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Abstract

The bridge between algebraic geometry and complex geometry is built by Rie-

mann on the following observation: compact Riemann surfaces and nonsingular

complex projective curves can be considered to be same. After the celebrated the-

orem of Bely̆ı, which is a bridge between curves defined over number fields and the

existence of certain coverings of the projective line, Grothendieck launched in the

1980s, in his famous Equisse d’un programme that such coverings is completely

determined by the pre-image of the real interval [0, 1] which is named a dessin

d’enfant (child’s drawing) by him.

We give an introduction to the theory of dessins d’enfants. These combina-

torial objects are simply graphs embedded into topological surfaces and provide

an extraordinary link to a special topic of arithmetic geometry: curves defined

over number fields can be described by such combinatorial objects. In addition

to the initial equivalence built by Riemann given in section 3, in this thesis, we

give several equivalences to built the general aspects of Grothendieck’s dessin the-

ory. The first equivalence is well-known Grothendieck correspondence: Any dessin

d’enfant arises from a finite covering of the projective line P1(C) by a Riemann

surface X unramified except the points 0, 1,∞ and conversely, given a dessin one

can construct such a covering of the projective line and vice versa. This is done in

section 2.

Figure 1: Dessin d’enfant corresponding to the covering x 7→ x3

x3 − 1

The importance of these equivalences is due to Bely̆ı theorem which is given in

section 4: As essentially a consequence of Weil’s descent theory, it was known that

any dessin arises from a finite covering of the projective line P1(C) that can be

defined over the field Q of algebraic numbers. So the question is: Which algebraic

curves arises in this way? Bely̆ı showed that every algebraic curve defined over

Q can be represented as a covering of the projective line ramified at most three

points. In other words, every algebraic curve defined over Q contains an embedded
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dessin d’enfant. One important consequence of this theorem is that Gal(Q/Q) has

a faithful action on the set of dessins.

A dessin can be regarded as an ordered pair of permutations generating a

transitive subgroup of a symmetric group Sn. The group PGL2(Z) has an action

on these pairs of permutation, hence on dessins d’enfants. Our aim is to define and

study an action of PGL2(Z) on dessins which appears to have not been studied until

now. The final section is dedicated to investigate combinatorial and arithmetic

aspects of this action.
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Tanebe, Dr. İsmail Sağlam, and especially to Dr. Ayberk Zeytin for their encourage-

ment and insightful comments. I would also like to thank my committee members,
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Özet

Cebirsel geometri ile kompleks geometri arasında Riemann’ın kurduğu köprü şu

gözleme dayanmaktadır: Kompakt Riemann yüzeyleri ve tekil olmayan kompleks pro-

jektif eğrileri aynıdır.

Belyi’nin, sayı cisimleri üzerine tanımlanan eğriler ile projektif doğrunun belli örtü-

lerinin varlığı arasında köprü kuran meşhur teoreminden sonra, Grothendieck 1980’ler-

de, ”Equisse d’un programme”’da bu tür örtülerin [0,1] reel aralığının öngörüntüsü ile

belirlendiğini açıkladı ve bu öngörüntüleri dessin d’enfant (çocuk çizimleri ya da kısaca

desen) olarak adlandırdı. Belyi göstermişti ki, rasyonel sayı cisminin cebirsel kapanışı

üzerine tanımlı her cebirsel eğri, projektif doğrunun en fazla üç noktada dallanmış

örtüleri ile temsil edilebilir. Başka bir deyişle, rasyonel sayı cisminin cebirsel kapanışı

üzerine tanımlı her cebirsel eğri, içine gömülü bir desen barındırır. Bu tezde desen

teorisini tanıtacağız.

Bir desen n harfli simetri grubundan sıralı, geçişken bir permütasyon çifti ile be-

timlenebilir. PGL(2,Z) grubunun bu çiftler zerinde bir etkisi vardır, böylelikle desenler

üzerinde de bir etkisi vardır. Amacımız henüz incelenmemiş bu etkiyi tanımlamaktır

ve incelemektir. Son bölüm bu etkinin kombinatoryel ve aritmetik doğasını anlamaya

ayrıldı.



Riemann Surfaces and Meromorphic Functions 7

1 Riemann Surfaces and Meromorphic Functions

This section consists of basic ingredient concerning Riemann surfaces and morphisms

on them. We recall the properties of these morphisms and refer to well-known sources.

The examples at the end of this section will be useful for the rest of this thesis. In fact

the figures for this examples are nothing but the corresponding dessins d’enfants.

1.1 Thrice Punctured Riemann Sphere

Let Ĉ := C ∪ {∞}. Introduce the following topology on Ĉ. The open sets are of two

type: the usual open sets U ⊆ C and the sets of the form V ∪{∞} where V ⊆ C is the

complement of a compact set K ⊆ C. With this topology, Ĉ is a compact Hausdorff,

second countable topological space. Set

U1 = Ĉ \ {∞} = C
U2 = Ĉ \ {0} = C∗ ∪ {∞}

Define the maps ϕ1 ≡ IdC on U1 and ϕ2(z) =

1/z, if z ∈ C∗

0, if z =∞
on U2. Then ϕ1 and ϕ2

are homeomorphisms so that Ĉ is a surface. Note that since U1 and U2 are connected

and have a non-empty intersection, it follows that Ĉ is connected.

Now, the complex structure on Ĉ is defined by the atlas consisting of the charts

(U1, ϕ1) and (U2, ϕ2) which are holomorphically compatible since ϕ2 ◦ ϕ−1
1 : C∗ →

C∗ given by z 7→ 1/z is biholomorphic. The resulting compact Riemann surface is

the Riemann sphere. Throughout this thesis we will deal with coverings of thrice

punctured Riemann sphere.

Figure 2: Ĉ \ {0, 1,∞}
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Let X be a two-dimensional manifold. A complex chart on X is a homeomorphism

ϕ : U → V of an open subset U ⊆ X onto an open subset V ⊆ Ĉ. Two complex charts

ϕi : Ui → Vi , i = 1, 2 are said to be holomorphically compatible if the map

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) −→ ϕ2(V1 ∩ V2)

is biholomorphic. A complex atlas on X is a collection A = {ϕi : Ui → Vi, i ∈ I}
of complex charts which are holomorphically compatible and which cover X that is⋃

i ∈I Ui = X . Two complex atlases A and A
′

on X are called analytically equivalent

if every complex chart of A is holomorphically compatible with every complex chart

of A
′
. This is indeed an equivalence relation and an equivalence class of analytically

equivalent atlases on X is a complex structure on X . Hence a complex structure on X
can be given by the choice of a complex atlas as done above for the Riemann sphere.

A Riemann surface is a pair (X ,Σ) where X is a connected two-dimensional

manifold and Σ is a complex structure on X .

1.2 Meromorphic Functions on a Riemann Surface

Let X be a Riemann surface and f : X −→ C be a function. We say that f is

holomorphic on X if for every chart (U,ϕ), f ◦ϕ−1 : ϕ(U) −→ C is holomorphic in the

usual sense. We denote the set of all holomorphic functions on X by O(X ). It is clear

that this definition extends the usual definition of holomorphic function in complex

analysis by considering the atlas consisting only of (C, Id) on the complex line. We

also note that since holomorphic functions are defined via coordinate charts, all the

local properties of usual holomorphic functions on C are valid for the holomorphic

functions on Riemann surfaces.

A function f : X −→ C is meromorphic on X if there exists a subset X ′ of X such

that

i. the restricted function f : X ′ −→ C is holomorphic,

ii. P = X\X ′ is a discrete set whose elements are called poles.

iii. if p ∈ P then limz→p|f(z)| =∞

Definition 1.1. Let X and Y be Riemann surfaces. A function f : X −→ Y is

called holomorphic (resp. meromorphic) if ψ ◦ f ◦ ϕ−1 is holomorphic (resp.
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meromorphic) for every x ∈ X , ϕ a coordinate around x and ψ around f(x). Finally,

f is an analytic isomorphism if f is bijective and both f and f−1 are holomorphic.

In other words, a meromorphic function on a Riemann Surface X is a holomorphic

function β : X → Ĉ which is not identically ∞. We denote the set of all meromorphic

functions byM(X ). It is easy to see thatM(X ) is a field called the field of meromorphic

functions on X . In section 2 we shall see that it is a field extension of C of transcendence

degree 1.

Proposition 1.1. We list the following properties concerning Riemann surfaces. We

refer [5] and [19] for proofs.

I. (Identity Theorem)

Let X and Y be Riemann surfaces and let f, g : X → Y be two holomorphic

functions. Suppose that f and g coincide on a set A ⊆ X with non-empty

interior. Then f and g identically equal.

II. (Riemann removable singularity theorem)

Let D be an open subset of a Riemann surface and let a ∈ D. Suppose that f

is holomorphic on D \ {a} and bounded on D. Then f extends uniquely to a

holomorphic function on the whole D.

