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ABSTRACT 

 

In production facilities, most of the end product is processed on a set of machines to 

be formed. Increase in diversity of the product raises the scheduling problem on a work 

shop environment for processing the multiple jobs on a set of machines. In this study, we 

examine the flowshop scheduling problem with sequence dependent setup times (FS-

SDST). In regular flowshop problems, the setup time of the jobs or the machines are 

considered as negligible or independent from the sequence of the jobs. However, in many 

applications, some setup operations such as cleaning, changing or adjusting the machine 

tools are required for the machine before processing the following job in the sequence. In 

the thesis, we study two FS-SDST problems: F|sijl, prmu|Cmax and F|sijl, 

prmu|∑(Cj+Energyj) . In the F|sijl, prmu|Cmax problem, we aim to schedule the jobs to be 

processed on the machines when the objective is to minimize the maximum completion 

time which is called makespan. In the F|sijl, prmu|∑(Cj+Energyj) problem, we study 

energy-aware FS-SDST problem, in which the aim is to schedule the jobs to be processed 

on all machines. However, in the F|sijl, prmu|∑(Cj+Energyj) problem the objective is to 

minimize both the total completion time and the total energy consumption. 

We propose a Variable Neighborhood Search (VNS) algorithm for these two FS-

SDST problems. We examine the performance of the VNS algorithm by using the well-

known benchmark set and compare our results with the most powerful metaheuristics from 

the literature, when the objective is to minimize the makespan. Since the F|sijl, 

prmu|∑(Cj+Energyj) problem is studied for the first time in the literature, we generate data 

set for the energy-related parameters. Then, we compare the results with a well-known 

NEH constructive heuristic. This comparison indicates how we improve the NEH solutions 

by proposed VNS algorithm. We conclude that the proposed algorithm is a robust 

algorithm for an FS-SDST problem for these two different objectives and we analyze the 

strengths and weaknesses of the proposed VNS algorithm. 
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ÖZETÇE 

 

Üretim tesislerinde çoğu ürünler farklı makineler tarafından işlendikten sonra son 

halini alırlar. Ürünlerdeki çeşitliliğin artması ile birlikte işlerin makinelerdeki işlenme 

sırasını belirlemek için değişik atölye tiplerinde çizelgeleme problemi ön plana çıkmıştır. 

Bu çalışmada sıraya bağlı hazırlık süreleri de göz önüne alınarak akış tipi çizelgeleme 

(ATÇ) problemi incelenmiştir. Geleneksel ATÇ problemlerinde, işlerin veya makinelerin 

bir sonraki operasyon için hazırlanma süreleri ihmal edilmiştir veya iş sıralamasından 

bağımsız olarak ele alınmıştır.  Ancak, çoğu uygulamalarda, makinenin bir sonraki işi 

işlemeden önce, makinenin temizlenmesi, makine parçalarının değişimi veya ayarlanması 

gibi hazırlıkların yapılması gerekmektedir. Bu tezde, sıraya bağlı hazırlık süreleri de göz 

önüne alınarak farklı amaç fonksiyonları olan iki ATÇ problemi çalışılmıştır. İlk 

problemde amaç tüm işlerin işlenme sırasını, maksimum tamamlanma zamanını en 

küçükleyecek şekilde belirlemektir. İkinci problemde sıraya bağlı hazırlık sürelerine ek 

olarak enerji tüketiminin de göz önüne alındığı akış tipi çizelgeleme (ATÇ) problemi 

çalışılmıştır. Bu problemde amaç tüm işlerin işlenme sırasını, toplam tamamlanma zamanı 

ve toplam harcanan enerjiyi küçükleyecek şeklide belirlemektir. 

İncelenen ATÇ problemleri için değişken komşuluklu arama (DKA) algoritması 

önerilmiştir. Bu algoritmanın performansı, ilk problem için, yazında bulunan diğer güçlü 

sezgisel algoritmalarla karşılaştırılmıştır. İkinci problem yazında ilk defa çalışıldığı için 

DKA’nın performansı, NEH çözüm kurucu sezgisel algoritma ile kıyaslanmıştır. Bu 

karşılaştırma ile DKA’nın, NEH algoritmasıyla oluşturulan çözümü ne kadar geliştirdiği 

gösterilmiştir. Sonuç olarak, sıraya bağlı hazırlık süreli ATÇ problemi için önerilen DKA 

algoritmasının, farklı amaç fonksiyonlarıyla uyumu gözlenmiştir. Buna ek olarak DKA’nın 

karşılaştırılan diğer sezgisel yöntemlere göre güçlü ve zayıf yönleri analiz edilmiştir. 
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Chapter 1 

 

INTRODUCTION 

 

 

In the manufacturing plants, many products pass through a series of operations to 

reach the end users. Using the same set of machines for processing different jobs may lead 

to idle times for the machines, or increase the need for inventory between stations or end 

products. To process varied products in the shop environment, manufacturers use 

scheduling models to plan production. With controlling the flow of the jobs, companies can 

shorten the delivery times, reduce in-process inventory or even decrease the energy 

consumption during the operations, which increases the resource utilization and decrease 

the cost of company.   

In flowshop scheduling, each job is processed on a set of machines in series. The 

machine sequence is important for the jobs, since the output of one of the machine will be 

the input for the following machines. Each job follows the same order of machines, but the 

operations differ from type of the jobs. For instance, one of the machines can be a painting 

machine in the shop environment and according to the job, the machine paints the product 

in a different color. In regular flowshop scheduling problems, the preparation time of the 

machines for the following job in the sequence are considered as negligible or independent 

from the sequence of the jobs. However, in many applications, ignoring setup times may 

increase the operational costs. Hence, the researchers have studied flowshop scheduling 

with sequence dependent setup times (FS-SDST) for many years. Setup operations for the 

machine before processing the following job in the sequence may include cleaning, 

changing or adjusting the machine tools, positioning work in process material, setting the 

required jigs, heat treatment or changing the color for painting. Considering setup times 
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leads to significant savings such as increase in production speed, faster changeovers, 

smoother flow and hence, reduces the operational costs. Figure 1.1 illustrates the schematic 

view of the FS-SDST problem. 

 

 

Figure 1.1 Flowshop scheduling problem with sequence dependent setup times 

 

In recent years, sustainable production planning has also been attracted attention by 

the researchers for scheduling problems. The reason of the energy-saving practices is 

increase in energy consumption globally with rise in population. Government regulations 

and global competition force the manufacturers pay attention to the energy-aware 

scheduling. Adopting the sustainability practices has benefits for environmental and 

economic aspects.  

In this thesis, we examine two FS-SDST problems with different objective 

functions. In the first problem, each job is characterized with a processing time on each 

machine and setup times according to the predecessor and successor jobs. We aim to 

schedule the jobs to be processed on all machines when the objective is to minimize the 

makespan.  This problem is denoted in the literature by F|sijl, prmu|Cmax with the three-field 

notation (Pinedo, 2002). In this thesis, we also use this notation for our first problem. In the 

second problem, we study energy-aware FS–SDST problem. In manufacturing plants, it is 

observed that some of the machines are standing idle for a long time and the energy 

consumption of these machines may be significantly high. Hence, we use the strategy that 

when the machine is kept idle for a long time, instead of keeping the machine idle, turning 

off and on the machine can consume lower energy. Hence, for the second problem, we 

Jobs Machines 
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consider additional characteristics for the machines. All machines consume energy during 

processing a part, idle periods, turning off/on the machine and setup operations. While 

considering the energy consumption, we desire to minimize the completion time of the 

jobs. When the energy consumption is considered in the scheduling problem in addition to 

the traditional objectives such as makespan, these two objectives should be in contrast, 

which makes the problem more difficult. The strategy (that when the machine is kept idle 

for a long time, instead of keeping the machine idle, we can turn off and on the machine) 

implies to lower the total idle time on the machine. This aim is parallel with the makespan 

objective for the flowshop scheduling. Hence, to create a trade-off between objectives, we 

use the total completion time objective for the second problem. The motivational example 

of adding energy objective to the FS-SDST problem with the total completion time 

objective will be presented and discussed in Section 3.1.2 in detail. Hence, in our second 

problem, the aim is to schedule the jobs to be processed on all machines and decide about 

the status of the machine between scheduled jobs so as either to keep the machine idle or to 

turn off and turn on the machine, when the objective is to minimize both the total 

completion time and the total energy consumption. We denote this problem by F|sijl, 

prmu|∑(Cj+Energyj) and in this thesis, we use this notation for the second problem. 

We propose a robust Variable Neighborhood Search (VNS) algorithm for these two 

FS-SDST problems. The proposed VNS algorithm uses two neighborhood structures and a 

local search procedure systematically. We examine the performance of the VNS algorithm 

for the F|sijl, prmu|Cmax problem by using the well-known benchmark set and compare our 

results with the most powerful metaheuristics from the literature. Since the F|sijl, 

prmu|∑(Cj+Energyj)  problem is studied for the first time in the literature, we present a 

mathematical model for this problem. We generate a set of instances for the energy-related 

parameters. We solve small-sized problems via the mixed integer linear programming 

(MILP) model presented in Section 3.2.2 and compare the solutions obtained from the 

proposed VNS algorithm with the optimal solutions. For large-sized problems, we compare 
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the VNS results with the well-known NEH constructive heuristic results. This comparison 

indicates how we improve the NEH solutions by proposed VNS algorithm. 

The chapters of the thesis are structured as follows. In Chapter 2, we review the 

studies related with the F|sijl, prmu|Cmax and F|sijl, prmu|∑(Cj+Energyj)  problems. 

Additionally, we survey the most relevant studies with these two problems which are 

solved by VNS algorithm. In Chapter 3, we give the definition of two FS-SDST problems. 

We present the mixed integer linear programming (MILP) models for the F|sijl, prmu|Cmax 

problem which is proposed by Stafford and Tseng (2001) and modified version of this 

mathematical model to the F|sijl, prmu|∑(Cj+Energyj) problem. In Chapter 4, we present 

the implementation of the VNS algorithm. In Chapter 5, we give the computational results 

and the analysis of these results for two FS-SDST problems. Finally, in Chapter 6, we give 

conclusions and the important remarks for future research. 
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Chapter 2 

 

LITERATURE SURVEY 

 

 

In this chapter, we survey the studies related to the flowshop scheduling problem 

with sequence dependent setup times when different objectives are considered as in our 

study. Moreover, we investigate the VNS algorithm and the studies in which the authors 

use VNS algorithm as their solution methodology. 

 

2.1 Flowshop Scheduling Problem with Sequence Dependent Setup Times  

 

The flowshop scheduling problem with sequence dependent setup times (FS-SDST) 

is a well-known problem in the literature and several studies exist with different objectives. 

In this study, we consider two FS–SDST problems when the objectives are to minimize 

makespan, referred to as F|sijl, prmu|Cmax, and to minimize both the total completion time 

and the energy consumption, referred to as F|sijl, prmu|∑(Cj+Energyj). For the problem 

F|sijl, prmu|Cmax, there are studies regarding both exact algorithm methods and heuristic 

algorithms. However, to the best of our knowledge, the F|sijl, prmu|∑(Cj+Energyj)  

problem is studied for the first time in the literature. Hence, we review most related articles 

with energy-aware scheduling.   

 

2.1.1 F|sijl, prmu|Cmax Problem 

 

The article written by Srikar and Ghosh (1986) is one of the fundamental studies on 

the FS-SDST problem when the objective is to minimize the makespan. In this article, they 
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propose a mixed integer linear programming (MILP) model for the F|sijl, prmu|Cmax 

problem with unique binary variable for sequencing. They emphasize that minimizing the 

makespan in a single machine scheduling with sequence dependent setup times (SDST) 

implies to minimize the setup times, which resembles the traveling salesman problem 

(TSP). Different from the traditional TSP-based binary variable for sequencing which takes 

the value of 1 if job j is scheduled immediately before job l, they define the binary variable 

for sequencing which takes the value of 1 if job j is scheduled anytime before job l. 

Proposed binary variable decreases the number of variables. They also solved some small-

sized problems up to six jobs and six machines with mixed integer linear programming 

model. Stafford and Tseng (1990) report some corrections on the MILP model for the FS-

SDST problem developed by Srikar and Ghosh (1986). The corrections are made on the 

calculation of mean flow time and the order of index of the sequence dependent setup time 

parameter in one of the constraint sets. They also solve the problem up to seven jobs to five 

machines with integer programming. Additionally, they propose three more MILP models 

with the decision variable defined by Srikar and Ghosh (1986) for the flowshop problems 

with different characteristics. Tseng and Stafford (2001) also propose two new MILP 

models for the FS-SDST problem. First model is based on the assignment problem where 

the binary variable takes the value of 1 if job j is scheduled in position k. In the constraint 

sets, they use equality constraints with using two decision variables: idle time on machines 

and idle time on jobs. In the second model, they use the same binary variable for 

sequencing the jobs, but they change their constraint set by using inequalities such as the 

model proposed by Srikar and Ghosh (1986). They solve different size of problems up to 

seven jobs to seven machines with integer programming and they compare the computation 

times with the model proposed by Srikar and Ghosh (1986). They claim that their two 

MILP models are solved optimally in less CPU time than the model proposed by Srikar and 

Ghosh (1986). In addition to the integer programming model, branch and bound technique 

is also used for solving the FS-SDST problem. Rios-Mercado and Bard (1999a) propose 

branch and bound algorithm for the FS-SDST problem considering makespan objective. 
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They implement lower and upper bound procedures, and dominance rules. Same authors 

also study branch and cut algorithm (1998a, 2003). In these articles, they consider two 

MILP models. One of them is TSP based mathematical model and second one is the model 

proposed by Srikar and Ghosh (1986). They relax the integrality constraints of the models 

and generate powerful valid inequalities for the polyhedron, which leads to obtaining better 

results compared to branch and bound technique.  

The flowshop scheduling problem with sequence dependent setup times is shown as 

strongly NP-hard by Gupta and Darrow (1986), when the objective function is makespan. 

They show that even when one of the machines has sequence dependent setup times in the 

two-machine flowshop problem, it is still strongly NP-hard. Since the FS-SDST problem is 

solvable up to ten jobs and few machines optimally, the authors have proposed some 

heuristic methods for the F|sijl, prmu|Cmax problem. Ruiz et al. (2005) propose a genetic 

algorithm and a memetic algorithm in which they improve the genetic algorithm with local 

search. To compare the quality of the solutions obtained from the proposed algorithms, 

they adapt several heuristic methods which are proposed for regular flowshop problem. 

Additionally, they compare the results with alternative methods which have already been 

proposed for the FS-SDST problem when the objective is makespan. To compare the 

results in a fair platform, Ruiz et al. code each algorithm in the same computer and use 

same benchmark sets. For instance sets, they use the data set generated by Taillard (1993) 

for the regular flowshop problems. In this set, the sizes of instances are combination of 20 

jobs to 500 jobs and 5 machines to 20 machines. Ruiz et al. generated four groups of 

sequence dependent setup times (SDST) values for each instances. This article is a 

comprehensive article, since in the experimental evaluation, twelve heuristic algorithms are 

used. The powerful heuristics for the regular flowshop problem which are modified to the 

FS-SDST problem are the genetic algorithm of Reeves (1995), simulated annealing of 

Osman and Potts (1989), iterated local search procedure of Stützle (1998), tabu search of 

Widmer and Herzt (1989) and genetic algorithm by Aldowaisan and Allahverdi (2003). 

Ruiz et al. modify the calculation of the makespan value of these algorithms by adding the 
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sequence dependent setup times. Moreover, some of the adapted heuristics originally 

initialize their algorithm with a constructive heuristic, Nawaz-Ed-Ham (1983) (NEH) 

algorithm, which uses a local search procedure based on the insertion neighborhood. Ruiz 

et al. (2005) replace this NEH heuristic with the NEH_RMB heuristic modified by Rios-

Mercado and Bard (1998b) for the FS-SDST problem. The other metaheuristics, which 

have been already proposed for the FS-SDST, are NEH_RMB and greedy randomized 

adaptive search procedure (GRASP) of Rios-Mercado and Bard (1998b), the Total and 

Setup heuristics of Simons (1992), the TSP based heuristic of Rios-Mercado and Bard 

(1999b) and the saving index algorithm, which is based on the selection of job that has 

maximum time savings, of Das et al. (1995). Lastly, Ruiz et al. (2005) propose a simple 

heuristic which generates random solutions and takes the best one. In computational 

experiments, Ruiz et al. (2005) observe that the proposed memetic algorithm dominates all 

other 13 algorithms. The reasons of the power of this memetic algorithm are the new 

crossover operations which are created for the F|sijl, prmu|Cmax problem specifically and 

hybridization of the proposed genetic algorithm with the local search procedure based on 

node insertion neighborhood. 

Gajpal et al. (2006) propose an ant colony algorithm for the FS-SDST problem to 

minimize the makespan. They improve the ant colony algorithm, which was proposed for 

the regular flowshop problem by Rajendran and Ziegler (2004), by changing the 

initialization and local search procedures. In the ant colony algorithm, initially one solution 

is constructed and it is improved by local search. In the next step, the pheromone trail is 

updated and these procedures continue until the stopping condition is met. Gajpal et al. 

(2006) compare their results with the GRASP algorithm of Rios-Mercado and Bard 

(1998b) and saving index algorithm of Das et al. (1995). They generate the instance set 

randomly to compare the results of these algorithms. They observe that the proposed ant 

colony algorithm gives better results compared to other heuristics. However, since they use 

a different benchmark set, the comparison of this algorithm with the other alternative 

heuristics in the literature is not possible.  
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Ruiz and Stützle (2008) presented two new iterated greedy (IG) heuristics for the 

FS-SDST problem with two different objectives: makespan and weighted tardiness. The 

same author has already proposed the iterated greedy algorithm for the regular flowshop 

problem and the algorithm works efficiently for this flowshop problem (2007). Hence, they 

extended the algorithm to the FS-SDST problem. In the article, one of the proposed 

algorithms was based on simple IG algorithm; the other one was hybridization of the IG 

algorithm with a descent local search based on insertion neighborhood. IG algorithm starts 

with an initial solution and it has destruction and construction phases basically. In 

destruction phase, some of the components of the solutions are removed and each removed 

components are added to the partial solution one by one to obtain the best permutation. In 

the local search procedure, each component (job) in the sequence, which is obtained after 

construction phase, is removed from the sequence and inserted into another position which 

gives a lower makespan value. Ruiz and Stützle (2008) compared their computational 

results with the alternative heuristics. Since Ruiz et al. (2005) conducted a comprehensive 

comparison between 14 algorithms; Ruiz and Stützle (2008) choose the two best algorithms 

among them to compare their results: genetic and memetic algorithm of Ruiz et al. (2005). 

