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ABSTRACT

Theorem on existence and uniqueness of global solutions to initial-boundary value prob-
lems for the phase field equations is proved.
Results on the stabilization of solutions and the existence of a global attractor of a

continuous semigroup generated by the problem are also established.
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OZETCE

Faz alan denklemler i¢in baglangic-sinir deger problemlerin kiiresel ¢oziimlerin varlig ve
tekligi teoremi kanitlanmigtir.
Cozumlerin istikrari ve problemin olusturdugu stirekli yar1 grubunun kiiresel ¢eker varlig:

hakkinda sonuclar da elde edilmistir.
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Chapter 1: Preliminaries 1

Chapter 1

PRELIMINARIES

1.1 Introduction

In [1], G.Caginalp has considered, as a model describing the phase transition with a sep-
aration surface of finite thickness, the following system of nonlinear parabolic differential

equations known as the phase field equations :
TPt :§2Agp—f(g0)+2u in QxRT, (1.1.1)

1
ut+§g0t:/<cAu in QxR (1.1.2)

where € is a bounded domain in R¢ with a sufficiently smooth boundary 9€2; ¢ is the phase
function; u is the reduced temperature; f(z) = %(z?’ — z) is the nonlinear term; 7,¢, ¢, and
K are positive constants which characterize the relaxation time, the length scale, the latent
heat, and the thermal diffusivity, respectively. In [1], under the assumption &2/7 < &, the
global existence of classical solutions of the initial-boundary value problem for the system

(1.1.1)-(1.1.2)) has been proven with non-homogeneous Dirichlet boundary conditions of the

form :

Plog = vo(x), ulyg =uas(x). (1.1.3)

The investigation of the global behaviour of solutions of the initial-boundary value prob-
lems for the system — has been carried out by C. M. Elliott and Song-Mu Zheng
in [3], where they have proved the global existence of smooth solutions within the class
C(R*; H2(Q) x H?(Q)), where Q C R? and d < 3, without the assumption £2/7 < &, for the
boundary conditions of the form as well as for the following boundary conditions :
ou

=0 or @lgg=wo(x), =0.
o0 “ on|yq

B ou

¢ Ou
oo On
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In [3], C. M. Elliott and Song-Mu Zheng have also studied the asymptotic behaviour of
solutions of the system — as t — oo. They have investigated the corresponding
stationary problems and have proved that as ¢ — oo, each solution of the system -
tends in the norm of H'(Q2) x H'(Q) to the corresponding stationary solution.

The investigation of the existence of a global attractor for the system — has
been carried by V. Kalantarov in [5], where he has proved the unique global solvability of the
initial-boundary value problem for the system — within the class C (R+; H'(Q)x
H 1(Q)), where Q € R? and d < 3, for the boundary conditions of the form and
showed that it generates a continuous semigroup for which there exists a global attractor
which is connected and has finite fractal dimension.

In Chapter[I} we will provide a short background from functional analysis and the theory
of partial differential equations so that one can follow the discussions in the subsequent
chapters.

In Chapter [2] we will study the global existence and uniqueness of solutions for the

following system of partial differential equations :
TPy :§2Agp—g(m,cp)+2v in QxRT, (1.1.4)

1
vy = KAv — %Agp in QxRT, (1.1.5)

where g is a nonlinear function satisfying certain properties. We will consider the system of
equations ([1.1.4)-(1.1.5)) together with the following homogeneous Dirichlet boundary and

initial conditions :

=0, teRT,
?lag (1.1.6)
U|8Q - 0, t € R+,

(p(.’L‘,O) = 900(37)’ r €,
v(z,0) =vo(x), z€N.

(1.1.7)

In Chapter [3] we will study the internal stabilization of the following system of phase field
equations :

Tor = E2Ap — flo) +2u—kxpe in QxRT, (1.1.8)

14
ut—l—ggot:/@Au in QxRY, (1.1.9)
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where f is a nonlinear function, k is a nonnegative real number and xz is a characteristic

function of a subdomain w C €. Notice that the system of phase field equations ([1.1.8])-

1) becomes equivalent to the system 1)1) with v = u + %(p and g(x,s) =

f(s) —ls + kxwz(z)s. We will give a sufficient condition under which such a system can be
exponentially stabilized by only one feedback controller acting on a subdomain in the first

equation. In Chapter [4 we will study the existence of a global attractor for the system of

equations (|1.1.8)-(1.1.9) with k£ = 0.
1.2 Function Spaces
Here we will review the functions spaces which will be used in our discussions.

1. Lebesgue spaces (1 < p < o0)
LP(Q) is the Banach space (i.e. the complete linear normed space) consisting of all

measurable (in the sense of Lebesgue) functions on 2 having the following finite norm :

1/p
ull oy = ( / |u<x>|pdx) (1<p< o),

[ul| oo (@) = esssuplu(z)|  (p = o0).
e

The norm in L?(£2) will be abbreviated to || - || and the inner product to ( , ).

2. The space of test functions
The space C2°(£2) is the following set of so called test functions:

C () ={¢ € C(Q) | supp(¢) is a compact set in Q}.
Note that the space of test functions C2°(2) is dense in LP(Q2), 1 < p < oo.

3. Sobolev Spaces
For two functions u,v € L?(f2), we say that v is the i*" weak partial derivative of u if

the following identity holds :

/ugpxi dx = —/ vpdz, forall ¢e CF(Q).
Q Q
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The space H'(§) consists of functions from L?(£2) whose all weak partial derivatives
also belong to L?(£2). The space H'(f2) is a Hilbert space when equipped with the

following inner product :
(u, V) () = / w + Vu-Vode for u,ve HY(Q).
Q

The Hilbert space H:(Q) is defined to be the closure of C2°(9) in H1(£2). The space

H{(Q) has its own inner product :

(u,U)H&(Q):/QVu-Vvd:r for w,v € H(Q).

1.3 Some Useful Inequalities

Cauchy-Schwarz Inequality. Let H be an inner product space. Then for any u,v € H,
the following inequality holds :

|(w, 0)| < lull[]o]]

Holder’s Inequality. Suppose that p € [1,00] and 1/p +1/q = 1. If uw € LP(Q) and

v € LUQ), then wv € LN(Q) and |luv]| 1) < [[ullo)llvllza)-

Cauchy’s Inequality with e. For any € > 0, the following inequality holds :
2, 1.9
ab < ea —i—4—b , forany a,beR.
€
Young’s Inequality with e. For any e > 0 and p > 1, the following inequality holds :
ab < eal + C(e,p)b?, for any a,b € RT,

where q is the conjugate of p and C(e, p) = (ep)~9/Pq~1.

Inequality 1.3.1. For any € > 0 and p > 2, the following inequality holds :
ab < ea® + e’ + C(e,p), for any a,beRT.

Gronwall’s Inequality. Suppose that u is an absolutely continuous function which satisfies
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the following differential inequality :

d

%u(t) < g(t)u(t) + h(t), for almost all t € [0,T].

where g,h : [0,T] — R are integrable functions. Then

u(t) < u(0) exp (/Otg(T) d7> + /Ot exp (/Stg(r) d7'> h(s)ds, forall tel0,T]

Remark 1.3.1. Absolute continuity is a strengthening of uniform continuity that provides
a necessary and sufficient condition for the fundamental theorem of calculus to hold. A con-
tinuous function is absolutely continuous if and only if its weak (or distributional) derivative

1s integrable.

Lemma 1.3.2. Let h : R — R be a continuous function and H(z) := [; h(s)ds. Suppose

also that h satisfies the inequality
— Bo + P1)|z|P < zh(z) < Bo + B2lzP, forall z€R, (1.3.1)

where p > 2 and Py, B1, B2 > 0. Then there exist some positive constants o, v1, 72 and 73
such that
=50 +m|zIP < H(2) <y +7202|P, forall z€R (1.3.2)

and

|h(2)] < 3(1+|2P7Y), forall z€eR. (1.3.3)

Remark 1.3.3. From Lemma[I1.3.9 it is obvious that H is bounded from below :
H(z) > —vy, forall z€eR.
Furthermore, if By < pf1, then the function zh(z) — H(z) is also bounded from below :
zh(z) — H(z) > —v0, forall z€R.

Poincaré Inequality. IfQ C R? is a bounded domain, then there is a constant C depending
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only on € such that

/ Ju(x)|? dz < C’/ |Vu(z)|>dx, for all u € HY(Q). (1.3.4)
Q Q
1.4 Auxiliary Theorems

Theorem 1.4.1. Let I be a closed interval in R. Suppose that g : @ x I — R such that
g(-,2) : Q — R is integrable, for each z € I. Let G(z) := [ g(x, z) dz.

(i) Suppose that there is h € L'(Q) such that |g(z,2)| < h(x), for all (z,2) € Q x I. If
lim,_,, g(z,2) = g(x,20), for every x € Q, then lim,_,,, G(z) = G(z9) i.e. we can
pass the limit inside integral. In particular, if g(x,-) is continuous, for each x € ),

then G is continuous.

(ii) Suppose that Og/0z exists and there is h € L*(Q) such that |%(1‘, 2)| < h(x), for all
(x,2) € Qx I. Then G' exists and

G'(2) = A gZ(az,z) dx

i.e. we can differentiate under the integral sign.

Theorem 1.4.2. Let X be a Banach space. Then the following are equivalent :

1. The space X 1is reflexive ;
2. The closed unit ball of X is compact in the weak topology (Banach - Alaoglu Theorem) ;

3. Fvery bounded sequence in X has a weakly convergent subsequence.

Lebesgue’s Dominated Convergence Theorem. Let 1 < p < oo and g,, be a sequence
in LP(Q2) such that g, converges to some function g almost everywhere on Q. Suppose
that there is h € LP(Q) such that |gm| < h almost everywhere on §, for all m > 1. Then

g € LP(Q) and ||gm — gl[Lr(0) — 0 as m — oo.

Theorem 1.4.3. Suppose that 1 < p < oo and g, — g in LP(Q). Then there ezists a

subsequence of g which converges pointwise to g almost everywhere on ).
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Weak Dominated Convergence Theorem. Let  be a bounded domain in R? and
p € [1,00). Suppose that g € LP(Q2) and gy, is a bounded sequence in LP(S) such that
gm(x) = g(x), for almost all x € Q. Then g, — g in LP(2).

Theorem 1.4.4. Let Q be a bounded domain in R If 1 < p < q < oo, then L1(Q) is

continuously embedded in LP().

Sobolev Embedding Theorem. Let ) be a bounded domain in R? of class C* and k € Z7.
Then H*(Q) is continuously embedded in LP(SY), where

d
.

2d d

Furthermore, H*(Q) is continuously embedded in C(Q) if k > d/2.

Rellich’s Compactness Theorem. Let 2 be a bounded domain in RY. Then HE(Q) is
compactly embedded in L*(9).

Cauchy-Picard Theorem. Suppose that G : R — R? satisfies

1G(y) = G@)llra < L(B)lly = llra, (1.4.1)

for all y, 7 in any bounded set B C R%. Then there exists T = T(yy) such that the initial

value problem

Y _ Gl 0 = (14.2)

has a unique solution defined on the interval [0,T].

Theorem 1.4.5. A solution y(t) of the initial value problem has a finite maximal

interval of existence [0,S*) if and only if ||y(t)||ge — o0 as t — S*.

Proof. If ||ly(t)||ga — oo as t — S*, then there can be no continuous extension of y(t)
to an interval containing S*. Conversely, suppose that y(¢) has a finite maximal interval
of existence [0,S5%). If y(t) is bounded on [0,5*), then G(y(t)) is also bounded (being
continuous) and the following limit exists :

.
lmy®=m+A Gly(s)) ds.

t—S*
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Then by the Theorem ([1.4.5)), we can extend the interval of existence to [0, S* + €], for some
e > 0, contradicting the maximality of [0,.S*).
0

Ehrling’s Lemma. Let H, X and Y be Banach spaces such that X is compactly embedded
m H and H is continuously embedded in Y. Then for each € > 0, there is a constant C.
such that

lullg < €llullx + Cellully, forall ue X.

Proof. Suppose for a contradiction that there is ¢y > 0 such that for each m > 1, there is
Uy € X with

[umll o > €ollumllx + mllumlly,

Consider the normalized sequence vy, := u,, /||um || x which satisfies the following inequality:
lom|lz > €0 + m||vm|ly, forall m > 1. (1.4.3)

Since the sequence v, is bounded in X, by compact embedding, there is a subsequence

Up,, such that v,, — v in H. By continuous embedding, we also have that v,, — v in Y.

The only way the right hand side of (|1.4.3)) remains bounded is that lim,,—« ||om|ly = 0.
Therefore, v must be zero. Then by taking limit in (1.4.3) as ny — oo, we obtain a

contradiction. O

Lemma 1.4.6. Let X be a Banach space and u € L'(0,T; X). Then u is weakly differen-
tiable with integrable derivative uy = v € L*(0,T; X) if and only if

¢
u(t) = Co —l—/ vs(s)ds,
0
for almost all t € (0,T). In that case, u is differentiable pointwise almost everywhere and

its pointwise derivative coincides with its weak derivative.

