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ABSTRACT

The thesis is devoted to the initial-boundary value problem for the Burgers’ original

model of turbulence. The problem of existence and uniqueness of initial-boundary value

problem for Burgers’ original equations modeling turbulence in fluid flow is studied. Uniform

estimate of solutions and stability of a stationary state is established under some restrictions

on parameters of the system.

v



ÖZETÇE

Bu tez Burgers’in orijinal türbülans modeli için başlangıç-sınır değer problemi ile ilgi-

lidir. Türbülanslı akışı modelleyen Burgers’in orijinal denklemleri için başlangıç-sınır değer

probleminin çözümünün varlığı ve tekliği incelenmiştir. Düzgün kestirimler elde edilmiş ve

denge noktasının üstel kararlılığı ispat edilmiştir.
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Chapter 1

INTRODUCTION

In his paper [1] Burgers simplified the Navier-Stokes equation


∂
∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) + ν∆u(x, t),

∇ · u(x, t) = 0,

and got the following so called Burgers equation:

∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t) = ν

∂2

∂x2
u(x, t) + F (x, t) (1.1)

Generally, this equation is considered without external force F (x, t). This equation is non-

linear, however it was shown by Hopf [7] and Cole [3] that the solutions of the equation does

not depend on the initial conditions. Also the equations can be simplified by Cole–Hopf

transformation:

u = −2ν
ux
u

into linear heat equation. In the same paper [1], Burgers introduced and studied another

model describing dynamics of fluid flow.This model consists a coupled system of nonlinear

ordinary differential equations of the form

dU

dt
= P − νU − v2,

dv

dt
= Uv − νv,

where U represents the velocity of the mean motion, and v turbulent motion. P, v are

constants representing the external force and a kinematic viscosity, respectively.

Later on in his famous paper [2] Burgers proposed a more sophisticated system that consists
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of an ordinary differential equation and a nonlinear second order parabolic equation:


bdUdt = P − ν

bU −
1
b

∫ b
0 v

2(t, y)dy,

∂v
∂t = 1

bUv + ν ∂
2v
∂y2
− 2v ∂v∂y .

(1.2)

Here, U(t), v(t, y) are the unknown functions:

u(t) is the analogue of the primary or the mean motion in the case of a liquid flowing through

a channel, v(t, y) represents the secondary motion. The case v 6= 0 describes turbulence

in the system. The variable y that occurs in v plays the part of the coordinate in the

direction of the cross dimension of the channel. P, ν are given constants. P represents the

exterior force acting upon the primary motion, and ν stands for frictional effects. Burgers

considered the case when the domain of y is an interval (0, b), and v vanishes at both ends

of the interval.

There are many studies of the Cauchy problem and the initial boundary value problem for

the viscous Burgers’ equation

∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t)− ν ∂

2

∂x2
u(x, t) = 0, x ∈ R, t > 0. (1.3)

This equation is a special case of the Burgers’ original equation. For the results on the local

and global existence of solutions to the initial boundary value problems of this equation,

we refer to the books [9], [8]. There are also some publications on generalized Burgers’

equations: 
∂
∂tv(x, t) = µ

ρ(x,t)
∂2

∂x2
v(x, t)− v(x, t) ∂

∂xv(x, t),

∂
∂tρ(x, t) + ∂

∂x(ρ(x, t)v(x, t)), (µ is a positive constant),

(1.4)

see e.g [10].

Further study of initial boundary value problem for the Burger’s original model of tur-

bulence is done in the paper [5] and the book [6] of Eden. In the paper, the author found

an estimate for the dimension of the attractor of the problem (1.2) which is of the same

order as the square root of a Reynolds number. Also, in the book the author proved that

the initial boundary value problem for the Burger’s original model generates a continuous

semi-group in a proper phase space R×L2(0, 1). Moreover it is shown that the semi-group
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has a finite dimensional exponential attractor.

We are going to study the system of equations:

dU(t)

dt
= P − νU(t)−

∫
Ω
v2(t, x)dx, x ∈ (0, π), t > 0, (1.5)

∂v(t, x)

∂t
= U(t)v(t, x) + ν

∂2v(t, x)

∂x2
− ∂

∂x
(v2(t, x)), x ∈ (0, π), t > 0, (1.6)

under the following initial and boundary conditions

U(0) = U0,

v(0, x) = φ(x) for x ∈ (0, π),

v(t, 0) = v(t, π) = 0 for t ≥ 0,

where U = U(t) : [0,∞) → R, v = v(t, x) : Q → R are unknown functions. Here and in

what follows we use the notations

Q := Ω× (0,∞), Ω := (0, π).

This system is called in the literature Burger’s original model of turbulence. Following

[4] we prove theorems on global unique solvability of initial boundary value problem for

the system (1.5),(1.6), obtain uniform estimates for solutions of the problem. Finally we

prove that under some restrictions on parameters the equilibrium solution of the problem

is exponentially stable.
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Chapter 2

EXISTENCE AND UNIQUENESS

In this chapter we consider the following system of equations

dU(t)

dt
= P − νU(t)−

∫
Ω
v2(t, x)dx x ∈ (0, π), t > 0, (2.1.1)

∂v(t, x)

∂t
= U(t)v(t, x) + ν

∂2v(t, x)

∂x2
− ∂

∂x
(v2(t, x)), x ∈ (0, π), t > 0, (2.1.2)

under the following initial and boundary conditions

U(0) = U0,

v(0, x) = φ(x) for x ∈ (0, π), (2.2)

v(t, 0) = v(t, π) = 0 for t ≥ 0,

where U = U(t) : [0,∞) → R, v = v(t, x) : Q → R are unknown functions. Here and in

what follows we use the notations

Q := Ω× (0,∞), Ω := (0, π).

Definition 2.1. A pair of functions (U, v) is said to be a weak solution of the problem

(2.1.1), (2.1.2) if U is absolutely continuous function on each interval [0, T ], T > 0, and

U(t) = U0 +

∫ t

0
(P − νU(τ)−

∫
Ω
v2(τ, x)dx)dτ,

v ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ∀T > 0, and, (2.3)

< v′, w > +νa(v, w) + 2b(v, v, w) = c(U, v, w) (2.4)
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for any function w ∈ H1
0 (Ω), where v′ = ∂v

∂t , and

v(0, x) = φ(x) ≡ v0(x) ∈ L2(Ω), (2.5)

where a, b, c defined as follows:

a(f, h) :=

∫
Ω

∂f

∂x

∂h

∂x
dx = 〈Af, h〉,

b(f, h, l) :=

∫
Ω
f
∂h

∂x
ldx = 〈g(f, h), l〉,

c(f, h, l) :=

∫
Ω
fhldx = 〈C(f, h), l〉.

