban-

doned in [20].

Following these contributions related to exploitation of boundedness of signals within
the ICA framework, recently, Cruces showed that boundedness can be utilized to replace
mutual statistical independence assumption with a weaker assumption [21]. This fact
led to a new framework, named Bounded Component Analysis (BCA), which enables

separation of independent and dependent (even correlated) sources.

For bounded sources, BCA provides a more general framework than ICA, since the joint

density factorability requirement of the mutual independence assumption is replaced by



the weaker domain separability assumption. The domain separability assumption refers
to the condition that the convexified effective support of the joint pdf to be written as
the cartesian product of their marginal pdf counterparts. Therefore, it is a necessary
condition for the independence. However, for the independence assumption to hold
there is a more stringent requirement about the factorizability of the joint pdf in terms
of product of marginals. BCA framework removes this requirement, therefore provides

a more flexible framework for bounded sources including ICA as a special case.

Within the newly introduced BCA framework, Cruces introduced a source extraction
algorithm in [21]. A deflationary approach for BCA was recently proposed in [22].
In [23], total range minimization is posed as a BCA approach for uncorrelated sources
and the characterization of the stationary points of the corresponding symmetric or-
thogonalization algorithm are provided. More recently, Erdogan proposed a new BCA
approach which enables separation of both independent and dependent, including cor-
related, bounded sources from their instantaneous mixtures [1]. In this approach, two
geometric objects, namely principal hyperellipsoid and bounding hyperrectangle, con-
cerning separator outputs are introduced. The separation problem is posed as max-
imization of the relative sizes of these objects, in which the size of hyperellipsoid is
chosen as its volume. When the size of bounding hyperrectangle is chosen as its vol-
ume, a generalized form of Pham’s objective in [11], which was derived by manipulating
the mutual information objective in ICA framework, is obtained. When the size of the
bounding hyperrectangle is chosen as a norm of its main diagonal, this leads to a set of
BCA algorithms whose global optima correspond to a fixed relative scalings of sources

at the separator outputs.

In this thesis, we first provide a stationary point analysis for the instantaneous BCA
algorithms introduced in [!]. We prove that all stationary points of the instantaneous

BCA algorithms rather than perfect separators are saddle points. We then extend the



instantaneous BCA approach by considering generalized functions of ranges of separa-
tor outputs which can be used to generate a variety of instantaneous BCA algorithms.
Through simulations, we illustrate the advantages of proposed BCA examples regard-
ing the correlated source separation capability over the state of the art ICA based

approaches.

We furthermore extend the instantaneous BCA method to a convolutive BCA frame-
work where we assume the stationary of sources and utilize process based correlation
information among sources in the optimization setting. We show that with this ap-
proach, it is possible to generate algorithms that are capable of separating not only
independent sources but also dependent (even correlated) sources from their convolutive
mixtures when the sources are assumed to be stationary. We note that this is the first
convolutive BCA approach in the literature. Contrary to this stochastic convolutive
framework, we additionally propose novel deterministic convolutive BCA frameworks
for the blind source extraction and blind source separation problems where the sources
are allowed to be non-stationary. We show that the proposed scheme can generate al-
gorithms that can extract/separate convolutive mixtures of non-stationary as well as
stationary independent and/or dependent sources. We point out that even when the
sources are independent, the samples may not reflect this behaviour especially for short
data records. Hence, we show the potential for the significant performance improvement
offered by the proposed BCA approach over the state of the art ICA based approaches,

especially for short data records.

1.1 Contributions

The contributions of this thesis are as follows :



1.1.1 Convergence Analysis for Instantaneous BCA Algorithms

e A stationary point analysis for the BCA algorithms introduced in [1] is presented.
It is shown that all stationary points of the instantaneous BCA algorithms besides

perfect separators are saddle points.

e This work is to be submitted to IEEE Transactions on Signal Processing.

1.1.2 Extension of Instantaneous BCA Approach

e The instantaneous BCA approach introduced in [1] is extended by considering gen-
eralized functions of ranges of output samples (corresponding to the side lengths of

bounding hyper-rectangle) which also covers the size of bounding hyper-rectangle.

e It is shown that the extended approach can be used to generate a variety of

instantaneous BCA algorithms.

e The advantages of proposed BCA examples regarding the correlated source sep-
aration capability over the state of the art ICA based approaches are illustrated

through simulations.

e This work is submitted to Asilomar Conference on Signals, Systems, and Com-

puters.

1.1.3 Convolutive BCA Algorithms for Stationary Indepen-
dent and/or Dependent Source Separation
e A convolutive BCA approach is proposed which can be used to generate an al-

gorithm that is capable of separating not only real independent sources but also

dependent (even correlated) sources from their convolutive mixtures when the

bt



sources are stationary. Therefore, for bounded sources, a more general framework
than ICA is proposed for the convolutive source separation problem which replaces
the strong mutual independence assumption with weaker and more generic domain
separability assumption leading to additional capability to separate sources which

are potentially dependent/correlated in both space and time directions.

A convolutive BCA objective is offered whose global optima are proven to corre-

spond to perfect separators.

This part is presented in the 38th International Conference on Acoustics, Speech

and Signal Processing.

The optimization setting of the approach is then extended which generates a family
of convolutive BCA algorithms. Furthermore, the complex sources case is included

in the approach.

Through a digital communications example, the potential for the significant per-
formance improvement offered by the proposed BCA approach over the state of

the art ICA based approaches, especially for short data records is illustrated.

The framework prescribes an approach based on the update of time-domain fil-
ter parameters which is free of permutation alignment problem suffered by the
algorithms using frequency domain updates. Furthermore, unlike many time-
domain convolutive ICA approaches, the proposed approach does not require pre-

whitening operation, which is problematic in convolutive settings.

The journal version is accepted for publication in IEEE Transactions on Neural

Networks and Learning Systems.



1.1.4 A Convolutive BCA Analysis Framework for Potentially

Non-Stationary Independent and/or Dependent Sources

e Novel deterministic convolutive BCA approaches are proposed for the blind source
extraction and blind source separation problems where the objectives are directly
defined in terms of mixture samples rather than some stochastic measures or their
sample based estimates allowing the sources to be potentially non-stationary. The
introduced framework does not exploit any non-stationarity feature, therefore it

is applicable to both stationary/non-stationary sources.

e It is proved that the global optima of proposed BCA objectives correspond to

perfect extractors/separators.

e The capability of proposed algorithms regarding the extracting/separating con-
volutive mixtures of dependent (even correlated) sources are illustrated. The
performances of proposed algorithms with the state of the art convolutive ICA
approaches are further compared and through a digital communications example,
the potential for the significant performance improvement offered by the proposed

BCA approach is shown, especially for short data records.

e This work is submitted to IEEE Transactions on Signal Processing.

1.2 Outline

Chapter 2 begins with the notation and the BCA setups that are considered throughout
the thesis. In chapter 3, we provide an essential summary of the instantaneous BCA ap-
proach introduced in [1]. In chapter 4, we first recall the instantaneous BCA algorithms

and then provide the convergence analysis results of the algorithms considered for both



real and complex signals. Chapter 5 extends the instantaneous BCA approach using

generalized functions of ranges of separator outputs including the size of hyperrectangle.

Chapter 6 presents the convolutive BCA approach that assumes the stationarity of
sources and produces a family of convolutive BCA algorithms. The numerical examples
illustrating the separation capability of proposed algorithms for the convolutive mixtures
of stationary independent and/or dependent sources are provided based on Copula dis-
tribution. Especially for short data records, the performance improvement offered by
the proposed BCA approach over the state of the art ICA based approaches is shown
through a digital communications example. Chapter 7 provides a deterministic approach
for the blind source extraction and blind source separation problems where the sources
are allowed to be potentially non-stationary. In this approach, there is no stationarity
assumption. The sources can be both stationary and non-stationary. It is shown that
the convolutive BCA algorithms generated by this scheme are capable of separation of

stationary as well as non-stationary independent and/or dependent sources.

Finally, Chapter 8 is for concluding comments and discussing future works.



CHAPTER 2
Notation and BCA Setups

In this chapter, we will present the notation and BCA setups that we consider in our

derivations for the instantaneous and convolutive blind source separation problems.

2.1 Notation

Let A € CP*9 and a € CP*! be arbitrary. The notation used in the thesis is summarized

in Table 2.1.
Notation Meaning
A, (A) m' row (column) of A
R{A} (I{A}) The real (imaginary) part of A
l|lal|, Usual r-norm given by (3-7 _ |au|")'".
diag(a) Diagonal matrix whose diagonal entries
starting in the upper left corner are a; , ..., a,.
[1(a) aiasy . .. a,, i.e. the product of the
elements of a.
Sa The convex support for random vector a
€n Standard basis vector pointing in the m direction.
I Identity matrix
® Kronecker product

Table 2.1: Notation used in the thesis.

Indexing: m is used for (source, output) vector components, k is the sample index and

7 is the algorithm iteration index.



2.2 Instantaneous BCA Setup

The instantaneous BSS setup assumed throughout the thesis is summarized in Figure

2.1:

Y1
S{ —» " » O
1 y2 R 1
So —¥ Y3 > O
1 H TW [

Figure 2.1: Instantaneous Blind Source Separation Setup.

e We consider a deterministic setup consisting of p real sources which are represented

by the vector s = [ 5, s, ... Sp 7. We assume that the sources are bounded
such that s, (k) € [am, Bm] where o, B € R, B > a, for m = 1,...,p and
k € Z. We point out that we do not assume the sources are independent, or

uncorrelated. In fact, the sources are allowed to be potentially correlated.

The sources are mixed by a linear and instantaneous system. The mixing matrix
is assumed to be full rank and represented as H € R?*P. We further assume that
q > p, therefore, we consider the (over)determined BSS problem. The mixtures
are represented with y = [ ¢, ¢, ... y . |7 where the sources and the mixtures

are related by y = H's.

W € RP*? is the separator matrix of the system which produces the outputs as

o=Wy.

10



e The overall system function is defined as G = W H & RP*P where the relation

between the sources and the outputs can be written as o = G's.

Y ={y(1),y(2),...,y(N)} is the finite set consisting of observations of mixture sam-
ples. The main goal in BSS problems is to adapt the separator system based on
these observations. We denote the corresponding set of unobservable source samples
by S = {s(1),s(2),...,s8(N)}. The following assumption is introduced regarding the

set S:

Assumption: S contains the vertices of its

(non-degenerate) bounding hyper-rectangle (A1).

The separator system and the corresponding overall system produce the set of output

samples as

O ={Wy(1), Wy(2),..., Wy(N)}

= {Gs(1),Gs(2),...,Gs(N)}.

The optimization settings are proposed based on the set O.

2.3 Convolutive BCA Setup

The convolutive BSS setup assumed throughout the thesis is summarized in Figure 2.2:

e The setup consists of p real sources. The sources are represented by the vector

s =[5 s ... Sp ]T. We assume that ranges of the sources are bounded,
ie., spu(k) € [am, Bm] where oy, B € R, By > vy for m = 1,...,p and k € Z.

We define 7, = R(8m) = Bm — @, as the range of s, where R(-) is the range

11



Y1

S1 — Vo i » O1

S2 —» Va - » O2

S3 —» . > » O3
Y || | WO

Sp —> yq > 0p

Figure 2.2: Convolutive Blind Source Separation Setup.

operator providing the support length for the pdf of its argument. We decompose

the sources as

where Y = diag(y1,72, - . .,7p) is the range matrix of s and {s(k) € R?; k € Z} is

the normalized source process whose components have unit ranges.

The source signals are mixed by a MIMO system with a ¢ x p transfer matrix

where {H (1); l € {0,...,L—1}} are the impulse response coefficients, {H(f); f €
[—3, 3)} represents the Discrete Time Fourier Transform (DTFT) of the impulse
response. We assume that H(f) is an equalizable transfer function of order L — 1

[25]. The output of the mixing MIMO system is denoted by {y(k) € R?;k € Z}.

12



We have

where Y (f) represents the Discrete Time Fourier Transform (DTFT) of {y(k) €
R?;k € Z}, S(f) is the DTFT of {s(k) € R?;k € Z}. Equivalently, in the time

domain
L1
y(k)=> H()s(k—1), keZ
1=0
Defining H = [ HO) H(1) ... HL-1) | as the mixing coefficient matrix
and Sp(k) = | sT(k) sT(k—1) ... sT(k—L+1) |7, we can also write

Separator of the system

M—-1

W)= 3 We

=0

is a p x ¢ FIR transfer matrix of order M —1 where {W (1); [ € {0,..., M —1}} are
the impulse response coefficients and {W(f); f € [—3, 5)} represents the DTFT of
the coefficients. The separator output sequence is denoted by {o(k) € R ; k € Z}

whose DTFT can be written as

13



Equivalently, in the time domain

M-1

olk) =Y W(y(k—-1), ke
1=0
Defining W = [ W) W(1) ... W(M—1) | as the separator coefficient ma-

trix and gy, (k) = [ yT(k) yT(k—1) ... yT(k—M+1) |7, we can also write

where {G(l); [ € {0,..., P—1}} are the impulse response coefficients, {G(f); f €
[—%, %)} represents the DTF'T of the coefficients and P — 1 is the order of overall
system. Therefore, in the time domain, the sources {s(k) € RP;k € Z} and the

separator outputs {o(k) € RP; k € Z} are related by

P-1
o)=Y G)s(k—1), keZ
=0
We similarly define G = [ G(0) G(1) ... G(P—1)]and p(k) =] s(k)
s(k—1) ... s(k—P+1) ]7, we have o(k) = G&p(k), for k € Z. We obtain

the range matrix of §as Y = I ® T.

Similarly, Y = {y(1),y(2),...,y(N)} is the finite set consisting of observations of

mixture samples . Since the mixing channel H is convolutive having order of L — 1, the

14



corresponding set of unobservable source samples could be denoted by S = {s(—L +

2),...,s(0),s(1),s(2),...,s(N)} such that

Y = {H5,(1), H5,(2),..., H5,(N)}.

