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ABSTRACT

Many real-world decision-making situations involve simultaneous consideration of

conflicting objectives. When a mathematical programming framework is utilized to

model such problems, the result is a multiobjective optimization problem, which no

longer possesses a unique optimal objective function value. In multiobjective opti-

mization, the set of efficient solutions is used instead of the optimal solution. An

efficient solution has the property that no improvement on any objective is possi-

ble without sacrificing at least another objective. The solution to a multiobjective

optimization problem consists of the efficient set which portrays all relevant trade-

off information to a decision maker. Contributions to the theory of multiobjective

optimization date back to the 1970s. During the last two decades there has been

significant progress in terms of practically implementable algorithms to solve several

versions of the multiple objective optimization problem. Among these is the bicrite-

ria case that corresponds to optimization of two objective functions and a number of

well-studied discrete optimization problems with two and sometimes three objectives.

However, enumerating the efficient set and enabling the decision maker to find a most-

preferred solution within the efficient set remains a challenge for the general case. In

this work, we revisit the theory of multiple objective optimization with the goal of

building algorithms that are capable of solving problems with more than two objec-

tives. Our main concern is to develop methods that enumerate the efficient set for

multiobjective optimization problems. We develop an algorithm that enumerates the

entire set of solutions for multiple objective discrete optimization problems. However

in general the efficient set is not easy to deal with, so it might be better to generate

iv



a fine subset of the efficient set. Such sets are called representations. We consider

finding representations of the efficient set. Although representations of the efficient

set can be found in many different ways, imposing quality guarantees has been a chal-

lenge. Our efforts in this direction lead to a bilevel programming-based subproblem.

By using the bilevel formulation, we propose an algorithm to generate representations

that satisfy the specified error factor. We test the algorithm on multiobjective linear

programming problems.



ÖZETÇE

Birçok gerçek hayat karar verme problemi birbiriyle çelişen birden fazla amacın

dikkate alınmasını gerektirir. Karar verme sürecinde matematiksel programlama kul-

lanıldığında, bu problem çok amaçlı eniyileme problemine dönüşür. Çok amaçlı eniyi-

leme probleminde birden fazla amaç fonksiyonu dikkate alındığından eniyi çözüm

yerine etkin çözüm kullanılmaktadır. Bir etkin çözümün bir amaç fonksiyonunun iyi-

leştirilebilmesi için diğer amaç fonksiyonlarından birinin kötüleştirilmesi gerekmekte-

dir. Çok amaçlı eniyileme problemine ait bütün etkin çözümler etkin çözüm kümesi

olarak tanımlanır ve karar vericiye bütün uygun ödünleşme bilgisini sunar. Çok amaçlı

eniyileme teorisine yapılan katkılar 1970’lere kadar uzanmaktadır. Diğer taraftan son

20 yılda ise farklı tipteki çok amaçlı eniyileme problemleri için pratik olarak uygulana-

bilir algoritmalar geliştirilmiştir. Bu çalışmalarda iki amaç fonksiyonlu problemler

ve iki veya üç amaç fonskiyonuna sahip olan kesikli eniyileme problemleri dikkate

alınmıştır. Bu tezde ikiden fazla amaç fonksiyonlu problemleri çözebilmek için gerekli

olan teorik altyapı oluşturulmuştur. Daha sonrasında bu sonuçlar kullanılarak etkin

çözüm kümesini türeten yeni bir yöntem önerilmiştir. Fakat etkin çözüm kümesi genel-

likle büyük bir kümedir ve bütün olarak değerlendirilmesi zordur. Bu nedenle etkin

çözüm kümesi yerine bu kümenin bir alt kümesinin türetilmesi tercih edilebilmektedir.

Bu özelliğe sahip olan kümelere temsili etkin çözüm kümesi denilmektedir. Temsili

etkin çözüm kümesi birçok farklı yöntemle bulunabilir. Fakat bu kümenin belirlenen

bir kalite garantisini sağlaması ile tanımlanan problem oldukça zordur. Bu kapsamda

iki-seviyeli eniyileme problemleri kullanılmıştır. Bu tezde iki-seviyeli eniyileme prob-

leminden faydalanılarak çok amaçlı eniyileme problemleri için temsili etkin çözüm
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kümesini belirli bir kalite garantisi ile türetebilecek bir algoritma önerilmiştir. Bu

algoritma çok amaçlı doğrusal programlama problemleri üzerinde test edilmiştir.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Many real life decision making problems take into account a single objective.

However, most of decision making problems have multiple objectives by nature. Hence

it is necessary to consider several conflicting objectives in the decision making process.

When a mathematical programming framework is utilized to model such problems,

the result is multiobjective optimization which is a generalization of traditional single-

objective optimization.

Optimization problems with multiple objectives can be found in a wide variety of

applications. In financial engineering, portfolio optimization is a well-studied prob-

lem, and the problem has two objectives by definition. Portfolio optimization aims

to determine the weights of various assets to be held in a portfolio that maximize the

expected value of portfolio returns, while minimizing the risk that is measured by the

standard deviation of portfolio returns in the classical model [133]. Hence, solution

techniques that are used to solve multiobjective optimization methods have been ap-

plied to the portfolio optimization problem, as in [59], [9] and [36]. Additionally, new

objective functions may be considered. For instance, in [7], the portfolio optimization

problem has three objectives: risk, return and the number of securities in the portfo-

lio. In healthcare, intensity-modulated radiation treatment planning selects the beam

angles and computes the intensity of the beams to maximize the dosage to tumor while

minimizing the dosage to organs-at-risk [153]. Bertsimas et al. deal with the radiation

treatment planning problem by combining several objectives into a single objective
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[28]. In data mining, support vector machines (SVM) construct a hyperplane with the

maximum-margin that separates the data into two classes while minimizing empirical

errors [46]. In other words, SVM classification problem has two objectives that are

maximization of the margin and minimization of the empirical errors. [11] and [10]

consider SVM classification as an optimization problem with multiple objectives. In

supply chain management, sustainability concerns have led to considerations of cost

effectiveness and greenhouse gas emissions [193]. In other words, environmentally

conscious supply chain management problems consider maximization of the profits

and minimization of the greenhouse gas emissions simultaneously. Scheduling is one

of the most studied problems in combinatorial optimization and has several appli-

cations that consider more than one objective [12]. For example, Dhaenens et al.

solve a flow-shop scheduling problem with three objectives that are completion time

of the last job (makespan), total tardiness and maximum tardiness [57]. These are

only a few applications of multiobjective optimization. Many others can be found,

e.g. in routing [190], service systems [126], airline operations [128], and engineering

design [134]. These applications denote the widespread applicability and usefulness

of multiobjective optimization.

In a single-objective optimization model, there is a single optimal objective func-

tion and therefore comparing feasible solutions based on this value is straight forward.

On the other hand, in multiobjective optimization, the set of efficient solutions is used

instead of the optimal solution. An efficient solution has the property that no im-

provement in any objective is possible without sacrificing at least one other objective.

The set of all efficient solutions is called the efficient set. This set portrays all relevant

trade-off information to a decision maker. The decision maker should evaluate these

solutions and select the most preferred one according to his/her preferences.

In this thesis, we develop exact and representative solution methodologies for

multiobjective optimization problem (MOP). In exact methods, the aim is to obtain
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either all efficient solutions in the decision space or all nondominated solutions1 in the

outcome space. Several exact algorithms have been proposed to solve multiobjective

optimization problems, but most of them are limited to two objective functions. A

multiobjective optimization problem with two objective functions is called a bicriteria

optimization problem (BOP). BOP is a well studied problem because of the simplicity

of the parametric search. When the number of objective functions is increased from

two to three, the problem gets more complicated. As Ehrgott and Gandibleux state

regarding multiobjective optimization, “three is more than two plus one” [68].

Generating the efficient set gives all relevant information to the decision maker.

The efficient set of a MOP can rarely be defined by a closed-form formula and generat-

ing all efficient solutions can be time consuming. Thus, instead of obtaining the entire

efficient set, generating a finite discrete subset of it, which is called a representative

set, may be a better way to deal with the problem. In this context, a representa-

tion method tries to determine a subset of the efficient set that satisfies some quality

measures. These measures include coverage level of the efficient set, diversity of the

solutions and the number of solutions [160]. Our main goal is to develop exact and

representation methods for multiobjective optimization problems with any number of

objective functions.

Along with the general MOP, we also consider the problem with discrete variables

which is called multiobjective discrete optimization (MODO) problem. In MODO, the

main issue is to develop effective procedures to generate efficient solutions. Generally,

scalarization methods are utilized to obtain efficient solutions for MODO problems,

which formulate a single-objective optimization problem such that optimal solutions

to the single-objective optimization problem are efficient solutions to the MOP [66].

In this thesis, we develop a new algorithm to generate all nondominated solutions for

a MODO problem with any number of objective functions [114]. In this algorithm, the

1The set of nondominated solutions is the image of the efficient solutions set in the outcome
space.
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search is managed over (p− 1)-dimensional rectangles where p represents the number

of objectives in the problem. For each rectangle, two-stage optimization problems

are solved where the first stage problem is an ε-constraint scalarization. The ε-

constraint method retains one of the p objective functions as the objective function,

while the remaining p−1 are turned into constraints [93]. The method searches (p−1)-

dimensional space exhaustively, and guarantees to find all nondominated solutions

in a finite number of iterations. We compare our method with former studies on

multiobjective knapsack and assignment problem instances with up to five objectives.

Another interesting research topic for MODO problems is finding the nadir point.

The nadir point is constructed from the worst objective values over the efficient set of

a multiobjective optimization problem. Obtaining the nadir point is generally a hard

problem [71]. The nadir point is an important element of multiobjective optimization,

because all components of this point define the upper bound of the efficient set. In

fact, there are some methods that require the nadir point as an input, and the nadir

point is also useful for finding the representative sets. Hence, determination of the

nadir point has been studied extensively and several exact and heuristic methods have

been proposed for the problem [65]. In this thesis, we characterize the determination

of nadir point with two-stage subproblems [113]. Based on the characterization result,

we present an algorithm that searches the (p − 2)-dimensional parametric space ex-

haustively. Also, the algorithm utilizes the nadir point underestimator information to

eliminate some portion of the search space beforehand. We show that the algorithm

guarantees to find the nadir point for MODO problems with any number of objec-

tive functions in a finite number of iterations. We test the method on multiobjective

knapsack, assignment and integer linear programming problems.

The efficient set of a MOP is generally a large set to deal with. For example,

although MODO problems with bounded efficient sets have finite number of efficient

solutions, the size of the efficient set might still be too large [114]. The decision maker

intends to choose an efficient solution from the efficient set. As the size of the efficient
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set increases, the decision maker has to work on a larger set. Additionally, obtaining

an efficient solution has a cost and it is not negligible. Due to these reasons, instead

of generating the entire efficient set, obtaining a finite subset, a representative set, is

an interesting problem to study.

In general, a representative set should contain solutions from every portion of the

nondominated set without missing any region. This assessment criteria is defined as

coverage error which is one of the well-known quality measures for representations

[160]. In this thesis, we generate a representative set that satisfies the specified

coverage error requirement, i.e. the minimum distance between the worst represented

point in the nondominated set and the representative set should be less than a specified

coverage level. We utilize p-dimensional rectangles to search the outcome space.

During the search, some of the rectangles can be eliminated when they satisfy the

specified coverage error. We show that the algorithm terminates in a finite number

of iterations, and generates a representative set that satisfies specified coverage error

level for MODO problems. We test the algorithm on multiobjective knapsack and

assignment problems.

The proposed algorithm generates representative sets with specified coverage er-

rors, however the algorithm is limited to solve MODO problems. Hence, we generalize

the representation algorithm for the continuous multiobjective optimization problem

with any number of objective functions. In this algorithm, we utilize bilevel optimiza-

tion to find a nondominated solution in a given rectangle. We test the method on

multiobjective linear programming (MOLP) problems. When the aim is to obtain a

nondominated solution in a rectangle for a MOLP problem, general bilevel program-

ming problem turns into a bilevel linear programming (BLP) problem. We use the

penalty approach [132] and an integer programming reformulation [84] to solve the

BLP problem. Both methods utilize KKT optimality conditions to turn the BLP

problem into a single level optimization problem [55] which is referred to as a math-

ematical program with complementarity constraints [129]. In the penalty approach,
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complemantarity constraints of KKT optimality conditions are moved into the ob-

jective function with a penalty parameter. In integer programming reformulation,

complemantarity constraints are turned into linear constraints by using binary vari-

ables and a sufficiently large coefficient [14]. Finally we use this algorithm to obtain

better accuracy in support vector machine (SVM) classification on imbalanced data

set problem. Askan and Sayin model the SVM classification on imbalanced data set

problem as a MOLP with three objectives [10]. We generate representative sets for

this problem, and determine the best performing hyperplane that separates the data.

The organization of this thesis is as follows. In Chapter 2, we present the litera-

ture review for the exact and representation solution methods for MODO problems

with necessary definitions and notation. In Chapter 3, we present a new algorithm to

generate all nondominated solutions for MODO problems. In Chapter 4, we give an

algorithm to determine the nadir point for MODO problems. In Chapter 5, we present

a representation method that generates representative sets with specified coverage er-

ror for multiobjective discrete optimization problems. In Chapter 6, we model the

problem of finding a nondominated solution in a rectangle as a bilevel optimization

problem. By using this result, we present a representation algorithm for multiobjec-

tive optimization problems. Our conclusions and directions for further research are

presented in Chapter 7.
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Chapter 2

LITERATURE REVIEW

In this chapter, we present notation and definitions, and literature review on exact

and representation methods for MOP problems. We start by giving a general formula-

tion of multiobjective problems. We study multiobjective optimization problems with

discrete variables in detail. In Section 2.2, we give the formulation of MODO prob-

lems, and well-studied MODO problems. In Section 2.3, the exact solution methods

for multiobjective optimization problems are covered under four different subsections.

These are are linear scalarization method, ε-constraint method, min-max approaches

and other exact solution methods. In Section 2.4, we give the definitions of the ideal

and nadir points that define the boundaries of the efficient set. We also present the

literature on exact solution methods that compute the nadir point. Finally, we discuss

representation methods with and without quality guarantees in Section 2.5.

2.1. Multiobjective Optimization

In this section, the basic definitions and the notation related to MOP and the

necessary foundations for the methods described in the forthcoming chapters are

established.

In multiobjective optimization p objective functions fj(x) : Rn → R for j =

1, . . . , p have to be optimized. In this thesis, without loss of generality, we assume that

each objective is minimized. The feasible set, which is defined by a set of constraints,

is denoted as X . Any solution x ∈ X is represented with x ∈ Rn. Each feasible

solution x ∈ X is mapped into its corresponding objective vector y = f(x) and
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Y = {y ∈ Rp : y = f(x) for some x ∈ X} is referred to as the set of feasible outcomes

in the objective space. In mathematical terms, MOP is defined as:

(MOP) min f(x) = [f1(x), . . . , fp(x)]

s.t. x ∈ X
(2.1)

In the above formulation, when the decision variables are continuous, and the

objective functions and constraints are linear, the MOP turns into a MOLP problem

[171]. If the objectives or the constraints incorporate any nonlinear term, then the

problem is called a multiobjective nonlinear programming problem [140]. In some

problems, the decision variables can be discrete. Any MOP with discrete variables is

called a MODO problem which is discussed in more detail in the following section.

Multiobjective optimization problems can also be classified with respect to the number

of objective functions. MOP with two objectives is the special case of MOP, and it

is called as BOP.

For single criterion optimization, the concept of optimality is well-defined. How-

ever, due to conflicting objectives, MOP is expected to have more than one solution.

These solutions are called efficient solutions. We give the definitions of weakly effi-

cient and efficient solution below. Note that our main interest is to generate efficient

solutions.

Definition 1. A solution x∗ ∈ X is called weakly efficient if there exists no feasible

solution x ∈ X such that fj(x) < fj(x
∗) for all j ∈ {1, . . . , p}.

Definition 2. A solution x∗ ∈ X is called an efficient solution if there exists no

feasible solution x ∈ X such that fj(x) ≤ fj(x
∗) for all j ∈ {1, . . . , p} and there exists

̂ ∈ {1, . . . , p} such that f̂(x) < f̂(x
∗). For an efficient solution x∗, f(x∗) ∈ Rp is

referred to as a nondominated solution in the outcome space.

The set of all efficient solutions for MOP is called the efficient set and is denoted

as XE. The image of the efficient set in the objective space is called the nondominated
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set and is denoted as YN , i.e. YN = {y ∈ Rp : y = f(x) for some x ∈ XE}.

Note that any efficient solution may be an optimal solution for MOP. In contrast,

there may exist feasible solutions that are never optimal to MOP. For such a solution,

it is possible to improve one of the objective functions without sacrificing another

objective. These are called dominated solutions. A formal definition is given below.

Definition 3. A solution f(x∗) ∈ Y is called a dominated solution if there exists

a feasible solution x ∈ X such that fj(x) ≤ fj(x
∗) for all j ∈ {1, . . . , p} and there

exists ̂ ∈ {1, . . . , p} such that f̂(x) < f̂(x
∗), f(x) ∈ Y dominates f(x∗) ∈ Y.

In Figure 2.1, the outcome space of a bicriteria discrete optimization problem

is given. Gray shaded region represents the convex hull of the outcome space, and

the convex hull of Y is denoted as conv(Y). Circles with bold borderline are the

nondominated solutions. Hence, the nondominated set of this problem is YN =

{y1, y2, y3, y4, y5, y6}. Additionally, the solutions with labels 7, 8, 13 and 14 are im-

ages of some weakly efficient solutions since there exists no solution which is better

in both objectives. Weakly nondominated solutions may be dominated by nondom-

inated solutions and are indeed not desirable. Nevertheless, it is important to make

the distinction from a theoretical point of view because some methods may deliver

weakly nondominated solutions unless some additional measure is taken.

In nonconvex multiobjective optimization problems, such as MODO problems, an

important classification exists for the efficient solutions: supported efficient solutions

and nonsupported efficient solutions. The nonsupported nondominated vectors are

located inside the conv(Y) in the objective space, while the supported vectors are

found on the boundaries of the conv(Y). Definitions are given below:

Definition 4. Let x ∈ XE. If there exist λ > 0, λ ∈ Rp, such that x ∈ XE is

an optimal solution of (2.2) (see Section 2.3.1 for the details of the formulation),

then x is called a supported efficient solution and y = f(x) is called supported

nondominated solution.
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Figure 2.1: Outcome space of a bicriteria discrete optimization problem.

P (λ) min λTf(x)

s.t. x ∈ X
(2.2)

The set of of supported efficient solutions is also divided into two subsets that are

extreme supported efficient solutions and nonextreme efficient solutions. Mapping

of these in the outcome space are called extreme supported nondominated solutions

and nonextreme supported nondominated solutions, respectively. If y = f(x) is an ex-

treme point of conv(Y), then it is called an extreme supported nondominated solution.

The remaining supported nondominated solutions are called nonextreme supported

nondominated solutions.

In nonconvex multiobjective optimization problems, there may exist some solu-

tions which are not optimal to P (λ) for some λ > 0. These solutions are called

nonsupported efficient solutions. Note that union of supported and nonsupported

efficient solutions forms the efficient set. In Figure 2.1, the image of supported effi-

cient solutions are y1, y2, y3 and y6, and all these solutions are on the boundary of
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conv(Y). The extreme points of conv(Y) are y1, y2 and y6, i.e. extreme supported

nondominated solutions of the problem. The nondominated solutions with label 4

and 5 are in the interior of conv(Y). Thus, y4 and y5 are images of nonsupported

efficient solutions.

Another important formulation that is related to multiobjective optimization is

the lexicographic optimization problem. For a given priority order, the lexicographic

optimization program requires solving p single-objective optimization problems [19].

At first, the objective function in the first order is minimized over the feasible set of

the problem. This objective function is bounded by the optimal objective value of the

first single-objective optimization problem. Then, the objective function in the second

order is minimized over the updated feasible region. The additional objective bound

constraint is added iteratively to obtain the lexicographically optimal solution. More

importantly, any lexicographically optimal solution of a MOP is efficient without any

convexity assumption [65]. While the essential feature of efficiency is the existence of

trade-off between objectives, lexicographic optimization considers lexicographic order

to compare objective vectors in the objective space.

In the rest of thesis, some of the formulations require a metric d(ya, yb) definition

on Rp which is used in measuring the distance between outcomes in the objective

space. The following group of functions are metrics on Rp.

Definition 5. For ya, yb ∈ Rp

Lq(y
a, yb) =


(∑p

j=1 |yaj − ybj |q
)1/q

for 1 ≤ q <∞

maxj=1,...,p |yaj − ybj | for q =∞

is referred to as the Lq-norm.
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2.2. Multiobjective Discrete Optimization

Discrete optimization is an extensively studied field of mathematical optimization

with respect to the applications and the solution methods, due to its wide applicability

in real world problems. Discrete optimization problem with more than one objective

function is called MODO problem. As most discrete optimization problems are com-

putationally difficult to solve with a single objective function [88], solving MODO

problems is also difficult [67]. MODO is a special case of MOP where all variables

are discrete. Therefore, the feasible set of MODO is also discrete. In mathematical

terms, MODO is defined as:

(MODO) min f(x) = [f1(x), . . . , fp(x)]

s.t. x ∈ X

x ∈ Zn

Since the feasible set of MODO is discrete, if the efficient set of MODO is bounded,

then XE has a finite number of elements. Therefore, it is possible to enumerate all

efficient solutions of a MODO problem. In Chapter 3, we propose an algorithm to

generate all nondominated solutions of MODO problems.

Three comprehensive surveys have been presented in [180], [67] and [68] so far

related to applications and solution methodologies for MODO problems. In the fol-

lowing subsection, we review MODO problems with special structure. Following that,

we discuss multiobjective integer linear programming problem (MOILP). MOILP is

a special case of MODO where all objective functions and constraints are linear.

2.2.1 Multiobjective discrete optimization problems with special structures

Some MODO problems that are widely studied are multiobjective knapsack prob-

lem [186], multiobjective assignment problem [150], multiobjective network flow prob-

lem [94], multiobjective travelling salesman problem [104], multiobjective transporta-
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tion problem [8], multiobjective facility location problem [41], and multiobjective

shortest path problem [87]. MODO problems are generally difficult to solve. As an

example, shortest path problem is in the class of easy problems. However, multiob-

jective shortest path problem is intractable, i.e. the number of efficient solutions may

be exponential in the number of nodes [96]. Since these problems are difficult, some

approximation results have also been published [147, 64, 69].

In this thesis, we use multiobjective knapsack and multiobjective assignment prob-

lem from the class of MODO problems with special structures as test instances. Hence,

these two problems are explained in detail.

The knapsack problem is one of the well studied discrete optimization problems in

the literature [109]. Moreover, some real-world applications such as capital budgeting

[156] have been modeled as multiobjective knapsack problems. The multiobjective

knapsack problem consists of a postive integer capacity W with n objects. Each

object r has a positive integer weight wr and p nonnegative integer profits vr. Decision

variable xr denotes whether item r is selected for the knapsack or not.

(MOKP) max
n∑
r=1

vjrxr j = {1, . . . , p} (2.3)

s.t.
n∑
r=1

wrxr ≤ W (2.4)

xr ∈ {0, 1} r = 1, . . . , n (2.5)

Equation (2.3) is the set of p objective functions and each objective function

denotes the total profit of chosen items. Equation (2.4) is the capacity constraint.