III. Let f : X → C be a meromorphic function and p ∈ X be a point. Let (U, z) be

a complex chart centred at p. Then f can be expanded in a Laurent series:

f =
∞∑
k=m

ckz
k, where ck ∈ C;m ∈ Z

i. The integer m is the multiplicity of f at p and is independent of the chosen

chart (U, z) denoted by m = ν(f, p).

ii. If m is negative then p is a pole of order −m.

iii. If m ≥ 0 then f is holomorphic and f has a zero of order m whenever m is

non-zero.
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IV. (Local normal form for holomorphic functions)

Let X and Y be Riemann surfaces and f : X → Y be a non-constant holomorphic

function. Suppose that p ∈ X and q := f(p). Then there exists an integer m ≥ 1

and complex charts ϕ : U → V on X and ψ : U
′ → V

′
on Y satisfying

i. p ∈ U and q ∈ U ′ , ψ(q) = 0

ii. f(U) ⊆ U ′

iii. The function F := ψ ◦ f ◦ϕ−1 : V → V
′

is given by F (z) = zm for all z ∈ V

V. These last two properties characterise the local behaviour of a holomorphic func-

tion. Moreover, every non-constant meromorphic function β : X → Ĉ takes each

value the same number of times counting multiplicity and so that β is called a

meromorphic function of degree n, denoted by degβ = n. Therefore, for most

points z ∈ Ĉ, the set β−1(z) has n distinct points. More precisely, one has

n =
∑

z∈f−1(p)

ν(f, z)

if z0 ∈ Ĉ is a point for which the set β−1(z0) has fewer than n points we say that

z0 is a ramification point, or critical point of β and any point in β−1(z0) a

ramification value, or critical value of β. We denote the set of ramification

values of a meromorphic function f by Ram(f).

VI. A non-constant holomorphic function f : X → Y is open, i.e. it maps open sets

of X to open sets of Y and discrete, i.e. the fibre f−1(y) of a point y ∈ Y is a

discrete subset of X .

VII. Another important consequence local property of morphisms between Riemann

surfaces is the following: Suppose that Y∗ is Riemann surface obtained from

a compact Riemann surface Y by removing finitely many points and that f∗ :

X ∗ → Y∗ is an holomorphic covering of finite degree n. Then Riemann removable

singularity theorem guarantees that for each y ∈ Y \ Y∗ add n points to X ∗

that extend the holomorphic covering f∗ to a morphism f : X → Y so that

X being compact too. Moreover, if X1 and X2 obtained in this way then they

are isomorphic. Hence the resulting compact Riemann surface is unique up to

removing finitely many points. Details can be found in [3].
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VIII. (Riemann-Hurwitz Formula)

Let f : X → Y be a morphism of degree n between compact Riemann surfaces

of genera g1 and g2 respectively. Then

2g1 − 2 = n(2g2 − 2) +
∑
x∈X

(
ν(f, x)− 1

)

IX. The field of meromorphic functions on the Riemann sphere consists of only ra-

tional functions: M(Ĉ) = C(z) ,the field of fractions of the polynomial ring

C[z].

Example 1.1. If f is a polynomial of degree n then a ∈ C has n distinct pre-image if

and only if f(z) = a and f
′
(z) = 0 have no common solutions. Indeed, if

f(z)− a = c
n∏
k=1

(z − rk)

Then by product rule,

f
′
(z) = c

n∑
j=1

( n∏
k=1,k 6=j

(z − rk)
)

so that

f
′
(ri) = c

( n∏
k=1,k 6=i

(ri − rk)
)

Hence ri’s are distinct if and only if f
′
(ri) 6= 0. Recall that in order to investigate

the local behaviour of f : Ĉ→ Ĉ at the point∞ one needs to consider the behaviour of

the composition f ◦J at 0, where J(z) = 1/z. Similarly, for the cases f(p) =∞ , p 6=∞
and for f(∞) =∞ the behaviour around the point∞ is given by the composition J ◦f
and J ◦ f ◦ J respectively.

So in the case of this example, since p is a polynomial, it is clear that p(∞) = ∞
so that J ◦ f ◦ J examined at 0 gives the local behaviour of f at ∞.

Example 1.2. The polynomial pn : Ĉ → Ĉ, defined by pn(z) = zn has two critical

points namely 0 and ∞. We have pn(0) = 0 with multiplicity n and for z 6= 0,

pn(z) 6= 0.Therefore 0 is a critical point. Let us see that ∞ is a critical point. Indeed,

considering (J ◦ pn ◦ J)(z) = zn which has a zero of order n, we get pn(∞) =∞.
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Figure 3: The [0,1]-pre-image of the mapping p6

Example 1.3. Let m and n be integers with m, n, m+n 6= 0. Consider rational maps

βm,n : Ĉ→ Ĉ defined by

βm,n(z) =
(m+ n)m+n

mmnn
zm(1− z)n

These form an important class of Bely̆ı functions. We shall investigate the nature of

critical points and critical values of them. Indeed,

β
′
m,n(z) =

(m+ n)m+n

mmnn
zm−1(1− z)n−1(m− (m+ n)z)

so that the critical values are 0,1,
m

m+ n
,∞ which correspond to the critical points

0,0,1,∞ ∈ Ĉ respectively.

Figure 4: The [0,1]-pre-image of the mapping β6,4
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Example 1.4. (Elliptic Curves)

In this example at first we will determine the compact Riemann surface corresponding

to a special case of elliptic curves and we will find the critical points and critical values

of a certain morphism on this compact Riemann surface .

Consider the algebraic curve given by y2 = x(x− λ1)(x− λ2) where λ1 and λ2 are

distinct complex numbers. Let

S0 = {(x, y) ∈ C : y2 = x(x− λ1)(x− λ2)}.

We define the chart (U,ϕ) around each point P0 = (x0, y0) in the following cases:

Case 1: For P0 = (x0, y0), where x0 6= 0, λ1, λ2 we take

ϕ−1(z) = (z + x0,
√

(z + x0)(z + x0 − λ1)(z + x0 − λ2))

defined in the open disc B(0, ε) with ε small enough to guarantee z 6= 0, λ1, λ2. The

branch of the square root is chosen so that its value equals y0 at x0.

Case 2: For P0 = (ai, 0), where ai = 0, λ1 or λ2 the parametrization is given by

ϕ−1
i (z) = (z2 + ai,

√
Πj 6=i(z2 + ai − aj))

defined in the open disc B(0, ε) with ε small enough so that z2 + ai 6= aj whenever

j 6= i.

Now the transition function (ϕ ◦ ϕ−1
i )(z) = z2 + ai is holomorphic wherever it is

defined. As in the compactification of Ĉ, we add a point ∞ to S0 and we obtain

a compact Riemann surface S = S0 ∪ {∞} by the following parametrization around

P0 =∞.

Case 3: For P0 =∞ we let

φ−1(z) =

 (
1

z2
,

1

z3

√
(1− a1z2)(1− a2z2)(1− a3z2)) if 0 < |z| < ε

∞ if z = 0
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Since the domain of φ and those of ϕi’s can be chosen to be disjoint sets, these

chart maps are compatible. In addition to this, we have the transition function, whose

domain does not contain z = 0, (ϕ ◦ φ−1)(z) =
1

z2
is holomorphic.

Finally, we shall show that the Riemann surface S = S0 ∪{∞} that we obtained in

this way is compact. To do this, we decompose S as the union of two compact sets as

follows:

S = {(x, y) ∈ S0 : |x| ≤ 1

ε
} ∪ ({(x, y) ∈ S0 : |x| ≥ 1

ε
} ∪ {∞})

Note that the first set in the union is compact since it is closed and bounded in C2 and

the second one equals φ−1(B(0,
√
ε)) hence is compact.

Example 1.5. Now we exemplify a meromorphic function on the compact Riemann

surface S. Consider the coordinate map πX : S → Ĉ defined as

(x, y) 7−→ x

∞ 7−→ ∞

To determine the critical points we calculate

ϕ1 ◦ πx ◦ ϕ−1(z) = z

ϕ1 ◦ πx ◦ ϕ−1
i (z) = z2 + λi

ϕ2 ◦ πx ◦ ψ−1(z) = z2

so that we found critical points (0, 0), (λ1, 0), (λ2, 0) and ∞ and corresponding critical

values 0, λ1, λ2 and ∞ respectively. Also we notice that these critical points are of

multiplicity 2. Here, recall that ϕ1 and ϕ2 are the charts defined for the sphere at the

beginning of this section.
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2 Grothendieck’s Correspondence

Now we aim to give a description of Grothendieck correspondence between dessin

d’enfants and Bely̆ı pairs. The notion of dessin d’enfant is a nice way to describe

the coverings β : X → Ĉ from a compact Riemann surface X to the Riemann sphere

Ĉ which are ramified at most over the set {0, 1,∞}. We will show that a Bely̆ı pair is

up to equivalence determined by

1. a dessin d’enfant up to equivalence

2. a bipartite connected ribbon graph up to equivalence

3. a monodromy map Φ : F2 → Sd; i.e. a transitive action of F2, the free group on

two letters, on the set {1, 2, ..., d}, up to conjugation in Sd,

4. a 3-constellation up to conjugation,

5. a finite index subgroup of F2 up to conjugation.

The first equivalence is often called the Grothendieck correspondence. In the following

section we shall define these notions and figure out these equivalences.

2.1 Bely̆ı Pairs as Coverings

Definition 2.1. A Bely̆ı pair (X , β) is a pair of a compact Riemann surface X
together with a meromorphic function β : X → Ĉ unramified outside three distinct

points on X . Indeed, these functions are ramified coverings called Bely̆ı morphisms

as we will see in this section.

We say that two Bely̆ı pairs (X1, β1) and (X2, β2) are equivalent if there exists an

isomorphism f : X1 → X2 such that β2 ◦ f = β1. We shall consider Bely̆ı pairs up to

equivalence.