Ruiz and Stützle (2008) improve the memetic algorithm by the local search procedure 

which they propose for the IG algorithm. Additionally, they extend the ant colony 

algorithm, which is proposed by Rajendran and Ziegler (2004) for the regular flowshop, to 

the FS-SDST problem. Ruiz and Stützle (2008) test their algorithms and alternative 

methods with the four instance sets generated by Ruiz et al. (2005). The results indicate 

that the IG algorithm proposed with the descent local search procedure outperforms the 

other alternative heuristics. Moreover, they emphasize that for the F|sijl, prmu|Cmax problem 

the local search algorithms, especially based on node insertion neighborhood, have an 

important role to improve the quality of the solutions.  

After the article of Ruiz and Stützle (2008), some authors have published studies on 

the FS-SDST problem when the objective is makespan. However, since they generate their 

own instance sets to compare their results with other alternative heuristics, the proposed 
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iterated greedy heuristic with descent local search procedure of Ruiz and Stützle (2008) is 

taken as the state-of-the-art method for the instance set of Ruiz et al. (2005). On the other 

hand, some of the studies on the FS-SDST problem after aim to develop the existed type of 

heuristics, not to improve the solutions for the well-known benchmark set. Mirabi (2011) 

develops a new ant colony optimization technique for the F|sijl, prmu|Cmax problem, since 

Ruiz and Stützle (2008) indicates in their study that the memetic algorithm which is 

proposed by Ruiz et al. (2005) outperforms the ant colony algorithm of Rajendran and 

Ziegler (2004). The proposed ant colony algorithm is compared with the genetic and 

memetic algorithms of Ruiz et al. (2005) and a tabu search algorithm which is proposed by 

Eksioglu et al. (2008). In the computational experiments, the author generates instance sets 

different from the sets generated by Ruiz et al. (2005) and concludes that the proposed ant 

colony algorithm improves the results. Vanchipura and Sridharan (2013) propose two 

constructive heuristic, since only one strong constructive heuristic is proposed for the F|sijl, 

prmu|Cmax problem in the literature so far, which is the NEH_RMB heuristic modified by 

Rios-Mercado and Bard (1998b) to the FS-SDST problem. Proposed two constructive 

heuristics are setup ranking algorithm (SRA) based on only setup times and fictitious job 

setup ranking algorithm (FJSRA) which is related to the job pairs that has minimum setup 

times. Vanchipura and Sridharan (2013) generate the instance sets to compare these three 

heuristics. They observe that FJSRA algorithm outperforms the NEH_RMB heuristic 

(Rios-Mercado and Bard, 1998b) on the large instance sets. When the number of jobs 

increases, the importance of the setup time also increases. Since the FJSRA heuristic is 

based on the setup times, it gives better results compared to NEH_RMB (Rios-Mercado 

and Bard, 1998b). 

In the literature, the FS-SDST problem is studied mostly with a simple objective 

function which is makespan, since the F|sijl, prmu|Cmax problem is a difficult problem. To 

the best of our knowledge, the FS-SDST problem when the objective is to minimize the 

total completion time has not been studied before, but there are several related works to this 

problem. On the other hand, in this thesis, an energy-related objective function is added to 
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the FS-SDST problem with total completion time objective, denoted by F|sijl, 

prmu|∑(Cj+Energyj), for the first time in the literature. In the next section, we review the 

most related works with the F|sijl, prmu|∑(Cj+Energyj) problem. 

 

2.1.2 F|sijl, prmu|∑(Cj+Energyj) Problem  

 

The FS-SDST problem when the objective is to minimize the total completion time 

is formulated similar to the FS-SDST problem when the objective is to minimize 

makespan. In a mixed integer linear programming model, the constraint sets of the FS-

SDST problem with total completion time objective are same, when the completion time is 

defined as a decision variable. The difference is only seen in the objective function. Hence, 

Srikar and Ghosh (1986), Stafford and Tseng (1990) and Tseng and Stafford (2001) model 

the FS-SDST problem considering both makespan and total completion time as the 

objective function. In these articles, the objective is defined as mean flow instead of total 

completion time. Since the release dates are assumed to be zero in these studies, the 

formulation of mean flow and total completion time are the same. 

In the literature, the FS-SDST problem with the total completion time objective has 

not been studied before, to the best of our knowledge. Allahverdi et al. (2008) has a survey 

of the scheduling problems with setup times. In this article, it is observed that even though 

there are many studies on the FS-SDST problem with makespan objective, there is not 

article yet with the total completion time objective, except the one with no-wait constraint 

in a flowshop. Allahverdi and Aldowaisan (2001) study a two-machine no-wait FS-SDST 

problem when the objective is to minimize the total completion time. They obtain the 

optimal solutions for the problem under some assumptions and propose dominance rules. 

They also develop a simple heuristic which uses the insertion technique repeatedly. After 

the literature survey of Allahverdi et al. (2008) on scheduling problems with setup time, 

Salmasi et al. (2010) publish an article for the FS-SDST problem when the objective is to 

minimize the total flow time without any release dates (so equivalent to the total 
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completion time). However, they consider that the setup times depend on the group of jobs, 

not on individual jobs. They develop a mathematical programming model for this problem. 

They also propose two heuristic algorithms, a tabu search (TS) and hybrid ant colony 

optimization (HACO) algorithms. Since there were no studies published on this problem, 

they compare the results of these heuristics with each other and a lower bound developed 

by branch and price technique. They observe that the proposed HACO algorithm works 

better than the TS algorithm.  

In recent years, researchers have tended to study energy aware scheduling problems. 

They approach the green manufacturing in three main categories: machine level, product 

level and manufacturing system level (2012, 2013). At the machine level, the researchers 

focus on reducing energy consumption in the system by designing more energy-efficient 

machines. Similarly, at the product level, the researchers study designing the products to 

minimize embodied product energy. However, the energy consumption can also be 

decreased by managerial decisions without redesigning the machine or the product, which 

is studied at the manufacturing system level. In the literature, there are several studies on 

energy aware scheduling problems at the manufacturing system level with different energy 

and scheduling objectives. Nolde and Morari (2010) study minimizing peak and off-peak 

energy consumption on machines in a steel plant. Similarly, Bruzzone et al. (2012) propose 

a mathematical model for flexible flowshop when the objective is to minimize peak of 

power. In this study, they also consider multiple objectives in terms of minimization of 

tardiness and makespan. Fang et al. (2013) study the flowshop scheduling problem with 

peak power consumption constraint. They consider two objectives for the flowshop 

problem, which are to minimize the makespan and the peak power consumption. They 

handle these multiple objectives by fixing the upper bound for the peak power and use the 

makespan objective in the mathematical model.  

Different from the objective of minimization the peak power, Yildirim and Mouzon 

(2008) study a single machine scheduling problem to minimize the total tardiness and total 

energy consumption considering the power consumption during the idle time. Since some 
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of the machines in the manufacturing plants, which are kept idle between two consecutive 

jobs for a long time, consume significant amount of energy; they propose to turn off the 

machine in that period and turn on when the following job is ready to be processed on that 

machine. They aim to minimize the total energy consumption by deciding to keep the 

machine idle or to turn off and on the machine in the idle period. In that paper, they 

propose a mathematical model for this problem and a greedy random adaptive search 

procedure (GRASP) to obtain set of solutions. The same authors, Yildirim and Mouzon 

(2012) consider the same machine environment and energy objective with a different 

scheduling objective, which is to minimize the total completion time. They propose a 

mathematical model to schedule the jobs on a single machine to minimize the total 

completion time and total energy consumption by deciding whether to keep the machine 

idle or to turn off and on the machine when the idle time occurs on that machine between 

two consecutive jobs. They propose a multi-objective genetic algorithm for this problem. 

To increase the efficiency of the proposed genetic algorithm, they improve a dominance 

rule and a heuristic to obtain the Pareto front. In both articles, the authors aim to find both 

the sequence of the jobs to be processed on the machine and the starting times for each job.  

Minimization of production rate is also used as energy objective in the literature. 

Gutowski et al. (2006) analyze the energy consumption of the manufacturing processes 

such as milling machine, considering different production rates. Zanoni et al. (2014) also 

study minimizing the energy consumption in two stage production system by controlling 

the production rate. They analyze the production system as different cases depending on 

machine power strategies with continuous and interrupted batch production. Different from 

Yildirim and Mouzon (2008, 2012), Zanoni et al. (2014) used the machine power as a 

parameter within different cases rather than a decision variable. Since there are two 

production stages, they create the cases for the idle time on the machine between two 

consecutive jobs as such: keep two machines idle between two consecutive processes, keep 

the first machine idle but turn on/off the second machine, turn on/off the first machine but 

keep the second machine idle and lastly, turn on/off both two machines. For given cases, 
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they aim to minimize both the cost of storing the product and energy cost during the 

production of a product (related to production rate) and the idle state of the machine.  

Additionally, Mashaei and Lennartson (2013) study a pallet-constrained flowshop 

problem when the objective is to minimize the energy consumption while providing the 

desired throughput for the plant. The used strategy to reduce the energy is similar with the 

strategy which is used by Yildirim and Mouzon (2008, 2012). Mashaei and Lennartson 

(2013) control the idle machines by turning them off and on in a closed-loop flow shop 

plant. In the article, they propose a nonlinear mathematical model and develop a simple 

heuristic to solve the closed-loop flowshop problem.  

 

2.2 Variable Neighborhood Search 

 

Mladenovic and Hansen (1997) design a new metaheuristic approach called variable 

neighborhood search (VNS) for combinatorial optimization problems. Developed VNS 

heuristic contains the local search procedure that enforces to find the local optimum for one 

neighborhood structure, which leads to intensification and increase the quality of the 

solution in that neighborhood structure. In the existing heuristic algorithms such as 

simulated annealing, tabu search, genetic algorithm etc., some methods are used in the 

algorithm to avoid being stuck in the local optimum in the search space, which makes the 

algorithms more complicated. However, the motivation for the design of the VNS 

algorithm is to escape from the local optimum by changing the neighborhood structure 

systematically. 

This new metaheuristic has been applied in many different areas such as industrial 

applications, location problems, data mining, scheduling. Hansen et al (2009) review the 

algorithm characteristics and the application areas of the VNS. Several authors design a 

VNS algorithm or a hybrid algorithm with VNS to solve the flowshop scheduling problem 

with various characteristics and objective. Costa et al. (2011) propose a VNS algorithm for 

a regular flowshop problem when the objective is to minimize makespan. Moreover, 
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Tasgetiren et al. (2007) and Zobolas et al. (2009) use VNS algorithm to construct a hybrid 

algorithm with other metaheuristics, particle swarm optimization and genetic algorithms 

respectively, for the regular flowshop problem. For the FS-SDST problem, the VNS 

algorithm has not been proposed, yet. However, in the literature, there are some related 

works with VNS application to the FS-SDST. 

Naderi et al. (2008) propose a variable neighborhood search for a hybrid flexible 

flowshop with SDST where the objective is to minimize the total completion time. They 

use three different insertion neighborhood structures and in each neighborhood they use 

variable neighborhood descent (VND) framework. In the first neighborhood structure, each 

job is removed from the current sequence one by one and inserted into another position 

which gives the lower objective function value among all possible positions. In the second 

neighborhood structure, they choose all two pairs of jobs from the sequence and insert 

other positions randomly, since the insertion of all combination of two jobs into all possible 

positions takes a long time. In the last structure, they remove randomly three different jobs 

from the sequence and insert into three other positions. For all neighborhood structures, 

search continues until there is no improvements. Naderi et al. (2008) evaluate the quality of 

the proposed VNS algorithm with the other alternative metaheuristics and some dispatching 

rules. They conclude that the proposed algorithm gives better results compared to the 

alternative algorithms.  

Vanchipura et al. (2014) study the FS-SDST problem where the objective is to 

minimize makespan, F|sijl, prmu|Cmax, as in our study. They improve two existing 

constructive heuristics with the variable neighborhood descent (VND) algorithm. These 

two constructive heuristics are NEH_RMB heuristic which is modified by Rios-Mercado 

and Bard (1998b) and fictitious job setup ranking algorithm (FJSRA) by Vanchipura and 

Sridharan (2013). In this study, Vanchipura et al. (2014) use these constructive heuristics to 

obtain the initial solution and the solutions are improved with node insertion neighborhood 

search. These two algorithms are tested with the 960 instance sets which are generated by 

Vanchipura et al. (2014). The results show that the initial solutions affect the quality of the 
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solutions after applying the proposed VND algorithm. They also analyze the relative 

performance improvement of the solutions which are obtained by the constructive 

heuristics and the improved version with VND, separately for NEH_RMB (Rios-Mercado 

and Bard, 1998b) and FJSRA (Vanchipura and Sridharan, 2013).  
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Chapter 3 

 

FLOWSHOP SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT  

SETUP TIMES 

 

 

In this chapter, we study two flowshop problems where separate sequence 

dependent setup times are explicitly considered. In the following sections, we define these 

problems in detail with their respective assumptions and present mathematical models for 

both problems.  

 

3.1 Problem Definition 

 

In the flowshop environment, there are m machines in series and n jobs. A job j, j=1, ... 

, n, has to be processed on each machine i, i=1, ... , m, and each job has to follow the same 

route on the machines. In other words, each job should be processed by all machines from 

1 up to m in this order. The aim of the flowshop scheduling problem is to schedule these n 

jobs to be processed on m machines by minimizing a given objective function. In our study, 

the order of jobs which are processed on a machine is same for every machine, which is 

called a permutation flowshop problem in the literature. Processing an operation of job j on 

machine i requires a certain time which is denoted by pij, i=1, ... , m and j=1, ... , n. 

Moreover, we consider a sequence dependent setup time between two adjacent jobs in the 

sequence and the required time for this setup is denoted by sijl when job l is processed 

immediately after job j, on machine i, i=1, ... , m, j=1, ... , n, l=1, ... , n and l≠j. Figure 3.1 

shows the Gantt chart for a FS-SDST problem with 4-jobs and 3-machines. In the figure, 

M1, M2 and M3 refer the machines; J1, J2, J3 and J4 refer the jobs. Empty boxes show the 
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processing times pij and boxes with diagonal lines show the setup times sijl, which are 

illustrated on the chart. For the given problem in Figure 3.1, the permutation of jobs is J3, 

J2, J4 and J1.   

 

 
Figure 3.1 Gantt chart for schedule of 4-jobs on 3-machines 

 

For other characteristics of the FS-SDST problem, we use the following assumptions. 

 All jobs and machines are available at time zero. 

 Processing times and setup times are deterministic and known in advance. 

 A machine can process only one job at a time; and a job is processed only on one 

machine at a time. 

 There are no due dates for the jobs. 

 Interrupting a job while processing is not allowed. 

 There is no precedence relation among the jobs. 

 

The general definition and assumptions presented for the FS-SDST problem are valid 

for both of the problems which are studied in this thesis. However, the objective functions 

of F|sijl, prmu|Cmax and F|sijl, prmu|∑(Cj+Energyj), and specific characteristics of these two 

problems are different and the details are explained in the following subsections. 
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3.1.1 The F|sijl, prmu|Cmax Problem  

 

In the F|sijl, prmu|Cmax problem, each job has a processing time pij on each machine 

and setup times sijl according to the predecessor and successor jobs, i=1, ... , m, j=1, ... , n, 

l=1, ... , n and l≠j. The completion time Cik shows the time when the operation of the job in 

position k is finished on machine i from time zero, i=1, ... , m, k=1, ... , n. In the F|sijl, 

prmu|Cmax problem, we aim to schedule the jobs to be processed on all machines when the 

objective is to minimize the maximum completion time Cmn. Namely, the completion time 

of the job which is scheduled in the last position n in the order, on the last machine m gives 

the value of the maximum completion time, which is also called makespan in the literature. 

 

3.1.2 The F|sijl, prmu|∑(Cj+Energyj) Problem 

 

In the F|sijl, prmu|∑(Cj+Energyj) problem, we consider the energy consumption of 

the operations while scheduling these operations in a flowshop environment. As a result, 

we consider additional characteristics for the F|sijl, prmu|∑(Cj+Energyj) problem. As a 

characteristic of a machine, it consumes energy while processing a part and during the time 

period when it is kept idle (not processing a part). Turning off and on a machine also 

consumes a fixed amount of energy. Additionally, while turning a machine off and on, a 

certain amount of time is required. When a machine is kept idle for a long time, instead of 

keeping the machine idle, turning off and on the machine can consume lower energy; but 

the amount of idle time on that machine should be sufficient for the time required for 

turning off/on the machine. This decision mechanism is also used in the articles of 

Mouozon and Yildirim (2008) and Yildirim and Mouzon (2012) to reduce the total energy 

consumption on a single machine.  

In the F|sijl, prmu|∑(Cj+Energyj) problem, idle time on a machine denotes the 

period of time between the end of processing of a job on that machine and the start of 

preparing the machine for the following job (beginning of the sequence dependent setup 
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time). It is assumed that the requirement for a setup operation on a machine, which is 

whether this machine should be switched off or on during the setup, is not considered. The 

decision for the status of the machine is independent from the setup operation. For setup 

operations such as cleaning or changing the equipment, machines may also consume 

energy. Hence, we consider setup energy which differs from machine to machine and we 

assume that the consumed energy will be in direct proportion to setup time. 

In the F|sijl, prmu|∑(Cj+Energyj) problem, we aim to schedule the jobs to be 

processed on all machines and decide about the status of the machine between scheduled 

jobs so as either to keep the machine idle or to turn off and turn on the machine. The 

objective of the F|sijl, prmu|∑(Cj+Energyj) problem is to minimize both the total 

completion time and the total energy consumption where the total energy consumption can 

be due to processing a job, keeping the machine idle, turning off/on the machine or setup.  

To observe the impact of the new objective, which is minimization of the energy 

consumption in addition to the total completion time, three different scenarios are discussed 

based on an instance with three machines and seven jobs. The data of the instance is given 

in Table 3.1 and three scenarios are given in Figures 3.2, 3.3 and 3.4. We generate the 

processing time uniformly in [1, 99], setup time in [1, 49], idle cost in [15,25], setup cost in 

[35,45], on/off cost in [350,450] and required time for turning off/on the machine in [1,20]. 