We point out that the source samples in the set S could be generated from stationary

distributions.

For a given convolutive separator channel 1% having order of M —1 with a corresponding
convolutive overall channel G having order of P — 1 , the convolutive nature of channel

generates N — M + 1 outputs and we illustrate the generated set of separator outputs

O={o(1),0(2),...,00N —M+1)} as

O = {Wgy (M), Wgy(M+1),..., Wg, (N)}

= {G5p(M),G5p(M +1),...,G5p(N)}.
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CHAPTER 3

Review of Instantaneous BCA
Approach in [1]

In this chapter, an essential summary of the deterministic instantaneous BCA approach
introduced in [1] is provided. We recall that we will extend this approach to the convo-
lutive BCA problem. We first start with the definitions of two geometric objects used

by this approach:

e Principal Hyperellipsoid is the hyperellipse whose principal semi-axis direc-
tions are determined by the eigenvectors of the covariance matrix and whose prin-
cipal semi-axis lengths are equal to principal standard deviations, i.e., the square

roots of the eigenvalues of the covariance matrix.

e Bounding Hyperrectangle corresponds to the box defined by the Cartesian
product of the support sets of the individual components. This can be also de-
fined as the minimum volume box containing all samples and aligning with the

coordinate axes.

An example, for a case of 3-sources to enable 3D picture, is provided in Figure 3.1. In
this figure, a realization of separator output samples and the corresponding bounding

hyperrectangle and principal hyper-ellipsoid are shown.

16



Bounding Principal
Hyper-rectangle Hyper-ellipsoid

- & -
st ih b4 o B o= Bow

Figure 3.1: Bounding Hyper-rectangle and Principal Hyper-ellipsoid

The separation problem is posed as maximization of the relative sizes of these objects.
First optimization setting of this approach is given as:
det(Ro)

maximize J(W) = W (3.1)

In this optimization setting, Ro represents the sample covariance matrix of the output
samples in the set O and R(O) contains the range values of the components of the
output samples in the set O. Note that the numerator of (3.1) is the (scaled) volume

of the principal hyperellipse, whereas the denominator is the volume of the bounding

hyperrectangle for the output vectors.
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The principal hyperellipsoid in the output domain is the image (with respect to the in-
stantaneous overall mapping defined as G') of the principal hyper-ellipsoid in the source
domain. We note that the instantaneous overall mapping causes |det(G)| scaling in the
volume of principal hyperellipsoid. However, the image of the bounding hyperrectangle
in the source domain is a hyperparallelopiped which is a subset of the bounding hyper-
rectangle in the output domain. Hence, the volume scaling for the source and separator
output bounding boxes is more than or equal to |det(G)|. As an important observa-
tion, for the latter, the scaling would be |det(G)| if and only if G is a perfect separator
matrix. We observe this by simple geometrical reasoning that the bounding box in the
source domain is mapped to another hyper-rectangle (aligning with coordinate axes) if
and only if G can be written as G = D P, where D is a diagonal matrix with non-zero
diagonal entries, and P is a permutation matrix. The set of such G matrices is referred
as Perfect Separators. Therefore, the optimization setting given as an example provides

Perfect Separators.

When the size of the bounding hyper-rectangle is chosen as a norm of its main diagonal,

a family of alternative optimization settings is proposed as:

det(Ro)

Cpre— " 3.2
IR (o)I7 &

mazximize Jo, (W)=

In this case, it is shown that the global optima set is in the form G = dP(U —
L) 'diag(c) where d is a non-zero value, 0 € {—1,1}?. Therefore, all the members
of the global optima set share the same relative source scalings, unlike the set of global

optima for J; which has arbitrary relative scalings.
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CHAPTER 4

Convergence Analysis for
Instantaneous BCA Algorithms

In this chapter, we provide a stationary point analysis for the instantaneous BCA algo-

rithms introduced in [1].

4.1 Iterative BCA Algorithms

We first provide the iterative algorithms corresponding to the objective functions intro-

duced in [1] as follows:

e Objective function J;(W):

m=1 Rm( ®)
(4.1)
with
b= > A ke yes) — DAY (ki )y ().
krm,+€’c7n,+(0(t)) kr,,L77€’C7,L17(O(t>)
where

— W is the separator matrix at the ¢ iteration,
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tth

— u® is the step size at the t*" iteration,

— K1 (OW) is the set of indexes where the m!" separator output reaches its

maximum value at the ¢ iteration,

— ICW_(O(t)) is the set of indexes where the m'" separator output reaches its

minimum value at the ¢ iteration,

- {)\7(7?7+(km7+) Dkt € Kot (OM)} is the convex combination coefficients,

used for combining the input vectors causing the maximum output, at the

t'h iteration, which satisfy

N (i) 20, kg € K e (09), 37 MY (k) = 1,
k‘m,+€’(:m’+(0(t))

form=1,2,...,p.

- {)\(t),(km,_) Dk € Ko (OM)} is the convex combination coefficients,

m,

used for combining the input vectors causing the minimum output, at the t**

iteration, which satisfy

A (k) >0, K € K (0D, > A (ko) =1,

km,— €Km,— (0®)
form=1,2,...p.
e Objective function Jy,.(W):
— For r =1, 2, the update equation is

WD = Wity ( <W(t R(Y)W@T)_ WOR(Y)

-1
B Z p||7z 0 emb’(z)T)' “2)
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— For r = 00, the update equation is

-1 .
W) — w4 O ( <W(t R(y)w(t)T> W(t)R(Y)

0
- ¥ Lemb%ﬁ» (4.3)
IR(OM)]] oo

meM(OM)

where M(O®) is the set of indexes for which the peak range values is

achieved, i.e.,
M(OY) = {m : Ry (0W) = [|R(OV)][| s},

and 57(,? =

4.2 Convergence Analysis Corresponding to Objec-

tive Function J;(W)

In order to identify stationary points, we first rewrite the iterative algorithm (4.1) in

terms of G as

(t+1) _ ) 4 (1) 08 ®T\ " A T )7
G G +p ((GR(S)G )GR HHZ O(t)mmH>,

-T p 1
.y alO) (t) () _ E E : (t) T
GV + 2 ( (G ) Am(O(t))em |:k >‘m,+<km,+>3 (km,-i-)

m,+ECm,+(Og (1))

- > )\ﬁf},_(km)sT(km,)DHTH. (4.4)

km,—€Km,~(Og (1))
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Note that under the assumption (A1), the inputs in the expression (4.4) can be written

as
8(kpm )" = sign {77 {GS?}} U — sign {N {Gﬁfl)}} L+a%k, )7, (4.5)
8(kpy, )" = —sign {N {ij}}} U + sign {73 {Gn?}} L+ c®(km )7, (4.6)
where U = diag ( max(s;), max(sz), ..., max(s,) ) and L = diag( min(s;), min(ss),

.., min(s,) ) are the diagonal matrices containing maximum (minimum) values for
the components of the source samples in the set S and a%)(km,Jr)T and cg@)(k‘m,_)T
are additive source terms which have zero values for the components corresponding
to nonzero components of GSL{: and arbitrary values (from the support) for the other

components. Therefore, the input dependent update part in the right side of (4.4) can

be written as

sign {GOL U L)+ Y A (ke )al ()"
km,+€Km,+(Og )

- Y ANt )e b ) msin{GU W -L), @)
km,,elCm,,(OGm)

where we assume that the contributions of the a and ¢ dependent terms average out.

We identify G, as a stationary point if and only if it is mapped to itself after an iteration
of the algorithm. We note that since H is assumed to be a full rank matrix H” H is

invertible hence from (4.4) and (4.7), this is equivalent to the condition that
diag(R1(0), ..., Ry(0)) tsign {G.} (U — L)GT =1. (4.8)

Defining Q = G, (U — L) with noting that sign {G,} = sign {Q} and R,,,(0) = Q.11
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form=1,...,p yields

sign {Q} Q" = diag (||Qy [ - - 1Q,:Ih) -

We define Q = diag (11Qy .1, - - - HQ]D’:||1)_1 Q and obtain

sign {Q} QT =1

We provide some examples for the set of stationary points:

e Perfect Separators: It Q = Pdiag(o) where o € {—1,1}? and P is a permutation

matrix, then sign {Q} = Q hence sign {Q} QT = I. This yields G, = DP hence

the corresponding G, is a perfect separator matrix.

e Orthogonal matrices where each row has entries with constant magnitude: Sup-

pose that Q is an orthogonal matrix whose i'th row has «; non-zero values

and the magnitude of corresponding non-zero entries is 1/a;. Therefore, we can

write Q = diag(1/o1,1/ag, ..., 1/a,)sign {Q} This implies that sign {Q} Q =

diag(ou, ag, ..., a,) diag(l/ay, 1/as, ..

1/a,) =1

o Matrices whose entries are powers of 0.5: Defining

0.5 (0.5 (0.5)"2
0.5 (0.5 (0.5)"2
(052 (0.5)"2 (0.5)"3

(052 (052  —05

0.5 —0.5 0

(0.5)2 0.5 _

(0.5)2 —0.5
—05 0
0
0
0 0

a set of stationary points

can be defined of the form Q = diag(c) P, TP, where P_l and P; are permutation

matrices.
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We note that we do not provide the set of all stationary points, however, we will show
that if a stationary point of the algorithm (4.1)/(4.4) is not a perfect separator, then it

is a saddle point.

Lemma : If a stationary point does not belong to the set of perfect separators, then its
rows and columns can be permuted such that upper-left 2 by 2 sub-matrix of its sign

matrix becomes

Al = or A,l =

Proof : Let Q be a stationary point which is not a perfect separator. There exists a
row of Q which has more than one non-zero entries (wlog, assume Ql’:). From (4.9), we

have

(p-1) {sign {ij:} L, j=1,2,... ,p} are linearly independent.

(A VAT .
(p.2) sign {Q]} Q,.=0forj=2,...,p.

Note that (p.1) implies that at least one Q]-’: has a non-zero entry overlapping with
one of the non-zero entries of QL:' Otherwise, non-overlap condition restricts span of
{sign {QJ} s ] =2, p} to at most p — 2 dimensional space which conflicts with
linear independence.

Furthermore, (p.2) implies that number of overlapping entries should be greater than

one with an alternating sign.

Therefore, rows and columns of a stationary point which is not a perfect separator can

be permuted such that upper-left 2 by 2 sub-matrix of its sign matrix becomes A; or

Ay,

The following theorem shows that the stationary points other than perfect separators

are saddle points:
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Theorem 1: If a stationary point of the algorithm (4.1)/(4.4) does not belong to the
set of perfect separators, then it is a saddle point.

Proof : We note that G is a perfect separator matrix implies that Q is a perfect
separator matrix and vice versa. Therefore, it is equivalent to show that all Q matrices

satisfying (4.9) are saddle points if they are not perfect separators.

We note that the cost function in terms of Q is equivalent to

J(Q) = |det(Q)].

From Lemma, Q can be permuted such that upper-left 2 by 2 sub-matrix of its sign

matrix becomes A; or A_;. We define the permuted matrix as Q and wlog we assume

J(Q).

sign {leg,lg} = A;. We also observe that J(Q)

We partition

Q@ QO QW = Q1:2,1:2, QY = Q1:2,3:p
Q(C) Q(d) Q(C) = Q3:p,1:27 Q(d) = QS:p,S:p

L«
Il

Note that, sign {Q(“)} = A;. We will prove that Q(d) is non-singular. From (4.9), we

have

Q@ QO Sign{Qw)T} Sign{Q(cF} :
q© QW Sign{@bf} Sign{@d)T} -

which yields

Q©sign {Q(“)T} +Q@sign {Q(”>T} = 0.
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If Q@ is singular, then there exists a non-zero vector x € ®7~2 such that x7Q@ = 0.

Therefore,
X" Qsign {QwT} — 0,

which yields XTQ(C) = 0 since sign {Q(“)} = A, is non-singular. Defining the non-zero

vector X € R? such that x = [0 0 x”]7, we have

CRNeICH
Qo” "

X =0.

This yields contradiction since QT is non-singular. Therefore, Q(d) is non-singular.

We now prove that Q is a saddle point. Using Schur’s Complement, we have

J1(Q) =

det <Q(d)> det (Q(“) - QWY (Q“”)l Q“’) ‘

v N v -1
Defining A = Q@ — Q® (Q(d)> Q) we note that

0.5 0.5
Hence we obtain A =
0.5 —0.5
v € —€ v
e If we perturb Q@ matrix with , we then note that det(Q?) does not
—€ —¢

change and | det(A)| becomes | det(A)| + 2¢2. Hence, we have J1(Q,) > J1(Q).
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) € —¢ o
o If we perturb Q@ matrix with , we then note that det(Q@) does not
€ €

change and | det(A)| becomes | det(A)| — 2¢2. Hence, we have J;(Q,) < J1(Q).

Therefore, if a stationary point of the algorithm (4.1)-(4.4) does not belong in the set

of perfect separators, then it is a saddle point.

4.3 Convergence Analysis Corresponding to Objec-

tive Function J,;(W)

Following similar steps as in the previous section, we have

-7 p
GU) — g0 4 u“)( Gg") S 2 o
< ) 2 IR(OW)]];

m=1

S N ) = X A (s ()| HTEL

K, + €Km,+(0®) b, — €m,— (OM)
(4.10)
The stationary points in this case satisfies
p . T
———sign{G.} (U - L)G, =1 (4.11)
IR(O)]]x

Similarly, we define @ = G.(U — L) with noting that sign{G.} = sign{Q} and
IR(O)]]; = P 1@y ] |1 yields

ﬁ@:l HQm,H1> I

sign {Q} Q" = ( .
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This implies that
| |Q1,:

1= Qe [h = = 11Qy, -

~ 1
We define Q = ———Q@Q and obtain

1@ [k

sign {Q} Q =1 (4.12)

We note that we reach the same condition as (4.9) for the objective function J5; (W),
therefore, the examples of the Q matrices also applies here. However, the difference
is that for the objective function J;(W') corresponding @ matrices can be obtained
by arbitrary scaling of the rows of Q whereas here we should multiply the rows of Q

matrices with the same parameter.