The total weight of selected objects has to be less than or equal to the knapsack’s

capacity. Equation (2.5) represents the binary integrality constraints.

Several exact solution methods have been proposed to solve multiobjective knap-

sack problem. Klamroth and Wiecek present several dynamic programming formu-
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lations [116]. Visée et al. [186] use a two phase algorithm is used to generate the

efficient set. In the two-phase algortihm, they obtain the nonsupported efficient solu-

tions by using a branch-and-bound procedure. Captivo et al. [38] present a labeling

algorithm that is based on a transformation of the problem into a bicriteria shortest

path problem. Bazgan et al. [17] propose an approach based on dynamic program-

ming. Figueira et al. [83] present another labeling algorithm to find all nondominated

solutions.

The assignment problem aims to obtain optimal assignments between a set of

agents r ∈ {1, . . . , n} and a set of tasks l ∈ {1 . . . , n} where each assignment has a

nonnegative cost crl. The multiobjective assignment problem is formulated as follows,

(MOAP) min
n∑
r=1

n∑
l=1

ckrlxrl j = {1, . . . , p} (2.6)

s.t.
n∑
l=1

xrl = 1 r = 1, . . . , n (2.7)

n∑
r=1

xrl = 1 l = 1, . . . , n (2.8)

xrl ∈ {0, 1} r = 1, . . . , n; l = 1, . . . , n (2.9)

The formulation consists of p objective functions where all objective coefficients

are nonnegative integers. The decision variable xrl takes a value of one if agent r

is assigned to task l. Equation (2.6) represents the set of objective functions where

each minimizes total assignment cost with different cost coefficients. Equation (2.7)

ensures that each agent is assigned to exactly one task, and similarly equation (2.8)

guarantees that each task is assigned to exactly one agent. Equation (2.9) is the

binary integrality constraints.

Early studies for multiobjective optimization assignment problem only deal with

supported efficient solutions by combining the several objectives with positive coef-
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ficients [68]. Malhotra et al. [130] use the two dual problems to generate the set

of efficient solutions for bicriteria assignment problem. Przybylski et al. present a

two-phase algorithm to generate the efficient set of a bicriteria assignment problem

in [150]. In the first-phase, the algorithm generates all supported efficient solutions

based on dichotomic scheme proposed by Aneja and Nair [8]. In the second-phase, all

nonsupported efficient solutions are enumerated in an improved version of [180]. Same

authors generalize this method to deal with the multiobjective assignment problem

with any number of objectives [152]. This algorithm is also a two-phase method, in the

first phase extreme supported efficient solutions are generated by using the solution

methodology presented in [151]. In the following phase, the algorithm enumerates

remaining efficient solutions.

2.2.2 The multiobjective integer linear programming problems

We also test our proposed algorithms on general multiobjective integer linear pro-

gramming problems. MOILP is a special case of MODO where all objective functions

and constraints are linear. Here, m and n represent the number of constraints and

number of variables, respectively, and x is the decision vector of the problem. Given

coefficients of the objective functions cjl , the technical coefficients arl, and right-hand

side values br where r ∈ {1, . . . ,m}, l ∈ {1, . . . , n}, and j ∈ {1, . . . , p}, MOILP

problem is defined as follows.

(MOILP) max
n∑
l=1

cjlxl j = 1, . . . , p (2.10)

s.t.
n∑
l=1

arlxl ≤ br r = 1, . . . ,m (2.11)

xl ≥ 0 and integer l = 1, . . . , n. (2.12)

Equation (2.10) is the set of p objective functions. Equation (2.11) represents
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the set of constraints of MOILP problem. Equation (2.5) represents the integrality

constraints. Evans [78] and Teghem and Kunsch [178] present early surveys about

the exact solution methods for MOILP.

2.3. Exact Methods for Multiobjective Optimization Problems

In this section, we discuss the exact solution methods for multiobjective optimiza-

tion problems. The exact methods are reviewed in four subsections. The subsections

are linear scalarization, ε-constraint method, min-max methods and other solution

methods.

2.3.1 Linear scalarization

One straightforward way of solving a multiobjective optimization problem is by

reducing it to a single-objective optimization problem using a weighted sum formula-

tion (or linear scalarization) that combines multiple objectives [195]. The formulation

of the linear scalarization method is given in (2.2). For a given w > 0, the optimal

solution of the weighted sum formulation P (λ) is an efficient solution [195]. Since the

aim of the exact methods is to generate the efficient set, it is also necessary to show

that efficient solutions are optimal to P (λ) for some λ > 0. For this purpose consider

the following theorem.

Theorem 1. Let X ⊂ Rn be convex and assume fj : X → R are convex for all

k = 1, . . . , p. Then, x ∈ X is efficient if and only if x is an optimal solution of P (λ)

with λ > 0 [89].

Although the theorem is restricted to convexity, it indicates that P (λ) is able to

enumerate all efficient solutions for convex multiobjective optimization problems.

A special case of the convex MOP is a multiobjective problem with linear objec-

tives and constraints which is referred to as MOLP. We briefly present results for

MOLP in the following paragraph.
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Yu and Zeleney present some theoretical results for MOLP in [194]. They show

that the set of all nondominated solutions is a subset of the convex hull of extreme

nondominated solutions. Finally, the authors propose multiobjective version of the

simplex method, and use this method to identify the nondominated set. Isermann

gives an algorithm that enumerates all efficient solutions of MOLP in three steps

[101]. The algorithm obtains an initial basic (extreme) efficient solution by solving a

simple linear programming problem, then all basic efficient solutions are established.

Finally, all efficient solutions are constructed by using the results of the previous step.

Ecker and Kouada propose an algorithm to deal with extreme efficient solutions for

MOLP in [61]. Aneja and Nair propose an algorithm to generate all extreme efficient

solutions for bicriteria linear programming problems [8] by using weighted sum scalar-

ization. Their method starts with two extreme nondominated solutions which define

the boundaries of the nondominated set. The algorithm searches for a new extreme

nondominated solution in between previously obtained points by constructing a new

weight. When all intervals are investigated the algorithm is terminated. Aneja and

Nair’s algorithm can be used to obtain extreme nondominated solutions of any bicri-

teria linear programming problem. However, it cannot be applied to MOLP problems

with any number of objective functions.

Weighted sum scalarization can be used in MODO problems. However as the

feasible set is nonconvex, it is not possible to obtain the entire efficient set by using

linear scalarization. Only supported efficient solutions can be obtained by using the

weighted sum formulation. Nondominated solutions which are located in the interior

of conv(Y) cannot be generated. For bicriteria MODO problems, Aneja and Nair’s

algorithm [8] can be used to generate all extreme supported efficient solutions as in

[181].

All these approaches can be used to solve bicriteria problems relatively easily.

For MOP with any number of objective functions, Benson and Sun [27] generalize

Aneja and Nair’s algorithm to obtain extreme efficient solutions of MOLP problems.
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They show that weight space of each extreme efficient solution is convex for MOLP

problems. In other words, there exists a weight space ŵ which is a subset of positive

orthant of Rp and convex such that for any w ∈ ŵ the efficient solution x∗ is optimal

to formulation P (w). Benson and Sun present an algorithm to obtain all extreme effi-

cient solutions for MOLP by using the convexity property of the search space. Based

on these results, Przybylski et al. [151] present a recursive algorithm to generate all

extreme supported efficient solutions of MODO problems. In this algorithm, MODO

with p objectives problem is reduced (p− 1), (p− 2), . . . , 2 objective problems, recur-

sively. They test the recursive algorithm on three-objective assignment and knapsack

problems. Özpeynirci and Köksalan [146] also use the weight space decomposition

result to generate all extreme supported efficient solutions for MODO problems. They

test the computational performance of the approach on multiobjective assignment,

knapsack, and traveling salesperson problems.

2.3.2 ε-Constraint method

Another well-known technique to solve multiobjective optimization problems is

the ε-constraint method, introduced by Haimes in 1971 [93]. In this method, one of

the objectives is chosen as the objective function and the others are transformed into

constraints. An extensive discussion of this method can be found in [40]. For some

k ∈ {1, . . . , p} and ε ∈ Rp−1, ε-constraint formulation, Pk(ε), is as follows,

Pk(ε) min fk(x)

s.t. fj(x) ≤ εj j = 1, . . . , p; j 6= k

x ∈ X .

(2.13)

In the above formulation, the right-hand sides of the constraints, ε ∈ Rp−1, are

quantities in the objective space. The following theorem shows that optimal solution

of the ε-constraint method is a weakly efficient solution [65].
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Theorem 2. For any ε ∈ Rp−1, let x∗ ∈ X be the optimal solution of Pk(ε) for some

k ∈ {1, . . . , p}, then x∗ is a weakly efficient solution.

Proof. Let x∗ be the optimal solution to the Pk(ε). Assume that x∗ is not a weakly

efficient solution, then there exists a solution x′ ∈ X such that f(x′) < f(x∗). Since

fj(x
′) < fj(x

∗) ≤ εj for j = 1, . . . , p and j 6= k, x′ is feasible to Pk(ε). This contradicts

the optimality of x∗, because fk(x
′) < fk(x

∗). Therefore, the optimal solution of the

Pk(ε) is a weakly efficient solution.

This is a useful result for the ε-constraint method; however, we are interested in

efficient solutions. Different methods have been proposed to avoid weakly efficient

solutions while using the ε-constraint approach. First method is lexicographic opti-

mization [19] that requires solving p subsequent subproblems, and its characterization

result was presented in [18]. Laumanns et al. [122] use lexicographic optimization

to deal with weakly efficient solutions. The hybrid approach is a combination of

weighted sum scalarization with the ε-constraint method [92]. Augmentation suggests

incorporating the sum of other objective functions of the subproblem by utilizing a

sufficiently small weight [171] which is applied in ε-constraint method by Mavrotas

[136] and Ozlen and Azizoglu [144].

In Theorem 2, it is shown that for any efficient solution x ∈ XE there exists

ε ∈ Rp−1 such that x∗ is optimal to the ε-constraint method [39].

Theorem 3. Let x∗ ∈ XE. Then there exist an ε̂ ∈ Rp such that x∗ is an optimal

solution of Pk(ε̂) for some k ∈ {1, . . . , p}.

Proof. Let ε̂ = f(x∗). Assume x∗ is not an optimal solution of Pk(ε̂) for some k ∈

{1, . . . , p}. Then there exist a solution x′ ∈ X that solves Pk(ε̂). Since x′ is optimal

to Pk(ε̂), fk(x) < fk(x
∗) and fj(x

′) ≤ ε̂j = fj(x
∗) for all j ∈ {1, . . . , p} and j 6= k.

This implies that x′ dominated x∗. Hence, x∗ /∈ XE.
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Theorems 2 and 3 show that with appropriate choices of ε ∈ Rp−1, all efficient so-

lutions can be obtained by using ε-constraint method without any convexity assump-

tion [40]. Due to the wide-range of applicability, the method is utilized in various

multiobjective optimization problems including discrete problems.

For the linear case, Benson defines a characterization for the bicriteria linear pro-

gramming problem in [20]. The author also presents a procedure to obtain the non-

dominated set in a systematic way by means of sensitivity analysis. The formulation

used in the procedure is not referred to as the ε-constraint method; however it is the

same as the ε-constraint method with two objective functions.

Since the ε-constraint method finds an entire efficient set without any convexity

assumption, it is also applied to numerous MODO problems. Most of these stud-

ies consider bicriteria discrete optimization problems because of the simplicity of the

parametric search for the bicriteria problems. In the bicriteria case, one of the ob-

jectives is taken as the objective function and the other one as a constraint. Then

it is sufficient to search single dimensional space exhaustively to obtain all nondom-

inated solutions. Bérubé et al. use the ε-constraint method to obtain the efficient

set of bicriteria traveling salesman problem in [29] where the objective functions are

maximizing the collected prize and minimizing the total travel cost.

While most of the ε-constraint methods consider bicriteria case, only a few of them

apply the method for more than two objective functions. The first method is proposed

by Laumanns et al. in which an adaptive scheme for the ε-constraint method is utilized

to obtain all nondominated solutions [122]. They search for efficient solutions inside

the (p − 1)-dimensional grid which partitions the whole objective space. Unlike ε-

constraint method, they use two-sided bounds, and solve lexicographic optimization

problems to deal with weak efficiency. For a given ε′ ∈ Rp−1 and ε ∈ Rp−1 where

ε′ < ε, the lexicographic ε-constraint method used in [122] is given in (2.14). An

optimal solution of this formulation may not be efficient. Therefore, some mechanisms

are devised in order not to generate dominated solutions. The drawback of this
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method is the memory issue. Number of grids may become unmanageable, especially

in large-size problems.

lex min [f1(x), . . . , fp(x)]

s.t. ε′ ≤ fj(x) < εj j = 2, . . . , p

x ∈ X .

(2.14)

In [136], Mavrotas introduce the augmented form of the ε-constraint method. The

formulation of the method is as follows,

min f1(x) + ρ

p∑
j=2

sj

s.t. fj(x) + sj = εj j = 2, . . . , p

x ∈ X .

(2.15)

Unlike the original ε-constraint formulation, (2.15) generates an efficient solution

due to the augmented form of the objective function. Mavrotas utilizes (p−1) dimen-

sional grid to generate several efficient solutions. The boundaries of nondominated

set is estimated by using payoff table result. Afterwards, this bounded search space

is divided into grids according to decision maker’s tolerance expectation. For each

grid, method solves (2.15) to obtain an efficient solution. However, the payoff table

underestimates the upper levels of the search space, so even if the tolerance is kept

very small, this method does not guarantee generating the entire efficient set. Addi-

tionally, the scalar ρ may cause numerical problems. By definition, ρ is a sufficiently

small positive real number. On the other hand, ρ should be large enough to obtain

an efficient solution. Mavrotas and Florios [139] improve the augmented ε-constraint

formulation given in (2.15). The improved formulation exploits the information from

the slack variables in every iteration. They also give an algorithm to generate all non-

dominated solutions for MODO problems on condition that the nadir point is known.

Another variant of (2.15) is given in [197]. Authors enhance the nondominated set
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generation algorithm with two innovations which are early exit and bouncing steps.

Özlen and Azizoğlu also use the augmented ε-constraint method in a recursive

algorithm to generate all nondominated solutions of MODO problems [144]. In this

method, initially ranges for the nondominated solutions in the outcome space are

obtained by minimizing and maximizing each objective function over the feasible set.

Then, by applying the range information in the constrained problems the authors

generate all nondominated solutions. This method is improved by Ozlen et al. in [145].

They reduce the number of models solved by keeping track of solved subproblems and

their solutions.

Lokman and Köksalan give a method to generate all nondominated solutions for

MODO problems [127]. The method uses the augmented ε-constraint method to ob-

tain nondominated solutions, and in each iteration the method excludes the regions

that are dominated by the previously generated nondominated solutions. They give

two algorithms for this method. In the first one, the algorithm generates new solu-

tions by solving models with additional binary variables and constraints. The second

algorithm utilizes a search procedure to find the next solution without incorporating

additional binary variables.

2.3.3 Min-max approaches

Another generic solution methodology to deal with both convex and nonconvex

multiobjective optimization problems is the weighted norm approach. The formula-

tion is as follows,

P (w, q) min

(
p∑
j=1

wj
∥∥fj(x)− yIj

∥∥
q

)
s.t. x ∈ X

(2.16)

where 1 ≤ q < ∞, yI is the ideal point (see Section 2.4), and wj ≥ 0 for all j ∈

{1, . . . , p}. In (2.16), q represents the Lq-norm. When q = 1 the weighted norm
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formulation reduces to linear scalarization.

The main idea of this method is to find a solution as close as possible to the ideal

point. Lq-norm is used to define the distance between the solution and the ideal point.

If either P (w, q) formulation with w ≥ 0 has a unique optimal solution or w > 0 for

any 1 ≤ q < ∞, then the weighted norm formulation generates an efficient solution.

Consider Theorem 4 for the efficiency results of P (w, q) formulation [39].

Theorem 4. Let x∗ solve P (w, q) for any 1 ≤ q <∞ with w > 0 when either

1. x∗ is a unique solution of P (w, q), or

2. wj > 0 for all j = 1, . . . , p

holds. Then x∗ is an efficient solution.

Proof. Let x∗ be the optimal solution of P (w, q) for any 1 ≤ q < ∞ and for some

w ≥ 0. Thus,

p∑
j=1

wj

(∥∥fj(x)− yIj
∥∥
q
−
∥∥fj(x∗)− yIj∥∥q) ≥ 0 ∀x ∈ X (2.17)

Assume that x∗ is not an efficient solution, then there exist x′ ∈ X that dominates

x∗. This implies that, fj(x
′) ≤ fj(x

∗) for all j = 1, . . . , p with at least one strict

inequality. Since yI is the ideal point, by definition yIj ≤ fj(x) ∀x ∈ X . Hence, for

any 1 ≤ q <∞,
∥∥fj(x′)− yIj∥∥q ≤ ∥∥fj(x∗)− yIj∥∥q for all j with strict inequality for at

least one j ∈ {1, . . . , p}. Since w ≥ 0,

p∑
j=1

wj

(∥∥fj(x′)− yIj∥∥q − ∥∥fj(x∗)− yIj∥∥q) ≤ 0 (2.18)

(i) If x∗ is the unique optimal to P (w, q) for any 1 ≤ q < ∞ and for some w ≥ 0,

then strict inequality occurs in (2.17) which contradicts (2.18). (ii) If we take w > 0
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in P (w, q), then strict inequality occurs in (2.18) which contradicts (2.17). Hence, if

either (i) or (ii) holds, then x∗ ∈ XE.

Theorem 4 shows that the solution of the weighted norm minimization is efficient,

and the optimal solution of the P (w, q) formulation is also referred to as a compromise

solution where w ≥ 0 and 1 ≤ q <∞ [196].

Up to now, we have considered the weighted norm formulation for 1 ≤ q < ∞

case. When we set q = ∞, the weighted norm becomes weighted Tchebycheff norm

(L∞-norm). This formulation is referred to as the weighted Tchebycheff scalarization

and was introduced by Bowman in [34]. The weighted Tchebycheff formulation is as

follows,

PTch1(w) min

(
p∑
j=1

wj
∥∥fj(x)− yIj

∥∥
∞

)
s.t. x ∈ X

(2.19)

where wj > 0 for all j ∈ {1, . . . , p}. The formulation (2.19) is equivalent to the

following formulation,

PTch2(w) min

(
max
j=1,...,p

wj
(
fj(x)− yIj

))
s.t. x ∈ X .

(2.20)

Weighted Tchebycheff formulation given in (2.20) is nonlinear. However, it can be

linearized by adding one extra variable and p new constraints. The linear formulation

of the weighted Tchebycheff method is given as follows.

PTch3(w) min z

s.t. z ≥ wj(fj(x)− yIj ) j = 1, . . . , p

x ∈ X

(2.21)
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In (2.21), a nonnegative variable2 z ∈ R is included with p constraints. All three

weighted Tchebycheff formulations are equivalent. The following theorem shows that

the optimal solution of the weighted Tchebycheff formulation is a weakly efficient

solution [39].

Theorem 5. For w > 0, the optimal solution of the PTch(w) is weakly efficient.

Proof. Let x∗ be an optimal solution of PTch(w). Assume that x∗ is not a weakly

efficient solution. Then, there exist x′ ∈ X such that fj(x
′) < fj(x

∗) for all j ∈

{1, . . . , p}. By definition, (fj(x) − f Ij ) ≥ 0 for all x ∈ X and w > 0. So, we have

max
j=1,...,p

wj(fj(x
′)− f Ij ) < max

j=1,...,p
wj(fj(x

∗)− f Ij ), which contradicts optimality of x∗ to

PTch(w). Therefore, x∗ is a weakly efficient solution.

The characterization result of the weighted Tchebycheff formulation was presented

in [34]. This implies that the entire set of efficient solutions can be obtained by

parameterizing the objective functions using the Tchebycheff norm. Eswaran et al.

propose an algorithm based on these findings for bicriteria problems in [76]. Their

algorithm finds the entire efficient set under a slightly restrictive assumption referred

to as uniform dominance (see Definition 6). Ralphs et al. present different ways to

relax the uniform dominance assumption in [154].

Definition 6. An efficient set is said to be uniformly dominant if, for every dominated

solution x′ ∈ X , there exists an efficient solution x∗ ∈ X such that fj(x
′) < fj(x

∗)

for all j ∈ {1, . . . , p} [76].

One way to remove uniform dominance assumption in weighted Tchebycheff method

is to use augmented Tchebycheff norm which is defined in [172]. The augmented

Tchebycheff norm is defined as

‖y1, . . . , yp‖w,ρ∞ = max
j=1,...,p

{wj|yj|}+ ρ

p∑
j=1

|yj| (2.22)

2Since w > 0 and fj(x)− yIj ≥ 0 for all j ∈ {1, . . . , p} and for all x ∈ X , z ≥ 0.
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where ρ is a small positive number.

The idea is to generate an outcome that is closest to the ideal point along one

edge of the optimal level line as measured by both the L∞-norm and the L1-norm.

For a given ρ > 0 and w > 0, the formulation that generates the feasible outcome

closest to the ideal point under this metric is as follows,

PaTch(w) min z + ρ

p∑
j=1

(fj(x)− yIj )

s.t. z ≥ wj(fj(x)− yIj ) j = 1, . . . , p

x ∈ X .

(2.23)

Unlike weighted Tchebycheff formulation, the optimal solution of the PaTch(w)

generates an efficient solution for given w > 0 without any assumption. The char-

acterization result of the method is similar to weighted Tchebycheff method and is

presented in [172]. The detailed theoretical results for this method can be found in

[171]. Additionally, this method is widely used in interactive solution approaches [4].

As we mentioned in augmented ε-constraint formulation, choosing a proper value

for ρ can be problematic. In (2.23), too small a ρ can cause numerical difficulties be-

cause the weight of the second term in the objective function can lose significance with

respect to the first term. This situation can lead to generation of weakly dominated

outcomes despite the augmented objective. On the other hand, augmented Tcheby-

cheff may not be optimal for some nondominated solutions, i.e. some nondominated

solutions are unreachable, if ρ is not a sufficiently small coefficient. For discrete bicri-

teria optimization problems, Dächert et al. present a method for a problem dependent

determination of all parameters of the augmented weighted Tchebycheff norm such

that all nondominated solutions can be found and ρ is as large as possible. However,

this result has not been generalized for the MOP with any number of objectives yet.

In this subsection, all methods that we discussed are also referred to as reference

point (r ∈ Rp) methods [189]. In this context, the reference point of the weighted
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Tchebycheff method is the ideal point (r = yI). Another method called min-max

approach is introduced by Sayın and Kouvelis where the reference point is the origin,

i.e. rj = 0 for j = 1, . . . , p, instead of the ideal point [163]. This method is also

referred to as robust optimization in [120]. For a given positive weight vector w ∈ Rp,

the formulation of min-max method is as follows,

Pmm(w) min max
j=1,...,p

wjfj(x)

s.t. x ∈ X
(2.24)

For any w > 0, the optimal solution of Pmm(w) is weakly efficient. Sayın and

Kouvelis present a second stage subproblem to obtain an efficient solution to the

problem without the uniform dominance assumption. The optimal solution of the

two stage problems is efficient [163]. Authors also show that there exists w ∈ Rp for

any efficient solution which is optimal to two-stage mathematical programs. They

propose an algorithm based on their findings. The algorithm is able to generate

all efficient solutions for bicriteria discrete optimization problems by searching over

weights.

