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ABSTRACT 

The decision processes in two-alternative scenarios can be explained by the drift-

diffusion model. According to this model, a decision variable moves towards one of two 

decision boundaries corresponding to the two alternatives based on the evidence accumulated 

in favor of these options and a decision is made when one of the decision boundaries is hit. 

However, the noise in the evidence accumulation process creates randomness in the trajectory 

of the decision variable which might result in hitting the wrong decision boundary. This leads 

to the speed-accuracy tradeoff (SAT) which is modulated by how high the decision 

boundaries are set. While higher threshold setting increases the likelihood of an accurate 

decision at the cost of longer response times, lower threshold setting results in less accurate 

but faster decisions. Recent neuroimaging studies showed that the activity of pre-

supplementary motor area (pre-SMA) and striatum was higher when speed was emphasized 

compared to when accuracy was emphasized. Additionally, the activity in these brain regions 

was negatively linked with decision thresholds. However, the imaging studies provide only 

correlational information. In the current study, we aimed to draw a causal relationship 

between the pre-SMA activity and threshold setting by inhibiting the activity in this region 

using rTMS. Participants performed random dot motion task after pre-SMA or vertex (control 

condition) inhibition and decision thresholds for both rTMS sessions were estimated by the 

drift diffusion model. Our results revealed that under the pre-SMA inhibition condition, 

participants set higher decision thresholds and exhibited more cautious decisions compared to 

the control condition. Furthermore, the weight assigned to accuracy relative to reward was 

higher under the pre-SMA inhibition condition. Additionally, while the decision thresholds in 

the post-error trials were higher compared to the post-correct trials, this change did not differ 

between the conditions.  
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ÖZET 

İki alternatifli bir senaryoda verilen kararlar sürüklenme-yayılım modeliyle 

açıklanabilmektedir. Bu modele göre bir karar değişkeni iki hipotez için toplanan kanıt 

ışığında bu iki hipoteze karşılık gelen karar eşikleriyle sınırlandırılmış bir alanda ilerler. Karar 

değişkeni bir eşiğe ulaştığında, o eşik ile ilişkilendirilmiş karar verilir. Ancak kanıt toplama 

sürecindeki gürültü, karar değişkeninin bazı durumlarda yanlış karar eşiğine ulaşmasına sebep 

olabilmektedir. Bu durum, karar eşiklerinin değiştirilmesi ile dengelenen hız-doğruluk 

ödünleşimine neden olmaktadır. Karar eşiğinin yükseltilmesi kararın doğruluk olasılığını 

artırıp süresini uzatırken, karar eşiğinin düşürülmesi doğruluk oranını düşürecek ancak karar 

hızını artıracaktır. Yakın zamanda yapılan beyin görüntüleme çalışmalarından elde edilen 

bulgular, pre-suplementer motor alan (pre-SMA) ve striatum aktivitesinin karar hızının 

vurgulandığı durumda karar doğruluğunun vurgulandığı duruma kıyasla daha yüksek 

olduğunu ve bu bölgelerdeki aktivite artışının karar eşiğindeki düşüşle ilintili olduğunu 

göstermiştir. Ancak görüntüleme çalışmaları nedensel bir ilişki kurmaya olanak 

vermediğinden çalışmamızda pre-SMA aktivitesini Tekrarlanan Transkraniyel Manyetik 

Stimülasyon (rTMS) yöntemiyle baskılayarak, bu bölgenin karar eşiğinin belirlenmesi 

üzerindeki nedensel rolünün incelemeyi amaçladık. Katılımcılar, pre-SMA veya verteks 

(kontrol durumu) alanları rTMS ile baskılandıktan sonra rasgele nokta hareketi prosedüründe 

test edilmiş ve her iki durum için de sürüklenme-yayılım modeli ile karar eşikleri tahmin 

edilmiştir. Sonuçlarımız, pre-SMA aktivitesi baskılandığında kontrol durumuna kıyasla daha 

yüksek karar eşikleri belirlendiğini ve daha ihtiyatlı karar verildiği göstermiştir. Ayrıca 

katılımcıların karar hızına karşılık doğruluğa atadıkları değerin pre-SMA aktivitesinin 

baskılandığı durumda kontrol durumuna göre daha yüksek olduğu gözlenmiştir, Bu bulgulara 

ek olarak, hata sonrası denemelerde karar eşikleri yükselirken, karar eşiklerinde görülen bu 

değişimin pre-SMA ve verteks uyarım durumlarına göre farklılaşmadığı görülmüştür. 
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1. INTRODUCTION 

1.1. General Overview 

Since many decisions are based on noisy evidence accumulation over time (Ratcliff, 

1978; Shadlen & Newsome, 2001; Ratcliff & McKoon, 2008; Bogacz et al., 2010a), decision 

makers often face the dilemma between faster but more error-prone vs. more accurate but 

slower decisions (e.g., Bogacz et al., 2006). This phenomenon is referred to as the speed-

accuracy tradeoff (SAT) (Fitts, 1966; Wickelgren, 1977). Importantly, maximizing reward 

rate in many decision scenarios entails optimizing this tradeoff. Although SAT has long been 

studied using mathematical models, such as the Drift Diffusion Model (DDM), the neural 

mechanisms of this adaptive function have not been extensively investigated (Bogacz et al., 

2010a). Recent functional and structural imaging studies in which different response 

cautiousness levels were induced by emphasizing either speed or accuracy showed that 

cortico-basal ganglia circuitry, specifically the connections between pre-supplementary motor 

area (pre-SMA) and striatum, modulated SAT in perceptual decision making tasks (Ding & 

Gold, 2010; Forstmann et al., 2008; Forstmann et al., 2010; Green et al., 2012; Ivanoff et al., 

2008; Lo & Wang, 2006; van Veen et al., 2008).  