Similar to the objective function J; (W), we will show that if a stationary point of the

algorithm (4.2)/(4.10) is not a perfect separator, then it is a saddle point.

Theorem 2: If a stationary point of the algorithm (4.2)-(4.10) does not belong to the

set of perfect separators, then it is a saddle point.

Proof : In this case, we note that the cost function in terms of Q is equivalent to

)]
Q==

Therefore, the proof of the Theorem 1 also applies here.
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4.4 Convergence Analysis Corresponding to Objec-

tive Function .Jy (W)

For the objective function Jo (W), we have

) — a0 (g o
() Z HR e IP
Z )‘SL),-k(km,Jr)ST(km,-&-) - Z /\gfz),— (km,—)ST(km,—)} > H"H.

km, 4+ €EKm,+(0O®) km,— € m,— (OM)
(4.13)
The stationary points in this case satisfies
p . 5 5 . T
————diag(R1(0),...,R,(0))sign{G.} (U — L)G, =1
IR(O)I13
Similarly, we define Q@ = G.(U — L) and obtain
. . T met Q| I2
diag ([|Qy. /1., 1Q,.h) sign {Q} Q" = , I
This implies that
1@ [h = 11@2. [l = - = 1|Q,.[]x-
Similarly, defining Q = —Q yields
||Q1 [l
) ~\ ~T
sign {Q} Q -1 (4.14)

We note that this condition is equivalent to the condition for the objective function

Jo 1 (W).
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4.5 Convergence Analysis Corresponding to Objec-

tive Function .J; (W)

For the objective function Jy (W), we have

. 0
Gt _ a u“)( (6 S ﬁem

meM(0®)

S Ml ) = X A (s ()| JHH

km,+€KnL,+(O(t)) km,feKm,f(O(t))
(4.15)
The stationary points satisfies
Z ApLemsign {(G*)m} (U-L)G =
o IR0
Defining Q = G,(U — L) yields
PBm T _
Y T eusign{Q,, ) Q" =L (4.16)

o RO

We note that in order to satisfy (4.29), we must have M(O) = {1,2,...,p} which

implies that the ranges of outputs are equal, i.e.,

1Qu.] = 11Qa:llr = =@, [1-
Hence, 5,, = 1/p for m = 1,2,...,p. We similarly define Q= ||Q i ———@ and obtain
1,:111
from (4.29) that
. ~\ AT
sign {Q} Q =L (4.17)



We note that this condition is equivalent to the condition for the objective function

Jo1 (W).

4.6 Extension to Complex Signals

In the complex case, the source vectors and output vectors belong to CP and the mixture
vectors belong to C?. The mixing and separator matrices are complex matrices, i.e., H =
C?P and W = CP*4. For a given complex vector x € CP, we define the corresponding
isomorphic real vector X € R* as x = [ R(x?) I(x") }T. We also define the operator

1 CP*7 — R?PX% a5

We note that since o = Wy, we have 6 = ¢ (W)y.

Using these definitions, J; objective function in (3.1) has been modified for the complex

case as

where in this case O = {0(1),0(2),...,0(N)}.

For the modified objective function, it is proved that the global optima for (4.18) (in
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terms of G) is given by

O.= {G = DP : P € RP? is a permutation matrix,
D € 1P*? is a full rank diagonal matrix with,

jnk;

Dii:aieT7aiERvkiezaizlw"ap}a

which corresponds to a subset of complex perfect separators with discrete phase ambi-
guity.
Similar to the real case, complex approach is extended to the Jcy family by defining

A

Jeny (6(W)) = ¢y Lot Be) (4.19)
Cor - RO |

The corresponding iterative updates for ©)(W') can similarly be written as

e Objective function Jei(¢p(W)):

> 1 T
m=1 Rm(O(t))
where
b)) = M (i O3 k) = > A (k)3 (B, ),
K, + €K m,+(Z(1)) km,— €Km,—(Z®)

form=1,2,...,2p.

e Objective function Jey, ((W)):
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For r = 1,2, the update equation is

A N

S0 = W)l (W ORI )T ) oW RO

2p 5 (H(E)\r—1
—ZQPRJ”@ ) emb;?T). (4.21)
et ROV

For r = oo, the update equation is
B D) = w40 ( (W ORGSO oW OR()

0
-y %emb%ﬁ). (4.22)
e RO

4.7 Convergence Analysis Corresponding to Objec-

tive Function J¢ (¢ (W))

We rewrite the iterative algorithm (4.20) in terms of ¢(G) as

iﬂ(G(tH)) = w(G(t)) + pu® (w(G(t))—T B

S N ) X N8 | ot e,

K+ €K, +(O®) km,— €Km,— (O®)

We can similarly write the input dependent update part in the right side of (4.23) as

sign {U(GY),,..} (Ur — Lr), (4.24)
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Ur O L, O
where Ur = and Lr = such that

0 U[ 0 LI

U p = diag (max(R(s;)), max(R(s2)), ..., max(R(s,))),
Ly = diag (min(R(sy)), min(R(sz)), ..., min(R(s,))),
U, = diag (max(I(sy)), max(I(sz)),..., max(I(s,))) .,

L; = diag (min(I(s1)), min(I(s2)), . . ., min(I(s,))) .

Here we assume that max(R(s;)) > 0, min(R(s;)) < 0, max(I(s;)) > 0 and min(I(s;)) <

0 for e =1,2,...,p. Therefore, the stationary points satisfies
diag(R1(0), ..., Rap(0)) tsign {(Q).} (Ur — Ly)y(G)F = 1. (4.25)

Defining Q = ¢(Q),(Ur—Ly) with noting that sign {¢)(G),.} = sign {Q} and R,,,(O) =

||Qm7:|’1 form=1,...,2p yields

Sign {Q} QT = dlag (||Q1,:||1’ SRR ||Q2p,:||1) :

We define Q = diag (11Q1 .1 ---, ||QQP7:||1)71 Q and obtain

sign {Q} Q =1 (4.26)

We first provide the set of perfect separators in this case and then prove that if a
stationary point of the algorithm (4.20)/(4.23) is not a perfect separator, then it is a

saddle point.

e Perfect Separators: We note that in this case, due to the structure of (G),

34



positions of non-zero values of Q. ., suffices to have the positions of non-zero

values of Q. If lepﬁ = Pdiag(o), then sign {Q} — Q hence sign {Q} QT =1

jmk;

This yields G, = DP where D;; = e 2 ,o; € Rk, € Z,i = 1,...,p. We note
that the entries of G matrices’ can only be real or purely imaginary due to the

structure of Y(G).

Theorem 3: If a stationary point of the algorithm (4.20)/(4.23) does not belong to the

set of perfect separators, then it is a saddle point.

Proof : We note that G is a perfect separator matrix implies that Q is a perfect
separator matrix and vice versa. Therefore, it is equivalent to show that all Q matrices

satisfying (4.26) are saddle points if they are not perfect separators.

From (4.18), the cost function in terms of Q is equivalent to

Jar(Q) = |det(Q)].

Therefore, the proof of the Theorem 1 also applies here.

4.8 Convergence Analysis Corresponding to Objec-

tive Function Jecg 1 (¢(W))

Following similar steps as in the previous section, the stationary points satisfy

2p

—————sign G* UT—LT GI:I
RONLE {(G). 3 ( JU(G)
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We define @ = ¢(Q).(Ur — Ly) with noting that sign {¢(G),} = sign{Q} and
1ROl = X%, [|Q,n.|li and obtain

2p
iy - (ZEal9l)

This implies that

1Q1 1l = 11Qs Ml = - = (1@, []1-

We define Q =

1
Q@ and obtain
1@y [k

sign {Q} Q =1 (4.27)

We note that this is the same condition (4.26) for the objective function Jeg 1 ((W)),
therefore, the derivations also apply here. However, the difference is that for the ob-
jective function Jeq((W)), corresponding @ matrices can be obtained by arbitrary
scaling of the rows of Q whereas here we should multiply the rows of Q matrices with

the same parameter.

4.9 Convergence Analysis Corresponding to Objec-

tive Function Jcoo(y(W))

The stationary points in this case satisfies

2p s NN .
————diag(R1(0), ..., Rey(0))sign {Y(G).} (Ur — L7)Y(G), =1
Ao e (0))sign {(G).} ( )4(G)
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Similarly, we define @ = ¥(G).(Ur — L) and obtain

2p 2
diog (11Qs [l |1 @y 1) sien {Q} Q7 = (Zm=1"Qm*”1> 1

2p

This implies that

1@ [ = 1@z [[1 = - = [[@s,[]1-
Similarly, defining Q = T Q T ———Q yields
1:00
sign {Q} Q =1 (4.28)

We note that this condition is equivalent to the condition for the objective function

S22 (P(W)).

4.10 Convergence Analysis Corresponding to Ob-

jective Function Jcy o (¢Y(W))

The stationary points satisfies

2pBm . )
—————e,,sign G).), .+ Ur—Ly)y(G)T =1
me%:@ RO ™ {@(@. J¥(G)

Defining Q = ¥(G).(Ur — L) yields

2p5m . T
MEO R0 )Hooe sign {Q,,.} Q (4.29)
meM(O)

We note that in order to satisfy (4.29), we must have M(O) = {1,2,...,2p} which
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implies that the ranges of outputs are equal, i.e.,

Q1.1 = 1Qallr = - = [|Qy.[]1-
- 1
Hence, f,, = 1/2p for m = 1,2,...,2p. We similarly define Q = 0. Q and obtain
1, 1
from (4.29) that
_ ~\ AT
sign {Q} Q =1 (4.30)

We note that this condition is equivalent to the condition for the objective function

S22 (P(W)).

4.11 Conclusion

In this section, we presented the stationary points of instantaneous BCA algorithms
introduced in [1]. We provide some examples for the set of stationary points, however,
we prove that all the stationary points of the algorithms are saddle points except perfect

separators for each algorithm.
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CHAPTER 5

Extension of Instantaneous BCA
Approach

In this chapter, we extend the instantaneous BCA approach introduced in [!] by consid-
ering generalized functions of ranges of separator outputs. We recall that the approach
in [1] exploits two geometric objects defined on output samples which are principal
hyper-ellipsoid and bounding hyper-rectangle. The approach is the optimization of the
relative sizes of these objects where the volume and the main diagonal length is con-
sidered to determine the size of bounding hyper-rectangle. In this chapter, we consider
more general functions of ranges of output samples (corresponding to the side lengths of
bounding hyper-rectangle) which also covers the size of bounding hyper-rectangle. It has
been proved that when the assumption (A1) holds, the global maxima of the introduced
objective functions which are the perfect separators are reached. However, in some real
world applications, this assumption may not hold or we may not know if this assumption
holds or not which can cause a variation in the performances of the introduced algo-
rithms. Therefore, in this chapter, we define a more general optimization framework
and correspondingly a variety of objective functions and prove that the corresponding
global maxima are in the set of perfect separators under same conditions. Hence, with
this approach, we are able to generate a variety of instantaneous BCA algorithms that

can be exploited to obtain better performances in different applications.

39



5.1 Extended BCA Optimization Framework

We provide the updated instantaneous BCA optimization framework by considering the

objective functions of [1] in a general case as

det(Ro)
J(W) = (5.1)

where Ro = + Y (0(1) — f1(0))(o(l) — f1(0))”, f1(0) = £ 3, o(l) is the sample
covariance matrix of o, ﬁ(om) is the range of the m’th component of the vectors in the

set O and f is any function that satisfies the following:

f (7@(01), R(0s), ... ,7%(073)> > ¢ H R(om), (5.2)

m=1

such that the equality is achievable for a finite constant ¢, and the ranges R(o;), R(02),
...,7@(01,) with some specific requirements. In the proposed objective function, the
modification is in the denominator where we consider generalized functions of ranges of

outputs. Here, we recall the assumption regarding the set S:

Assumption: S contains the vertices of its (non-degenerate) bounding hyper-rectangle

(A1).

In the following theorem, we show that the global maxima of the objective function

(5.1) correspond to the perfect separators.

Theorem: Assuming the setup in Section 2.2, H is a full rank matrix and Rs - 0,

the set of global maxima for J in (5.1) is equal to a set of perfect separator matrices.

Proof: We first note that since o = G's, we have Ro = GRSGT where Rs is the

sample covariance matrix of s. Therefore, y/det(Ro) = |det(G)|y/det(Rg).
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When assumption (A1) holds, we can write the range of m" component of o as R(0,,) =
|G, X||1 Where G, is the m™ row of G and Y = diag(R(s1), R(s2), ..., R(sp)) is
the diagonal matrix containing range values of the source samples in the set S. We can

further define A = GY and write the objective function (5.1) in terms of A as

|det(AY™Y)|y/det(Rg)

JW - 9

W) = F A Al A

\/det(Rs) det(A))|
R FUA Al T A

Using the Hadamard inequality [26] and the ordering ||g||; > ||q||2 for any g yields

E@

det(A) < | | [[Am.[l2 (5:3)
m=1
P
< 1 An.dls. (5.4)
m=1
Since the function f satisfies (5.2), we obtain
det(4) _ B Al

F (AL Al [[Apall) ™ ep TTey [[Ame |l

which further implies

1 det(f?s)

JW)< ——Y =
p Hiw:l R(Sm)

(5.5)

To achieve the equality in (5.5), the equalities in (5.2), (5.3) and (5.4) must be achieved.
The equality in (5.3) is achieved if and only if the rows of A are orthogonal to each other
and the equality in (5.4) is achieved if and only if the rows of A align with the coordinate
axes. Therefore, the equality in (5.3) and (5.4) holds if and only if A = PD, hence,

G = PDY ! where P is a permutation matrix and D is a nonsingular diagonal matrix
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which corresponds to the perfect separators. Hence, with the specific requirement of
(5.2) to achieve the equality in (5.5), the global maxima of the objective function (5.1)

correspond to the perfect separators or a subset of perfect separators.