Here and what follows 〈 , 〉 stands for 〈 , 〉L2(Ω).

Proposition 2.2. For any functions f ∈ H1
0 (Ω), h, l ∈ L2(Ω), the following inequality holds

true: ∣∣∣ ∫
Ω
fhldx

∣∣∣ ≤ ‖f‖1/2
H1

0
‖f‖1/2

L2 ‖h‖L2‖l‖L2 .

Proof The following estimate is the consequence of Cauchy-Schwarz inequality and the

fact that H1
0 (Ω) ⊂ L∞(Ω):

∣∣∣ ∫
Ω
fhldx

∣∣∣ ≤ ‖f‖L∞∣∣∣ ∫
Ω
hldx

∣∣∣ ≤ ‖f‖L∞‖h‖L2‖l‖L2 .

For any f ∈ C1
c (Ω), we have:

|f(x)|2 =

∫ x

0
Dsf(s).f(s)ds+

∫ x

π
Dsf(s).f(s)ds

≤
∣∣∣ ∫ x

0
Dsf(s).f(s)ds

∣∣∣+
∣∣∣ ∫ x

π
Dsf(s).f(s)ds

∣∣∣
≤
∫

Ω
|Ds.f(s)|ds

≤ ‖Dxf‖L2‖f‖L2

≤ ‖f‖H1
0
‖f‖L2.

Since it holds for all f ∈ C1
c (Ω), it also holds for all f ∈ H1

0 (Ω). Moreover, for the functions

f, h ∈ H1
0 (Ω), and l ∈ L2(Ω) the following should be noted:

Remark 2.3. |b(f, h, l)| =
∣∣∣ ∫Ω fDxhldx

∣∣∣ ≤ ‖f‖1/2
H1

0
‖f‖1/2

L2 ‖Dxh‖L2‖l‖L2 .
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Remark 2.4. For any function v satisfying definition 2.1 we have

g(v, v) ∈ L2(0, T ;H−1(Ω)).

Indeed, if w ∈ H1
0 (Ω), we get:

|〈g(v, v), w〉| = |b(v, v, w)| = 1

2
|b(v, w, v)| ≤ 1

2
‖v‖1/2

H1
0
‖v‖1/2

L2 ‖w‖H1
0
‖v‖L2

≤ 1

2
‖v‖H1

0
‖w‖H1

0
‖v‖3/2

L2 .

Lemma 2.5. For any weak solution (U, v) of (2.1.1), (2.1.2), v′ ∈ L2(0, T ;H−1(Ω)).

Proof Let w ∈ H1
0 (Ω), and consider 〈v′, w〉. From condition (2.4), we have:

∣∣∣ ∫
Ω
v′(x, t)w(x)dx

∣∣∣ =
∣∣∣− ν ∫

Ω

∂v(x, t)

∂x

∂w(x)

∂x
dx

− 2

∫
Ω
v(x, t)

∂v(x, t)

∂x
w(x)dx+

∫
Ω
U(t)v(x, t)w(x)dx

∣∣∣
≤ ν‖v‖H1

0
‖w‖H1

0
+ ‖v‖H1

0
‖w‖H1

0
‖v‖3/2

L2 + ‖u‖C0‖v‖L2‖w‖L2

≤ ν‖v‖H1
0
‖w‖H1

0
+ ‖v‖H1

0
‖w‖H1

0
‖v‖3/2

L2 + ‖u‖C0‖v‖H1
0
‖w‖H1

0
.

Lemma 2.6. Any weak solution v is almost everywhere continuous from [0, T ] to L2(Ω).

Proof follows from theorem 5.24.

Now, we start to prove the existence of the weak solution of the problem (2.1.1), (2.1.2)

using the Galerkin method.

Theorem 2.7. There exists a weak solution of the problem (2.1.1), (2.1.2) in the sense of

definition 2.1.

Proof We are looking for the function v(x, t) as the limit of the approximate solutions

of the form

vm(t, x) =

m∑
k=1

cmk(t)wk(x), (2.6)

where

w1(x), w2(x), ..., wj(x), ...
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are eigenfunctions of the Sturm-Liouville problem

−w′′(x) = λw(x) x ∈ Ω,

w(0) = w(π) = 0.

It is clear that they satisfy:

〈wj , η〉H1
0

:= a(wj , η) = λj〈wj , η〉, j = 1, 2, ...

for any η ∈ H1
0 (Ω). The functions cmk(t) and Um(t) satisfy the system of (m+ 1) ordinary

differential equations
d

dt
Um(t) = P − νUm(t)− ‖vm(t)‖2L2 , (2.7.1)

〈v′m, wl〉+ νa(vm, wl) + 2b(vm, vm, wl) = Um〈vm, wl〉, l = 1, ...,m (2.7.2)

and the conditions

Um(0) = U0m, U0m → U0, vm(0) = v0m, v0m → v0 in L2(Ω), (2.7.3)

where the convergence of the sequence {v0m} follows from (2.6).

By classical existence theorem 5.25, we ensure that Um and {cml}m1 exist for any m. cmk

exists in the intervals [0, tmk) and Um exists in [0,mink tmk).

Now, we will show that Um and {cml}m1 exist on the whole interval [0, T ], and

Um is bounded in L∞(0, T ),

vm is bounded in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)).

We multiply (2.7.1) by Um, and integrate over (0, t), where t ∈ [0, T ]

∫ t

0
Um(τ)

d

dτ
Um(τ)dτ =

∫ t

0
PUm(τ)dτ − ν

∫ t

0
U2
m(τ)dτ −

∫ t

0
Um(τ)‖vm(τ)‖2L2dτ

1

2

∫ t

0

d

dτ
U2
m(τ)dτ + ν

∫ t

0
U2
m(τ)dτ = P

∫ t

0
Um(τ)dτ −

∫ t

0
Um(τ)‖vm(τ)‖2L2dτ (2.8)
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Multiply(2.7.2) by cml, integrate over (0, t), and sum over l:

m∑
l=1

∫ t

0
cmlUm〈vm, wl〉dτ =

m∑
l=1

∫ t

0
cml〈v′m, wl〉dτ + ν

m∑
l=1

∫ t

0
cmla(vm, wl)dτ

+ 2

m∑
l=1

∫ t

0
cmlb(vm, vm, wl)dτ∫ t

0
Um〈vm,

m∑
l=1

cmlwl〉dτ =

∫ t

0
〈v′m,

m∑
l=1

cmlwl〉dτ + ν

∫ t

0
a(vm,

m∑
l=1

cmlwl)dτ

+ 2

∫ t

0
〈g(vm, vm),

m∑
l=1

cmlwl)〉dτ∫ t

0
Um〈vm, vm〉dτ =

∫ t

0
〈v′m, vm〉dτ + ν

∫ t

0
a(vm, vm)dτ

+ 2

∫ t

0
〈g(vm, vm), vm〉dτ∫ t

0
Um(τ)‖vm(τ)‖2L2dτ =

1

2

∫ t

0

d

dτ
‖vm(τ)‖2L2dτ + ν

∫ t

0
‖vm(τ)‖2H1

0
dτ (2.9)