Remark. The automorphism group Aut(Ĉ) = PSL(2,C) is 3-transitive on Ĉ that is

given any set of three distinct point there is an automorphism of Ĉ that send this set to

another set of three points. Thus, if β is a Bely̆ı function, the set of ramification values

can always be seen as the set {0, 1,∞} via the composition of this automorphism with

β. Explicitly, if β is ramified at {w1, w2, w3} then τ ∈ PSL(2,C) defined by
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τ(w) = w2−w3
w2−w1

.w−w1
w−w3

.

sends w2 7→ 0, w2 7→ 1 and w2 7→ ∞ and hence β = τ ◦ β is a new Bely̆ı function

branched at {0, 1,∞} which is obviously equivalent the previous one. So we may sup-

pose that the set of ramification points of a Bely̆ı function lies inside the set {0, 1,∞}.

Example 2.1. The functions in the examples 1.3-1.5 are all Bely̆ı morphisms since

they are ramified at most three points.

Definition 2.2. Let X and Y be two path connected topological spaces. Let f : X → Y
be a continuous mapping. A pair (X , f) is called a covering of Y by X if for any

y ∈ Y there exists a neighbourhood V of y such that the pre-image f−1(V ) ⊆ X
is homeomorphic to V × S, where S is a discrete set. The connected components of

f−1(V ) are called sheets, the set f−1(y) of pre-images of a point y ∈ Y is called the

fibre over y and finally the cardinality |S| of the set is the degree of the covering.

Note that in the definition above the number of pre-images of a point in Y is locally

constant. Since X is connected, it is constant.So the definition of number of sheets is

well-defined and equal to |S|.
Two coverings (X1, f1) and (X2, f2) are equivalent if there exists a morphism

ψ of coverings between them, i.e. there is a homeomorphism ψ : X1 → X2 such that

ψ ◦ f2 = f1. If ψ from X to itself is a homeomorphism such that ψ ◦ f = f ,then it is

called an automorphism of a covering (X , f). The group of all automorphisms of a

covering (X , f) is denoted by Aut(X/Y).

A covering (X , f) of Y is called Galois if for every pair of points x1 and x2 in Y
with f(x1) = f(x2) there is a covering g : X → Y such that g(x1) = x2.

Example 2.2. The mapping pn : C∗ → C∗ given as in the example 1.2 by pn(z) = zn

is a Galois covering. Indeed, for any z1, z2 ∈ C∗ with pn(z1) = pn(z2) we have z2 = ωz1,

where ω is a nth root of unity and the function z 7→ ωz is a morphism of coverings.

If f : X → Y is covering then it has the following path-lifting property: For any

path γ : I → Y and any pre-image p of γ(0) there is a path γ̂ on X such that γ̂(0) = p

and f ◦ γ̂ = γ. Roughly speaking, one can lift the path γ on Y to a a path on X ,

starting at any pre-image of the starting point of γ.

Since Bely̆ı functions are the coverings of the thrice punctured sphere which has

already a complex structure, we may derive the properties inherited from covering the-
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ory (such as monodromy and classification of coverings) because the complex structure

is already determined by the following:

Proposition 2.1. Let f : X → Y be a covering, where Y is a Riemann surface. Then

X has a unique Riemann surface structure that makes f holomorphic.

Proof. For a chart (Vj , φj) in Y, we form a chart as (Ui, φj ◦ f), where f(Ui) = Vj for

each pre-image of Vj . The transition functions (φk ◦ f) ◦ (φj ◦ f)−1 = φk ◦ φ−1
j are

obviously holomorphic. Since the local expression of f in these charts is (φj ◦ f) ◦ (φj ◦
f)−1 = Id, f is indeed holomorphic. Let us now show the uniqueness of this complex

structure. Suppose that f is holomorphic to another chart (U, φ), that is, (φj ◦f)◦φ−1

is holomorphic. Then (U, φ) is compatible with the all the charts (Ui, φj ◦ f) above. So

we conclude that this complex structure on β is unique.

Suppose that β : X → Y is a morphism between compact Riemann surfaces. By

removing the ramification values from the space Y and their pre-images from X we get

an unramified holomorphic covering β∗ : X ∗ → Y∗.
Let x ∈ X ∗ be an arbitrary point. By construction x is not a ramification point

hence there is an open neighbourhood V of x such that the restriction map β|V is an

injection. Being a holomorphic mapping β is open and continuous so that β maps V

homeomorphically to β(V ). This shows that β∗ is a local homeomorphism.

Indeed β∗ : X ∗ → Y∗ is a covering map in the topological sense. To see this let

y ∈ Y∗. Since β is discrete, β−1(y) being a discrete subset of the compact space X
is finite so we may set β−1(y) = {x1, x2, . . . , xn}. Now let V be a neighbourhood of

y and U1, U2, . . . , Un be the neighbourhoods of x1, x2, . . . , xn respectively. Note that

V can be chosen so that f−1(V ) = tiUi. Otherwise, there would be a sequence (yk)k

in V converging to y such that each fibre f−1(yk) contains a point x
′
k /∈ ∪iUi. Let x

be a limit point of this sequence. Since f is continuous f(x) = y. Therefore x = xj

for some j ∈ {1, 2, . . . , n}. But then x
′
k ∈ Uj for k large enough, a contradiction. So

a Bely̆ı function is a covering map in the following sense below. This construction

describes pass to the topological covering theory from a given Bely̆ı pair. Conversely

if β∗ : X ∗ → Ĉ \ {0, 1,∞} is a covering then one can add the missing points to extend

it to a Bely̆ı covering β : X → Ĉ by Proposition 1.1.
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2.1.1 Monodromy Representation of Bely̆ı coverings

Let f : X → Y be a covering. Let y0 ∈ Y be a base point. We have the following

monodromy action of π1(Y, y0) on the set F = f−1(y0):

Let γ ∈ π1(Y, y0). We shall show that γ induces a bijection on the set E. Since γ

is a loop (i.e. a closed oriented piecewise smooth curve), f−1(γ) consists of |S|-many

oriented curves in X by the path-lifting property. Note that γ leads from y0 to y0, so

each of the curves in the pre-image of γ permutes the points of F . The resulting map

g : F → F is invertible since γ is invertible in π1(Y, y0). This gives an action of π1(Y).

As Y is connected, this action is transitive. Indeed, if xi and xj are two points in the

fibre of y0, we can find a path γ̂ connecting xi to xj . Now, let γ = f ◦ γ̂ be the image

of γ̂ in Y. Then γ is a loop based at y0 since both xi and xj are sent to y0 under the

map f .

We see from this construction above that the correspondence γ 7→ g gives a group

homomorphism from π1(Y, y0) to Sym(F ). The product of (equivalence classes of)

paths corresponds to composition of bijections on E. We obtain in this way a mon-

odromy map Φ : π1(Y, y0)→ Sd which is independent of the chosen base point y0 and

of the way we choose the labelling its pre-images up to composition with a conjugation

in the symmetric group. By definition, a monodromy group of the group generated

by these g’s.

In the context of Bely̆ı pairs, we will deal with the case Y = Ĉ\{0, 1,∞}. We start

with a Bely̆ı pair (X , β), and by removing the ramification points 0, 1 and∞ from Ĉ and

all their pre-images from X we obtain an unramified covering: β∗ : X ∗ → Ĉ\{0, 1,∞}.
Here we denote the resulting punctured surface by X ∗ and the restricted map by β∗.

It is an application of Seifert-Van Kampen theorem that the fundamental group

of Ĉ \ {0, 1,∞} is F2. [8]. We fix an isomorphism between these groups. Then the

unramified covering β∗ : X ∗ → Ĉ \ {0, 1,∞} gives rise to the following monodromy

map:

F2
∼−→ π(Ĉ \ {0, 1,∞})→ Sym(F ).

where y is a chosen base point of Ĉ \ {0, 1,∞} and F the fibre of β
′
over y. Equiv-

alently, this defines a finite index subgroup Γ of F2 up to conjugation, which is

Γ = StabSym(F )({y0}).
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2.1.2 Classification of Bely̆ı Coverings via Subgroups of F2

It is well-known that the subgroups of π(Y, y0) characterise all coverings of the space

Y. Now, we shall construct this correspondence. Firstly, let Y be connected topological

space. Let Γ ≤ π(Y, y0) be a subgroup. Consider the set X0 of all oriented paths in Y
with the starting point y0, i.e.

X0 = {γ|γ is a path in Y starting at y0}

. Define the following relation on X0: γ1 ∼ γ2 if

(i) γ1 and γ2 have the same endpoint i.e. γ1(1) = γ2(1) and

(ii) [γ1 ∗ γ−1
2 ] ∈ Γ

It can be easily seen that this is indeed an equivalence relation. Denote the space

of the set of equivalence classes of such paths by XΓ and denote the equivalence class

of a path γ by 〈γ〉. Define f : XΓ → Y by 〈γ〉Γ 7→ γ(1). We topologize XΓ as follows:

First, if γ ∈ X0 and if U is a neighbourhood of γ(1) then a path γ̂ ∈ X0 of the form

γ̂ = γ ∗ λ where λ(0) = γ(1) and λ([0, 1]) ⊂ U is called a continuation of γ in U. Then

for 〈γ〉Γ and a neighbourhood U of γ(1) define

(U, 〈γ〉Γ) :=
{
〈γ̂〉Γ ∈ XΓ|γ̂ is a continuation of γ in U

}
It can be shown that these sets form a basis for a topology on XΓ for which f : XΓ → Y
is a covering map.

In other words, (XΓ, f) is a covering of (Y, y0) where f : XΓ → Y is the projection

map, that is, the map sending each class of equivalent paths to their common endpoint.

Details of this construction can be found in [9].

Conversely, let (X , f) be a covering of (Y, y0). Consider the monodromy action of

π(Y, y0) on the fibre f−1(y0). Fix x0 ∈ f−1(y0) and let Γ be the stabilizer of x0 under

this monodromy action. Note that another choice of x
′
0 in f−1(y0) gives a conjugate

of the group Γ in π(Y, y0). Now the right cosets of Γ are in bijection with f−1(y0).