Along with exact methods several interactive approaches have been presented

that uses weighted Tchebycheff norm for multiobjective mixed integer linear pro-

gramming problems. Steuer and Choo introduce augmented Tchebycheff formulation

in [172], and they propose a filtering procedure as an interactive method. Durso pro-

poses an interactive branch-and-bound method method in which augmented weighted

Tchebycheff metric is utilized [60]. Karaivanova et al. [107] present an adaptation

of the interactive method offered by Steuer and Choo [172] in which the augmented

weighted Tchebycheff subproblems are solved heuristically. In [169], Solanki presents

an adaptation method where the method is a variation of the noninferior set estima-

tion (NISE) method developed by Cohon et al. for bicriteria linear programs in [43].

The method seeks to generate a representative subset of nondominated solutions by

combining the NISE’s key features with weighted Tchebycheff subproblems.
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Finally, approximation results that use Tchebycheff metric for nonconvex bicriteria

problems are presented in [164]. These results are generalized for the multiobjective

case in [165].

2.3.4 Other solution methods

In this section, we present the remaining solution methodologies for nonconvex

multiobjective optimization problems that could not be classified in the previous

subsections.

A large number of studies have been presented to solve MOP problems so far.

However, only few of them consider nonconvex multiobjective problems. In the early

studies, generally branch-and-bound method is used to obtain the efficient set, see

[30], [115], [188], [131] and [137]. Among these studies, while [30], [115] and [188]

solve binary multiobjective optimization problems, [131], [137] and [138] deal with

mixed binary linear programming problems. Recently, Vincent et al. [185] introduce

several improvements to early branch-and-bound methods using better bound sets

and branching strategies. In [2], another branch-and-bound method is proposed to

obtain the nondominated set. Authors consider two types of nodes in the search. The

first set of nodes aim to obtain integer feasible solutions. The second type of nodes

remove the dominated integer vectors. Note that [131] is an interactive approach, and

the rest of them are exact methods.

One of the mostly used methods to obtain both supported and nonsupported ef-

ficient solutions for MODO problems is the two-phase method. Ulungu and Teghem

[181] introduce this method to determine the entire efficient set for bicriteria problems

in two steps. In the first phase, all extreme supported efficient solutions are obtained

by using the algorithm given in [8]. In the second phase, remaining efficient solu-

tions are determined by exploring all the triangles, underlying each pair of adjacent

extreme supported efficient solutions. Inside the triangles nonextreme supported and

nonsupported efficient solutions are obtained by using branch-and-bound method.
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Przybylski et al. generalize this method to generate all efficient solutions for MODO

problems with p objective functions in [152].

Another generalization of the two-phase method is presented by Tenfelde-Podehl

in [179]. This algorithm determines the ideal and the nadir points for p-objective

problem by using the efficient set with (p− 1) objectives. Then subspaces are deter-

mined with these solutions. For every subspace, a single objective problem is solved.

When a new solution is found, the search space is split and new searches are launched.

This method stops once all the search spaces have been examined and no new solution

is found. This method is applied to three-objective quadratic assignment problem.

Based on this idea, an exact approach named parallel partitioning method is pro-

posed to solve bicriteria combinatorial optimization problems in [124]. This method

determines all nondominated solutions in three stages. In the first stage, the ideal

and the nadir points are computed to establish the boundaries of the search space.

In the second stage, well distributed nondominated solutions are searched in order to

divide the search space. The third stage consists of finding other efficient solutions

by reducing the search space using solutions found during the second stage. Compu-

tational performance of this method is shown by using bicriteria flow-shop problem.

This method is generalized to obtain nondominated sets of MODO problems with

any number of objective functions in [57]. This method is applied to three-objective

flow-shop problems.

A completely different solution strategy for MOILP problems to generate all dom-

inated points with p objective functions is presented by Sylva and Crema in [174].

The main idea of this method is to obtain a new efficient solution by removing the

dominated space by previously obtained efficient solutions. However, removing some

portion of the feasible set requires inclusion of additional constraints and binary vari-

ables. The improved version of this algorithm is presented by the same authors in

[176] which requires less number of constraints compared to the previous approach.

Authors compare these two methods on multiobjective generalized assignment prob-
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lem instances with two and three objectives, and results show that improved version

performs better than the previous one with respect to solution time.

Recently, Dächert and Klamroth propose a box algorithm to determine the entire

nondominated set of MOILP problems with three objectives. Authors show that

the number of scalarized subproblems to be solved is bounded by 3|N | − 2 where N

represents the number nondominated solutions [48].

2.4. Computation of the Nadir Point

The nadir point consists of worst objective values attained over the efficient set.

Obtaining the nadir point is generally a hard problem [71]. Along with the relatively

easy to obtain ideal point, the nadir point is an important element of MOP, because

these points define lower and upper bounds of the efficient set. In fact, there are

some methods that require the nadir point as input, especially among interactive

approaches such as in [141, 91, 119]. Hence, determination of the nadir point has

been studied extensively and several exact and heuristic methods have been proposed

for the problem [71].

The ideal and the nadir points, denoted as yI and yN respectively, determine the

bounds of the nondominated set. For any y ∈ YN these points satisfy yIj ≤ yj ≤ yNj

for j = 1, . . . , p. Mathematical definitions of the ideal and the nadir point are given

below.

Definition 7. The point yI = (yI1 , . . . , y
I
p) given by

yIj = min
x∈XE

fj(x) = min
y∈YN

yj j = 1, . . . , p (2.25)

is called the ideal point.

From a multiobjective point of view, computation of the ideal point can be con-

sidered as easy [65]. It is well-known that yIj = minx∈XE
fj(x) = minx∈X fj(x) for
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j = 1, . . . , p.

Definition 8. The point yN = (yN1 , . . . , y
N
p ) given by

yNj = max
x∈XE

fj(x) = max
y∈YN

yj j = 1, . . . , p

is called the nadir point.

Overestimator of the nadir point can be obtained by relaxing the feasible set of

the nadir point. A formulation is given below where the feasible set is defined by the

original constraints instead of the efficient set.

yUj = max
x∈X

fj(x) = max
y∈Y

yj j = 1, . . . , p

Obviously, yU is an overestimator for the nadir point yN , i.e. yNj ≤ yUj for all

j ∈ {1, . . . , p}.

Obtaining the nadir point is a challenging task except for the case p = 2. In

bicriteria optimization, the worst value of the second objective function is attained

among solutions that minimize the first objective function and vice versa, which makes

it easy to compute. The well-known payoff table solution [155] can be considered as

a generalization of this approach for p > 2.

Let T represent the payoff table. This table consists of p rows and p columns and

is computed by solving single criterion optimization problems. For m ∈ {1, . . . , p},

let x∗m be an optimal solution to the lexicographic optimization problem [18] where

mth objective function is first in the order. Then the entry in the mth row and the kth

column of the payoff table is given by Tmk = fk(x
∗
m) for k ∈ {1, . . . , p}. The payoff

table estimate yPTk for the kth entry of the nadir point is obtained as follows,

yPTk = max
m=1,...,p

Tmk = max
m=1,...,p

fk(x
∗
m) k = 1, . . . , p. (2.26)

When p > 2, payoff table approach can generate only a heuristic solution instead
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of the exact nadir point, i.e. yPTj ≤ yNj for all j ∈ {1, . . . , p}. Obtaining the payoff

table T requires solving p lexicographic optimization problems, i.e. p2 single-objective

optimization problems. Hence complexity of obtaining yPT is O(p2 · t) where t is the

running time of the single-objective optimizer.

Earlier studies on the nadir point were proposed for MOLP problems. Isermann

and Steuer propose three different approaches to compute the nadir point for MOLP

[102]. The first obtains the nadir point after computing all efficient solutions. The

second solves a large primal-dual feasible program with nonlinear constraints. The

third is a simplex-based procedure using the fact that the efficient extreme points

are connected by efficient edges. Recently, Alves and Costa present a method to

compute the nadir point for MOLP by using weight space search [5]. This method

determines, for each objective function, the region of the weight space associated with

the efficient solutions that have a value in that criterion worse than already known.

A new efficient solution is computed with weighted sum formulation using a weight

vector picked from the region. The search continues until the region is empty.

Obtaining the nadir point is a special case of the problem of optimization over

the efficient set. This is a global optimization problem [21] and has been addressed in

several studies. Several of these studies consider the optimization of a linear function

over the efficient set of a MOLP, for instance as in [21, 22, 23, 24, 62, 51, 25, 161].

While [50] considers a nonlinear function, [32] takes into account the minimization of

a quasi-concave function over the efficient set of a MOLP. Maximization of convex,

concave and quadratic functions over the efficient set of a convex mathematical pro-

gram is presented in [6]. Recently, [33] presents a method that minimizes a convex

function over the efficient set of a convex MOP. Survey of existing algorithms for

optimization over the efficient set is given in [192]. Although these procedures are

theoretically able to compute the nadir values, they are rather complex algorithms

with limited or no computational verification [71]. Generally, optimization over ef-

ficient set studies consider convex MOP efficient sets. As exceptions, [1] and [103]
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optimize a linear function over a multiobjective integer efficient set. Other methods

exist in the evolutionary algorithms literature where they try to estimate the nadir

point accurately [52].

The most naive way to compute the nadir point is to obtain the entire efficient

set. This is computationally demanding, and is not appropriate, for instance, for

algorithms that require the nadir point as an input to compute the entire efficient

set. Ehrgott and Tenfelde-Podehl [71] present an important result to compute the

nadir point for MOP in a computationally more affordable way. The method removes

one objective function from the objective functions vector and enumerates all efficient

solutions of the remaining MOP with (p− 1) objective functions. After repeating for

each objective function, these solutions are merged into one set. Some solutions in

this set that may not be efficient for the original MOP are eliminated. Finding the

supremum of the set for each objective function results in the nadir point for MOP.

This method requires an algorithm that generates the efficient set of MOP with (p−1)

objective functions and computational verification of the algorithm is not reported in

[71].

For MODO problems, another way to obtain the nadir point is to use optimization

over integer efficient set algorithms. As an example, in [1], different types of cuts are

imposed to improve the objective value at each iteration. The algorithm by Jorge

[103] is based on solving more constrained integer linear programs progressively. Both

algorithms rely on adding cuts to the single-objective optimization problem, and avoid

explicit enumeration of the efficient set. However, depending on the instance, the

additional cuts may make the problem computationally overwhelming.

2.5. Representation Methods

Generally the nondominated set is a large set to deal with. For example, a MODO

problem with bounded efficient set has finite number of solutions. On the other
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hand, the size of the nondominated set may increase to thousands even in mid-sized

MODO problems [114]. Decision maker intends to choose an efficient solution among

all efficient solutions. As the size of efficient set increases, decision maker has to

work on a larger set. It is not meaningful to generate too many efficient solutions.

After some point, nondominated solutions inside the outcome space will be too close,

so differentiating them become an issue [80]. Because of these reasons, instead of

generating all nondominated solutions, generating a subset of the nondominated set

may be more meaningful. A finite discrete subset of the nondominated set, YN , is

called as representative set, and is denoted as YR.

A representative set is a subset of a given multiobjective optimization problem’s

efficient set. Hence, every solution in the representative set is still efficient. Some

methods aim to approximate the nondominated set with an approximation factor.

These solution methods are called approximation methods [70, 158]. In addition to

these methods, another class of solution methods is evolutionary algorithms. The goal

of these methods is to get as close as possible to the exact nondominated set [42].

From the decision maker’s perspective, representations can be more preferable than

approximated solution sets. Discrete representations present a finite and manageable

number of solutions to the decision maker, while approximations do not limit the

number of solutions. Besides, the solutions in a discrete representation are efficient

for MOP this is not necessarily true for approximated solution sets [79].

In the following subsection, methods that generate arbitrary representative sets

are reviewed. Afterwards, quality measures and representative methods with quality

guarantees are discussed.

2.5.1 Finding arbitrary representative sets

Several methods have been proposed to generate a representation of true nondom-

inated set. In most of these studies, resulting representations are arbitrary in terms of

satisfying quality measures. These kind of methods generally aim to obtain the most
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diverse subset of the nondominated set. In this subsection, we review the methods

that generate arbitrary representations.

Helbig suggests an approach for producing a discrete representation of the efficient

sets for biobjective programs. The convex hull of the individual objective minima is

discretized and these points are used as the reference points in the min-max method.

Helbig presents a method for choosing the discretized points so that the maximum

Euclidean distance between a point in the true Pareto set and a point in the repre-

sentation is at most a prespecified value [98]. Benson and Sayin developed a global

shooting procedure that seeks to find global representations of MOP with a com-

pact feasible set by constructing a special simplex that contains the feasible criterion

space [26]. Das and Denis propose a boundary intersection method for finding several

nondominated solutions for general multiobjective optimization problem [49]. This

method is able to generate an evenly distributed set of solutions in the nondomi-

nated set. Shao and Ehrgott propose a method that combines the global shooting

and normal boundary intersection methods to determine well distributed nondomi-

nated solutions for MOLP problem [167]. The method produces evenly distributed

nondominated solutions without missing parts of the nondominated set. Karasakal

and Koksalan suggest a method to obtain discrete representation of the nondomi-

nated set for multiobjective linear programming problem [108]. First, method finds

an approximate surface of the nondominated set. Then, this surface is discretized

with equidistant points. These are projected onto the nondominated set and they

form discrete representation. Eichfelder [73, 74] gives a method to determine the

representative set for multiobjective optimization problem considering the spacing of

generated nondominated solutions which is based on Pascoletti and Serafini scalar-

ization [148].

Fu and Diwekar present an approach to obtain representation of the nondominated

set based on efficient sampling methods used in uncertainty analysis [85]. Caballero

and Hernández present a new method to estimate the weakly efficient set for mul-
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tiobjective linear fractional programming problem. The method is able to control

distances between solutions from the estimation set [37].

Kim and De Weck give a method to generate a well-distributed representation

for bicriteria nonconvex problems [111]. Authors use weighted sum method with ad-

ditional inequality constraints to find efficient solutions inside nonconvex regions of

the efficient set. Kim and De Weck generalize the method for multiobjective opti-

mization problems with any number of objectives in [112]. Sylva and Crema present

an algorithm for generating well-dispersed nondominated solutions for multiobjective

mixed integer linear programming problem [175]. Starting from an initial nondomi-

nated solution, at each iteration the procedure finds a new one that maximizes the

L∞-norm distance to the set dominated by all the previously found nondominated

solutions. The optimal solution of this mathematical program may not be efficient.

Hence, they use another subproblem to generate the closest nondominated solution to

the mapping of the previous solution. Masin and Bukchin propose a method to obtain

a set of nondominated solutions with the maximum diversity for mixed-integer and

combinatorial optimization problems [135]. The method iteratively includes a new

nondominated solution to the set which is most diverse from the others.

Leyffer formulates the problem of finding a maximally uniform representation of

the nondominated set with a given number of solutions for convex multiobjective

optimization problems as a mathematical program with complementarity constraints

[125]. A similar problem is considered by Faulkenberg et al. in [81]. They present two

methods for generating discrete representations with equidistant points for bicriteria

optimization problems. In the first method, authors utilize ε-constraint method with

an additional constraint to control the spacing of generated solutions. In the second

method, they use bilevel programming formulation. While upper level formulation

controls the spacing, lower level formulation generates the nondominated solutions.

Pereyra et al. give a method for uniform sampling of the nondominated set for

bicriteria optimization problems by using equal spacing constraints on the objective
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values [149].

2.5.2 Finding representative sets with quality guarantees

In general, the aim in finding a representation is to obtain a “good” subset of the

efficient set. Since the meaning of “good” is ambiguous, different quality measures are

defined. Recent surveys for the quality measures of representative sets are presented

in [79, 80]. Sayın presents three different measures to evaluate a representation in

[160] that are listed as follows:

1. Coverage: All of the efficient solutions of the problem must be well-represented.

A globally-representative subset of XE should contain points from every portion

of the efficient set without missing any region.

2. Uniformity: The representation should be uniform or it should not be clustered

in region(s) of the frontier. In the name of uniformity, an ideal representation

may contain points that are exactly at the same distance to each other.

3. Cardinality: The representation should consist of a reasonable number of

elements. Too many points require some processing before being studied by the

decision maker. Including one more efficient solution into the representation

has a cost, so that the size of the representation should be as small as possible.

In any representation, the cardinality can be determined just by examining the

size of the representation. However, the coverage error and the uniformity level need

to be defined mathematically. In [160], given a representation YR of a set YN , the

coverage error is given by the quantity

α∗ = max
ȳ∈YN

min
y∈YR

d(ȳ, y). (2.27)
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As seen in (2.27), any fixed element ȳ ∈ YN is represented by the closest point to

ȳ in the representation YR. The worst representative point in the nondominated set

defines the coverage error performance of the representation. Similarly, the uniformity

level δ is determined by the quantity

δ = min
ȳ,y∈YR
ȳ 6=y

d(ȳ, y). (2.28)

Equation (2.28) calculates the closest two points in the representation for a given

distance metric. Briefly, α∗ is a parameter that signifies how precisely the efficient

set is being approximated, and δ implies that points within a representation do not

get closer to each other more than a δ amount.

Among these measures, we focus on the coverage measure. We aim to gener-

ate a representative set with a specified coverage error α ∈ R. Definition of a α-

representation is given below.

Definition 9. A set YR is called an α-representation of YN if |YR| < ∞, YR ⊆ YN
and the optimal objective value of (2.27) is less than or equal to α, i.e. α∗ ≤ α.

A few studies consider methods that generate representations with specified level

of error. In [162], Sayin gives a method for multiobjective linear problems to produce

a discrete representation with a specified quality guarantee or the maximum coverage

possible given a target cardinality by using a mathematical program.

Sayin and Kouvelis, [163, 120] give a method to obtain all nondominated solutions

of multiobjective optimization problem. They utilize parametric search over weights

with min-max type subproblems. Additionally, they propose a modification in their

algorithm to obtain a representative sample of the efficient set based on a parameter.

The quality guarantee of the representation is controlled by continuing to refine an

interval between two previously generated nondominated solutions until its length

falls below a specified value.
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Hamacher et al. present a box algorithm to generate a representation of the effi-

cient set for bicriteria discrete optimization problems [95, 157]. Initially, the algorithm

computes the boundaries of the nondominated set that also defines the initial box.

Boxes are formed with consecutive nondominated solutions. For each box, the al-

gorithm solves the ε-constraint method to generate a nondominated solution. The

presepecified error of the representation is calculated as the area of the largest of these

rectangles. The representation is refined until the accuracy is met.

Eusebio and Figueira propose a new algorithm to find a representation of the

nondominated set for bicriteria integer network flow problem [77]. The algorithm

solves a sequence of ε-constraint problems with a branch-and-bound algorithm to

find a subset of the nondominated set. At each iteration, the algorithm finds a

solution by using ε-constraint problem, and adds to the representation until it is

guaranteed that the representation has the desired quality. Vaz et al. introduce several

algorithms for finding a representation for a bicriteria combinatorial optimization

problem considering uniformity, coverage and the ε-indicator measures [182].
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Chapter 3

A NEW ALGORITHM FOR GENERATING ALL

NONDOMINATED SOLUTIONS FOR MULTIOBJECTIVE

DISCRETE OPTIMIZATION PROBLEMS

In this chapter, a new algorithm is proposed to generate all nondominated so-

lutions for MODO problems with any number of objective functions. We reviewed

exact solutions methods for MODO problems with p objectives in Section 2.3. One

possible way is to find solutions by removing the dominated space by previously

obtained efficient solutions [174, 176, 127]. Another way is to search the outcome

space or the projection of the outcome space exhaustively by using grids [122, 139],

recursion [179, 144] or boxes [48]. In our algorithm, we manage the search over

(p − 1)-dimensional rectangles which is similar to the (p − 1)-dimensional grid defi-

nition by Laumanns et al. [122]. For each rectangle, the algorithm solves two-stage

optimization problems to obtain an efficient solution where the first stage problem

is ε-constrained scalarization. In the second stage, a simpler model is solved to deal

with weakly efficient solutions. The proposed method searches the (p−1)-dimensional

space exhaustively to generate all nondominated solutions. The contribution of the

method lies in the way rectangles are defined and tracked. The algorithm is com-

pared with former studies on multiobjective knapsack and multiobjective assignment

problem instances. The method is highly competitive in terms of solution time and

the number of optimization models solved. In the following section, we present the

theoretical background. In Section 3.2, the algorithm and associated theoretical re-

sults are given. In Section 3.3, computational results and comparison with previous



Chapter 3: A New Algorithm for Generating All Nondominated Solutions for
Multiobjective Discrete Optimization Problems 41

algorithms are presented on multiobjective knapsack and multiobjective assignment

problem instances. Finally, conclusions are presented in Section 3.4.

3.1. Theoretical Background

We aim to obtain all nondominated solutions for MODO problems. We use the ε-

constraint method to obtain efficient solutions. We utilize two-stage formulations to

avoid weakly efficient solutions. For any ε ∈ Rp−1, two-stage ε-constraint formula-

tions, Pk(ε) and Qk(ε) for some k ∈ {1, . . . , p}, are defined as follows.

Pk(ε) z = min fk(x)

s.t. fj(x) ≤ εj j = 1, . . . , p and j 6= k

x ∈ X .

Let z∗ be the optimal objective value of the subproblem Pk(ε) and consider the

second stage formulation Qk(ε).

Qk(ε) min

p∑
j=1

fj(x)

s.t. fj(x) ≤ εj j = 1, . . . , p; and j 6= k

fk(x) = z∗

x ∈ X .

Let x∗ be an optimal solution of two-stage formulations Pk(ε) and Qk(ε). We will

show that x∗ is always efficient for any ε ∈ Rp−1, and any efficient solution of MODO

problem can be obtained by using two-stage programs.

Theorem 6. For ε ∈ Rp−1, an optimal solution to the two-stage formulations Pk(ε)
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and Qk(ε) is efficient.

Proof. Let ε ∈ Rp−1 and let x∗ be an optimal solution to Pk(ε) and Qk(ε) for some

k ∈ {1, . . . , p}. Suppose x∗ is not efficient. Then there exists a solution x′ ∈ X such

that fj(x
′) ≤ fj(x

∗) for all j = 1, . . . , p and f̂(x
′) < f̂(x

∗) for some ̂ ∈ {1, . . . , p}.

Since fj(x
′) ≤ fj(x

∗) ≤ εj for j = 1, . . . , p and j 6= k, x′ is feasible for Pk(ε).

If fk(x
′) < fk(x

∗), this contradicts the optimality of x∗. Then fk(x
′) = fk(x

∗) =

z∗ must hold. Therefore, x′ is also feasible to Qk(ε). Summing over all j yields
p∑
j=1

fj(x
′) <

p∑
j=1

fj(x
∗), which contradicts optimality of x∗ to Qk(ε). Therefore, the

optimal solution x∗ of the two-stage formulations is efficient.

Theorem 7. For any efficient solution x∗ of MODO, there exists an ε ∈ Rp−1 such

that x∗ is an optimal solution to two-stage formulations Pk(ε) and Qk(ε) for some

k ∈ {1, . . . , p}.