We here give some examples for the function f:

. /i (7%(01), R(02), ... ,fz(op)) = IT%_, Rlom):
This is a trivial example where the equality in (5.2) is achieved for ¢, = 1. Hence,
the global maxima is achieved when G = PDY ! which corresponds to perfect
separators. We note that this function corresponds to the volume of the bounding
hyperrectangle of outputs and is equivalent to the objective function Jl(W)(W)
of [1].

p

o for (R0 R03)..... R(0,)) = | [Rl01) R(0s) . fz(o,,)]T where 7 > 1:

In this example, due to the ordering ||g||, > p'= ||q||s for any ¢ € R? and the

Arithmetic-Geometric-Mean-Inequality yields

where the equality is achieved when ¢, = pr and the ranges ﬁ(om) for m =
1,2,...p are equal to each other or equivalently, the non-zero entries in the rows
of A are equal in magnitude. Hence, the global maxima is achieved when G =
kdiag(p)PY ! where k is a non-zero value and p € {—1,1}” which correspond
to a subset of perfect separators. We note that these functions correspond to the
length of the main diagonal of the bounding hyperrectangle of outputs and are
equivalent to the objective functions J2(‘T/V)(W) of [1] for r = 1,2, c0.

~ ~

. fs (7%(01),7%(02),7%(03)) - (27@(01)7%(02) + 2R (01)R(03) +2R(02)7€(03)) :

3
2
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This example illustrates the surface area of the bounding hyperrectange of outputs

for p = 3. Using the Arithmetic-Geometric-Mean-Inequality (AGMI) yields

I3 (7%(01) R(03), R(03 > > %/2 H R(0m),

where the equality is achieved in the same condition with the norm example for

¢, = 6%2. We can generalize this by choosing f; <7A€(01), R(03), ... ,ﬁ(op)> =

R . A p/z
< P R(01)™ R(09)™2 .. .R(op)mtvp) where Y 7 my; =z for j=1,2,...p
and z € RT. According to the equality requirement of AGMI, the global maxima

correspond to a subset of perfect separators.

. . . . . . 2
£ (R(01), R(02), .., R(0,) ) = log (R 4 eRlen) 4 4 Rlow) ™,
In this case, using the AGMI yields

3 5 5 5 5 5 1/p\ %P
f4 (R(01), R(Og), . ,R(Op)> > log (p <€R(01)+R(02)+...+R(0p)> ) ’

(zog< )+ (R(on FR(02) 4.+ ﬁ(op>))2p ,

(log + (R . 72(%)) Up) ! ,

s

where the equality is achieved when ¢, = 2%log(p)? and the ranges R(0,,) for

R R n 1/p
m = 1,2,...p are equal to each other and log(p) = (R(Ol)R(OQ) . .R(op)) ,
yielding ﬁ(om) = log(p) for m = 1,2,...p. Hence, the global maxima is achieved

when G = log(p)PY ™! which correspond to a subset of perfect separators.
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5.2 Adaptive Implementations

In this section, we provide the adaptive algorithms corresponding to the examples of
objective functions presented in the previous section. We note that rather than maxi-
mizing J , we maximize its logarithm since with the logarithm operation, we utilize the
conversion of ratio expression to the difference expression since it simplifies the update
components in the iterative algorithm. Therefore, the new objective function is modified

as

A ~ ~

- 1 . T
J(W) =log(J(W)) = élog (det (WRyW >) —log (f (R(ol), R(02), ... ,R(op)>> .
The derivative of the first part of J(W') with respect to W is

-1

lalog (det <WRyWT)> _ <WRyWT> WRy-

2 ow

We note that since f; and fo, functions for » = 1,2, 00 are covered in [l], we only

provide the adaptive algorithms for f3 and f; functions.

e [terative algorithm for fs3:
The subgradient based adaptive algorithm maximizing J(W) using the function

f3 can be written as

-1 R

i i i i) T HT i
WD :WuW()((W()RyW() )Wk

3
< Z mem lmax(l)) . y(lzln(z)))T)

DO W

R (0" )+R( )+7€(o§;>) — R(6)
R(o))R (05 >+7%< >7%<o§f>> +R(o{)R(0)

at the i iteration and ™™ (1™?) is the sample index for which the maximum

@) is the step-size

where g, = M
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(minimum) value for the m' separator output is achieved at the i iteration.

e [terative algorithm for f;:
The subgradient based adaptive algorithm maximizing .J(W) using the function

f1 can be written as

. . . N A . -1 A
WD) — w4 u”( (Wm RyWu)T) WO Ry — 2p

p
l maz(i)y min(i) T
3 e igen W) —u )" )

where h = eﬁ(oli)) + eﬁ(oy)) +...+ @7%(0;”),

5.3 Numerical Examples and Conclusion

In this section, we provide the following scenario to illustrate the separation capability of
the algorithms corresponding to the examples given in the Section 5.1 for the dependent-
correlated sources: We generate the sources through the zero-mean adjusted Copula-t
distribution, a perfect tool for generating vectors with controlled correlation, with 4
degrees of freedom whose correlation matrix parameter is given by a Toeplitz matrix
R, whose first row is | 1 Ds ... pg—l , where the correlation parameter is varied in
the range 0 to 1. Here, we consider a scenario with 3 sources and 5 mixtures and the
coefficients of the 5 x 3 mixing matrix are randomly generated, based on i.i.d. Gaussian

distribution.

Figure 5.1 shows the output total Signal energy to total Interference energy (over
all outputs) Ratio (SIR) obtained for the BCA algorithm examples (corresponding to
fi, fa1, f3, f1) for various correlation parameters p, € [0,0.9] for the mixture length of

N =100000. The same procedure is repeated for FastICA [3], [27] and JADE [28], [29]
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algorithms, as representative ICA approaches.
We consider the performance criteria as the output total Signal energy to total Inter-

ference energy (over all outputs) Ratio (SIR) which is defined as

Total Signal Power Trace(GsigRngig)
Total Residual Power Trace(GresRsGleg)’

SIR =

where Gsig

of each row and making the other entries 0 and Greg is defined as the matrix obtained

is defined as the matrix obtained from G by keeping the maximum entries

from G by making the maximum entries of each row 0 and keeping the other entries so

that we will have the total signal power and total residual power.

100 T T T T
| | | |
| | | |
907777‘1””!’”"‘””1’7”’
—~ | | | |
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Figure 5.1: Result of the proposed BCA algorithms’ performances for the mixtures of
dependent sources for various correlation parameters when the mixture length is 100000.

In the second example, we generate the sources from exponentially distributed random
variables by the inverse CDF method used on the first setup. Figure 5.2 illustrates the

separation performances when the mixture length is N = 10000.

We observe from the figures that the BCA algorithms maintain high separation perfor-
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Figure 5.2: Result of the proposed BCA algorithms’ performances for the mixtures of
exponentially distributed dependent sources for various correlation parameters when the
mixture length is 10000.

mance for a wide range of correlation parameters especially for the longer sample size
case (i.e., N = 100000). However, both FastICA and JADE algorithms’ performances
degrades substantially along with increasing correlation since the independence assump-
tion does not hold. We also point out that for p, = 0, the performances of the BCA
algorithms are better than FastlCA and JADE even though the independence assump-
tion holds. This is due to the fact that the sample sizes are sufficient for the assumption
(A1) to hold, whereas they may not be sufficient to reflect the stochastic independence
of the sources. We also note that in the second example proposed BCA algorithms have
different performances, therefore, the variety of BCA algorithms which can be produced
from this analysis might be useful in different scenarios. We finally note that expo-
nential distribution decreases the likeliness of (A1) to hold, however, proposed BCA
algorithms still have good separation performances and with the longer data records

the BCA algorithms become more successful in separating correlated sources.

47



CHAPTER 6

Convolutive BCA Algorithms for
Stationary Independent and/or
Dependent Source Separation

In this chapter, we extend the instantaneous or memoryless BCA approach introduced
in [24] for the convolutive BCA problem. We extend the objective functions proposed
in [21] to cover the more general case where the observations are space-time mixtures of
the original sources. In particular, we show that the algorithms corresponding to these
extensions are capable of separating not only independent sources but also sources which
are potentially dependent and even correlated in both space and time dimensions. This
is a remarkable feature of the proposed approach which is due to a proper exploitation

of the boundedness property of sources.

6.1 A Family of Convolutive BCA Algorithms

6.1.1 A Convolutive BCA Optimization Framework

In this section, we extend the instantaneous BCA approach introduced in [24] to the con-

volutive BSS separation problem. We modify the first (volume ratio) objective function
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W) = ;5 [ togldet(Po(s)))af ~ tog (H R(om>> , (6.1

1
2 m=1

where Po(f) is the PSD of the separator output sequence. In the proposed objective
function, we only modify the log volume of the principal hyper-ellipse, i.e., the first term.
The definition of the volume of the principal hyper-ellipse is extended from sample based
correlation information to process based correlation information, capturing inter-sample
correlations. We note that the objective in (6.1) is the asymptotic extension of the J
objective in [24]. This extension is obtained by concatenating source vectors in the
source process and invoking the wide sense stationarity property of the sources along
with the linear-time-invariance property of mixing and separator systems such that the
determinant of the covariance in [21] converges to the integral term in (6.1). We also
note that this integral term or its modified forms (due to the diagonality of the PSD
for independent sources) appear in some convolutive ICA approaches such as [30], [31].
However, unlike ICA, the sources are not assumed to be independent, or uncorrelated,
therefore implying that Pg(f) is allowed to be non-diagonal. We assume sources satisfy

“the domain separability” assumption (C1) which is stated as follows:

e (C1) The (convex hulls of the) domain of the extended source vector (Sz) can
be written as the cartesian product of (the convex hulls of the) the individual
components of the extended source vector (S;, for m = 1,2,..., Pp), ie., S5 =

Sz X S;, X ... x S5

Pp*

Note that 8 corresponds to the collection of all random variables from all p sources in
a time window of length P. Therefore, the domain separability assumption (C1) in
effect states that the convex support of the joint pdf corresponding to all of these source

random variables in a given P-length time window, is separable, i.e., it can be written
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as the cartesian product of convex supports of the marginals of these random variables.
This assumption essentially states that the range of values for each of these random
variables is not determined by the values other random variables, whereas the probabil-
ity distribution defined over this range may be dependent. Therefore, the assumption
(C1) is a quite flexible constraint, allowing arbitrary joint densities (corresponding to
dependent or independent random variables) over this separable domain. The samples
can, in fact, be correlated, i.e., Ps(f) can change with frequency. We point out that
(C1) is a much weaker assumption than the assumption of independence of sources in
both time and space dimensions. In fact, the domain separability, which is a require-
ment about the support set of the joint distribution, is a necessary condition for the
mutual independence. However, the mutual independence assumption further dictates
that the joint distribution is equal to the product of the marginals, which is rather a

strong additional requirement on top of the domain separability.

6.1.2 The Global Optimality of the Perfect Separators

In this section, we show that the global optima of the objective function (6.1) corre-
sponds to perfect separators. The following theorem shows that the proposed objective
is useful for achieving separation of convolutive mixtures whose setup is outlined in

Section 2.3.

Theorem: Assuming the setup in Section 2.3, H(f) is equalizable by an FIR separator
matrix of order M — 1 and Ps(f) > 0 for all f € [—1, 1), the set of global maxima for

Jy in (6.1) is equal to a set of perfect separator matrices.

Proof: Using the fact that

Po(f) =G(/)TPs(/)Y'G(f)",
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we obtain

/

log(det(Po(f)))de/_ log (|det(G(f)Y)[*det(Ps(f))) df

[ N[

= I o) SIS

i

tog (Jdet (7 T)F) df + [

Using the Hadamard inequality [20] yields

/ log<

-/ S o (1 @O0, ) -

“2m=1 m=1

tog (et (@(1YT)F) & < [

ol NI=
o= o=

—
@
=
3
3
o
N——
&

< 3
&

/ tog (Il (G(F)Y),,.|13) .

log (det(Ps(f))) df.

(6.2)

(6.3)

where (G(f)Y),,. is the m'™ row of G(f)Y. From Jensen’s inequality [32], for m =

1,...,p, we have

/

The use of Parseval’s theorem yields

ol D=

tog (1 (G(f)Y),,.,13) df < log ( G, H%df> .

[ N[

(G, M3 = (G T I5-

olm NI=

Thus, from (6.3-6.5), we obtain

/

which further implies,

/

log (Jdet(G()T)) df < 3" log (II(GT)m[13)

N N|=

log(det(Po(f))df <> log (I(GT)m,I13) + / log (det(Ps(f))) df:

(= N|=
N =
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As a result,

1

[\]

[N

m=1

1i_ tog (I|(GT)n.I13) —wg(f[%m)) 45 [ tog det(Pat ) .

(6.8)

Under the BCA’s domain separability assumption (C1) stated in Section 6.1.1, we can

write the range of m'™ component of 0 as R(0y) = ||Gm.T||1. We can further define

Q 2 éY, the range vector for the separator outputs can be rewritten as

Ro) = [[1Qull1 1Qz.ll - [1Qy.[l1]-

If we rewrite the inequality (6.8) in terms of @ we obtain

NI

m=1

Note that,

> " log (1@ )12) < log (11Q,.]11)

due to the ordering ||q||1 > ||q||2 for any g. Therefore,

HW) < ;5 [ tog det(Pa(r)) .