Indeed, for [γ1] and [γ2] in π(Y, y0) the cosets Γ[γ1] and Γ[γ2] coincide if and only if

γ1γ
−1
2 ∈ Γ if and only if both γ1 and γ2 send the element x0 to the same element

x ∈ f−1(y0). Therefore the index of Γ in π(Y, y0) equals to the number of elements of

f−1(y0). Moreover, Γ is isomorphic to the fundamental group of X with base point x0
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since it consists of loops in π(Y, y0) whose lifting to X starting at x0 and return back

to x0.

We sum up this subsection with the following diagram{
monodromy representation

up to conjugation

} {
Bely̆ı pairs

up to equivalence

}

{
finite index subgroups of F2

up to conjugation

} {
unramified coverings of Ĉ \ {0, 1,∞}

up to equivalence

}
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2.2 Ribbon structure associated to Dessins d’Enfants

Now we will define Grothendieck’s dessins d’enfants and ribbon structure carried by

them. This structure enables us to speak of the notion ”next-turn-edge” and to draw

dessins on a piece of paper whether it is embedded on sphere or a surface of genus

greater than 0. Let us begin with the definitions of these two notions.

Definition 2.3. A dessin d’enfant (or a dessin) is a pair (X ,G) of bipartite con-

nected graph G embedded into an orientable closed topological surface X such that

X \ G is a disjoint union of open cells. We say that two dessins (X1,G1) and (X2,G2)

are equivalent if there is an orientation-preserving homeomorphism f : X1 → X2 such

that f(G1) = G2 is a graph isomorphism. The genus of a dessin (X ,G) is the genus of

the topological surface X by definition.

Example 2.3. Consider graph below embedded into the sphere at the left and to torus

on the right. The first one is a dessin whereas the graph drawn on torus is not a dessin

since cutting along edges of the graph does not produce disjoint union of open cells.

Figure 5: a dessin d’enfant on sphere

Definition 2.4. A ribbon graph (G,O) is a connected graph G together with a

ribbon structure O = {σv|v is a vertex of G} which assigns to each vertex v of G a

cyclic permutation σv of the half edges incident to v. We say that two ribbon graphs

(G1, O1) and (G2, O2) are equivalent if there exists a graph isomorphism f : G1 → G2

such that the pull-back of O2 is equal to O1.
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Example 2.4. The following figure shows a graph G with different ribbon structures

O1 = {(132), (456), (14), (25), (36)} and O2 = {(132), (465), (14), (25), (36)}. (Figure

6)

Figure 6: Two different ribbon graphs

From a dessin G(β) to a bipartite ribbon graph (G,O)

We first note that the abstract graph G itself does not uniquely determine the dessin,

in other words, two different dessins may have two isomorphic abstract graphs such

as the graphs Example 2.5. So we must focus on the way we embed the graph G into

the surface. To do this, it suffices to assign to each vertex a cyclic permutation of

edges which are incident to this vertex. Indeed, suppose that G has n edges. first

we enumerate the n edges of the graph. For each vertex v, we take sufficiently small

neighbourhood U of v so that we get a chart (U,ψ) such that ψ(U ∩ G) ⊆ R2 is a

star centred at ψ(v). In this small vicinity of ψ(v) we encircle counter-clockwise order

the vertex and hence we get a permutation σv which is in Sn. The set of all these

permutations is the ribbon structure O of the resulting bipartite ribbon graph (G,O).

We note that this description of dessins will enable us to think of a Bely̆ı pair in a

purely combinatorial way.

Example 2.5. The construction above applied to the ribbon graphs given in Example

2.5 produces two dessins. The first ribbon structure determines the dessin on the sphere

and that of second ribbon graph is a dessin on torus. Evidently, these are different

dessins since these are dessins of different genera, hence they are not equivalent.
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(a) dessin corresponding to (G,O1) on sphere (b) dessin corresponding to (G,O2) on torus

Figure 7: Two dessins corresponding to ribbon graphs given in Example 2.5

From a bipartite ribbon graph (G,O) to dessin G(β)

For the converse construction we first observe that the ribbon structure of a bipar-

tite ribbon graph consists exactly of the permutations around white point and the

permutations around black points. This leads us to the following definition:

Definition 2.5. A sequence [g1, g2, g3] where gi ∈ Sd is called a 3-constellation if

i. The group G = 〈g1, g2, g3〉 acts transitively on the set of d letters.

ii. The permutations g1, g2 and g3 satisfy the relation: g1g2g3 = id.

Now, let (G,O) be a bipartite ribbon graph. Let σ◦ be the product of all σ
′
vs in

O where v is white vertex and similarly let σ• be the product of all σ
′
vs in O where

v is black vertex and we let σ∞ = σ−1
• σ−1

◦ . Then [σ◦, σ•, σ∞] is a 3-constellation.

Conversely, if we are given a 3-constellation [α, σ, ϕ], it is possible to construct a cor-

responding topological surface as follows:

1. First, for each cycle of ϕ−1 of length m we take a polygon with m sides and assign

the letters of this cycle to each side in the counter-clockwise direction.

2. Considering the permutation α, glue the sides of these polygons in such a way that

the orientation of the sides glued together is always opposite so that the resulting

surface will be oriented. The cycles of σ at each vertex will be automatically

glued.
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So if we are given a bipartite ribbon graph then we have indeed a 3-constellation

and we may construct a topological surface as above. The dessin G is already embedded

into the surface X as X \ G consists of disjoint open cells. If C is one of these cells,

considering the ribbon structure of the dessin, one observes that the cell C is encircled

by the edges i, σ◦σ•(i), (σ◦σ•)
2(i), . . . , (σ◦σ•)

m(i) = i. This shows that the number of

edges bounding C is produced by an m-cycle of the permutation σ◦σ•. Therefore, these

two procedures are inverse to each other.

We conclude these equivalences as:

{
bipartite ribbon graphs

up to equivalence

}
{

dessins d’enfants with n edges

up to equivalence

}


ordered pairs of permutations

generating transitive subgroups of Sn

up to conjugation


From these constructions we can calculate the genus of the dessin (X ,G) only

considering the corresponding permutation pair (σ0, σ•) on N letters by the formula:

If g is the genus of X then

2− 2g =
(
number of cycles of σ◦ + number of cycles of σ•

)
− N

+ number of cycles of σ◦σ•

We conclude this section as follows. A dessin d’enfant has immediately a corre-

sponding ribbon structure and vice versa. As this section suggests, we will regard

dessins of n edges as a pair of two permutations (σ0, σ•) transitive on n letters which is

actually a 3-constellation attached to the corresponding ribbon structure. Moreover, as

the next section suggest dessins being the lift of arc I = [0, 1] ⊆ Ĉ can be represented

as a pair of permutation (σ0, σ1) called the permutational representation of the dessin

given.
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2.3 Bely̆ı Pairs and Dessins d’Enfants

2.3.1 From the Bely̆ı pair (X , β) to a dessin G(β):

Let (X , β) be a Bely̆ı pair. We will observe that (X , β) naturally determines a dessin

G on X . Let T0 be a triangulation of Ĉ performed by three vertices 0, 1 and ∞; three

edges along the line segments [0, 1], [1,∞] and [0,∞]. Then β−1(T0) is a triangulation

T of X . Next, we delete the vertex ∞ and its two edges in T0 and consider the closed

real interval I = [0, 1] ⊆ Ĉ. Then β lifts I to a graph G = β−1(I) on X whose

vertices are the pre-images of 0 and 1. By colouring the pre-images of 0 with one

color, say white; and the pre-images of 1 with another, say black, we naturally get a

bipartite graph structure. Moreover, X \G is a disjoint union of connected components

each of them containing precisely one pre-image of ∞. In other words, each of these

components is an open cell and hence is holomorphic to the open unit disc. We also

observe that equivalent Bely̆ı pairs give rise to equivalent dessins.

2.3.2 From a dessin G to a Bely̆ı pair (X , β)

We have seen that a dessin G, say with n letters, have a natural bipartite ribbon graph

structure O = {σ1, σ2, ..., σs}. We have already determine a 3-constellation from this

ribbon structure. We shall determine the monodromy representation from this ribbon

structure as follows: Recall that σ◦ is the product of all cycles around each white vertex

and σ• is the product of all cycles around each white vertex. Let y be a base point of

the Ĉ \ {0, 1,∞}. As the generators of the group π(Ĉ \ {0, 1,∞}) ' F2, we take two

loops γ0, the loop circling around 0 and γ1, the loop circling around 1 and both starts

at y and both are oriented counter-clockwise, see the figure below. We let Φ(γ0) := σ◦

and Φ(γ1) := σ•. Now,

Φ : F2 −→ Sn

defined in this way is a monodromy map hence defines a Bely̆ı pair as constructed in

Section 2.2.
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Figure 8: generators of thrice punctured sphere

2.3.3 Ritt’s Theorem

An advantage of dealing with the monodromy group of a covering follows from the

Ritt’s theorem. Before stating this theorem we recall some definitions from basic group

theory.

Definition 2.6. Let G be a permutation group on n letters. If the underlying set may

split into disjoint subsets of equal size different from 1 and n which are called blocks ,

such that for any g ∈ G the image of a block is always a block, then the group G is

called imprimitive. Otherwise, it is primitive.