We explain the selection of the data ranges in Section 5.1.2 in detail. We use the weighted 

sum parameters w1 and w2, which will be explained in Section 3.2.2, to combine the 

objectives the total production cost and the total energy cost. In the given instance, we set 

w1 and w2 to 0.5, when we consider the total energy cost. In Figures 3.2, 3.3 and 3.4, each 

job is shown with a different color and setup times are shown with gray. Moreover, length 

of the colored block shows the amount of processing time. 
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Table 3.1 Data of the instance 

pij J1 J2 J3 J4 J5 J6 J7 

M1 12 91 17 77 26 85 55 

M2 72 78 51 17 48 50 23 

M3 53 93 36 85 25 97 72 

                

s1jl J1 J2 J3 J4 J5 J6 J7 

J1 0 39 37 31 18 24 30 

J2 21 0 13 17 10 29 10 

J3 12 26 0 45 49 11 28 

J4 21 4 40 0 34 33 15 

J5 9 15 1 12 0 29 33 

J6 25 11 21 32 18 0 28 

J7 5 10 12 20 26 13 0 

s2jl J1 J2 J3 J4 J5 J6 J7 

J1 0 7 19 39 34 33 23 

J2 19 0 29 40 33 27 38 

J3 30 40 0 23 28 12 24 

J4 16 16 7 0 27 24 9 

J5 5 19 20 29 0 5 16 

J6 39 21 24 17 20 0 6 

J7 13 12 23 39 48 32 0 

s3jl J1 J2 J3 J4 J5 J6 J7 

J1 0 20 30 37 10 11 24 

J2 29 0 36 43 49 4 20 

J3 8 5 0 12 32 4 35 

J4 37 23 27 0 8 22 18 

J5 3 34 20 22 0 24 10 

J6 33 13 38 37 42 0 10 

J7 30 30 9 39 31 43 0 

 

Energy Cost Idle Cost Setup Cost ON/OFF Cost ON/OFF Time 

M1 20 45 412 13 

M2 17 41 433 17 

M3 21 45 357 15 
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Figure 3.2 Gantt chart for the FS-SDST while minimizing the total production cost 

 

 

Figure 3.3 Gantt chart for the FS-SDST while minimizing the total production cost and the 

total energy cost, without setup cost 

 

 

Figure 3.4 Gantt chart for the FS-SDST while minimizing the total production cost and the 

total energy cost 

 

In the first scenario seen in Figure 3.2, the objective is only to minimize the total 

production cost. On the other hand, in the second scenario, energy cost is added to the 

objective function. Energy cost due to setups on machines is assumed as zero or negligible. 

In the first scenario seen in Figure 3.2, the optimal sequence is [1, 5, 7, 3, 4, 2, 6]; however, 

job 7job 1 job 2 job 3 job 4 job 5 job 6
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in the second scenario seen in Figure 3.3, the optimal sequence is changed to [3, 7, 1, 5, 4, 

2, 6]. As a result, adding the energy cost to the objective function affects the optimal 

sequence explicitly. We observe that even though the value of the total production cost is 

increased, a lower value of the objective function (total cost) is obtained due to the energy 

cost. It is observed that, the objective function of this scenario forces idle times to be 

reduced in the schedule, since idle times increase the energy cost. However, this results in 

exploiting the sequence dependent setup times, in the sense that longer sequence dependent 

setup times may be used in order to decrease the idle time, which may increase the 

completion time of some jobs. Hence there is a trade-off between the cost of idle time (in 

turn the cost of energy) and the cost of completion time. 

In the third scenario, it is assumed that during the setup, machines consume energy 

in direct proportion with the amount of setup times. Hence, the setup cost is added to the 

calculation of the total energy cost. In the third scenario seen in Figure 3.4, the optimal 

sequence is changed to [1, 5, 4, 7, 3, 6, 2].  When this scenario is compared with the second 

scenario, it is observed that the total production cost and the energy cost due to idle period 

or turning off/on the machine increase but the energy cost due to setup decreases. On the 

other hand, since the setup cost decreases, it affects the total objective function value 

(decreases the total energy cost). As a result, it leads to a different optimal schedule. The 

production cost, energy cost due to idle/on-off the machine and setup, and the total cost 

values of the three scenarios are given in Table 3.2. 

 

Table 3.2 Production cost and energy cost values for three scenarios 

Scenarios 
w1 w2 Production Energy Cost Total  

(%) (%) Cost Idle/On-off Setup Cost 

Scenario 1 1.0 0.0 12845 1384 15104 12845 

Scenario 2 0.5 0.5 12895 170 15763 6532.5 

Scenario 3 0.5 0.5 13200 433 12223 12928 
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Consequently, when minimization of energy consumption is concerned in addition 

to minimize the total completion time, the optimal sequence changes. This is the motivation 

to develop a solution procedure for the large-sized instances of the problem. This can be a 

useful application for the manufacturing companies who desire to decrease not only the 

total completion time of the jobs but also the energy consumption. 

 

3.2 MILP Formulation for the FS-SDST 

 

In the following subsections, the mixed integer linear programming models for two 

problems, which are studied in this thesis, are presented. 

 

3.2.1 MILP Formulation for the F|sijl, prmu|Cmax Problem 

 

The FS-SDST problem is a well-known problem in the literature. Since the 

makespan objective is the simplest objective function to study the FS-SDST problem, there 

are several mixed integer linear programming (MILP) models proposed for the F|sijl, 

prmu|Cmax problem, which we reviewed in Section 2.1.1. In this section, we present a 

MILP model for the F|sijl, prmu|Cmax problem which is proposed by Stafford and Tseng 

(2001). Stafford and Tseng (2001) propose two MILP models which are deriven from 

assignment problem where the binary variable takes the value of 1 if job j is scheduled in 

position k, j=1, ... , n and k=1, ... , n. The model presented in this study for the FS-SDST 

problem is called TS2 model by Stafford and Tseng (2001). As a small modification of the 

existing model, the initial setup times are assumed to be zero in this thesis, thus initial setup 

time parameter is eliminated from the model.  

The system parameters, decision variables and the mathematical model are 

presented below. 
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Sets and parameters: 

  number of jobs to be processed, 

   number of machines,  

     processing time of job j on machine i, i=1, ... , m, j=1, ... , n,  

      sequence dependent setup time for job l on machine i  when job j precedes job l  

immediately in the sequence, i=1, ... , m, j=1, ... , n, l=1, ... , n and l≠j. 

 

Decision variables: 

      
                                                                  
                                                              

  

      

                                                                                 
                                    ≠                             

                                                                         

   

                                                                              

                               

 

Objective function: 

                                    (3.1) 

 

Constraint sets: 

                       
                    (3.2) 

                       
                          (3.3) 

          
 
                                                  (3.4) 

                
 
                                            (3.5) 

          
 
                                             (3.6) 

           
 
   

 
                    

 
                

                                      (3.7) 

                   
                                              (3.8) 
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                                                  (3.9) 

 

Decision variables     is defined based on an assignment problem; job j is assigned 

to the position k, j=1, ... , n and k=1, ... , n. Additionally,      is defined for indicating two 

adjacent jobs, which is used with the sequence dependent setup time in constraint sets, j=1, 

... , n, k=1, ... , n, l=1, ... , n and l≠j.  

Constraint set (3.1) demonstrates that the objective function which is to minimize 

the maximum completion time, Cmn. Constraint sets (3.2) and (3.3) ensure that each job is 

assigned to only one position; conversely, one position is assigned to only one job, 

respectively. Constraint sets (3.4), (3.5) and (3.6) link the two decision variables     and 

    , j=1, ... , n, k=1, ... , n, l=1, ... , n and l≠j. When job j is processed in position k; only 

one job (job l) follows job j, j=1, ... , n, k=1, ... , n, l=1, ... , n and l≠j. On the other hand, 

when job j is in position k, there is only one job, job l, in position k-1, j=1, ... , n, k=2, ... , n, 

l=1, ... , n and l≠j. Constraint set (3.6) demonstrates the special case of the equation set 

(3.5) when a job is in the first position. In this situation, the job in the previous position 

represents the job in position n (last position) in the sequence. Constraint set (3.7) 

guarantees that the completion time of the job in position k+1 is equal or greater than the 

summation of the completion time of the job in position k, the setup time between two 

adjacent jobs in positions k and k+1 and the processing time of the job in position k+1, k=1, 

... , n-1. On the other hand, constraint set (3.8) guarantees that the completion time of job j 

on a machine is equal or greater than the summation of the processing time of job j on that 

machine and the completion time of job j on the previous machine, j=1, ... , n. Constraint 

set (3.9) indicates the special case when the job in the first position is processed. The 

completion time of that job on machine i should be equal or greater than the processing 

time of that job on machine i, i=1, ... , m. We modified only this constraint from the 

original model which is proposed by Stafford and Tseng (2001). We eliminate the initial 

setup parameter from this constraint.  



 

 

Chapter 3: Flowshop Scheduling Problem with Sequence Dependent Setup Times            27 
 

 
 

3.2.2 MILP Formulation for the F|sijl, prmu|∑(Cj+Energyj) Problem 

 

For the F|sijl, prmu|∑(Cj+Energyj) problem, we use the same managerial decision 

for the minimization of energy consumption as Mouozon and Yildirim (2008) and Yildirim 

and Mouzon (2012) use, which is that when the machine is kept idle for a long time, 

instead of keeping the machine idle, we can turn off and on the machine. However these 

authors consider the energy objective on a single machine scheduling problem, the 

parameter definitions and the proposed mathematical model in (2008) and (2012) are used 

and modified for the energy part of the FS-SDST problem.  

The MILP model of the F|sijl, prmu|Cmax problem contains fundamental constraints 

for the FS-SDST problem. Since the F|sijl, prmu|∑(Cj+Energyj) problem has more 

characteristics in addition to the F|sijl, prmu|Cmax problem; sets and parameters, decision 

variables and constraint sets of the F|sijl, prmu|Cmax problem are used directly in the F|sijl, 

prmu|∑(Cj+Energyj) problem. Below, the additional system parameters, decision variables 

and constraint sets are presented.  

 

Sets and parameters:  

     cost of turning off/on machine i, i=1, ... , m,  

       cost per time unit for idle period of machine i, i=1, ... , m,  

        required time for turning off/on machine i, i=1, ... , m, 

      breakeven duration for machine i, i=1, ... , m, 

      cost per unit time for setup period of machinei, i=1, ... , m, 

   cost per unit time of work in process inventory for all jobs  

    big number. 

 

Decision variables: 
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Objective function: 

                   
 
    

             
   
   

 
                               

 
   

   
   

 
   

 
                          (3.10) 

 

Constraint sets: 

           
 
   

 
                                

              

                                        (3.7’) 

                                                                       (3.11) 

                                                                          (3.12) 

                                                                  (3.13) 

                                                                  (3.14) 

                                                                         (3.15) 

                                                                           (3.16) 

 

The constraint set (3.10) shows the multiobjective function. In the F|sijl, 

prmu|∑(Cj+Energyj) problem, we have two objectives which are to minimize the total 

completion time and to minimize the total energy cost during keeping the machine idle, 

turning off/on operation when it consumes less energy instead of keeping the machine idle, 

and setup energy. Since the energy consumption during processing any job is fixed, it is not 

included into the function. In order to combine these two objectives into a single objective, 

we need to convert the total completion time to cost. For conversion, we multiply the total 

completion time value with a parameter  , which denotes the cost per unit time of work-in-
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process inventory. Hence, we basically multiply the total completion time with the   value 

and we consider this cost as a total production cost for this flowshop problem. In constraint 

set (3.10), we combine these two objectives into a single objective by weighted sum 

method. In this method, two objectives are scaled into a single objective function with 

weighted sum parameters    and   . According to the relative importance, multiplied 

weights are set, which will be discussed in Section 5.1.2. Consequently, the constraint set 

(3.10) minimizes the total cost of the system which includes the total production cost due to 

total completion time and total energy cost. 

Constraint sets (3.2)-(3.9) which are presented in Section 3.2.1 are also used for the 

F|sijl, prmu|∑(Cj+Energyj) problem except for constraint set (3.7). For the energy part of 

the problem, since we examine the idle times of the machines, we define a decision 

variable     , which denotes the idle time on machine i before processing the job in position 

k, i=1, ... , m, k=1, ... , n. As a consequence, the constraint set (3.7) is modified by inserting 

the new decision variable    , i=1, ... , m, k=1, ... , n, and converted into an equality 

constraint. Hence, instead of equation set (3.7), we use the modified constraint set (3.7’). 

Constraint sets (3.11) to (3.16) are developed for the energy part of the problem. Constraint 

sets (3.11) and (3.12) determine the values of decision variable     which indicates whether 

the idle time on machine i before processing the job in position k is greater than breakeven 

duration for this machine or not, i=1, ... , m, k=1, ... , n. Breakeven duration is the least 

amount of duration when turning off and on the machine between two consecutive jobs is 

more favorable than keeping the machine idle. Namely, breakeven duration shows the 

critical time for turning off/on the machine. This parameter is calculated by the Equation 

set (3.17) shown below. To calculate the breakeven duration, we use the cost of turning 

off/on the machine, cost per time unit for idle period of machine and the least required time 

for turning off/on the machine. When the amount of idle time on machine i before 

processing the job in position k is greater than the breakeven duration; then     will be 

zero, which means that turning off and on the machine consumes less energy, i=1, ... , m, 

k=1, ... , n. According to constraint sets (3.13), (3.14), (3.15) and (3.16), the decision 



 

 

Chapter 3: Flowshop Scheduling Problem with Sequence Dependent Setup Times            30 
 

 
 

variable    , i=1, ... , m, k=1, ... , n, is calculated, which indicates the difference of the 

energy cost between keeping the machine idle and turning off/on the machine. Otherwise 

(when     is one),     value, i=1, ... , m, k=1, ... , n, will be zero; which means that keeping 

the machine idle is more favorable. 

 

                                  
  

  
                                               (3.17) 
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Chapter 4 

 

A SOLUTION APPROACH 

 

  

The F|sijl, prmu|Cmax problem is shown as strongly NP-hard by Gupta and Darrow 

(1986), when the objective function is makespan. The F|sijl, prmu|∑(Cj+Energyj)  problem 

is also NP-hard since it is more complex than the F|sijl, prmu|Cmax problem. Due to the 

complexity of these problems, it is not expected to solve these problems with exact 

methods in a reasonable time. Hence we propose a robust heuristic algorithm which is used 

for both of these two problems. When we survey the literature, we observe that the hybrid 

heuristic algorithms with a local search procedure have better performance for the FS-

SDST problem. Hence, we are motivated to propose a VNS algorithm. Moreover, to the 

best of our knowledge, the VNS algorithm has not been applied to the FS-SDST problem in 

the literature.  

 In the following sections, the basic steps of the VNS algorithm and our 

implementation of this algorithm are given in detail. 

 

4.1 Variable Neighborhood Search  

 

Variable neighborhood search (VNS) is a metaheuristic algorithm which is used to 

solve various combinatorial optimization problems. This metaheuristic was proposed by 

Mladenovic and Hansen (1997). The VNS algorithm searches for the best solution in the 

multiple neighborhood structures and uses local search systematically. Initially, the number 

of neighborhoods and the type of neighborhood structures should be determined for the 

algorithm. The steps of the basic VNS algorithm are given in Figure 4.1. Moreover, Figure 
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4.2 illustrates the scheme of the basic VNS algorithm. General VNS algorithm starts with a 

solution, generates another solution in the neighbor of this solution and performs a local 

search on this solution aiming for a better solution. As it can be seen from Figure 4.1 and 

4.2, VNS contains ‘shaking’, ‘local search’ and ‘move or not’ steps. In the ‘shaking’ step, 

one candidate solution is selected from the neighborhood of the current solution. Then, the 

local search procedure is applied to this candidate solution. In the last step, the objective 

function value of the solution found at the end of the local search is compared with the 

incumbent solution. If the solution is improved, then this solution is accepted as the current 

solution and the algorithm continues with the first step in the first neighborhood structure. 

Otherwise, the current solution is not updated and the algorithm continues with the first 

step but in the next neighborhood structure. These steps will be repeated until the stopping 

criterion is met. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Steps of the basic VNS (Mladenovic and Hansen, 1997) 

 

 

Initialization Select the set of neighborhood structures Nk, for k = 1, …, kmax, that will be 

used in the search; find an initial solution x; choose a stopping condition; 

Repeat the following sequence until the stopping condition is met: 

(1)Set k←1; 

(2)Repeat the following steps until k = kmax: 

(a) Shaking Generate a point x’ at random from the k
th

 neighborhood of x (x’ ϵ Nk(x)); 

(b) Local search Apply some local search method with x’ as initial solution; denote with 

x’’ the so obtained local optimum; 

(c) Move or not If this local optimum is better than the incumbent, move there (x ← x’’), 

and continue the search with N1 (k ← 1); otherwise, set k ← k+1; 
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Figure 4.2 Scheme of the basic VNS 

 

In the following section, we explain our design and implementation of the VNS 

algorithm for the FS-SDST problem in detail. 

 

4.2 Implementation of the VNS Algorithm 

 

For the VNS algorithm, firstly we determine the representation of the solution. 

Then, as decisions for the initialization of the VNS algorithm, we develop initial solution 

procedures, set of neighborhood structures and the local search procedures with respect to 

the properties of the flowshop problem with sequence dependent setup times. Finally, we 

present the stopping criterion for our VNS. Additionally, we use different acceptance 

criteria for the last step (‘move or not’) in the VNS algorithm. These decisions are 

explained in detail in the following subsections. The same design desicions are used for 

both the F|sijl, prmu|Cmax problem and the F|sijl, prmu|∑(Cj+Energyj) problem, since the 

basic characteristics of the problems are the same.  

  

4.2.1 Solution Representation  

 

Since we consider a permutation flowshop environment, it is sufficient to consider 

one sequence for all machines in order to represent a solution to the problem. Hence, we 

N1(x) 

•x 

•x’ •x’’ 

N2(x) 

Shaking Local search 

Move or not 
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represent a solution in the VNS algorithm as a permutation of the jobs [j1, j2, …, jn]. In this 

representation,    indicates that corresponding job is processed in the n
th

 order in the 

sequence. As an example, to indicate the sequence of 10 jobs (n=10) processed on m 

machines, an array of one to ten (1 x n) dimension such that [3 5 9 2 6 8 4 1 7 10] is used. 

This array indicates that job 3 is processed in the 1
st
 position on all m machines; job 5 in the 

2
nd 

position; job 9 in the 3
rd 

position; job 2 in the 4
th 

position and the other jobs in the given 

array are interpreted in the same pattern.  

 

4.2.2 Initial Solution  

 

In order to observe whether our implementation of VNS is sensitive to the initial 

solution or not, we consider two different procedures to create the initial solution in the 

proposed VNS algorithm. The first procedure generates a random sequence of jobs. The 

second procedure uses the extended version of a well-known construction heuristic, 

Nawaz-Enscore-Ham (NEH) heuristic (Rios-Mercado and Bard, 1998b). Original NEH 

heuristic was proposed for flowshop problems with makespan objective by Nawaz et al. 

(1983). This method is based on inserting a job into all possible positions of the partial 

scheduled solution; and constructing the solution by adding the job into the best position 

that gives a better objective function value. Since this method’s complexity is O(mn
3
), 

Taillard (1990) proposed speed-ups to decrease the computational complexity to O(mn
2
) 

for the m machine, n job flowshop scheduling problem with makespan objective. Rios-

Mercado and Bard (1998b) extended this NEH heuristic (NEH_RMB) with proposed 

acceleration to the FS-SDST problems. 