The current study aimed to investigate whether there is a causal relationship between 

the right pre-SMA activity and decision threshold setting and thus SAT. For this purpose, we 

manipulated the activity of the right pre-SMA using the continuous theta burst stimulation 

(cTBS) as the rTMS protocol prior to testing the participants in a two-alternative forced 

choice (2AFC) task. The response time and accuracy were modeled within the framework of 

the DDM to elucidate the effects of this manipulation on threshold setting. We hypothesized 

that the inhibition of right pre-SMA would lead to more cautious decisions by leading to 

wider decision boundaries.  
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1.2. Speed-Accuracy Tradeoff: Model-based Approaches 

Neurophysiological and psychological data suggest that during perceptual decision 

making, the brain integrates sensory evidence supporting one alternative over the other over 

time before making a choice (Laming, 1968; Ratcliff, 1978; Roitman & Shadlen, 2002; 

Shadlen & Newsome, 2001). This integration process is required for accurate decisions 

because of the limited reliability of sensory evidence which stems from the noise in the 

sensory input and/or its transduction/processing. In a sense, this process can be treated as a 

statistical problem to be solved by the decision-maker (Stone, 1960). 

Two-alternative forced choice perceptual decision making tasks such as the random 

dot motion discrimination (RDM) paradigm are widely used to investigate SAT. The RDM 

stimuli consist of moving dots a subgroup of which have a coherent motion towards either 

right or left (constituting signal) and the remaining of which move randomly (constituting 

noise). In this task, participants have to determine the direction of the coherent motion. Due to 

the noise in sensory evidence and its neural representation, participants have to accumulate 

information regarding the direction of the coherent motion in order to make an accurate 

decision. Keeping the task parameters constant within a block and using a fixed-length free 

response paradigm in which participants make their choices whenever they want, allow 

participants to develop block-based strategies regarding the speed and the accuracy of their 

choices (Bogacz et al., 2006).  

 The decision outputs gathered from this task can be modeled with different 

mathematical models. To this end, DDM is a widely used model of 2AFC although 

alternatives such as the Linear Ballistic Accumulator (LBA) exist (Brown & Heathcote, 

2008). The DDM implements the optimum decision procedure for the 2AFC data (Laming, 

1968) and assumes that the difference between the evidence from the noisy sources of sensory 
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information supporting the two alternatives is integrated over time, and when the accumulated 

information reaches one of the decision thresholds, either above or below the initial belief 

state (starting point), the corresponding option is chosen. SAT depends on the threshold 

parameter estimated by the DDM, which implies that due to the noise in the stimulus, higher 

thresholds lead to accurate but slower decisions (e.g., accuracy bias) whereas lower thresholds 

lead to faster but less accurate decisions (e.g., liberal bias).  

 

1.3. Neural Basis of Speed-Accuracy Tradeoff 

Studies regarding the role of cortico-basal ganglia circuitry, more specifically cortico-

striatal connections, in the modulation of SAT constitute the majority of the investigations on 

the neural basis of this adaptive behavior (Bogacz & Gurney, 2007; Brown et al., 2004; Frank, 

2006; Gurney et al., 2004; Lo & Wang, 2006; Standage et al., 2014). One of the constituents 

of this circuitry, basal ganglia are a group of subcortical nuclei involved in the control of 

voluntary actions (Redgrave et al., 1999).  At the resting state, the globus pallidus interna, the 

output nuclei of the basal ganglia, inhibits the thalamus, and consequently the cortical areas, 

so that no premature responses are executed (Chevalier, Deniau & Desban, 1985; DeLong & 

Wichmann, 2007; Deniau & Chevalier, 1985). Striatum, the input nuclei of the basal ganglia, 

is activated when it receives consistent information supporting a particular action from 

cortical regions and this activation exerts a selective suppression on the globus pallidus. 

Through this suppression of the inhibitory effect of globus pallidus, associated cortical 

regions are released from inhibition, which leads to action execution (Chevalier, Deniau & 

Desban, 1985; Deniau & Chevalier, 1985). Hence, the basal ganglia are proposed to 

implement an action-selection mechanism that disinhibits the desirable actions while 

maintaining inhibitory control over others (Forstmann et al., 2008).  
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The main suggestion of the neuro-computational models of decision making (Bogacz 

& Gurney, 2007; Brown et al., 2004; Frank, 2006; Gurney et al., 2004; Lo & Wang, 2006) is 

that basal ganglia decreases its inhibitory control over the cortex when people have to make 

decisions under time pressure, which in turn facilitates fast but possibly premature decisions. 

Among the hypotheses proposed to explain the control of SAT in the cortico-basal ganglia 

circuitry, most prominent ones are the striatal and the subthalamic nucleus (STN) theories. 

The striatal theory proposes that when speed instructions are given, non-integrator cortical 

neurons (e.g., pre-SMA) send excitatory signals to the striatum. Increased striatal activity 

reduces the inhibitory effect of the basal ganglia over the thalamus and its target cortical 

areas, which in turn allows the execution of faster but often premature responses (Bogacz et 

al., 2010a; Forstmann et al., 2008). On the other hand, the STN theory posits that when 

accuracy of the responses is emphasized, frontal cortical areas (e.g., anterior cingulate cortex) 

send additional excitatory input to STN, which in turn increases the inhibitory control of basal 

ganglia over thalamus and cortex, leading to slower and thus more accurate decisions (Aron & 

Poldrack, 2006; Bogacz et al., 2010a; Frank, Scheres & Sherman, 2007). Taken together, 

striatal and STN pathways control SAT by decreasing or increasing the basal ganglia activity, 

respectively. Consequently, both approaches can account for threshold setting (not necessarily 

in a mutually exclusive fashion). 