Definition 2.7. Let f : X → Z be a covering. A subcovering of (X , f) is covering

(Y, g) of Z such that f = g ◦ h. i.e. if the following diagram is commutative:

X

Y

Z

f

g

h

We say that f : X → Z is decomposable if it has a subcovering. Otherwise, it is

called indecomposable.
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Example 2.6. The following covering is decomposable where βm,n defined as in ex-

ample 1.3

Figure 9: a decomposable covering

Theorem 2.2. (Ritt’s Theorem) A covering is decomposable if and only if its mon-

odromy group is imprimitive.

Proof. See [38]

2.3.4 Bely̆ı functions in genus 0 case

Suppose that G is a dessin on the sphere Ĉ. We want to find a Bely̆ı morphism that

realizes the covering associated to that dessin. Recall that the morphisms on the sphere

are exactly rational functions so we want to find a rational function
p(x)

q(x)
which the

given dessin G is associated to. Considering the white vertices on the dessin, one can

figure out the ramification indices for 0 which are equal to the number of edges at

each white point. This shows that p is of the form p(X) = a
∏
i (X − ai)ri where

a 6= 0. By a similar observation for ∞, one can see that q(X) = b
∏
j (X − bj)sj ,

b 6= 0. By considering the black vertices one finds the ramification indices and sees

that p− q(x) = c
∏
k (X − ck)tk . Solving the equation

a
∏
i

(X − ai)ri − b
∏
j

(X − bj)sj = c
∏
k

(X − ck)tk

in terms of a, b, c, ai, bj , ck one can find out the resulting Bely̆ı morphism.
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3 Compact Riemann Surfaces and Algebraic Curves

In this section we shall show the categorical equivalences of the following class of

objects:

1. Compact Riemann surfaces,

2. Algebraic function fields of transcendence degree 1,

3. Complex algebraic nonsingular curves

3.1 Complex Algebraic Curves and Riemann Surfaces

In this section we will show that every algebraic curve determines a compact Riemann

surface . The crucial point in doing this is the use of the following Implicit Function

Theorem. Before giving the details of this construction, we shall explain the idea from

a local viewpoint. Suppose first that g is a holomorphic function defined on an open

connected subset V of C. The graph of g : V → C is the set

Gr(g) = {(x, g(x)) ∈ C2 | x ∈ V } ⊆ C2

We give Gr(g) the subspace topology so that the projection map π : Gr(g)→ V is a

homeomorphism, whose inverse sends the point x to (x, g(x)). In fact, by Proposition

2.1. π is a complex coordinate chart on Gr(g), whose domain covers all of Gr(g).

Consisting only of this single chart, we see that Gr(g) is equipped with a Riemann

surface structure in this way. The converse procedure of this construction is stated as:

3.1. (The Implicit Function Theorem) Let f be holomorphic function of two vari-

ables on the rectangle R = {(x, y) ∈ C2 | |x − a| < r1 and |y − b| < r2} and assume

that

f(a, b) = 0 and
∂f

∂y
(a, b) 6= 0.

Then there exist ε > 0 and δ > 0 such that for all x ∈ Dε(a) = {z ∈ C | |z−a| < ε}
there is a unique solution y(x) of the equation f(x, y) = 0 with |y−b| < δ and y(a) = b.

The function defined by x 7→ y(x) is holomorphic on Dε(a)

Proof. We refer [20] for a proof.



Compact Riemann Surfaces and Algebraic Curves 29

In order to define complex charts on the vanishing set of a polynomial, this theorem

enables us to determine local complex structure on this set where the complex charts

are locally the graphs of holomorphic functions. Throughout this section let

F (X,Y ) = a0(X)Y n + a1(X)Y n−1 + . . .+ an(X)

= b0(Y )Xm + b1(Y )Xm−1 + . . .+ bm(Y )

be an irreducible polynomial. Consider F (X,Y ) as a function in two variables and let

a ∈ C be such that a0(a) 6= 0 and there is no b ∈ C with F (a, b) = 0 =
∂F

∂y
(a, b).

Then the polynomial F (a, Y ) has exactly n roots b1, b2, . . . , bn because
∂F

∂y
(a, b) 6= 0.

Now, there is a holomorphic function yi(x) with yi(a) = bi and F (x, yi(x)) ≡ 0 defined

on a sufficiently small neighbourhood of a. In other words, y1(x), y2(x), . . . , yn(x) are

roots of F (x, Y ) when considered as a polynomial in one variable Y thus a has a

neighbourhood which is covered by n pre-image sets. We recollect this as:

3.2. Let F (X,Y ) = a0(X)Y n + a1(X)Y n−1 + . . .+ an(X) be an irreducible polynomial

in two variables with complex coefficients. Let a ∈ C be such that a0(a) 6= 0 and such

that there is no b ∈ C with F (a, b) = 0 =
∂F

∂y
(a, b).

Then there is ε > 0 and n holomorphic functions y1(x), y2(x), . . . yn(x) defined on

the disc Dε(a) satisfying

i. F (x, yi(x)) ≡ 0 for x ∈ Dε(a) , i = 1, 2, . . . , n.

ii. yi(x) 6= yj(x
,) if i 6= j and x, x, ∈ Dε(a)

iii. If η ∈ C and F (x, η) = 0 for some x ∈ Dε(a) then η = yi(x) for a unique i.

Let SXF = {(x, y) ∈ C2 | F (x, y) = 0,
∂F

∂y
(x, y) 6= 0, a0(x) 6= 0}, that is, the vanish-

ing set of F after removing possible singular points with respect to the y-coordinate.

Let P = (x0, y0) be a point in SXF so that
∂F

∂y
(x0, y0)) 6= 0. Now, we can solve y in

terms of x. In other words, there is a holomorphic function y(x) defined on a neigh-

bourhood V ⊆ C of x0 such that SXF is locally equal to the set {(x, y(x)) ∈ C2 | x ∈ V }.
Hence, we have determined the coordinate charts on SXF , which are locally a graph of a

holomorphic function. It is straightforward to check that these charts are compatible.
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Similarly, one defines SYF = {(x, y) ∈ C2 | F (x, y) = 0,
∂F

∂x
(x, y) 6= 0, b0(y) 6= 0} and

the complex structure on it. Note that both spaces SXF and SYF are Hausdorff and

second countable being as a subset of C2. As a conclusion, we have

3.3. SXF and SYF are Riemann surfaces on which the coordinate functions πX and πY

where πX : SXF → Ĉ is defined by (x, y) 7→ x are holomorphic, where πY is defined

similarly.

3.4. The function πX : SXF → πX(SXF ) ⊆ Ĉ is a covering map with degree equal to

degY F = n and πY : SYF → πY (SYF ) ⊆ Ĉ is a covering map with degree equal to

degXF = m.

Let F (X,Y ) and G(X,Y ) be two polynomials in C[X,Y ]. a weak version of Be-

zout’s Theorem says that: If F and G are relatively prime then the curves F (X,Y ) = 0

and G(X,Y ) = 0 intersect only at finitely many points, whose coordinates are in C.

Another basic fact concerning curves is the following weak version of Nullstellensatz:

If F is irreducible and G vanishes at all points of the curve F (X,Y ) = 0 then F divides

G. These are standard facts and the proofs can be found in [12].

3.5. Both SXF and SYF are connected.

Let us see that SXF is connected. Note that the polynomials F and FY have only

finitely many common zeros by Bezout’s theorem. So Ĉ \ πX(SXF ) is a finite set. Set

Ĉ \ πX(SXF ) = {a1, a2, . . . , ar,∞}. Let W be a connected component of SXF . We

will show that W = SXF and hence, that SXF is connected. Clearly, the restriction

πX : W → Ĉ \ {a1, a2, . . . , ar,∞} is a covering map with degree d ≤ n. Moreover, by

Proposition 1.1 (VII) given in the first section there is a unique morphism of compact

Riemann surface πX : Ŵ → Ĉ. For x ∈ Ĉ \ {a1, a2, . . . , ar,∞} there are d holomorphic

functions y1(x), y2(x), . . . , yd(x) such that (x, y1(x)), (x, y2(x)), . . . , (x, yd(x)) are the

pre-images of x under the first coordinate function πX . Now consider the symmetric

functions

s1(x) =
∑

i yi(x)

s2(x) =
∑

i,j yi(x)yj(x)
...

sd(x) =
∏
i yi(x)
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Note that s1(x), s2(x), . . . , sd(x) are holomorphic functions defined on the whole

Ĉ \ {a1, a2, . . . , ar,∞} We will see that each function si(x) extends to a meromorphic

function defined in the whole Ĉ. Indeed, in a small neighbourhood of ak the roots yk(x)

are bounded in terms of coefficients of the polynomial F (x, Y ) by the lemma below.

Then 1/yk(x) is bounded near ∞. Therefore each of the holomorphic functions si(x)

extends to meromorphic functions defined on the whole Ĉ. Since M(Ĉ) = C(x), it

follows that each si(x) can be identified to a rational function. Let s(X) be the least

common multiple of the denominators of these rational functions and define

G(X,Y ) = s(X)[Y d − s1(X)Y d−1 + s2(X)Y d−2 − . . .+ (−1)d−1sd(X)]

Let P = (x, yj(x)) ∈W be a point. Then

G(P ) = s(x)[ydj (x)− s1y
d−1
j (x) + . . .+ (−1)d−1sd(x)]

= s(x)
d∏
i=1

(yj(x)− yi(x))

= 0

This shows that G(X,Y ) vanishes at all points of W . Clearly, the irreducible

polynomial F (X,Y ) also vanishes at all points of W then by Nullstellensatz, F divides

G. In particular, d = degYG ≥ degY F = n. It follows that d = n. We conclude that

F = G hence W = SXF , which shows SXF is connected. Similarly, SYF is connected as

well.