Theorem 1.4.7. Let X be a Banach space and p € [1,00]. If u € W'P(0,T; X), then
ue C([0,T]; X) and u(t) = u(s) + fst ur(7)dr, for every 0 > s >t > T. Furthermore, we
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have the estimate
[ull oo (0.7:0) < Cllullwinor,x),  for all we WHP(0,T; X).

Lemma 1.4.8. Let X be a Banach space with dual X*. If u,v € L'(0,T;X), then u is

weakly differentiable with u; = v if and only if for every w € X*, we have

d

£<w,u(t)) = (w,v(t)) as a real-valued weak derivative in (0,T).
Lebesgue’s Dominated Convergence Theorem (For Bochner Integrable Functions).
Let X be a Banach space and p € [1,00). Let upy, be a sequence in LP(0,T;X) such that
um (t) converges to u(t) for almost all t € (0,T). Suppose that there is h € LP(0,T) such
that ||um (t)||x < h(t) for almost allt € (0,T) and for allm > 1. Then u € LP(0,T; X) and

1wm — ullro,1,x) — 0 as m — oco.

Compactness Theorem. Let H, X and Y be reflerive Banach spaces such that X is com-
pactly embedded in H and H is continuously embedded in 'Y . Suppose that u,, is a sequence
that is uniformly bounded in L?(0,T; X) and wm; is uniformly bounded in LP(0,T;Y), where

p € (1,00). Then there is a subsequence of up, that converges in L*(0,T; H).

Proof. Since X and Y are reflexive, L?(0,T; X) and LP(0,T;Y) are also reflexive spaces.
By the Banach-Alaoglu Theorem there is a subsequence u,, (with the same notation) such
that

Up —u in L*0,T;X) and wp — v in LP(0,T;Y).

Let w € Y* and ¢ € C2°(0,T). Since Uy, um € LY(0,T;Y), by the Lemma (1.4.8)), we can
write

T T
A<wwﬂ%¢@ﬁ——é<mwﬂmdﬂ% (1.4.4)

for all m > 1. Since w¢’ € L2(0,T; X*) and L(0,T;Y™*), we can pass to the limit in (1.4.4)
to obtain

T T
/<mmmwmﬁ=—/<mwmww%
0 0

Since w € Y* and ¢ € C2°(0,T) are arbitrary, from the Lemma (1.4.8)), it follows that u is

weakly differentiable and u; = v. Let vy, := uy, — u. Since vy, vy € L0, T;Y) ie. vy, €
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WH(0,T;Y), from the Theorem (1.4.7) it follows that v, € C([0,T];Y). Furthermore,

lvmllze 0137y < Cllvmllwraoryy = C (lomll Loy + 1omell L2 0v)

for all m > 1. Since X is continuously embedded in Y, we have |[vp|110,7:v) < C1llvmll 21 0,7:x)5

for all m > 1. Then

lvmllzee 0137y < C (CillvmllLror:x) + lvmell L2 0,5v) (1.4.5)

If we apply the Holder’s Inequality to the right hand side terms of (|1.4.5), then we deduce
that

vmll oo 0,77y < C <01T1/2HUmHL2(o,T;X) + Tl/q””WHLP(O,T;Y)) <M.

for all m > 1. Therefore, ||v,,(t)]]ly < M for all ¢ € [0,7] and all m > 1. Fix t € (0,7].

Then for any 0 < o < t, we can write

VU (t) = v (o) +/ Uy (1) dr . (1.4.6)

If we integrate the equality (|1.4.6) with respect to o from t — s to ¢, then we obtain

() = 1/t vm(0) da—i—i/tts /atvmr(r) drdo . (1.4.7)

S Ji—s

Let’s denote the first and the second integrals on the right hand side of the equality (1.4.7))
by a,, and b,,, respectively. Then

by — i/tis/:vwn(r)dr:i/t;vm(t)—vm(a)da: <svm(t)_/t;vm(a)da> _

_1/tt (0 —t+ s)vme(0)do.

S —S

®» |~

By the Holder’s Inequality, we deduce that

t t 1/p
Iomlly < / uvmw)nydasé/q(/t |rvma<a>||§’/da> < Y9 opill ooz -

—S

Let € > 0 be given. Since vy, is uniformly bounded in LP(0,7;Y), we can choose s > 0
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small enough so that

lbmlly < =, forall m>1. (1.4.8)

DN

For this value of s, it follows that

t
/ Um(o)doc =0 in X.
t

—S

Indeed, if w € X* and y is the characteristic function of [t — s,t], then yw € L%(0,T; X*)

<w/; om(0) da> _ /t;<w,vm(a)>da _ /OT<Xw,Um(J)> do — 0

as m — 0o since v, — 0 in L?(0,T; X). Therefore, a,, — 0 in X. Since X is compactly

so that

embedded in Y, there is a subsequence a,, (with same notation) such that a,, — 0 in Y.

Then for large enough m’s, we have
€
lamlly <3 (1.4.9)

Then from (|1.4.7)-(1.4.9) we deduce that ||v.,,(¢)||y < €, for large enough m’s so that v, (t) —
0in Y, for all ¢t € (0,7]. By Lebegue’s Dominated Convergence Theorem, it follows that

U — 0 in  L*(0,T;Y).
By Ehrling’s Lemma, for each € > 0, there is C¢ such that
lvm % < €llvml% + Cellumll3-,  for each m. (1.4.10)

Since vy, is uniformly bounded in L?(0,T; X), by integrating the inequality (1.4.10) from 0
to T', we deduce that

2 2 2 2
HUmHL2(o,T;H) < EHUmHL2(O,T;X) + CeHUmHL‘Z(O,T;Y) <eM + CEHUmHLQ(O,T;Y)v (1.4.11)
for each m. If we take lim sup from both sides of the last inequality (1.4.11)), then we obtain

lim sup H/UmH%Q((LT;H) <eM, forany e>0.
m
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If we let ¢ — 0 in the last inequality, then we deduce that lim,, oo ||vm||%2(0 TiH) = 0.
Therefore,

Uy —u in L20,T;H).

1.5 Spectral Theory of Unbounded Symmetric Operators

Definition 1.5.1. Let X and Y be Banach spaces. A (nonlinear) operator A : X — Y is

called compact if the image under A of any bounded set in X is precompact in'Y .
Lemma 1.5.2. Any compact operator between two Banach spaces is bounded.

Definition 1.5.3. A bounded linear operator A: H — H is called symmetric if
(u, Av)g = (Au,v)g, forall u,ve€ H.
Lemma 1.5.4. Let A: H — H be a symmetric operator. Then

IAl = Sup |(Au, u)] . (1.5.1)
ul|=1

Definition 1.5.5. We say that a complex number X\ is an eigenvalue of a linear operator

A if there is a nonzero vector u (the eigenvector) satisfying Au = Au.

Lemma 1.5.6. If A is a compact symmetric operator, then at least one of £|| Al is an

etgenvalue of A.

Hilbert-Schmidt Theorem. Let A be a compact symmetric operator acting on an infinite-
dimensional Hilbert space H. Then all eigenvalues A\, of A are real, |\;| is monotonically
decreasing and limy_ oo Ax = 0. Furthermore, the eigenvectors wy can be chosen so that they

form an orthonormal basis for the range of A and the action of A on any u € H is given by

Au = Z A (u, wi)wy, -
k=1

Proof. By Lemma ((1.5.6]), there exits w; such that ||wi]| = 1 and Aw; = Ajwi, where
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A1 := t£||A||. Let H; be the subspace of H perpendicular to w;. If u L w;, then
(Au,wr) = (u, Awy) = A1 (u,w1) = 0.

So, A maps Hi into itself. If we consider A; := A|Hl : Hi — Hi, then we have another
compact symmetric operator such that ||A;|| < ||A]|. Then by applying the same argument
on A, we obtain an eigenvalue A\ := £||A1|| and a corresponding unit eigenvector we which
is perpendicular to wy. Let Ho be the subspace of Hy perpendicular to w; and wy. Then
A1 maps Hj into itself. Similarly, if we consider Ay := Aj| m, + H2 — Ha, then again we
have another compact symmetric operator such that ||Az|| < ||A1]]. Then by applying the
same argument on Ag, we obtain an eigenvalue A3 := =4||As|| and a corresponding unit
eigenvector ws which is perpendicular to w; and ws. If we continue in this way, then we

obtain a sequence of orthonormal eigenvectors wy such that
Awk:)\kwk and |)\k+1| < |>\k‘7 for k= 1,2,3,...

Suppose that the monotone sequence Ap does not converge to zero. Then A; must be

bounded below by some positive constant . Since

—wg|| <1,

Yw, = A <)’\kak> and ’ ;k:

the orthogonal sequence ywy, is a subset of A(B1(0)) and it has no convergent subsequences
which contradicts to the compactness of A. So, limg_.oo A = 0. If u is orthogonal to all
eigenvectors wy, then

|Aul| < |Mlllull, forall k>1.

So, Au = 0 i.e. u must belong to the kernel of A. Therefore, there are no more nonzero
eigenvalues of A. In particular, there are no complex eigenvalues of A. Finally, if we let W
be the linear span of all eigenvectors wy, equipped with the inner product (-,-), then W is
a closed subspace of H with an orthonormal basis consisting of the eigenvectors wy. Then

H can be represented as a direct sum H = W @ kerA so that any element v € H can be
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written as

o0
u = Z(u, wp)wg + v,
k=1

where v € kerA. If we let Pyu :=)"}_, (u, wy)ws, then
n
[Au =Y " A, we)wel| = |A(u — v — Pyw)|| < [|A][[Ju — v — Poul| = 0
k=1

as n — oo. Therefore,

Au = Z A (U, W )wy,
k=1

and the orthonormal sequence wy form a basis for the range of A.

O]

Corollary 1.5.7. If A is invertible and satisfies the conditions of the Hilbert-Schmidt The-

orem, then there is a basis of H consisting entirely of eigenvectors of A.

Definition 1.5.8. An unbounded operator A : D(A) C H — H is called symmetric if
(u, Av) = (Au,v), for all wu,v € D(A).

Lemma 1.5.9. If A is an unbounded symmetric operator whose range is whole of H and

whose inverse is well-defined, then A~ is bounded and symmetric.

Proof. If A=! is not bounded, then there is a sequence of unit vectors Avy € D(A) such

that [|vg|| — oo as k — oo. Let T}, be a bounded linear operator defined by
v (v, vE) .
If v € H =ranA, then there is u € D(A) with Au = v so that
|(vk, v)| = [(vg, Au)| = |(Avg, uw)| < |lu||, forall k>1.

Therefore, supgsq ||Txv|| < [|ul|. By the Banach-Steinhaus Theorem, the sequence of op-
erators Ty must be uniformly bounded on H i.e. supgsy [|[Tk|| < oo. Since ||Ti|| < [lvg|

and ||Tyvi|| = |Jvk||?, we have || Tk|| = |lvx||. Then the sequence v; must be bounded which
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is a contradiction. So, A™! is bounded. Let v,o € H with v = Au and ¥ = Au, where

u,u € D(A). Then
(A, 0) = (A" Au, Au) = (u, Ad) = (Au,a) = (v, A7),
So, A~! is symmetric. Now, any eigenvector of A is an eigenvector of A~! and vice versa :
Awy, = Mywy,  if and only if A lwy, = )\lzlwk.

O]

Corollary 1.5.10. Let A be a symmetric operator acting on an infinite-dimensional Hilbert
space H whose range is all of H. Suppose that H has compact inverse. Then A has infinite
set of eigenvalues A such that |\g| is monotonically increasing and limg_,o [Ag| = oo.
Furthermore, the eigenvectors wy can be chosen so that they form an orthonormal basis

for H. In terms of this basis, the operator A can be represented as

Au = Z A (u, wi)wy,  for all uw e D(A).
k=1

Definition 1.5.11. An operator A : D(A) C H — H is called positive if there p > 0 such

that the following inequality is satisfied :
(Au,u) > pllul|®>, for all u € D(A).

Remark 1.5.12. For a positive operator A satisfying the conditions of the Corollary[1.5.10

we can define fractional powers of A as follows :

Afu =" X (u,wp)wg,  u € D(A?),
k=1

where the domain of A® is given by
D(A®) ={u: [|[Au]| < o0} = {u tu = Z(u,wk)wk s.t. Z |(u, wy) P A28 < oo} .
k=1 k=1

Then D(A®) becomes a Hilbert space when equipped with the following inner product and the
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corresponding norm :
(u,v)pasy == (A%u, A%v) and |[Jullpas) = [|A%u]| .