Several functional magnetic resonance imaging (fMRI) studies provided strong 

evidence regarding the dynamics of the relationship between cortical regions, particularly pre-

SMA, and striatum to explain the modulation of SAT (Forstmann et al., 2008; Forstmann et 

al., 2010; Ivanoff et al., 2008; Mansfield et al., 2011; van Veen et al., 2008). For instance, 

Forstmann et al. (2008) observed a stronger BOLD signal in the right pre-SMA and striatum 

in response to a pre-trial instruction emphasizing the speed in an RDM task, compared to the 

conditions in which either accuracy was emphasized or no instruction was given. 
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Furthermore, they also found a significant correlation between the modulation of decision 

threshold parameter obtained from LBA fits of the data and activation in the right pre-SMA 

and striatum. In other words, greater hemodynamic response was observed in these brain 

regions of the participants who could readily adjust their decision boundaries considering the 

task demands. Similarly, in an MEG study by Wenzlaf and her colleagues (2011), a negative 

correlation between decision boundary and  right SMA activity was observed in a perceptual 

decision making task. 

Particularly, participants who had lower change in BOLD signal in pre-SMA and 

striatum had higher decision thresholds when making decisions under time pressure. Despite 

the differences in the tasks, designs, decision-theoretic approaches and research focus, the 

studies of Ivanoff et al. (2008) and van Veen et al. (2008) revealed similar results indicating 

that sustained activity in striatum and right pre-SMA increased when the participants were 

instructed to respond quickly. This finding is compatible with the results of the investigations 

that show the pre-SMA was involved in the internal planning of action strategies and in the 

anticipation of a motor response (Hikosaka & Isoda, 2010; Nachev et al., 2008). None of 

these studies reported a change in the activity of the sensory cortical areas or the primary 

motor cortex. Thus, in agreement with the decision-theoretic approaches, fMRI studies 

suggest that SAT modulation is controlled by the brain areas which are involved in decision 

making such as cortico-basal ganglia circuitry (Bogacz & Gurney, 2007; Lo & Wang, 2006; 

Standage et al., 2014; Watanabe et al., 2015) rather than in early sensory or primary motor 

areas (Bogacz et al., 2010a; Ding & Gold, 2010).  

Another line of evidence regarding the neural underpinnings of SAT comes from the 

structural imaging studies. The study of Forstmann et al. (2010) investigated the relationship 

between the individual differences in behavior and in the structural features of particular brain 

regions focusing on the striatal and STN theories. The results of this study revealed that the 
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participants who demonstrated larger adjustments of the decision boundary (i.e., who quickly 

changed their decision thresholds considering the task demands in an RDM task) had stronger 

connectivity between pre-SMA and striatum. On the other hand, they did not observe  

stronger connections from any cortical region to STN that lead to more flexible adjustments in 

decision thresholds. Thus, these findings did not provide support for the STN theory of SAT.   

Based on the investigations supporting the role of cortico-basal ganglia circuitry in 

SAT, we inhibited the activity of right pre-SMA using rTMS, in order to examine whether 

there was a significant change in the decision thresholds of the participants compared to the 

condition in which another brain region (vertex) irrelevant to decision making was inhibited. 

Findings of a recent rTMS-fMRI study (Watanabe et al., 2015) supported our assumption on 

the causal links between pre-SMA and striatum, i.e. inhibition of pre-SMA changes the 

activity in the basal ganglia which have a key role in controlling SAT and modulation of the 

decision thresholds. The results of the study of Watanabe et al. (2015) revealed that rTMS of 

pre-SMA had a significant effect on the connectivity between pre-SMA and striatum, and 

between striatum and globus pallidus during a response inhibition task. They also observed 

that the behavioral changes observed in terms of response inhibition were correlated with the 

magnitudes of change in the resting state functional connectivity between these areas. These 

results indicated that there is a causal relationship between pre-SMA and globus pallidus via 

striatum during response inhibition, while no causal effects exist in the activity and functional 

interaction involving STN (Watanabe et al., 2015). To our knowledge, there is no rTMS study 

that tested the causal relationship between particular brain areas and the control of the SAT. 

The current study intended to fill this crucial gap in the literature. 
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2. METHODS 

2.1. Participants 

Twenty-four healthy volunteers (13 female), aged 19-24 years (M = 20.88, SD = 1.68) 

participated in the study. These participants met the TMS safety criteria (Rossi et al., 2009; 

Wasserman, 1998). Participants were recruited through a publicly available announcement 

published on the Koç University website. A pre-experimental health form was used to screen 

for contraindications of TMS. Any participant who did not meet the eligibility criteria was 

excluded from the experiment. All participants were right-handed and had normal or 

corrected-to-normal vision. None of the participants tested were taking medication or had 

previous or actual neurological disorder or history of psychiatric illness, drug or alcohol 

abuse. The study was approved by the Ethical Committee of Koç University. Written and oral 

informed consent was obtained from all participants. 

2.2. Design 

 We used a within-subjects design in the experiment. All participants were tested in 

three fixed-duration random dot motion discrimination sessions all of which were held in 

different days. The first session was a behavioral session, while the second and the third 

sessions were either pre-SMA or vertex inhibition (cTBS) sessions applied in a 

counterbalanced order. All participants received monetary reward based on their performance. 

2.3. Stimuli and Apparatus 

 The visual stimulus consisted of a circular field of randomly moving white dots (3x3 

pixels) which appeared in a 3 inch diameter kinematogram in the center of the computer 

screen with a black background (see Gold & Shadlen, 2001; Shadlen & Newsome, 2001). On 

each trial, a particular portion of the dots moved either towards left or right with a fixed 
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speed, while the rest of the dots were randomly repositioned over time. The motion direction 

was assigned randomly with equal probability. The stimulus was generated in MATLAB and 

presented on an 18-in MAC monitor via Psychophysics Toolbox extension (Brainard, 1997; 

Pelli, 1997). Participants were seated approximately 60 cm from the monitor and reported 

their responses via computer keyboard presses. 