[ I

<3109 (1Qu 1) = D" oy (1@ lt) + 5 | tog (det(Pa( ).

(6.9)

(6.10)

(6.11)

(6.12)

We note that the equalities in (6.3) and (6.11) must be achieved in order to achieve the

equality in (6.12). The equality in (6.11) is achieved if and only if each row of @ has only

one non-zero element which results in each row of G has only one non-zero element and

the inequality in (6.3) is achieved if and only if the rows of G(f) are perpendicular to

each other. Since G(f) = lPOl G(l)e 72/ and G = G00) G(1) ... G(P-1)
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the combination of these two requirements yield that the only one non-zero elements
in the rows of G must not be positioned in the same indexes with respect to mod p,

otherwise, the rows of G(f) would not be perpendicular to each other.

As a result, the inequality in (6.12) is achieved if and only if G corresponds to perfect

separator transfer matrix in the form

G(f) = diag(ae 2™ qye=d2mld2 o eI /d) p (6.13)

where a4’s are non-zero real scalings, d,’s are non-negative integer delays, and P is a
Permutation matrix. The FIR equalizability of the mixing system implies the existence

of such parameters.

Here, we point out that virtual delayed source problem does not exist in the proposed
framework: In case, if one of the separator outputs is the delayed version of another
output Po(f) becomes rank deficient, and therefore, its determinant becomes zero.
Therefore, the maximizing solution for the proposed objective will avoid such cases as
they will actually minimize the PSD dependent term in the objective (6.1). This fact is

also reflected by the proof of the Theorem above.

6.1.3 Extension of Convolutive BCA Optimization Framework

The framework introduced in section 6.1.1 is extended by proposing different alter-
natives for the second term of the objective function (6.1) (measure of the bounding
hyperrectangle for the output vectors). Example of such alternatives can be achieved by
choosing the length of the main diagonal of the bounding hyperrectangle. As a result,

we obtain a family of alternative objective functions in the form
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Top (W) = 5 [ togldet(Po(1)))df ~tog (RO, (6:1)

N

where r > 1. By modifying (6.10), we can obtain the corresponding objective expression

in terms of scaled overall mapping Q as

Do (W zzog 1@ l12) — tog ([[T1@u I 1Rl 1@, I1]"[)

+% /_ " log (det(Ps(f))) df- (6.15)

VI

The results of analyzing this objective function, for some special r values:

e r =1 Case: In this case, we can write

p

T p
H[ QM 1@l - HQp,:Hl] > [ 1@u. I,
m=1

1

where the inequation comes from Arithmetic-Geometric-Mean-Inequality, and the
equality is achieved if and only if all the rows of @ have the same 1-norm. In

consequence, we can write

Jo1 (W ng 1Q,..112) ZZOg 1Q.1[1) — log(p")

+% /_ " log (det(Ps(f))) df. (6.16)

D=

Similarly, from (6.11), we have

1

/_ " log (det(Ps (1)) df — log(p?). (6.17)

DO | —

J2,1<W) <

N
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As a result, @ is a global maximum of J,; (W) if and only if it is a perfect

separator matrix of the form
Q = kPdiag(p),

where k is a non-zero value, p € {—1,1}* and P is a permutation matrix. This
implies G is a global maximum of ngl(W) if and only if it can be written in the

form

G = kPY !diag(p).

e r = 2 (Case: In this case, using the basic norm inequality, for any a € RP, we have

lall: > —lal
all2 = —[|4]|1,

VP
where the equality is achieved if and only if all the components of a are equal in

magnitude. As a result, we can write

To2(W) <Y log (11Qu.l12) = > log ([1Q..111) — log(p'?)
m=1 m=1

v /_ " log (det(Ps(f))) df. (6.13)

N|=

Similarly, Js o has the same set of global maxima as Js ;.

e r = 0o (Case: Using the basic norm inequality, for any a € RP,

1
lallee = ~[lalls;
p
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and Arithmetic-Geometric-Mean-Inequality yields
1 p
IR(o)I[%, = EHR(O)H? >[I RGw).
m=1

where the equality is achieved if and only if all the components of R(o) are equal

in magnitude. Based on this inequality, we obtain

Taoe(W) < 3109 (1Qu112) = > o5 (1@u ) + 5 | toy (det(Pa( 1)) .

[

(6.19)

Therefore, Js o also has the same set of global optima as Jy; and Ja .

Hence, to attain the global maximum of Jy;, o2 and Js, there is also a condition
that all the rows of Q have the same 1-norm. This implies G is a global maximum of

Ja1, oo and Jy o if and only if it can be written in the form
G = kPY !diag(p).

where k is a non-zero value, p € {—1,1}? and P is a permutation matrix which corre-

sponds to a subset of perfect separators defined by (6.13).

6.2 Iterative BCA Algorithms

In this section, we provide the adaptive algorithm corresponding to the optimization

settings presented in the previous section.

e Objective Function J,(W):
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In the adaptive implementation, we assume a set of finite observations of mixtures

{y(0),y(1),...,y(IN — 1)} and modify the objective as
JU(W) = % S log(det(Po(1))) — log (H k(om)) , (6.20)

where v = N+ M — 1, n = 2v + 1 is the DFT size and we use the PSD estimate

for the separator outputs given by

Po(l)= ) Ro(k)e ™",

k=—v

forl € {—v,...,v}, where N is the number of samples and Ro is the output sample

autocovariance function, defined as

min(v,v—k)

. 1
Ro(k)= ————= Y. o(q)o"(g+k),
v+1— |k
g=mazx(0,—k)
for kK = —v,...,v. We point out that we use 7%(0) for the range vector of the
sample outputs for which we have
R(om) = max on(k)— min  oy(k),
ke{1,2,...,N} ke{1,2,...,N}

form=1,2,....p.

Note that the derivative of the first part of J; (W) with respect to W (n) is

10>, , log(det(lf’o(l))) 1 &
m oW =y 2B

{Po(z)—IW(Z)Py(z)eﬂml/n}, (6.21)

l=—v
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where

W)= > W(k)e >
k=—v

and

Py(l) = > Ry(k)e 7>/,
k=—v
Following the similar steps as in [24] for the derivative of log (H%:l ﬁ(om)>, the
subgradient based iterative algorithm for maximizing objective function (6.20) is

provided as

where ;) is the step-size at the i iteration and [n™ (Im™®)) is the sample

index for which the maximum (minimum) value for the m'* separator output is

achieved at the i'" iteration.

Objective Function J,(W):

In the adaptive implementation, we modify the family of alternative objective

functions as

Top(W) = % > logldet(Po(1))) — log (| R(0)]I?) (6.23)

l=—v
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For r = 1,2, we can write the update equation as

v

Z R {Po(l)*IW(i)(l)py(l)ejzml/n} B

l=—v

Z p Ow<z)
IR (0w)

) ) (1
W(Hl)(n) — W(Z)(n) + p@ (_
U

e (y () — ()T ) (6.21)

¢

For r = oo, the update equation has the form

W (n) = WO(n ( ZR{PO WO (1) Py (121}

l=—v

S () - o)

mEM(0y, (i) HR(OW(“>

(6.25)

where M (o) is the set of indexes for which the peak range value is achieved,
ie.,

M(ow) = {m : Ru(own) = [R(own)lls}, (6.26)

and Bq(fl)s are the convex combination coefficients.

6.3 Extension to Complex Signals

In the complex domain, we consider p complex sources with finite support, i.e., real and

imaginary part of the sources have finite support. We define the operator ® : CP — R??,

d(a) = [R{aT} I{a} r (6.27)
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as an isomorphism between p dimensional complex domain and 2p dimensional real
domain. For any complex vector a, we introduce the corresponding isomorphic real
vector as 4, i.e., a = ®{a}. We also define the operator I' : CP*9 — R?P*% a5

R{A} -I{A}

T'(A) = . (6.28)
I{A} R{A}

In the complex domain, both mixing and separator coefficient matrices are complex
matrices, i.e., H € CPL and W € CP*9M_ The set of source vectors S and the set of
separator outputs O are subsets of CP and the set of mixtures Y is a subset of C?. We

also note that since

y(k) = G5(k),
we have
y(k) =T (G)s(k)
where I'(G) = | T(G(0)) T(G(1)) ... T(G(P—1)) | and 5(k) =[5(k) 3(k—1)
C3k—-P+1)]T.

6.3.1 Complex Extension of the Convolutive BCA Optimiza-

tion Framework

We can extend the framework introduced in the Section 6.1 to the complex signals by

following similar steps with the real vector 0. We define the subset of R?” vectors which
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are isomorphic to the elements of O as
O={0:0c0}
Similarly, we define

S= {s:s€e5},

V= {y:yeY}

By these definitions, we modify the objective function J; in (6.1) for the complex case

as

Jer(W) = % / * log(det(Py()))df — log (H R(()m)> . (6.29)

3
Note that the mapping between ®(s) and ®(0) is given by I'(Q), thus the theorem
proved in Section 6.1.2 implies that the set of global maxima for the objective function
(6.29) have the properties that the corresponding I'(G) satisfies (6.13) and the structure
imposed by (6.28). Therefore, the set of global optima for (6.29) (in terms of G) is given

by

GO, = {é’ =PD : P € RP"F is a permutation matrix,
D € CPP*P is a full rank diagonal matrix with

jmk;

Di=woqe 2 o eRkeZi=1,...pM},

which corresponds to a subset of complex perfect separators with discrete phase ambi-

guity.
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In the adaptive implementation, we modify the objective as

T (W) = % S log(det(Py (1)) — log (H 7%(%) | (6.30)

l=—v m=1

Note that the derivative of the first part of Jey (W) with respect to W (n) is

103, log(det(Py (1))

21 W (n) = Aip + A +j(Agr — Ava), (6.31)
where we define
Ly 5 A - ; A Ay
- Z R {Pb(l)—lr(W)(l)Py(l)eyzmz/n} _ At Arg, Aoy, Agy € RV¥E

where

The corresponding iterative update equation for W(n) can be written as

WD (n) = WO (n) 4 ) (A%) + Ay + G(Ay) — AR)

2p 1

— - - max(i)) min(z) H
2 TRy W) ) ) (6.32)

where we define

en m < p,
Vi, = (6.33)

J€m—p M >Dp.

A variation on the approach considered for the complex case can be obtained by ob-
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serving that in the Je; objective function
log(det(Py(f))) = log (|det(F(G)(f)F<T))|2det(P§(f))) : (6.34)
where T(G)(f) = 3212 T(G(1))e=7>™!. We also note that
|det(T(G)(f)L(T))| = |det(G(f)T)[*. (6.35)

Therefore, if we define an alternative objective function

1 2p

~ 2

Jer(W) = / log(det(Po(f)))df — log (H R(bm)> : (6.36)
2 m=1

it would have the same set of global optima. In the adaptive implementation, the

modified objective will be as

Je1a(W) = % > log(det(Po(1))) — log (H fz(am)) . (6.37)

l=—v

The convenience of Jcy, is in terms of the simplified update expression for (6.31), which

results in the derivative of the first part of Jey, (W) with respect to W (n) is

1037 log(det(Po
" OW (n)

(1) _ % Z Po(l) " W()P, (1) (6.38)

l=—v

Therefore, the corresponding iterative update equation for W(n) in (6.32) is updated

accordingly.
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6.3.2 Complex Extension of the Alternative Objective Func-

tions

Similar to the complex extension of J; provided in the previous subsection, we can

extend the Jy family by defining

1

Jer, (W) = 5 [ togldet(Pol 1)) ~ Log (IR()I) (6.39)

=

or alternatively,

1

Jea (W) = [ tog(det(Po()))df tog (IR(&)|[7). (6.40)

1
2

and in the adaptive implementation by modifying these objective functions as

Jes (W Z log(det(P (1)) — log (|[R(D)]2) (6.41)
l—le
or alternatively,
_ - 1 < . .
Jeay, (W) = p Z log(det(Po(l))) — log (||R(0)) . (6.42)
l=—v

The update equation is similar to (6.32) where the derivative of first part of (6.41) or
(6.42) is given by either (6.31) or (6.38) depending on the choice and the derivative of

the second part depends on the selection of r, e.g.,

e r=1,2 (Case: In this case

/\

Olog (R (0 |2” Zp -
oW (n ||R0w<>)

Vi (y(Imew @) — y(minN T (6.43)

where v,,, is as defined in (7.15).
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e r = oo (Case: In this case

09 (IR ()| 0 o
ol ga(g\];f((n)ﬂ’r ) _ Z Lvm (y(lzzaw(lw — y(l:nnm(l))) (644)

ety ) oWl

where v,,, is as defined in (7.15),

A

M(owo) = {m : Ry (0wn) = IR(0we) |}, (6.45)

and 67(2)8 are the convex combination coefficients.

6.4 Numerical Examples

In this section, we illustrate the separation capability of the proposed algorithms for the

convolutive mixtures of both independent and dependent sources.

6.4.1 Separation of Space-Time Correlated Sources

We first consider the following scenario to illustrate the performance of the proposed
algorithms regarding the separability of convolutive mixtures of space-time correlated
sources: In order to generate space-time correlated sources, we first generate a samples
of a 7p size vector, d, with Copula-t distribution in [33], a perfect tool for generating
vectors with controlled correlation, with 4 degrees of freedom whose correlation ma-
trix parameter is given by R = R; ® Ry where R; (Ry) is a Toeplitz matrix whose
first rowis | 1 p, ... pI7! } ( [ 1 ps ... pot ) (Note that the Copula-t distri-
bution is obtained from the corresponding t-distribution through the mapping of each
component using the corresponding marginal cumulative distribution functions, which

leads to uniform marginals [33]). Each sample of d is partitioned to produce source
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vectors, d(k) = s(kt) s(kr+1) ... s((k+1)7 —1) |. Therefore, we obtain the
source vectors as samples of a wide-sense cyclostationary' process whose correlation
structure in time direction and space directions are governed by the parameters p; and

ps, respectively.