Adding (2.8) to (2.9) we get:

1

2

∫ t

0

d

dτ
U2
m(τ)dτ+ν

∫ t

0
U2
m(τ)dτ+

1

2

∫ t

0

d

dτ
‖vm(τ)‖2L2dτ+ν

∫ t

0
‖vm(τ)‖2H1

0
dτ = P

∫ t

0
Um(τ)dτ

1

2
U2
m(t) +

1

2
‖vm(t)‖2L2 + ν

∫ t

0
[U2
m(τ) + ‖vm(τ)‖2H1

0
] =

1

2
U2
m(0) +

1

2
‖v0m‖2L2 + P

∫ t

0
Um(τ)dτ

Using Young’s inequality:

1

2
U2
m(t)+

1

2
‖vm(t)‖2L2+ν

∫ t

0
[U2
m(τ)+‖vm(τ)‖2H1

0
]dτ ≤ 1

2
U2
m(0)+

1

2
‖v0m‖2L2+

εT

2
P 2+

1

2ε

∫ t

0
U2
m(τ)dτ

1

2
U2
m(t)+

1

2
‖vm(t)‖2L2+ν

∫ t

0
‖vm(τ)‖2H1

0
dτ+(ν− 1

2ε
)

∫ t

0
U2
m(τ)dτ ≤ 1

2
U2
m(0)+

1

2
‖v0m‖2L2+

εT

2
P 2

If we choose ε such that (ν − 1
2ε) > 0, we get:

U2
m(t) ≤ U2

m(0) + ‖v0m‖2L2 + εTP 2,

ν

∫ t

0
‖vm(τ)‖2H1

0
dτ ≤ U2

m(0) + ‖v0m‖2L2 + εTP 2,

‖vm(t)‖2L2 ≤ U2
m(0) + ‖v0m‖2L2 + εTP 2.
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Hence {Um} is bounded in L∞(0, T ), and {vm} is bounded in L2(0, T ;H1
0 (Ω))∩L∞(0, T ;L2(Ω)).

By theorem 5.26, these estimates guarantee the existence of {Um} and {vm} on the inter-

val [0, T ] for any T > 0. Since the sequence {vm} is bounded in L2(0, T ;H1
0 (Ω)), we

can extract a subsequence by remark 5.7, still denoted {vm}, that weakly converges to v in

L2(0, T ;H1
0 (Ω)). Now, let ψ ∈ C∞c (0, T ;H1

0 (Ω)) which is a dense subset of L2(0, T ;H1
0 (Ω)).Then,

∫ T

0

∫
Ω

dvm
dt

(x, t)ψ(x, t)dxdt =

∫
Ω

∫ T

0

dvm
dt

(x, t)ψ(x, t)dtdx

= −
∫

Ω

∫ T

0
vm(x, t)

dψ

dt
(x, t)dtdx→ −

∫
Ω

∫ T

0
v(x, t)

dψ

dt
(x, t) dtdx and,

−
∫

Ω

∫ T

0
v(x, t)

dψ

dt
(x, t) dtdx =

∫
Ω

∫ T

0

dv

dt
(x, t)ψ(x, t)dtdx so,∫ T

0

∫
Ω

dvm
dt

(x, t)ψ(x, t)dxdt→
∫ T

0

∫
Ω
v(x, t)

dψ

dt
(x, t) dtdx,

i.e

v′m converges weakly to v′ in L2(0, T ;H−1(Ω)), hence {v′m} is bounded in L2(0, T ;H−1(Ω)).

Now, choosing appropriate subsequences at each step, by remark 5.7 and theorem 5.22 we

get:

vm → v2 in L2(0, T ;L2(Ω)), and, vm → v3 weak* in L∞(0, T ;L2(Ω)).

Notice that L∞(0, T ;L2(Ω)) ⊂ L2(0, T ;L2(Ω)), so one can easilly show that v2 = v3. Same

argument works for v, and v3. So, we have:

vm → v weak in L2(0, T ;H1
0 (Ω)), (2.10)

vm → v weak* in L∞(0, T ;L2(Ω)), (2.11)

vm → v in L2(0, T ;L2(Ω)), (2.12)

v′m → v′ weak in L2(0, T ;H−1(Ω)). (2.13)
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After extracting an appropriate subsequence, we will show that v satisfies

〈v′, w〉+ νa(v, w) + 2b(v, v, w) = c(U, v, w)

for any function w ∈ H1
0 (Ω). We know that

〈v′m, wj〉+ νa(vm, wj) + 2b(vm, vm, wj) = Um〈vm, wj〉 for 1 ≤ j ≤ m,

and it holds for any w ∈ span{wj}Mj=1 where M ≤ m. So, we have

〈v′m, w〉+ νa(vm, w) + 2b(vm, vm, w) = Um〈vm, w〉 for all w ∈ span{wj}Mj=1.

We multiply the last equation by ϕ ∈ C∞c (0, T ) and integrate over the interval (0, T ) with

respect to t and get:

∫ T

0
〈v′m, wj〉ϕ(t)dt+ ν

∫ T

0
a(vm, wj)ϕ(t)dt+ 2

∫ T

0
b(vm, vm, wj)ϕ(t)dt

=

∫ T

0
Um(t)〈vm, wj〉ϕ(t)dt (3.14)

Our aim is to pass to the limit as m→∞. In order to do that we will deal with each term

separately. First, notice that

w(x)ϕ(t) ∈ C∞c (0, T ;C∞(Ω) ∩H1
0 (Ω)) ⊂ L2(0, T ;H1

0 (Ω)).

(i)

lim
m→∞

∫ T

0

∫
Ω
v′m(x, t)w(x)ϕ(t)dxdt =

∫ T

0

∫
Ω
v′(x, t)w(x)ϕ(t)dxdt

(ii)

lim
m→∞

∫ T

0
a(vm, w)ϕ(t)dt = lim

m→∞

∫ T

0

∫
Ω

∂

∂x
vm(x, t)w′(x)ϕ(t)dxdt

= − lim
m→∞

∫ T

0

∫
Ω
vm(x, t)w′′(x)ϕ(t)dxdt = −

∫ T

0

∫
Ω
v(x, t)w′′(x)ϕ(t)dxdt

=

∫ T

0

∫
Ω

∂

∂x
v(x, t)w′(x)ϕ(t)dxdt =

∫ T

0
a(v, w)ϕ(t)dt
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(iii) For
∫ T

0 b(vm, vm, w)ϕ(t)dt, first we need to show that v2
m converges weakly to v2 in

L2(0, T ;L2(Ω)). As in the proof of proposition 2.2, for f ∈ C1
c [0, π], we have the inequality:

maxx∈[0,π] |f(x)|2 ≤ ‖f‖H1
0 (Ω)‖f‖L2(Ω) that holds for all f ∈ H1

0 (Ω).