Proof. For any k ∈ {1, . . . , p}, let ε̂ = (. . . , fk−1(x∗), fk+1(x∗), . . .), ε̂ ∈ Rp−1, and

suppose that x∗ does not solve two-stage formulations Pk(ε̂) and Qk(ε̂). Let x′ be an

optimal solution of two-stage programs with ε̂. Note that x∗ is feasible to Pk(ε̂). Then

either fk(x
′) < fk(x

∗) or fk(x
′) = fk(x

∗) and

p∑
j=1

fj(x
′) <

p∑
j=1

fj(x
∗). Since fj(x

′) ≤

fj(x
∗) = ε̂j for all j ∈ {1, . . . , p} and f̂(x

′) < f̂(x
∗) = ε̂̂ for some ̂ ∈ {1, . . . , p}, x′

dominates x∗, which contradicts that x∗ is an efficient solution.

Theorems 6 and 7 show that with appropriate choices of ε ∈ Rp−1 all efficient

solutions can be obtained by using two-stage formulations. In the characterization,

εj ∈ R values are equal to the actual objective values of the efficient solution. In Figure

3.1, all nondominated solutions in R3 and the projection of these points onto R2 for a

three objective assignment problem with 5 items are given. For this example, we set

k = 1 in Pk(ε), so εj values are on the f2 − f3 plane. As seen in the figure, for each

nondominated solution in R3 there exists at least one rectangle such that every ε ∈ R2

inside this rectangle generates the nondominated solution as an optimal solution to
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two-stage problems. This implies that the nondominated set can be obtained by

searching over ε ∈ Rp−1 vectors in the projected space, i.e. (p−1)-dimensional space.

The challenge is in managing this structure when the nondominated set is not known

but is to be obtained.
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Figure 3.1: Nondominated solutions in R3 and projection of the points onto the f2−f3

plane.

For p = 2, a single parameter ε ∈ R suffices to parameterize the subproblems. By

changing ε systematically, the entire nondominated set can be obtained. For p = 3,

however, the parametric space consists of R2, and even for this case, how R2 should

be exhaustively searched so that all nondominated solutions are obtained is not clear.

Below we present a new algorithm which relies on Pk(ε) and Qk(ε) and introduce a

structure of partitioning Rp−1 based on rectangles.

3.2. Finding the Nondominated Set Using the ε-Constraint Method

The results in the previous section show that all efficient solutions of the MODO

problem with p objective functions can be obtained by performing a search over
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ε ∈ Rp−1 and solving single-objective two-stage mathematical programs, Pk(ε) and

Qk(ε), for some k ∈ {1, . . . , p}. To simplify the presentation of the proposed method,

without loss of generality assume that k = 1. Since ε is in (p− 1)-dimensional space,

the search is managed in Rp−1. For ease of notation, we define ȳ = f̄(x) ∈ Rp−1

where f̄(x) = (f2(x), . . . , fp(x)). Figure 3.1 shows the projection of the nondominated

solutions onto the f2−f3 plane where the outcome space is in R3 and the search space

is in R2. The projected points form (p−1)-dimensional rectangles in the search space.

In the figure, a rectangle’s lower and upper bound are determined by the ȳ values

which are the projections of nondominated solutions.

A rectangle’s lower and upper vertices are denoted as l ∈ Rp−1 and u ∈ Rp−1,

respectively. With these bounds, a rectangle is defined as R(l, u) = {ȳ ∈ Rp−1, l ≤

ȳ ≤ u} [100]. During the search, a set of rectangles should be maintained, the

ith rectangle is denoted as Ri with its lower and upper vertices li, ui ∈ Rp−1. All

rectangles that need to be searched are kept in list L, i.e. L =
⋃|L|
i=1{Ri} where |L|

represents the number of rectangles in L.

The search is initialized with a single rectangle that covers (p − 1)-dimensional

space. Indeed, if the problem is bounded, then it is possible to define the boundaries

of the search space for each dimension by first solving small subproblems. Lower

bounds for each dimension can be obtained by minimizing each objective function

over the feasible set X . This returns the jth element of the ideal point (yI). Similarly,

upper bounds (yUj ) can be obtained by maximizing each objective function over X

for all j ∈ {1, . . . , p}. yU defines an upper bound for each efficient solution in XE,

i.e. fj(x) ≤ yUj for j = 1, . . . , p for each x ∈ X . Since the search is managed over

ε ∈ Rp−1, we define ȳI and ȳU in Rp−1 where ȳI = (yI2 , . . . , y
I
p) and ȳU = (yU2 , . . . , y

U
p ).

Instead of finite bounds for the initial rectangle, our algorithm can be adjusted to

allow for Rp−1 itself. However, we want to implement a selection procedure based on

a volume measure. Hence, we introduce finite bounds. We define a volume measure
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associated with rectangle Ri as

Vi =

p−1∏
j=1

(uij − ȳIj ). (3.1)

Note that this is not the volume of Ri itself, but the volume of the rectangle defined

by ȳI as the lower vertex and the upper vertex ui of Ri. In the rest of the chapter,

when we refer to the volume of the rectangle, measure Vi is implied.

An efficient solution is obtained by solving P1(ui) and Q1(ui) associated with

Ri(l
i, ui). When a new nondominated solution is found, some of the rectangles in

the list L are divided into smaller disjoint rectangles. Although each rectangle is

defined by using lower and upper vertices, the two-stage formulation is solved only

considering the upper bounds. Some of the feasible regions in P1(ui) with different

rectangles may overlap. Therefore it might be better to process a rectangle with larger

volume before a rectangle with a smaller volume. This rule aims to select rectangles

in a way to improve total processing time. Nevertheless, the proposed algorithm does

not critically depend on such a prioritization rule. In principle, an arbitrary rectangle

can be chosen from the list L instead of processing one with the largest volume.

We label the proposed method as Searching Over Rectangles for Generating the

Nondominated Set (SOR-GNS). The SOR-GNS starts with a single (p−1)-dimensional

rectangle where the lower and upper vertices of the rectangle are ȳI and ȳU , respec-

tively. In each iteration, the algorithm picks a rectangle Ri with the largest volume.

Then P1(ui) and Q1(ui) are solved. The technical statement of the SOR-GNS is as

follows.

Algorithm SOR-GNS

Input: MODO problem, i.e. objective functions fj(x) for j = 1, . . . , p, and feasible

set X .

Output: Nondominated set (YN) of MODO problem.
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Step-1 Initialize the nondominated solutions list, YN = ∅, and the rectangles search

list, L = {R(ȳI , ȳU)}.

Step-2 If L is empty, go to Step-4. Otherwise, pick a rectangle Ri(l
i, ui) with the

highest Vi from the list L. Solve the first stage formulation with the upper

vertex of Ri, i.e. P1(ui).

Step-3 If P1(ui) is feasible, than solve Q1(ui). Let x∗ denote an optimal solution.

• If f(x∗) /∈ YN , YN = YN∪{f(x∗)}. Now, apply the rectangular subdivision

process for each Rs ∈ L. Pick rectangle Rs from list L. Set L = L \ {Rs}.

Define an index set for Rs as Cs = {j ∈ {1, . . . , p− 1} : lsj < f̄j(x
∗) < usj}.

Initialize list L′ for the rectangular subdivision process, L′ = {Rs}.

For Each (j ∈ Cs)

Initialize list L′′, L′′ = ∅.

For Each (Rt ∈ L′)

R1 = {ȳ ∈ Rt : ȳj ≤ f̄j(x
∗)}

R2 = {ȳ ∈ Rt : ȳj ≥ f̄j(x
∗)}

L′′ = L′′ ∪ {R1} ∪ {R2}

end

L′ = L′′

end

L = L ∪ L′. Remove rectangles that lie in R(f̄(x∗), ui).

• Else (If f(x∗) ∈ YN), remove rectangles that lie in R(f̄(x∗), ui).

Else (If Pk,m(ui) is infeasible), remove rectangles that lie in R(ȳI , ui).

Go to Step-2.

Step-4 Return the nondominated set YN and stop.
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Depending on the solution of the two-stage formulations, three cases can occur.

First a new nondominated solution may be obtained, and let x∗ be an associated

efficient solution. Initially, the outcome of x∗ in the objective space f(x∗) is inserted

into nondominated solutions list YN . Then, among all rectangles in L, if f̄j(x
∗) is in

between the bounds of rectangle Ri for the jth axis, then Ri is split into two rectangles

along the jth axis.

After updating the list, some of the rectangles can be removed because the volume

between the upper vertex of the rectangle and f̄(x∗) does not need to be searched (see

Lemma 1). Therefore, any rectangle Rs ∈ L, if Rs ⊆ R(f̄(x∗), ui), then L = L\{Rs}.

The second possible case after solving a set of two-stage programs in SOR-GNS

is that an optimal solution x∗ is obtained, but f(x∗) has already been found at an

earlier iteration (f(x∗) ∈ YN). The reason for this situation is that different ε ∈ Rp−1

values may return the same nondominated solution when problems P1(ε) and Q1(ε)

are solved as seen in Figure 3.1. As in the previous case, rectangles that lie in between

f̄(x∗) and current rectangle’s upper vertex ui are removed.

The third possible case is the infeasibility of the two-stage programs with ui. Since

every ε ∈ R(ȳI , ui) would lead to an infeasible P1(ε) formulation (see Lemma 2), all

such rectangles are removed. The algorithm is terminated when the list of rectangles

is empty. At termination all nondominated solutions (YN) are obtained (see Theorem

13).

The steps of the algorithm have been presented so far. Now, we need to show

that the proposed algorithm generates all nondominated solutions in a finite number

of iterations. Below, we first show that no nondominated solution maps into the

removed rectangles.

Lemma 1. At any point in the algorithm, let x∗ be an optimal solution of two-stage

programs P1(ui) and Q1(ui) where ui ∈ Rp−1 is the upper vertex of a rectangle. Then,

there is no nondominated solution that is mapped into R(f̄(x∗), ui), other than f(x∗).
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Proof. Assume to the contrary that there exist an efficient solution x′ ∈ X that

is mapped into the rectangle R(f̄(x∗), ui). Then, f̄j(x
∗) ≤ f̄j(x

′) ≤ uij for j =

1, . . . , p− 1. This implies that x′ is feasible to P1(ui), and we know that x∗ is optimal

to P1(ui). Then, f1(x∗) ≤ f1(x′). Unless fj(x
′) = fj(x

∗) for all j = 1, . . . , p, x∗

dominates x′. Therefore, there exists no nondominated solution that is mapped inside

the rectangle R(f̄(x∗), ui) other than f(x∗).

This shows that when the algorithm obtains x∗ as an optimal solution to two-

stage problems, there exists no nondominated solution that projects into rectangle

R(f̄(x∗), ui) where ui is the upper vertex of the current rectangle. The lemma applies

to both the first and the second case in SOR-GNS.

The final case of the proposed algorithm is the infeasibility of the two-stage pro-

grams. Given upper vertex ui for the rectangle, if P1(ui) is feasible, then Q1(ui) is

also feasible. Therefore, infeasiblity can be observed only in the first stage problem.

Let the upper bound of the current rectangle be ui ∈ Rp−1. If P1(ui) is infeasible,

then the rectangles inside R(ȳI , ui) are removed. Lemma 2 addresses the infeasibility

case.

Lemma 2. If P1(ui) is infeasible, then there is no nondominated solution that is

mapped into the rectangle R(ȳI , ui).

Proof. Assume to the contrary that there exist an efficient solution x′ ∈ X such that

fj(x
′) ≤ uij for j = 2, . . . , p. This implies that x′ is feasible to P1(ui) which contradicts

that P1(ui) has no feasible solution. Therefore there exist no nondominated solution

that is mapped into R(ȳI , ui).

Example: The key aspects of the algorithm are shown on an illustrative example

with three objectives. The first case is represented in Figure 3.2. First, the initial

rectangle R(ȳI , ȳU) is determined which is shown in bold in Figure 3.2a. Then, the

two-stage formulation is solved with ȳU . The f1 value of the resulting nondomi-

nated solution is yI1 . The single rectangle is split into four rectangles with the new
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nondominated solution. The first iteration is completed by removing the rectangle

R((ȳ1
2, ȳ

1
3), (ȳU2 , ȳ

U
3 )) by using Lemma 1. In the following iteration, the volume measure

indicates to process the rectangle R((ȳI2 , ȳ
1
3), (ȳ1

2, ȳ
U
3 )) (rectangle with dotted pattern)

in Figure 3.2a. Then the two-stage formulation is solved with the upper vertex of

this rectangle. The resulting nondominated solution and new rectangles are shown

in Figure 3.2b. The shaded volume corresponds to removed rectangles in the former

iterations. In the third iteration, a new nondominated solution is obtained as seen in

Figure 3.2c. Unlike previous iterations, the new nondominated solution labeled with

3 is outside of the chosen rectangle.

For the following iteration, the rectangle R((ȳ3
2, ȳ

1
3), (ȳ1

2, ȳ
2
3)) is picked as indi-

cated in Figure 3.2c. This rectangle leads to the point labelled with 3 again. Since

the nondominated solution has already been obtained before, all rectangles inside

R((ȳ3
2, ȳ

3
3), (ȳ1

2, ȳ
2
3)) can be removed. Therefore, rectangle R((ȳ3

2, ȳ
1
3), (ȳ1

2, ȳ
2
3)) is re-

moved as shown in Figure 3.3.

The final case of the algorithm is illustrated in Figure 3.4 which is the fifth iteration

of the algorithm on the three-objective sample problem. The highest volume rectangle

is R((ȳ2
2, ȳ

1
3), (ȳ3

2, ȳ
2
3)) in Figure 3.3. The first stage is solved with the upper vertex

of this rectangle, and this model is infeasible. By Lemma 2 all rectangles inside

R((ȳI2 , ȳ
I
3), (ȳ3

2, ȳ
2
3)) are removed as shown in Figure 3.4. List L is updated accordingly.

After this iteration, since L still contains three rectangles, the algorithm will continue

with picking R((ȳI2 , ȳ
2
3), (ȳ2

2, ȳ
U
3 )) in Figure 3.4 which has the highest volume measure.

We have shown that in each iteration the algorithm removes at least one rectangle

from list L, and no other nondominated solution projects into removed rectangles.

To show the completeness of the proposed algorithm, Theorem 8 is given below.

Theorem 8. SOR-GNS generates the entire nondominated set.

Proof. Two-stage mathematical programs P1(ui) and Q1(ui) either find an efficient so-

lution (see Theorem 6) or they are infeasible for right-hand-side vector ui. Therefore,
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ȳ12
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ȳ23

(b) Second iteration.

f2

f
3

1

2

3
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Figure 3.2: Case-1: A new nondominated solution is obtained.
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ȳ33

Figure 3.3: Case-2: Resulting nondominated solution has already been found.
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Figure 3.4: Case-3: Infeasiblity of the first stage problem.
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all points in YN are nondominated solutions. Let ȲN contain the projections of all non-

dominated solutions to Rp−1 with first coordinate f1 removed. Then ȲN ⊆ R(ȳI , ȳU)

by definition of ȳI and ȳU . In the proposed algorithm this space is searched exhaus-

tively, and in each iteration some part of the initial rectangle is removed. From Lemma

1 and 2, removed volumes do not include images of a nondominated solution. From

the characterization result, there exists ε ∈ Rp−1 for each nondominated solution.

Therefore, when the termination condition occurs in SOR-GNS, all nondominated

solution are obtained.

In Theorem 9, we show that the proposed algorithm terminates in a finite number

of iterations.

Theorem 9. SOR-GNS is finite.

Proof. Since we deal with MODO problems with bounded efficient sets, they have a

finite number of nondominated solutions which is represented with |YN |. In the worst

case, each axis in Rp−1 is divided into (|YN |+ 1) rectangles. Since the search space is

(p − 1)-dimensional, |L| ≤ (|YN | + 1)p−1 where |L| denotes the size of the rectangle

list. This means that the number of rectangles is also finite. Besides, in each iteration

at least one rectangle is removed from L. This implies that L will be empty in a finite

number of iterations. Hence, SOR-GNS is finite.

In Figure 3.5, the projections of all nondominated solutions of problem instance

given in Figure 3.1 into R2 are shown. When the search space is divided along the

image of each nondominated solution, Figure 3.5a is obtained. This is the worst case

in terms of generated rectangles to be explored by SOR-GNS. In Figure 3.5b, the

actual rectangles generated by SOR-GNS are shown.
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(b) Rectangles that are generated by SOR-GNS.

Figure 3.5: Rectangles generated by the projection of nondominated solutions and
SOR-GNS.
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3.3. Computational Results

The proposed method is compared with three different methods which are pre-

sented in [174], [121] and [144]. The main idea of the method presented in [174] is

to obtain a new efficient solution by removing the dominated space by the previously

obtained efficient solutions. The method includes additional constraints and binary

variables to remove the dominated space. In [121], Laumanns et al. propose a method

in which they utilize an adaptive scheme for the ε-constraint method to obtain the

entire efficient set. They search for efficient solutions by using (p − 1)-dimensional

grid which partitions a (p−1)-dimensional projection of the objective space. For each

grid, the method solves an ε-constraint subproblem with a second stage formulation

to deal with the weakly efficient solutions. Laumanns et al. utilize the same search

strategy in [122]. Unlike [121] in [122], they use ε-constraint method with two-sided

bounds to obtain a solution inside the (p−1)-dimensional grid and solve lexicographic

optimization problem. [144] is a recursive algorithm that is proposed by Ozlen and

Azizoglu. The authors use the augmented form for the ε-constraint formulation. The

algorithm applies the range information in the constrained problems to generate all

nondominated solutions. The common property of these methods is that all can ob-

tain the entire nondominated set for MODO problems with any number of objective

functions. All algorithms except for the adaptive ε-constraint method have been im-

plemented in C++. Laumanns et al. provide the source code of their algorithm which

is implemented in C [121]. Subproblems are solved by using IBM CPLEX 12.4 [47].

All tests were conducted on a shared cluster with Intel Xeon 2.3 GHz CPU and 4

GB memory limit with Linux operating system. These algorithms are tested on the

multiobjective knapsack problem and multiobjective assignment problem instances.

Different problem categories are generated based on problem size. There are 10 in-

stances in each category. Tables 3.1-3.3 summarize computational results. In these

tables, the first row for each category reports averages. The numbers in the second
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row correspond to the minimum and maximum for each category.

We report CPU time and number of solved models statistics to compare the four

different methods. Sylva and Crema [174] solve a single model with additional dis-

junctive constraints to obtain a nondominated solution. Ozlen and Azizoglu [144]

apply augmented form of the ε-constraint method so that a single model solution is

sufficient to obtain a nondominated solution. Laumanns et al. [121] and SOR-GNS

applies two-stage formulation so it requires to solve two submodels per nondomi-

nated solution. Since solving the remaining second stage of two-stage formulation is

relatively easy after solving the first submodel, we also count each of them as one.

Computation of each instance is interrupted after 25000 CPU seconds. If a blank

cell appears in a table, it indicates that none of the 10 instances could be completed

within the time limit.

3.3.1 The multiobjective knapsack problem

The multiobjective knapsack problem is explained in Section 2.2. The multiob-

jective knapsack problem instances are generated for p = 3, 4 and 5 cases. The

multiobjective knapsack problem consists of n objects, and vjr (nonnegative integer

profits) and wr (positive integer weights) are random integers drawn from the inter-

val [1, 1000] where j = 1, . . . , p and r = 1, . . . , n. The capacity of the knapsack is

calculated as W =

⌈
0.5

n∑
j=1

wj

⌉
. For p = 3 case, we have generated 10 instances with

a size varying from 10 to 100 with increments of 10. The number of models solved by

each method is given in Table 3.1 along with other results.

As seen in Table 3.1, the number of nondominated solutions grows with the size

of the problems. The difference in the number of solved models and the computation

time is considerable among different methods. In particular, SOR-GNS outperforms

the other methods in both comparison criteria. The difference between the perfor-

mance of SOR-GNS and other methods increases with increasing size of the problem.
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For example, when n = 100, SOR-GNS is the only method that solves all 10 instances

successfully. Another effectiveness criterion for the methods is the number of math-

ematical models solved to obtain one efficient solution. For SOR-GNS, the ratio of

number of solved models and number nondominated solutions is 1.97 on average, i.e.

SOR-GNS requires 1.97 model solutions per nondominated solution. Besides, in none

of the instances does this ratio exceeds 1.99.

In addition to p = 3 knapsack instances, we test SOR-GNS for p = 4 and p = 5

to see how it behaves for larger p. As seen in Table 3.1, Sylva and Crema [174] and

Laumanns et al. [122] methods cannot solve larger multiobjective knapsack problem

instances even if p = 3. Hence, we solve p = 4 instances by using the recursive

algorithm given in [144] and SOR-GNS. The four-objective knapsack problem results

are given in Table 3.2. To the best of our knowledge, this is the first study that

generates both supported and unsupported nondominated solutions for four-objective

knapsack problems up to n = 40.

Table 3.2: Comparing the solution methods on the multiobjective knapsack problem
with p = 4.

Özlen and Azizoğlu SOR-GNS

n |YN | Model Time Model Time

10 11.6 273.0 0.6 40.1 0.2
[5, 22] [43, 734] [0.0, 2.1] [14, 82] [0.0, 0.7]

20 136.8 37118.7 531.7 656.4 46.7
[17, 325] [552, 135400] [2.1, 2287.4] [56, 1743] [0.4, 272.6]

30 397.6 {3}1 123314.1 4673.7 1990.9 988.1
[186, 735] [34871, 441368] [630.0, 21630.9] [817, 3689] [34.0, 4479.2]

40 790.6 {5}1 3959.4 5263.0
[508, 1248] [2362, 6144] [794.9, 16242.3]

1Number of instances that could not be solved in 25000s of CPU time.

For p = 4, the number of nondominated solutions more than doubles compared to
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the p = 3 case. Moreover, the gap between the CPU times of the recursive algorithm

and SOR-GNS widens. The number of models solved increases drastically for the

recursive algorithm and none of the n = 40 instances can be solved.

We solve five-objective knapsack problem instances by using SOR-GNS only. For

p = 5, instances become unmanageable beyond n = 20. For n = 10, the average

number of nondominated solutions is 16.2, and the average CPU time is 1.0s. For

n = 20, the average number of nondominated solutions is 161.2, and the average CPU

time is 5084.1s while the maximum is 21304.4s. Another way to solve small-sized

instances is to use enumeration. In this case, for n = 20 the average and maximum

CPU time is 60.3 and 84.3, respectively. Although enumeration outperforms SOR-

GNS for n = 20, it is also not applicable beyond n = 20.

Unlike generic multiobjective methods that have been referred to so far, there are

some studies presented to solve only multiobjective knapsack problems. In one recent

study, Bazgan et al. proposed an approach based on dynamic programming [17]. In

another one, a labeling algorithm was used to find all nondominated outcomes in [83].

Although these two studies are problem specific algorithms, we make an informal

comparison with respect to CPU time. Since their computational environment is

different from ours, we scale the reported CPU times to our computation setting

by using SPEC benchmark results [170]. Additionally, both studies generate their

instances similar to our random generation setting with same sizes. In small-sized

instances the performance of Bazgan et al.’s algorithm is better than our approach.