1.6 Eigenfunctions of The Laplace Operator

Let T : H)(Q) — H'(Q) be a linear operator defined by (T'u,v) := [, VuVvdz, v €
HZ(9Q), where (-, -) denotes the duality pairing between H~1(Q) and H}(€2). Then it follows

that the operator T is a bijective isometry between the spaces H}(2) and H1(€) :

Theorem 1.6.1. For any h € H1(Q), there is a unique u € H(Q) such that
Tu=hin BN and Al = Il -
Remark 1.6.2. If we restrict the domain of the operator T on the following set :
D(A) :={uec H}(Q): Tu € L*(Q)},
then we get an unbounded linear operator A := T'|p ) on L2() with full range :
A:D(A) C L*(Q) — L*(Q).

Lemma 1.6.3. The operator A is symmetric and has compact inverse.

Proof. Every element h of L?(2) give rise to a bounded linear operator on H3(Q) by the

following definition :
(h,v) == /thdx, for all v e HY(RQ).
Therefore, for any u,v € H(Q), we have
(Au,v) = /QAuv dr = (Au,v) = /QVUVU dx = (Av,u) = /QAvu dzx = (u, Av) .

So, A is symmetric. Let u € kerA. By the Poincaré Inequality, we have

1
/qux§/|Vu\2da::<Au,u>:O,
C Q Q
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where C' is the Poincaré constant. Then u = 0. Therefore, the kernel of A is trivial and

A must be invertible. Note that L?(f2) is continuously embedded in H~(Q) :
ull 1) < Cllull, forall ue L*(Q).

If u € L%(2), then there exists a unique v € H} () such that Av = u (or v = A~!u) and

lull 10y = HUHHg(Qy Therefore,
||A*1u||Hé(Q) < Clul|, forall ue L*(Q)
ie. A7l is a bounded map from L?*(Q) into H}(f2). Since bounded sets in H}(S2) are

precompact in L%(Q), the inverse map A~!: L*(Q) — L?(2) is compact.

Remark 1.6.4. If u € C?*(Q) N HE(Q), then from the Green’s identities it follows that

/Auvdw-/VuVudw-/—Auvdw, for all v e H(Q).
Q Q Q

Therefore, Au = —Au everywhere within Q.

Theorem 1.6.5. Suppose that h € H*(Q) and u is the unique element of HL(SY) satisfying
(h,v) = / VuVodr for all v e Hy(S).
Q

Then u € HE2(Q): for each K CC Q, we have the estimate

loc
ull g2y < Crllhll e -

Furthermore, if  is of class C**2, then u € H*T2(Q) with the estimate

[ull ez () < CllAI gr) -

Definition 1.6.6. We say that a real number X is an eigenvalue of the Laplace operator
—A with Dirichlet boundary condition if there is a nonzero function u € C%(Q) (the eigen-

function) satisfying —Au = Au and u|yn = 0.
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Theorem 1.6.7. Let Q be a bounded domain in R with sufficiently smooth boundary. There
is an orthonormal basis of L2()) consisting of the eigenfunctions of the Laplace operator —A

with Dirichlet boundary condition. These eigenfunctions are elements of C*(Q) N H(Q).

Proof. By the Corollary|[1.5.10]and the Lemma there is an orthonormal basis of L2(Q)
which consists entirely of eigenfunctions wy € H&(Q) of the operator A. The smoothness
of these eigenfunctions on the interior of €2 follows by applying the Theorem [1.6.5| over and

over to the right hand side of the equality
Awp = Apwg  in H_l(Q) ,

where \;’s are the eigenvalues of A. Then, u € C°*°(Q) N H () and —Awy, = A\jwy, by the
Remark [[.6.4

Theorem 1.6.8 (Orthogonal basis for H}(Q)). For any u € H} (), we have

u:Z(u,wk)wk in H(Q).
k=1

Proof. Observe that the functions \;”—/\k—k form an orthonormal set in H{ (). Then for any

u € H} (), the identities
(u,wk)Hé(Q) = / Vu, Vwg de = Ag(u,wg) =0 k=1,2,3,...
Q

force u = 0, since the eigenfunctions wy form an orthonormal basis for L?(£2). Therefore,

the functions \/“’—/\Lk form an orthonormal basis for H(Q). Then any u € H}(2) can be

written as

- Wi . 1
u = Z /Bn m HO (Q) y
- Ve

where

1
Br = (u, %)Hé(ﬂ) = \/Yk/QVquk dr = v/ Ak(u,wy), foreach k>1.
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Remark 1.6.9. The smallest eigenvalue A1 of the Laplace operator —A with Dirichlet

boundary condition is positive and satisfies the following inequality :
2 -1 2 1
/u de < A] / |Vu|*dz, for all we Hy(Q2)
Q Q

so that )\1_1 1s the smallest Poincaré constant.

Remark 1.6.10. The operator A satisfies (Au,u) > Ai||u||?, for all u € D(A). Therefore,

A is positive and it is possible to define its fractional powers.

Lemma 1.6.11. If k € ZT and Q is of class C, then we have the following inequality :
AR )| < Jlull grgqy < CIA*2ull,  for all u € D(AM?).

Lemma 1.6.12. Let Q be a bounded domain in R with sufficiently smooth boundary and
p € [1,00). Then the linear span of the eigenfunctions wy, of the Laplace operator —A with

Dirichlet boundary condition is dense in LP(£2).

Proof. By the Sobolev Embedding Theorem, we can choose k € Z* with k > d(;;;Q)
such that H¥(Q) is continuously embedded in LP(Q). If Q is of class C¥, then from the
Lemma it follows that the Hilbert space D(A*/?) is continuously embedded in H*(£2).
Therefore, D(A*/?) is continuously embedded in LP(€2). The space of test functions C°(Q)
is dense in LP(Q) and belong to D(A%/?). Therefore, D(A*/?) is dense in LP(Q). Since the
eigenfunctions wy form a basis for the Hilbert space D(AS/ 2), their linear span is dense in

D(A*/2). Therefore, the linear span of the eigenfunctions wy, is dense in LP(£).

O

Theorem 1.6.13. Let Q be a bounded domain in R% with sufficiently smooth boundary. If
wy are the eigenfunctions of the Laplace operator —A with Dirichlet boundary condition,
then for any uw € HE(Q) N LP(Q), there is a sequence m = Y pvq CkmWy Which converges to

u in L*(Q) and has a subsequence that converges to u in Hg(Q) N LP(Q). Furthermore,

sup |cgm — (w,w)| =0 as m — co.
k>1
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1.7 Gelfand Triples

Let H be a Hilbert space and V' be a linear subspace which is dense in H. Suppose that V
has its own norm || - ||y and that V is a Banach space with respect to || - ||y. Suppose also
that the injection V < H is continuous. Then there is a canonical map 7' : H* — V* that

is simply the restriction to V of continuous linear functionals v on H :

(Tu,v)y=y = (u,v)g= g, forall veV.

The canonical map T has the following properties : (i) 7" is injective; (ii) ||Tul|lyv+ < C|lu||m+;

(iii) if V is reflexive, then the range of T is dense in V*. By identifying H* with H and by

using T' as a canonical embedding from H* into V*, we can write
Ve H~H"V",

where all the embeddings are continuous and dense. We call such a triple a Hilbert triple.

Example Let V = H}(Q), H = L*(Q) and V* = H-Y(Q). Then the canonical map
T: L*Q) — H () is defined by the identification of a square integrable function u with

its corresponding distribution :

(Tu,v)y=y = / u(x)v(x)dx forall veV.
Q

Then the following embeddings are continuous and dense :
Hy () < L*(Q) ~ (L*(Q)* — H ().

Example Let V = H}(Q)N LP(Q), H = L*(Q) and V* = H~1(Q) + LI(Q2). The action of
u € L*(Q) on a test function v € H{ () N LP(Q) is given by

(Tu,v)y=yv ::/u(:c)v(:c) dx . (1.7.1)

Q

Since H}(2) N LP(Q) is reflexive, the embedding L?(2) < H~(Q) + L4(2) which is given
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by ([1.7.1)) is dense. Therefore, the following embeddings are continuous and dense :
Hy(Q)NLP(Q) — LA(Q) ~ (L*(Q)* — H Q) + LYQ).

Example Let V = H2(Q), H = H}(Q) and V* = H=2(Q2). The action of u € H}(Q2) on a

test function v € HZ(Q) is given by
(Tu,v)y=y = /QVU(I‘)V’U(I) dx .
Then the following embeddings are continuous and dense :
HE(Q) = Hg(Q) = (Hy(2))" — H*(Q).

Theorem 1.7.1. Let V.« H ~ H* < V* be a Hilbert triple. If u € L?>(0,T;V) and
ug € L2(0,T;V*), then u € C([0,T); H). Furthermore,
(i) for any v € V, the real-valued function t — (u(t),v)y is weakly differentiable in

(0,T) and
d

%(u(t),U)H = (u(t), v)y= v;

(i1) the real-valued function t — |lu(t)||% is weakly differentiable in (0,T) and

d

D (o) = 26 ). u®)v- v

(731) there is a constant C = C(T') such that
ull oo o,y < C [Null 20,y + el L2050+ -

Theorem 1.7.2 (Integration by parts formula). Let V. — H ~ H* < V* be a Hilbert
triple. Suppose that u,v € L?(0,T;V) and us, vy € L*(0,T;V*). Then

T T
/0 (ur(t), o())v vt = (u(T), o(T)) g — (u(0), v(0))sr — /0 (0e(), u(B)) v vt
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1.8 DMonotone Operators

Definition 1.8.1. Let V — H ~ H* — V* be a Hilbert triple. A nonlinear operator f

from V into V* is called a monotone operator if it satisfies the following condition:
(f(w) = f(v),u—v) >0, forall uveV.

Theorem 1.8.2. Let 1 < p < oo and f be a monotone operator which satisfies the following
conditions: (i) || f(u)llv+ < C[1+4 |ullP7], for all w € V'; (i) For fized u,v,w € V, the
mapping A — (f(u + )\v,w)) is continuous on R. Suppose that: (1) uy, — uw in Vi (2)
f(um) — 9 in V*; (3) limsup (f(um),um) < (w,u). Then ¥ = f(u).

Proof. Since f is a monotone operator, it follows that

(f(um)sum) — (f (um),v) = (f(v),um —v) >0, forall veV. (1.8.1)

If we take the limit superior of the inequality , then we obtain
(1, u) > limsup (f (wm), um) > (¥,v) + (f(v),u —v).
Therefore, (w — f(v),u— v) > 0. If we let v := u + Aw with w € V, then we get
MY — flu+ A w),w) >0, forall welV.

If we let A — 07, then from the last inequality we deduce that (1/1 — f(u), w) > 0. Similarly,
by letting A — 0~, we obtain (w — f(u), w) < 0. Therefore, (w — f(u), w) =0forallweV
so that ¥ = f(u). O

Corollary 1.8.3. Let p,q € (1,00) with 1/p + 1/q = 1 and f be a monotone oper-
ator from a separable Banach space V into V* which satisfies the following conditions:
@) | f(w)llv+ < C[1+4 |lul|P~Y), for allu € V'; (ii) For any fized u,v,w € V, the mapping

A (f(u + v, w)) s continuous on R. Suppose that:

Um —u in LP(0,T5V);  flum) =1 in LU0, T;V7);
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T T
lims.up/0 (f(um),um) dtS/D (w,u) dt.

Then i = f(u).
1.9 Semigroups and Attractors

Definition 1.9.1. Let H be a Banach space. A family {S(t)}1er+ of nonlinear operators,
S(t) - H — H, is called a continuous semigroup on H if the following properties are
satisfied : (i) S(0) is the identity map on H ; (i1) S(t1+1t2) = S(t1)S(t2), for all t;,t2 € RT;

(731) The mapping (t,u) — S(t)u is continuous on [0,00) x H.

Definition 1.9.2. A continuous semigroup {S(t)};cr+ on a Banach space H is called com-

pact semigroup if for each t € R, the operator S(t) is compact.

Definition 1.9.3. Let {S(t)};cr+ be a continuous semigroup on a Banach space H.
(1) A set B in H is called positively invariant if for allt >0, S(t)B C B;

(2) A set B in H is called invariant if for allt € RT, S(¢t)B = B;

(3) Foru € H, the set ;o S(t)u is called an orbit starting from u;

(4) The w-limit set w(B) of a subset B of H is defined as follows :

w(B) = ﬂ E(s), where FE(s):= U S(t)B.
s>0 t>s

Remark 1.9.4. It is easy to see that u € w(B) if and only if there is a sequence u,, € B

and a sequence ty, — oo such that S(ty)um — w in H as m — co.

Lemma 1.9.5. Let {S(t)};cr+ be a continuous semigroup on a Banach space H. If B is a

nonempty subset of H, then the w-limit set w(B) is positively invariant.