∣∣∣∣∣
∫ T

0
‖v2
m‖2L2dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω
v4
mdxdt

∣∣∣∣∣ ≤
∫ T

0

∫
Ω
‖vm‖2H1

0 (Ω)‖vm‖
2
L2(Ω)dxdt <∞,

and vm → v almost everywhere in L2(0, T ;L2(Ω)), so v2
m → v2 almost everywhere in

L2(0, T ;L2(Ω)). Therefore we have:

lim
m→∞

∫ T

0
b(vm, vm, w)ϕ(t)dt = lim

m→∞

∫ T

0

∫
Ω
vm(x, t)

∂

∂x
vm(x, t)w(x)ϕ(t)dxdt

= − lim
m→∞

∫ T

0

∫
Ω

1

2
v2
m(x, t)w′(x)ϕ(t)dxdt = −1

2

∫ T

0

∫
Ω
v2(x, t)w′(x)ϕ(t)dxdt

=

∫ T

0

∫
Ω
v(x, t)

∂v

∂x
(x, t)w(x)ϕ(t)dxdt =

∫ T

0
b(v, v, w)ϕ(t)dt.

(iv) Notice that

∫ T

0
Um(t)〈vm, w〉ϕ(t)dt =

∫ T

0

∫
Ω
um(t)vm(t)w(x)ϕ(t)dxdt = 〈wϕUm, vm〉H−1,H1

0
.

We know that vm converges weakly to v in L2(0, T ;H1
0 (Ω)) and if we can show that

w(x)ϕ(t)Um(t) converges to w(x)ϕ(t)U(t) in L2(0, T ;H−1(Ω)), we are done. First, we need

to show that Um → U uniformly in [0, T ]. Recall that Um satisfies

Um(t) = Um(0) +

∫ t

0
[p− νUm(τ)− ‖vm(τ)‖2L2 ]dτ.

So,

∣∣Um(t)− Un(t)
∣∣ =

∣∣∣Um(0)− Un(0)−
∫ t

0
ν(Um(τ)− Un(τ))dτ −

∫ t

0
(‖vm(τ)‖2L2 − ‖vn(τ)‖2L2)dτ

∣∣∣
≤
(
|Um(0)− Un(0)|+ εm,n

)
+

∫ t

0
ν
∣∣Um(τ)− Un(τ)

∣∣dτ,
≤
(
|Um(0)− Un(0)|+ εm,n

)
eνT → 0 as m,n→∞,

since εmn = |‖vm‖2L2(Q) − ‖vn‖
2
L2(Q)| → 0, and Um(0) is convergent. So, Um is uniformly

convergent to U in [0, T ]. Now, we will show that w(x)ϕ(t)Um(t) converges to w(x)ϕ(t)U(t)



Chapter 2: Existence and Uniqueness 12

in L2(0, T ;H−1(Ω)).

‖w(x)ϕ(t)Um(t)− w(x)ϕ(t)U(t)‖2L2(0,T ;H−1(Ω))

=

∫ T

0
‖|w(x)ϕ(t)Um(t)− w(x)ϕ(t)U(t)‖2H−1dt

≤
∫ T

0

∣∣Um(t)− U(t)
∣∣2‖w(x)ϕ(t)‖2H−1dt

≤ ‖Um − U‖2L∞
∫ T

0
‖wϕ‖2H−1dt.

The term on the right hand side of the last inequality tends to zero as m → ∞ since

‖wϕ‖H−1 is bounded and Um uniformly convergent to U . So,

lim
m→∞

∫ T

0
Um(t)〈vm, w〉ϕ(t)dt = lim

m→∞
〈wϕUm, vm〉H−1,H1

0

= 〈wϕU,w〉H−1,H1
0

=

∫ T

0

∫
Ω
w(x)ϕ(t)U(t)v(x, t)dxdt

=

∫ T

0
U(t)〈v, w〉ϕ(t)dt.

Putting i− iv together and passing to the limit in 3.14, we get:

∫ T

0

∫
Ω
v′(x, t)w(x)ϕ(t)dxdt = ν

∫ T

0
a(v, w)ϕ(t)dt+

∫ T

0
2b(v, v, w)ϕ(t)dt

=

∫ T

0
U(t)〈v, w〉ϕ(t)dt

for all ϕ(t) ∈ C∞0 (0, T ) and for all w ∈
⋃
M≥1span {wk}Mk=1. Since this holds for all

ϕ ∈ C∞0 (0, T ), we get:

〈v′(t), w〉+ νa(v(t), w) + 2b(v(t), v(t), w) = U(t)〈v(t), w〉.

for almost every t ∈ [0, T ] and for all w ∈ H1
0 (Ω).
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Next, we need to show that v(0, x) = v0(x). Let ϕ(t) ∈ C1([0, T ]) where ϕ(0) = 1, and

ϕ(T ) = 0.

∫ T

0
〈v′m, w〉ϕ(t)dt =

∫ T

0

∫
Ω
v′m(x, t)w(x)ϕ(t)dxdt

=

∫
Ω
w(x)

∫ T

0
v′m(x, t)ϕ(t)dtdx

=

∫
Ω
w(x)

(
− vm(x, 0)−

∫ T

0
vm(x, t)ϕ′(t)dt

)
dx

= −
∫

Ω
w(x)vm(x, 0)dx−

∫
Ω

∫ T

0
w(x)vm(x, t)ϕ′(t)dtdx.

Passing to the limit,

∫ T

0

∫
Ω
v′(x, t)w(x)ϕ(t)dxdt = − lim

m→∞

∫
Ω
w(x)vm(x, 0)dx

−
∫

Ω

∫ T

0
w(x)v(x, t)ϕ′(t)dtdx,

−
∫

Ω
w(x)v(x, 0)ϕdx−

∫
Ω

∫ T

0
w(x)v(x, t)ϕ′(t)dtdx = − lim

m→∞

∫
Ω
w(x)vm(x, 0)dx

−
∫

Ω

∫ T

0
w(x)v(x, t)ϕ′(t)dtdx,

−
∫

Ω
w(x)v(x, 0)ϕ(t)dx = − lim

m→∞

∫
Ω
w(x)vm(x, 0)dx

= −
∫

Ω
w(x)v0(x)dx.

Hence we get: v(0, x) = v0(x).