The difference between CPU times decreases with the increase in instance size. When

n = 110, SOR-GNS outperforms Bazgan’s algorithm [17]. Figueira et al. solve

knapsack instances up to 20 with p = 3 to 7 [83]. For p = 3 and p = 4, SOR-GNS

outperforms Figueira et al.’s algorithm. However, for large values of p, their algorithm

seems to perform better.
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3.3.2 The multiobjective assignment problem

The multiobjective assignment problem is explained in Section 2.2. Test prob-

lem instances for the multiobjective assignment problem are formed in sizes varying

from 5 to 50 with increments of 5 and p is set equal to 3. The objective function

coefficients are randomly generated integers in the interval [1, 20]. The test problems

are generated with the same parameters given in [152], and this is the only study

that considers the multiobjective assignment problem for more than two objective

functions. Przybylski et al. [152] generalize the two-phase method presented in [181]

for the p > 2 case. The number of models solved and CPU times of each method for

the multiobjective assignment problem instances are given in Table 3.3.

As seen in Table 3.3, the number of nondominated solutions is increasing more

rapidly compared to knapsack instances. The performance difference between Özlen

and Azizoglu’s algorithm and SOR-GNS is not as much as it is for the knapsack

problem. Nevertheless, the proposed method is almost twice as fast as Özlen and

Azizoglu’s algorithm in all instances. The number of problems solved per nondomi-

nated solution decreases to 1.45 on average compared to knapsack instances while the

maximum ratio is 1.79.

As a side remark, the performance of Özlen and Azizoglu’s algorithm is highly

affected by the distance between yI and yU , due to its search mechanism. This dis-

tance is smaller in assignment instances compared to knapsack instances. Therefore,

their algorithm has a poorer performance in knapsack instances, but SOR-GNS is

not affected by the variations in objective function value ranges. More importantly,

Özlen and Azizoglu’s algorithm uses the augmented form of the ε-constraint method,

and in their formulation while the coefficient of one of the objective functions is one,

remaining objective coefficients are products of inverse of ranges. Hence coefficients

may take values which are close to zero, and the resulting solution can be weakly

efficient. In one knapsack instance, the total number of such points is found to be 91.
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This does not seem to happen in the assignment problem instances.

3.4. Conclusion

In this chapter, we have proposed an algorithm to solve multiobjective discrete

optimization problems with any number of objective functions. We showed that the

algorithm can generate the entire nondominated set in a finite number of steps. Our

method uses the well-established ε-constraint scalarization and is based on a parti-

tioning mechanism that searches the (p−1)-dimensional constraint space exhaustively.

The proposed method is compared with previous algorithms, and is seen to outper-

form all of them on the experimented problem instances. The number of models solved

per nondominated solution may be a better comparison criterion for the scalarization

methods than the computation time statistics. The proposed algorithm solved at

most 1.99 subproblems per nondominated solution on the test problems. This ratio

is highly competitive compared to previous studies. Nevertheless, as problem size

increases and the number of nondominated solutions grows, the requirements of the

approach become unrealistically high. Hence, in Chapter 5, we modify the algorithm

to generate representations of the nondominated set with desired quality guarantees.
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Chapter 4

COMPUTING THE NADIR POINT FOR

MULTIOBJECTIVE DISCRETE OPTIMIZATION

PROBLEMS

In this chapter, we investigate the problem of finding the nadir point for MODO.

We present an algorithm to compute nadir values for MODO with p objective func-

tions. The nadir point is constructed from the worst objective values over the efficient

set of a multiobjective optimization problem. We reviewed the solution methods that

compute the nadir point for MOP problems in Section 2.4. These solution methods

can be classified into two groups. In the first group, computation of the nadir point is

considered as an optimization over the efficient set problem [1, 103]. The other group

of methods require exhaustive search of the outcome space [71] or the weight space

[5]. Our algorithm is based on exhaustive search of (p−2)-dimensional space which is

the projection of the outcome space. We partition this space into (p− 2)-dimensional

rectangles to search the space entirely. During the search, a two-stage ε-constraint

scalarization is used to obtain nondominated solutions. The method guarantees to

find the nadir point in a finite number of iterations. We compare our algorithm with

two earlier studies from the literature. We give numerical results for all algorithms

on multiobjective knapsack, assignment and integer linear programming problems.

Our algorithm is able to obtain the nadir point for relatively large problem instances

with up to five-objectives. In the following section, we present the theoretical ba-

sis for our approach. In Section 4.2, our algorithm to compute the nadir point for

MODO is given. In Section 4.3, computational results for our algorithm, Ehrgott
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and Tenfelde-Podehl’s algorithm [71], and Jorge’s algorithm [103] are given on mul-

tiobjective knapsack, assignment and integer linear programming problem instances.

Finally, conclusions are presented in Section 4.4.

4.1. Theoretical Background

For the presentation of our approach, we use an unattainable overestimator of the

nadir point which we define as yUj = maxx∈X fj(x) + δ for j = 1, . . . , p where δ > 0.

Clearly, yNj < yUj for j = 1, . . . , p.

The ε-constraint method suggests retaining one of the p objective functions as

the objective function while remaining (p − 1) are turned into constraints [93]. The

weakly efficient solutions thus found then can be eliminated by lexicographic, aug-

mented or two-stage subproblems as recently implemented in [122, 144, 114]. Here,

we propose a slight modification of the ε-constraint method for the purpose of seek-

ing nondominated solutions that determine the kth component of the nadir point.

For any ε ∈ Rp−2, two-stage ε-constraint formulations, Pk,m(ε) and Qk,m(ε) for some

k,m ∈ {1, . . . , p} and k 6= m, are defined as follows.

Pk,m(ε) z = min fm(x)

s.t. fk(x) ≤ yUk

fj(x) ≤ εj j ∈ C

x ∈ X .

Above, set C is defined as C = {1, . . . , p}\{k,m}. Let z∗ be the optimal objective

value of subproblem Pk,m(ε) and consider the second stage formulation Qk,m(ε).
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Qk,m(ε) min

p∑
j=1

fj(x)

s.t. fm(x) = z∗

fk(x) ≤ yUk

fj(x) ≤ εj j ∈ C

x ∈ X .

Let x∗ be an optimal solution to two-stage formulations Pk,m(ε) and Qk,m(ε) where

k,m ∈ {1, . . . , p} and k 6= m. That x∗ is always efficient for any ε ∈ Rp−2 follows easily

from earlier results [114]. Besides, whenever fk(x
∗) = yNk , there exist an ε ∈ Rp−2

such that x∗ is optimal to two-stage programs.

Theorem 10. Let k,m ∈ {1, . . . , p} and k 6= m. For ε ∈ Rp−2, an optimal solution

to the two-stage formulations Pk,m(ε) and Qk,m(ε) is efficient.

Theorem 11. Let k,m ∈ {1, . . . , p} and k 6= m. For an efficient solution x∗ where

fk(x
∗) = yNk , there exists an ε ∈ Rp−2 such that x∗ is an optimal solution to two-stage

formulations Pk,m(ε) and Qk,m(ε).

Proof. Let k,m ∈ {1, . . . , p} and k 6= m. Suppose x∗ is a feasible solution such that

fk(x
∗) = yNk . Set ε̂j = fj(x

∗) for each j ∈ C. Note that x∗ is feasible to Pk,m(ε̂).

Suppose that x∗ does not solve two-stage formulations Pk,m(ε̂) and Qk,m(ε̂). Let x′

be an optimal solution to two-stage programs with ε̂ ∈ Rp−2. Then either fm(x′) <

fm(x∗) or fm(x′) = fm(x∗) and
∑p

j=1 fj(x
′) <

∑p
j=1 fj(x

∗). Since fj(x
′) ≤ ε̂j = fj(x

∗)

for all j ∈ {1, . . . , p} \ {k} and fk(x
′) ≤ fk(x

∗) = yNk , f̂(x
′) < f̂(x

∗) for some

̂ ∈ {1, . . . , p}. This implies that x′ dominates x∗, which contradicts that x∗ is an

efficient solution.

Remark 1. Theorem 11 shows that yNk , k ∈ {1, . . . , p}, can be computed by using

the two-stage formulation with m ∈ {1, . . . , p} \ {k} and εj ∈ R such that j ∈ C.



Chapter 4: Computing the Nadir Point for Multiobjective Discrete Optimization
Problems 65

Hence, the search space of this result, is the (p − 2)-dimensional space, and has one

less dimension than the search space of enumerating all nondominated solutions by

using ε-constraint method [114]. In terms of dimension of the problem, this theorem

is similar to Ehrgott and Tenfelde-Podehl’s result [71] since they find the nadir point

by generating efficient sets of p different MOPs with (p− 1) objectives. On the other

hand, their result relies on the union of efficient sets, while Theorem 11 determines

the nadir point component-wise. Later on, we remove some portion of the initial

search space by using the payoff table estimate.

By Theorems 10 and 11, with appropriate choice of ε ∈ Rp−2 the kth component of

the nadir point can be obtained by solving the two-stage formulations. To facilitate

a search for the appropriate ε values, we can partition the search space into (p− 2)-

dimensional rectangles. A similar search was implemented in the previous chapter

with (p − 1)-dimensional rectangles to obtain the entire nondominated set. Lower

and upper vertices of a rectangle are denoted as l ∈ Rp−2 and u ∈ Rp−2, respectively.

With these bounds, a rectangle is defined as R(l, u) = {ȳ ∈ Rp−2 : l ≤ ȳ ≤ u}. For

ease of notation, we define ȳ = f̄(x) ∈ Rp−2 such that f̄j(x) = fj(x) for all j ∈ C, i.e.

ȳ = f̄(x) is the projection of f(x) ∈ Rp onto Rp−2 with the mth and kth components

removed. Define a rectangle R(ȳI , ȳU) whose lower and upper vertices are projections

of yI and yU onto Rp−2, respectively. By definition of yI and yU , yIj ≤ fj(x) < yUj for

each j ∈ {1, . . . , p} and for all x ∈ X . Hence, all efficient solutions are mapped into

R(ȳI , ȳU).

The idea is to start with a sufficiently large rectangle that contains the projection

of the nondominated set, devise a method of refining the rectangles and solve two-

stage problems repeatedly. We will now describe how payoff table information can be

used to narrow down the search space.

Let m ∈ {1, . . . , p} be such that Tmk = yPTk , i.e. m is the row that generates the

kth component of yPT . Let x∗m denote an efficient solution that maps into the mth

row of the payoff table. Define ϕ = f̄(x∗m) ∈ Rp−2 where ϕj = fj(x
∗
m) for each j ∈ C,
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i.e. ϕ is the projection of f(x∗m) ∈ Rp onto Rp−2.

Our next result essentially states that R(ϕ, ȳU) can be excluded from the search

space. This reduces our search space to a difference of two rectangles. We now argue

that our search space can be represented as a union of several rectangles because

R(ȳI , ȳU) can be divided into several non-overlapping (in the sense that the interiors

do not intersect) subrectangles by pivoting on ϕ ∈ Rp−2. Let C ′ = {j ∈ C : ȳIj < ϕj}.

Consider a rectangular bisection process in which a rectangle is subdivided into two

subrectangles by means of a hyperplane Hj = {ȳ ∈ Rp−2 : ȳj = ϕj} where j ∈ C ′.

When such a process is applied repeatedly, it generates a family of rectangles which

are partitions of the original rectangle [100, 123]. An element of this family is of the

form

RJ = {ȳ ∈ Rp−2 : ȳIj ≤ ȳj ≤ ϕj j ∈ J

ϕj ≤ ȳj ≤ ȳUj j ∈ C \ J}
(4.1)

where J ⊆ C ′. Therefore, union of all such rectangles constitute the initial search

space, i.e. R(ȳI , ȳU) =
⋃
J⊆C′ RJ . The rectangle R(ϕ, ȳU) is computed when J = ∅

in (4.1). Then the initial search space UR, given by

UR =
⋃
J⊆C′

J 6=∅

RJ (4.2)

contains partitions of R(ȳI , ȳU) except for R(ϕ, ȳU).

The result below shows that the nadir point yN is projected into UR where UR ⊆

R(ȳI , ȳU) ⊆ Rp−2.

Theorem 12. Let m ∈ {1, . . . , p} be such that Tmk = yPTk . Let x∗m ∈ XE be such that

fj(x
∗
m) = Tmj for each j ∈ {1, . . . , p}. Define ϕ = f̄(x∗m) ∈ Rp−2. For an efficient

solution x′ where fk(x
′) = yNk , f̄(x′) ∈ UR.

Proof. Let x′ ∈ X be an efficient solution such that fk(x
′) = yNk . Assume to the

contrary that f(x′) is projected outside of UR. By definition of yI and yU , f̄(x) ∈
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R(ȳI , ȳU) for all x ∈ X . This implies that f̄(x′) ∈ R(ϕ, ȳU). Then ϕj = fj(x
∗
m) ≤

fj(x
′) ≤ yUj for all j ∈ C. Since ϕ ∈ R(ȳI , ϕ) ⊆ UR and f̄(x′) /∈ UR , there

exists ̂ ∈ C such that f̂(x
∗
m) < f̂(x

′). By definition of ideal and nadir point,

fm(x∗m) = yIm ≤ fm(x′) and fk(x
∗
m) = yPTk ≤ fk(x

′) = yNk . Since fj(x
∗
m) ≤ fj(x

′)

for all j ∈ C with at least one strict inequality, x∗m dominates x′. This contradicts

efficiency of x′.

By Theorems 10, 11 and 12, the kth component of the nadir point (yNk ) can be

obtained by an exhaustive search of the region UR. The search space is represented by

a union of (p − 2)-dimensional rectangles. Unless the number of objective functions

is less than or equal to 3, the search space is non-convex. For p = 2, the search space

is a point. This means that yPT is equal to yN , which is a known fact. When p = 3,

the search space becomes a single dimensional interval for the kth component of the

nadir point.

In the next section, we provide an algorithm that conducts this search for MODO

problems. While results presented so far are applicable to any MOP, our search

procedure requires YN to be a discrete set.

4.2. Finding the Nadir Point for a MODO Problem

In this section, we present an algorithm to search the region UR exhaustively for

all nondominated solutions that map into this region. Since ε ∈ Rp−2, the search is

managed over (p − 2)-dimensional rectangles. During the search, a set of rectangles

should be maintained. The ith rectangle is denoted as Ri with its lower and upper

vertices li, ui ∈ Rp−2. All rectangles that need to be searched are kept in list L, i.e.

L =
⋃|L|
i=1{Ri} where |L| represents the cardinality of L.

Initially, we obtain the efficient solution x∗m by using the payoff table, where

fk(x
∗
m) = yPTk and fm(x∗m) = yIm. Given objective function indices {k,m} and x∗m,

the search space UR can be constructed by using (4.1) and (4.2), and L is initialized
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as UR.

After the initialization phase, L = ∅ implies that yPT is the nadir point. If L is a

non-empty set, than we need to process the rectangles in an order. For prioritization,

we define a volume-related measure associated with rectangle Ri as

Vi =
∏
j∈C

(uij − ȳIj ). (4.3)

Note that this is not the volume of Ri itself, but the volume of the rectangle defined by

ȳI as the lower vertex and the upper vertex ui of Ri. Theoretically, this prioritization

rule can be replaced by any other list processing rule.

The technical statement of the proposed algorithm, which we label as Nadir Point

Determination Algorithm (NPDA), is as follows.

Algorithm NPDA

Input: MODO problem, i.e. objective functions fj(x) for j = {1, . . . , p}, and feasible

set X

Output: Nadir point (yN) of MODO problem.

Step-0 Obtain the payoff table T , and initialize the nadir point with the payoff table

estimate, i.e. yNj = yPTj for j = 1, . . . , p. Set k = 1.

Step-1 Initialize the nondominated solutions list, YkP 3= ∅. Pick m ∈ {1, . . . , p} and

efficient solution x∗m such that fk(x
∗
m) = yPTk . Generate the initial rectangle list

L by using (4.1) and (4.2) where ϕj = fj(x
∗
m) for each j ∈ C.

Step-2 If L is empty, go to Step-4. Otherwise, pick a rectangle Ri(l
i, ui) with highest

Vi from the list L. Solve the first stage formulation with the upper vertex of Ri,

i.e. Pk,m(ui).

3Yk
P represents the list of nondominated solutions until yNk is obtained. At termination, Yk

P may
not include all nondominated solutions, i.e. Yk

P ⊆ YN for each k ∈ {1, . . . , p}.



Chapter 4: Computing the Nadir Point for Multiobjective Discrete Optimization
Problems 69

Step-3 If Pk,m(ui) is feasible, than solve Qk,m(ui). Let x∗ denote an optimal solution.

• If f(x∗) /∈ YkP , YkP = YkP ∪ {f(x∗)}. If fk(x
∗) > yNk , update the kth

component of the nadir point, yNk = fk(x
∗). Now, apply the rectangular

subdivision process for each Rs ∈ L. Pick rectangle Rs from list L. Set

L = L \ {Rs}. Define an index set for Rs as C ′s = {j ∈ C : lsj < f̄j(x
∗) <

usj}. Initialize list L′ for the rectangular subdivision process, L′ = {Rs}.

For Each (j ∈ C ′s)

Initialize list L′′, L′′ = ∅.

For Each (Rt ∈ L′)

R1 = {ȳ ∈ Rt : ȳj ≤ fj(x
∗)}

R2 = {ȳ ∈ Rt : ȳj ≥ fj(x
∗)}

L′′ = L′′ ∪ {R1} ∪ {R2}

end

L′ = L′′

end

L = L ∪ L′. Remove rectangles that lie in R(f̄(x∗), ui).

• Else (If f(x∗) ∈ YkP ), remove rectangles that lie in R(f̄(x∗), ui).

Else (If Pk,m(ui) is infeasible), remove rectangles that lie in R(ȳI , ui).

Go to Step-2.

Step-4 k = k + 1. If k ≤ p, go to Step-1. Otherwise, return the nadir point yN and

stop.

NPDA starts with obtaining the payoff table and an efficient solution that cor-

responds to each component of yPT . Then initial rectangle list L is generated. In

each iteration, the algorithm picks a rectangle Ri with the largest Vi value. With the

upper vertex of Ri, u
i ∈ Rp−2, the two-stage programs are solved. Until termination,
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the kth component of the nadir point is determined. This procedure is repeated for

each k ∈ {1, . . . , p} to obtain the nadir point yN .

While solving the two-stage formulations with ui ∈ Rp−2, three cases can occur.

First a new nondominated solution may be obtained, and let x∗ be an associated

efficient solution. Initially, f(x∗) is inserted into nondominated solutions list YkP .

Then, among all rectangles in L, if f̄j(x
∗) is in between the bounds of rectangle Rs

for the jth axis, then Rs is split into two rectangles along the jth axis where j ∈ C.

After updating the list, some of the rectangles can be removed because the region

between the upper vertex of the rectangle Ri and f̄(x) does not need to be searched

(see Lemma 3). In this case, all rectangles that lie in R(f̄(x∗), ui) are removed, i.e.

for any Rs ∈ L such that Rs ⊆ R(f̄(x∗), ui), L = L \ {Rs}.

Lemma 3. Let k,m ∈ {1, . . . , p} and k 6= m, and let x∗ be an optimal solution to

two-stage programs Pk,m(ui) and Qk,m(ui) where ui ∈ Rp−2 is the upper vertex of a

rectangle. Then, there is no nondominated solution that is projected into R(f̄(x∗), ui),

other than f(x∗).

Proof. Assume to the contrary that there exists an efficient solution x′ ∈ X that is

mapped into the rectangle R(f̄(x∗), ui). Then, f̄j(x
∗) ≤ f̄j(x

′) ≤ uij for each j ∈ C,

and fk(x
′) ≤ yUk . This implies that x′ is feasible to Pk,m(ui), and we know that

x∗ is optimal to Pk,m(ui). Then, fm(x∗) ≤ fm(x′). Unless fj(x
′) = fj(x

∗) for all

j = 1, . . . , p, x∗ dominates x′. Therefore, there exists no nondominated solution that

is mapped into the rectangle R(f̄(x∗), ui) other than f(x∗).

The second possible case after solving a set of two-stage programs in NPDA is

that an optimal solution x∗ is obtained, however f(x∗) has already been found at

an earlier iteration, i.e. f(x∗) ∈ YkP . The reason for this situation is that different

ε ∈ Rp−2 values may return the same nondominated solution. In this case, Lemma 3

still applies, and rectangles that lie in between f̄(x∗) and current rectangle’s upper

vertex ui are removed.
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The third possible case is the infeasibility of the two-stage programs. Given up-

per vertex ui for the rectangle, if Pk,m(ui) is feasible, then Qk,m(ui) is also feasible.

Therefore, infeasibility can be observed only in the first stage problem. If the first

stage is infeasible for the rectangle’s upper vertex ui, every ε ∈ R(ȳI , ui) would lead to

an infeasible Pk,m(ε) formulation. Hence, all rectangles inside R(ȳI , ui) are removed.

Lemma 4 addresses the infeasibility case.

Lemma 4. Let k,m ∈ {1, . . . , p} and k 6= m, if Pk,m(ui) is infeasible, then there is

no nondominated solution that is projected into the rectangle R(ȳI , ui).

Proof. Assume to the contrary that there exists an efficient solution x′ ∈ X such

that fj(x
′) ≤ uij for each j ∈ C, and yk(x

′) ≤ yUk . This implies that x′ is feasible

to Pk,m(ui) which contradicts that Pk,m(ui) has no feasible solution. Therefore there

exists no nondominated solution that is mapped into R(ȳI , ui).

We have shown that in each iteration the algorithm removes at least one rectangle

from list L, and no other nondominated solution projects into removed rectangles.

Similar proofs are given in [114]. Theorems 13 and 14 will show completeness and

finiteness of the algorithm after an illustrative example on building and managing

rectangles.

Example. Consider a four-objective problem (p = 4) where the third component

(k = 3) of the nadir point, yN3 , is being computed. Let the third component of

the payoff table estimate be obtained with x∗4 ∈ XE, i.e. m = 4, f3(x∗4) = yPT3

and f4(x∗4) = yI4 . Since k = 3 and m = 4, the index set C is equal to {1, 2}.

The projection of f(x∗4) onto ȳ1 − ȳ2 plane is denoted as ϕ, and suppose that ȳIj <

ϕj for all j ∈ C. Hence, C ′ = {1, 2}. The initial search space that contains 3

rectangles is UR = R((ȳI1 , ϕ2), (ϕ1, ȳ
U
2 ))∪R((ϕ1, ȳ

I
2), (ȳU1 , ϕ2))∪R((ȳI1 , ȳ

I
2), (ϕ1, ϕ2)) as

shown in Figure 4.1. In this figure shaded region shows the removed space, which is

R((ϕ1, ϕ2), (ȳU1 , ȳ
U
2 )).
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Figure 4.1: Initial search space and the portion removed by using payoff estimate.

After the initialization phase, the procedure continues by pickingR((ȳI1 , ϕ2), (ϕ1, ȳ
U
2 )).

Two-stage formulation is solved for the upper vertex of this rectangle, and the pro-

jection of the resulting nondominated solution is ȳ1. Rectangular subdivision pro-

cess pivoting on ȳ1 is shown in Figure 4.2. After the rectangular subdivision pro-

cess, rectangles that lie in R((ȳ1
1, ȳ

1
2), (ϕ1, ȳ

U
2 )) can be removed. Thus two rectangles,

R((ȳ1
1, ϕ2), (ϕ1, ȳ

U
2 )) and R((ȳ1

1, ȳ
1
2), (ϕ1, ϕ2)), are removed.

Theorem 13. NPDA finds the nadir point yN .