In the simulations, we considered a scenario with 3 sources and 5 mixtures, an i.i.d.
Gaussian convolutive mixing system with order 3 and a separator of order 10. At each
run, we generate 50000 source vectors where 7 is set as 5. The results are computed

and averaged over 500 realizations.

Figure 6.1 shows the output total Signal energy to total Interference+Noise energy (over
all outputs) Ratio (SINR) obtained for the proposed BCA algorithms (J, Jo1, Ja o) for
various space and time correlation parameters under 45dB SNR. SINR performance of
Minimum Mean Square Error (MMSE) filter of the same order, which uses full infor-
mation about mixing system and source/noise statistics, is also shown to evaluate the
relative success of the proposed approach. A comparison has also been made with a gra-
dient maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2 of [35]

where we take kp,qr = 50 and 4, = 20. We have obtained these methods from [2], [36].

We consider the performance criteria as the output total Signal energy to total Inter-

ference+Noise energy (over all outputs) Ratio (SINR) which is defined as

SINR — Total Signal Power B Trace(GsigRngig)
~ Total Residual Power 4+ Total Noise Power Trace(GresRsGrfpeS) + 02HWH%7
where G: ., is defined as the matrix obtained from G by keeping the maximum entries

sig

of each row and making the other entries 0 and Greg is defined as the matrix obtained

from G by making the maximum entries of each row 0 and keeping the other entries so

IThis actually violates the stationarity assumption on sources when p; # 0. However, we still use
this as a convenient method to generate space-time correlated sources
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that we will have the total signal power and total residual power. The variance of the

noise is 0% and ||W||r is the Frobenius norm of matrix W.
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Figure 6.1: Dependent convolutive mixtures separation performance results for SNR =
45dB.

For the same setup, Figure 6.2 shows the output total Signal energy to total Inter-
ference+Noise energy (over all outputs) Ratio (SINR) obtained for the proposed BCA
algorithms (J, Jo.1, Jo.00 ), gradient maximization of the criterion (kurtosis) of [34] (Kur-
tosisMax.), Alg.2 of [35], and MMSE for various space correlation parameters under

20dB SNR.

In Figure 6.3, we provide the output total Signal energy to total Interference+Noise
energy (over all outputs) Ratio (SINR) obtained for the proposed BCA algorithms
(J1, J21, J22, Jooo), gradient maximization of the criterion (kurtosis) of [34] (Kurtosis-
Max.), Alg.2 of [35], and MMSE for various space correlation parameters under 5dB
SNR.

These results demonstrate that the performance of proposed algorithms closely follows
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Figure 6.2: Dependent convolutive mixtures separation performance results for SNR =

20dB.

its MMSE counterpart for a wide range of correlation values. Therefore, we obtain
a convolutive extension of the BCA approach introduced in [24], which is capable of

separating convolutive mixtures of space-time correlated sources.

We also point out that the proposed BCA approaches maintains high separation per-
formance for various space and time correlation parameters. On the other hand, the
performance of gradient maximization of the criterion (kurtosis) of [31] (KurtosisMax.)
and Alg.2 of [35] degrades substantially with increasing correlation, since in the corre-

lated case, independence assumption simply fails.

6.4.2 MIMO Blind Equalization

We next consider the following scenario to illustrate the performance of the proposed
method for the convolutive mixtures of digital communication sources. We consider 3

complex QAM sources such that 2 sources are 16-QAM signals and 1 source is 4-QAM
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Figure 6.3: Dependent convolutive mixtures separation performance results for SNR =
5dB.

signal. We take 5 mixtures, an i.i.d. Gaussian convolutive mixing system with order 3
and a separator of order 10. The results are computed and averaged over 500 realizations.
We use the objective functions Jey, J o1 and J c2,2 as the BCA algorithms introduced in
Section 6.3 for this simulation. The resulting Signal to Interference Ratio is plotted with
respect to the sample lengths in Figure 6.4. We have also compared our algorithms with

a gradient maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2

of [35].

According to Figure 6.4, the proposed BCA approaches achieve better performance
than ICA based approaches. As it is mentioned earlier, the proposed method does not
assume/exploit statistical independence. The only impact of short data length is on
accurate representation of source box boundaries. The simulation results suggest that
the shorter data records may not be sufficient to reflect the stochastic independence
of the sources, and therefore, the compared algorithms require more data samples to

achieve the same SIR level as the proposed approach.
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Figure 6.4: Signal to Interference Ratio as a function of Sample Length

6.5 Conclusion

In this chapter, we introduce an algorithmic framework for the convolutive Bounded

Component Analysis problem. The utility of the proposed algorithms are mainly twofold:

e The proposed algorithms are capable of separating not only independent sources
but also dependent, even correlated sources. The dependence/correlation is al-
lowed to be in both source (or space) and in sample (or time) directions. The pro-
posed framework’s capability in terms of separating space-time correlated sources
(as well as independent sources) from their convolutive mixtures favors it as a
widely applicable approach under the practical constraint on the boundedness of
sources. In fact the proposed approach can be considered as a more general convo-
lutive approach than ICA with additional dependent source separation capability,
under the condition that the sources are bounded and satisfy domain separability

assumption.

e Even though the source samples may be drawn from a stochastic setting where
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they are mutually independent, especially for short data records, the estimation
of sources based on domain separability is expected to be more robust than the
estimation based on the independence feature. As illustrated in the previous
section, this feature results in superior separation performances, relative to some
state of the art Convolutive ICA methods, in convolutive MIMO equalization

problem, which is more pronounced especially for shorter packet sizes.

We note that the dimension of the extended vector of sources (§) increases with the order
of the overall system and with the number of sources. This implies that the proposed
convolutive BCA approaches’ performances will depend on the sample length as the
order of the convolutive system and/or the number of sources increase. We finally note
that for the applications where the sources have tailed distributions, the performances
of the proposed convolutive BCA algorithms are likely to suffer, which can be considered

as one drawback of the algorithms.
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CHAPTER 7

A Convolutive BCA Analysis
Framework for Potentially
Non-Stationary Independent and/or
Dependent Sources

In this chapter, we extend the instantaneous or memoryless BCA approach introduced
in [1] for the convolutive BCA problem. We propose deterministic frameworks for the
blind source extraction and blind source separation problems which allows the sources
to be potentially non-stationary. We point out that the sources could be stationary or
non-stationary and we do not exploit non-stationary property of sources. However, the
proposed scheme works for both stationary and non-stationary sources. We show that
the algorithms corresponding to these frameworks are capable of extracting/separating
convolutive mixtures of not only independent sources but also dependent (even corre-

lated) sources where the correlation can be in both space and time dimensions.

7.1 Blind Source Extraction

In this section, we first introduce the objective function for the blind source extraction of
real signals. We then prove that the global maxima of the introduced objective function
correspond to perfect extractors. We provide the iterative algorithm corresponding to

the objective function. We conclude with the complex sources extension of the proposed

72



approach.

In this case, the mixtures are passed through an extractor system and produce the
single output as o(k) = @’ ¢,,(k) where w = | w?(0) w?(1) ... w'(M—-1)]"
is the extractor coefficient vector. Therefore, the sources {s(k) € RF;k € Z} and
the single extractor output {o(k) € R;k € Z} are related by o(k) = g’ 5p(k) where
g= gT(()) o gT(P —1) ]T is defined as the overall system coefficient vector. The

generated set of extractor output is illustrated as o = {0(1),0(2),...,0(N — M + 1)}.

7.1.1 Criterion

We introduce the objective function for the blind source extraction method as

N% 25\21 (o(l) — ﬂO)Q

Je(w) = 20)

, (7.1)

where [i, = N% Zfﬁl o(l), Ny = N — M + 1 and R(o) is the range of the single output
in set 0. We note that this objective function is deduced from the instantaneous BCA

objectives introduced in [1].

We define
1 N
B3, = N, > 5p(0),
=M
1 N
» _ P ~ = . \T
5N ZEM<§P(Z) —pg )(8p() —pz )",

as the sample covariance matrix of 5. If sources are stationary, then Rgp is a block
Toeplitz matrix. However, sources are allowed to be non-stationary, therefore, R§P may
not be a block Toeplitz matrix. Note that this approach does not exploit any structure

on I;’,gp (i.e., the sources can be stationary or non-stationary). Under the condition
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Rgp > 0, the following theorem shows that maximizing the proposed objective function
(7.1) achieves the blind source extraction of convolutive mixtures whose setup is outlined

in Section 2.3.

Theorem 1: Assuming the setup in Section 2.3, H is equalizable by an FIR extractor
matrix of order M — 1 and under the validity of (C1), the set of global maxima for J,

in (7.1) is equal to the set of perfect extractors.

Proof: The proof is provided in Appendix 7.5.1.

7.1.2 Algorithm

In this section, we provide the iterative algorithm corresponding to the optimization

setting presented in the previous section.

Rather than maximizing .J., we maximize its logarithm since with the logarithm oper-
ation, we utilize the conversion of ratio expression to the difference expression since it
simplifies the update components in the iterative algorithm. Therefore, the new objec-

tive function is modified as

J.(®) = log (J.()) %log (@" Ry, ) ~log (R(0). (7.2)

where jo is the sample covariance matrix of y,, .
M

Note that the derivative of the first part of J.(w) with respect to @ is

~T 5 ~ ~ _ -

dlog <'w RyMw> B 2Ry w

Ow ~ @'R

Following the similar steps as in [!] for the derivative of log (7@(0)), the subgradient
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based iterative algorithm for maximizing objective function (7.2) is provided as

A~

N e ) in(i)
" =W 4+ 40 I M - — : g, (1mer@y g (pmind )’ 7.3
T e L G T ) N
M

where (V) is the step-size at the i? iteration and (™**() (J™"(®) is the sample index for
which the maximum (minimum) value for the extractor output is achieved at the ™

iteration.

7.1.3 Extension to Complex Signals

In the complex domain, both mixing and extractor coefficient matrices are complex
matrices, i.e., H € C7*PL and @ € C™*!. The set of source vectors S is a subset of
CP, the set of single extractor output o is a subset of C and the set of mixtures Y is a

subset of C9.

In this section, we extend the approach introduced in the Section 7.1.1 to the complex

signals. We modify the objective function as

m Ey (R{o)} — R}

R (E{o}) | 7

where R{ji,} = M R{o(l)} and R (R{0}) is the range of real parts of single output
0. We define Rﬁp as the sample covariance matrix of &, where 3,(k) = [ R{s”(k)}

s"(k)} ... R{s"(k—=P+1)} Hs"(k—P+1)}]" Under the condition Ry >
0, the following theorem shows that maximizing the modified objective function (7.4)

achieves the blind source extraction of convolutive mixtures of complex signals.

Theorem 2: Assuming the setup in Section 2.3, H is equalizable by an FIR extractor

matrix of order M — 1 and under the validity of (C1), the set of global maxima for J.
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in (7.4) is equal to a subset of perfect extractors.
Proof: The proof is provided in Appendix 7.5.2.

In the iterative algorithm, we maximize the logarithm of J.., therefore, the objective

function is modified as

(i) = log (Ju(@) = S log (' Ry @) ~log (R(R(oD),  (75)
where
w=[ R{w’(0)} —H{w'(0)} ... —Hw"(M-1)} ],

and ﬁy is the sample covariance matrix of y,,. Following similar steps, the iterative
M

algorithm for maximizing objective function (7.5) is provided as

NGy :w<z>+ﬂ<z>< T |
w Ry w  R(R{o}?)
M

(0, (D) — gy, (17D ) (7.6)

where () is the step-size at the " iteration and ™2 (J™"()) is the sample index
for which the maximum (minimum) value of the real part of the extractor output is
achieved at the i’ iteration. Finally, we can obtain 10 from 1 using a simple transition

Wing+1:(m4+1)g = Womg+1:2(m+1)g—q — JW2(m+1)g—q+1:2mgq form=0,1,...,.M — 1.

7.2 Blind Source Separation

In this section, we first introduce an objective function for the blind source separation of
real signals. We then prove that the global maxima of the introduced objective function

correspond to the perfect separators. We next provide a family of alternative objective
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functions. After producing the iterative algorithms corresponding to the introduced

objective functions, we conclude with the complex extension of the proposed approaches.

7.2.1 Criteria

In order to define the first objective function, we use a similar geometric setting in-
troduced in [1]. Defining the set Ox = {0k (K),0x(K +1),...,6x(N — M + 1)}, we

introduce the following objects corresponding to the sets of output samples Ok and O:

e P(Ok) : This is the hyper-ellipsoid whose center is given by the sample mean of
the set Op, its principal semiaxes directions are determined by the eigenvectors of
the sample covariance matrix RGK corresponding to Ok and its principal semiaxes
lengths are equal to the principal standard deviations, i.e., the square roots of the

eigenvalues of R Ox"

e B3(0) : This is the bounding hyper-rectangle which is defined as minimum volume

box covering all the samples in O and aligning with the coordinate axes.

The first objective function that we introduce for blind source separation is

| det(ﬁéK)>1/K

Js W)= = 5 7.7
(W) " Ron) (7.7)
where
1 &
Ho. =, 2 ok (1),
1
Rs = A Z(5K(l) — mg, )(0k(l) — MaK)T,
=K
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Ny = Ny — K + 1 such that }?5}( is the sample covariance matrix of 6. R(0p) is the
range of the m’th component of the output vectors in the set O and we choose K > P

where P is the order of the overall system.

We note that, as defined in [1],

° /det(f{aK) refers to the scaled volume of principal hyper-ellipse for the extended
output vector og.

~

o [’ _, R(0y) is the volume of the bounding hyper-rectangle for the output vector

oO.

Under the condition R§K+P—1 > 0, the following theorem shows that maximizing the

objective function (7.7) achieves the blind source separation of convolutive mixtures

whose setup is outlined in Section 2.3.