NEH_RMB heuristic (Rios-Mercado and Bard, 1998b) takes a set of unscheduled 

jobs and constructs a feasible solution S. Each job is taken from a set which contains 

unscheduled jobs under a priority rule. We use largest processing time (LPT) rule which 

was suggested by Nawaz et al. (1983). In LPT rule, jobs are ordered from the largest to the 

smallest total processing time on all m machines. This order creates the job list P.  At each 
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iteration of the NEH_RMB algorithm (Rios-Mercado and Bard, 1998b), the first job on the 

list P, job j, is removed and inserted into all possible positions in the partial schedule S. 

Rios-Mercado and Bard (1998b) defines a greedy function ψ(k) which takes the value of 

makespan of the new schedule after inserting job j into the position k.  Rios-Mercado and 

Bard (1998b) also refer this greedy function ψ(k) as partial makespan since it computes the 

makespan values of partial schedule S. According to calculation of ψ(k) function (partial 

makespan) for every position k=1, ... , |S+1|, the lowest makespan value is found and job j 

is inserted into that corresponding position, denoted by k
*
, in the partial schedule S. This 

procedure continues until there is no job in the list P, meanwhile the constructed set S 

contains all n jobs. Figure 4.3 gives the pseudocode of the NEH_RMB procedure (Rios-

Mercado and Bard, 1998b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Pseudocode of NEH_RMB procedure (Rios-Mercado and Bard, 1998b) 

 

Procedure NEH_RMB 

Input: Set P of unscheduled jobs. 

Output: Feasible schedule S. 

 

Step 0.    Set S = Ø 

Step 1.   Sort the jobs in P to form an LPT priority list 

Step 2.   while |P | > 0 do 

Step 2a. Remove j, the first job from P 

Step 2b. Compute ψ(k) for every position k = 1, …, |S+1| 

Step 2c. Find k
*
 = argminj{ ψ(k)} 

Step 2d. Insert job j at position k
*
 in S 

Step 3.   Output S 

Step 4.   Stop 
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Rios-Mercado and Bard (1998b) use Taillard’s speed-ups to compute partial 

makespan when job j is inserted into each position in the sequence, given in Step 2b of 

Figure 4.3. Instead of computing the completion times for every position, Taillard (1990) 

proposed to calculate the earliest completion times and tails of a partial solution S; and then 

to calculate the relative completion times and partial makespan values after the insertion of 

job j into schedule S. Earliest completion time measures the duration between the starting 

time of the operations and the end of processing of job j, j=1, ... , n, on machine i, i=1, ... , 

m. The earliest completion times are computed recursively from the first job in the 

sequence on the first machine to the last job in the schedule S on the last machine, m. Tail 

calculates the duration between the starting time of job j on the machine i and the end of 

operations. Tails are also computed recursively; but from the last job of the scheduled 

sequence on machine m to the first job in the schedule S on the first machine. The earliest 

completion times and tails are calculated once until one job, job j, is added to the schedule 

S, which eliminates the redundant computations. The relative completion time and values 

of the partial makespan ψ(k) are calculated when job j (from set P) is inserted in position k. 

To compute the relative completion times and values of the partial makespan, we use the 

earliest completion times, the tails, the processing time of job j and the related sequence 

dependent setup times; instead of computing the whole completion times when job j is 

inserted in every position in the schedule S. Figure 4.4 presents the pseudocode for the 

procedure of computing values of partial makespan (Rios-Mercado and Bard, 1998b). 

For the F|sijl, prmu|Cmax problem, the presented NEH_RMB algorithm (Rios-

Mercado and Bard, 1998b) with Taillard’s speed ups is used as explained above. However 

for the F|sijl,prmu|∑(Cj+Energyj) problem, the greedy function ψ(j) calculates the total cost 

of the system which includes the total production cost due to total completion time and 

total energy cost, instead of makespan. Moreover, since the Taillard’s speed ups are 

proposed specifically for the flowshop problem with makespan objective, we do not use 

any speed up procedures for the F|sijl, prmu|∑(Cj+Energyj) problem. 
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Figure 4.4 Pseudocode of procedure for computing partial makespan (Rios-Mercado and 

Bard, 1998b) 

 

4.2.3 Neighborhood Structure  

 

Selecting the neighborhood structures, the sequence of the selected neighbors and 

the local search procedure play an important role in the performance of the VNS algorithm. 

Inherently, search space of neighborhoods affects the quality of the algorithm. A large 

neighborhood contains the global optimum solution with higher possibility compared to a 

small neighborhood. However, a large neighborhood visits to any solution in the search 

space with lower probability.  

In the preliminary tests, we try various neighborhood structures with different 

combinations in order to obtain better solutions. We present these preliminary results in 

Section 5.2. As neighborhood structure, we employ several neighborhood structures: swap, 

adjacent swap, node insertion, 2-opt, maximum setup one-job insertion, maximum setup 

two-job insertion and minimum setup two-job insertion. Moreover, we use several local 

Procedure Makespan ( ) 

Input: Partial schedule S=(1,2, …, k-1) and job j to be inserted. 

Output: Vector ψ(k) with the value of the makespan when job j is 

inserted in the k-th position of the schedule S. 

Step 1. Compute the earliest completion times 

Step 2. Compute the tails 

Step 3. Compute the relative completion times 

Step 4. Compute values of partial makespan ψ(k) 

Step 5. Output vector ψ(k) 

Step 6. Stop 
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search procedures based on different neighborhoods. In the following, we explain these 

neighborhood structures in detail and in Section 4.2.4, we will explain the implementation 

of these neighborhood structures in local search procedures. 

Swap: We employed swap operator as one of the neighborhood structure for VNS 

algorithm. In this operator, we generate two different values in job set n. These two values 

represent job positions whose corresponding jobs will be swapped. For instance, if the 

current solution is [3 5 9 2 6 8 1 4 7 10], for n=10, and the generated random values are 4 

and 7; then the new solution becomes [3 5 9 1 6 8 2 4 7 10]. Before the swap move, job in 

the fourth position in the sequence is 2, and job in the seventh position is 1. After the swap 

move, jobs in the fourth and the seventh positions in the sequence are 1 and 2, respectively, 

while other jobs remain in the same position. 

Adjacent Swap: In adjacent swap move, two adjacent jobs interchange their 

positions in the sequence. To determine adjacent jobs, we generate one random number 

which represents a random position in the current solution. We swap the corresponding job 

of the selected position with the job which will be processed in the following position. For 

instance, the current solution is [3 5 9 2 6 8 1 4 7 10], and the generated random value is 4. 

Then, we interchange job 2 which corresponds to position 4 and job 6 which will be 

following job processed in the sequence. In consequence, we obtain the new solution as [3 

5 9 6 2 8 1 4 7 10]. 

Node Insertion: In the node insertion operation, we generate one value randomly to 

select a job which will be removed from the sequence and to be inserted into another 

position. For inserting the removed job, we can select the position randomly or we can find 

the best position which gives the lowest objective function value. The second procedure 

makes the shaking part intensified; on the other hand increases time spent in the 

neighborhood. For example, if the current solution is [3 5 9 2 6 8 1 4 7 10] and the 

randomly generated value is 5 which shows the position in the sequence, corresponding job 

will be 6. We remove job 6 from the sequence, insert this job into every position excluding 

5
th

 position (which is the current solution) and calculate the objective function value for the 
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new sequence. After the computation of the objective function value, we determine the 

lowest fitness value and insert job 6 into the corresponding position. In the example, if this 

corresponding position is 2, the new sequence will be [3 6 5 9 2 8 1 4 7 10]. We also use 

this neighborhood structure for two jobs. Instead of removing one job in the sequence, we 

eliminate two jobs randomly. Then, we reinsert these two jobs in the sequence under the 

explained procedures. 

2-opt: In the 2-opt neighborhood, we select two adjacent job pairs, namely two 

edges from the sequence. We remove these selected two edges and reconnect in the other 

way to the partial sequence. For example, if the current solution is [3 5 9 2 6 8 1 4 7 10] 

and we select [9 2] and [4 7] adjacent job pairs in the sequence, the new solution becomes 

[3 5 9 4 1 8 6 2 7 10]. The edges between the jobs [9 2] and [4 7] are removed and the 

partial sequence between job 9 and job 7 (which are [2 6 8 1 4]) is reconnected with the 

main sequence in opposite way.  

Maximum Setup One-job Insertion: Since the problem is flowshop problem with 

sequence dependent setup times, we develop three setup time dependent neighborhood 

structures. For these neighborhood structures, we use the setup times between two adjacent 

jobs only on the first machine. In the preliminary tests, we use also the total setup times 

between each job pairs on all machines. However, using the setup times on the first 

machine gives us better results. In the maximum setup one-job insertion, according to the 

current solution, we determine the largest setup time between every adjacent job on the first 

machine. Then, we remove the job right after the largest setup time and insert it to another 

position in the sequence randomly. Random insertion leads to diversification after the 

selection of the removed job. For instance if the current solution is [3 5 9 2 6 8 1 4 7 10] 

and the largest setup time on the first machine is between job 4 and job 7, then we remove 

job 7 from the sequence. We generate a random number from the set (1, ... , n, in this 

example n is 10), say 3; then we insert job 7 into position 3. So, the new sequence will be 

[3 5 7 9 2 6 8 1 4 10]. 
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Maximum Setup Two-job Insertion: The second neighborhood structure based on 

setup times is similar to the maximum setup one-job insertion. Firstly, we determine the 

greatest setup time between adjacent jobs in the current solution on the first machine. 

Different from the previous one, two adjacent jobs which have the largest setup time are 

removed from the sequence and are inserted in a different position in the sequence. For 

example, if the current solution is [3 5 9 2 6 8 1 4 7 10] and the largest setup time on the 

first machine is between job 4 and job 7, then we remove both job 4 and job 7 from the 

sequence. After generating a random number, say 5, we insert jobs 4 and 7 adjacently into 

positions 5 and 6. So, the new solution becomes [3 5 9 2 4 7 6 8 1 10]. 

Minimum Setup Two-job Insertion: The third neighborhood structure we 

developed based on setup times is similar to the maximum setup two-job insertion. The 

difference in this neighborhood is that we determine the lowest setup time between two 

adjacent jobs. Then, we eliminate these two jobs from the sequence and insert into another 

position generated randomly. In the previous example, if the minimum setup time is 

observed in between jobs 3 and 5, and random number is 9; then we insert jobs 3 and 5 into 

positions 9 and 10 respectively. Consequently, the new solution will be [9 2 6 8 1 4 7 10 3 

5]. 

Neighborhood structures based on setup times which contains maximum setup one-

job insertion, maximum setup two-job insertion and minimum setup two-job insertion In 

the preliminary tests, 

 

4.2.4 Local Search Procedure  

 

Local search takes the solution, x, which is obtained at the ‘shaking’ step of the 

VNS algorithm, as an initial solution and we search a new solution in the neighborhood of 

initial solution x, N(x). The local search procedure may consist of one or multiple 

neighborhood structures, which we give the details of these structures below. On the other 

hand, to improve the solution x in N(x), best improvement (steepest descent) and first 
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improvement (random descent) strategies are tested for the local search procedure. In the 

steepest descent strategy, we search the whole neighborhood and accept the solution x’ 

which gives the best improvement to the objective function, also called local minimum of 

the neighborhood. On the other hand, random descent strategy selects solutions from the 

neighborhood randomly and accepts the first solution x’ that improves the objective 

function.  

For the local search procedure based on one neighborhood structure, we employ 

several neighbors: swap, adjacent swap, node insertion, 2-opt and maximum setup two-job 

insertion. The details of these neighborhood structures are given in Section 4.2.3. For the 

local search procedure based on multiple neighborhood structures, we test the same 

neighborhood structures used for the local search procedure based on one neighbor. To use 

the multiple neighborhoods systematically in the local search, we implement the variable 

neighborhood descent (VND) algorithm, which is proposed by Mladenovic and Hansen 

(1997). Different from the VNS algorithm shown in Figure 4.1, there is no ‘shaking’ phase 

in the VND algorithm, since it finds steepest descent solution in the selected search space. 

The neighborhood structures of the VND algorithm may be different from the VNS 

algorithm. The initial solution for the VND comes from the ‘shaking’ phase of the VNS 

algorithm. Then the best improved solution is searched in the first neighborhood structure 

in the VND algorithm. Then, similarly in the ‘move or not’ phase, the new solution is 

decided to be accepted or not after comparing with the incumbent of the VND algorithm. 

According to the acceptance, the neighborhood structure is changed. For this VND 

algorithm, the stopping condition is the improvement of the solution according to the 

incumbent value of the main VNS algorithm. When there is no improvement any more, 

then the local search phase of the VNS (here it is VND) is completed. 

 After the preliminary tests, which we provide the detailed analysis of these local 

search procedures in Section 5.2.2, we observe that the local search procedure based on 

node insertion neighborhood with steepest descent strategy gives best results among the 

local search procedures based on other neighborhood structures and strategies. Moreover, 
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Ruiz and Stützle (2007, 2008) also use the local search procedure based on node insertion 

neighborhood with steepest descent strategy for the F|sijl, prmu|Cmax problem in their state-

of-the-art algorithm and they emphasize that the node insertion neighborhood structure is 

highly effective for the local search procedure for the FS-SDST problems.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Local search based on node insertion with steepest descent strategy  

(Ruiz and Stützle, 2007, 2008) 

 

Figure 4.5 shows the pseudocode of this local search procedure (Ruiz and Stützle, 

2007, 2008). In the local search procedure based on node insertion, one job is selected from 

the sequence of the starting solution, x; removed and inserted in all possible positions 

except for its original one. While we are computing the makespan values for each 

corresponding position for the F|sijl, prmu|Cmax problem, we use Taillard’s speed-ups. The 

position which gives the lowest objective function value will be the new position for this 

Function LocalSearch_NodeInsertion(x) 

improve=true; 

while (improve=true) do 

improve=false; 

for i=1 to n do     

remove job h from sequence x randomly without repetition 

x’= best sequence obtained by inserting job h in all possible positions in x; 

if F(x’) < F(x) then 

x = x’; 

 improve=true; 

 endif 

endfor     

endwhile 

return x 

end 
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selected job and we obtain new sequence, x’. If the objective function value of the new 

sequence, F(x’), is lower than the starting sequence, F(x), then we update the solution and 

continue with this new sequence; otherwise we continue with the starting (original) 

sequence. We select another job from the sequence and do the same procedure as explained 

before, for all jobs in the sequence. We call this explained procedure until we do not 

improve the objective function value anymore (until we obtain local optimum). 

 

4.2.5 Acceptance Criterion 

 

After obtaining a sequence from the local search, the corresponding objective 

function value is compared with the incumbent value which is the lowest objective function 

value found until that time. According to that comparison, we decide whether this new 

solution is accepted or not as an incumbent solution; and to move to the following 

neighborhood structure to search better solutions. In the acceptance phase, we employ two 

different criteria: a simple acceptance criterion and a simulated annealing-like acceptance 

criterion. In the first one, we accept the new sequence if its objective function value is 

lower than the incumbent value. However, we observe that sometimes the local search gets 

stuck at a solution in earlier stages of the algorithm. Hence to prevent this situation, we 

accept some solutions which have higher objective function values than the incumbent 

value in the second acceptance criterion. This strategy, which provides diversification to 

the algorithm, leads us to search solutions in different parts of the solution space and 

prevents stagnation. We use the following well-known equation for the simulated 

annealing-like acceptance criterion: 

 

            
                 

           
     (4.1) 

 



 

 

Chapter 4: A Solution Approach                                                                                           44 
 

 
 

In Equation 4.1, rand is a random number between 0 and 1. If x represents the new 

sequence, then F(x) shows the objective function value for the new sequence. Similarly, 

F(incumbent) indicates the objective function value of the incumbent solution. Thus, 

Equation 4.1 gives the probability of accepting a worse solution. We use the following 

equation for the temperature which was proposed by Osman and Potts (1989) and was 

adopted by Ruiz and Stützle (2007, 2008). 

 

                
     

 
   

 
   

          
                (4.2) 

 

The value of the parameter temperature depends on the instance since it uses the 

total processing time of all jobs on the all machines, the number of jobs and the number of 

machines, as seen in Equation 4.2. In this equation, λ is a parameter which needs to be 

tuned. In Section 5.3.1, the experimental results for tuning λ are shown. 

We present the pseudocode of the proposed VNS algorithm in Figure 4.6. 

 

Notation 

kmax   maximum number of neighborhood structure 

xo   the initial solution 

x*   the incumbent solution 

x   the current solution 

x’   the solution generated from Nk(x)  

x’’   the local optimum solution from x’ 

Nk(x)   the kth neighborhood of solution x 

F(x)  the objective function value of x 

rand  random number generated between 0 and 1 

temperature   a constant value calculated in Equation 4.2 
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Figure 4.6 Pseudocode of proposed VNS algorithm

 

 

 

 

 

 

xo = NEH_RMB;        %Initialization   

x = xo ; 

x*= xo; 

F(x*) =F(xo); 

k=1; 

while termination criterion is not met do 

 while k ≤ kmax do 

  Generate x’ from Nk(x)      %Shaking 

  x’’= LocalSearch_NodeInsertion(x’);    %Local search  

  if F(x’’) < F(x*) then     %Acceptance & move or not 

   x=x’’; 

   x*=x; 

   k=1; 

  else if (rand ≤ exp{-(F(x’’)-F(x*))/temperature}) then 

   x=x’’; 

   k=1; 

  else 

   k=k+1; 

  endif 

 endwhile 

endwhile 
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Chapter 5 

 

COMPUTATIONAL STUDIES 

 

 

In this chapter, we conduct computational studies to analyze the performance of the 

VNS algorithm, which is proposed for the F|sijl, prmu|Cmax and the F|sijl, 

prmu|∑(Cj+Energyj) problems.  Firstly, in Section 5.1, we describe the data sets that we 

use for the F|sijl, prmu|Cmax problem and we generate additional data sets for the energy-

related parameters for the F|sijl, prmu|∑(Cj+Energyj) problem. In Section 5.2, we present 

our test results to make the decisions for our implementation of the VNS algorithm. In 

Section 5.3, we give the results of the performance of the proposed VNS algorithm. Lastly, 

we analyze these results for the F|sijl, prmu|Cmax problem and the F|sijl, 

prmu|∑(Cj+Energyj) problem in Section 5.4. 