Theorem 2.8. The weak solution of the problem (2.1.1), (2.1.2) is unique.

Proof Let (U1, v1), and (U2, v2) be two different solutions of (2.1.1), (2.1.2), and let

U = U1 − U2, U(0) = 0,

v = v1 − v2, v(0, x) = 0 in L2(Ω).

Then, U and v satisfies

U ′ = −νU − ‖v1‖2L2 + ‖v2‖2L2 (almost everywhere, when U ′ exists), (3.15)
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〈v′, w〉 = U1〈v, w〉+ U〈v2, w〉 − νa(v, w)− 2b(v1, v, w)− 2b(v, v2, w) for all w ∈ H1
0 (Ω).

(3.16)

We multiply (3.15) by U , and get:

U(t)U ′(t) = −νU2(t)− U(t)

∫
Ω

(v2
1(x, t)− v2

2(x, t))dx

(
1

2
U2(t))′ = −νU2(t)− U(t)

∫
Ω
v(x, t)(v1(x, t) + v2(x, t))dx

(
1

2
U2(t))′ + νU2(t) ≤ ε1

2
U2(t)‖v1(t) + v2(t)‖2L2 +

1

2ε1
‖v(t)‖2L2 . (3.17)

Now, since v is an element of H1
0 (Ω) for almost all t ∈ [0, T ], we can put w = v in (3.16).

Then, we get:

〈v′, v〉 = U1〈v, v〉+ U〈v2, v〉 − νa(v, v)− 2b(v1, v, v)− 2b(v, v2, v)

〈v′, v〉 = U1(t)‖v(t)‖2L2 + U(t)〈v2, v〉 − ν‖v(t)‖2H1
0
− 2b(v1, v, v) + 4b(v2, v, v)

1

2

d

dt
‖v(t)‖2L2 + ν‖v(t)‖2H1

0
≤ ε2‖v(t)‖2L2 +

ε3
2
U2(t)‖v2(t)‖2L2 +

1

2ε3
‖v(t)‖2L2

+ |2b(v1, v, v)|+ |4b(v2, v, v)|. (3.18)

Note that ε1, and ε3 follows from Young’s inequality, and ε2 comes from the fact that U(t)

is bounded.Also, by propositon 2.2, and Young’s inequality, for i = 1, 2:

|b(vi, v, v)| =
∣∣ ∫

Ω
vi(x, t)v

′(x, t)v(x, t)dx
∣∣

≤ ‖v(t)‖1/2
H1

0
‖v(t)‖H1

0
‖vi(t)‖L2‖vi(t)‖L2

≤ δi
2
‖v(t)‖2H1

0
‖vi(t)‖2L2 +

1

2δi
‖v(t)‖H1

0
‖vi(t)‖L2

≤ δi
2
‖v(t)‖2H1

0
‖vi(t)‖2L2 +

δii
4εi
‖v(t)‖2L2 +

1

4δiδii
‖vi(t)‖2H1

0
.



Chapter 2: Existence and Uniqueness 15

We add (3.17) to (3.18), and get:

(1

2
U2(t)

)′
+
(1

2
‖v(t)‖2L2

)′
≤ U2(t)

(
− ν +

ε1
2
‖v1(t) + v2(t)‖2L2 +

ε3
2
‖v2(t)‖2L2

)
+ ‖v(t)‖2H1

0

(
− ν + δ1‖v1(t)‖2L2 + 2δ2‖v2(t)‖2L2 +

1

2δ1δ11
+

1

δ2δ22

)
+ ‖v(t)‖2L2

( 1

2ε1
+ ε2 +

1

2ε3
+
δ11

2δ1
+
δ22

δ1

)
.

We can choose constants to satisfy

α1 = −ν + ess supp(
ε1
2
‖v1(t) + v2(t)‖2L2 +

ε3
2
‖v2(t)‖2L2) > 0,

α2 = −ν + ess supp(δ1‖v1(t)‖2L2 + 2δ2‖v2(t)‖2L2 +
1

2δ1δ11
+

1

δ2δ22
) > 0.

Let α3 = ( 1
2ε1

+ ε2 + 1
2ε3

+ δ11
2δ1

+ δ22
δ1

). Then, we get:

(
1

2
U2(t))′ + (

1

2
‖v(t)‖2L2)′ ≤ α1U

2(t) + α2‖v(t)‖2H1
0

+ α3‖v(t)‖2L2 .

Now, we integrate the last inequality over [0, t], and using the fact that U(0) = 0, v(0, x) = 0

in L2(Ω), we obtain:

1

2
U2(t) +

1

2
‖v(t)‖2L2 ≤ α1

∫ t

0
U2(τ)dτ + α2

∫ t

0
‖v(τ)‖2H1

0
dτ + α3

∫ t

0
‖v(τ)‖2L2dτ

≤ constant.
∫ t

0

(
U2(τ) + ‖v(τ)‖2L2

)
dτ.

Finally, by Gronwall’s lemma, we conclude that U2(t) + ‖v(t, x)‖2L2 = 0 on [0, T ].
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Chapter 3

STABILITY

In this chapter, we will study the stability of the solution
(
P
ν , 0
)

of (2.1.1), (2.1.2). As

the solution we mean the functions U, v in the sense of definition 2.1. U(t) satisfies (2.1.1)

in the classical sense and the function z(t) := ‖v(t, x)‖2L2 is continuous. We let w = v in 2.4

and integrate from T1 to T2:

∫ T2

T1

∫
Ω
U(t)v2(x, t)dxdt =

∫ T2

T1

∫
Ω
v′(x, t)v(x, t)dxdt+ ν

∫ T2

T1

∫
Ω

( ∂
∂x
v(x, t)

)2
dxdt+

2

∫ T2

T1

∫
Ω
v2(x, t)

∂

∂x
v(x, t)dxdt,

1

2
z(T2)− 1

2
z(T1) =

∫ T2

T1

U(t)z(t)dt− ν
∫ T2

T1

‖v(x, t)‖2H1
0
dt,

and we use (2.1.1) to obtain the following system:


d
dtU(t) = P − νU(t)− z(t),

1
2z(T2)− 1

2z(T1) =
∫ T2
T1
U(t)z(t)dt− ν

∫ T2
T1
‖v(x, t)‖2

H1
0
dt,

(3.1)

with the conditions

U(0) = U0, z(0) = ‖v0‖2L2 = z0,

where 0 ≤ T1 ≤ T2 arbitrary.

We want to show the global exponential stability of the solution
(
P
ν

)
of (3.1) when P

ν < ν.