Theorem 3: Assuming the setup in Section 2.3, H is equalizable by an FIR separator
matrix of order M — 1 and under the validity of (C1), the set of global maxima for Jy;

in (7.7) is equal to the set of perfect separator matrices.
Proof: The proof is provided in Appendix 7.5.3.

We can propose different alternatives for the denominator of the objective function (7.7)
(measure of the size of the bounding hyperrectangle for the output vectors). We can
choose the length of the main diagonal of the bounding hyperrectangle as a measure of
the size instead of its volume. As a result, we obtain a family of alternative objective

functions in the form
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where r > 1. We provide the results of analysing this family of objective functions, for

some special 7 values (i.e., r = 1,2, 00) in Appendix 7.5.4.

7.2.2 Algorithms

In this section, we provide the iterative algorithms corresponding to the optimization

settings presented in the previous section.

e Objective Function Jy (W):

Similar to the approach in blind source extraction, rather than maximizing Jsl(VV),

we maximize its logarithm. Therefore, the new objective function is modified as

Il
<)
o
~—~
(o
=
~~
!
o i}
jay

o P91 s (I R ).

m=1

(7.9)

where R is the sample covariance matrix of y. ,,_, . Note that the
yK+]\/I 1

derivative of the first part of Jy; (W) with respect to W is

0log (det (Tie(W) Ry FK(W)T>> K-

yK+M 1

= Z Alp+1 (14 1)p,lg+1:(14+M)q
oW -

- -1
where A = ~ K K ~ ollowing the simi-
here A ( <(W)R r (W)T> Ix(W)R . Foll h

Y Yxima’

lar steps as in [1] for the derivative of log ( b R(om)), the subgradient based

m=1
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iterative algorithm for maximizing objective function (7.9) is provided as

K-1

1
= W —|—,u ( ZAlp+1 (4+D)p,lg+1:(I+M)g ™

(i+1)

W
p

1 , o
— e, (g lma:p(z) A lmm(z) ), 710
mZ:1 T R(0®) (yM< m ) = Yy )) (7.10)

maz(@) - (min()y ig the sample

where () is the step-size at the " iteration and i,
index for which the maximum (minimum) value for the m'* separator output is

achieved at the i'" iteration.

o Objective Function Js ,(W):

We note that for the family of objective functions (7.8), the update equation is
similar to (7.10) where the change is in the derivative of logarithm of the denom-
inator depending on the selection of r. For r = 1,2, we can write the update

equation as

K-1
~ (i+1) ~ (3 a1
w =W 4+ <? Z Ay 1:(141)plg+1: (14 M)g—

-1

p B . _ N\ T
- lmaz(z) . lmzn(z) ) )
E T R | e (G (™) — G ()

For r = oo, the update equation has the form

K-1

(i+1)
= W —i—,u ( Alp+1 I+1)p,lg+1:(I+M)qg—
=0

144

>, (1) = 7))

memion RO)lleo

where M (0?) is the set of indexes for which the peak range value is achieved,
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ie.,

M) = {m: Ryu(0) = [R(0"|x}, (7.11)

and ﬁfﬁl)s are the convex combination coefficients.

7.2.3 Extension to Complex Signals

In the complex domain, both mixing and separator coefficient matrices are complex
matrices, i.e., H € CTPL and W € CP*™_ The set of source vectors S and the set of

separator outputs O are a subset of CP, the set of mixtures Y is a subset of C1.

In this section, we extend the approach introduced in the Section 7.2.1 to the complex

signals. We modify the first objective function for the blind source separation of complex

signals as
< ( —~ ) 1/K
_ det(R )
Jea(W) =2/ (7.12)
Hm:l R<0m>
where RbK is the sample covariance matrix of 0x where 0x (k) = [ R{o?(k)} TI{o”(k)}

R{oT(k—K+1)} T{o"(k—K+1)} |7 and []*_, R(dy) is the product of ranges

of real and imaginary parts of all separator outputs.

Under the condition ﬁéqu > 0, the following theorem shows that maximizing the
modified objective function (7.12) achieves the blind source separation of convolutive

mixtures of complex signals.

Theorem 4: Assuming the setup in Section 2.3, His equalizable by an FIR separator
matrix of order M — 1 and under the validity of (C1), the set of global maxima for J.q

in (7.12) is equal to a subset of perfect separator matrices.

81



Proof: The proof is provided in Appendix 7.5.5.

In the iterative algorithm, we maximize the logarithm of .J.., therefore, the first objec-

tive function is modified as

Jen(W) = log (Jost (W)

= % log <det <F2K(W)R,!‘JK+M71F2K<W)T)> — log <12_p[ ﬁ@m)) , (7.13)

R{W,} —I{W,} ... R{IWy_1} ~I{Wu_i}
W, R{W,} ... HWy_} R{W,_}

the sample covariance matrix of ¥z /5.

and R is

yK+1b171

where W =

The corresponding iterative update equation of W(n) for n = 0,1,..., M — 1 can be

written as

W(H_l) (TL) - W(Z) (n) + ,u(l) (Cl:p,an—f—l:(Qn—&-l)q + Cp+1:2p,(2n+1)q+1:2(n+1)q+

j (Cp+1:2p,2nq+1:(2n+1)q - Cl:p,(2n+1)q+1:2(n+1)q) -

2p
1 . oy
> i (G (D) — G (1 ) 7.14

K—1
where C = T 21=0 Fop i 1:0(041)p,21g+1:2(14+ Mg

“ o~ N -1 « oA
and F = (FQK(W)R@K+A4_1F2K(W)T> Dok (W)R

N and
Yxin—1

en m < p,
Vi = (7.15)

1€p_p M >P.
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Similar to the complex extension of Jg;, we can extend the Js family by modifying

Jcs2,r(W) = : (716)

The update equation is similar to (7.14) where the change is in the derivative of loga-

rithm of the denominator depending on the selection of r, e.g.,

e r=1,2 (Case: In this case

N 2p S (7 _
0log (|[R(0)]I7%) PRm(0V) N~ min( H

=t =y v, (G, () = g ()

oW 7;1 IR(0@)]]7
where v, is as defined in (7.15).
e 7 = oo (Case: In this case
SN2 (4)
(9log (H,]%(O)Hrp) _ Z pﬁm v, (,gMuzaa:(z)) . ,gM(lzzn(z)))H

oW IRE)

meM (o)

where v, is as defined in (7.15),

A~

M(©Y) = {m: Ru(0) = [|R(0) s},

and Br(,i)s are the convex combination coefficients.

7.3 Examples

In this section, we illustrate the extraction/separation capability of the proposed algo-

rithms for the convolutive mixtures of both independent and dependent sources.
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7.3.1 Blind Source Extraction

We first consider the following scenario to illustrate the performance of the proposed
blind source extraction algorithm regarding the convolutive mixtures of space-time cor-
related sources: In order to generate space-time correlated sources, we first generate a
samples of a Tp size vector, d, with Copula-t distribution, a perfect tool for generating
vectors with controlled correlation, with 4 degrees of freedom whose correlation matrix
parameter is given by R = R; ® R, where R; (Ry) is a Toeplitz matrix whose first row

s |1 p ... pit ] ( [ 1 ps ... pot }) Each sample of d is partitioned to pro-

duce source vectors, d(k) = s(kr) s(kr+1) ... s((k+17—1) | Therefore, we
obtain the source vectors as samples of a wide-sense cyclostationary process whose cor-
relation structure in time direction and space directions are governed by the parameters

pr and pg, respectively.

In the simulations, we consider a scenario with 7 sources and 20 mixtures, an i.i.d.
Gaussian convolutive mixing system with order 7 and a extractor of order 8. We set
ps = 0.5, pp = 0.5 and 7 = 5. We note that the sources are non-stationary in this case

(we will cover stationary sources in the digital communication sources scenario).

Figure 7.1 shows the output total Signal energy to total Interference+Noise energy (over
all outputs) Ratio (SINR) obtained for the proposed BCA algorithm (.J.) for various
sample lengths under 45dB SNR. SINR performance of Minimum Mean Square Error
(MMSE) filter of the same order, which uses full information about mixing system and
source/noise statistics, is also shown to evaluate the relative success of the proposed
approach. A comparison has also been made with a gradient maximization of the
criterion (kurtosis) of [31] (KurtosisMax.) and Alg.2 of [35] where we take kju. =
50 and /e = 20. We have obtained these methods from [2], [36]. As we did not

encounter any convolutive BSS algorithm with correlated source separation capability,
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we compared our algorithm with some well known convolutive ICA approaches.
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Figure 7.1: Result of the proposed blind source extraction algorithm performance for

the convolutive mixtures of dependent sources (ps and p; is set as 0.5) for various sample
lengths under SNR = 45dB.

For the same setup, Figure 7.2 shows the output total Signal energy to total Inter-
ference+Noise energy (over all outputs) Ratio (SINR) obtained for the proposed BCA
algorithm (J,), gradient maximization of the criterion (kurtosis) of [31] (KurtosisMax.),

Alg.2 of [35], and MMSE for various sample lengths under 20dB SNR.

These results demonstrate that the performance of the proposed blind source extraction
algorithm is approaching fast to its MMSE counterpart as the sample length increases.
On the other hand, the performance of gradient maximization of the criterion (kurtosis)
of [31] (KurtosisMax.) and Alg.2 of [35] is far from the performance of MMSE filter
even when the sample length is increased (Figure 7.1) or they require more sample
lengths to reach the same SINR performance (Figure 7.2) since in the correlated case,
independence assumption simply fails. Therefore, we observe that the proposed BCA
approach is capable of blind source extraction of convolutive mixtures of space-time

correlated sources.
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Figure 7.2: Result of the proposed blind source extraction algorithm performance for
the convolutive mixtures of dependent sources (ps and p; is set as 0.5) for various sample
lengths under SNR = 20dB.

7.3.2 Blind Source Separation

We first consider a similar scenario as in the blind source extraction examples to illus-
trate the performance of the proposed blind source separation algorithms regarding the

separability of convolutive mixtures of space-time correlated sources.

Here, we consider a scenario with 5 sources and 15 mixtures, an i.i.d. Gaussian convo-
lutive mixing system with order 5 and a separator of order 6 where the sample size is

50000.

Figure 7.3 shows the output total Signal energy to total Interference+Noise energy (over
all outputs) Ratio (SINR) obtained for proposed BCA algorithms (Jy1, Jeo.1, Js2.252,00)
for various space correlation parameters under 45dB SNR. The performances of MMSE,
gradient maximization of the criterion (kurtosis) of [31] (KurtosisMax.) and Alg.2
of [35] are also plotted for comparison. We note that the algorithm J,; yields better

performance than the other algorithms.
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Figure 7.3: Results of the proposed blind source separation algorithms’ performances for
the convolutive mixtures of dependent sources for various space correlation parameters
under SNR = 45dB.

For the same setup, Figure 7.4 shows the output total Signal energy to total Interfer-
ence+Noise energy (over all outputs) Ratio (SINR) obtained for the BCA algorithm

(Js1), gradient maximization of the criterion (kurtosis) of [341] (KurtosisMax.), Alg.2

of [35], and MMSE for various space correlation parameters under 20dB SNR.

These results demonstrate that the performance of proposed blind source separation
algorithms closely follow its MMSE counterpart for a wide range of correlation values.
Therefore, we obtain a convolutive extension of the BCA approach introduced in [1],

which is capable of separating convolutive mixtures of space-time correlated sources.

Also note that the proposed blind source separation algorithms maintain high separa-
tion performance for various space parameters. However, the performance of gradient
maximization of the criterion (kurtosis) of [341] (KurtosisMax.) and Alg.2 of [35] de-
grades substantially with increasing correlation since the independence assumption does
not hold. We point out that when p, = 0 the sources are independent, yet BCA algo-

rithms still outperforms other ICA algorithms. This result can be attributed to the finite
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Figure 7.4: Results of the proposed blind source separation algorithms’ performances for
the convolutive mixtures of dependent sources for various space correlation parameters
under SNR = 20dB.

sample effects. In other words, although the sources are stochastically independent, fi-
nite samples may not reflect this behaviour and the sources may even have non-zero
sample correlation. BCA algorithms being robust to such correlations can offer better

performance. Effect of the sample size will be investigated in the next scenario.

We next consider the following scenario to illustrate the performance of the proposed
blind source separation algorithm for the convolutive mixtures of digital communication
sources. We consider 5 complex 4-QAM sources where we take 15 mixtures, an i.i.d.
Gaussian convolutive mixing system with order 5 and a separator of order 6. The sources
are stationary in this case. We use the objective function J,,; as the BCA algorithm
for this simulation. The resulting Signal to Interference Ratio is plotted with respect to
the sample lengths in Figure 7.5. We have also compared our algorithm with a gradient

maximization of the criterion (kurtosis) of [34] (KurtosisMax.) and Alg.2 of [35].

As it can be observed from Figure 7.5, the proposed BCA approach achieves better

performance than ICA based approaches. We again note that, the proposed method
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Figure 7.5: Result of the proposed blind source separation algorithm performance for
the convolutive mixtures of digital communication sources for various sample lengths.

does not assume/exploit statistical independence. The only impact of short data length
is on accurate representation of source box boundaries. The simulation results suggest
that the shorter data records may not be sufficient to reflect the stochastic independence
of the sources, and therefore, the compared algorithms require more data samples to

achieve the same SIR level as the proposed approach.

7.4 Conclusion

In this section, we introduced deterministic and geometric frameworks for the convolu-
tive BCA problem. We proposed blind source extraction and blind source separation
algorithms based on certain deterministic measures obtained from the geometric objects
of samples which can be used for the extraction/separation of both independent and
dependent (even correlated) sources. The numerical examples illustrate that the pro-

posed frameworks are capable of extracting/separating space-time correlated sources

89



from their convolutive mixtures. Moreover, even when the sources are independent,
having short sample lengths may not reflect the independence behaviour. Hence, the
proposed approaches expectedly provide better performances than the ICA based ap-

proaches regarding separation of independent sources especially for short sample records.