 

5.1 Data Sets  

 

5.1.1 Data Set for the F|sijl, prmu|Cmax Problem 

 

We conduct the computational studies for the F|sijl, prmu|Cmax problem with the 

data set generated by Ruiz et al. (2005). This instance set is based on the well-known data 

set proposed by Taillard (1993) for the regular flowshop problem. Taillard’s set has 12 

instance groups with different number of jobs and machines. Nine of these instance group 

sizes are the combination of 20, 50, 100 jobs and 5, 10, 20 machines. For the larger 

instances, there are three more groups: 200 jobs 10 machines, 200 jobs 20 machines and 

500 jobs 20 machines. In each group, there are 10 instances, so there are totally 120 
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instances in the data set. For these instances, the processing time of jobs on each machine is 

generated uniformly between 1 and 99. To modify this data set to the FS-SDST problem, 

Ruiz et al. (2005) generated setup time values as four groups according to the 10%, 50%, 

100% and 125% of the processing time range [1,99]. Hence, the setup times are generated 

uniformly in [1,9], [1,49], [1,99], [1,124] and called SDST10, SDST50, SDST100, 

SDST125, respectively. In total, there are 480 instances with different setup time groups 

and we use all 480 instances to test our proposed VNS algorithm for the F|sijl, prmu|Cmax 

problem. 

 

5.1.2 Data Set for the F|sijl, prmu|∑(Cj+Energyj) Problem 

 

For the energy-aware FS-SDST problem, we need the following parameters for 

computational experiments: processing times of each job on each machine, sequence 

dependent setup times, setup cost, idle cost, cost for turning off/on machine and the 

minimum required time for turning off/on the machine. For the processing and setup time, 

we will use the benchmark set generated by Ruiz et al. (2005) for the FS-SDST problem as 

explained in Section 5.1.1. For the smaller instances, to compare the solutions obtained 

from the proposed VNS algorithm with the optimal solutions, we generate the processing 

time uniformly in [1, 99] and setup time in [1, 9], [1, 49], [1, 99], [1, 124]. Since there are 

few studies about energy-aware scheduling, there are no known data sets for energy-related 

parameters. As a result, we generated the energy-related data sets for the computational 

experiments. For data generation, firstly we created random 30 instances which have job 

number in [20,200] and machine number in [5, 20]. The processing times were generated 

uniformly in the range of [1, 99].  Setup times were generated uniformly in the ranges of 

[1, 9], [1, 49], [1, 99], and [1, 124] with random selection of setup time groups. The 

parameter  , which is used to convert the total completion time into the cost in the 

multiobjective function, was selected as 5. We utilize the total weighted completion time 

articles for cost conversion. Belouadah et al. (1992) generate weight data for the single 
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machine scheduling problem to minimize the total weighted completion time in their study. 

They choose the range as [1, 10] for weight where the processing time is generated 

uniformly in [1, 100] range. Since we have the similar processing time range and we 

assume that all jobs have the same   value, we took the mean value of [1, 10] range, as 5, 

and used this constant value for all jobs. Created 30 instances were run with the proposed 

VNS algorithm where the objective is only the total production cost (single objective 

function). According to the cost values, three different range groups were determined for 

the energy-related parameters: low, medium and high. In Table 5.1, the data ranges for the 

different groups are presented. The required time for turning off/on the machine was 

generated uniformly in the range of [1, 20] for all groups. 

 

Table 5.1 Data ranges of different groups for energy-related parameters 

Group Idle Cost Setup Cost ON/OFF Cost 

Low [1,5] [1,10] [10,100] 

Medium [15,25] [35,45] [350,450] 

High [30,40] [70,80] [700,800] 

 

On the other hand, we set the weighted sum parameters    and    which we 

defined in Section 3.2.2, to combine the objectives the total production cost and the total 

energy cost into a single objective function by weighted sum method. For these weighted 

sum parameters    and   , three sets were used: (0.1, 0,9), (0.5, 0.5), (0.9, 0.1) and (1.0, 

0.0). Since we add the energy objective to the traditional flowshop problem, we use (1.0, 

0.0) values for the weighted sum parameters to evaluate the effect of the energy cost to the 

objective function. As a result, for one instance from Ruiz et al. (2005) data set (with 

processing and setup times), three instances were generated due to different range groups 

for the energy related parameters. Moreover, each new instance was run four times since 

there are four different values for the weighted sum parameters. 
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5.2 Selection of the VNS Decisions 

 

As decisions of the VNS algorithm, we presented initial solution procedures, set of 

neighborhood structures, local search procedures, stopping and acceptance criteria in 

Section 4.2. In this section, we test these decisions to select the best combination for the 

proposed VNS algorithm. Firstly, we describe the termination criterion for the algorithm. 

While using this criterion, we show the results of the preliminary tests for different 

initialization procedures, neighbors, local search procedures and acceptance criteria. Then, 

we tune the acceptance criterion parameter in the last subsection. For the preliminary tests, 

only the F|sijl, prmu|Cmax problem is used, since it is the simplest version of the FS-SDST 

problem. Moreover, the best known solutions of the Taillard’s instance set for the F|sijl, 

prmu|Cmax problem are published, which allow us to measure the performance of the test 

results. 

 

5.2.1 Termination Criterion 

 

For the F|sijl, prmu|Cmax problem, we set the stopping condition based on the CPU 

times since we compare our results with the state-of-the-art and other methods, which are 

implemented with the same stopping criterion by Ruiz and Stützle (2008). We set the CPU 

time as (n x m/2) x t milliseconds as proposed by Ruiz and Stützle (2008). Hence, the 

termination criterion depends on the size of the instances. Ruiz and Stützle (2008) set t as 

30, 60 and 90 in their article but we only use t = 90 in our study.  

For the F|sijl, prmu|∑(Cj+Energyj) problem, since we do not compare our result 

with a benchmark, we give longer CPU time as a termination criterion. One reason for this 

is that the F|sijl, prmu|∑(Cj+Energyj) problem is more complex than the F|sijl, prmu|Cmax 

problem. Moreover, for the F|sijl, prmu|Cmax problem, we use Taillard’s speed up methods 

to calculate the makespan value after insertion operation as explained in Section 4.2.2.  
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Figure 5.1 Convergence graph of a 50x10 instance with SDST100 for F|sijl, prmu|Cmax 

 

 

Figure 5.2 Convergence graph of a 20x5 instance with SDST10 and high group energy data 

set for F|sijl, prmu|∑(Cj+Energyj), when w1=0.5, w2=0.5 

 

However, this speed up procedure cannot be applied to the minimization of total 

completion time objective. As a result, one iteration takes much more time compared to the 

F|sijl, prmu|Cmax problem. To obtain a good solution in a reasonable time period depending 

on the instance size, we use the same stopping condition for the F|sijl, prmu|∑(Cj+Energyj) 

problem, but we set t as 180 due to the difficulty of the F|sijl, prmu|∑(Cj+Energyj) problem. 

4000 

4200 

4400 

4600 

4800 

5000 

5200 

5400 

0 100 200 300 400 

In
cu

m
b

e
n

t 
V

al
u

e
 

Counter Number 

40000 

45000 

50000 

55000 

60000 

65000 

0 20 40 60 80 100 

In
cu

m
b

e
n

t 
V

al
u

e
 

Counter Number 



 

 

Chapter 5: Computational Studies                                                                                        51 
 

 
 

Since we use the time as termination criterion, we also analyze whether the solution 

converges or not. As an example, Figure 5.1 and 5.2 show the convergence graphs of the 

F|sijl, prmu|Cmax and the F|sijl, prmu|∑(Cj+Energyj) problems, respectively, for the 

proposed VNS algorithm. 

 

5.2.2 Initialization, Neighbors, Local Search and Acceptance 

 

The most important parts of designing a VNS algorithm are to select neighborhood 

structures, the sequence of these neighborhoods and the local search procedure. In the 

preliminary tests, we tried various neighborhood structures and local search procedures 

with different combinations in order to obtain better solutions. As neighborhood structures, 

we used adjacent swap, swap, node insertion as one job (Insertion (1)) and adjacent two-job 

(Insertion (2)), maximum setup insertion as one-job (MaxSetup(1)) and two-job 

(MaxSetup(2)), minimum setup two-job insertion (MinSetup(2)) and 2-opt. These 

neighborhood structures were explained in detail in Section 4.2.3. In addition to the 

neighborhood structures, we also conducted preliminary tests about initialization procedure 

and acceptance criterion. As the initial solution, we used random initial solution and 

NEH_RMB constructive heuristic (Rios-Mercado and Bard, 1998b). On the other hand, we 

used simple and simulated annealing-like (SA-like) acceptance criteria. Since we have too 

many decisions for designing a VNS algorithm, instead of combining each decision, we 

conducted our preliminary tests as following. Firstly, we kept the neighborhood structures 

as node insertion (Insertion(1)) and swap operations which are commonly used for 

flowshop and TSP based problems in the literature. We observed the effect of the initial 

solution, acceptance criterion and the neighborhood structure in the local search. The 

quality of the solutions was evaluated by average percentage deviation from the best known 

solutions, which is explained in detail in Section 5.3.3. For the first step of the preliminary 

test, we used small and medium size instance sets among the well-known data set from 

Section 5.1.1.  
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Table 5.2 Average percentage deviation of the VNS solutions from the best known 

solutions for different initial solutions, local search procedures and acceptance criteria 

Initial  Local Acceptance SDST 
10 

SDST 
50 

SDST 
100 

SDST 
125 

Avg. 
Solution  Search  Criterion 

NEH_RMB Adjacent Swap Simple acc. 2.74 3.78 4.23 5.76 4.13 

NEH_RMB Insertion(1) Simple acc. 1.77 3.41 3.96 4.98 3.53 

NEH_RMB Adjacent Swap SA-like 1.94 3.43 4.01 5.33 3.68 

NEH_RMB Insertion(1) SA-like 1.43 2.97 3.61 4.52 3.13 

Random Insertion(1) SA-like 1.89 3.05 3.92 4.61 3.37 

 

In Table 5.2, we observe that for each SDST groups, starting the VNS algorithm 

with NEH_RMB (Rios-Mercado and Bard, 1998b) gives better results compared to random 

initialization. Since we used the stopping condition based on CPU time, improving an 

initial solution with higher quality, such as NEH_RMB (Rios-Mercado and Bard, 1998b) 

solution, is faster than a random solution. To start the algorithm with a good solution may 

cause early convergence in heuristic algorithms in general; however the structure of the 

VNS algorithm with systematic change in neighborhood structures leads to diversification 

and prevents the convergence in early iterations. On the other hand, with simulated 

annealing-like acceptance criterion, we allow more diversification to the algorithm. Table 

5.2 shows that using SA-like acceptance criterion gives better results for the F|sijl, 

prmu|Cmax problem. We used the NEH_RMB constructive heuristic (Rios-Mercado and 

Bard, 1998b) and SA-like acceptance criterion for the proposed VNS algorithm. In the 

local search procedure, we used best improvement strategy in the neighborhood structure. 

At the beginning of the preliminary tests, we used a simple neighborhood structure, that is 

adjacent swap, and a more complex one, that is node insertion. The VNS algorithm spends 

most of its computational time on the local search procedure to find the best solution in the 

specific neighbor. It is observed that evaluating the quality of each solution in the search 

space of the adjacent swap operator consumes less time than the insertion operation, which 

leads more iterations for the main loop of VNS algorithm under a CPU time based stopping 

condition. Although searching the best solution in node insertion neighbor takes longer 
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time and leads to less iterations for the main loop, Table 5.2 shows that it gives better 

results. Namely, searching the best solution in the larger search space increases the quality 

of the solution. In Table 5.2, we observe that the adjacent swap operator is a weak 

neighborhood structure for a local search procedure compared to the insertion 

neighborhood operator.  

 

Table 5.3 Average percentage deviation of the VNS solutions from the best known 

solutions for different neighborhood structures 

Neighborhood Structure SDST10 SDST50 SDST100 SDST125 Avg. 

Swap - MaxSetup(1) 0.56 1.01 1.46 1.68 1.18 

MaxSetup(1) - Swap 0.63 0.97 1.43 1.80 1.21 

Swap - MaxSetup(2) 0.61 1.10 1.56 1.65 1.23 

MaxSetup(2) - Swap 0.52 1.02 1.36 1.66 1.14 

Swap - MinSetup(2) 0.56 1.02 1.48 1.80 1.21 

MinSetup(2) - Swap 0.59 1.13 1.56 1.73 1.25 

Swap – Insertion(1) - MaxSetup(1) 0.60 1.02 1.61 1.77 1.25 

Swap - MaxSetup(1) – Insertion(1) 0.66 1.18 1.61 1.78 1.31 

Insertion(1)  - Swap - MaxSetup(1) 0.65 1.10 1.58 1.72 1.26 

Insertion(1)  - MaxSetup(1) - Swap  0.55 0.89 1.61 1.60 1.16 

MaxSetup(1) - Swap - Insertion(1)   0.58 1.10 1.34 1.77 1.20 

MaxSetup(1) - Insertion(1)  -  Swap 0.59 1.09 1.48 1.75 1.23 

Swap - Insertion(1)  - MaxSetup(2) 0.66 0.97 1.51 1.76 1.22 

Swap - MaxSetup(2) - Insertion(1) 0.56 1.02 1.53 1.68 1.20 

Insertion(1)  - Swap - MaxSetup(2) 0.58 1.13 1.54 1.84 1.27 

Insertion(1)  - MaxSetup(2) - Swap  0.56 1.09 1.40 1.69 1.18 

MaxSetup(2) - Swap - Insertion(1)   0.60 1.02 1.56 1.56 1.18 

MaxSetup(2) - Insertion(1)  -  Swap 0.61 1.00 1.52 1.79 1.23 

Swap - Insertion(1)  - MinSetup(2) 0.58 1.04 1.46 1.72 1.20 

Swap - MinSetup(2) - Insertion(1) 0.61 1.01 1.42 1.63 1.17 

Insertion(1)  - Swap - MinSetup(2) 0.61 1.08 1.62 1.77 1.27 

Insertion(1)  - MinSetup(2) - Swap  0.61 1.08 1.55 1.64 1.22 

MinSetup(2) - Swap - Insertion(1)   0.59 1.04 1.49 1.69 1.20 

MinSetup(2) - Insertion(1)  -  Swap 0.56 1.10 1.53 1.55 1.19 
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In the second step of our preliminary test, the aim is to select the neighborhood 

structures among swap, node insertion, maximum setup insertion as one-job and two-job, 

and minimum setup two-job insertion. Moreover, the sequence of these neighborhoods 

need to be determined. For this step, we fixed the initial procedure as NEH_RMB 

constructive heuristic (Rios-Mercado and Bard, 1998b), acceptance criterion as SA-like 

and local search procedure based on node insertion neighborhood. First we used two 

neighborhood structures. Since we have the local search procedure based on insertion, for 

two neighborhood structures, we combined the swap operator with each setup-dependent 

neighborhood structures. Then, we added the node insertion neighborhood as the third 

neighborhood structure to the algorithm. We used different instance sets from the first 

group of experiments as given in Table 5.2. We observe from the average percentage 

deviations given in Table 5.3 that there are no dominant neighborhood structures. However, 

using the maximum setup one-job insertion and the swap neighborhood structures in that 

order gives better results, on the average, among other neighborhood combinations. 

 

Table 5.4 Average percentage deviation of the VNS solutions from the best known 

solutions for different neighborhood structures and local search procedures 

Neighborhood 
Structure Local Search 

SDST10 SDST50 SDST100 SDST125 Avg. 

MaxSetup(2) - Swap Insertion(1) 0.52 1.02 1.36 1.66 1.14 

MaxSetup(2) - Swap (*) Insertion(1) 2.34 3.97 6.07 6.74 4.78 

MaxSetup(2) - Swap VND (Swap - MaxSetup(2)) 1.69 3.12 4.62 5.16 3.65 

MaxSetup(2) - Swap VND (Insertion(1) - MaxSetup(2)) 1.49 2.79 3.89 4.52 3.17 

AdjacentSwap - Swap AdjacentSwap - Insertion(1) 0.76 1.37 1.94 2.10 1.54 

Insertion(2) - Swap Insertion(2) - Insertion(1) 0.99 1.86 2.61 2.82 2.07 

2-opt - Swap 2-opt - Insertion(1) 0.84 1.64 2.04 2.45 1.74 

(*) With first improvement strategy 

 

In the last step of the preliminary tests, we kept the initialization procedure and the 

acceptance criterion the same as discussed above. However, to improve our solution 
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further, we used different techniques. First row in Table 5.4 shows the design of the VNS 

algorithm, which gives the best result so far (from Table 5.3) and will be referred to as the 

best combination. In the following three tests, we kept the neighborhood structures of the 

main algorithm the same but used different local search techniques. Firstly, we used the 

same neighborhood for the local search but instead of taking the best solution in the 

solution space (best improvement), we used the first improvement strategy. Moreover, we 

used variable neighborhood descent (VND) algorithm with two neighborhood structures in 

the local search procedure in our tests. We also tested using different neighbors in the local 

search procedures for each neighborhood structure in the main part of the algorithm. In the 

last three test results given in Table 5.4, we used different neighbors instead of 

MaxSetup(2) from the best combination of the given VNS design and we used the same 

neighborhood structure with the shaking part of the algorithm for the local search 

procedure. In other words, when a solution was generated from the adjacent swap 

neighbors randomly, the neighborhood structure would also be the same in the local search 

phase. Except from the current solution and the solution that was obtained from ‘shaking’ 

part, the best improvement strategy was used to find the candidate solution. After SA-like 

acceptance, this candidate solution was accepted as the current solution or not. When the 

current solution was not accepted and the neighborhood structure was changed to the swap 

operation, in the local search procedure the node insertion neighbor was used. The 

algorithm continues until the stopping condition is met. From the results given in Table 5.4, 

we observe that we could not improve the solutions of the VNS algorithm referred as best 

combination further. 

Consequently, we set the decisions of the proposed VNS algorithm as follows: 

NEH_RMB constructive heuristic (Rios-Mercado and Bard, 1998b) for the initial solution, 

SA-like acceptance criterion for ‘move or not’ phase of the algorithm, maximum setup one-

job insertion and swap neighborhood structures in that order for the neighborhood 

structures of the ‘shaking’ phase, and node insertion neighborhood for the local search 

procedure. 
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5.2.3 Tuning the Parameter of Acceptance Criterion  

 

In the simulated annealing-like acceptance criterion, we used the equation (4.2) for 

the temperature which was explained in Section 4.2.4. In this equation, there is a constant 

parameter, λ, which needs to be tuned. To design the VNS algorithm in Section 5.2.2, we 

took this parameter as 0.5, which is the same value as in Ruiz and Stützle (2008). However, 

we conducted a test to set this parameter after all other parameters and decisions of the 

proposed VNS algorithm were established. We used a small number of instance set to 

adjust the parameter λ and we again used the average percentage deviation to evaluate the 

results. In this test, we considered the values from 0.1 to 1.0 with the slot of 0.1 for λ. Table 

5.5 shows the results according to the given λ values. In this table, we observe that when 

the λ value is tuned to 0.7, it gives the best results among other λ values, on the average. As 

a result, we set the λ value to 0.7 in our proposed VNS algorithm. 