3.6. There exists a unique connected compact Riemann surface S = SF that contains

SXF and SYF and the coordinate functions πX and πY extend to meromorphic functions

on S.

Consider the holomorphic unramified covering πX : SXF → Ĉ \ {a1, a2, . . . , ar,∞}
of degree n. Then there exists a unique compact Riemann surface SF and a unique

morphism πX : SF → Ĉ. Similarly, one can extend SYF to a compact Riemann surface

uniquely. Since SXF and SYF differ for only finitely many points, the compact Riemann

surface obtained in these two constructions are isomorphic by Proposition 1.1 (VII).

This shows 3.6. By the construction above we also have:

3.7. The set of ramification points πX is equal to {(x, y) ∈ S|FY (x, y) = 0} and that

of πY {(x, y) ∈ S|FX(x, y) = 0}.
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Lemma 3.8. If α is a root of the polynomial p(X) = Xn + c1X
n−1 + . . .+ cn ∈ C[X]

then

|α| < 2.max{|ci|1/i, i = 1, . . . , n}

Proof. Let c = 2.max{|ci|1/i, i = 1, . . . , n}. If y = α/c then yn +
c1

c
y + . . .+

cn
c

= 0.

Since |ci| < ci it follows that |y|n ≤ |y|n−1 + . . .+ 1.

Now if |y| ≥ 2 then

1 ≤ 1

|y|
+ . . .

1

|y|n
≤ 1

2
+ . . .+

1

2n
< 1

a contradiction. So |y| < 2 thus, |α| < 2c.

In conclusion, we have shown that any complex algebraic curve give rise to a com-

pact Riemann surface. In the following section we will see that any compact Riemann

surface arises in this way.

3.2 Compact Riemann Surfaces and Algebraic Function Fields

An algebraic function field of one variable over C is a field extension K of transcen-

dence degree one over C. In other words, K is a finite extension of C(x) where x is an

element of K such that x is transcendental over C. Let S be a compact Riemann sur-

face. We will prove thatM(S), the field of meromorphic functions on S is an algebraic

function field of one variable. Firstly, we notice that each non-constant meromorphic

function f on X is transcendental over C. To see this, suppose on the contrary that

f ∈ M(S) \ C satisfies a polynomial G(T ) = Tn + a1T
n−1 + . . . + an−1T + a0 with

coefficients in C. Since C is algebraically closed, G(T ) factors as G(T ) = (T − b1)(T −
b2) . . . (T − bn) = 0, and it follows that f ≡ bi for some i, which is not possible. There-

fore, C(f) is a transcendental extension over C. For a general account of algebraic

function fields see [15].

3.9. Suppose that f ∈ M(S) has degree n. Let h ∈ M(S). Then (f, h) satisfies a

polynomial of degree ≤ n. In particular, [C(f, h) : C(f)] ≤ n.

Proof. Define S0 to be the set of points of S at which f is nonsingular. Note that

S \S0 is finite as S is compact. Let p ∈ S0, let U be a small neighbourhood of p and let

ζ0 = f(p). Then there are n neighbourhoods U1 = U,U2, . . . , Un of p1 = p, p2, . . . , pn
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respectively, such that f|Ui is holomorphic and locally, there are n inverse functions

yi : f(Ui) → Ui such that q = yi(ζ) if and only if ζ = f(q). Now, consider the

symmetric functions

g1(ζ) =
∑

h(yi(ζ))

g2(ζ) =
∑

h(yi(ζ))h(yj(ζ))

...

gn(ζ) =
∏

h(yi(ζ))

Since each yi is locally holomorphic and h is meromorphic, it follows that each gi

is locally meromorphic. As in the proof of 3.5. each gi(ζ) is a meromorphic function

on Ĉ hence, is a rational function of ζ. Therefore for each i,

gi(ζ) = ri(ζ)/si(ζ)

where ri and si are polynomial with complex coefficients. Composing with f we have

(gi ◦ f) = (ri ◦ f)/(si ◦ f) : S → Ĉ
Now consider

p(f) = (h− h(y1(f)))(h− h(y2(f))) . . . (h− h(yn(f)))

At each point of S0, p(f) equals zero. On the other hand, it is easy to see that

p(f) =
∑

(−1)kgk(f)h

Since this vanishes on X0 and the functions h and each gi are meromorphic on S,

p(f) ≡ 0.

Hence h satisfies the polynomial,

G(H) = Hn +Hn−1r1(f)/s1(f) + . . .+Hrn−1(f)/sn−1(f) + rn(f)/sn(f)

By multiplying G(H) by the least common multiple of s1, s2, . . . , sn we obtain a new

polynomial F (X,Y ) of degree n in Y for which F (f, h) = 0

3.10. Let X and f be as in the theorem. Then [M(S) : C(f)] ≤ n.
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Proof. Suppose that M(S) is a finite field extension of C(f) with [M(S) : C(f)] > n.

Since the characteristic of the field C(f) is 0, by primitive element theorem M(S) is

a primitive extension of C(f), that is M(S) = C(f)(g) = C(f, g) for some g ∈ M(S).

But by the previous theorem g satisfies a polynomial of degree n and this contradicts

that [M(S) : C(f)] > n.

Now let us assume that M(S) is an infinite field extension of C(f). Since M(S)

is algebraic over C(f), there are infinitely many field extensions K such that C(f) <

K <M(S) and [K : C(f)] > n, which is not possible as in the previous argument.

Now, we state a corollary of the well-known Riemann-Roch theorem (we refer [15])

which is known as the separation property of the field of meromorphic functions.

Theorem 3.11. Let S be a compact Riemann surface and P1, P2 be distinct points

of S. Then there exists a meromorphic function ϕ ∈ M(S) such that ϕ(P1) = 0 and

ϕ(P2) =∞.

3.12. Let S be a compact Riemann surface for whichM(S) = C(f, h) and let SF be the

compact Riemann surface corresponding to F (X,Y ), where F (X,Y ) is an irreducible

polynomial such that F (f, h) = 0. Then the map Ψ : S → SF defined by Ψ(P ) =

(f(P ), h(P )) is an analytic isomorphism.

Proof. First let us see that Ψ is well defined. As before, we consider πX : SXF →
πX(SXF ) ⊆ Ĉ \ B where B = {a1, a2, . . . , ar,∞}. Set S∗ = S \ f−1(B). The following

diagram is commutative:

S∗

f !!

Ψ // SXF

πX
��

Ĉ \B

Note that f(P ) = a ∈ Ĉ \ B then h(P ) is equal to one of the n distinct roots of

F (a, Y ). Therefore Ψ(P ) is well-defined for P ∈ S∗.
Since both πX and f are covering maps, Ψ : S∗ → SXF is also a covering. Thus, we

can extend Ψ to whole S. Notice that up to now we have not used the fact that f and

h generateM(S), therefore Ψ always defines a morphism for every pair of functions f

and h such that F (f, h) = 0.
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We shall prove that Ψ is indeed an isomorphism by showing that its degree equals 1

under the assumption thatM(S) = C(f, h). Suppose not. Then the fibres Ψ−1(a, b) of

all but finitely many points (a, b) ∈ SXF would contain at least two distinct points, say

Q1 and Q2. Let ϕ be an arbitrary meromorphic function on S. SinceM(S) = C(f, h),

it follows that ϕ can be expressed as

ϕ =

∑
aijf

ihj∑
bijf ihj

so that

ϕ(Q1) =

∑
aija

ibj∑
bijaibj

= ϕ(Q2)

Since ϕ is arbitrarily chosen, this contradicts the separation property of M(S).

We conclude

3.13. Let (F ) denote the ideal of C[X,Y ] generated by F .Then

(i) the map

C[X,Y ]/(F ) −→ M(SF )

X −→ f

Y −→ h

is a C-algebra isomorphism.

(ii) the map

C[X,Y ]/(F ) −→ M(S)

X −→ πX

Y −→ πY

is also C-algebra isomorphism. In particular, M(SF ) = C(πX , πY )

(iii) F (πX , Y ) is the minimal polynomial of πY over C(πX)

(iv) deg(f) = [M(S) : C(f)]
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Proof. Since F (f, h) ≡ 0 as in the proof of the first theorem this correspondence

defines a homomorphism of C-algebras. Let G(X,Y ) be in the kernel so that G(f, h) ≡
0. But this means as before that G(X,Y ) vanishes on the curve F (x, y) = 0. By

weak Nullstellensatz ,it follows that F divides G, that is, G ∈ (F ). Therefore this

correspondence is indeed an isomorphism of C-algebras. This proves (i) and, (ii) follows

directly from the previous theorem. Now (iii) is obvious. To see (iv) note that [M(S) :

C(f)] equals the degree of the minimal polynomial h over C(f). Since the latter equal

to degY (F ) which is the degree of the function πX , again by the previous theorem,

deg(f) = πX we see that deg(f) = [M(S) : C(f)].

3.3 Summary

We will summarize these equivalences of the these categories in this section. Given an

irreducible polynomial F (X,Y ) one defines complex charts by solving y in terms of x

thanks to the Implicit function theorem. This gives a compact Riemann surface. Then

given a compact Riemann surface X , passing to its function field namelyM(X ), we get

an algebraic field extension of transcendence degree 1. It is an algebraic field extension

of C(f) where f is a meromorphic function on X . By choosing a pair of generators

f and h we obtained an irreducible polynomial F (X, y) satisfying F (f, h) ≡ 0 we get

M(X ) = C(f, h). So we have S ' SF if and only ifM(S) has generators f and h such

that F (f, h) ≡ 0.
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4 Bely̆ı’s Theorem

4.1 Bely̆ı Surfaces

In section 3, we have seen that any compact Riemann surface arises from an irreducible

polynomial in C[X,Y ], in other words, any compact Riemann surface is already defined

on the field of complex numbers C. Recall that S ' SF if and only if M(S) has

generators f and h such that F (f, h) ≡ 0.