Using the transformation W (t) = U(t)− P
ν , we have the problem of the stability of the zero

solution (0, 0) of:
d

dt
W (t) = −νW (t)− z(t), (3.2)

1

2
z(T2)− 1

2
z(T1) =

∫ T2

T1

(
W (t) +

P

ν

)
z(t)dt− ν

∫ T2

T1

‖v(x, t)‖2H1
0
dt, (3.3)
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with the conditions

W (0) = U(0)− P

ν
, z(0) = z0.

Theorem 3.1. When P
ν ≤ ν, the solution of (3.2), (3.3) is uniformly bounded.

Proof We multiply (3.2) by W and integrate over [T1, T2]:

∫ T2

T1

W )(t)W ′(t)dt = −ν
∫ T2

T1

W 2(t)dt−
∫ T2

T1

W (t)z(t)dt,

1

2
W 2(T2)− 1

2
W 2(T1) = −ν

∫ T2

T1

W 2(t)dt−
∫ T2

T1

W (t)z(t)dt,

adding the last equality to (3.3), we get:

1

2
z(T2)+

1

2
W 2(T2)+ν

∫ T2

T1

[
‖v(t)‖2H1

0
+W 2(t)

]
dt =

1

2
z(T1)+

1

2
W 2(T1)+

P

ν

∫ T2

T1

z(t)dt. (3.4)

Since p
ν < ν, and z ≤ ‖v(t)‖2

H1
0
, it follows that:

1

2
z(T2) +

1

2
W 2(T2) ≤ 1

2
z(T1) +

1

2
W 2(T1)

for every 0 ≤ T1 ≤ T2, so if we let T1 = 0, and M := z(0) +W 2(0), we get:

z(t) ≤M, and W 2(t) ≤M for any t ≥ 0.

Also, notice that h(t) := 1
2z(t) + 1

2W
2(t) is a decreasing function.

Lemma 3.2. For ν − P
ν := γ > 0 the solution (0, 0) of (3.2), (3.3) exponentially decays to

zero.

Proof From (3.4) we have

1

2
z(T2) +

1

2
W 2(T2) + ν

∫ T2

T1

[
‖v(t)‖2H1

0
+W 2(t)

]
dt =

1

2
z(T1) +

1

2
W 2(T1) +

P

ν

∫ T2

T1

z(t)dt.
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So,

h(T2) = h(T1)− ν
∫ T2

T1

[
‖v(t)‖2H1

0
+W 2(t)

]
dt+

P

ν

∫ T2

T1

z(t)dt

≤ h(T1)− ν
∫ T2

T1

[
z(t) +W 2(t)

]
dt+

P

ν

∫ T2

T1

z(t)dt

≤ h(T1)− ν
∫ T2

T1

W 2(t)dt+
(P
ν
− ν
) ∫ T2

T1

z(t)dt

= h(T1)− ν
∫ T2

T1

W 2(t)dt− γ
∫ T2

T1

z(t)dt

≤ h(T1)− c1

∫ T2

T1

[
W 2(t) + z(t)

]
dt

= h(T1)− c1

∫ T2

T1

h(t)dt,

where c1 = min{ν, γ}. Let f(t) = h(0)e−c1t. We want to show that h(t) ≤ f(t). We can

write f(t) = h(0) − c1

∫ t
0 f(τ)dτ , and we let g(t) = h(t) − f(t) to be the difference. Recall

that

h(t) ≤ h(0)− c1

∫ t

0
h(τ)dτ.

So,

h(t)− f(t) ≤ h(0)− c1

∫ t

0
h(τ)dτ − f(t)

g(t) ≤ −c1

∫ t

0
h(τ)dτ + h(0)− f(t)

g(t) ≤ −c1

∫ t

0
h(τ)dτ + c1

∫ t

0
f(τ)dτ

g(t) ≤ −c1

∫ t

0
g(τ)dτ.

Suppose that g > 0 in (0, α), then
∫ t

0 g(τ)dτ < 0 for any t < α which leads to a contradiction.

Changing 0 to t1, and α to t2 gives the same contradiction. Hence we get g(t) ≤ 0 for any

t ≥ 0. So, we have:

g(t) = h(t)− f(t) ≤ 0.

i.e.

h(t) ≤ f(t) = h(0)e−c1t.
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So, we conclude that h(t) tends to zero with an exponential rate as t→∞.

Definition 3.3. A solution U0 of a problem is called globally asymptotically stable if it is

stable and all solutions tend to U0 as t→∞.

Theorem 3.4. When P
ν = ν, the solution (0, 0) of (3.2), (3.3) is globally asymptotically

stable.

Proof We will consider three cases:

(i) W (t) ≤ 0 for all t ≥ 0,

(ii) W (t0) = 0 for some t0 > 0,

(iii )W (t) > 0 for all t ≥ 0.

For the second case, we know that W (t) ≤ 0 for all t > t0 if W (t0) = 0. So we will consider

first and second case together. Let T1 denote max{0, t0}. By (3.3)) we have:

1

2
z(T2) =

1

2
z(T1) +

∫ T2

T1

(
W (τ) +

P

ν

)
z(τ)dτ − ν

∫ T2

T1

‖v(τ)‖2H1
0
dτ

=
1

2
z(T1) +

∫ T2

T1

(
W (τ) + ν

)
z(τ)dτ − ν

∫ T2

T1

‖v(τ)‖2H1
0
dτ

=
1

2
z(T1) +

∫ T2

T1

W (τ)z(τ)dτ − ν
∫ T2

T1

(
‖v(τ)‖2H1

0
− z(τ)

)
dτ

≤ 1

2
z(T1) +

∫ T2

T1

W (τ)z(τ)dτ (3.5)

≤ 1

2
z(T1).

We showed that z(t) is decreasing when t > T1. So, it has a limit α ≥ 0.

If α > 0, by (3.2) we get:

W ′(t) ≤ −νW (t)− α

2
for sufficiently large t > 0.

It follows from the last inequality that

W (t) ≤ −α
4

for sufficiently large t.
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Really:

(
eνtW (t)

)′ ≤ −α
2
eνt

eνtW (t)−W (0) ≤ − α

2ν
eνt +

α

2ν

W (t) ≤W (0)e−νt − α

2ν
+

α

2ν
e−νt

W (t) ≤ − α

4ν
for sufficiently large t.

But then (3.5) implies that Z(T2)→ −∞ as T2 →∞ which is a contradiction since z ≥ 0.

Hence, α = 0.

Now, we continue with the third case: W (t) > 0.

From (3.2)) we deduce that W ′(t) < 0 ∀t > 0, i.e. W is strictly decreasing. Thus, it has a

limit α ≥ 0. If α > 0, using again (3.2), we get:

dW

dt
< −να.

So, W (t) → −∞ as t → ∞, which is a contradiction since W (t) > 0. Hence, α = 0, i.e.

W (t) → 0 as t → ∞. We also need to show that z(t) → 0 as t → ∞. For a contradiction,

assume not.