 

Table 5.5 Average percentage deviation of the VNS solutions from the best known 

solutions for different λ values in simulated annealing-like acceptance criterion  

 

λ values SDST10 SDST50 SDST100 SDST125 Average 

0.1 0.14 0.38 0.44 0.59 0.39 

0.2 0.17 0.29 0.57 0.61 0.41 

0.3 0.14 0.23 0.45 0.55 0.34 

0.4 0.12 0.33 0.56 0.62 0.41 

0.5 0.11 0.31 0.43 0.49 0.33 

0.6 0.10 0.27 0.39 0.59 0.34 

0.7 0.09 0.19 0.44 0.37 0.28 

0.8 0.13 0.30 0.29 0.43 0.29 

0.9 0.11 0.25 0.37 0.43 0.29 

1.0 0.12 0.32 0.41 0.57 0.36 
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5.3 Results of the Computational Study  

 

In this section, we present the results of the computational experiments we 

conducted with the proposed VNS algorithm. We compared the results of the F|sijl, 

prmu|Cmax problem with the benchmarks. For the F|sijl, prmu|∑(Cj+Energyj) problem, we 

solved small-sized problems via the mixed integer linear programming (MILP) model 

presented in Section 3.2.2 and compared the solutions obtained from the proposed VNS 

algorithm with the optimal solutions. For large-sized problems, we compared the VNS 

results with the well-known NEH constructive heuristic results. 

 

5.3.1 Computational Platform  

 

We code the VNS algorithm in Microsoft Visual Studio 2010 with C++ 

programming language. For solving the integer linear programming model, we used the 

IBM ILOG CPLEX Optimization Studio 12.5 Version. The computational experiments 

were conducted on a computer with an Intel(R) Core(TM) i5-2520M CPU at 2.50 GHz 

processor with 4.00 GB RAM. 

 

5.3.2 Benchmarks  

 

For the F|sijl, prmu|Cmax problem, to analyze the quality of the proposed VNS, we 

compared our results with the results of alternative heuristics and of the state-of-the-art 

algorithm. The iterated greedy algorithm with local search procedure (IG_LS) (Ruiz and 

Stützle, 2008) is state-of-the-art algorithm for the FS-SDST problem when the objective is 

makespan. IG_LS was also compared with some effective heuristics. Two of them are 

genetic algorithm (GA) and memetic algorithm (MA), which are developed by Ruiz et al. 

(2005). Moreover, Ruiz and Stützle (2008) modify an ant colony optimization algorithm 

(PACO) proposed by Rajendran and Ziegler (2004), which also gives good quality of 
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solutions. Ruiz and Stützle (2008) use a stopping condition, which is based on CPU time, 

to compare the performance of these heuristic algorithms. Since we have the average 

deviation percentage values for these heuristics from the article (2008), we used these 

benchmark data to compare the performance of our VNS algorithm. 

Genetic Algorithm (GA): Genetic algorithm is an evolutionary algorithm, which 

starts with a set of solutions called population, and after some genetic operations this 

population evolves. Ruiz et al. (2005) initialize some of the individuals in the population 

with a modified version of the NEH_RMB constructive heuristic (Rios-Mercado and Bard, 

1998b) and generate other individuals randomly. They use classical selection mechanisms, 

which are roulette wheel and tournament selection. As crossover operation, they propose 

new operations based on that the common jobs or blocks of two parents are transferred to 

the children. As mutation operation, Ruiz et al. (2005) use simple node insertion operation 

by selecting a job randomly and inserting it to a random position in the sequence. After 

these operations, they replace the population by new individuals if their makespan values 

are lower than that of the parents in the population. In addition to this classical structure of 

genetic algorithm, Ruiz et al. (2005) implement a restart scheme to avoid the local 

optimum. Finally, to compare the performance of the GA (Ruiz et al., 2005) Ruiz and 

Stützle (2008) used CPU time as the stopping condition.  

Memetic Algorithm (MA): To improve the performance of the proposed GA, Ruiz et 

al. (2005) apply a local search procedure, which is based on node insertion neighborhood, 

to the solutions, after the crossover and mutation operation. Since this procedure takes too 

long time in the proposed GA, they implement this local search procedure to the 

individuals in the population with an “enhancement probability”. Namely, they apply the 

local search operation to some of the individuals. They also do not conduct a full node 

insertion operation. The iteration number of the local search procedure is limited by a 

parameter. Ruiz et al. (2005) calibrate the parameters of the local search procedure to 

balance the quality of the solution and the computational time spent. This proposed hybrid 

GA is called as memetic algorithm (MA).  
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Memetic Algorithm with Modified Local Search (MA_LS): Ruiz and Stützle (2008) 

replace the applied local search procedure of MA with the descent local search procedure 

and call it MA_LS. In the descent local search algorithm, Ruiz and Stützle (2008) use the 

same neighborhood structure, which is node insertion. They remove each job in the 

sequence one by one and insert into the best position that gives a lower makespan value, 

among all possible positions. After this procedure is finished for all jobs, if any solution 

obtained from the local search procedure gives any improvement compared to the current 

solution, the whole process is repeated, until there is no improvements on the solutions. 

This procedure leads to a local optimum. Although it takes longer computational time, Ruiz 

and Stützle (2008) test this modified version of the memetic algorithm (MA_LS) in their 

study, with the given CPU time.  

Ant Colony Optimization Algorithm (PACO): Ant colony optimization algorithm is 

a population based algorithm but Rajendran and Ziegler (2004) use only one ant for each 

iteration in their study. They initialize the pheromone trails by well-known NEH heuristic. 

Then, one ant constructs a full solution by adding components one by one iteratively. After 

construction, the solution is improved by a local search based on the job-index procedure 

proposed by Rajendran and Ziegler (2004), which is indeed the same local search 

procedure used by Ruiz and Stützle (2008). Then, the ant gives feedback about the 

components; hence accordingly the parameters are updated. The procedure continues until 

the stopping condition is met. Rajendran and Ziegler (2004) propose this heuristic for 

regular flowshop problem when the objective is to minimize makespan. Ruiz and Stützle 

(2008) modify this heuristic to the FS-SDST and change the initialization heuristic to 

NEH_RMB (Rios-Mercado and Bard, 1998b). Since Ruiz and Stützle (2008) use this 

heuristic to compare the performance of their proposed algorithm, they use CPU time as the 

stopping condition for the modified algorithm and call it as PACO. 

Iterated Greedy (IG): Iterated greedy algorithm starts with an initial solution and 

has destruction, construction and acceptance phases in the main loop. Ruiz and Stützle 

(2008) initialize their proposed IG with well-known constructive heuristic NEH_RMB 
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(Rios-Mercado and Bard, 1998b). In the destruction phase, some of the components of the 

solution are removed from the sequence and in the construction phase, each removed 

components are added to the partial solution one by one to obtain the best permutation, 

which gives a lower makespan value. The reconstructed solution is compared with the 

incumbent solution in the acceptance step. As acceptance condition, they use simulated 

annealing-like acceptance criterion. In this criterion, different from the simple acceptance 

criterion, which accepts only better solutions, they also accept some of the candidate 

solutions that have worse fitness value as a new solution. The main loop continues with this 

new reconstructed solution. This procedure is repeated until the stopping condition is met, 

which is based on the CPU time. 

Iterated Greedy with Local Search (IG_LS): Ruiz and Stützle (2008) improve their 

proposed IG algorithm with the descent local search procedure based on the node insertion 

neighborhood, which is explained in the MA_LS. Ruiz and Stützle (2008) apply this local 

search to the initial solution, which is constructed by NEH_RMB heuristic (Rios-Mercado 

and Bard, 1998b). Moreover, after the destruction and the construction phases of the IG, 

the local search is also applied to the reconstructed solution. Lastly, in the acceptance 

phase, with simulated annealing-like acceptance criterion, the solution obtained from the 

local search is compared with the incumbent. Among the other benchmarks, this heuristic 

gives the best results when the stopping condition is the CPU time. The proposed iterated 

greedy algorithm with local search is the state-of-the-art for the FS-SDST problem when 

the objective is makespan (F|sijl, prmu|Cmax) for the published instance set of Ruiz et al. 

(2005). 

Since the F|sijl, prmu|∑(Cj+Energyj) problem is studied for the first time in the 

literature, there are not any benchmarks. To analyze the performance of the proposed VNS 

algorithm for the F|sijl, prmu|∑(Cj+Energyj) problem, we solved small-sized problems with 

the MILP model, which was presented in Section 3.2.2. We compared the solutions of the 

proposed VNS algorithm with the optimal solutions. For large-sized problems, we 

compared the VNS results with the results obtained from the well-known NEH constructive 
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heuristic. The NEH algorithm is actually used as an initial solution for the proposed VNS 

algorithm. Hence, this comparison indicates how much we improve the NEH solutions by 

the proposed VNS algorithm. 

For the F|sijl, prmu|∑(Cj+Energyj) problem, we also relaxed some of the binary 

variables of the MILP model to obtain lower bounds (LB) on the optimal solution to the 

problem and compared the VNS results with these LBs. In the MILP model, there are three 

binary variables which are     for assigning a job j to a position k,      for indicating two 

adjacent jobs, job j in position k in the sequence and immediately followed by job l, and     

for checking whether the idle time is greater than the breakeven duration on machine i 

before the job in position k. The variable     is a positive continuous energy-related 

variable and it is added to the objective function as negative. Hence, when we relax this 

binary variable to a continuous variable in the range of [0, 1], the variable      takes a high 

value, which makes the objective function value negative. It should be noted that relaxing 

other binary variables, that is,     and     , does not give a better relaxation. 

 

5.3.3 Performance Measures  

 

To evaluate the results of the proposed VNS algorithm, we need performance 

measures. For the F|sijl, prmu|Cmax problem, we use percentage deviation (PD) of the 

solution obtained by a heuristic algorithm from the best known solution for each instance. 

The best known solution for each instance can be found at the website http://soa.iti.es/rruiz 

(Ruiz, 2008). Equation 5.1 shows the calculation of the PD.  

 

          
                   

         
                (5.1) 

 

In Equation 5.1,           is the objective function value obtained from heuristic 

algorithm H for one instance.           is the best objective function value of that 

http://soa.iti.es/rruiz
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instance known so far. Since there are 480 instances to test for the F|sijl, prmu|Cmax 

problem, the results are shown as average percentage deviation (APD). For one instance 

size group such as 20 jobs to 5 machines, we take the average of the PD results. 

For the F|sijl, prmu|∑(Cj+Energyj) problem, there are no benchmark sets and best 

known solutions to compare our result with. However, we find the optimal solutions for the 

small instances, and we use the NEH heuristic results for the large instances in our 

comparison. Optimal and NEH results are compared with the proposed VNS solutions and 

as the performance measure, we also use percentage deviation (PD) method. For the F|sijl, 

prmu|∑(Cj+Energyj) problem, in Equation 5.1,   = VNS, whereas           is either the 

optimal solution for small-sized instances or the NEH solution for large-sized instances. 

 

5.3.4 Results for Proposed VNS algorithm  

 

We conducted computational experiments for the F|sijl, prmu|Cmax and F|sijl, 

prmu|∑(Cj+Energyj) problems with the instance sets explained in Section 5.1 and present 

our results in this section. For the F|sijl, prmu|Cmax problem, we compare our results with 

the benchmarks which are given in Section 5.4. Tables 5.6-5.9 indicate the results of the 

F|sijl, prmu|Cmax problem as the maximum, the minimum and the average percentage 

deviation (PD) of the objective function values of the VNS solutions from that of the best 

known solutions for each instance size. Results are tabulated in the consecutive tables for 

each SDST group. Bold numbers show our average results and that of the heuristics, which 

give at least as good as our results. Tables 5.10 and 5.11 indicate the maximum, the 

minimum and the average percentage deviation (PD) of the objective function values of the 

VNS solutions from the NEH heuristic according to the SDST groups for the F|sijl, 

prmu|Cmax problem, which we will analyze these results to evaluate the F|sijl, 

prmu|∑(Cj+Energyj) problem. For the F|sijl, prmu|∑(Cj+Energyj) problem, Tables 5.12 and 

5.13 show the average PD of the objective function values of the VNS solutions from the 

optimal solutions. Tables 5.14-5.17 indicate the average PD of the objective function 
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values of the VNS results from the NEH heuristic results. For detail analysis, we tabulated 

the maximum, the minimum and the average PD of both total production cost and total 

energy cost values obtained from VNS algorithm, separately, for the F|sijl, 

prmu|∑(Cj+Energyj) problem in Table A1-36 in Appendix.  

 

Table 5.6 Performance of the benchmarks and the VNS algorithm for the F|sijl, prmu|Cmax 

problem when SDST10 

SDST10 
GA MA MA_LS PACO IG_RS IG_RS_LS VNS 

Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Max.(%) Min.(%) Avg.(%) 

20x5 0.41 0.70 0.08 0.18 0.14 0.04 0.42 0.00 0.08 

20x10 0.56 0.36 0.13 0.22 0.24 0.04 0.49 0.00 0.17 

20x20 0.39 0.56 0.10 0.12 0.19 0.04 0.21 0.00 0.08 

50x5 0.92 0.77 0.30 0.42 0.84 0.27 0.84 0.41 0.58 

50x10 2.01 1.26 0.81 1.06 1.43 0.53 1.84 0.50 1.03 

50x20 2.10 1.28 0.82 1.01 1.54 0.60 1.54 0.62 1.18 

100x5 1.03 0.63 0.31 0.76 1.34 0.33 0.81 0.31 0.51 

100x10 1.33 0.90 0.48 0.77 1.32 0.38 1.26 0.59 0.95 

100x20 1.83 1.06 0.82 1.12 1.47 0.54 1.63 0.68 1.32 

200x10 1.32 0.65 0.48 0.85 1.33 0.32 1.16 0.27 0.65 

200x20 1.71 0.87 0.76 0.95 1.12 0.38 1.19 0.59 0.93 

500x20 1.27 0.48 0.43 0.61 0.82 0.21 0.69 0.23 0.43 

Average 1.24 0.79 0.46 0.67 0.98 0.31 1.01 0.35 0.66 
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Table 5.7 Performance of the benchmarks and the VNS algorithm for the F|sijl, prmu|Cmax 

problem when SDST50 

SDST50 
GA MA MA_LS PACO IG_RS IG_RS_LS VNS 

Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Max.(%) Min.(%) Avg.(%) 

20x5 1.15 1.50 0.30 0.51 0.58 0.10 0.84 0.00 0.39 

20x10 1.17 0.77 0.32 0.44 0.58 0.19 0.84 0.00 0.36 

20x20 0.49 0.78 0.16 0.25 0.37 0.07 0.37 0.00 0.16 

50x5 3.43 2.18 1.13 1.98 2.42 1.04 2.71 0.66 1.90 

50x10 3.01 1.68 1.08 1.62 2.12 0.92 2.39 1.52 1.92 

50x20 2.43 1.69 0.89 1.28 2.03 0.82 2.43 0.66 1.41 

100x5 3.98 2.34 1.38 3.95 2.33 1.09 3.52 1.47 2.52 

100x10 3.07 1.52 1.21 3.10 2.13 0.88 2.39 0.99 1.72 

100x20 2.51 1.54 1.03 2.45 1.82 0.81 2.60 0.92 1.74 

200x10 3.49 1.35 1.21 3.37 1.90 0.63 1.98 0.85 1.48 

200x20 2.67 1.19 1.02 2.64 1.51 0.53 1.53 0.80 1.24 

500x20 2.07 0.76 0.79 2.00 1.28 0.31 1.02 0.44 0.72 

Average 2.46 1.44 0.88 1.97 1.59 0.62 1.89 0.69 1.30 

 

Table 5.8 Performance of the benchmarks and the VNS algorithm for the F|sijl, prmu|Cmax 

problem when SDST100 

SDST100 
GA MA MA_LS PACO IG_RS IG_RS_LS VNS 

Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Max.(%) Min.(%) Avg.(%) 

20x5 1.82 1.43 0.39 0.61 1.24 0.17 1.69 0.00 0.57 

20x10 1.27 1.09 0.29 0.48 1.03 0.18 1.27 0.00 0.42 

20x20 0.94 1.14 0.17 0.48 0.74 0.17 0.89 0.00 0.31 

50x5 5.26 3.02 1.99 3.31 3.70 1.82 4.71 1.74 2.72 

50x10 4.18 2.55 1.50 2.49 2.99 1.30 3.33 0.80 2.20 

50x20 3.11 1.77 1.18 1.98 2.40 1.11 2.74 0.95 1.96 

100x5 6.00 3.04 2.16 6.65 3.48 1.63 4.64 2.24 3.28 

100x10 4.15 2.45 1.61 4.89 2.77 1.02 3.50 1.94 2.75 

100x20 3.49 2.39 1.53 3.91 2.46 1.05 3.07 1.23 2.16 

200x10 4.71 2.19 1.77 5.53 2.49 0.92 3.12 1.56 2.17 

200x20 3.48 1.68 1.40 3.82 1.92 0.76 2.30 1.18 1.66 

500x20 2.64 1.16 1.14 2.75 1.50 0.46 1.67 0.20 0.91 

Average 3.42 1.99 1.26 3.08 2.23 0.88 2.75 0.99 1.76 
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Table 5.9 Performance of the benchmarks and the VNS algorithm for the F|sijl, prmu|Cmax 

problem when SDST125 

SDST125 
GA MA MA_LS PACO IG_RS IG_RS_LS VNS 

Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Max.(%) Min.(%) Avg.(%) 

20x5 1.90 1.40 0.32 0.65 1.24 0.30 1.84 0.00 0.40 

20x10 1.52 1.24 0.37 0.56 1.44 0.36 1.24 0.00 0.64 

20x20 0.95 1.21 0.24 0.39 0.81 0.19 1.42 0.00 0.41 

50x5 5.63 3.48 1.97 3.67 4.00 2.01 5.82 1.65 3.80 

50x10 4.59 3.35 1.50 2.96 3.47 1.54 4.02 0.62 2.62 

50x20 3.25 1.63 1.26 2.06 2.59 1.18 3.43 0.93 2.06 

100x5 6.82 3.65 2.52 7.75 4.14 1.91 6.07 2.56 4.08 

100x10 4.80 2.84 1.94 5.61 3.26 1.34 4.21 1.46 2.89 

100x20 3.50 2.16 1.50 4.15 2.60 1.00 3.04 1.23 2.23 

200x10 5.37 2.63 2.14 6.20 2.94 1.17 3.49 1.62 2.61 

200x20 3.69 1.69 1.49 4.16 2.24 0.76 1.90 0.84 1.35 

500x20 2.83 1.36 1.23 3.02 1.64 0.52 1.21 0.55 0.93 

Average 3.74 2.22 1.37 3.43 2.53 1.02 3.14 0.96 2.00 

 

Table 5.10 Percentage deviation of the VNS results from the NEH solutions for the F|sijl, 

prmu|Cmax problem when SDST10 and SDST50 

SDST10 Max. (%) Min.(%) Avg.(%) SDST50 Max.(%) Min.(%) Avg.(%) 