In 1978, Bely̆ı proved that a compact Riemann surface S is defined over a number

field, i.e. a finite extension of Q if and only if S admits a morphism with at most three

ramification values lying in the set {0, 1,∞}. This result lead people deal with the

Bely̆ı pairs and the corresponding dessins. The surprising part of the Bely̆ı theorem is

the only if direction. In [2], Bely̆ı gives a simple algorithm to calculate the morphism β.

For the if part of the proof, Bely̆ı refers to a general a result of A.Weil which is known

as Weil’s criterion. This part of the theorem was already known by Grothendieck, see

[31]. Later on, B. Köck clarified his proof in the language of algebraic geometry in [33]

and J. Wolfart using uniformisation theory in [36].

Definition 4.1. A compact Riemann surface S is defined over a field K where

K ⊆ C if S ' SF for some irreducible polynomial F (X,Y ) =
∑
aijX

iY j ∈ K[X,Y ].

The smallest field that S is defined over is called field of definition of S.

Theorem 4.1. (Bely̆ı) Let X be a complex algebraic nonsingular curve. Then the

following statements are equivalent:

(i) X is defined over the field Q of algebraic numbers.

(ii) there exists a finite morphism β : X → Ĉ from X to the projective line Ĉ which

is ramified at most over 0, 1 and ∞.

Before mentioning the Bely̆ı contribution to the proof of this theorem, recall that

βm,n : Ĉ→ Ĉ defined by

βm,n(z) =
(m+ n)m+n

mmnn
zm(1− z)n

where m and n are integers with m, n, m+n 6= 0. We have found the set ramification

points as 0, 1,m/(m+ n),∞. Note also that βm,n(0) = 0, βm,n(1) = 0, βm,n(∞) = ∞
and βm,n(

m

m+ n
) = 1. Concerning ramification values, it is easy to see the following:
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Ram(f ◦ g) = f(Ram(g)) ∪ Ram(f)

So if a function f has ramification points 0, 1,m/(m+n),∞ then the composition βm,n◦
f has ramification values 0, 1,∞ and it sends possible remaining rational ramification

values of f to rational values.

Proof. (only if part)

We aim to show that if S is defined over Q then there exists a Bely̆ı morphism on S

with at most three ramification values 0, 1,∞. As a first step, we shall show that if

f : S → Ĉ is ramified over {0, 1,∞, λ1, λ2, . . . , λn} ⊆ Q∪ {∞} then we can reduce this

set of ramification points to the set 0, 1,∞ by composing f with suitable functions.

Without loss of generality, we can assume that 0 < λ1 < 1 by composing with the

Mobius functions

T (x) = 1− x
M(x) =

1

x

So we can write λ1 =
m

m+ n
where m,n ∈ N. Now, composing f with βm,n, we get a

morphism

S −→ Ĉ −→ Ĉ

0 7−→ 0

1 7−→ 0

∞ 7−→ 0

λ1 7−→ 1 = βm,n(λ1)

λ2 7−→ βm,n(λ2)

...
...

λn 7−→ βm,n(λn)

Therefore, βm,n ◦ f : S → Ĉ has strictly less ramification points than f . Hence, in such

a case we are done by induction. So it suffices to show that such an f exists and this

is the next step.
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Suppose that S ' SF where F (X,Y ) = p0(X)Y n + p1(X)Y n−1 + . . . + pn(X) ∈
Q[X,Y ] and consider the morphism

πX : SF −→ Ĉ

(X,Y ) 7−→ X

Consider the set Ram(πX) = {µ1, µ2, . . . µs} of ramification points of πX . Let

us see that Ram(πX) ⊆ Q ∪ {∞}. By the last part of the theorem 3.4, each µi

either a zero of p0(x) or equals ∞ or equals the first coordinate of a common zero of

F,
∂F

∂Y
∈ Q[X,Y ]. In the first case, being a root of p0(x), we have µi ∈ Q hence we see

that Ram(πX) ⊆ Q ∪ {∞}
If Ram(πX) ⊆ Q ∪ {∞} then the first step guarantees the existence of a Bely̆ı

morphism. If not, we proceed the following inductive argument.

Let m1 ∈ Q[T ] be the minimal polynomial of Ram(πX) \ {∞} = {µ1, µ2, . . . µs} \
{∞}. By definition, m1 is the monic polynomial of smallest degree vanishing at

µ1, µ2, . . . µs or equivalently it is the product of the minimal polynomials of all al-

gebraic numbers µi omitting the repeating factors.

Let α1, α2, . . . αd be roots of the derivative m
′
1 of m1. Let p(T ) be their minimal

polynomial. Clearly, deg(p(T )) ≤ deg(m
′
1).

We have

SF −→ Ĉ −→ Ĉ

(X,Y ) 7−→ X 7−→ m
′
1(X)

µ1, . . . , µs 7−→ 0

∞ 7−→ ∞

7−→ {m′1(α1), . . .m
′
1(αd)})

Therefore Ram(m1 ◦ πX) = {0,∞ ∪m′1({α1, . . . αd}) So the composition m1 ◦ πX
sends each µi to zero but we have new ramification values {m′1(α1), . . .m

′
1(αd)}).

If R1 = Ram(m1 ◦ πx) ⊆ Q ∪ {∞} then we are done. If not, we let the minimal

polynomial of m
′
1(α1), . . .m

′
1(αd) be m2(T ).

Note that [Q(m1(αi)) : Q] ≤ [Q(αi) : Q]. In other words, the degree of the minimal

polynomial of m1(α) is less than or equal to the degree of the minimal polynomial
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of αi. Moreover, suppose that αi and αj have the same minimal polynomial. Then

σ(αi) = αj for some field embedding σ : Q(αi) → Q. Since σ is a monomorphism, it

extends to a field embedding σ : Q → Q so that σ(m(αi)) = m(αj) and hence m(αi)

and m(αj) have the same minimal polynomials.

Now we have

degm2(T ) ≤ degP (T ) ≤ degm
′
1(T ) < degm1(T )

Consider the new morphism m2 ◦m1 ◦ πX . As before the set of ramification values

is R2 = m2({roots of m
′
2})∪m2(R1). Again, if this set lies inside Q∪{∞} then we are

done. Otherwise after finitely many steps by the inequality above, this process ends.

Example 4.1. Consider the compact Riemann surface S obtained from y2 = x(x −
1)(x−λ) where λ = 1+

√
2 and consider the morphism πx : S → Ĉ. By the example 1.5

the ramification points of πx are 0, 1, λ and∞. The minimal polynomial of λ = 1 +
√

2

is m1(x) = x2 − 2x − 1 which can be easily verified. Proceeding as in the algorithm

above we compute the ramification points of m1. Indeed, we have m
′
1(x) = 2x − 2 so

that m1(1) = −2 is a ramification value. We have M ◦ T (−2) = 1/2 so that we must

take m = 1 and n = 2. Therefore the required Bely̆ı morphism is

β = β1,1 ◦M ◦ T ◦m1 ◦ πx

Which is computed as β(x, y) =
9(−x2 + 2x+ 1)

4(x2 − 2x− 2)2
.

A Bely̆ı morphism is called a pre-clean Bely̆ı morphism if all the ramification

orders over 0 are less than or equal to 2 and a clean Bely̆ı morphism if they are all

exactly equal to 2. A Bely̆ı pair (X , β) is called a clean Bely̆ı pair if β is clean. Any

Bely̆ı morphism gives rise to a clean one. Indeed, if α : X → Ĉ is a Bely̆ı morphism,

then β = 4α(1 − α) is a clean Bely̆ı morphism. All the white vertices of the dessin

corresponding to a clean Bely̆ı pair are of degree 2. With this observation, for instance

all platonic solids can be seen as dessins by adding a white point into the middle of

each edge.
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4.2 The absolute Galois group Gal(Q/Q)

Now we shall describe a very important action of the profinite group Gal(Q/Q) on

dessins. Before doing this we recall some related definitions from algebra.

The algebraic numbers are the elements a ∈ C which give rise to a finite extension

Q(a) over the field of rational numbers Q and they form a field Q, the algebraic closure

of Q in C. For each element a ∈ Q, a has a minimal polynomial over Q and a splitting

field Ka ⊂ Q. Note that the extension Ka over Q is finite and normal and hence Galois.

Conversely, by primitive element theorem every Galois extension K over Q arises in

this way. Therefore

Q =
⋃
K∈K

K

where K is the set of all Galois extension K over Q in C. For each K ∈ K the Galois

group Gal(K/Q) is a finite group of degree equal to |K : Q|. For K,L ∈ K with

L ⊆ K, the restriction map ResK,L : Gal(K/Q) → Gal(L/Q) is a homomorphism

which is indeed a monomorphism since every automorphism of L can be extended to

an automorphism of K.