Proof. For any fixed ¢ > 0, if ¢ € S(t)w(B), then there is ¢ € w(B) such that ¢ = S(t)¢.
By the definition of w-limit set, there exist sequences ¢,, € B and t,, — oo such that

S(tm)odm — ¢ in H. Then by the continuity of S(¢), we have
S(t+ tm)dm = St)S(tm)pm — S(t)p as m — 0.

Therefore, 1 = S(t)¢ € w(B). Then S(t)w(B) C w(B), for all t > 0.



Chapter 1: Preliminaries 24

Lemma 1.9.6. Let {S(t)};cr+ be a continuous semigroup on a Banach space H. If B be

a nonempty subset of H and sg > 0 such that the set

E(so) = | J S(t)B

t>5s0

is relatively compact in H, then the w-limit set w(B) is nonempty, compact and invariant.

Furthermore, if B is connected, then w(B) is also connected.

Proof. Since B is nonempty, the set E(s) is nonempty for each s > 0. Then we have a

decreasing chain of nonempty compact sets :

E(so) D E(s1) D E(s2), forall sp<s;<so.

Hence, w(B) = mszom is nonempty and compact. By the Lemma w(B) is pos-
itively invariant. Let ¢ € w(B). Then there exist sequences ¢,, € B and t,, — oo such
that S(tm)¢m — ¢ in H. By the assumption, for any fixed ¢t > 0, , ¢, is relatively com-
pact in H. Hence, there is a subsequence S(ty, — )¢, (with the same notation) such that

S(tm —t)¢m — ¢ in H. This implies that ¢ € w(B). By the continuity of S(t), we have
S(tm)pm = SE)S(tm —t)pm — St)Y =¢ as m — .

Therefore, ¢ € S(t)w(B), for any t > 0. Hence, w(B) is invariant. Suppose that B is
connected. Since the mapping (¢,u) — S(t)u is continuous on [0,00) x H, it follows that
E(s) is also connected, for each s > 0. Suppose for a contradiction that w(B) is not

connected. Then there are two open sets U; and Us such that
w(B) c Uy UUs, w(B)ﬂUl 75@ w(B)ﬂUQ#(D, U NU; = 0.

Let Vi be the e-neighborhood of w(B) N U; and Vi be the e-neighborhood of w(B) N Uy
such that
W(B)ﬂ‘/k?é@’ W(B)QVQG#Q)’ V2emvle:®'

Since Vi, U Vi contains some d-neighborhood of w(B), by the definition of w(B), it follows



Chapter 1: Preliminaries 25

that F(s) eventually enters this d-neighborhood so that
E(s) CVicUVa, E(s)NVice£D E(s)NVae #0, VieNVae =10

which contradicts to the connectedness of E(s). Therefore, w(B) must be connected.

O]

Definition 1.9.7 (Attractor). Let {S(t)}icr+ be a continuous semigroup on a Banach space
H. A set A is called attractor if it satisfies the following two properties : (i) A is invariant
set ; (i1) A possesses an open set U such that for any element uw € U, S(t)u converges to A
ast — 0o, i.e.

dist(S(t)u, A) = in&HS(t)u —v| =0 as t— oc.
vE

The mazximal open set U satisfying the property (ii) is called the basin of attraction of A.
If a subset B C U satisfies

dist(S(t)B,A) = sup inf lu—v|| =0 as t— oo,
ueS(t)B VEA

then we say that A attracts B.

Definition 1.9.8 (Global Attractor). If A is a compact attractor and it attracts bounded
sets of H, then A is called a global attractor.

Definition 1.9.9. Let {S(t)};cr+ be a continuous semigroup on a Banach space H. Suppose
that By is a subset of H and U is an open set containing By. If for any bounded set B € U,
there exists t(B) > 0 such that

S(t)B C By, forall t>t(B),

then we say that By is an absorbing set in U.

Theorem 1.9.10. Let {S(t)};cr+ be a continuous semigroup on a Banach space H which
satisfies the following two conditions : (i) there exists a bounded absorbing set By in H
and (ii) for any bounded set B, there exists t(B) > 0 such that the set J;syp) S(1)B is

precompact in H. Then A := w(By) is a global attractor.



Chapter 1: Preliminaries 26

Proof. From the conditions (i)-(i7) and the Lemma it follows that A = w(By) is a
nonempty compact invariant set. Then it is left to show that A attracts bounded sets of H.
Suppose for a contradiction that there is a bounded set B such that when time goes to
infinity, dist(S(¢)B,.A) does not converge to zero. Then there exist 6 > 0 and a sequence
tym — oo such that dist(S(tm,)B,A) > § > 0, for all m > 1. Furthermore, for each m > 1,
there is u,, € B such that

dist(S(t)B,A) >

NGRS

> 0. (1.9.1)

Since By is an absorbing set, there is ¢(B) > 0 such that S(t,, + t(B))un € By, for all
m > 1. By the condition (i¢), the set S(t,, + t(B))uy, is relatively compact. Hence, there

is a subsequence S(t,, + t(B))u,, (with the same notation) such that
S(tm)St(B))um = S(tm + t(B))um — ¢, as m — oo.

Since S(t(B))um € By, it follows that ¢ € A = w(By) which contradicts to (1.9.1). There-
fore, A = w(Bp) must attract bounded sets of H.

Lemma 1.9.11. If H is connected, then the global attractor A = w(By) is connected.

Proof. If By is a bounded absorbing set, then a ball B containing By is also a bounded
absorbing set. Since A = w(Bp) is maximal, we have A = w(B). By the Lemma it
follows that A is connected since the ball B is clearly connected.

O]

Theorem 1.9.12. Let {S(t)}1er+ be a compact semigroup on a Banach space H which has
a bounded absorbing set By in H. Then A :=w(By) is a global attractor.

Proof. For any bounded set B, there is ¢(B) > 0 such that (J,5,5) S(t)B is a bounded set

(being a subset of By). Since the operator S(1) is compact, we deduce that the set

U swB=sm)| |J stB

t>t(B)+1 t>t(B)

is precompact in H. Therefore, the result follows from Theorem [1.9.10 O
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Chapter 2

GLOBAL EXISTENCE AND UNIQUENESS

In this chapter, we will consider the following initial-boundary value problem :

Tor = E2Ap — g(x,0) +2v in QxRY, (2.0.1)
14
vy = KAV — %Agp in QxRT, (2.0.2)
=0, teRT,
?lag (2.0.3)
U|8Q == 0, t € RJ’_,
x,0) = x), x€,
¢(2,0) = po() (2.0.4)

U(JI,O):’U()(ZL‘), r €,

where Q@ C R? is a bounded domain with sufficiently smooth boundary 0€; o, vy and
g are given functions; under the assumption that the nonlinear term g(z,s) is a function

measurable in x and continuously differentiable in s satisfying the following conditions :

—Bo + Bilsl” < sg(z, s) < o+ Bals|”, (2.0.5)
9(z,0) =0, (2.0.6)
gs(w,s) = —Ps, (2.0.7)

for all x € € and all s € R, where p > 2 and f;’s are positive constants. The sufficient
smoothness of the boundary 9 is the following : choose k € Z™ and assume that Q is
of class C* such that the Hilbert space D(A*/?) is continuously embedded in LP(€2) [See
Appendix for more details]. We will prove that the initial-boundary value problem
— is uniquely globally solvable within the class

C(RY; Hy(Q) x Hy ().
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2.1 Weak Solutions

First, it will be shown that the initial-boundary value problem (2.0.1)-(2.0.4)) has a unique
solution from the class

C(RT; L2(Q) x L*(Q)) .
Such a solution is defined as follows :

Definition 2.1.1 (Weak Solution). Assume [pg,v0] € L?(2) x L?(Q). Then a pair of

functions [p,v] : [0,00) — L?() x L*(Q) is called a weak solution of the initial-boundary

value problem - if
(i) for each T > 0,

[p,v] € C([0,T); L*(Q2) x L*()) N L*(0,T; Hy () x Hy()),
p € LP(Qr),

[, ve] € L2(0, T3 HH(Q) + LU(Q)) x L2(0,T; HH(Q)) 5
(ii) for each w € HL(Q) N LP(Q), the following equality holds for almost all t € R :

T{pe(t), w)) + &2 /Q Vo(t,z)Vw(z) de = —/Qg(x, o(t,x))w(z) dr + 2/ v(t, z)w(x) dx,

Q

where ((-,-)) denote the duality pairing between Hg(Q) N LP(Q) and H1(Q) + LI(Q);
(iii) for each w € HE(Q), the following equality holds for almost all t € R :

(ve(t), w) + K/vi(t, z)Vw(z)dr = ]{;/QVgp(t,x)Vw(x) dx,

where (-,-) denote the duality pairing between HE(Q) and H=1(Q);
(iv) ¢(0) = ¢o and v(0) = vy.

Theorem 2.1.2. If [pg,v0] € L*() x L?(Q), then the initial-boundary value problem
- has a unique weak solution [p,v]. Furthermore, the mapping

[0, vo] = [p(t),v(t)]

is continuous on L*(Q) x L*(Q).
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Proof. Consider the initial-value problem for the system of ordinary differential equations :

7'/ Ome(t, T)wy(x) d:):—i—{z/ Vm(t,2)Vwg(z) de =
Q Q

= —/g(m,wm(t,x))wk(x) dm+2/ v (t, 2)w(x) dz, (2.1.1)
Q

Q
4
/vat(t,:v)wk(a:)da:—i—/ﬁ/Qva(t,J:)Vwk(x)dm: 2/QVg0m(t,x)Vwk(x)dx (2.1.2)

gpmk(O):/ngo(:c)wk(x) dr and vmk(O):/Qvo(ﬁ)wk(x)d:z, (2.1.3)

for k=1,2,3,...,m, where ¢,, and v, are the Galerkin approximations :

om(t,z) = ngmk(t)wk(:v) and vy (t,z) = vak(t)wk(x) :
k=1 k=1

We can rewrite the system ([2.1.1)-(2.1.2) as follows :

Pklt) = ~E0pmi0) =~ [ 0o gt ayun(o) o+ 20t
Ui (t) = —RARUmE(t) + %E/\ka(t) ;
where A\, = fQ |Vwg|? dr and k =1,2,3,...,m. According to the Cauchy-Picard Theorem,
the initial value problem — has a unique solution on some finite time interval
[0, T*] provided that the functions

@@wzéma@mwa

are locally Lipschitz, for each k = 1,2,3,...,m. Since g(z, s) is continuously differentiable in
s variable, from Theorem [1.4.1] it follows that Gj’s are continuously differentiable functions
which justifies the existence of a unique solution on some interval [0, 7*]. By the Theorem
the time interval [0, 7] can be extended to infinity if ¢,,; and v,,; remain bounded
on every finite interval [0, 7.

Now, we will show that the approximate solutions [, v;,| are bounded on every finite time

interval [0, 7] and uniformly bounded in m. If we multiply the equation (2.1.1)) by ¢k (t)
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and take sum over kK =1,2,3,...,m, then we obtain the equality

th/ [ (2, )] dw+£2/ [Viom (t, )| dw =

Z—/g(:v,npm(t,x))som(t,x) dx+2/vm(t,m)<,om(t,m) dr (2.1.4)
Q

Q

which holds for each ¢ € (0,T]. The equation (2.1.4) can also be written as follows :

T oml + 1Vl = ~(9(@, o). om) + 2t o) (2.15)

By applying the inequality and the Poincaré inequality, we deduce
2(Um, Pm) < E”Um”Q"‘EH(PmHLP(Q +Co < 7vam”2+€”¢’mH +COv (2.1.6)

where Cp > 0 depends only on ¢, p and . From ([2.0.5) we obtain
— (9(z, om), om) < Bol = Billemlyo oy - (2.1.7)

By taking into account (| and (| - from ([2.1.5] - we deduce

€
ol + €1Vl + 181 = dlpnllg < CIToalP +C1, (219

where C := Cy + 5o|Q].
If we multiply the equation (2.1.2)) by v,k (¢) and take sum over k = 1,2,3,...,m, then we

obtain the equality

M/ (o (t,2)| d:c+/<;/ (Vom(t, 2)|2dz = /w (t,2)Vom(t, 7) dz

which holds for all ¢ € (0,T]. It can also be written as follows :

¢
=z = (V. Vom) (2.1.9)

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with € = ¢/4, we deduce
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that

Kl Kkl K02 K
5 |(Vom, Vom)| < Ve |[[Vom]| < ?HVWHQ + §HvaH2- (2.1.10)

By adding (2.1.9) and (2.1.10)) we obtain

5 aelloml? + SVl < 2 Vil (2.1.11)
If we multiply (| m ) by 4¢2/k6? and add it to , then we obtain

d 262

2
il 2 2 S 2 s & 2
& [Bteml + Zloml?] + S190ml + [ % = S| 1902+

+ 81— €]||90m||1£p(9) <Cr.