20x5 -4.90 -1.68 -3.47 20x5 -9.20 -3.20 -6.23 

20x10 -5.40 -2.96 -3.99 20x10 -8.61 -4.35 -5.85 

20x20 -7.28 -1.95 -3.70 20x20 -5.94 -2.88 -4.39 

50x5 -3.63 -1.76 -2.54 50x5 -8.69 -4.45 -6.04 

50x10 -6.15 -3.33 -4.17 50x10 -6.76 -2.60 -5.17 

50x20 -5.92 -2.69 -3.94 50x20 -5.95 -3.37 -4.36 

100x5 -3.18 -2.38 -2.69 100x5 -7.27 -4.11 -5.35 

100x10 -3.65 -2.09 -2.66 100x10 -5.60 -3.65 -4.68 

100x20 -4.08 -2.29 -2.99 100x20 -4.44 -2.84 -3.65 

200x10 -2.49 -1.74 -2.12 200x10 -4.05 -2.94 -3.66 

200x20 -2.78 -1.77 -2.22 200x20 -3.14 -2.35 -2.73 

500x20 -1.61 -0.90 -1.28 500x20 -1.95 -1.61 -1.78 

Average -4.26 -2.13 -2.98 Average -5.97 -3.20 -4.49 
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Table 5.11 Percentage deviation of the VNS results from the NEH solutions for the F|sijl, 

prmu|Cmax problem when SDST100 and SDST125 

SDST100 Max.(%) Min.(%) Avg.(%) SDST125 Max.(%) Min.(%) Avg.(%) 

20x5 -11.36 -6.25 -9.07 20x5 -13.32 -4.33 -9.12 

20x10 -7.83 -5.34 -6.37 20x10 -9.11 -3.39 -6.68 

20x20 -6.42 -3.70 -4.78 20x20 -6.70 -1.93 -4.75 

50x5 -10.50 -5.66 -8.18 50x5 -10.46 -6.01 -9.07 

50x10 -8.91 -5.44 -6.83 50x10 -10.45 -4.74 -7.10 

50x20 -6.74 -4.20 -5.28 50x20 -8.29 -3.98 -6.51 

100x5 -8.37 -6.02 -7.13 100x5 -9.17 -7.07 -8.21 

100x10 -6.67 -3.53 -5.54 100x10 -8.54 -3.39 -5.71 

100x20 -5.67 -3.33 -4.40 100x20 -5.84 -2.83 -4.60 

200x10 -6.10 -3.46 -4.77 200x10 -5.98 -4.59 -5.10 

200x20 -4.48 -2.53 -3.36 200x20 -4.30 -2.97 -3.75 

500x20 -3.08 -1.92 -2.50 500x20 -3.06 -2.37 -2.71 

Average -7.18 -4.28 -5.68 Average -7.94 -3.97 -6.11 
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Table 5.12 Percentage deviation of the VNS results from the optimal solutions for the 

small-sized instances of F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

Setup  En. Data  w1 w2 10x2 10x3 10x4 10x5 15x2 15x3 
Group Group (%) (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) 

SD
ST

1
0

 

Low 

0.1 0.9 0.70 0.54 1.62 2.76 0.31 2.18 

0.5 0.5 0.00 0.00 0.08 0.19 0.00 0.11 

0.9 0.1 0.00 0.00 0.00 0.02 0.00 0.08 

1.0 0.0 0.00 0.00 0.00 0.00 0.06 0.05 

Medium 

0.1 0.9 2.53 8.87 14.59 18.31 5.03 6.67 

0.5 0.5 0.88 0.79 1.72 3.11 0.28 0.94 

0.9 0.1 0.00 0.02 0.00 0.30 0.04 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.10 

High 

0.1 0.9 4.21 12.31 19.79 25.88 7.21 7.68 

0.5 0.5 2.06 2.08 3.48 4.78 1.02 1.79 

0.9 0.1 0.00 0.01 0.05 0.41 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.04 

SD
ST

5
0

 

Low 

0.1 0.9 0.04 0.50 1.81 1.98 1.91 1.35 

0.5 0.5 0.08 0.04 0.10 0.19 0.37 0.68 

0.9 0.1 0.01 0.00 0.02 0.02 0.44 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.01 0.00 

Medium 

0.1 0.9 2.72 5.26 9.27 10.06 3.73 3.52 

0.5 0.5 0.25 0.61 1.75 1.94 0.19 1.02 

0.9 0.1 0.00 0.00 0.02 0.16 0.66 0.19 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 

High 

0.1 0.9 4.10 5.84 10.90 11.71 5.64 6.27 

0.5 0.5 0.44 1.48 3.43 3.23 1.24 2.09 

0.9 0.1 0.00 0.00 0.10 0.23 0.11 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.62 0.00 
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Table 5.13 Percentage deviation of the VNS results from the optimal solutions for the 

small-sized instances of F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

Setup  En. Data  w1 w2 10x2 10x3 10x4 10x5 15x2 15x3 
Group Group (%) (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.43 1.15 0.81 0.99 0.94 0.34 

0.5 0.5 0.01 0.06 0.09 0.06 0.00 0.36 

0.9 0.1 0.00 0.01 0.01 0.01 0.00 0.10 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.06 

Medium 

0.1 0.9 2.05 3.70 3.82 5.44 3.44 3.97 

0.5 0.5 0.13 0.52 0.59 1.04 2.62 1.58 

0.9 0.1 0.00 0.05 0.11 0.04 0.73 0.16 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.08 

High 

0.1 0.9 2.26 4.70 4.26 6.11 3.70 5.89 

0.5 0.5 0.70 1.25 1.30 2.39 0.82 1.44 

0.9 0.1 0.00 0.08 0.19 0.07 0.00 0.20 

  1.0 0.0 0.00 0.00 0.00 0.00 0.84 0.20 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.48 0.33 1.63 1.19 0.24 1.10 

0.5 0.5 0.01 0.61 0.06 0.16 0.00 0.43 

0.9 0.1 0.00 0.00 0.01 0.02 1.24 0.38 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.16 

Medium 

0.1 0.9 0.70 3.50 4.43 3.82 4.03 3.57 

0.5 0.5 0.05 1.13 0.71 0.97 2.30 0.75 

0.9 0.1 0.00 0.00 0.06 0.18 0.00 0.46 

1.0 0.0 0.00 0.00 0.00 0.00 0.94 0.01 

High 

0.1 0.9 1.56 4.02 4.32 4.58 4.24 2.60 

0.5 0.5 0.13 1.27 1.69 1.56 2.67 0.99 

0.9 0.1 0.00 0.04 0.15 0.26 0.08 0.21 

1.0 0.0 0.00 0.00 0.00 0.00 0.38 0.01 
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Table 5.14 Percentage deviation of the VNS results from the NEH solutions for the F|sijl, 

prmu|∑(Cj+Energyj) problem with 20 and 50 jobs to 5, 10 and 20 machines for SDST10 

and SDST50 

Setup  En. Data  w1 w2 20x5 20x10 20x20 50x5 50x10 50x20 
Group Group (%) (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) 

SD
ST

1
0

 

Low 

0.1 0.9 -7.12 -6.15 -4.49 -6.66 -4.93 -4.17 

0.5 0.5 -4.34 -4.64 -3.00 -6.89 -4.42 -3.26 

0.9 0.1 -4.46 -4.38 -3.25 -5.90 -4.29 -4.19 

1.0 0.0 -4.51 -4.20 -3.24 -5.58 -4.33 -4.05 

Medium 

0.1 0.9 -12.12 -8.74 -7.29 -8.78 -7.09 -5.47 

0.5 0.5 -6.29 -6.18 -4.54 -6.65 -4.83 -3.63 

0.9 0.1 -4.51 -4.32 -3.07 -5.96 -4.50 -3.49 

1.0 0.0 -4.47 -4.26 -3.18 -5.60 -4.01 -4.03 

High 

0.1 0.9 -11.39 -8.52 -6.95 -8.09 -7.77 -6.05 

0.5 0.5 -8.16 -7.82 -4.91 -7.26 -5.29 -4.44 

0.9 0.1 -4.52 -4.43 -3.32 -6.03 -4.55 -3.64 

1.0 0.0 -4.43 -4.18 -3.25 -5.87 -4.17 -4.06 

SD
ST

5
0

 

Low 

0.1 0.9 -9.83 -6.60 -3.78 -6.95 -5.21 -3.88 

0.5 0.5 -6.03 -4.52 -3.29 -6.53 -4.22 -3.32 

0.9 0.1 -5.98 -4.93 -3.01 -6.20 -3.97 -3.82 

1.0 0.0 -5.91 -5.29 -3.34 -6.29 -4.43 -3.27 

Medium 

0.1 0.9 -10.17 -6.48 -5.16 -8.82 -5.50 -4.08 

0.5 0.5 -7.78 -5.88 -4.05 -7.08 -4.33 -3.15 

0.9 0.1 -6.40 -4.68 -3.56 -6.91 -4.42 -3.14 

1.0 0.0 -6.08 -5.40 -3.29 -6.10 -4.20 -3.71 

High 

0.1 0.9 -11.07 -7.21 -5.16 -9.35 -6.40 -3.78 

0.5 0.5 -10.24 -6.67 -4.06 -7.29 -5.83 -3.63 

0.9 0.1 -5.49 -4.54 -3.68 -6.70 -4.22 -2.92 

1.0 0.0 -6.13 -5.33 -3.15 -6.04 -4.17 -3.50 
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Table 5.15 Percentage deviation of the VNS results from the NEH solutions for the F|sijl, 

prmu|∑(Cj+Energyj) problem with 20 and 50 jobs to 5, 10 and 20 machines for SDST100 

and SDST125 

Setup  En. Data  w1 w2 20x5 20x10 20x20 50x5 50x10 50x20 
Group Group (%) (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) 

SD
ST

1
00

 

Low 

0.1 0.9 -9.07 -6.12 -4.07 -7.74 -5.08 -3.64 

0.5 0.5 -7.34 -5.52 -3.22 -7.66 -5.32 -3.53 

0.9 0.1 -8.21 -6.30 -4.20 -7.34 -4.49 -3.87 

1.0 0.0 -7.98 -5.45 -4.38 -6.94 -5.15 -3.54 

Medium 

0.1 0.9 -9.13 -5.99 -4.39 -6.55 -4.66 -3.72 

0.5 0.5 -9.08 -5.27 -3.83 -7.29 -5.38 -3.07 

0.9 0.1 -7.98 -4.76 -3.63 -8.25 -4.48 -3.53 

1.0 0.0 -8.09 -5.95 -4.32 -7.92 -5.16 -3.68 

High 

0.1 0.9 -11.88 -6.26 -4.75 -8.89 -5.40 -4.19 

0.5 0.5 -9.72 -5.20 -3.78 -6.87 -4.95 -3.45 

0.9 0.1 -8.47 -5.37 -3.48 -8.00 -4.96 -3.79 

  1.0 0.0 -7.97 -5.91 -4.29 -6.87 -4.64 -4.02 

SD
ST

1
2

5
 

Low 

0.1 0.9 -10.47 -6.22 -3.93 -7.48 -4.84 -3.26 

0.5 0.5 -8.48 -6.50 -4.02 -7.93 -5.06 -3.07 

0.9 0.1 -8.53 -6.75 -4.51 -9.06 -4.84 -3.84 

1.0 0.0 -7.84 -7.12 -4.34 -7.45 -5.60 -3.70 

Medium 

0.1 0.9 -12.30 -5.79 -3.86 -7.42 -6.33 -3.47 

0.5 0.5 -9.79 -4.94 -3.90 -7.92 -5.54 -3.12 

0.9 0.1 -8.61 -4.52 -3.21 -7.96 -5.65 -3.29 

1.0 0.0 -8.09 -7.33 -4.50 -7.87 -6.29 -3.35 

High 

0.1 0.9 -12.57 -5.93 -4.21 -9.07 -5.61 -3.54 

0.5 0.5 -10.92 -5.84 -3.93 -8.12 -4.68 -3.35 

0.9 0.1 -9.68 -5.43 -4.16 -7.20 -4.71 -3.52 

1.0 0.0 -7.96 -7.08 -4.38 -6.72 -5.11 -3.50 
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Table 5.16 Percentage deviation of the VNS results from the NEH solutions for the F|sijl, 

prmu|∑(Cj+Energyj) problem with 100 jobs to 5, 10 and 20 machines, 200 jobs to 10 and 

machines and 500 jobs to 20 machines for SDST10 and SDST50 

Setup  En. Data  w1 w2 100x5 100x10 100x20 200x10 200x20 500x20 
Group Group (%) (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) 

SD
ST

1
0

 

Low 

0.1 0.9 -5.21 -2.97 -2.49 -2.18 -1.42 -0.30 

0.5 0.5 -5.74 -3.29 -2.50 -2.46 -1.39 -0.42 

0.9 0.1 -5.75 -3.10 -2.24 -2.10 -1.85 -0.45 

1.0 0.0 -4.41 -3.42 -2.16 -2.45 -1.20 -0.53 

Medium 

0.1 0.9 -6.30 -3.97 -3.21 -2.17 -2.03 -0.26 

0.5 0.5 -6.42 -3.23 -2.82 -2.14 -1.69 -0.44 

0.9 0.1 -5.72 -3.36 -1.97 -2.05 -1.45 -0.27 

1.0 0.0 -4.29 -3.46 -1.74 -2.33 -1.41 -0.51 

High 

0.1 0.9 -7.05 -4.50 -3.26 -2.12 -1.75 -0.46 

0.5 0.5 -5.85 -2.84 -2.32 -1.98 -1.34 -0.41 

0.9 0.1 -4.96 -3.35 -2.48 -2.34 -1.60 -0.34 

1.0 0.0 -4.68 -3.63 -2.40 -2.25 -1.50 -0.40 

SD
ST

5
0

 

Low 

0.1 0.9 -5.38 -2.77 -1.91 -1.69 -0.66 -0.28 

0.5 0.5 -5.61 -2.88 -1.97 -1.94 -1.39 -0.38 

0.9 0.1 -5.05 -2.68 -2.27 -1.97 -1.17 -0.34 

1.0 0.0 -4.95 -3.44 -1.92 -2.09 -1.27 -0.33 

Medium 

0.1 0.9 -7.10 -3.66 -2.70 -2.49 -1.35 -0.16 

0.5 0.5 -5.24 -2.73 -2.13 -1.75 -1.36 -0.20 

0.9 0.1 -5.59 -2.71 -2.14 -2.08 -1.35 -0.38 

1.0 0.0 -4.08 -3.65 -1.65 -2.17 -1.17 -0.34 

High 

0.1 0.9 -6.98 -3.92 -2.73 -2.00 -1.25 -0.15 

0.5 0.5 -6.08 -2.70 -2.29 -1.94 -1.03 -0.27 

0.9 0.1 -5.49 -2.62 -1.97 -1.43 -1.36 -0.24 

1.0 0.0 -4.65 -3.23 -2.35 -2.09 -1.01 -0.24 
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Table 5.17 Percentage deviation of the VNS results from the NEH solutions for the F|sijl, 

prmu|∑(Cj+Energyj) problem with 100 jobs to 5, 10 and 20 machines, 200 jobs to 10 and 

machines and 500 jobs to 20 machines for SDST100 and SDST125 

Setup  En. Data  w1 w2 100x5 100x10 100x20 200x10 200x20 500x20 
Group Group (%) (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) Avg. (%) 

SD
ST

1
00

 

Low 

0.1 0.9 -6.09 -2.90 -1.88 -1.09 -1.25 -0.15 

0.5 0.5 -6.00 -3.20 -2.30 -0.96 -0.92 -0.10 

0.9 0.1 -6.66 -3.24 -2.18 -1.31 -1.48 -0.25 

1.0 0.0 -5.15 -3.75 -2.56 -2.19 -1.31 -0.31 

Medium 

0.1 0.9 -6.50 -3.43 -2.25 -1.36 -1.19 -0.09 

0.5 0.5 -6.03 -2.64 -1.87 -1.04 -1.01 -0.17 

0.9 0.1 -6.32 -3.34 -2.09 -0.99 -1.01 -0.34 

1.0 0.0 -5.81 -3.99 -2.03 -2.10 -1.40 -0.38 

High 

0.1 0.9 -5.68 -3.10 -2.35 -1.21 -1.14 -0.18 

0.5 0.5 -5.47 -3.50 -2.72 -1.14 -0.91 -0.19 

0.9 0.1 -6.00 -3.09 -2.31 -0.74 -0.89 -0.24 

  1.0 0.0 -5.41 -4.00 -2.35 -2.34 -1.06 -0.39 

SD
ST

1
2

5
 

Low 

0.1 0.9 -6.42 -3.39 -2.03 -0.30 -0.84 -0.02 

0.5 0.5 -5.90 -3.55 -1.99 -0.38 -1.15 -0.13 

0.9 0.1 -6.62 -3.93 -2.19 -0.65 -1.56 -0.26 

1.0 0.0 -5.13 -3.40 -2.30 -2.43 -1.29 -0.55 

Medium 

0.1 0.9 -6.11 -3.42 -2.30 -0.37 -1.21 -0.18 

0.5 0.5 -5.86 -2.80 -2.08 -0.28 -1.46 -0.24 

0.9 0.1 -6.92 -3.17 -2.35 -0.60 -1.29 -0.26 

1.0 0.0 -5.36 -3.06 -2.35 -2.53 -1.42 -0.22 

High 

0.1 0.9 -6.79 -3.27 -2.40 -0.21 -1.48 -0.35 

0.5 0.5 -5.79 -2.91 -1.99 -0.36 -1.21 -0.11 

0.9 0.1 -6.71 -3.47 -1.86 -0.44 -1.05 -0.05 

1.0 0.0 -5.16 -3.61 -2.03 -2.51 -1.44 -0.42 

 

 

5.3.5 Trade-off Between the Total Production Cost and the Total Energy Cost 

 

To observe the impact of the energy cost objective in addition to the total 

production cost for the F|sijl, prmu|∑(Cj+Energyj) problem, we tabulate the production 

cost, the energy cost and the total cost values separately in Table 5.18. We used ten 
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instances with 50 jobs and 10 machines. We select the sequence dependent setup time 

values as SDST50 and for the energy-related parameters, we select medium range group. 

We will discuss the results  in Section 5.4.2. 