For the brain stimulation, a Magstim magnetic stimulator (figure-eight coil, 70-mm-

diameter double circle, air cooled) was used. Intensity and locations for rTMS application 

were determined for each participant prior to behavioral testing. The international 10-20 

system for EEG electrode placement was utilized for the localization of the target brain sites. 

The relative distances of 10% or 20% of the individual distances from the vertex to the 

relevant landmarks was considered by 10-20 EEG caps by requiring exact adaptation of the 

cap to these landmarks (Herwig et al., 2003). EEG caps with 74 positions designed according 

to the 10-20 system (The g.GAMMAcap, G.Tec Medical Engineering GMBH, Austria) were 

used to define the 10-20 positions. Considering the variation in the individual head sizes of 

the participants, the cap with appropriate size (either medium: 54-58 cm or large: 58-62 cm) 

was chosen.  

2.4. Procedure 

2.4.1. Free-Response Dot Motion Discrimination 

In each session, the experiment comprised nine 4-min test blocks of free-response 

(FR) dot motion discrimination task with 8% motion coherence, and two 2-min signal 

detection (SD) blocks to determine non-decision times. Additionally, at the beginning of the 

first session, there was a 4-min practice block of dot motion discrimination task with 16% 

coherence. Participants were allowed to take a break of up to 4-min at the end of the test 

blocks.  
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For FR trials, participants were instructed to respond as quickly and accurately as 

possible by pressing the ‘M’ (for rightward)  or ‘Z’ (for leftward) key on the computer 

keyboard to report their decisions regarding the direction of the coherent motion. In each trial, 

stimuli were terminated when a response was given. The response-to-stimulus interval (RSI) 

was sampled from a truncated exponential distribution with a mean of 2 s, a lower bound of 1 

s, and an upper bound of 5.6 s. Correct responses were signaled by a short audio tone 

indicating positive feedback while incorrect responses were not followed by any feedback. 

Every correct response was awarded a point (corresponding to 4 kurus - approximately 2 

cents), and there was no monetary penalty for errors. If the participants pressed the keys 

before the stimulus had been presented or their response time was lower than 100 ms 

(premature response), they were penalized by a 4-s timeout period, which started after a 

buzzing sound. After every 10 trials, the cumulative scores were displayed in the center of the 

screen.  

For SD trials, participants were instructed to press the ‘M’ key in the first block and 

‘Z’ key in the second block as soon as they saw the stimulus on the screen without 

considering the coherent motion. Each response was awarded 4 kurus unless it was premature.  

2.4.2. rTMS Protocol 

 An off-line Theta Burst Stimulation (TBS) was applied over the target brain sites 

(either right pre-SMA or vertex in a counterbalanced order) at the beginning of the second and 

the third sessions. This protocol consists of 3 pulses of stimulation given at 50 Hz, repeated 

every 200 ms (Huang et al., 2005). The inhibition protocol was determined as continuous TBS 

(cTBS) which comprises a 40 s train of uninterrupted TBS (600 pulses) as described by 

Huang et al (2005). This  protocol was prefered over the traditional rTMS protocol as it 

enables having a longer-lasting inhibitory effect with a considerably shorter stimulation 

duration (Huang et al.,2005; Hubl et al., 2008), which makes the stimulation more 
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comfortable for the participants. During stimulation, the coil was held in a fixed position by a 

mechanical arm over the stimulation sites. The brain region for vertex was determined as Cz 

site in the international 10-20 EEG system. For the localization of right pre-SMA, the center 

of the magnetic coil was placed over the Fz site (Cavazzana et al., 2015; Hsu et al., 2011). 

The exact point of stimulation was 1 cm lateral to the right from the mid-sagittal line. In 

previous studies, Talaraich coordinates of right pre-SMA was determined as (x, y, z) = (-4, 

32, 51) (Chen et al., 2009; Conte et al., 2012; Li et al., 2006) which falls within the Fz site 

both in 10-10 system (Koessler et al., 2009) and in 10-20 system (Vitali et al., 2002). The 

number of participants allowed us to use the 10-20 system for localization (Sack et al., 2009). 

In order to set the specific intensity of stimulation for each participant, single pulse 

TMS was applied at increasing intensities and the active motor threshold (AMT) of each 

individual was determined according to the criterion that a given intensity evokes a muscle 

twitch in the contralateral hand (Huang et al., 2005). For each participant, stimulation power 

was 80% of their AMT in both right pre-SMA and vertex inhibition conditions. 

2.5. Data Analysis 

 The units of analysis were the accuracy and response time data obtained from the 

2AFC task in the right pre-SMA and vertex inhibition sessions. Data from the behavioral 

session, in which no stimulation was applied, was not included in the analyses since this was a 

practice session aimed at establishing the steady-state performance. As these anticipatory 

responses do not reflect task representative behavior, we excluded the data from the trials with 

RTs below 100 ms  (0.07% of all trials). Additionally, we specified a fixed probability for 

obtaining an outlier (assuming 5% of the RTs are outliers).  

The final data were fit by the DDM using the within-subjects Hierarchical Bayesian 

estimation of DDM parameters (HDDM) in Python (Wiecki et al., 2013). HDDM is a more 
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accurate procedure to obtain DDM parameter estimates for both individuals and groups 

compared to the other methods, in which all individuals are assumed to be completely 

different or all same. In the Bayesian estimation procedure used in HDDM, quantification of 

parameter estimates is performed in the form of the posterior distributions which are 

approximated by Markov Chain Monte Carlo (MCMC) sampling methods (Frank et al., 

2015). In order to obtain smooth parameter estimates, 10000 samples were drawn from the 

posterior distribution and the first 1000 were discarded as burn-in.  