If we integrate the last inequality from 0 to ¢, then we deduce

2
5 [lentaPars 25 [ unteaae+ S [ [ 9onts.0)? dods +
Q

2
{25 }//]vasx\ dxds + | 61—6//g0msa:]pd:1:ds<

T 262
< §||‘PO||L2(Q) + @HUOHLQ(Q) + ChT.

If we choose € > 0 sufficiently small and take the supremum over (0,T], then we obtain

1[m, vm]ll Lo (0,7;L2(0)x 22 (22)) + [I[om, vma] [ (0,1:H () x HA(®) ) +llemllrrry < C, (2.1.12)

where C' depends only on g, vg, p, 80, ¢, &, 7, &, and T'. From the above estimate it follows
that the interval of existence [0,7™] of functions ¢, and vy, can be extended to [0, c0).
Now, it will be shown that the nonlinear term f(y,,) is also uniformly bounded in m. Due
to the assumption , from the Lemma it follows that ¢ satisfies the following
inequality :

lg(a, 5)] < ya(1+|s|P7H), (2.1.13)

for all (z,s) € Q x R. Let ¢ be the conjugate of p. Then, by taking into account the
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inequality (2.1.13|), from the Jensen’s inequality we obtain

T T
oty = | [ ot gntaplrasar<sg [* ] 0+ louteor )y dea <

< (273) / / Igpmt z)[PH de dt < (2v3)7 / / |gpmt (t,2)| P~V dg dt .

From the last inequality, we deduce that

g, em)3aagy < 2779 (1€ + ol ) - (2.1.14)

Since ¢y, is uniformly bounded in LP(§r), from the estimate (2.1.14)) it follows that g(x, ¢ )

is uniformly bounded in L?(Qr).

From (2.1.2) we deduce that

Kkl 9
[omell 10y < (Kl Avm 5 1(Q)+7|‘A@m||H o)’ = (/"vllemlle?lIVsomll) <

222
< 267 Vo + iHVsOm\V

If we integrate the last inequality from 0 to 7', then we obtain

K202

2 2
|Vt | T||(10mHL2(07T;H6(Q))'

2 2
L2 (0,:H-1(2)) < 267 vl 220,71 () T

Therefore, vy, is uniformly bounded in L? (0, T; H_l(Q)).
By taking into account the uniform estimates, thanks to the Banach-Alaoglu Theorem,

we can extract a subsequence [y, vy,] such that
[om,vm] = [p, 0] in L*(0,T; Hy()) x L*(0,T; Hy () ;

Om = in LP(Qp) and g(z,pm)—% in LIY(Qp).

Remark 2.1.3. Let w € H}(Q) and ¢ € C(0,T). By the definition of distributional

derivative with respect to t variable, we have

T T
/0 (Pmt, w)e(t) dt = —/0 /ngm(t,x)w(ac)qb (t) dxdt (2.1.15)
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T T
/0 (1, w)p(t) dt = _/0 /Qap(t,a:)w(a:)cb(t) dxdt .

(2.1.16)

Since @ — @ in L? (O,T; H&(Q)), the right hand side of converges to the right

hand side of . Therefore,
Omt — Q¢ I LQ(O,T; H_l(Q)) )
Similarly, it follows that
Umt — ug in L2 (O,T; Hﬁl(Q)) and  pmr — @ in LYQp).
Remark 2.1.4. We can replace wy in the equations (2.1.1} (u with any

w € By = span{wg}2,,  where M <m.

Let ¢ € C°(0,T) be a test function and w € Eyy. If we multiply (2.1.1)-(2.1.2]) by ¢ and

integrate both equations from 0 to 7', then we get

/ / Pmi(t, T)w(2)¢(t) dudt + & / / Vom(t,z)Vw(z)o(t) dedt =

// x, m(t, z))w(z) da:dt+2/ /vmtx )o(t) dadt

//vmtt:v dxdt—i-/ﬂ/ /vmtx )o(t) dedt =
//gomta; )o(t) dadt

and

(2.1.17)

(2.1.18)

Since the function ¢ — w¢(t) belongs to C° (0, T; C*°(Q) N H(€2)), we can pass to the limit

in - m ) to obtain

T T
T/o <(<pt,w)>¢(t)dt+§2/0 /QVLp(t,x)Vw(ac)qﬁ(t) dxdt =

/(/wtx mm+2/ / (t, 2)w(z)é(t) dadt

(2.1.19)
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and

/0<’Ut, dt+n// (t, z)w(x)p(t) dedt = // (t, z)w(z)p(t) dzdt (2.1.20)

Since (2.1.19) and (2.1.20]) hold for any ¢ € C2°(0,T"), we obtain the following equations :

7({t, w)) +£2/QV90(75,:L‘)Vw(x) dr = _/

Q

Y(t, z)w(x) d:v—|—2/v(t,x)w(x) dr, (2.1.21)

Q

and

(vg, w) +/€/vi(t, z)Vw(z)dr = /fAV@(t,m)Vw(m)dm, (2.1.22)

which hold for almost all ¢ € (0,T) and every w € {Jy;»1 En. Since the set of functions

E :=span{wg }72, = U Ey
M>1

is dense in H} () as well as in LP(Q), the equality ([2.1.21)) holds for every w € H}(Q)NLP(L2)

and the equality (2.1.22) holds for every w € HE(2). Since the equalities (2.1.21)) and
(2.1.22)) hold almost everywhere on every finite time interval (0,7"), they are valid for almost
allt € RT.

Remark 2.1.5. We have the following equality in H=*(Q) + L1(Q) for almost all t € R:
Tor = E2Ap —1p + 20. (2.1.23)

Note that the Fubini’s Theorem and the integration by parts in ¢ variable yield

/ / Ome(t, z)w t) dedt = T/ / Omt(t, x)w(x)p(t) dtdx =

T
enTyu@T) dz =7 [ gu.2u@o0) de—r [ [ apu@ @) dda
)T) dz =7 [ (0, 2)u

d:L'—T/ /gpmt:v &' (t) dadt

T

S~

om(T, z)w(x)p(T) dx — T

ﬂ
S~
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Similarly,
/0 ! /Q vt (£, 2)w(2) 6 () ddt = / / vt (£, 2)w(@)6(¢) didz
:/va(T,x)w(x)qb(T)da:—/vm(O 2w dac—// om(t, 2)w(z)d (1) dtda
:/va(T,a:)w(x)qb(T) dac—/gvm(o ) dx—/ /vm (t,2) ) ddt

If we perform the integration by parts for the first integrals on the left hand side of (2.1.17)-
(2.1.18), where ¢ € C*°([0,T]) with ¢(0) =1 and ¢(T") = 0, then we obtain

r T
_r /0 /Q om(t, x)w(x)d (1) dt + & /0 /Q Vom(t, ©)Vw(z)p(t) dedt =

/(pm (0,z) dx—/ / T, o (t, ) )w(x)p(t) dedt + (2.1.24)

+2/ / (t,z)w t) dxdt

T
—/ /v (t, z)w( da:dt—l—n/ / (t, x)w t) dxdt =
0 Ja
/vm (0, ) da:+/ /gpm (t,z)w t) dzxdt (2.1.25)
Q

If we pass to the limit in (2.1.24)-(2.1.25)), then we obtain

_T// (t,x) dtdx+§2/ /Vgo (t,2)Vw(z)o(t) dedt =

/ da:—/ /1/1 (t, z)w t) dxdt + (2.1.26)
+2/ | ott.apotwyots) dode

_/Q/O o(t, 2w dtda:+n// (t, 2)w(x)p(t) dadt =
/ dm+// (t, 2)w(x)p(t) dwdt (2.1.27)

and

and
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In the similar way, if we multiply (2.1.21))-(2.1.22)) by ¢, integrate from 0 to 1" and apply

the integration by parts formula to the first integrals on the left hand side, then we deduce

—7// (t,z)w ()dtdx+§2/ /Vgo (t,z)Vw(z)o(t) drdt =

:T/( dx—/ /z/th o(t) dedt + (2.1.28)
—1-2// (t, z)w(x)p(t) dedt

/Q/OTU( 2)w(z)d dtdm+n// (t, 2)w(2)b(t) dadt
:/ v(0, dw—i—/ / (t, z)w(x)p(t) dedt (2.1.29)

From ([2.1.26))-(2.1.29) it follows that

and

/Q (0, 2)w(z) d = /Q so(z)w(z)dz and /Q 0(0, 2)w(x) dz = / vo(2)w(z) dz,

Q

for any w € E = span{wy}3° ;. Therefore, the following functions are equal in L*((2) :
©(0,z) = po(x) and v(0,x)=wvo(x).

We will use classical monotonicity argument to show that ¢ = g(z, ). Without loss of

generality we may assume that
gs(x,s) >0, forall seR, (2.1.30)

since from the beginning we could separate the linear part of g so that the rest would satisfy
(2.1.30). If we consider the Gelfand triple LP(Q2) — L?(Q2) ~ L?*(Q) < L%(Q), then g is
monotone operator from LP(€2) into L4(£2). According to the Corollary it is enough

to demonstrate that

T T
limsup/O (g(:v,gom),gom) dtg/o (w,go) dt. (2.1.31)

m— 00
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If we integrate (2.1.4) from 0 to 7', then we obtain the following equality :

r T 2 T 2
(g(m’SOm)’SOm) dt =5 [ [em(0,2)"dx — = [ |om(T,z)["dx -
0 2 Jo 2 Jo

T T
- 52/0 ||V90m’|2dt+2/0 (Um, om) dt (2.1.32)

If we multiply (2.1.23) by —¢, integrate from 0 to T, use the integration by parts formula,
and add the resulting relation to (2.1.32]), then we obtain

r T 2 T 2 T 2 T 2
(9(x, om); om) dt = 5 | 1em(0,2) da—Clleol"~5 [ lom(Ti2)l"dzt | (T, 2)["da —
0 Q Q 9

T

T T
_ ¢ /0 IVom|2dt + €2 /0 IVl 2dt +2 /0

By the Compactness Theorem with X = H(Q), H = L*(Q) and Y = H~1(Q), there is a

T
(vm, (pm) dt — 2/0 (v, go) dt. (2.1.33)

subsequence u,, such that u,, — u in L?(Qr). Therefore,

T T
/ (Um, gom) dt — / (U, Lp) dt. (2.1.34)
0 0

Due to the lower semicontinuity of weak convergence, if we take the limit superior [over

a subsequence so that (2.1.34]) is valid] from both sides of the inequality (2.1.33), then we
deduce (2.1.31)). Therefore, 1 = g(x,¢). Note that the following spaces are Hilbert triples :

Hg(Q) = L*(Q) = (LX(Q)" — H'(Q)

as well as

HY(Q)NLP(Q) — L*(Q) ~ (L*(Q)* — H Q) + LI(Q),

Then, according to the Theorem it follows that
(o0 € O(0.T]: L2(2) x ().

It is left to show the uniqueness and the continuous dependence on the initial data of weak

solutions. Let [y, v] and [, D] be two weak solutions of the initial-boundary value problem

(2.0.1)-(2.0.4) with initial data [pg,ve] € L2%(Q) x L?(Q) and [pg, o] € L3(Q) x L*(Q),
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respectively. If we subtract the equation for » from the equation for ¢ and let w = ¢ — &,

then we obtain

thHso BlI* = =€V — VEI* - (9(z, ) — 9(2,2),0 = 7) +2(v = 0,0 — ) . (2.1.35)

Similarly, we obtain
¢
~ %o — 0|2 = -k Vv — VB|% + %(w — V3,V — V7). (2.1.36)

If we apply the Cauchy-Schwartz inequality and the Cauchy’s inequality with e = £/4, then

we obtain the estimate

74 _
- (Ve - V%VU*VU)<*IIVSO VsOIIIIVv*VvH<fHV<P V| + *IIVU*VUHQ-

K02 B K B
< < IIVe = Vol + SlIve - val . (2.1.37)

Then from ([2.1.36]) and (2.1.37) we obtain

— < — 2.1.
Lo < v - g, (2.1.38)
If we multiply (2.1.37) by —iiz and add the resulting inequality to (2.1.35)), then we deduce

d (T 2¢2

Since g5 is bounded below by —pgs, it follows that

P

(9@, 0) - 9(&, ), 0 — 7) = /Q ( /“”gscc,s)ds) (6—P)dr>—Byllo—pl>. (2.140)

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with € = 3, we obtain the

estimate

20— 7,0 — ) < 2lv—7lllp — 2ll < Bsllp — I + oIl — 312 (2.1.41)

45
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By taking into account (2.1.40f) and (2.1.41)), from (2.1.39) we deduce that

d

2
i (3l =PI + 2o = o1?) < 28l - @12 + o = P
Then for sufficiently large D > 0, we have
oo+ 2w —o2) <D (Tl a2+ 2 o — o) (2.1.42)
dt 280('0 I%QUU - 29080 REQUU ) o

If we apply the Gronwall’s inequality, then from (2.1.42]) we deduce that

/|<ptac )]2dw+/\vtm —o(t,x)|?dx <

Dt (T _ g, 262 2
<e 5”900—900” ‘1‘@‘“10—@0” ) (2.1.43)

for all t € [0,T]. If [po,v0] = [@o, Vo], then from (2.1.43]) we obtain the uniqueness of weak
solutions. For otherwise, (2.1.43) gives us the continuous dependence of weak solutions on
the initial data.