Proof. Two-stage mathematical programs either find an efficient solution (see Theo-

rem 10) or they are infeasible for right-hand-side vector ui. Therefore, all points in

YkP for each k ∈ {1, . . . , p}, that are obtained during the search are nondominated. In

NPDA, the search is initialized with a set of rectangles that forms the search space
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Figure 4.2: Rectangular subdivision process pivoting on ȳ1 and removed rectangles.

UR. By Theorem 12, an efficient solution x∗ that satisfies fk(x
∗) = yNk is mapped

into this region. In NPDA, this space is searched exhaustively, and in each iteration

some part of the initial rectangle is removed. From Lemma 3 and 4, removed regions

do not include projection of a nondominated solution. By Theorem 11, there exists

ε ∈ Rp−2 such that x∗ is optimal to a two-stage formulation whenever fk(x
∗) = yNk .

Since NPDA considers each k ∈ {1, . . . , p}, at termination NPDA obtains the nadir

point yN .

We also need to argue the finiteness of NPDA. In Theorem 14, we show that the

proposed algorithm terminates in a finite number of iterations.

Theorem 14. NPDA is finite.
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Proof. By assumption, the nondominated set YN includes a finite number of elements.

Since the list of nondominated solutions until yNk is obtained (YkP ) is a subset of YN ,

YkP also has a finite number of elements, |YkP |. In the worst case, each axis in Rp−2

is divided into (|YkP | + 1) intervals. Since the search space is (p − 2)-dimensional,

|L| ≤ (|YkP | + 1)p−2 where |L| denotes the size of the rectangle list. This means that

the number of rectangles is finite. Besides, in each iteration at least one rectangle is

removed from L. This implies that L will be empty in a finite number of iterations.

Hence, NPDA is finite.

The algorithm terminates when the list of rectangles is empty. Theorems 13 and

14 imply that NPDA finds the nadir point yN in a finite number of iterations.

4.3. Computational Results

NPDA, Ehrgott and Tenfelde-Podehl’s algorithm (ETPA) [71], and Jorge’s al-

gorithm (JA) [103] are tested on various MODO problem instances. Ehrgott and

Tenfelde-Podehl showed that it suffices to generate efficient sets of p different MO-

DOs with (p−1) objective functions to compute the nadir point. Hence, their method

requires an algorithm to enumerate all efficient solutions for MODO with (p− 1) ob-

jective functions. Therefore, we modify SOR-GNS (see Chapter 3) so as to generate

the entire efficient set by finding all alternative optimal solutions for each subproblem.

We choose SOR-GNS, because it performs well in terms of solution time [114], and

utilizes a search structure similar to the one presented here, making a comparison

more straight forward in terms of highlighting the additional benefits of NPDA. In

the computational results, ETPA [71] with modified SOR-GNS is denoted as ETPA+.

The proposed method is also compared with a recent solution algorithm for the prob-

lem of optimizing a linear function over the integer efficient set, which is presented by

Jorge in [103]. JA iteratively cuts previously obtained nondominated solutions until

the kth component of the nadir point is obtained. Hence, the solution algorithm adds
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p binary variables and p+1 constraints for each nondominated solution to the model.

All algorithms are implemented in C++. Subproblems are solved by using IBM

CPLEX 12.4 [47]. All tests were conducted on a shared cluster with Intel Xeon 2.3

GHz CPU and 4 GB memory limit with Linux operating system. These algorithms are

tested on the multiobjective knapsack problem, multiobjective assignment problem,

and multiobjective integer linear programming problem instances. We use the same

multiobjective knapsack problem and multiobjective assignment problem instances

that were generated to test SOR-GNS in Chapter 3. Test problems have different

categories based on problem size. There are 10 instances for each problem category.

The results of each category are presented in two rows. In the first row, for each

category, the average over 10 instances is given. The numbers in the second row cor-

respond to the minimum and maximum for each category, respectively. Computation

of each instance is interrupted after 100,000 CPU seconds. A blank cell in a table

indicates that none of the 10 instances could be completed within the time limit.

For NPDA, we report total size of the list YkP over all components of the nadir

point, i.e.
∑p

k=1 |YkP | is reported. Number of models solved and CPU time statistics

are given for all algorithms.

4.3.1 The multiobjective knapsack problem

For the multiobjective optimization problem with p = 3, there are 10 categories

with a size varying from 10 to 100 with increments of 10. The solution statistics are

given in Table 4.1.

As seen in Table 4.1, NPDA outperforms both algorithms in terms of CPU time

results. We observe that JA cannot solve all instances in the given time limit. When

we compare NPDA with ETPA+, the number of solved models in each problem

category for both methods are almost equal, but ETPA+ enumerates all alternative

solutions for the given subproblem. In all instances, NPDA is able to obtain the nadir

point in a shorter period of time.
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For p = 4 and p = 5 cases, we have generated 4 and 3 categories with a size

varying from 10 to 40 and 10 to 30 with increments of 10, respectively. The solution

statistics for both cases are given in Table 4.2.

For p = 4 case, NPDA still outperforms other two methods. In these instances,

the solution time of NPDA and ETPA+ are in reasonable limits. This is not the case

for JA. When we switch to p = 5 test instances, JA outperforms NPDA with the

difference being important for n = 30. However, NPDA still outperforms ETPA+ for

both p = 4 and p = 5 cases.

4.3.2 The multiobjective assignment problem

For the multiobjective assignment problem with p = 3, there are 10 categories

with a size varying from 5 to 50 with increments of 5. The solution statistics are

given in Table 4.3.

As seen in Table 4.3, NPDA computes the nadir point faster than ETPA+, and

the performance difference is increasing with the increase in problem size. Another

observation is that CPU time difference between NPDA and ETPA+ is larger in

assignment problem instances compared to knapsack problem instances with p = 3.

JA spends too much time to find the nadir on multiobjective assignment problems, and

the algorithm cannot solve more than half of the instances in 100,000 CPU seconds.

The assignment problem instances have larger number of nondominated solutions

compared to knapsack problem instances (see [114] for the statistics). Hence, JA

requires to add many binary variables and constraints to the model, and the model

becomes unsolvable even if the problem size is n = 25.

We note that similar multiobjective knapsack and assignment problem instances

were generated and their nondominated sets were enumerated in [114]. While the

average number of nondominated solutions for the largest three-objective knapsack

(p = 3 and n = 100) and assignment (p = 3 and n = 50) problem instances is 5849.0

and 24916.8, NPDA has
∑p

k=1 |YkP | equal to 470 and 700.8, respectively. This implies
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that NPDA enumerates a small portion of YN in the process.

4.3.3 The multiobjective integer linear problem

We test the algorithms on general MOILP problem instances. The MOILP prob-

lem is explained in Section 2.2. In MOILP, m and n represent the number of con-

straints and number of variables. We consider MOILP problems with p = 3, 4 and 5,

m = 5, 10, . . . , 50 and n = 2m for each m. The parameters of the model are randomly

generated integer numbers with ranges similar to used in [5]. The coefficients of the

objective functions (cjl ) are generated in the ranges [−100,−1] and [0, 100] with prob-

ability 0.2 and 0.8, respectively. The technical coefficients (arl) are generated in the

ranges [−100,−1] with probability 0.1, [1, 100] with probability 0.8, and arl = 0 with

probability 0.1. Finally, right-hand side value (br) of each constraint is also generated

randomly in the range of 100 and
∑n

l=1 arl. According to this scheme, it is possible

for a generated MOILP instance to have an unbounded efficient set. Only one such

instance was encountered in the p = 5 category and was discarded as reported in

Table 4.6.

For p = 3 case, we test all methods with up to 50 constraints and 100 decision

variables. The results of these tests are given in Table 4.4.

As seen in Table 4.4, the performance of NPDA and ETPA+ are closer compared to

knapsack and assignment instances. Nevertheless, NPDA performs better than both

methods in all instances. Additionally, NPDA solves all instances in an acceptable

period of time even if the problem size increases to 50× 100. For p = 4 case, we test

all methods with up to 80 decision variables. The results of these tests are given in

Table 4.5.

For p = 4 case, one out of 10 instances in the 40×80 category cannot be solved by

NPDA in the given time limit. In this category, JA outperforms NPDA in small-sized

instances. However, NPDA determines the nadir points faster than JA in most of the

medium-sized instances.
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Finally, algorithms are tested on the randomly generated MOILP problem in-

stances with p = 5. For this group of test, the instances are generated with up to

40 decision variables. The results of these tests are given in Table 4.6. JA is able to

solve all instances for p = 5 case. With higher number of objective functions, Jorge’s

algorithm works better than NPDA; however, we have to note that these are small

problems in terms of number of variables and constraints. Since NPDA searches the

space through (p − 2)-dimensional rectangles, NPDA’s complexity is exponential in

number of objective functions. On the other hand, the performance of JA is affected

by the size of the nondominated set in general. Therefore, JA does not strongly react

to number of objective functions as long as the problem size remains relatively small

otherwise and the nondominated set does not grow.

In summary, NPDA outperforms ETPA+ in all instances independent of the prob-

lem type and size, despite the fact that we utilize the best performing algorithm to

obtain the efficient set in ETPA+. NPDA also outperforms JA except for p = 5 cases

for which only small size problems can be reported.

4.3.4 Payoff estimate and nadir point comparison

In this subsection, we wish to explore the quality of payoff estimation in discrete

optimization problems. For a given problem type with N instances and p objective

functions, we compute

∆ = 100×
N∑
i=1

p∑
j=1

(
yNij − yPTij
yNij − yIij

)/
(N × p). (4.4)

∆ can be interpreted as the normalized distance between a payoff table estimate

and a nadir point computed independently for each objective function. We calculate

∆ for multiobjective knapsack and MOILP problem instances.

As seen in Figure 4.3, for both problem types, the average distance between the

payoff table estimate and the nadir point is increasing with the number of objective
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Figure 4.3: Percentage difference between yPT and yN .
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functions. On average, the payoff table estimate quality is worse in MOILP than in

knapsack problems. This might be one of the underlying factors that lead to closer

computational performance of NPDA and ETPA+ in MOILP instances.

4.4. Conclusion

In this chapter, we presented a new algorithm to find the nadir point of multi-

objective discrete optimization problems with p objective functions. The proposed

algorithm NPDA is based on an exhaustive search of the (p − 2)-dimensional space.

NPDA guarantees to find the nadir point exactly in a finite number of steps. We

also compute Ehrgott and Tenfelde-Podehl’s nadir point determination approach,

and Jorge’s solution method for the optimization over integer efficient set problem.

All algorithms are tested on various types of discrete optimization problems with dif-

ferent sizes. In computational results, we see that NPDA outperforms Ehrgott and

Tenfelde-Podehl’s algorithm in all test instances by varying margins. NPDA also out-

performs Jorge’s algorithm in three and four-objective optimization problems. When

p = 5, Jorge’s algorithm displays better performance over problem sizes that can be

solved within the enforced time limit.
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Chapter 5

GENERATING REPRESENTATIVE SETS FOR

MULTIOBJECTIVE DISCRETE OPTIMIZATION

PROBLEMS WITH SPECIFIED COVERAGE ERRORS

In this chapter, we present an algorithm to generate representations with a quality

guarantee for multiobjective discrete optimization problem with any number of objec-

tives. In this algorithm, the outcome space is searched over p-dimensional rectangles,

and for each rectangle two-stage mathematical programs are solved to find nondom-

inated solutions. Since we aim to generate representations with a quality guarantee,

any rectangle that satisfies the desired error level is eliminated from the search space.

The algorithm is tested on multiobjective knapsack and multiobjective assignment

problem instances with different error factors.

5.1. Introduction

Generating all nondominated solutions for multiobjective discrete optimization prob-

lem is the most desirable one. However, even bicriteria combinatorial optimization

problems are intractable [166], i.e. the number of efficient solutions grows exponen-

tially with respect to the size of the problem instance. Hence, for MODO problems,

generating finite subset of all nondominated solutions may be more meaningful.

Generating representative set with specified error level has been considered in only

four studies so far. These studies are only limited to handle the bicriteria case. Sayın

and Kouvelis propose a representation method to obtain representations with a quality

guarantee for bicriteria discrete optimization problems [163]. Hamacher et al. present
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a box algorithm to generate a representation of the efficient set for discrete bicriteria

problems [95]. Eusebio and Figueira propose a new algorithm to find a representation

with desired quality for bicriteria integer network flow problems [77]. Vaz et al.

introduce several algorithms for finding a representation for bicriteria combinatorial

optimization problems considering uniformity, coverage and the ε-indicator measures

[182].

In this chapter, we study generating representations with specified coverage er-

rors for MODO problems with any number of objectives. We present an algorithm to

search the outcome space with p-dimensional rectangles. We solve two-stage optimiza-

tion problems to find nondominated solutions. During the search, any rectangle that

satisfies the desired coverage error level is removed from the search list. The algorithm

is tested on multiobjective knapsack and multiobjective assignment problems.

In the following section, computing the coverage is discussed. In Section 5.3,

the proposed algorithm and associated theoretical results are given. In Section 5.4,

computational results are presented on multiobjective knapsack and multiobjective

assignment problem instances. Conclusions are presented in Section 5.5.

5.2. Computing the Coverage Error

Coverage error determines the maximum distance between a point in the nondom-

inated set and its closest neighbor in the representation [80]. Our aim is to generate

representative sets for MODO problems with a specified coverage error α ∈ R. Re-

call that given representative set YR and nondominated set YN the coverage error is

calculated as follows,

z = max
ȳ∈YN

min
y∈YR

d(y, ȳ). (5.1)

Let z∗ be the optimal objective value of (5.1). Note that, the formulation for

the coverage is same as the one-sided Hausdorff distance [97]. Here, the goal is to
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generate YR that satisfies desired coverage level α, but we do not have any information

about YN beforehand. Hence, we utilize the rectangles that partition the outcome

space. A rectangle’s lower and upper vertices are denoted as l ∈ Rp and u ∈ Rp,

respectively. With these bounds, a rectangle is defined as R(l, u) = {y ∈ Rp, l ≤ y ≤

u}. Instead of YN , we calculate the Hausdorff distance between the rectangle R and

the representation YR. The coverage error level of R ⊆ Rp by the representative set

YR is computed as follows,

λ∗ = max
ȳ∈R

min
y∈YR

d(y, ȳ). (5.2)

Let λ∗ be the optimal objective value of (5.2). If λ∗ ≤ α, then the rectangle satisfies

the desired coverage error level α, and can be eliminated. The formulation (5.2) is a

bilevel programming problem, and it can be turned into a single-level problem since

YR is a discrete set. Let N represent the number of solutions in YR. Given a metric

(d), the coverage error formulation in (5.2) can be formulated as follows,

PC(d) max λ

s.t. λ ≤ d(ȳ, yi) i = 1, . . . , N

ȳ ∈ R.

(5.3)

We use Lq-norm to measure the distance, and all norms are convex and nonlinear

[63]. Hence, (5.3) is a challenging global optimization problem [100]. When the

distance metric is the L1-norm or the L∞-norm, (5.3) can be formulated as a mixed

integer linear programming problem [160]. Let M denote a sufficiently large positive

number. Let λ ∈ R, (d1, . . . , dN) ∈ RN , x, ui, oi ∈ Rp, and ti, si ∈ {0, 1}p for i =

1, . . . , N denote the variables. For d = L∞, the mixed integer linear programming

formulation of (5.3) is as follows,
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PC(L∞) max λ

s.t. λ− di ≤ 0 i = 1, . . . , N

−di + ȳj + uij = yij j = 1, . . . , p; i = 1, . . . , N

di + ȳj − oij = yij j = 1, . . . , p; i = 1, . . . , N

uij −Mtij ≤ 0 j = 1, . . . , p; i = 1, . . . , N

oij −Msij ≤ 0 j = 1, . . . , p; i = 1, . . . , N
p∑
j=1

(tij + sij) ≤ 2p− 1

ȳj ≤ uj j = 1, . . . , p

ȳj ≥ lj j = 1, . . . , p

λ ≥ 0

uij, o
i
j ≥ 0 j = 1, . . . , p; i = 1, . . . , N

tij, s
i
j ∈ {0, 1} j = 1, . . . , p; i = 1, . . . , N

di ≥ 0 i = 1, . . . , N.

The formulation PC(L∞) is linear, but it incorporates 2Np binary variables.

We need to compute the coverage error of each rectangle in the partition. Hence,

it is not meaningful to solve a nonconvex optimization problem to decide whether

rectangle R is covered or not. Then, we consider the following min-max formulation,

γ = min
y∈YR

max
ȳ∈R

d(y, ȳ). (5.4)

While calculating the coverage error, (5.2) considers all nondominated solutions

in YR, but (5.4) takes into account the closest nondominated solution from YR. Let

λ∗ and γ∗ be the optimal objective value of (5.2) and (5.4), respectively. For a given

representation YR and a rectangle R, (5.4) computes an upper bound for the original

coverage error formulation, i.e. λ∗ ≤ γ∗. Although (5.4) is a conservative way to

calculate the coverage error, it is still valid in terms of assessing the measure without

sacrificing the quality guarantee.
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(5.4) is a bilevel optimization problem. For a given nondominated solution yi ∈

YR, the lower level problem maximizes the distance between the rectangle R and yi.

For any yi ∈ YR, let di be the optimal objective value of the lower level problem, then

the lower level problem can be formulated as follows,

di = max
ȳ∈R

d(yi, ȳ). (5.5)

In the above formulation, di is the maximum distance between yi ∈ YR and the

rectangle R. Then the optimal objective value of (5.4) is γ∗ = min
i=1,...,N

di.

Since Lq-norm is convex, in general maximization of a convex function over a

convex polytope is a global optimization problem [100]. The feasible set of (5.5) is

a bounded convex polyhedral set in Rp. Hence, the optimal solution is one of the

extreme points of the feasible set [100]. However, we need to enumerate all extreme

points of the rectangle to attain the optimal solution where full-dimensional rectangle

in Rp has 2p number of vertices.

Bodlaender et al. show that maximization of squared Euclidean norm over a

rectangular parallelotop is polynomially solvable [31]. In our case, the problem is

polynomially solvable for not only Euclidean norm but also any Lq-norm [100]. Given

rectangle R with lower (l ∈ Rp) and upper (u ∈ Rp) vertices, the optimal solution of

(5.5) is characterized as follows,

ȳj =

 uj |uj − yj| ≥ |lj − yj|

lj otherwise
j = 1, . . . , p.

5.3. Finding a Representative Set with Specified Coverage Error

In this section, we present an algorithm to generate representative sets for MODO

problems with specified coverage errors. The search methodology of the algorithm is

similar to SOR-GNS given in Chapter 3. SOR-GNS searches the projection of the
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outcome space onto (p − 1)-dimensional space to find all nondominated solutions.

Our aim is to generate representations, and we need to compute coverage error of

the rectangles in the outcome space, Y ⊆ Rp. Hence, we manage the search in the

outcome space.

For each rectangle R in the partition, we solve a two-stage formulation where

the first stage is the well-known ε-constraint formulation [93]. For a given rectangle

R(l, u) ⊆ Rp and for some k ∈ {1, . . . , p}, ε ∈ Rp−1 defined as εj = uj for all

j ∈ {1, . . . , p} \ {k}. For a given ε ∈ Rp−1 and for some k ∈ {1, . . . , p}, the two-

stage mathematical programs, Pk(ε) and Qk(ε), are defined in Chapter 3. We use

the two-stage formulation to obtain nondominated solutions for the representation.

The search algorithm is also similar to SOR-GNS; however, instead of an exhaustive

generation of nondominated set, a representation is sought. Here, our aim is to

generate a representation with a specified quality error, and we intend to decrease

the coverage error level of the worst represented rectangle by YR. Hence, we define a

new rectangle selection rule instead of the volume-based measure used in Chapter 3.

This rule is based on coverage error and is expressed as follows,

R∗ = arg max
R̂∈L

max
ȳ∈R̂

min
y∈YR

d(ȳ, y). (5.6)

This formulation finds the worst represented rectangle by the current YR. Among

all rectangles in the current list L, coverage error of R∗ is the highest. If we reduce

the coverage error of R∗, the coverage error of L either decreases or remains the same.

The second case occurs when there exists another rectangle with the same coverage

error level with R∗ after a subdivision takes place.

The technical statements of the proposed representative set generation algorithm

that is labeled as RSGA-MODO are given below.

Input: Desired coverage error α, MODO problem, i.e. objective functions fj(x)
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for j = {1, . . . , p}, and feasible set X .

Output: α-representation of the nondominated set (YR).

Step-0: Obtain the payoff table estimate yPT . YR = ∅. Initialize the rectangle list

L = {R(yI , yU)}.

Step-1: If L is empty, go to Step-3. Otherwise, pick the worst representative rect-

angle Ri ⊆ Rp. Solve the first stage formulation with ε ∈ Rp−1 where εj = uij

for j ∈ {1, . . . , p} \ {k}, Pk(ε).

Step-2: • If Pk(ε) is feasible, than solve Qk(ε). Let x∗ denote an optimal solution.

If f(x∗) /∈ YR, YR = YR ∪ {f(x∗)}. Apply the rectangular subdivision

process for each Rs ∈ L.

Remove rectangles that lie in R(f(x∗), yU) or R(yI , f(x∗)).

• Else (If Pk(ε) is infeasible), define u′ ∈ Rp as u′k = yUk and u′j = uij for

j ∈ {1, . . . , p} \ {k}. Remove rectangles that lie in R(ȳI , u′).

• Check the coverage error of each rectangle in the list L. For each Rs ∈ L,

min
y∈YR

max
ȳ∈Rs

d(y, ȳ) ≤ α, than L = L \ {Rs}.

• Go to Step-1.

Step-3: Return representative set YR and stop.

The search is initialized with a single rectangle that covers the outcome space.

In each iteration, algorithm picks a rectangle with the worst coverage error from the

list L, and solves two-stage formulation for the upper vertex of this rectangle with

the kth component removed. Algorithm also checks each rectangle in the list L to see

whether the rectangle is covered by the representative set or not. If the coverage error

of the rectangle is less than or equal to desired error, then the rectangle is removed.

Now, we need to show that, RSGA-MODO generates an α-representation of the

nondominated set, and RSGA-MODO terminates in a finite number of iterations. In

Lemma 5 and Lemma 6, we show that rectangles removed with optimality of the
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two-stage formulation do not contain any nondominated solution.

Lemma 5. Let x∗ be an optimal solution of two-stage programs Pk(ε) and Qk(ε)

where ε ∈ Rp−1. Then, there is no nondominated solution in R(f(x∗), yU) other than

f(x∗).

Proof. Assume to the contrary that there exist an efficient solution x′ ∈ X such that

f(x′) ∈ R(f(x∗), yU). Hence, fj(x
∗) ≤ fj(x

′) for j = 1, . . . , p. Since f(x′) 6= f(x∗),

there exists ̂ ∈ {1, . . . , p} such that f̂(x
∗) < f̂(x

′). This contradicts efficiency of

x′.

Lemma 6. Let x∗ be an optimal solution of two-stage programs Pk(ε) and Qk(ε)

where ε ∈ Rp−1. Then, there is no nondominated solution in R(yI , f(x∗)) other than

f(x∗).

Proof. Assume to the contrary that there exist an efficient solution x′ ∈ X such that

f(x′) ∈ R(yI , f(x∗)). Hence, fj(x
′) ≤ fj(x

∗) for j = 1, . . . , p. Since f(x′) 6= f(x∗),

there exists ̂ ∈ {1, . . . , p} such that f̂(x
′) < f̂(x

∗). This contradicts efficiency of

x∗.