7.5 Appendix

7.5.1 Proof of Theorem 1

We first note that, following similar steps as in [1], when the assumption (C1) holds,
we can write the range of 0 as R(0) = ||g"A||; where A = I ® A is the range matrix of
Sp.

Since o(l) = g'8p(1+ M — 1) for [ = 1,2,..., Ny, we have

Ny 2 (o) = )" = N > 3"~ pg,)(Ee(0) —png,)" g
= N% Y G"AGp() — pg,)(Ep() — pg,)"AG=g"ARs NG, (7.17)
=M

where pg = N% S8, ps, = N% S 8p(1) and f%gp is defined as the sample

covariance matrix of 5p .

We can further define g7 = §g'A and rewrite the equality (7.1) in terms of q as

laT R~
Je(q) = Va S A (7.18)

llqlls
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Note that, maximizing J.(q) is equivalent to the corresponding optimization setting
maximize qTR§Pq

s.t. gl <~

where 7 is a constant. Also note that, assuming Rép > 0, ,/qTRSPq is a convex
function and the region of ||g||; < ~ corresponds to a convex polytope. From the
definition of a convex polytope (Vertex Representation [37]), this is the convex hull of
the vertices of polytope. Therefore, the maximum of , / qTRéPq will be attained at one
of the vertices (whichever has the maximum value) and therefore, the maximum will
be attained when g has only one non-zero component. To see that, we can take any
vector g, inside the convex polytope (i.e., satisfying ||g;||1 < 7). From the definition of
vertex representation [37], g; = ai1q,, +aaq,, +. . .+oyrq, , Where g, . q,,,....q, . are
vertices of polytope and fol a; = 1. Defining f(q) = ,/qTRéPq and using Jensen’s

inequality, we have

fla@) <aifla,,) +afla,,) +... +orfle,,) <max{f(q,), [(q,). - f(a,,)}

Therefore, the maximum is attained at the vertex which has the maximum value and

this yields that g has only one non-zero component.

To observe that from a geometric point of view, assuming Rgp > 0, for any constant ~,

the vectors q satisfying 1/qTR§ q = 7 constitutes an hyper-ellipsoid. Note that, for
Sp

any constant value of ||q||;, the maxima of ,/qTf%qu will be attained at one of the

corner points ( i.e., where g has only one non-zero component ). A two dimensional

example is illustrated in Figure 7.6.

Since §7 = ¢gTA~!, § will also have only one non-zero component, therefore, the global
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Figure 7.6: Two dimensional example for the global maxima of (4.63).

maxima of (7.1) correspond to perfect extractors.

7.5.2 Proof of Theorem 2

We begin with noting that
R{o(k)} = iR{gT(l)}R{s(k +M—-1-D}-Hg" (D)} {s(k+M—1-1)}.
=0

Defining g = [ R{g"(0)} —I{g"(0)} ... —I{g" (P —1)} ]T and 3p(k) = [R{s?(k)}
{sT(k)} ... I{sT(k—P+1)}]|", we obtain

R{o(k)} =g 3p(k + M — 1),

for k = 1,2,...,N;. Following similar steps, we can write the range of R{o} as

R (R{o}) = ||§"A||; where A = I ® A is the range matrix of 3p. Similar to (7.17),
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we have

Ny
1 A -~ A K A <
2 (R{o()} ~R{f}) = g ARy ATy
=1
where Rép is defined as the sample covariance matrix of s$p. Defining g’ = QTA and

rewriting the equality (7.4) in terms of ¢ yields

Jee(@) = ——7- (7.19)

Following similar analogy, as a result, the maximum of (7.4) is attained when g has only
one non-zero component which also implies that g has only one non-zero component.
Note that the non-zero component of g will be real or purely imaginary. Therefore, the

global maxima of (7.4) correspond to a subset of perfect extractors for complex signals.

7.5.3 Proof of Theorem 3

We define the operator I'x such that FK(G) is a block Toeplitz matrix of dimension
Kp x (K + P —1)p whose first block row is [G(0) G(1) ... G(P—1) 0 ... 0]and
first block column is [GT(0) 0 ... 0] " where the zero matrices (0) have the size p x p

same as the matrices G(I) for [ = 0,..., P — 1. This yields,

65(l) = Ti(G)grpr(l+ M — 1),

forl=K,K+1,...,N;. Defining A= K + P — 1, we have

R; =Tx(G)ARz; ATk (G)",

EN
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where A = I ® A is the range matrix of §4 and IfigA is the sample covariance matrix of

3,. Defining Q@ = Tk (G)A yields R(BK = QREAQT'

Following similar steps as in [1], under the assumption (C1), we can write the range
of m* component of 0 as R(0p) = ||Gm.All1. Note that, ||Gn.All; = 1Q,,.||: for
m =1,2,...,p. Therefore, the range vector for the separator outputs can be rewritten

as

R(0) = [[1Qull 1@l - 11Q.Ii]-

Rewriting the equality (7.7) in terms of Q, we obtain

~ 1/K
Ja(W) = Wdetp(QRg‘*QT))
et [1Qu [T

(7.20)

For any G whose rows are not linearly independent, we have det (QRé—AQT) =0,
therefore, corresponding G can not be global maxima of (7.7). Hence for any G whose

rows are linearly independent, assuming 1%5 = R§A = 0, to complete Q into a

K+P—1
full rank square matrix we introduce a (P — 1)p x Ap matrix M = DP where D =
diag(aq, as, . .. ,a(p_l)p) is a full rank diagonal matrix and P is a permutation matrix

-1

T P P T r T P
such that det (MBM ) = 1 where we define B = RSA_RSAQ (QRSAQ > QRSA'
This yields,

det [ | © R; { QT M” } = det (QRgAQT>
e 3

det (M (RgA — REAQT (QRSAQT> -1 QR§A) MT)

— det <QR5AQT) det (MBM") = det (QRSAQT> .
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We note that ¢ REA [ Q" MT } >~ 0 and MBMT is the Schur complement of
M S

QRgAQT, therefore, M BM" > 0. We also note that det (M BM") = afa3. .. afp_l)p
det ([B]per) where [B],e, has the chosen rows and columns of B depending on the posi-
tions of a1, as,...,a(p-1),. Hence by choosing appropriate values for a;, as, ..., ap—1)

we can obviously introduce a matrix M such that

det | | © RgA{QT MT] :det<QR§AQT>.
ar |8 5

Using Hadamard’s Inequality [20] yields

Q . Kp (P-1)p R
“H gA[QT MT] < [T1Qu A8 TT IIMullp det(Rg ). (7.21)
m=1 n=1

Note that =2, 1Q,..115 = (ITh,—, ||Qm||g)K since @ is block Toeplitz matrix. Hence,

1/K

(P-1)p
<\/det QR QT) (H||Qm||2> [T 1Mol | det(Rg )25

n=1

Therefore, we have

<\/det(QR~ QT))l/K p HQ H (P-1)p /K
~ S — m,: 112 T
Ja(W) = — L : [ M, |[2 det(Rg )'/*K
fnzl ||Qm,:||1 721:1 ||Qm,:||1 r]L;Il Sa
(P-1)p 1/K
< H |M,,..||» det(Rg )'/*%, (7.22)

due to the ordering ||g||1 > ||q||2 for any gq.

To achieve the equality in (7.22), the equalities ||@Q,,.||1 = [|@,,.|[2 for m =1,2,...p
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and the equality in (7.21) should be achieved. The equalities ||Q,, .| = ||@,,.||2 for
m = 1,2,...p are achieved if and only if the first p rows of  has only one non-
zero element. Since FK(G') = Q/v\_l, this implies that each row of G has only one
non-zero element. The inequality in (7.21) is achieved if and only if the rows of Q
are perpendicular to each other and to the rows of M which yields that the rows

of I'kx(G) are perpendicular to each other and to the rows of M. Note that since
K > P, the structure of I K(é’) guarantees that there is a block column which contains
G(0),G(1),...,G(P —1), therefore, the non-zero entries of G would not be in the same

position with respect to mod p, since otherwise Jg (W) would be simply 0.

As a result, the maximum is achieved if and only if G corresponds to perfect separator
transfer matrix in the form G(z) = diag(a; 2%, ap2z™%, ... a,27%) P where G(z) is the
Z-transform of the overall system function {G(1); [ € {0, ..., P —1}}, ax’s are non-zero

real scalings, and d;’s are non-negative integer delays.

Here, we point out that the blind source extraction problem is a special case of the blind
source separation problem. Therefore, this proof can simply be also applied to the blind
source extraction method. However, we treat the blind source extraction problem as a

separate case to provide alternative geometric intuition.

7.5.4 Analysis of the Family of Objective Functions (/)

Before analysing this family of objective functions for some special r values, similar to

the proof of Theorem 3, we can rewrite (7.8) in terms of @ and obtain

(W) = (Jar@Rs @) "
R TP NN - NN H
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Following similar steps, by modifying (7.22), we can obtain the corresponding inequality

1/K

: o 11Qy |2 el :
Jsor (W) < = . — | T 1IMa.ll det(Rg
12~ 20 R~ P S Y

)1/2K.

The results of analysing this family of objective functions, for some special r values:

e r =1 Case: In this case, we have

_ (Z ||Qm7:||1) > T 1Qu i
1 m=1 m=1

T
H[HQL;Hl Quls 1@, |

where the inequality comes from Arithmetic-Geometric-Mean-Inequality, and the
equality is achieved if and only if all the rows @ have the same 1-norm. Hence,

we have

J (W) < 51:1||Qm,:||2 (Pﬁ)pHM || d t(A )ﬁ
S4, — n,: € S
- P I 1@ : 84

n=1

(P-1)p ®

1 . 1
<[ TL Il | dentg )

n=1

As a result, @ is a global maximum of Js (W) if and only if it is a perfect

separator matrix of the form
Q = kPdiag(p).

where k is a non-zero value, p € {—1,1}? and P is a permutation matrix. This

implies G is a global maximum of J (W) if and only if the corresponding form
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is satisfied
I'x(G) = kPA'diag(p).

Therefore, the global maxima of the objective function Jy; corresponds to a

subset of perfect separators.

e r = 2 (Case: In this case, using the basic norm inequality and Arithmetic-

Geometric-Mean-Inequality, for any x € RP, we have

(Ixll2)” > (%leHl) 29" [

where the equality is achieved if and only if all the components of x are equal in

magnitude. As a result, this yields

- PoQu e (" L
Joa(W) < — o [[M [z | det(Rg )2
pp/2 an:l HQm,: ||1 g Sa
1 (P-1)p ®
oL
Spp—/z IT 1Mo fls | det( 5,)7°%

n=1
Similarly, Js2 2 has the same set of global maxima as Jg 1.

e r = oo (Case: Following similar steps, using the basic norm inequality and Arithmetic-

Geometric-Mean-Inequality, for any x € RP, we have

1 PP
(ixllo)? > (];qul) > T lowl.
m=1
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where the equality is achieved if and only if all the components of x are equal in

magnitude. Based on this inequality, we obtain

1
P ®
IIPle HQm,:HZ i

T oo (W) < M,,. det(R= )%
2eo(W) P 1@l }_[1 1M ]2 (Rs,)

1
2K

(P-1)
I 1M1l det(Rg )7r.
n=1

-

IN

Therefore, Jso o also has same set of global optima as Js; and Jso0.

7.5.5 Proof of Theorem 4

We begin with observing that

R{o(k)} = iR{GT(Z)}R{S(k} +M—-1-D} -G "(D)}M{s(k+M—1-1)},

{o(k)} = E_:]I{GT(Z)}]R{S(IC +M—1-D}+R{GT(I) {s(k+ M —1-1)}.

=0

R{Gy} —-I{Go} ... R{Gp1} —I{Gp_,}

{Gy} R{G,} ... I{Gp_,} R{Gp_i}
[R{sT(k)} I{sT(k)} ... R{sT(k—K—P+2)} I{s"(k—K—P+2)} ] yields

N

6K<I€) = FQK(G)§K+P_1(]<J>. ThUS,

Defining G = and g, p_1(k) =

A N oA T .
RbK - FQK(G)AR‘ A FQK(G)T,

Skip-1

where A = I ® A is the range matrix of $x,p_1 and Rémp . is defined as the sample

covariance matrix of 3z, p_;.

Defining @ = Tax(G)A and following similar steps, we can write [[7_, R(0m) =

99



117, HQmH1 Rewriting (7.12) in terms of Q yields

— T 1/K
<\/det(QRéAQ ))
1@l

Jcsl(W) =

Note that we have the similar expression as (7.20). Hence, the proof of Theorem 3 also
applies here. Note that the structure of FgK(G') implies that the non-zero entries of
G can only be real or purely imaginary. Therefore, the set of global maxima for the

objective function (7.12) corresponds to a subset of complex perfect separators.
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CHAPTER 8

Conclusion and Future Work

This dissertation has presented the convergence analysis of recently introduced instanta-
neous BCA algorithms. Moreover, the instantaneous BCA approach has been extended
by providing a general optimization framework which can be used to produce numerous
instantaneous BCA algorithms. Additionally, a convolutive BCA framework has been
introduced which can produce a family of convolutive BCA algorithms that are able to
separate stationary independent and/or dependent sources. We point out that this is
the first convolutive BCA method in the literature. Besides, a deterministic BCA anal-
ysis framework has been proposed which does not assume any stationarity of sources.
With this approach, it is possible to separate convolutive mixture of non-stationary as

well as stationary independent and/or dependent sources.

Further research might explore the convergence behaviour of the instantaneous BCA
algorithms. Another possible area of future research would be to investigate a BCA
method that can incorporate the pdf information of sources to provide a better separa-

tion performance for tailed distributions.
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