The finite groups Gal(K/Q) , K ∈ K and the monomorphisms ResK,L form a

inverse system and we have

Gal(Q/Q) = lim←−−Gal(K/Q)

as Gal(Q/Q) being identified with its inverse limit. In other words, it is the subgroup

of the Cartesian product ∏
K∈K

Gal(K/Q)

consisting of all elements (gK) such that ResK,L(gK) = gL whenever L ⊆ K, and each

element g ∈ Gal(Q/Q) identified with the element (gK) where gK is the restriction

of g to K. The finite groups are topologized with the discrete topology and this

impose a topology on
∏
K∈KGal(K/Q) which is compact by Tychonoff’s theorem. The

subgroup Gal(Q/Q) inherits a topology called Krull topology, which is also compact

since Gal(Q/Q) is closed. Moreover infinite Galois theory insists that the subfields of

Q corresponds to the closed subgroups of Gal(Q/Q) and vice versa. For further details

see [7].
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4.3 Galois Action on Dessins

In Section 3 we have seen that compact Riemann surfaces correspond to complex

algebraic curves. It is also well-known that meromorphic functions on a compact

Riemann surface S corresponds to rational functions on the corresponding curve SF .

Moreover, in the case of Bely̆ı surfaces, the polynomial F (X,Y ) can be chosen so as to

have coefficients in a number field. We shall briefly describe the well-known action of

absgal on Bely̆ı pairs or equivalently dessins d’enfants.

Let σ ∈ Gal(Q/Q). Given a polynomial f(X,Y ) =
∑

i,j ai,jX
iY j ∈ Q[X,Y ]. Eval-

uating σ(ai,j) for each coefficient we get a new polynomial fσ(X,Y ) =
∑

i,j σ(ai,j)X
iY j .

The similar process can be applied to the corresponding rational function. This action

on the coefficients of polynomials and the coefficients of the rational functions induces

an action of Gal(Q/Q) on Bely̆ı pairs equivalently on dessins d’enfants:

(X ,G(β)) (Xσ,G(βσ))

(X , β) (Xσ, βσ)

Under this action of Gal(Q/Q) , the number of edges, the number of white vertices

and of black vertices, the genus and the monodromy group remain invariant.

For if part of the theorem, the following criterion can be found in [3]. An irreducible

variety X ⊂ Pn(C) (resp. a morphism f : X → Y ) can be defined over a number field

if and only if Gal(C)-orbit of X (resp. Gal(C)-orbit of f) contains only finitely many

isomorphism classes of complex projective varieties (resp. of morphisms).
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5 Action of PGL2(Z) on Dessins d’Enfants

We have seen in section 2 that the monodromy representation of a Bely̆ı pair determines

the whole information about the corresponding dessin. In this section we shall investi-

gate the following action of the automorphism group of the free group F2 = 〈X,Y 〉 on

dessins and its invariants.

6.1. Let τ ∈ Aut(F2) and D be dessin with n edges corresponding to its monodromy

representation Φ : F2 → Sn. Note the map Φ ◦ τ−1 : F2 → Sn is also a monodromy

map so that we define τ ·Φ := Φ ◦ τ−1. In this way we have the following commutative

diagram:

F2

τ

��

Φ // Sn

F2

Φ◦τ−1

>>

Indeed this gives an action of Aut(F2) on monodromy maps hence on dessins. We

have

(i) Id · Φ = Φ

(ii) If τ1 and τ2 are in Aut(F2), then (τ1τ2) · Φ = Φ ◦ (τ1 ◦ τ2)−1 = Φ ◦ τ−1
2 ◦ τ−1

1 and

τ1 · (τ2 · Φ) = (Φ ◦ τ−1
2 ) ◦ τ−1

1 so that (τ1τ2) · Φ = τ1 · (τ2 · Φ)

Notation. As we mention above this gives equivalently an action of Aut(F2) on dessins.

We denote the dessin corresponding to the monodromy map Φ ◦ τ−1 by τD. 1

Remark. If α is an inner automorphism of the free group F2 then α acting on dessin

D gives rise to an equivalent dessin. In other words, an inner automorphism fixes

equivalence classes. Therefore we can omit inner automorphisms and consider only

outer automorphisms of the free group F2 up to an inner automorphism.

5.1 Calculation of PGL2(Z)-Orbits

6.2.It is well-known that

Out(F2) ' PGL2(Z) ' 〈T,U |U2 = (UTUT−2)2 = (UTUT−1)3 = 1〉
1In this way we have τ1(τ2D) =τ1τ2 D
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where the actions of the generators are defined by

T (X,Y ) = (XY, Y ), U(X,Y ) = (Y,X)

By τ -orbit of a dessin, we mean the orbit of the subgroup generated by τ . Since

any element in PGL2(Z) is a product of T ’s and U ’s, we shall describe the action of

generators in the context of dessins and focus only on orbits of these generators. If D

is dessin given with the permutational representation (σ0, σ1), which is an ordered pair

of permutations transitively acting on edges , then the generator U produce a dessin

with permutational representation (σ1, σ0). So U simply interchanges white points with

black points. On the other hsnd, T produce a dessin with permutational representation

(σ0σ
−1
1 , σ1). However, it is better to depict the action of T−1 instead of T . Since T−1

produce a dessin with permutational representation (σ0σ1, σ1), it fixes the darts with

black points but turn each face into a white point of new dessin. Because the given

dessin has permutation σ0 around white points and permutation (σ0σ1)−1 around the

faces, the new dessin produced by the action of T−1 has permutation σ0σ1 around

white points.

6.3. It is possible to compute genus of a given dessin (i.e. genus of the surface

that the dessin is embedded) in terms of permutations σ0, σ1 and (σ0σ1)−1 determined

by white vertices , black vertices and faces respectively. Indeed, if g is the genus the

underlying surface then

2− 2g =
(
# of cycles of σ◦ + # of cycles of σ1

)
−N + (# of cycles of (σ◦σ1)−1)

U preserves genus. This is clear since number of vertices and edges remains un-

changed. But T does not.

action of T white vertices black vertices faces

D σ0 σ1 (σ0σ1)−1

TD σ0σ
−1
1 σ1 σ−1

0

Note that σ0 is conjugate to σ−1
0 . However σ0σ

−1
1 and σ−1

1 σ−1
0 need not to be

conjugate. In the affirmative case, we know that both has the same cycle structure
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which implies two dessins have equal genera. Nevertheless in some cases it should.

Examining that will enable us to find out exactly that how PGL2(Z) changes genus.

6.4. Recall that for a monodromy representation (σ0, σ1), the monodromy group

is defined to be the permutational group generated by σ0 and σ1. Note that the group

generated by σ0 and σ1 equals to the group 〈σ0σ
−1
1 , σ1〉, hence both T and U respects

the monodromy group. So proceeding the action of a product consisting of T and U ,

the monodromy group of the resulting pair remains fixed. We conclude. We conclude

Corollary 5.1. The monodromy group is invariant under this action. In particular,

imprimitivity is preserved under this action.

Corollary 5.2. Galois dessins are sent to Galois dessins under this action. In other

words, it sends normal subgroups to normal subgroups, preserving the quotient groups.

PGL2(Z) preserves monodromy group and the number of edges because of transitiv-

ity of monodromy pairs. So there cannot exist two dessins with the same monodromy

group in different orbits. Moreover, this implies that the action of on dessins is not

transitive. And as the examples shows this action is not transitive even fixing the

number of edges.

6.5.Chebychev Dessins. Now we shall see how PGL2(Z) acts on certain classes of

dessins such as stars and Chebychev dessins (i.e. linear trees). With some calculation

of orbits, one can see that the genus of PGL2(Z)-orbit of Chebychev dessins is fixed

and equal to 0. We begin with an example.

Example 5.1. Consider the Chebychev dessin corresponding to the Chebychev poly-

nomial T4 and T8.

Figure 10: T acting on Chebychev dessin corresponding to T4
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Figure 11: T acting on Chebychev dessin corresponding to T8

6.5.n-Stars. We shall describe PGL2(Z)-action on another class of dessin d’enfants

namely n-stars and we will see that the group PGL2(Z) does not preserve genus of n-

stars.

Example 5.2. Consider the 3-star given by (Id, (123)). T acts on this constellation

as:

(Id, (123))→ ((132), (123))→ ((123), (123))→ (Id, (123))

Figure 12: T acting on a 3-star

Here we observe that T 3
D = D. Since the dessin T 2

D is on torus, we also see that

this action does not preserve genera of dessins.

Proposition 5.3. After some calculation, we get the following propositions.

1. If D is n-star then the T -orbit of D contains a dessin of genus (n − 1)/2, the

dessin being Tn−1
D.

2. If p is a prime then the T -orbit of p-star contains only dessins of genus 0, 1 and

(p− 1)/2.
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5.2 Arithmetic of PGL2(Z)-Action

6.5 Having described PGL2(Z)-action on dessins combinatorially, we now investigate

the arithmetic point of view of this action. In other words, the next problem is given

a dessin d’enfant (X ,D) how can we find the Bely̆ı pair (τX ,τ β) if (X , β) is a Bely̆ı

pair corresponding the given dessin.

As in the combinatorial case, it easy to describe the action of the generator U on

Bely̆ı pairs. If (X , β) corresponds to the dessin D then (X , 1 − β) corresponds to the

dessin UD

Figure 13: U acting on a 3-star

However there seems to be no straight-forward calculation of action of the generator

T on Bely̆ı pairs.

Another way of defining this action is as follows. A dessin is equivalently described

by a conjugacy class of a subgroup of F2 (where the elements of the conjugacy class is

parametrized by the edges of the dessin). An outer automorphism is an automorphism

modulo an inner automorphism, so it acts on the set of conjugacy classes of subgroups

of F2, i.e. on dessins.

Many questions arises from this action of PGL2(Z) on dessins d’enfants: Given

two dessins how can one decide whether they are in the same orbit? Is it possible to

describe the action on the Bely̆ı maps, explicitly?
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