2.2 Strong Solutions

Definition 2.2.1 (Strong Solutions). Assume [po, vo] € [Hg(Q)NLP(Q)] x [HE () NLP()].
We say that a pair of functions [p,v] : [0,00) — H} () x H(Q) is a strong solution of the

initial-boundary value problem - if

(i) for each T > 0,
[, v] € C([0, T); Hy () x Hg()) N L*(0,T; H§(Q) x H(€2)),

@ € L®(0,T;LP()) and [ps,v¢] € L*(Q7) x L*(Qr);

(i1) the following equations hold for almost all t € RY and every w € LP(R) :

—2 T )wlx Xr = — o ) )wlxr)axr v T)w\x X,
qé%mmmmm SAAwn)(ﬁi Am,ma» Ud+zL<a><w,



Chapter 2: Global Existence and Uniqueness 40

(iii) the following equations hold for almost all t € RY and every w € L*() :

/Q v (t, 2)w(z)de — K /Q Av(t, 2)w(z)dz = —%g /Q Ap(t, 2)w(z)dz;

(iv) (0) = ¢o and v(0) = vo.

Remark 2.2.2. For ¢y € HE(Q) N LP(QY), by the Theorem there is a sequence
ZZL:1 Cmk Wy that converges to ¢g in LQ(Q) and has a subsequence that converges to pg in

HH(Q) N LP(Q).

Theorem 2.2.3. If [po,v0] € [HE(Q) N LP(Q)] x [HE(Q) N LP(Q)], then the initial-boundary
value problem (u (-) has a unique strong solution [, v]. If d < 3, then we also have
the following equalities in L*(Q) for almost all t € RT :

Tor = EDp — g(w, ) + 2, (2.2.1)
vy = KAV — %Agp (2.2.2)

Proof. We consider the initial-value problem ([2.1.1))-(2.1.3) with a slight modification on

the initial conditions :
Omk(0) :=cpmp, for k=1,23,...,m,
where ¢, are as in the Remark Under this modification we still have that

Zsomk Jwy,(z Zcmkwk ) = o in L*(9).

Therefore, by the Theorem there is a unique weak solution [y, v] of the initial-boundary
value problem (2.0.1)-(2.0.4). In addition, according to the Remark we know that

there is a subsequence of the Galerkin approximations :

m
= Zcpmk(t)wk(x) and vy, (t, ) vak wi(x
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such that
x) = Zcmkwk(x) — g in H(Q)NLP(Q). (2.2.3)

Therefore, before applying the Banach-Alaoglu Theorem, we take a subsequence of the
Galerkin approximations so that (2.2.3) is valid. Then it is enough to establish better
estimates for the Galerkin approximations [p.,, vy,] to prove that [p,v] is actually a strong

solution. From (2.1.1)-(2.1.2)) it follows that the equations
7'/ Omt(t, v)w(x) de — 52/ A, (t, x)w(z) de =
Q Q

—~ [ sleonlt.e)ula) do +2 / (s ) (z) d, (2.2
Q

/vat(t,x) w(z dx—ﬂ/mm (t, z)w( /A(pm (t,2)w(z)de,  (2.2.5)

hold for any w € E,, = span{w}}" ;. If we let w = —Ayy, in (2.2.4), then we deduce the
equality
2 2 2
m A m -
th/]ch (t,)| d:c+§/\ om(t, )| de =

:/g(:n,gom(t,x))Agpm(t,:n) dm—2/vm(t,aj)A<pm(t,:L‘)dx (2.2.6)
Q Q

which holds for all ¢ € (0,7]. By the Green’s identity, we obtain the estimate

/ 92, om(t, 2)) Mg (t, ) d = — / 6a(, (b, 2)) | Vipm (£, 2) 2 i +
Q Q

[ gtopn(t.a) 2 (00)aS@) < b [ [Von(t.a)Pds =~ [ on(t.0)dpn(t ),

where we have used the assumptions (2.0.6)-(2.0.7). If we apply the Cauchy-Schwartz
inequality and the Cauchy’s inequality with €, then the terms on the right hand side of

(2.2.6)) can be estimated as follows :

8
/Q 9(w; om(t, ) Apm(t, x) dw < —fs /Q ot D) Apm(t 2) dr < Bgerllom|* + 12 A

and

1
=2 [ vt ) (t,3) do < 2esom P+ 5 | A
Q
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If we take e; = B3/£2 and ey = 2/£2, then from the equation ({2 and the above estimates

we obtain

2 2 2 2
2dtllw 17+ H eml” < 52 IIso 17+ gzllv I (2.2.7)

If we let w = —Auwy, in (2.2.5)), then we obtain the equality

2dt/ |V o, (t $)‘2d$+/€/ |Avp (t, )| de = /16/ App(t, ) Avp, (t, ) dz,  (2.2.8)

which holds for each t € (0,7]. By the Cauchy-Schwartz inequality and the Cauchy’s
inequality with € = ¢/4, we obtain

94

5 QAgpm(t , ) Avy, (t, ) doe < —HAapmHQ —HAvaQ. (2.2.9)

Then from (2.2.8)) and (2.2.9) we get

Vo, |12 —A 2 ”MQA 2 2.2.10
L ol + S Avn? < 5 A (2210)

If we multiply (2.2.10) by 2¢2/k¢? and add the resulting inequality to (2.2.10)), then we

obtain

d | 2 £? 2 2, 2 2, 2
BT m m 7 A m A m = m m
- [2||w 12+ S 19012] + Sl + Sl < 52 ol + glloml?.

If we integrate the last inequality from 0 to ¢, then we obtain the inequalities :

2
T/ |wm(t,x)|2dx+’5/ Vot ) do +
5 /s Iz

/ /|A<pm s x)|2da:ds+ / /|Avm s,x)|?dzds <

T ﬁQ 4
< Q/QIVgom(o,m)\?da:Jr/ |Vum(0,2)|* dz + gg”SOmH%Q(QT)+?||vm||%2(QT) <

u 53 4
< 2/Q|V<P0(l‘)|2dx+/ Vo (z)|? do + §§||<Pm||%z(QT)+£—2va|\%gmﬂ_
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If we take the supremum over (0, 7] and use the estimate (2.1.12)), then it is easy to see that

[ lms vml | Lo (0,712 () x m12 () T [0y vml | L2 0,752 x 2 02)) < € (2.2.11)

where C' depends only on g, v, p, Bo, £, k, 7,&,Q and T. If we let w = @y in (2.2.11)), then

we obtain the equality
£ d 2
r [ lonatta)Pde+ 54 [ 196t -
= —/ 9(z, om(t, z))ome(t, x) dx+2/ U (t, ) ome(t, ) dx (2.2.12)
Q Q
which holds for each t € (0,7]. The equation (2.2.12)) can also be written as follows :

2

§
Aot + &2Vl + (90, s Prue) = 20 o) (2.2.13)

2 dt

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with e = 1/7, we obtain
2 2, T 2
2(vm, omt) < 2[vm||[lome]l < ;HUmH + 5”9‘9th . (2.2.14)

From (2.2.13)) and (2.2.14) we deduce that

2

§
*H%Omt||2+ HVsomH2 +(9(x, om), pmi) < *IlvaIZ (2.2.15)

2 dt

If we integrate the inequality (2.2.15)) from 0 to ¢, then we obtain

//|<Pm3593! diﬂds—i-// T, om (8, 7)) pms(t, z) deds <

52 2
/\Vwm(o z)2de + = ||vm\|%2(QT). (2.2.16)

For each fixed z € Q, let G(z,s) = fo x,p)dp be the primitive of g(z,-). By the
Lemma ([1.3.2)), G(z, s) satisfies the inequality

=7 +mlsl’ < G(z,5) <0+ 72ls”, (2.2.17)
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for all (z,s) € Q x R, where vp,v1 and 7, are positive constants. Note that

9. (G(x’ me(svr))) = Gs(l‘, gom(s, $))90m5(87$) :

Then, by the Fubini’s Theorem, it follows that

/Ot/QG(JU,SOm(S,$))<Pms(S,ZL‘) dxds = /Q/Ot G(z, 0m(5, %)) Pms(s, x) dsdr =

// 55 (G2, 0m(s,2))) dsdfv—/G s om(t, x)) dr — /G om(0,2)) dz . (2.2.18)

By the inequality ([2.2.17]), we deduce that

AT / (o (ts 2) Pz < / Gz, om(t,2)) d < 10|92 +71 / (o (t, )Pl , (2.2.19)
Q Q Q

for all (¢,z) € (0,T] x Q. Then from (2.2.16)-(2.2.19) we obtain the inequalities

t
T / / (o (5, )| dds + / (om(t,2) P d < 270/ + / om(0, )P da+
2 Jo Ja 0 Q

£ 2
+5 i Vo (0, 2)|?dx + ;vaH%Q(QT) < (2.2.20)

52
< 270/ + / oo(@)Pdz + & / Vo(@)dz + = loml32a

If we take the supremum of the inequality (2.2.20) over (0,77, then we deduce that ¢, is
uniformly bounded in L?(27) and ¢y, is uniformly bounded in L>(0,T; LP(Q)). If we take
W = vy in (2.2.18]), then we obtain the equality

/Q Ut (t, )| do = m/ﬂ Avp (t, ) vt (t, ) do — %g /Q AP (t, ) (t,x) dz (2.2.21)

which holds for each t € (0, 7. If we apply the Cauchy-Schwartz inequality and the Cauchy’s
inequality with €, then the terms on the left hand side of (2.2.20]) can be estimated as follows:

1
R/ A (t, 2 o (t, ) dz < 12| Apm||* + ZvatHz, with €=k, (2.2.22)
Q
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K202 2 9 . 2
Agom (t, )V (t, ) doe < THAva vatH , with e= = (2.2.23)
K
If we integrate (2.2.21]) from 0 to 7" and use the estimates m then we obtain

K202
Slomil32(apy < W IAGm a0y + 1 Avm By - (2.2.24)

Due to the the estimate ([2.2.23)), from (2.2.24]) it follows that v, is uniformly bounded in
L?(Q7). Note that the following spaces form a Hilbert triple :

HE(Q) < Ho () = (Hy ()" = H™().

Since [p,v] € L?(0,T; H(Q) x HZ(Q)) and [p¢,v¢) € L*(Qr) x L*(Qp), from the Theo-
rem it follows that [¢,v] € C([0,T]; H}(Q) x H(R)). Therefore, the pair of functions
[¢,v] is a unique strong solution of the initial-boundary value problem —. If
d < 3, then from the Sobolev Embedding Theorem it follows that H?(f2) is continuously
embedded in C(). Hence, ¢ € L*(0,T;C()) so that the integral [, g(z, ¢(t, z))w(z) dz is
finite for any w € L?(2). This is the reason why the equalities — are in L2(Q).

O

Theorem 2.2.4. Suppose that d < 3 and the derivative of f satisfies the following condition :
1F/(s) < as(1+]sP?), forall s€eR, (2.2.25)
where p € (2,4] if d=3 and p € (2,00) if d=1 or d =2. Then the mapping

[v0, vo] = [e(), v(?)]

is continuous on H}(Q) x H(Q).