The data obtained from the right pre-SMA and vertex inhibition sessions were coded 

as within-subjects conditions. In order to test whether there was a difference in parameter 

estimates between the conditions, we determined the vertex inhibition condition as the 

baseline level and the model parameters for the pre-SMA inhibition condition were estimated 

in reference to this baseline. We fit three different models in all of which the decision 

threshold was allowed to vary between two experimental conditions. 

The first model, in which only the decision threshold was allowed to vary was the 

most theoretically constrained model in terms of our hypothesis regarding the effect of pre-

SMA rTMS on the decision process. For completeness, we also fit two other models in which 

drift rate or drift rate and non-decision time parameters were also allowed to vary between the 

conditions in addition to the threshold.  

In order to evaluate the performance of our three alternative models with varying 

complexity, we used each model’s Deviance Information Criterion (DIC).  The DIC values 

for Model 1, 2 and 3 were 63484, 63478 and 63477, respectively.  A model with lower DIC 

value performs better compared to the other models and a difference of 10 or greater between 

model DIC scores is interpreted as significant (Burnham & Anderson, 2003). Since the 

differences between the DIC values of the models were not higher than 10, none of the 

models performs significantly better than the other. Based on these model comparison 
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statistics and the specificity of our hypothesis, we present the results for Model 1 in the main 

text. The results for Model 2 and 3 are presented as Supplemental Information. It is important 

to note that the results of all model fits showed the robust effect of the pre-SMA rTMS on 

decision thresholds. 

3. RESULTS 

3.1. Response Time and Accuracy Comparisons 

We first examined whether there was a difference in the response times and the 

accuracy levels between the right pre-SMA inhibition and the vertex inhibition conditions. 

Even though the change in both response times and accuracy levels were in the predicted 

directions (Table 2), these changes were not statistically significant (t(23) = 1.20, p = .24 and 

t(23) = 1.15, p = .26).  In order to further investigate the strength of evidence in favor of the 

null findings obtained from the frequentist t-tests, we conducted Bayesian t-tests (Rouder et 

al., 2009). As the results revealed, the odds were 2.47:1 (weak evidence; Raftery, 1995) and 

2.57:1 (weak evidence) in favor of the null hypothesis that there were no difference between 

conditions for the response times and the accuracy levels, respectively.  

Table 1 
       
Means and Standard Deviations of Response Times and Accuracy Levels in  
Right pre-SMA and Vertex Inhibition Conditions    
       

    Response Times   Accuracy Levels 

Condition   M SD   M SD 

Right pre-SMA Inhibition  1.00 0.25  0.78 0.13 

Vertex Inhibition   0.96 0.27   0.76 0.11 
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3.2. Effects on the latent decision process  

3.2.1. Model 1 

To examine whether the latent decision processes associated with the control of the 

SAT has been affected by our experimental manipulation, we fit a drift diffusion model, in 

which only the decision threshold parameter was allowed to vary between the conditions. 

 We assessed the convergence of the MCMC chains from the starting point to the 

posterior distribution calculating the Ȓ (Gelman-Rubin) statistic from 5 separate runs (each 

containing 10000 samples) of the first model. All of the Ȓ values for all model parameters 

were lower than 1.1 indicating successful convergence. We also visually inspected the chains 

whether there was a convergence problem and confirmed that the chains had successfully 

converged.  

Figure 1 shows the posterior distributions of the threshold parameter in the right pre-

SMA inhibition condition with regard to the control condition Given the fact that Figure 1 

shows the distribution of the difference between the pre-SMA and vertex rTMS conditions, 

the degree of overlap between the posterior distribution with the value of 0 can be used as the 

comparison metric. As the posterior distribution of this difference between conditions does 

not overlap with zero, we can conclude that the thresholds in the pre-SMA inhibition 

condition is significantly higher than the thresholds in the vertex inhibition condition (p < 

.001). In other words, when the excitability of the right pre-SMA was reduced, participants set 

higher decision thresholds exhibiting a more cautious decision strategy. Additionally, we 

calculated the percentage difference between the means of the posterior distributions for the 

threshold parameter in pre-SMA and vertex inhibition conditions. The results of this analysis 

showed that the mean of the threshold parameter increased in the pre-SMA inhibition 

condition by 4.98% with respect to the control condition.  
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Figure 1. Posterior distribution of the threshold parameter estimated for pre-SMA inhibition 
condition with regard to the vertex inhibition condition. Peak values of the distribution 
represent the best estimates of the parameter, and the width of the distribution represents its 
uncertainty. 
 
 

3.2.2. Model 2 

In this model, decision threshold and drift rate parameters were allowed to differ 

between the conditions. The within-subjects effect of the pre-SMA inhibition condition on the 

decision threshold was examined as the posterior distribution of threshold parameter in pre-

SMA condition with regard to the control condition which was determined as the baseline 

level. As seen in Figure 2, the posterior distribution of the threshold parameter does not 

overlap with zero indicating a significant effect of the condition on this parameter estimate 

(100% of posterior > 0). Since, the distribution was shifted to the right of 0 point, the decision 

threshold estimated for the pre-SMA condition is significantly higher than the threshold in the 

control condition. Thus, inhibition of right pre-SMA has a significant effect on the response 

cautiousness levels of the participants making them to set higher decision thresholds. This 

effect was is fully consistent with the findings gathered based on Model 1. Similarly, the 

within subjects effect of the pre-SMA inhibition on the drift rate parameter was also 
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significant (99% of posterior > 0; see Figure 3). This result indicated that participants had 

higher evidence accumulation rates when their right pre-SMA was inhibited compared to the 

condition in which their vertex was inhibited. 