In Lemma 7, we show that removed rectangles with infeasibility of the first-stage

problem do not contain any nondominated solution.

Lemma 7. If Pk(ε) is infeasible, then there is no nondominated solution in the rect-

angle R(yI , u) where uk = yUk and uj = εj for j ∈ {1, . . . , p} \ {k}.

Proof. Assume to the contrary that there exist an efficient solution x′ ∈ X such that

yIj ≤ fj(x
′) ≤ εj for j = 1, . . . , p and j 6= k, and yIk ≤ fk(x

′) ≤ yUk . This implies that

x′ is feasible to Pk(ε) which contradicts that Pk(ε) has no feasible solution.

In Theorem 15, we show that RSGA-MODO generates a representation that sat-

isfies specified coverage error α.
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Theorem 15. RSGA-MODO generates an α-representation for a MODO problem.

Proof. Two-stage mathematical programs Pk(ε) and Qk(ε) either find an efficient so-

lution or they are infeasible for any ε ∈ Rp−1 and for some k ∈ {1, . . . , p}. Therefore,

all points in YR are nondominated solutions. By definition of yI and yU , all non-

dominated solutions are in R(yI , yU), YN ⊆ R(yI , yU). In the proposed algorithm,

some part of this rectangle is eliminated in two different ways. The first way is up to

optimality or infeasibility of two-stage formulation, and we showed that removed vol-

umes do not include a nondominated solution. The other way to remove a rectangle

is to use coverage error information. Since our distance measure calculation provides

an upper bound for the actual coverage error formulation, no point in the removed

rectangle violates the coverage error factor α. From the characterization result, there

exists ε ∈ Rp−1 for each nondominated solution. Therefore, until the termination

condition occurs in the proposed algorithm, an α-representative set is generated.

In Theorem 16, we show that the algorithm terminates in a finite number of

iterations.

Theorem 16. RSGA-MODO is finite.

Proof. Since we deal with bounded MODO problems, they have a finite number of

nondominated solutions which is represented with |YN |. In the worst case, each axis

in Rp is divided into (|YN | + 1) rectangles. Since the search space is p-dimensional,

|L| ≤ (|YN |+ 1)p where |L| denotes the size of the rectangle list. This means that the

number of rectangles is also finite. Besides, in each iteration at least one rectangle is

removed from L. This implies that L will be empty in a finite number of iterations.

Hence, the proposed algorithm is finite.

In Theorems 15 and 16, we showed that RSGA-MODO generates an α-representation

of the nondominated set or MODO problem with any number of objective functions

in a finite number of iterations.
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5.4. Computational Results

RSGA-MODO is tested on multiobjective knapsack and multiobjective assignment

problems with three objectives. We use the same multiobjective knapsack problem

and multiobjective assignment problem instances that were generated to test SOR-

GNS in Chapter 3. Since the nondominated set of these problems have already been

obtained, we can compute actual coverage errors of the resulting representations. We

use L1-norm and L∞-norm in the computational tests. Additionally, to test the effect

of specified coverage level on RSGA-MODO, we generate representative sets with

different factors, α = 5%, 10% and 20%. RSGA-MODO is compared with SOR-

GNS (see Chapter 3) which is the best performing nondominated set enumeration

algorithm in terms of solution time.

In the computational results, we report cardinality of the representative set, num-

ber of models solved and CPU time. Additionally, we compute the coverage error

of the resulting representative set YR by using (5.1). In the following tables, the z∗

column shows the coverage error of resulting nondominated set which is obtained by

using RSGA-MODO.

As seen in Table 5.1, even for α = 5%, using RSGA-MODO is beneficial compared

to the exact method in terms of solution time. In Table 5.2, the results of the RSGA-

MODO with L∞-norm on multiobjective knapsack problem are given.

When we use L∞-norm and α = 5%, the exact algorithm outperforms RSGA-

MODO in terms of solution time. On the other hand, the resulting coverage errors

are closer to desired coverage level α. In Table 5.3 and 5.4, the results of the RSGA-

MODO on multiobjective assignment problem are given.

RSGA-MODO performs better in assignment problems compared to knapsack

problems, because of size of the efficient set. RSGA-MODO estimates the bounds of

the nondominated set by using payoff table, and computes the upper bound for the

coverage error to eliminate some rectangles. Despite these downsides, in some of the
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instances, RSGA-MODO generates a representation with exactly the same desired

coverage error level.

5.5. Conclusion

We study generating representations with specified coverage errors for MODO

problem with any number of objectives. Note that this is the first method in the

literature that generates representations with a quality guarantee for multiobjective

discrete optimization problems with any number of objectives.

We present an algorithm to search the outcome space with p-dimensional rect-

angles, and solve two-stage optimization problems to find nondominated solutions.

During the search, any rectangle that satisfies the desired coverage error level is re-

moved from the search list. We have shown that the proposed algorithm generates an

α-representation of MODO nondominated set in a finite number of iterations. The

algorithm is tested on multiobjective knapsack and multiobjective assignment prob-

lems. The proposed algorithm is able to generate representations efficiently. However,

when we increase the desired coverage error level, the performance of the method di-

minishes due to navigation problem in the outcome space. In the following chapter,

we model the problem of finding a nondominated solution inside a given rectangle as

a bilevel optimization problem.
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Chapter 6

BILEVEL PROGRAMMING FOR FINDING A

NONDOMINATED SOLUTION IN A GIVEN SET:

APPLICATIONS IN MULTIOBJECTIVE OPTIMIZATION

In the previous chapter, we present an algorithm to generate the representative

sets with specified coverage errors for MODO problems. The proposed algorithm is

limited to solve MODO problems. Additionally, when we increase the desired cover-

age error level, the performance of the method diminishes due to navigation problem

in the outcome space. The cause of the navigation problem is the first-stage of the

two-stage formulation, i.e. ε-constraint method itself. In ε-constraint method, we

can only impose lower bounds on p − 1 objective functions that are transformed

into constraints. Additionally, the method has no control on the objective function

that is taken into the objective function. Hence, we cannot target specific portion of

the outcome space by using the two-stage formulation. To eliminate this problem,

we model the problem of finding a nondominated solution in a given rectangle as a

bilevel programming problem. By using this result, we propose an algorithm to gener-

ate representative sets with specified coverage errors for multiobjective optimization

problems. We test the method on multiobjective linear programming problems. We

solve the linear bilevel programming subproblems by using penalty approach and inte-

ger linear programming formulation. Finally, the representation algorithm is applied

to obtain a better accuracy on support vector machine classification problem with

imbalanced data sets.
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6.1. Introduction

The bilevel programming problem (BPP) is an optimization problem whose con-

straints are determined by an another optimization problem. In other words it is a

hierarchical optimization problem consisting of two levels where the first and second

level is called upper level problem and lower level problem, respectively.

Bilevel optimization problems are commonly found in a number of real-world prob-

lems [14]. This includes problems in the domain of transportation [110], economics

[168], engineering design [118], energy sector [16]. Other typical applications of BPP

are toll setting problem, structural optimization and defense applications. In toll

setting problem, a highway authority sets tolls on a subset of arcs of the network,

while the users aim to find the shortest path route from origin to destination on the

network. The goal of the upper level program (highway authority) is to maximize

toll revenue, it is not in its interest to set tolls at very high values, in which case

the users will be discouraged from using the tolled subnetwork. The problem aims to

find the right balance between tolls that generate high revenues and tolls that attract

customers [58]. In structure optimization, the upper level problem figures out the

shape of the structure, choice of materials, amount of material to minimize the cost

subject to bounds on displacements, stresses and contact forces. Values of the upper

level can only be determined by solving the potential energy minimization problem

which is the lower level problem of the bilevel formulation [106, 117]. Defense appli-

cations can be categorized as strategic offense and defense models. In the strategic

offense model, the upper level problem chooses minimum-cost offensive forces capable

of achieving specified destruction of various resources in which lower level problem

allocates the specified defensive forces to minimize the destruction. In the strategic

defense model, the upper level problem chooses minimum-cost defensive forces ca-

pable of assuring specified survival of various resources in which lower level problem

allocates the specified offensive forces to minimize the surviving resources [35].
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Bilevel programming problems are typically challenging [13]. Hence, most of the

studies have focused on the BPP with nice properties such as linear, quadratic or

convex [44]. In particular, the bilevel linear programming problem (BLPP), which

has linear objective functions and constraints, is the most studied one [187]. Still, over

the years, more complex bilevel programs were studied such as BLPP with discrete

variables [15, 184], BPP with a nonconvex inner problem [142], BPP with multiple

objectives [75].

Several solution methods have been proposed to solve different types of BPPs.

Descent approach [183], bundle algorithm [53], penalty approach [132], trust-region

method [45], smooth approximation of the KKT transformation [86] and transforming

BPP into binary integer programming problem by using KKT optimality conditions

for the lower level problem [84] have been proposed to solve BPP with convex lower

level problem. Additionally, complementary pivots [105] method have been proposed

to solve BLPPs. This method is also based on the reformulation of BLPP using

KKT conditions. For discrete BPPs, branch-and-bound [143], cutting plane [54], and

branch-and-cut methods [56] have been used so far.

In this study, we use bilevel optimization problem to obtain a nondominated so-

lution in a rectangle. Many studies have been proposed to obtain nondominated

solutions for MOP [65]. Most of these studies utilize scalarization methods to deal

with the multiple objectives in which the MOP is turned into a single objective op-

timization problem [72]. However, in these methods it is difficult to target a specific

part of the nondominated set which may contain the preferred nondominated solution

for the decision maker. In this study, we model the problem of finding a nondomi-

nated solution in a given rectangle as a bilevel optimization problem. This result has

several applications in multiobjective optimization.

We propose an algorithm to generate representative sets for MOP by using the

bilevel programming formulation. The algorithm is tested on multiobjective linear

programming problem instances. Bilevel programming problems are solved by using
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penalty approach and integer linear programming (ILP) reformulation. Finally, we

apply the method to obtain a better accuracy on support vector machine classifica-

tion problem with imbalanced data sets [3]. In the following section, we present the

general formulation for the bilevel programming problem. In Section 6.3, theoreti-

cal findings related to a bilevel programming formulation that aims to determine a

nondominated solution in a given set are given. In Section 6.4, the proposed repre-

sentative algorithm is presented. In Section 6.5, the results of the proposed algorithm

are shown on a sample multiobjective linear programming problem. In Section 6.6,

computational results are presented on multiobjective linear programming problem

instances. In Section 6.7, the results of the proposed algorithm on support vector ma-

chine classification problem on imbalanced data sets are given. Finally, conclusions

are presented in Section 6.8.

6.2. Bilevel Programming Problem

A general formulation of bilevel programming problem can be written as follows:

(BPP) min
x

fU(x, z)

s.t. g(x, z) ≤ 0

min
z

fL(x, z)

s.t. h(x, z) ≤ 0.

In the above formulation, the decision vectors are divided into two classes, the

upper level variables x ∈ RnU and the lower level variables z ∈ RnL . Similarly,

fU : RnU ×RnL → R and fL : RnU ×RnL → R are the upper level and the lower level

objective functions. Without loss of generality, the set of constraints for the upper

and lower level problems, g : RnU ×RnL → RmU and h : RnU ×RnL → RmL , are given

in the inequality form. Definitions related to BPP are given below [14].
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1. Feasible set of the bilevel program is

M = {(x, z) : g(x, z) ≤ 0, h(x, z) ≤ 0}.

2. For a given x, the feasible set for the lower level program is

M(x) = {z ∈ RnL : h(x, z) ≤ 0}.

3. Projection of M onto the upper level formulation’s decision space is

M(X ) = {x ∈ RnU : g(x, z) ≤ 0, h(x, z) ≤ 0 for some z ∈ RnL}.

4. For any x ∈M(X ), rational reaction set of the lower level problem is

Ω(x) = {z ∈ RnL : z ∈ arg min
ẑ∈RnL

{fL(x, ẑ) : ẑ ∈M(x)}}.

5. Inducible region regroups the feasible points of the BLPP, corresponds to the

feasible set of the upper level program.

IR = {(x, z) ∈M : z ∈ Ω(x)}.

6.3. Finding a Nondominated Solution in a Given Rectangle

We model the problem of finding a nondominated solution in a rectangle as a

bilevel optimization problem. The upper and the lower decision variables are x ∈ Rn

and z ∈ Rn. The upper level objective function is fU(x, z) : Rn × Rn → R, and the

lower level objective function is fL(z) : Rn → R. Both levels share a common set of

constraints defined by g : Rn → R. These constraints form a set X ⊆ Rn such that

X = {x̂ ∈ Rn : g(x̂) ≤ 0}. Additionally, the upper level problem includes constraints
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related to the given rectangle, and the lower level problem includes set of constraints

related to domination property. Given a rectangle R ⊆ Rp, a metric defined on Rp,

and a positive weight vector w ∈ Rp, the bilevel optimization formulation of the

problem can be defined as follows,

(P ) min
x

fU(x, z) = d(f(x), f(z))

s.t. x ∈ X

f(x) ∈ R

min
z

fL(z) = wTf(z)

s.t. z ∈ X

f(z) ≤ f(x).

For any x ∈ X and f(x) ∈ R, the rational reaction set for the lower level formu-

lation is

Ω(x) = {z ∈ X : z ∈ arg min
ẑ∈X

{wTf(ẑ) : ẑ ∈ X , f(ẑ)− f(x) ≤ 0}}.

In bilevel formulation, for any x ∈ X , the lower level aims to find a (efficient)

solution z ∈ X such that all components of f(z) ∈ Rp are less than or equal to

f(x) ∈ Rp. The upper level program finds a solution x which is mapped into rectangle

R ⊆ Rp. The rectangle R is defined by lower vertex l ∈ Rp and upper vertex u ∈ Rp.

Goal of the bilevel program is to minimize the distance between the mapping of two

solutions x ∈ X and z ∈ X in the outcome space over the inducible region of P .

At first, we need to show that for any x ∈ X the optimal solution of the lower level

formulation is efficient and any efficient solution is optimal to lower level formulation.

Theorem 17. For any x ∈ X and w > 0, any z∗ ∈ Ω(x) is efficient.

Proof. For any x ∈ X , let z∗ ∈ Ω(x). Assume for a contradiction that there exists
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z′ ∈ X that dominates z∗. Then fj(z
′) ≤ fj(z

∗) ≤ fj(x) for all j ∈ {1, . . . , p} and

there exists ̂ ∈ {1, . . . , p} such that fj(z
′) < fj(z

∗) ≤ fj(x). This implies that

p∑
j=1

wjfj(z
′) <

p∑
j=1

wjfj(z
∗) ≤

p∑
j=1

wjfj(x).

Hence, z∗ /∈ Ω(x). Thus z∗ is efficient.

Theorem 18. For any efficient solution z∗, there exists x′ ∈ X such that z∗ ∈ Ω(x′).

Proof. Let z∗ ∈ XE. We claim z∗ ∈ Ω(x′) and f(z∗) = f(x′). Suppose that z∗ /∈ Ω(x′).

Since z∗ ∈ XE ⊆ X and f(x∗) = f(x′), z∗ is a feasible solution for the lower level

problem. Let z′ ∈ Ω(x′). Note that fj(z
′) ≤ fj(x

′) = fj(z
∗) for all j ∈ {1, . . . , p}.

Since z′ ∈ Ω(x′) and z∗ /∈ Ω(x′),

p∑
j=1

wjfj(z
′) <

p∑
j=1

wjfj(z
∗).

The equation above implies that f̂(z
′) < f̂(z

∗) for some ̂ ∈ {1, . . . , p}. Then z′

dominates z∗ which contradicts that z∗ is an efficient solution.

We have shown that the lower level formulation of the bilevel program is efficient

and any efficient solution can be obtained with the lower level formulation. In Theo-

rems 17 and 18, we do not have any assumptions for the problem (decision variables,

upper and lower level objective functions and constraints). Hence, for any x ∈ X

any solution z∗ from rational reaction set, z∗ ∈ Ω(x), is efficient. Additionally, for

any x ∈ X , the rational reaction set contains all efficient solutions that satisfy the

inequality f(z) ≤ f(x).

We expect the bilevel formulation to determine a nondominated solution in the

rectangle R if such a solution exists. Otherwise, the formulation should identify that

R ∩ YN = ∅.
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Theorem 19. For a given rectangle R ⊆ Rp, if there exists (x∗, z∗) that solves P and

d(f(x∗), f(z∗)) = 0, then f(x∗) ∈ R ∩ YN .

Proof. Let a rectangle R ⊆ Rp and w > 0 be given. Let (x∗, z∗) be the optimal

solution of P such that d(f(x∗), f(z∗)) = 0. Since d is a metric, d(f(x∗), f(z∗)) = 0

implies that f(x∗) = f(z∗). Note that z∗ ∈ Ω(x∗) and by Theorem 17, and z∗ is

efficient. Since f(x∗) = f(z∗), x∗ ∈ XE and f(x∗) ∈ YN . Since x∗ is feasible to P ,

f(x∗) ∈ R. These imply that f(x∗) ∈ R ∩ YN .

Theorem 20. For a given rectangle R ⊆ Rp, R ∩ YN = ∅ if and only if either P is

infeasible or there exists (x∗, z∗) that solves P and d(f(x∗), f(z∗)) > 0.

Proof. (⇒) For a given rectangle R ⊆ Rp, let P have no feasible solution. This implies

that R ∩ Y = ∅. Since YN ⊆ Y , R ∩ YN = ∅. Suppose P is feasible and let (x∗, z∗)

solve P with d(f(x∗), f(z∗)) > 0. Since f(z∗) ≤ f(x∗) and d(f(x∗), f(z∗)) > 0, z∗

dominates x∗. This implies that f(x∗) /∈ YN . Assume that there exists x′ ∈ XE
such that f(x′) ∈ R. Then there exists z′ ∈ Ω(x′) such that z′ ∈ XE. This implies

that (x′, z′) is feasible to P . Since f(z′) ≤ f(x′) and x′ ∈ XE, f(x′) = f(z′). Then

d(f(x′), f(z′)) = 0 which contradicts optimality of (x∗, z∗) to P . Hence R ∩ YN = ∅.

(⇐) For a given rectangle R ⊆ Rp, let R ∩ YN = ∅. Since YN ⊆ Y , R ∩ YN ⊆ R ∩ Y .

i) R ∩ Y = ∅. This implies that there exists no feasible solution that maps into

R. Hence, inducible region of the bilevel formulation is empty set, and the bilevel

formulation is infeasible. ii) R ∩ Y 6= ∅. Then for any x′ ∈ X with f(x′) ∈ R ∩ Y

there exist z′ ∈ XE such that z′ dominates x′. Hence, (x′, z′) is feasible to P and

d(f(x′), f(z′)) > 0.

In Theorem 20, we use the domination property. This property assumes that if a

feasible solution x is dominated, then there exists an efficient solution z such that z

dominates x [99].

In Theorems 19 and 20, we have concluded the following. For a given set R ⊆ Rp,

let P be feasible and (x∗, z∗) be an optimal solution. If f(x∗) = f(z∗), than x∗ ∈ X
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is mapped into R and x∗ is an efficient solution, f(x∗) ∈ R and x∗ ∈ XE. If P is

infeasible or f(x∗) 6= f(z∗), than there exists no nondominated solution in R. These

results are applicable to any kind of multiobjective optimization problem that satisfies

the domination property. Note that this is not a restrictive assumption, since most

of the multiobjective optimization problems satisfy this condition.

Remark: In Theorems 17-20, we do not use the properties of a rectangle R.

Hence, the rectangle can be replaced with an arbitrary set S including a nonconvex

set. In other words, the bilevel formulation can be used to find a nondominated solu-

tion in a given set S. In this case, the bilevel formulation P can be used in different

problems of multiobjective optimization. Most typical way is to utilize P in interac-

tive methods. In interactive methods, the decision maker is involved in the solution

process and continuously interacts with the method to determine the most preferred

solution [90]. The decision maker expresses preferences at each iteration in order to

get efficient solutions that are of interest to him/her and learn what kind of solu-

tions are attainable [140]. If the preferences of the decision maker can be expressed

by using the set S in the upper level formulation of P , the bilevel program is able

to determine whether the preferences of the decision maker is attainable or not. If

there exist a feasible solution in the set in line with the decision maker’s preferences,

there may or may not be a nondominated solution in set S. If there exists no non-

dominated solution in S, than the resulting solution from S is the closest solution

to the efficient set. The decision maker can either use this solution or update the

preferences to obtain a nondominated solution. The proposed bilevel formulation to

obtain a nondominated solution in set S can speedup the procedure and reduce the

required involvement of the decision maker compared to conventional methods. An-

other application area to use proposed bilevel formulation is finding the nadir point

for MOP. Nadir point is constructed from the worst objective function values over

the efficient set, and determination of the nadir point is generally a hard problem

[71]. Each component of the nadir point can be obtained by using bisection method
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[191] with the bilevel formulation. Finally, bilevel formulation can be used to gener-

ate representative sets. In the following section, we propose an algorithm to generate

representative sets with quality guarantees which uses P to obtain a nondominated

solution in a partition. These imply that the bilevel programming formulation P is

applicable to a wide range of problems in multiobjective optimization. However, even

linear bilevel programming problems have been shown to be NP-hard and inapprox-

imable within any constant factor in polynomial time [54]. Therefore solving P may

be computationally demanding.

In this chapter, we scrutinize bilevel programs with linear objectives and con-

straints. We use penalty approach [132] and integer programming reformulation [84]

to solve the bilevel linear programming problems. Both methods utilize KKT opti-

mality conditions to turn the bilevel linear programming problem into a single level

optimization problem [55] which is referred to as a mathematical program with com-

plemantarity constraints [129]. In penalty approach, complemantarity constraints

of KKT optimality conditions are moved into the objective function with a penalty

parameter. In integer programming reformulation, complemantarity constraints are

turned into linear constraints by using binary variables and a sufficiently large coef-

ficient [14].

When we consider multiobjective linear programming problem, i.e. finding a non-

dominated solution in a rectangle R for MOLP, P turns into a bilevel linear program-

ming problem. In bilevel formulation P . We use L1-norm as a metric, because it can

be linearized. The bilevel problem can be formulated with L1-norm as follows,
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(P ′) min
x∈X

fU(x, z) =

p∑
j=1

|fj(x)− fj(z)|

s.t. g(x) ≤ 0

f(x) ∈ R

min
z∈X

fL(z) =

p∑
j=1

wjfj(z)

s.t. g(z) ≤ 0

f(z) ≤ f(x).