Proof. For d < 3 and p € (2,4], by the Sobolev Embedding Theorem, H}(f2) is continuously
embedded in LP(Q). In this case, we take the initial conditions for the initial-boundary value
problem (2.0.1)-(2.0.4) from the space H{ () x H (). Let [p,v] and [, 7] be two strong
solutions of the initial-boundary value problem — with initial data [pg,vo] €
HE(Q) x HE(Q) and [po, o] € HE(Q) x HL(K2), respectively. If we subtract the equation for
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@ from the equation for ¢ and then take the inner product in L?() of the resulting relation

by —(Ap — Ap), then we obtain

5 dtHW Vo|? = —&|Ap — Ap|® + /Q (9(z, ) — 9(2,2)) (Ap — Ap) dz +

+ Q/Q (Vo —Vp)(Vv— V) dz. (2.2.26)

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with € = we obtain

1
%7

the following estimate :

/Q (9(z, ) — g(z,8)) (Ap — AP) dz < ||g(z,¢) — g(z,P)||[|Ap — Ap|| <

1 B £2 B
< 2—52”9@, ©) — g9(z, @)1 + S lae - Ap|?, (2.2.27)

Similarly, we obtain
2/ (Ve — V%) (Vo — Vo) de < 2V — V|| Vo — Vo] <
Q

< ||[Ve — V3| + | Vv — Vo> (2.2.28)

By taking into account the estimates (2.2.27))-(2.2.28), from (2.2.26) we deduce that

2
_ 2 <~ é — ABI2 L _ —\112

+ Ve — V3|2 + ||[Vv — VT2 (2.2.29)

If we subtract the equation for v from the equation for v and then take the inner product

in L?(2) of the resulting relation by —(Av — Av), then we obtain
l
3 dt ||Vv — Vo|* = —k||Av — AD|> + % / (Ap — Ap) (Av — AD) dz (2.2.30)
Q
By the Cauchy-Schwartz inequality and the Cauchy’s inequality with ¢ = ﬁ, we obtain the

following estimate :

Kl

¢
5 Q(Aga Ago)(Av—A@)d:cg%HA@—A@HHAU—A@H <
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kb2 _
< —HA@ Ap|* + —HAU—AUHQ. (2.2.31)

Then from ([2.2.30]) and ([2.2.31]) we obtain the following inequality :

Vo — Vo 2<—A Ap|? 2.2.32
S IV0 = Vol < 5 ap - AgP. (22:32)
If we multiply the inequality 1) by and add the resulting relation to 1) then

we obtain

d T 12 2 — 2
2 (3190 - oI + 25190 - oI} < slote. ) - sle DI +

+ [V — V3| + Vo — V2. (2.2.33)
From the assumption ([2.2.25)) it follows that

lo( ) — 9(z,7) |2 = /Q 9z o(t,2)) — g, plt, 2)) e <

2 2
»(tx) o(t,x) ,
< L1 toswas| arsat [ [T (vl as| ae <
Q| Je(te) Q | Ja(t,z)

_ _ _912 _
< o? /Q L4 [t )P + Lot ) P2) o(t, ) — (t, )P <

< 30} [ (14 [p(t. )P0 + ot )P0 fo(t,2) - (e, ) P
Q
If we apply the Holder’s inequality, then from the last inequality we obtain
2(p—2)
lg(x, ) — g(z, @)HZ <3a [lﬂlp D/@=2) 4 H‘PHL(zp(p D(Q) +H‘P|’L2(p () [ — ‘PHL2(p Q)

By the Sobolev Embedding Theorem, if d = 3, then H}(f2) is continuously embedded in
LXP=D(Q), for any p € (2,4]. If d = 1 or d = 2, then H}(f) is continuously embedded in

L™(9), for any r € [1,00). In any case, from the last inequality we deduce that

lg(e, ¢) = g(@,@)|1” < C1 [L+[IVB]PP~2 + || Vo202 | |V — V> (2.2.34)
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Then for sufficiently large C' > 0, from (2.2.33)) and (2.2.34) we obtain the inequality

4 (1190 -9l + £5l90 - Vol ) <en) (5196 - Vel + S 190 - 9ol
dt \ 2 k(2 - 2 K02 ’

where D(t) := 1+ ||[Ve||>P=2) 4 |V5||2P~2) is a real-valued continuous function on [0, T
since ,p € C([0,T]; H}(R)). By the Gronwall’s inequality, from the last inequality we

deduce that

2
T/ \V@(t,x)—vw(t,x)lzdw—i—g/ \Vv(t,x)—V@(t,x)]zdx <
2 Q "562 Q

¢ . 2
< exp <C’/ D(s)ds) <2HV¢>0 — V(ooH2 + %vao — Vv0||2> ,
0

for all t € [0, T]. If we choose initial data close to each other within the space Hi(Q)x H} (),
then from the last inequality it follows that the corresponding strong solutions are close to
each other within the space C([0,T]; Hg(Q2) x H}(€)). This is what we aimed to prove.

0
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Chapter 3

STABILIZATION WITH ONE FEEDBACK CONTROLLER

In this Chapter, we will study the internal stabilization of the following initial-boundary

value problem for the system of phase field equations :

Tor = E2Ap — f(@) +2u—kxze in QxRT, (3.0.1)
14

up + J¥t= kAu in QxRT (3.0.2)

=0, teRT,
?lag (3.0.3)

u|8Q = 0, t e R+,

x,0) = x), x€f,

P(2,0) = ol 5o

u(z,0) = up(z), =€,

where Q C R? (d < 3) is a bounded domain with sufficiently smooth boundary 9€2; w C Q is
a nonempty subdomain of {2 with smooth boundary dw such that @ C §2; k is a non-negative
number; [¢o, uo] € HE(Q) x HE(Q) is a given pair of initial functions; the nonlinear term f

in (3.0.1) is continuously differentiable and satisfies the following conditions :

—ap+ a1|zP < z2f(2) < ag + azlz]?,
f(0) =0,

f'(z) > —as,

for some positive constants «;;’s and p > 2. As mentioned in the introduction, the initial-

boundary value problem (3.0.1))-(3.0.4) is equivalent to the problem ([2.0.1))-(2.0.4) of the
previous chapter with v := u+ £, v := ug + 0 and g(, s) := f(s) — s+ kxz(x)s. From

Chapterwe know that there exists a unique strong solution [p, u] € C(R*; H} () x HE(Q))
of the initial-boundary value problem ({3.0.1})-(3.0.4)) such that (3.0.1) and (3.0.2)) hold as
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equalities in L2(Q2), for almost all ¢+ € RT. We also assume that f is of the following form :
f(z) =h(z) — Az, A>0, (3.0.5)

where h is a continuously differentiable function satisfying the following condition :
h(z)z > H(z) := /OZ h(c)do >0, forall zeR. (3.0.6)

For example, f can be either of the following functions :

f(2) = |2P7%2 — Az, p>2, A>0.

Our aim is to prove that there exist a feedback controller —k¢p which acts on a subdomain of
Q such that the corresponding solution [, u] of the initial-boundary value problem ({3.0.1])-
(3.0.4) exponentially decays in the H}(2) x HJ () norm.

3.1 Preliminaries

Let A, be the Laplace operator with the Dirichlet boundary condition defined on €, :=
Q\w, ie.,
Awgp = —AQQ, ¥ € D(Aw) )

where D(Ay) := H2(Q) N H} (). We will denote by A1(A,) the smallest eigenvalue of
the operator A,. By the Rayleigh’s principle, we have

Vol? dz
M(Ag) = inf fﬂw‘iﬂ _
peHi () Jo o> dx
p#0
- inf{/ﬂ Vol da : o € HY (W), llellrzn = 1} . (3.1.1)

Remark 3.1.1. It follows that A1 (Ay) — o0 as dg (092, 0w) — 0, where dg is the Hausdorff

distance.

Lemma 3.1.2. For any € > 0, there exists K > 0 such that for k > K, the following
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inequality holds
(Ai(Aw) =€) /Q |l dz < /Q(IVSDI2 +kxalp)de,  forall ¢ € Hy(R). (3.1.2)
Proof. Define the operator Ay with the Dirichlet boundary condition on € by
App = —Ap+kxap, ¢ € D(Ap),

where D(Ag) = H2(Q) N HE(Q). Let A1(Ag) be the smallest eigenvalue of the operator Ay,

ie.,
Vol? + kxzlel?)d
peHL(©) Jo lwl? dx
p#0
=t { [ (9P + bxaloPyie: € B, ez =1} (313

Let ¢y € Hg () be the eigenfunction corresponding to the eigenvalue A1 (Ayg), i.e.,
M(Ar) = [VorlZai) + klonllie@y  orllrze) =1 (3.1.4)

From (3.1.1)),(3.1.3) and (3.1.4) it follows that

M(Ar) = [VorlT2) + klokl72@) < Mi(Aw),  forany k>0, (3.1.5)

As a consequence of (3.1.5]), there exists a subsequence ¢ (with the same notation) such

that
¢ — ¢ in Hj(Q)

(3.1.6)
o — ¢ in L2(Q)

as k — oo, where we have applied the Banach-Alaoglu Theorem and the compact embedding

of H}(Q) in L*(Q). By the Poincaré inequality, from (3.1.5) we obtain

MlloklZ2q) + EloklZ2 @) < M(Aw),  forany k>0, (3.1.7)

Then from (3.1.6) and (3.1.7)) it follow that

o — 0 in L*@). (3.1.8)
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From (3.1.6) and (3.1.8) we obtain

191l 22@) < 16 — Prllre@) + 10kl L2@) < ¢ — Pkllze) + Pkl 2@) — 0

as k — oo. Therefore, ¢ = 0 almost everywhere in & so that

¢ € Hy(Q) and  |¢llr2(0,) = 6llr2) = 1- (3.1.9)

From (3.1.1),(3.1.4),(3.1.6) and (3.1.9) we deduce that

liminf A1 (Ag) > liminf V|72 q) > [VEll72(0) = IVOI720,) = M(AL) . (3.1.10)

From (3.1.5) and (3.1.10) we obtain

lim A(Ay) = Ai(Ay). (3.1.11)
k—00

Hence, the desired inequality (3.1.2)) follows from (3.1.5) and (3.1.11]).

3.2 The Stabilization Result

Here we prove that the system (3.0.1)-(3.0.4) can be exponentially stabilized by only one

feedback controller acting on a subdomain in the first equation. To simplify notations we

let ¢ = —kxze.

Theorem 3.2.1. There exists a feedback controller —ky (for some large k > 0) such that
the corresponding strong solution [p,u] of - satisfies the inequality

/|Vgp(t,m)|2daz+/ \Vu(t, z)|*de < Me™,
Q Q

for any t > 0, where M and § are positive constants.

Proof. If we take the inner product in L?(Q) of (3.0.1]) with ¢; and of (3.0.2) with (4/¢)u
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and we add these relations, then we obtain

d A 2 1 4K
rlil? + 5 (S5l + (01, 1) = 3P + 2hul? = 306 9)] + 19l = 0. (320

If we take the inner product in L?() of (3.0.2)) with eau; (€3 > 0), then we obtain

el d 1€k
) + = [ S IVul?] =0

5 (3.2.2)

62Hw;||2+

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with e = ¢/8, we deduce

the estimate :

l
5 (e, ue)| < *H(PtHHutH < HSOtH2 + [l ? (3.2.3)
2 16
Then from ((3.2.2)) and (3.2.3) we obtain
L2 wur?] < 25 e (324)
di =T Pl -

If we add inequalities (3 and - with ez = 167/¢2, then we obtain

d [£2 8Tk A 2 1 4k
- [QHWHQ + = [Vul® + (H (), 1) = Sl + Fllull* = 5 (w.0) | + 7 [IVull* 0.

dt
(3.2.5)
If we take the inner product in L?(£2) of (3.0.1) with e3¢ (e3 > 0) , then we deduce
d [637‘

=[S I01?] + eIVl + ea(£(2), ) = €Ml — sl ) = 2ea(u, ). (3:26)

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with € = Tlﬁ’ we obtain
an estimate for the right hand side of the equation (3.2.6)) as follows :

2 2
2[(w, o)l < 2ullllell < /\THVUHHV@H < |Vulf? + 5W<PHQ- (3.2.7)

_2
(M€)?

By taking into account the assumption (3.0.6) and the estimate (3.2.7)), from (3.2.6) we
deduce that

2¢3
(M€)?

d 2
[T l?] + STl + es(H (), 1) — esllol — exwr ) <

- (3.2.8)
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If we add the inequalities (3.2.5) and (3.2.8) with e3 = k£2A\2/2¢, then we obtain

d
dt

8Tk

IVl + S a4 (). 1) + [ -

2 1
2 “ 2 -
LAl + Sl = S| +

6 3K
35 IVel* + HVuHQJre?)(H(SO),l) —esAlg])? —es(v, ) <0. (3.2.9)

By the Remark we can choose €, 7sufficiently thin” so that

Al(Aw)—?)\—l >0.