	

 

 

 

 

 

 

Figure 2. Posterior distribution of the threshold parameter estimated for pre-SMA inhibition 
condition with regard to the vertex inhibition condition for Model 2 where threshold and drift 
parameters were allowed to vary between conditions. Peak values of the distribution represent 
the best estimates of the parameter, and the width of the distribution represents its uncertainty. 

 

Figure 3. Posterior distribution of the drift parameter estimated for pre-SMA inhibition 
condition with regard to the vertex inhibition condition for Model 2 where threshold and drift 
parameters were allowed to vary between conditions. 	

	



16 
	

We assessed the convergence of the MCMC chains calculating R-hat statistics and 

generating the graphs for each parameter and condition. Visual inspection of the figures of 

each chain and obtaining R-hat (Gelman-Rubin) values lower than 1.1 showed that all MCMC 

chains converged successfully. 

Additionally, we calculated the percentage difference between the means of the 

posterior distributions for the threshold and drift rate parameters in pre-SMA and vertex 

inhibition conditions. The results of this analysis showed that the mean of the threshold 

parameter increased by 5.29% and the mean of the drift rate parameter increased by 5.13% in 

the pre-SMA inhibition condition with respect to the control condition. 

 

3.2.3. Model 3 

In this model, along with the threshold and drift rate parameters, non-decision time 

parameter was also allowed to vary across the conditions. Consistent with the results of the 

second model fits, threshold (100% of posterior > 0) and drift rate (99% of posterior > 0) was 

significantly higher in the pre-SMA inhibition condition compared to the vertex inhibition 

condition as seen in the Figure 4 and Figure 5 respectively. On the other hand, the within 

subjects effect of the right pre-SMA inhibition condition on the non-decision time parameter 

was not significant (94% of posterior < 0; see Figure 6). Therefore, we concluded that the 

non-decision time parameter was not affected by the decrease in the right pre-SMA activity.	

For all parameters and conditions, the MCMC chains successfully converged from the 

starting point to the posterior distribution. All R-hat statistics were also lower than 1.1 

indicating that there was no convergence problem in any parameter and condition. 
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Figure 4. Posterior distribution of the threshold parameter estimated for pre-SMA inhibition 
condition with regard to the vertex inhibition condition for Model 3 where threshold, drift, 
and non-decision time parameters were allowed to vary between conditions. 	

	

Figure 5. Posterior distribution of the drift parameter estimated for pre-SMA inhibition 
condition with regard to the vertex inhibition condition for Model 3 where threshold, drift, 
and non-decision time parameters were allowed to vary between conditions. 	
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Figure 6. Posterior distribution of the non-decision time parameter estimated for pre-SMA 
inhibition condition with regard to the vertex inhibition condition for Model 3 where 
threshold, drift, and non-decision time parameters were allowed to vary between conditions.  

 

Additionally, we calculated the percentage difference between the means of the 

posterior distributions for the threshold, drift rate and non-decision time parameters in pre-

SMA and vertex inhibition conditions. The results of this analysis showed that the mean of 

the threshold parameter increased by 5.72%, the mean of the drift rate parameter increased by 

5.15% while the mean of the non-decision time parameter decreased by 0.89% in the pre-

SMA inhibition condition with respect to the control condition. 

 

3.3. Speed-Accuracy Tradeoff & Reward Rate Maximization 

 Reward maximization in free-response fixed session time tasks require participants to 

find the optimal balance between the speed and the accuracy of their decisions. The expected 

reward rate (RR) in free-response 2AFC tasks is calculated as described below (Gold 

&Shadlen, 2002):  
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𝑅𝑅 =
1 − 𝐸𝑅

𝐷𝑇 + 𝑇0 + 𝑅𝑆𝐼 

                                                                                                     (1) 

where ER denotes error rate, DT represents decision time, T0 is time required for all non-

decision related processes and RSI is the response-to-stimulus interval. DT is calculated by 

subtracting the non-decision related times from the response times. Reward maximizing 

mean-normalized decision times are calculated as below within the framework of reduced 

form of DDM (Bogacz et al., 2006): 

𝐷𝑇
𝐷𝑡𝑜𝑡 =

1
1

𝐸𝑅𝑙𝑜𝑔	(1 − 𝐸𝑅𝐸𝑅 )	
+	 1
1 − 2𝐸𝑅

 

                                                                                                     (2) 

where Dtot = T0 + RSI.  

In 2AFC tasks, the majority of the participants were shown to set their decision 

thresholds higher than the reward maximizing thresholds predicted by the DDM early in 

training (Balcı et al., 2011; Bogacz et al., 2010b; Maddox & Bohil, 1998; Pitz & Reinhold, 

1968; Stevenson et al., 1991). This accuracy bias was formulated by Bogacz et al. (2006) as 

below with an additional parameter in the reward rate function, which represents a penalty for 

error: 

𝑅𝑅(𝑞) =
(1 − 𝐸𝑅) − 𝑞𝐸𝑅
𝐷𝑇 + 𝐷𝑡𝑜𝑡  

                                                                                                                          (3) 

where q represents the weight assigned to accuracy relative to the reward. Considering 

different error rates, the related normalized optimal decision times (given that q stands for an 

actual penalty) are calculated using the formula below (Bogacz et al., 2006): 
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𝐷𝑇
𝐷𝑡𝑜𝑡 = (1 + 𝑞)

1
1
𝐸𝑅 −

𝑞
(1 − 𝐸𝑅)

𝑙𝑜𝑔	(1 − 𝐸𝑅𝐸𝑅 )	
+	 1 − 𝑞1 − 2𝐸𝑅

 