Then, there exists ε0 > 0 such that for all T0 > 0 there exists T1 > T0 with z(T1) > 2ε0.

For some ε0, let the last condition to be satisfied. We know that W (t) decreases to 0 as

t→∞, so there exists a τ > 0 such that

W (τ) = δ, W (t) < δ for all t > τ (3.6)

, where δ > 0, δ2 <
ε20

8M , M = z(0) +W 2(0), and

z(τ) < ε0. (3.7)

If (3.6) and (3.7) are not satisfied together for any τ > 0, then z(t) > ε0 for sufficiently
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large t, and by (3.2) we have:

dW

dt
< −νW − ε0(

W (t)eνt
)′
< −ε0eνt

W (t)eνt −W (0) < −ε0
ν
eνt +

ε0
ν

W (t) < W (0)e−νt − ε0
ν

+
ε0
ν
e−νt

W (t) < − ε0
2ν

for sufficiently large t,

which is a contradiction. Thus, we ensure the existence of τ which satisfies (3.6) and (3.7)

together. Now, by (∗), there exists Tτ > τ such that z(Tτ ) > 2ε0. We try to find a

sufficiently large interval (t, Tτ ), with z(t) > ε0, which will make W < 0. From (3.5)

1

2
z(Tτ ) ≤

∫ Tτ

t
W (s)z(s)ds+

1

2
z(t) ≤ (Tτ − t)Mδ +

1

2
z(t),

the estimate W (t) < δ follows from (3.6), and we showed earlier that z(t) < M . If we can

show that
1

2
z(Tτ )− 1

2
z(t) ≤ (Tτ − t)Mδ ≤ ε0

2
, (3.8)

we get z(t) > ε0 in some interval (t, Tτ ) since z(Tτ ) > 2ε0. In order to satisfy (3.8), we must

have Tτ − t ≤ ε0
2Mδ . Let D :=

[
Tτ − ε0

4Mδ

]
. Clearly, for t ∈ D, (3.8) holds. Now, if we can

show that W < 0 in D, we get the desired contradiction, and we are done. We have:

W (Tτ ) = W (Tτ −
ε0

4Mδ
) +

∫ Tτ

Tτ− ε0
4Mδ

W ′(s)ds

W (Tτ ) ≤W (Tτ −
ε0

4Mδ
) + max

t∈D
W ′(t).

ε0
4Mδ

, (3.9)

and from (3.2), we know W ′ = −νW − z. Since W > 0, we get:

max
t∈D

W ′(t) ≤ max
t∈D

(−z(t)) = −min
t∈D

z(t) ≤ ε0
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,i.e. W ′ ≤ −ε0 in D. So, by (3.9)

W (Tτ ) ≤W (Tτ −
ε0

4Mδ
)− ε0.

ε0
4Mδ

W (Tτ ) ≤ δ − ε20
4Mδ

< 0,

which is a contradiction. Hence z(t)→ 0 as t→∞.
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Chapter 4

CONCLUSION

A lot has been done on the Burgers’ equation since its first appearance in 1939 [1].

In 1948 [2], Burgers introduced a more sophisticated model describing dynamics of fluid

flow. This model consists of an ordinary differential equation and a nonlinear second order

parabolic equation: 
bdUdt = P − ν

bU −
1
b

∫ b
0 v

2(t, y)dy,

∂v
∂t = 1

bUv + ν ∂
2v
∂y2
− 2v ∂v∂y .

In this paper, we considered the problem:

dU(t)

dt
= P − νU(t)−

∫
Ω
v2(t, x)dx, x ∈ (0, π), t > 0,

∂v(t, x)

∂t
= U(t)v(t, x) + ν

∂2v(t, x)

∂x2
− ∂

∂x
(v2(t, x)), x ∈ (0, π), t > 0,

under the following initial and boundary conditions

U(0) = U0,

v(0, x) = φ(x) for x ∈ (0, π),

v(t, 0) = v(t, π) = 0 for t ≥ 0,

where U = U(t) : [0,∞)→ R, v = v(t, x) : Q→ R are unknown functions, and

Q := Ω× (0,∞), Ω := (0, π).

We proved theorems on global unique solvability of initial boundary value problem for

the last system, obtained uniform estimates for solutions of the problem. Finally we proved

that under some restrictions on parameters the equilibrium solution of the problem is ex-

ponentially stable.
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Chapter 5

APPENDIX

Definition 5.1. Let f be a real valued function on a compact interval [a, b]. We say that f

is absolutely continuous if there exists a Lebesgue integrable function g on [a, b] such that

f(x) = f(a) +

∫ x

a
g(t)dt

for all x on [a, b].

Definition 5.2. Let X be a real Banach space. The space L(X,R) of all linear functionals

on X is denoted as X∗ and called the dual space of X.

Definition 5.3. Let X be a Banach space. A sequence xn ∈ X converges weakly to x ,

written

xn ⇀ x in X,

if f(xn)→ f(x) for every f ∈ X∗.

Definition 5.4. Let X be a real Banach space, and X∗ be its dual. A sequence fn ∈ X∗

converges weakly-* to f , written

fn ⇀
∗ f,

if fn(x)→ f(x) for every x ∈ X.

Theorem 5.5. (Alaoglu weak-* compactness) Let X be a seperable Banach space and

let fn be a bounded sequence in X∗. Then fn has a weakly-* convergent subsequence.

Theorem 5.6. Let X be a reflexive Banach space and xn a bounded sequence in X. Then

xn has a subsequence that converges weakly in X.

Remark 5.7. Since any Hilbert space H is reflexive, a bounded sequence in H has a weakly

convergent subsequence.

Sobolev Spaces
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Definition 5.8. Let Ω be an open set in Rn, u ∈ L1
loc(Ω), and α = (α1, α2, ..., αn) be a

multi-index. The α-th distributional derivative or weak derivative of u is a linear functional

T : C∞c (Ω)→ R defined by

T (ϕ) = (−1)|α|
∫

Ω
u(x)Dαϕ(x)dx

for all ϕ ∈ C∞c (Ω). We say v ∈ L1
loc(Ω) is the α-th weak derivative of u if

T (ϕ) =

∫
Ω
v(x)ϕ(x)dx,

that is, ∫
Ω
v(x)ϕ(x)dx = (−1)|α|

∫
Ω
u(x)Dαϕ(x)dx

for all ϕ ∈ C∞c (Ω).

Definition 5.9. The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := u : Dαu ∈ Lp(Ω) for all 0 ≤ |α| ≤ k,

with norm

‖u‖Wk,p =

( ∑
0≤|α|≤k

‖Dαu‖pLp

)1/p

.