By the Lemma for sufficiently large k& > 0, we have

M(A) — el < [Vol2 - 5 (,). (3.2.10)

e
The last estimate we need follows from Poincaré inequality :

3)\1&

lul < Z21IVul?. (3.2.11)

_26

Then by taking into account (3.2.10) and (3.2.11)), from (3.2.9)) we deduce that

d [&2 8Tk €3T 2 1
ﬁ{QWMF+ﬁAwwlﬂﬂwLD+[;—AMWW+AWP—QWW>+
€ K
+ Sl + 2 a4 100, 1) + (3212)
€3€? 4 31K €
£ ) - r = 1] el + 2551l - S0 <o.
Let
2 87,% €3T 2 1
Y (1) = SIVel? + - I Vul® + (H(g), 1) + | S5 = A el + S lull? = 5, 0)

Then, for sufficiently small § > 0, from (3.2.12)) we obtain

d

7 Y(t)+6Y(t) <0.
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By the Gronwall’s inequality, we deduce that
Y(t) <Y(0)e ™, forall t>0. (3.2.13)

In particular, by taking into account the estimate (3.2.10) once again, from (3.2.13]) we
deduce that
Y (0
/ |Vl(t, x)\Qdm—i-/ |Vu(t, z)|?de < L)e_‘s'f,
Q Q C

for all ¢ > 0, where C := min{%,%}.
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Chapter 4
GLOBAL ATTRACTOR
In this Chapter, we will study the problem of existence of a global attractor of the semigroup

generated by the following initial-boundary value problem for the system of phase field

equations :

Ty = §2Ag0 — flp)+2u in Qx RT, (4.0.1)
ug + ggot =rAu in QxRT, (4.0.2)
=0, teRT,
Plon (4.0.3)
I’,O = r), TE Qa
o(z,0) = po(z) (4.0.4)

u(z,0) = up(z), =€,

where Q is a bounded domain in R? (d < 3) with sufficiently smooth boundary 9€2, under the
assumption that the nonlinear term f in (4.0.1) is continuously differentiable and satisfies

the following conditions :

—ap + arlzlP < 2f(2) < ap + as|2]?, (4.0.5)
f(0) =0,
f'(z) = —aa,
IF(2)] < aa(1+|2P72), (4.0.6)

for all z € R, where a;j > 0, p € (2,4] if d =3 and p € (2,00) if d =1 or d = 2. From
Chapter [2| we know that if [pg,u0] € Hg(Q) x HE(Q), then there exists a unique strong
solution [p,u] € C(RT; HY(Q) x H}(Q)) of the above initial-boundary value problem such
that (4.0.1) and (4.0.2) hold as equalities in L?(€2), for almost all + € RT. From the global

existence of unique solutions which depend continuously on initial functions it follows that
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the problem (|4.0.1)-(4.0.4) generates a continuous semigroup {.S(¢) }+>¢ which consists of the
operators S(t) : Hi(Q) x H}(Q) — H(Q) x H}(Q) defined by S(t)[po, uo] := [p(t, ), u(t,-)].

4.1 Existence of a Global Attractor

To prove the existence of a global attractor A for the semigroup {S(¢)}+>0 we will use
the Theorem [1.9.12] Therefore, we will proceed as follows : (i) Show that the semigroup
{S(t)}+>0 has an absorbing ball in H}(Q) x H}(Q); (i7) Show that the semigroup {S(¢)}+>0

is a compact semigroup.
Lemma 4.1.1. The semigroup {S(t)}+>0 has an absorbing ball in HL(Q) x H(Q).
Proof. If we take the inner product in L*(Q) of (4.0.1) with ¢; and of (4.0.2) with (4/¢)u
and we add these relations, then we obtain
d [& 2 4t
rlled? + 5 |19 + (Fo) 10) + 31l + FIvulP =0, (a1.)

If we take the inner product in L?(Q2) of (4.0.2)) with esu; (e > 0), then we obtain

Y4 d 1€ak

alluel® + S (e, ue) + = [ S IVul?] =0 (4.1.2)
By the Cauchy-Schwartz inequality and the Cauchy’s inequality with € = ¢/4, we deduce
the estimate :

2 1 2

12+ 5 el (113)

f 2
2(90t,ut) *H%HHWH HSOt

Then from (4.1.2) and (4.1.3]) we obtain

d [625

2
dt ’

€2
2l + 1Vull?] < 2=l (4.1.4)
If we add inequalities (4 and ) with e = 47/¢2, then we obtain

T 9 27 9

~leul® + 5l +

&2 2TK 2 4k
+ 2SIVl + TRVl + (F(9), 10) + Sl + TIVulP <0 (415)
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If we take the inner product in L2() of (4.0.1)) with e3¢ (e3 > 0) , then we deduce

d

dt [GBTH@H } + e8| Vol + es(f(9), 0) = 2e3(u, ) - (4.1.6)

By the Cauchy-Schwartz inequality and the Cauchy’s inequality with ¢ = Tlg'u we obtain
an estimate for the right hand side of the equation (4.1.6) as follows :

9 2
2(u,0) < 2ullllell SXHVUHHV@H < 5 IVl + *HVSOHQ- (4.1.7)

(>\ £)?
By taking into account the estimate (4.1.7)), from (4.1.6)) we deduce that

2e3

(M1€)?

€3T 2
L9 16l?) + oIVl + s (01, ) < s IVl (418)

. . . _k(EN)? .
If we add the inequalities (4.1.5) and (4.1.8)) with e3 = =37, then we obtain

€3T

2T d 27K
I + 7 llu el® + [ IVel* + Vil IVull? + (F(p), 1sz)+7||<ﬂ|!2 *HUIlz +

iy
o I¥t dt

%fHVwW+~—MVMF+fdfw)w)go. (4.1.9)

The last estimates we need follows from Poincaré inequality :

esh &2

2 - 53€
1 el =

—=|IVel® and

<35 ||VuH2 (4.1.10)

Then by taking into account the estimates (4.1.10)), from (4.1.9) we obtain

T 27 d §2 63’7’
§||s0t\|2 — |lu t|!2+§ §||V90||2+TIIVUII2 (F(p),10) + —=|l¢lI* + *IIUH2

esh &2

3K 3A1K
IVl + 5 1V ull + 5 (£(0), ) + 255l +

635 SN2 <0, (4.1.11)

Let

K €3T
“a IVul® + (F(¢), 10) + =~ ll#ll* + IIuHZ-

2
v(t) = Vel + =
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Due to the assumption (4.0.5)), from the Lemma it follows that

(F(p),10)) > —C1 and (f(¢),¢) — (F(¢),1a) > —Cs,

where C] and Cy depend only on (). For sufficiently small § > 0, from (4.1.11]) we obtain

iY(t) +0Y () < 0[(F(e), 1a) — (f(¢), ¢)] + [0 — es] (f(0), ) < 3Co + [es — d]ag := C5.

dt
By the Gronwall’s inequality, from the last inequality we deduce that
Y(t) <Y (0)e™® + Cy, (4.1.12)
where Cy := %. Then we obtain the following inequality :
£2 9 8TK 9 st
SIVel® + - IVull® < V(1) = (F(p), 10) < Y (0)e ™ + Cr + Cy. (4.1.13)
From the assumption (4.0.5)) it follows that
|F(s)] <0+ 71s|P, forall seR. (4.1.14)
Since H{ () is continuously embedded in LP(Q), from we deduce that
[(F(¢0), 1a)| <70/ +72[|[ Vo (4.1.15)
Then, by the Poincaré inequality and the estimate , we obtain
Y (0) < Cs + Cslllpo, wol 371 ) o) (4.1.16)
Finally, from and we deduce that
/Q]V<p(t,x)|2dm + /Q \Vu(t,z)|>dz < C (/Q Vo (z)|?dz + /Q \Vuo(:r)|2d:v> e "+ R

O]
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Theorem 4.1.2. There ezists a global attractor A for the continuous semigroup {S(t)}+>0-

The global attractor A is a bounded, closed and connected subset of the space H3(Q) x HZ(Q).

Proof. From now on we will denote by K; the positive constants which depend on H}(Q) x
H}(Q) norm of initial functions [pg, u]. If we set D(t) := Z|¢e|* + %—;HutHQ and E(t) :=

Y (t) — ST ||¢|?, then from the inequality (4.1.5)) it follows that

D(t) + %E(t) <0. (4.1.17)

We integrate the inequality (4.1.17]) from O to ¢ and obtain
¢
/ D(s)ds < E(0) — E(t) <Y (0) — (F(y),1q) < K. (4.1.18)
0

If we multiply the inequality (4.1.17) by ¢ and use the estimate (4.1.12]), then we obtain

ID(t) + %[tE(t)] <Y (0)e " +Cy. (4.1.19)

If we integrate the inequality (4.1.19)) from 0 to ¢, then we obtain
t
/ sD(s)ds < Ko + Crt, (4.1.20)
0

where C7 := C1 + Cy. The rest of the derivations are so called “a priory estimates” validity
of which can verified by using the Galerkin approximations. If we differentiate (4.0.1)) with
respect to ¢t and take the inner product in L?(2) of the resulting relation by t¢;, then we

obtain

Tt d

5&”%”2 + &V |* + t(f' (), 80?) = 2t(ut, ¢1). (4.1.21)

If we take the inner product of (4.0.2)) with (4/¢)u;, then we obtain

4t 2kt d
7 luel* + 2 (ur, 1) + === | Vul* = 0. (4.1.22)

From the last two relations we deduce the following inequality :

4
dt

2Kt

Tt T 2K
5”%”2 + THVUHQ - 5”%”2 - 7||VUH2 — ast|pe]* <0, (4.1.23)



Chapter 4: Global Attractor 61

where we have used the lower bound —as for the derivative of f. If we integrate the

inequality (4.1.23)) from 0 to ¢ and use the estimates (4.1.13)), (4.1.18]), (4.1.20)), then we

deduce the following inequality :
Dol + ZHNValP < Ko+ Cat.
Therefore, for any ¢ > 0 we have
gHgotHz < Kst™' + Cs. (4.1.24)
Note that f satisfies the following inequality :

IF@IP < Co |1+ lel2800) | (4.1.25)

where the constant C1; depends only on |Q]. If d =1 or d =2, then 2 < 2(p—1) < c0. If
d =3, then 2 < 2(p — 1) < 6. In any case, H}(Q) is continuously embedded in L2P~D(Q).

Therefore, from (4.1.13]) and (4.1.25)) we obtain

1f ()] < Cho [1 + V| 2P7V| < Kye™ + Chy, (4.1.26)

for v :=26(p —1). From (4.1.13)), (4.1.24) and (4.1.26]) it follows that

|Ap|? < Kgt ™' + Kre ™% + C1p, forall t> 0. (4.1.27)

If we set P(t) := Z|l¢]|> + 22(|Vul/?, then from (4.1.21)-(4.1.22) we deduce the following

inequality :

d
| Ver|l® + P(t) = CiaP(t) < 0. (4.1.28)

If we multiply (4.1.28) by e~“13¢, then we obtain

d

o [P(t)e" <] < 0.
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Let € € (0,1). If we integrate the last inequality from € to t, then we get

P(t) < C14P(€)e®3 < Kge®13t for all t>e. (4.1.29)

From (4.1.28) and (4.1.29) it follows that

d
E||Vr? + £P(t) < c13KgeC3t, forall t>e. (4.1.30)

By integrating (4.1.30) from € to ¢, we get

t
{2/ |Vps|2ds < 2KgeC13t,  for all t>e. (4.1.31)

It we multiply (4.1.30) by ¢, then we obtain
2 2 d Cist
Et|Vor||© + = [tP(t)] < c1aKste™ 3", for all t > e.

dt

By integrating the last inequality from € to ¢, we obtain
t
¢ / s||Vs||2ds < Kgte®13t,  for all t>e. (4.1.32)
€

Now we differentiate the equations (4.0.1])-(4.0.4) with respect to ¢, take the inner product
in L2(Q) with tpy and (4/€)tu;, respectively, and then we add the obtained relations :

d [¢ 2 4kt
t [QHV%II2 + eHUtHQ] + 7t oull® + = I Vurl® + (£ (9)orpu) = 0. (4.1.33)

By the Cauchy’s inequality with e = 2—1T, we obtain
' Lo 2 T 2
|(f'(@)et, o1e) | < ;Hf (@)et| +§H¢tt|’ :
By the assumption (4.0.6) and the Holders’s inequality, we obtain
_ 2(p—2
17 @)eel® < Cus (el + 1?2 il?] < Cis el + el 30 gy 10t 22010y -

Since HJ(9) is continuously embedded in L2P~1(Q), from the last two inequalities we
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deduce the following estimate :

_ T T
(F'(©)ees )] < Cirs | leel? + VRPNV P |45 loull® < Kio+Kun Vel +5 lull.
2 2

From (4.1.33)) and the last estimate we deduce the following inequality :

d 2t 2 2t 2 €2 2 2 2 2
SISVl + Sl = S IVl = Sl < Kot + Kt Vel ®. (4.1.34)

If we integrate (4.1.34)) from € to ¢, then from the estimates (4.1.18),(4.1.31)) and (4.1.32)

we obtain
%

o
7||Vg0t\|2 + 7\\ut||2 < Kig + Ky3t? + Kqstef3t,

From the last inequality it follows that
2 2 -1 c13t
ZHUtH < Kot + Kqst + K14€e3',  forall t>e.

Therefore,

||AUH2 < K15t_1 + K6t + K176613t, for all t>e. (4135)

From the estimates (4.1.27) and (4.1.35)) it follows that the operator S(t) is compact, for

each t > € > 0, where ¢ is arbitrarily small. Therefore, the existence of a global attractor
A follows from the Corollary The attractor A is connected being a subset of a
connected phase space H{(Q) x H}(Q). Furthermore, from the estimates we obtained it is
clear that A is a closed and bounded subset of the space H3(2) x HZ(€).

O

Remark 4.1.3. The idea we have used here to estimate the terms Ay and Au is due to

Prof. O.A. Ladyzhenskaya (See [4]).
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