                                                                                                                          (4) 

When q is equal to zero, Equation 4 prescribes the optimal performance curve for a 

task with no penalty for errors (as in the case of the current task) and thus the best fit q value 

indicates the degree of accuracy bias assuming that the participant optimizes this alternative 

function with subjective penalty for errors. In order to assess whether the performance of the 

participants differed in terms of the subjective cost they attributed to errors (accuracy bias) 

between the two conditions, we calculated the values of the parameter q corresponding to the 

error rates of each participant in both experimental and control sessions (see (4)) and 

compared them.  The parameter q calculated for both the experimental (M = .47, SD = .40) 

and the control condition (M = .35, SD = .26) were significantly greater than 0, t(23) = 4.13,p 

< .001, and t(23) = 4.26, p < .001, respectively. This result indicates that regardless of the 

condition, participants had an accuracy bias. Consistent with our predictions, the weight 

assigned to accuracy relative to reward was significantly higher in the pre-SMA compared to 

the vertex inhibition condition, t(23) = 2.35, p < .05. Thus, under the right pre-SMA inhibition 

condition, participants displayed a significantly more cautious performance than the optimal 

(i.e., q = 0).  

 

3.4. Post Error Slowing 

In order to explore whether the increased cautiousness levels in the right pre-SMA 

inhibition condition was related to any change in the tendency of slowing down after 

erroneous responses (post error slowing - PES), we quantified PES as the difference in 

response times between the post-error trials and the post-correct trials. The difference between 
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post error and post correct response times (as a measure of PES) was significantly higher than 

0 both in experimental (t(23) = 3.05 , p < .01) and in control condition (t(23) = 2.11 , p < .05). 

Although these results indicated that PES was evident within both conditions, there was not a 

significant difference between the two groups, t(23) = .78, p = .44. An estimated Bayes factor 

revealed that the odds were 3.53:1 in favor of the null hypothesis, providing substantial 

evidence for that there was no difference between groups.  

The behavioral results gathered based on an alternative quantification method for PES 

(Dutilh et al., 2012) corroborated these results. As an alternative to the standard method, we 

quantified post-error slowing by calculating the difference between the post-error and the pre-

error response times. This method was developed by Dutilh et al. (2012) who demonstrated 

that the standard method might cause spurious observation or masking of post-error slowing 

since it might be affected by global fluctuations in performance. Similar results were obtained 

from these set of analyses indicating that the difference between the post-error response times 

and the pre-error response times were significantly higher than the value of 0 both in the pre-

SMA (M = 0.11, SD = 0.21), t(23) = 2.54, p  = .02, and the vertex inhibition sessions (M = 

0.06, SD = 0.10), t(23) = 3.16, p = .004. There was no significant difference between 

conditions, t(23) = 1.30, p = .21. We also conducted a Bayesian t-test which showed that the 

odds were 2.21:1 in favor of the null hypothesis (weak evidence) indicating that there was no 

difference between pre-SMA and vertex inhibition conditions in terms of PES scores.	

In order to examine whether there were any difference in threshold setting between 

post-correct and post-error trials, and whether this difference varied between pre-SMA and 

vertex stimulation conditions, we fit a drift-diffusion model to the data allowing only the 

decision threshold parameter to vary. The results of this analysis revealed a higher threshold 

setting for post-error trials compared to post-correct trials regardless of the stimulation 

condition (see Figure 7A). However, the stimulation site did not have a differential effect on 
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the difference between post-error and post-correct trials in terms of post-error threshold 

setting (64% of posterior > 0; see Figure 7B). 

 

 

 

 

 

 

 

 

 

 

Figure 7. Posterior distribution of the threshold parameter estimated for post-error trials with 
regard to the post-correct trials (A) and the differential effect of the rTMS conditions on the 
difference between post-error and post-correct trials (B). Peak values of the distributions 
represent the best estimates of the parameter, and the width of the distributions represents its 
uncertainty. 

	

We also investigated whether the accuracy of decisions increased after errors by 

comparing post-correct and post-error accuracy rates. The results indicated no significant 

difference between post-correct post-error accuracy rates, F(1,23) = 3.05, p = .09. Also, the 

stimulation condition (i.e., pre-SMA vs. vertex) did not have a differential effect on the 

difference in the accuracy rates between post-error and post-correct trials, F(1,23) = 0.13, p = 

.72.	

DISCUSSION 

In the current study, we investigated whether there is a causal relationship between the 

activity of right pre-SMA and control of the speed-accuracy tradeoff (SAT) in human 
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perceptual decision making without differentially emphasizing speed vs. accuracy. To this 

end, we examined the effect of the changes in the activity of right pre-SMA on decision 

thresholds estimated by the drift diffusion model.  Based on earlier neuroimaging studies, we 

predicted that the inhibition of right pre-SMA would result in higher threshold setting and 

accuracy bias. The results of this study revealed that humans exhibit more cautious choice 

behavior by setting higher decision thresholds as a result of right pre-SMA inhibition 

compared to the inhibition of a control region (i.e., vertex). This difference was present 

despite the lack of significant differences as a result of isolated analysis of the accuracy and 

response times. This fact particularly reflects the importance of model-based approaches in 

cognitive neuroscience research (Erhan & Balcı, 2015; Forstmann & Wagenmakers, 2015).  

As a mechanistic explanation for the change in cautiousness levels of the participants, 

we proposed that the inhibition of right pre-SMA exerts its downstream effect on the related 

cortico-basal ganglia pathways. Based on the striatal theory of the control of SAT, an increase 

in the activity of cortical non-integrator neurons (as in pre-SMA) excites striatum, which in 

turn decreases the inhibitory effect of the output nuclei of basal ganglia (globus pallidus) over 

the cortical areas related to motor execution (Bogacz et al., 2010a; Forstmann et al., 2008). 