In MOLP, c ∈ Rp×n represents the objective coefficients, A ∈ Rm×n is technical

coefficients, b ∈ Rm is the right hand side vector. x, z ∈ Rn are the decision vectors

of the problem. The weights of the lower level problem, w ∈ Rp, is set to 1 ∈ Rp, i.e.

w = 1. We define c′ ∈ Rp such that c′ = 1T c. In upper level objective function of P ′,

since f(z) ≤ f(x), we can eliminate the absolute value. Then the problem turns into

a bilevel linear programming problem. The bilevel linear formulation of the problem

with L1-norm can be formulated as follows,

(PL) min
x∈X

fU(x, z) = c′(x− z)

s.t. Ax ≤ b

l ≤ cx ≤ u

min
z∈X

fL(z) = c′z

s.t. Az ≤ b

cz ≤ cx

For the lower level formulation of PL, we can write KKT optimality conditions to

transform the problem into single level formulation. Let u ∈ Rm and v ∈ Rp be the

dual variables associated with the two sets of constraints. Then KKT conditions for
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the lower level problem can be defined as follows,

• Stationarity

−c′ + uTA+ vT c = 0 (6.1)

• Primal feasibility

Az − b ≤ 0

cz − cx ≤ 0
(6.2)

• Dual feasibility

u ≥ 0

v ≥ 0
(6.3)

• Complementary slackness

u(Az − b) = 0

v(cz − cx) = 0
(6.4)

Among KKT optimality conditions stationarity and feasibility are linear in x, z, u

and v. However, complementary slackness condition is bilinear. In integer program-

ming reformulation, this nonlinerity is removed by using binary variables and a suffi-

ciently large coefficient M . We define two binary vectors, ψ ∈ {0, 1}m and ω ∈ {0, 1}p,

for two different constraint sets. Integer linear programming formulation of PIP is as

follows,
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PIP min c′(x− z)

s.t. Ax ≤ b

cx ≥ l

cx ≤ u

c′ + uTA+ vT c = 0

Az − b ≤ 0

cz − cx ≤ 0

Az − b ≥ −M(1− ψ)

cz − cx ≥ −M(1− ω)

u ≤Mt

v ≤Mz

u, v ≥ 0

ψ ∈ {0, 1}m

ω ∈ {0, 1}p

The integer programming formulation includes additional n+2m+2p constraints,

m + p non-negative, and binary variables. In the following section, we give an al-

gorithm to generate representative sets for MOP problems. This algorithm needs to

determine whether there exists a nondominated solution in a partition. Hence, we

use bilevel programming formulation P in this method. Later on, this algorithm is

used to generate representative sets for MOLP. BLP subproblems are solved by using

penalty approach and PIP .
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6.4. Proposed Algorithm

In this chapter, we intend to generate representative sets for MOP problems with

prespecified quality guarantees. For this problem, we are using rectangular bisection

method which is widely used in global optimization problems [100]. The method

starts with an initial rectangle that covers Y . In each iteration, the algorithm picks

a rectangle from the search list, and solves the bilevel formulation. If there exists an

efficient solution that maps into the rectangle, then the algorithm subdivides the rect-

angle along the longest edge. If there exists no nondominated solution in the selected

rectangle, algorithm removes the rectangle from the list. Algorithm is terminated

when there exists no element in the list. We call this algorithm Representative Set

Generation Algorithm (RSGA). The steps of RSGA is given below.

Steps of the RSGA

Input: Desired coverage error α, MOP, i.e. objective functions fj(x) for j = 1, . . . , p,

and feasible set X .

Output: α-representation of the nondominated set (YR) and α-approximation of YN .

Step-0: YR = ∅. Initialize the list L = {R} such that Y ⊆ R. Initialize approxima-

tion of nondominated set LR = ∅.

Step-1: If L is empty, go to Step-4. Otherwise, pick the worst representative rect-

angle Ri from the list L. Solve bilevel formulation with Ri ⊆ Rp and w > 0. If

there exists y ∈ YR such that y ∈ Ri, then go to Step-3.

Step-2: • If bilevel program is feasible, let (x∗, z∗) be an optimal solution of P .

- For all St ∈ L, if St ⊆ R(yI , f(z∗)) ∪R(f(z∗), yU), than L = L \ {St}.

Go to Step 3.

- If d(f(x∗), f(z∗)) = 0, then YR = YR ∪ {f(x∗)}. Go to Step 3.

- If d(f(x∗), f(z∗)) > 0, then L = L \ Si. Go to Step-1.

• Else (If bilevel program is infeasible), then L = L \ Si. Go to Step-1.
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Step-3: - Apply rectangular bisection for Ri and insert the refinement elements

to L. Let ̂ = arg max{j ∈ {1, . . . , p} : uij − lij}, R1 = {y ∈ Ri : ŷ ≤ (uî −

lî)/2}, R2 = {y ∈ Ri : ŷ ≥ (uî− lî)/2}. L = L \Ri. L = L∪{R1}∪{R2}.

- Check the coverage error. For each Rt ∈ L, if max
ȳ∈Rt

min
y∈YR

d(ȳ, y) ≤ α, than

L = L \Rt. LR = LR ∪Rt. Go to Step-1.

Step-4: Return representative set YR and approximation of the nondominated set

LR.

RSGA starts to search the outcome space with a sufficiently large rectangle, and

iteratively subdivides the initial rectangle by obtaining new nondominated solutions.

Some of the subsets of the initial search space are removed if either there exists no

nondominated solution in the rectangle or the rectangle satisfies the acceptable cover-

age error level α. In Theorem 21, we show that RSGA generates an α-representation

of YN . Additionally, we combine the rectangles that are eliminated with the coverage

error to obtain an α-approximation of the nondominated set.

Theorem 21. RSGA generates an α-representation of YN .

Proof. Any solution for the rational reaction set of the bilevel formulation is efficient.

Therefore, all elements of YR are nondominated solutions. RSGA initializes the search

with rectangle R such that the image of the feasible set in the outcome space is a

subset of R, Y ⊆ R. Hence, R includes all nondominated solutions of given MOP. In

each iteration, bilevel program either finds a nondominated solution or proves that

there exists no nondominated solution in a given partition of R. Hence, removed

partitions by using bilevel formulation do not contain any nondominated solution.

Another possibility of removing a partition is that if the partition is a subset of

rectangle R(yI , f(z∗)) or R(f(z∗), yU). By Theorem 17, z∗ is an efficient solution. If

there exist a solution y ∈ R(yI , f(z∗)), than y dominates f(z∗). This contradicts with

the efficiency of z∗. Any solution y ∈ R(f(z∗), yU) is dominated by f(z∗). Hence,
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there exist no nondominated solution in R(yI , f(z∗)) and R(f(z∗), yU). Finally, any

partition of R can be removed from the list L, if the coverage error of the partition is

less than or equal to α. Hence, at termination, RSGA generates an α-representation

of YN .

6.5. Illustrative Example

RSGA is tested on a sample MOLP. In this example, we use PIP formulation to find

a solution to bilevel formulation P . We solve integer linear programming formulation

by using CPLEX [47]. The MOLP test problem [26] is given in the following format.

max{Ix : Ax ≤ b, x ≥ 0}

where I is n× n identity matrix,

A =



6 15 10

5 8 12

22 29 28

24 16 11

1 0 4

8 0 1


, b =



210

152

458

312

40

72


.

In this example, since the objective vectors form an identity matrix, the outcome

space and the decision space are the same. Hence, the image of the feasible set in the

outcome space can be expressed as follows,

Y = {y ∈ R3 : Ay ≤ b, y ≥ 0}.

The feasible set (X ) of the sample MOLP is given in Figure 6.1a. Since the

outcome set is same as the feasible set, Figure 6.1a also shows the outcome space
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(Y). In MOLP, the union of efficient faces forms the nondominated set YN . By using

the algorithm in [159], we generate nondominated set of the sample MOLP which is

shown in Figure 6.1b.

(a) Feasible set of the sample MOLP. (b) Nondominated set of the sample
MOLP.

Figure 6.1: Feasible set (outcome space) and nondominated set of the sample MOLP.

We test the RSGA with three different representation factors that are 5%, 10%

and 20%. In Figure 6.2, representative sets for three different representation factors

are given.

(a) α = 5% (b) α = 10% (c) α = 20%

Figure 6.2: Representative sets of the sample MOLP.
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The cardinality of representative sets are 603, 163, and 43, respectively. RSGA

solves 1017, 278, and 83 subproblems until termination. Proposed algorithm also

generates approximation of the nondominated set. Here, we search over rectangles, so

that the resulting approximation is union of rectangles. In Figure 6.3, approximation

of the nondominated set with different factors are given.

(a) α = 5% (b) α = 10% (c) α = 20%

Figure 6.3: Approximation of the nondominated set with union of rectangles.

The proposed algorithm generates a representative set YR that satisfies the speci-

fied coverage error level α. Still, it is interesting to compute the actual representation

factor of YR. We obtained the representative set and nondominated set of the sample

MOLP, so we can calculate the coverage error level of the representative sets.

Given nondominated set YN and representative set YR of a sample MOLP, coverage

error level of the representative set can be computed with the following integer linear

programming problem [160]. In this formulation, N represents the cardinality of the

representative set.
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PD(L∞) max γ

s.t. γ − di ≤ 0 i = 1, . . . , N

di = (zj + uij − ȳij)/(yNj − yIj ) j = 1, . . . , p; i = 1, . . . , N

di = (−zj + oij + ȳij)/(y
N
j − yIj ) j = 1, . . . , p; i = 1, . . . , N

uij −Mtij ≤ 0 j = 1, . . . , p; i = 1, . . . , N

oij −Msij ≤ 0 j = 1, . . . , p; i = 1, . . . , N
p∑
j=1

(tij + sij) ≤ 2p− 1 i = 1, . . . , N

Ax ≤ b

AIkx ≥ bIk −M(1− vk) k = 1, . . . , K

K∑
k=1

vk ≥ 1

zj = cjx j = 1, . . . , p

γ ≥ 0

uij, o
i
j ≥ 0 j = 1, . . . , p; i = 1, . . . , N

vk ∈ {0, 1} k = 1, . . . , K

tij, s
i
j ∈ {0, 1} j = 1, . . . , p; i = 1, . . . , N

di ≥ 0 i = 1, . . . , N

In this problem, we include K binary variables where K represents the number of

efficient faces. For the efficient face Fk, we define an index set Ik that has the indices

of the binding constraints. Fk can be formulated as follows,
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Fk = {x ∈ Rn : Ax ≤ b, AIkx = bIk}.

This formulation is solved by using CPLEX [47] to calculate the coverage error

level of the three different representations obtained before. The optimal objective

values of the formulation, i.e. actual coverage error levels, are 4.63% for α = 5%,

7.22% for α = 10%, and 15.56% for α = 20%. In Figure 6.4, we show the worst

represented point of the nondominated set.

(a) α = %5 (b) α = %10 (c) α = %20

Figure 6.4: Worst representative points of the nondominated sets.

On sample MOLP, we observe that representative set is well-dispersed over the

nondominated set (uniformity), and the number of nondominated solutions (cardinal-

ity) in the representative set decreases significantly when we double the coverage error

level. Additionally, coverage error level of the resulting representative set is close to

the desired coverage level α. In the following section, we conduct further tests on

MOLP instances.
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6.6. Computational Results

RSGA is used to generate representative sets of randomly generated MOLP in-

stances. Here, we test the effects of the problem size and number of objectives on

the proposed algorithm. In these tests, bilevel programs are solved by using penalty

approach and integer programming reformulation. In penalty approach, compleman-

tarity constraints are taken into the objective function. We use GAMS/NLPEC [82]

solver to reformulate the problem with a penalty approach. After the reformulation,

there is a bilinear term in the objective function, so the resulting formulation is a

global optimization problem [100]. In RSGA, the solution of the bilevel program

should be globally optimal. Hence, we use GAMS/BARON [177] to obtain a global

optimal solution for the penalty approach reformulation. We also use integer pro-

gramming reformulation PIP to deal with the bilevel program. Integer programming

formulations are solved by using IBM CPLEX 12.4 [47].

RSGA is implemented in C++. All tests were conducted on a shared cluster

with Intel Xeon 2.3 GHz CPU and 4 GB memory limit with Linux operating system.

Different MOLP categories are generated based on problem size, and 10 instances

are generated randomly for each problem category. The average over 10 instances is

reported. Computation of each instance is interrupted after 25,000 CPU seconds. A

blank cell in a table indicates that none of the 10 instances could be completed within

the time limit.

In MOLP, m and n represent the number of constraints and number of variables,

respectively, and x is the decision vector of the problem. Given coefficients of the

objective functions cjl , the technical coefficients arl, and right-hand side values br

where r ∈ {1, . . . ,m}, l ∈ {1, . . . , n}, and j ∈ {1, . . . , p}, MOLP problem is defined

as follows.
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(MOLP ) max
n∑
l=1

cjlxl j = 1, . . . , p

s.t.
n∑
l=1

arlxl ≤ br r = 1, . . . ,m

xl ≥ 0 l = 1, . . . , n.

We generate two sets of MOLP instances. In the first set instances, we want to test

the effect of the problem size on RSGA. Hence, for this set of instances, the number

of objectives is 3, and number of variables is n ∈ {5, 10, 15, 20, 25} and m = n. In

the second set of instances, we test the effects of the number of objectives on RSGA.

Therefore, for a fixed problem size, n = 15 and m = 5, the instances are generated

with p = {2, 3, 4, 5}. The parameters of the model are randomly generated integer

numbers with ranges similar to used in [5]. The coefficients of the objective functions

(cjl ) are generated in the ranges [−100,−1] and [0, 100] with probability 0.2 and 0.8,

respectively. The technical coefficients (arl) are generated in the ranges [−100,−1]

with probability 0.1, [1, 100] with probability 0.8, and arl = 0 with probability 0.1.

Finally, right-hand side value (br) of each constraint is also generated randomly in the

range of 100 and
∑n

l=1 arl. In these tests, the coverage error level is defined as 10%,

i.e. α = 10%. Test results of RSGA on the first set of instances are given in Table

6.1.

As seen in Table 6.1, while RSGA with ILP formulation is able to generate all

representative sets in a given time limit, penalty approach cannot handle test problems

with 15 variables or more. Increase in problem size does not change the number of

solved models and size of the representative set statistics significantly. On the other

hand, CPU time increases with increase in the problems size. This occurs due to

subproblem solution time. In Table 6.2, effects of number objectives on RSGA is

tested. Since ILP reformulation perform better than penalty approach, we only test
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Table 6.1: RSGA with penalty approach and integer programming reformulation tests
on MOLP.

RSGA with Penalty Approach RSGA with ILP Reformulation

m× n |YR| #Models CPU Time (s) |YR| #Models CPU Time (s)

5×5 104.9 245.2 49.2 107.6 250.8 6.1
10×10 84.6 198.9 1251.9 88.0 206.9 27.3
15×15 116.5 227.4 10652.1 124.2 244.3 151.2
20×20 116.0 232.4 919.1
25×25 122.1 241.6 1581.5
30×30 122.0 247.9 2874.8

the RSGA with ILP formulation.

Table 6.2: Testing the number of objectives of MOLP on RSGA with integer pro-
gramming reformulation.

RSGA with ILP Reformulation

p |YR| #Models CPU Time (s)

2 19.0 29.7 12.9
3 124.2 244.3 136.9
4 612.0 1571.4 1004.8
5 1718.5 6274.5 8778.3

Increase in the number of objectives effects the solution time of RSGA significantly.

The number of solutions in YR, number of models solved and solution time statistics

increase exponentially with increase in the number of objectives as seen in Figure 6.5.

The reason of exponential escalation is complexity of MOP.

6.7. Application to SVM Classification for Imbalanced Data Sets

RSGA can be used to generate a representative set for any MOLP with any num-

ber of objective functions. In this section, we apply RSGA to obtain better accuracy
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Figure 6.5: Effect of number objectives on RSGA with ILP formulation.

for SVM classification on imbalanced data sets problem. Askan and Sayin model

the SVM classification problem for imbalanced data sets as a three-objective linear

programming problem [10]. They then solve this problem heuristically and report

findings on some sample problems. Hence, we can apply RSGA to obtain the rep-

resentative set for three-objective SVM formulation. Since representative method

generates a set which is well-dispersed over the nondominated set, we may expect

better accuracy than their classifiers.

Classification is the process of assigning data to one of a set of predetermined class

labels. In imbalanced data sets, negative instances outnumber the positive instances.

SVM constructs a hyperplane that separates the data into two classes [173]. On a

collection of examples D = {(xi, yi) : xi ∈ Rn, yi ∈ {1, 1}}, classical L2-norm SVM is

formulated as follows.

min
1

2
||w||2 + C

N∑
i=1

ξi

s.t. yi(w · xi − b) ≥ 1− ξi 1, . . . , N

ξi ≥ 0 i = 1, . . . , N
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In this formulation, the goal of the L2-norm minimization is to maximize the

margin of the separating hyperplane, C is a positive coefficient, and slack variables ξi

measure the degree of misclassification of the data xi.

When there is an imbalanced distribution in the data set a typical classifier would

be biased towards one class because it has the goal of maximizing overall accuracy.

Unlike classical SVM formulation, they consider positive and negative error sums in

different objective functions to eliminate the bias [10]. Their formulation incorporates

L1-norm minimization with the error sums for the two classes independently. Three-

objective linear programming formulation is given below.

(SVM-3C) min 1T (w+ − w−),
∑
i

ξ−i ,
∑
i

ξ+
i

s.t. yi((w
+ − w−)Txi + b) ≥ 1− ξ−i i = 1, . . . , N−

yi((w
+ − w−)Txi + b) ≥ 1− ξ+

i i = N− + 1, . . . , N

ξ−i ≥ 0 i = 1, . . . , N−

ξ+
i ≥ 0 i = N− + 1, . . . , N

w+, w− ≥ 0

Above, 1 ∈ Rn is the vector of 1s, N− is the number of instances that belong to

the majority class, N+ is the number of instances that belong to the minority class

and N = N− + N+ is the number of all instances in the data set. The separating

hyperplane is defined by the vector w = w+ − w, and therefore the first objective

function is minimization of L1-norm of the normal vector.

We utilize RSGA to determine the classifiers for SVM-3C problem. We test the

method on the data set named Yeast. The training set includes 250 negative instances

(N− = 250) and 75 positive instances (N+ = 75). The classifiers are tested on a

test set which includes 213 negative instances and 88 positive instances. We test
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RSGA with two different representation factors that are 5% and 10%. In Figure 6.6,

representative sets of three objective linear programming problems are given.
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(b) α = 10%

Figure 6.6: Representative sets of SVM-3C.

For coverage error levels of α = 5% and α = 10%, the numbers of nondominated

solutions are |YR| = 279 and |YR| = 83, and the number of solved models are 558 and

187, respectively. Each nondominated solution in the representative set is a classifier.

To compute the performance of each classifier, we need to compute the number of

true positive (TP), false negative (FN), true negative (TN) and false positive (FP)

instances in the test set. By using these statistics, we can compute sensitivity and

specificity of a classifier as follows.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

The performance of the classifier is computed by the geometric mean of sensitivity

and specificity values. RSGA generates α-representation of SVM-3C’s nondominated

set. Each solution in the representative set is a classifier. Hence, we have tens of
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classifiers. On the other hand, traditional methods in SVM generally finds only one

classifier that separates the positive and negative instances. We use validation set

to decrease the number of classifiers to one. The test set is randomly split into two

equal parts to obtain a validation set and test set. For Askan and Sayin’s method and

RSGA, the best performing classifier with respect to geometric means is determined

over the validation set. Then, this single classifier is evaluated over the test set. In

Table 6.3, accuracy results of Askan and Sayin’s procedure and RSGA are reported

on validations and test sets of Yeast data.

Table 6.3: Comparing the accuracy results of RSGA and Askan and Sayin’s procedure
on Yeast data set.

RSGA Askan and Sayin

Validation Set Test Set Test Set

Gmeans Sensitivity Gmeans Sensitivity Gmeans Sensitivity

α = 5% 1 1 1 1 0.924926 0.954545
α = 10% 0.977008 0.954545 0.916075 0.863636 0.924926 0.954545

As seen in Table 6.3, RSGA generates the best performing possible classifier with

α = 5% which outperforms Askan and Sayin’s accuracy result. For α = 10%, the

performance of Askan and Sayin’s method is better than RSGA. Still, the accuracy

result of RSGA is close to Askan and Sayin’s result.

6.8. Conclusion

We present a bilevel programming formulation to obtain a nondominated solution

in a given rectangle. This result is applicable to different problems in multiobjective

optimization literature. By using this result, we give a representative algorithm for

multiobjective optimization problems. The representative algorithm can be applied to

any MOP with any number of objective functions. The proposed algorithm is tested
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on MOLP instances with various sizes. Finally, we apply this method to obtain better

accuracy for SVM on imbalanced data sets. Solving bilevel optimization problems is

challenging, and computational results validate this statement. As a future work, new

exact or heuristic approaches can be developed for bilevel optimization to enhance

the performance of the proposed algorithm.
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Chapter 7

CONCLUSION

In this thesis, we develop exact and representation methods for multiobjective dis-

crete optimization problems and general multiobjective optimization problems with

any number of objectives. In Chapter 3, we proposed an algorithm to solve mul-

tiobjective discrete optimization problems with any number of objective functions.

We showed that the algorithm can generate the entire nondominated set in a finite

number of steps. The proposed method uses the ε-constraint scalarization and is

based on a partitioning mechanism that searches the (p − 1)-dimensional space ex-

haustively. The proposed method is compared with previous algorithms, and is seen

to outperform all of them on the experimented problem instances. The number of

models solved per nondominated solution may be a better comparison criterion for the

scalarization methods than the computation time statistics. The proposed algorithm

solved at most 1.99 subproblems per nondominated solution on the test problems.

This ratio is highly competitive compared to previous studies. Nevertheless, as prob-

lem size increases and the number of nondominated solutions grows, the requirements

of the approach become unrealistically high. We modify the algorithm to generate

representations of the nondominated set with desired quality guarantees. This algo-

rithm searches the outcome space with p-dimensional rectangles, and solve two-stage

optimization problems to find nondominated solutions. During the search, any rect-

angle that satisfies the desired coverage error level is removed. We have shown that

the proposed algorithm generates an α-representation of MODO nondominated set

in finite number of iterations. The algorithm is tested on multiobjective knapsack

and multiobjective assignment problem instances. The proposed algorithm is able to
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generate representation efficiently. However, when we increase the desired coverage

error level, the performance of the method diminishes due to navigation problem in

the outcome space. To overcome this problem, we model the problem of finding a

nondominated solution in a given set as a bilevel programming problem. We have

shown that the bilevel formulation finds a nondominated solution in the rectangle if

such a solution exists. By using this result, we give a representative algorithm for

multiobjective optimization problems. The proposed algorithm is tested on multiob-

jective linear programming problem with various sizes. Finally, we apply this method

to obtain better accuracy for support vector machine on imbalanced data sets. Solv-

ing bilevel optimization problems is challenging, and computational results validate

this statement. As future work, new exact or heuristic approaches can be developed

for bilevel optimization to enhance the performance of the proposed algorithm.

We also study the problem of finding the nadir point of multiobjective discrete

optimization problems. Along with the ideal point these points define bounds of the

efficient set. They can be used in representation algorithms instead of heuristic esti-

mates. The proposed nadir point determination algorithm is based on an exhaustive

search of the (p−2)-dimensional space. The proposed algorithm guarantees to find the

nadir point exactly in a finite number of steps. The proposed algorithm is compared

with previous algorithms. In computational results, we see that the algorithm outper-

forms former methods except for the multiobjective discrete optimization problems

with five objectives instances.
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[144] M. Özlen and M. Azizoğlu. Multi-objective integer programming: A general

approach for generating all non-dominated solutions. European Journal of Op-

erational Research, 199(1):25–35, 2009.

[145] M. Ozlen, B. A. Burton, and C. A. MacRae. Multi-objective integer program-

ming: An improved recursive algorithm. Journal of Optimization Theory and

Applications, 160(2):470–482, 2014.
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