When p = 2, we have W k,2 = Hk. Hk is a Hilbert space when equipped with the inner

product

〈u, v〉Hk =
∑

0≤|α|≤k

〈Dαu,Dαv〉L2 .

The Hk norm corresponding to this inner product is

‖u‖Hk =

( ∑
0≤|α|≤k

‖Dαu‖2L2

)1/2

.

Definition 5.10. The Sobolev space Hk(Ω) is defined by

Hk(Ω) := {u : Dαu ∈ L2(Ω), for all 0 ≤ |α| ≤ k}.
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Definition 5.11. The space of test functions C∞c (Ω) is defined as

C∞c (Ω) := {ϕ ∈ C∞(Ω) : supp(ϕ) is a compact set in Ω}.

Proposition 5.12. C∞c (Ω) is dense in Lp(Ω) for any 1 ≤ p <∞.

Definition 5.13. The space Hk
0 (Ω) is the completion of the space C∞c (Ω) in Hk(Ω).

Definition 5.14. The space H−k(Ω) is the dual space of Hk
0 (Ω).

Proposition 5.15. (Poincare’s inequality) Let Ω be a bounded domain. Then, there is

a constant C such that

‖u‖L2 ≤ C‖Du‖L2 for all u ∈ H1
0 (Ω)

.

Remark 5.16. Now, we have the above inequality, we can use

‖u‖2H1
0

=
∑
|α|=1

|Dαu|2 = ‖Du‖2L2

as an alternative norm on H1
0 (Ω), equivalent to the standart H1 norm. This follows since

‖u‖2H1
0
≤ ‖u‖2H1 = ‖u‖2L2 + ‖u‖2H1

0
≤ (1 + C)‖u‖2H1

0
.

Theorem 5.17. (Rellich’s compactness theorem) Let Ω be a bounded domain in Rd.

Then H1
0 (Ω) is compactly embedded in L2(Ω).

Remark 5.18. As a consequence of the Sobolev embedding theorems, we have:

H1
0 (Ω) ⊂ C0(Ω) ⊂ L∞(Ω) for bounded Ω ∈ R

H1
0 (Ω) ⊂ Lp(Ω) for p ≥ 1.
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Vector-valued functions

Suppose that X is a real Banach space with norm ‖‖X and dual space X∗. Let 0 < T <∞,

and consider functions f : (0, T )→ X.

Definition 5.19. A simple function f : (0, T )→ X is a function of the form,

f =

N∑
j=1

cjχEj ,

where E1, E2, ..., EN are Lebesgue measurable subsets of (0, T ) and c1, c2, ..., cN ∈ X.

Definition 5.20. A function f : (0, T ) → X is strongly measurable, if there is a sequence

{fn : n ∈ N} of simple functions such that fn(t)→ f(t) strongly in X for a.e t ∈ (0, T ).

Definition 5.21. For 1 ≤ p <∞ the space Lp(0, T ;X) consists of all strongly measurable

functions f : (0, T )→ X such that

∫ T

0
‖f‖pXdt <∞,

equipped with the norm

‖f‖Lp(0,T ;X) =

(∫ T

0
‖f‖pXdt

)1/p

.

The space L∞(0, T ;X) consists of all strongly measurable functions f : (0, T ) → X such

that

‖f‖L∞(0,T ;X) = sup
t∈(0,T )

‖f(t)‖X <∞,

where sup denotes the essential supremum.

Theorem 5.22. 1 Let X ⊂⊂ H ⊂ Y be Banach spaces where X, and Y are reflexive. Sup-

pose that un is a sequence that is uniformly bounded in L2(0, T ;X), and dun/dt is uniformly

bounded in Lp(0, T ;Y ), for some p > 1. Then there is a subsequence that converges strongly

in L2(0, T ;H).

Proposition 5.23. Suppose that u ∈W 1,p(0, T ;X), 1 ≤ p ≤ ∞. Then

u(t) = u(s) +

∫ t

s

du

dt
(τ)dτ for every 0 ≤ s ≤ t ≤ T,
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and u ∈ C0([0, T ];X)(for almost every t ∈ [0, T ]). Furthermore we have the estimate

sup
0≤t≤T

‖u(t)‖X ≤ C‖u‖W 1,p(0,T ;X).

Theorem 5.24. Suppose that

u ∈ L2(0, T ;H1(Ω)) and du/dt ∈ L2(0, T ;H−1(Ω))

Then

(i) u is almost everywhere continuous from [0, T ] into L2(Ω), with

sup
t∈[0,T ]

|u(t)| ≤ C
(
‖u‖L2(0,T ;H1) + ‖du/dt‖L2(0,T ;H−1)

)
,

and

(ii) d
dt |u|

2 = 2〈du/dt, u〉 for almost every t ∈ [0, T ], that is,

|u(t)|2 = |u(0)|2 + 2

∫ t

0
〈du/dt(s), u(s)〉ds.

Existence and uniqueness of solution of ODE’s

Theorem 5.25. (Cauchy-Picard) Suppose that G : Rd → Rd satisfies

‖G(y)−G(y′)‖Rd ≤ L(B)‖y − y′‖Rd ,

for all y, y′ in any bounded set B ⊂ Rd. Then there exists T = T (y0) such that the initial

value problem
dy

dt
= G(y), y(0) = y0

has a unique solution defined on the interval [0, T ].

Theorem 5.26. A solution y(t) of the initial value problem

dy

dt
= G(y), y(0) = y0

has a finite maximal interval of existence [0, S∗) if and only if ‖y(t)‖Rd →∞ as t→ S∗.
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Some inequalities

Cauchy-Schwarz Inequality Let H be an inner product space. Then for any u, v ∈ H,

the following inequality holds:

|〈u, v〉| ≤ ‖u‖‖v‖.

Holder’s Inequality Suppose that p ∈ [1,∞) and 1/p + 1/q = 1. If u ∈ Lp(Ω) and

v ∈ Lq(Ω), then uv ∈ L1(Ω) and

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω)

.

Young’s Inequality If a, b are nonnegative real numbers and p, q are positive real numbers

such that 1/p+ 1/q = 1, then

ab ≤ ap

p
+
bq

q
.

Young’s inequality with ε If a, b, and ε are nonnegative real numbers, then

ab ≤ a2

2ε
+
εb2

2
.

Gronwall’s Inequality Let f(t) ∈ R satisfy the differential inequality

d

dt+
f(t) ≤ g(t)f(t) + h(t).

Then

f(t) ≤ f(0) exp[G(t)] +

∫ t

0
exp[G(t)−G(s)]h(s)ds,

where

G(t) =

∫ t

0
g(r)dr.
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In particular, if a and b are constants and

d

dt+
f(t) ≤ af(t) + b,

then

f(t) ≤
(
f(0) +

b

a

)
eat − b

a
.
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