This would enable globus pallidus to maintain/increase its inhibitory control over cortical 

areas based on the striatal theory of SAT (Forstmann et al., 2010). Thus, as a result of 

increased right pre-SMA activity, humans execute faster but often premature responses.  With 

the same line of reasoning, the inhibition of right pre-SMA decreases the inhibitory effect of 

the striatum on basal ganglia. This in turn leads to a decreased activity in thalamus, resulting 

in a more cautious decision strategy (i.e., increased threshold setting). 

Along with the increase in the decision thresholds, we also found that the weight 

assigned to accuracy relative to reward (i.e., accuracy bias) was significantly higher in the 

right pre-SMA compared to the vertex inhibition condition. This result reflects the effect of 
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right pre-SMA inhibition at the level of behavioral output when it is evaluated with respect to 

optimality benchmark. 

 

Figure 8. A possible neural mechanism for the block-based (macro-adaptive) and trial-based 
(micro-adaptive) modulation of decision thresholds. Pre-SMA-striatal pathway is implicated 
for macro-adaptive (based on global reward rate) whereas OFC/vmPFC-STN pathway is 
implicated for micro-adaptive (based on instantaneous outcome) modulation of decision-
thresholds. 
 

Another point of interest was the possible relationship between post-error slowing 

(PES) and SAT, since the underlying neural mechanisms of PES also include similar cortical 

and subcortical structures of the right hemisphere (Danielmeier & Ullsperger, 2011). In the 

review by Danielmeier and Ullsperger (2011), a network consisting of pre-SMA, lateral 

inferior frontal areas and the subthalamic nucleus (STN) are suggested to be crucial for PES. 

In the hyperdirect pathway, STN receives direct input from the cortex and projects directly to 
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the GPi to act as a global brake on the striatal output (Cavanagh et al., 2014). Thus, increased 

STN activity following erroneous responses enables acting more cautious in the next trial. In 

our study, a set of analyses related to PES indicated that within both conditions, participants 

responded slower by setting higher thresholds after they made an error, however this slowing 

or thresholds did not differ between the conditions. Thus, participants did not exhibit 

differential post-error behavior in terms of the speed of their decisions in the right pre-SMA 

inhibition condition compared to the control condition. Consequently, these findings indicated 

that while the baseline decision thresholds (presumably set based on global reward rate 

estimates), which control SAT, were affected by the right pre-SMA inhibition, no such 

differential modulation was observed in PES or associated transient changes in decision 

thresholds as a result of the change in activity in this area. In light of the findings of a 

previous study that indicated no effect of pre-SMA rTMS on the activity of STN (Watanabe et 

al., 2015), we can speculate that in our study pre-SMA inhibition did not modulate the activity 

of STN and therefore did not specifically lead to the modulation of PES. Overall our findings 

could be better accounted for by the striatal theory of SAT over STN theory.  

The specificity of the effects of pre-SMA rTMS on average threshold values but not 

on post-error slowing (which has been previously attributed to wider threshold setting 

following errors) coupled with previous neuroimaging studies provide insights regarding the 

neural mechanisms that might differentially underlie macro-adaptive (block-based) vs. micro-

adaptive (trial-based) modulation of decision thresholds. We propose that block-based 

threshold setting (for which SNR and average reward structure are relevant) and trial-based 

threshold modulation (for which the instantaneous consequences/outcomes of previous 

decisions are relevant) rely on partially dissociable networks. Specifically, we propose that 

pre-SMA-striatal pathway is associated with macro-adaptive threshold modulation whereas 

OFC/dACC/vmPFC-STN pathway is associated with micro-adaptive threshold modulation. 
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The latter process might be driven/guided by prediction error signals (Gehring & Willoughby 

2002; Matsumodo & Takada, 2013; Roy et al., 2014; Seidler et al., 2013). To this end, 

particularly the OFC and vmPFC are likely candidate cortical structures that modulate STN’s 

activity based on negative prediction errors (lower than average reward rate in erroneous 

decisions) that would lead to PES. The innervation of STN by substantia nigra pars compacta 

and VTA might on the other hand bring performance back to baseline following accurate 

decisions. Briefly, according to this account preSMA-striatal pathway would determine the 

baseline level of threshold setting (and set a lower limit) whereas cortical-STN pathway 

would modulate these thresholds from one trial to the next depending on the consequence of 

the previous decision. The integration of these two separate sources of signals takes place at 

the common efferent locus of these pathways, the globus pallidus interna. Figure 8 illustrates 

this model. Future studies may investigate these relationships using functional imaging 

methods. 

A weakness of the current study could be related to the technique used for the 

localization of the target brain regions. We determined the stimulation sites (Fz for pre-SMA, 

Cz for vertex) based on the previous studies, which used the international 10-20 EEG system 

for pre-SMA localization (Hsu et al., 2011; Cavazzana et al., 2015). Before using the 

anatomical sites, we further considered whether the Talaraich coordinates of right pre-SMA 

determined by the previous studies (Chen et al., 2009; Conte et al., 2012;  Li et al., 2006) fall 

within the stimulation sites (Fz and Cz) both in 10-10 system (Koessler et al., 2009) and in 

10-20 system (Vitali et al., 2002). Moreover, we kept the number of participants much higher 

compared to the functional and structural MRI-guided TMS studies to increase the efficacy of 

our localization method (Sack et al., 2009). In a future study, the current study could be 

replicated with a smaller sample using MRI-guided localization techniques. Additionally, as 

we used only inhibition in the current study, the effect of pre-SMA facilitation on decision 
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thresholds could be investigated to examine whether increased pre-SMA activity leads to 

lower decision thresholds and more impulsive decisions.  
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