 

Table 5.18 Production cost and energy cost values for the F|sijl, prmu|∑(Cj+Energyj) 

problem with 50 jobs to 10 machines 

 

Ins. 
w1 w2 Production Energy Total 

Ins. 
w1 w2 Production Energy Total 

(%) (%) Cost Cost Cost (%) (%) Cost Cost Cost 

In
st

an
ce

 1
 0.1 0.9 674930 345480 378425 

In
st

an
ce

 6
 0.1 0.9 643125 341330 371510 

0.5 0.5 603775 378529 491152 0.5 0.5 605255 364258 484757 

0.9 0.1 586990 403152 568606 0.9 0.1 586465 418091 569628 

1.0 0.0 583905 424416 583905 1.0 0.0 579805 436164 579805 

In
st

an
ce

 2
 0.1 0.9 657915 341087 372770 

In
st

an
ce

 7
 0.1 0.9 664260 359073 389592 

0.5 0.5 577540 372449 474995 0.5 0.5 604065 393594 498830 

0.9 0.1 558030 404851 542712 0.9 0.1 590415 433339 574707 

1.0 0.0 566540 429647 566540 1.0 0.0 582425 444452 582425 

In
st

an
ce

 3
 0.1 0.9 618830 356234 382494 

In
st

an
ce

 8
 0.1 0.9 662295 357041 387566 

0.5 0.5 578935 368908 473922 0.5 0.5 588120 386021 487071 

0.9 0.1 546450 412006 533006 0.9 0.1 582050 418120 565657 

1.0 0.0 550485 432083 550485 1.0 0.0 580355 443575 580355 

In
st

an
ce

 4
 0.1 0.9 636100 344286 373467 

In
st

an
ce

 9
 0.1 0.9 642030 337323 367794 

0.5 0.5 591845 366356 479101 0.5 0.5 590530 347636 469083 

0.9 0.1 585215 403684 567062 0.9 0.1 578595 402438 560979 

1.0 0.0 584265 447127 584265 1.0 0.0 574725 405950 574725 

In
st

an
ce

 5
 0.1 0.9 669090 356331 387607 

In
st

an
ce

 1
0

 

0.1 0.9 674330 340492 373876 

0.5 0.5 594445 389206 491826 0.5 0.5 600990 365933 483462 

0.9 0.1 576565 429527 561861 0.9 0.1 592380 411946 574337 

1.0 0.0 590395 453894 590395 1.0 0.0 593140 424523 593140 

 

 

5.4 Analysis of the Results

 

 In this section, we summarize the results of the computational studies which are 

tabulated in Tables 5.6-5.17 and analyze them separately for the F|sijl, prmu|Cmax and F|sijl, 
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prmu|∑(Cj+Energyj) problems. Our main discussion will be on the average percentage 

deviation (PD) values of objective functions for both two problems. In addition, we will 

also discuss the percentage deviation (PD) of the total production cost and total energy cost 

values from the optimal and NEH values for the F|sijl, prmu|∑(Cj+Energyj) problem, which 

are tabulated in Table A1-36 in Appendix.  

 

5.4.1 Analysis of the Results for the F|sijl, prmu|Cmax Problem 

 

We observe from the results given in Tables 5.6-5.9 that the proposed VNS 

algorithm outperforms the genetic algorithm (GA) for each SDST group and each instance 

size. The reason of the low performance of the GA can be due to combining several 

solutions with the crossover operation, which may lead too much diversification. With the 

local search procedure of the proposed VNS algorithm, we explore all solutions in a 

smaller search space dictated by the neighborhood structure used, which leads to 

intensification and an increase in the quality of the solution. 

The advanced genetic algorithm with local search procedure, called memetic 

algorithm (MA), improves the results for most of the instance sizes for each SDST group, 

when we compare with the results of GA. For larger instance sizes, some results of MA 

give better results than the VNS algorithm. The reason for the better performance of MA in 

some of the instances can be due to the local search strategy of MA. Ruiz et al. (2005) use 

this local search procedure with limited iteration number, which decreases the consumed 

time in local search and increase the iteration number in genetic algorithm part. In Table 

5.7, half of the instance size groups outperform the proposed VNS algorithm when the 

setup time is SDST50. However, on the average, for each SDST groups, proposed VNS 

algorithm shows a better performance compared to MA as can be seen in Table 5.6-5.9. 

When Ruiz and Stützle (2008) replace the applied local search procedure in MA 

with the descent local search procedure, called MA_LS, they improve the solution quality 

according to MA. From Tables 5.6-5.9, it is observed that the average percentage deviation 
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(APD) of the MA_LS results from the best known solutions are lower than the APD of the 

proposed VNS algorithm for each SDST groups. However, for the largest instance 500x20, 

the VNS algorithm gives better results than the MA_LS algorithm in SDST50, SDST100 

and SDST125 group of setup times, as can be seen in Tables 5.7, 5.8 and 5.9, respectively. 

Even though the local search procedure is the same in both VNS and MA_LS algorithms, 

MA_LS shows a better performance overall than the proposed VNS algorithm. One of the 

reasons may be that MA_LS is an evolutionary algorithm and the solutions are evolved 

through the iterations. On the other, in shaking part of the VNS, the solution is generated 

randomly, and then this solution is improved with the local search procedure. Hence, there 

are two different strategies used in MA_LS and VNS algorithms: intensification and 

diversification, respectively. For the F|sijl, prmu|Cmax problem, the computational results 

show that MA with descent local search (MA_LS) works better than VNS. Additionally, 

since the stopping condition is CPU time, coding the algorithm has an important role. 

Using an additional speed-up in MA_LS may affect the performance of the algorithm. 

The PACO algorithm has a lower APD value than the proposed VNS for the 

instance sizes 50x5, 50x20, 100x10 and 100x20, as it can be observed in Table 5.6. In 

Table 5.7, there are only two instance groups, 50x10 and 50x20, where PACO algorithm 

performs better results than the VNS algorithm. Table 5.9 shows that for the largest SDST 

group, 20x10, 20x20, 50x5 and 50x20, PACO algorithm achieves lower APD value than 

VNS algorithm. However, for each SDST group, the proposed VNS algorithm has a better 

performance on the average. Since PACO also uses the same local search procedure with 

MA_LS, IG_LS and the proposed VNS, PACO is outperformed by all of these three 

algorithms on the average. The reason of the weak performance of the PACO may be due 

to its feedback mechanism, which is based on the job position while constructing a 

solution. This information does not carry the successor or predecessor relationship between 

the adjacent jobs. However, this flowshop problem is affected by the sequence dependent 

setup times (SDST). On the other hand, proposed VNS has a setup-dependent 
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neighborhood structure. As a result, after the same local search part, VNS shows a better 

performance than the PACO. 

The VNS algorithm outperforms the IG algorithm in each instance size of each 

SDST group, except one instance, as shown in Tables 5.6-5.9. In Table 5.7, only the APD 

of the IG for instance 100x5 has a lower value than the VNS algorithm. The structure of the 

IG is based on node insertion. Some of the components of the solution are removed from 

the sequence and inserted into the best position that gives a lower makespan value. The 

local search procedure of the proposed VNS algorithm is also based on node insertion. 

However, different from IG algorithm, instead of selecting some of the jobs in the sequence 

we remove each job in the sequence one by one and insert into the best position that gives a 

lower makespan value, among all possible positions.  

The hybrid version of IG with the local search procedure, IG_LS, is the state-of-the art 

for the F|sijl, prmu|Cmax problem. IG_LS algorithm outperforms the proposed VNS 

algorithm in each SDST group and instance as can be seen in Tables 5.6-5.9.  It is observed 

that adding the local search procedure to the IG algorithm improves the quality of the 

algorithm significantly. In general, IG_LS is based on the node insertion operation in both 

the main part and the local search part of the algorithm. The reason of the power of the 

IG_LS algorithm may be that Ruiz and Stützle (2008) use less diversification techniques in 

their algorithm compared to the proposed VNS algorithm. Ruiz and Stützle (2008) only 

select the jobs from the sequence randomly, but they place these jobs in a logical way. On 

the other hand, in shaking part of the VNS, we move to a random solution in the 

neighborhood and considering this solution as the initial solution, we explore the best 

solution in its neighborhood in the local search part. Moreover, as we discuss in MA_LS 

and VNS comparison, coding the algorithm has an important role, since the stopping 

condition is CPU time. Ruiz and Stützle (2008) use this local search procedure with MA 

and IG, and we observe that MA_LS and IG_LS algorithms have better performance than 

VNS algorithm. Ruiz and Stützle (2008) may use an additional speed-up in their local 
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search procedure and it may lead to having more iterations, which may increase the quality 

of the solutions.  

To conclude, we can infer the following conclusions for the F|sijl, prmu|Cmax problem 

from the results given in Tables 5.6-5.9: 

 The node insertion neighborhood structure is a powerful move operation for the 

F|sijl, prmu|Cmax problem. Especially, using this neighborhood in a local search 

procedure improves the performance of an existing algorithm significantly, as 

indicated by the results of MA_LS and IG_LS. 

 When the same local search procedure is used in two different heuristic algorithms, 

then the structure of the main algorithm becomes important, which determines the 

initial solution for the local search. We observe that while constructing or 

improving a solution in the heuristic, we should consider the successor and 

predecessor relationship between jobs in the algorithm. Namely, the problem-

specific operations may result in a better performance as seen in PACO and VNS 

comparison. On the other hand, using more intensified strategies such as 

evolutionary algorithms or iterated greedy algorithm instead of generating random 

solutions, such as the shaking part of the VNS algorithm, may lead the solution to 

converge in a better value, since the stopping condition is CPU time (See the 

analysis of VNS with MA_LS and IG_LS). 

 In the proposed VNS algorithm, we observe that the solution is mostly improved by 

the local search phase and most of the CPU time is consumed in that phase. We 

utilize the Taillard’s speed up techniques in the computation of the local search 

phase in our proposed VNS algorithm as explained in Section 4.2.2. Ruiz and 

Stützle [22] do not declare their speed up procedure in their article but the results 

imply that they also use some powerful speed up techniques. Since the stopping 

criterion is CPU time, the speed ups and the coding skills play an important role in 

the heuristic algorithms.  
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Tables 5.10 and 5.11 present the maximum, the minimum and the average percentage 

deviation (PD) of the VNS results from the NEH heuristic for the F|sijl, prmu|Cmax problem 

according to the SDST groups. Since there are no benchmark data for the F|sijl, 

prmu|∑(Cj+Energyj) problem, we compare the VNS results with the NEH heuristic results 

for the large-sized instances. To analyze these APD values for the F|sijl, 

prmu|∑(Cj+Energyj) problem in a fair manner, we also obtained the APD values for the 

F|sijl, prmu|Cmax problem to observe the improvement. The proposed VNS algorithm has 

already been initialized by the solution which is constructed by NEH heuristic. Hence, the 

result of the proposed VNS algorithm will give at least the same value of the NEH heuristic 

but expectedly a lower objective function value. As a result, the PD values in Tables 5.10 

and 5.11 are negative, which indicate that there are improvements in the solution quality. In 

Table 5.10 and 5.11, the maximum and the minimum percentage values are considered as 

absolute values. These tables indicate how much we improve the NEH solutions by the 

proposed VNS algorithm. We observe that when the SDST values increase the absolute 

values of the average percentage deviation (APD) also increase. It means that the proposed 

VNS algorithm improves the solutions more when there are higher setup time values. The 

reason can be that the proposed VNS has a setup-dependent neighborhood structure. When 

the setup time value increases, the improvement gives a higher deviation. We will analyze 

the results given in Tables 5.10 and 5.11 to evaluate the performance of the VNS algorithm 

for the F|sijl, prmu|∑(Cj+Energyj) problem in the following subsection. 

 

5.4.2 Analysis of the Results for the F|sijl, prmu|∑(Cj+Energyj) Problem 

 

We study the F|sijl, prmu|∑(Cj+Energyj) problem for the first time in the literature. 

Hence, firstly we conduct the preliminary experiments for small-sized instances. To 

analyze the performance of the VNS heuristic, we compare the heuristic results with the 

optimal solutions which are obtained by CPLEX. Tables 5.12 and 5.13 display the 

percentage deviation (PD) of VNS results from the optimal solutions for the F|sijl, 
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prmu|∑(Cj+Energyj) problem. The results are tabulated according to the instance size, 

setup groups, energy-related data groups and weighted sum parameters. We find the 

optimal solutions for the problem up to 10 jobs with 5 machines and 15 jobs with 3 

machines in reasonable time. We also conduct some experiments on 20 jobs with 2 

machines and 15 jobs with 4 machines. However, we observe that when the weighted sum 

parameter of the total production cost w1 (due to the total completion time) is 0.1 and the 

weighted sum parameter of the total energy cost w2 is 0.9, these problems cannot be solved 

optimally within one hour. We limited the time for CPLEX as one hour in our study, since 

we aim to have this comparison as a preliminary work for the F|sijl, prmu|∑(Cj+Energyj) 

problem.  

 In Tables 5.12 and 5.13, we expect to find the optimal solutions by the proposed 

VNS algorithm, since the size of the problems is small. However, we observe that we reach 

the optimal solutions with the proposed VNS algorithm mostly in instances 10x2 and 15x2. 

On the other hand, except from some of instances, we obtain close results to the optimal 

solutions. The reason of the deviation is that we consider the F|sijl, prmu|∑(Cj+Energyj) 

problem without inserted idle time during scheduling in the VNS algorithm. Our solution 

representation is permutation of the jobs in the algorithm and we schedule the F|sijl, 

prmu|∑(Cj+Energyj) problem according to the this permutation. Since we minimize a non-

regular objective function in the F|sijl, prmu|∑(Cj+Energyj) problem, to find the global 

optimum we should use the inserted idle time. However, since it leads to high time 

consumption in the proposed VNS algorithm, we study this problem without inserted idle 

time in the proposed heuristic. 

 In Tables 5.12 and 5.13, it is observed that the average percentage deviation of the 

proposed VNS algorithm solution from the optimal solution is higher when the data of the 

energy-related parameter is high, for each instance size and setup time group. Moreover, 

for each instance group, when the weighted sum parameter of the total production cost w1 

(due to the total completion time) is higher than the weighted sum parameter of the total 

energy cost w2, the results of the VNS heuristic have closer values to the optimal solutions. 
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Additionally, these problems are solved in CPLEX in shorter time than the problems which 

have higher w2 value. Namely, when the multi-objective problem is closer to the total 

production cost problem, we obtain better results with the VNS algorithm in a shorter time. 

On the other hand, when we increase the importance of the energy objective, the problem 

gets harder. These observations are expected because when the effect of the energy-related 

objective increases in the objective function value by the energy data values or the 

weighted sum parameter, the problem gets more complex. The reason is that when the 

objective function is only to minimize the total production cost, which is a regular objective 

function, the proposed VNS algorithm performs better solutions. On the other hand, when 

we increase the importance of the energy objective in the objective function, which is a 

non-regular objective function, inserting idle time into the schedule may give better results.  

 In Tables 5.14-5.17, the percentage deviation values are negative similar to the 

results given in Tables 5.10 and 5.11, which means that there is an improvement over the 

NEH solutions. The values are tabulated as their absolute values under the maximum and 

the minimum PD columns. Tables indicate that when the machine number increases for 

specific number of jobs, the absolute value of the average percentage deviation decreases 

for each setup and energy groups, which implies that there is less improvement on the NEH 

solutions. This decrease is also observed in Tables 5.10 and 5.11 which shows the PD of 

VNS results from the NEH solutions for the F|sijl, prmu|Cmax problem, except the SDST10 

group. The reason of this reduction may be the stopping condition of the proposed 

heuristic. The stopping condition is based on CPU time and it depends on the instance size. 

Although for larger instances we run the algorithm in longer time, we observe that the total 

number of iterations reduces faster due to complexity of the problem. 

 On the average, the improvement of the NEH solution is almost same for the large-

sized instances. However, for 20 jobs and 50 jobs instances, we observe that when the 

weighted sum parameter of the total production cost w1 is 0.1 and the weighted sum 

parameter of the total energy cost w2 is 0.9, we can improve the NEH solution by the VNS 

algorithm more. One of the reasons for this behavior can be that the change in the sequence 
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even by one job affects the energy cost more in the F|sijl, prmu|∑(Cj+Energyj) problem, 

which also leads to a decrease in the total cost when we give higher weight to the energy 

cost objective.  

 We observe that for small-sized problems, the improvement of the NEH solution by 

the proposed VNS heuristic is greater for the F|sijl, prmu|∑(Cj+Energyj) problem when we 

compare with the F|sijl, prmu|Cmax problem. However, for large-sized instances, the value 

of the APD decrease dramatically in the F|sijl, prmu|∑(Cj+Energyj) problem.  

 In Table 5.18, we observe that when we add the energy cost to the objective 

function or increase the value of the weighted sum parameter of the total energy cost w2, 

the total energy cost value decreases as we expected. On the other hand, when the value of 

the weighted sum parameter of the total production cost w1 increases, the value of the total 

production cost decreases except some instances. For the instances 2, 3, 5 and 10 seen in 

Table 5.18, when we change the weighted sum parameters w1=0.9 and w2=0.1 to w1=1.0 

and w2=0.0, the total production cost also increases. The reason may be that when we set 

the weighted sum parameters different from 0, the structure of the problem changes. Hence, 

unexpected results can be observed such as instances 2, 3, 5 and 10. 

We can conclude with the following observations for the F|sijl, prmu|∑(Cj+Energyj) 

problem from the results shown in Tables 5.14 -5.18: 

 The proposed VNS algorithm improves the solutions effectively for the F|sijl, 

prmu|∑(Cj+Energyj) problem but when the instance size gets larger, the 

performance of the algorithm decreases. The most important reason is that we 

do not use any speed up algorithm for calculation of the objective function value 

in the local search procedure. When a job is removed from the sequence and 

inserted into another position among all possible positions, Taillard’s speed up 

works effectively for the F|sijl, prmu|Cmax problem. Since the stopping condition 

is based on CPU time, for large-sized problems, the VNS algorithm iterates for 

a small number of iterations to improve the solution due to the complexity of 

the F|sijl, prmu|∑(Cj+Energyj) problem. For 500 jobs with 20 machines, we use 
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15 minutes as termination criterion according to the equation (n x m/2) x t 

milliseconds as proposed by Ruiz and Stützle (2008) and when t is 180. 

Allowing more time to the proposed VNS algorithm will increase the quality of 

the solution but it may not be desirable due to high time consumption. 

 When we consider the energy cost into the objective function, we obtain 

significant energy saving. 

In the Appendix, for the F|sijl, prmu|∑(Cj+Energyj) problem we tabulated also the 

maximum, the minimum and the average percentage deviation (PD) of the total production 

cost, the total energy cost and the total cost values of the VNS solutions from the optimal 

and NEH heuristic solutions, according to the size of the instances. Tables A1-12 show the 

PD values of the VNS algorithm from the optimal solutions for the small-sized problem. 

Tables A13-36 show the PD values of the VNS algorithm from the NEH solutions for the 

large-sized problem. 

For the small-sized problems seen in Table A1-12, we observe high PD values 

when the weighted sum parameter of the total production cost w1 is 0.1 and the weighted 

sum parameter of the total energy cost w2 is 0.9. In general, the average PDs of the total 

production cost values are negative, which means that with VNS algorithm, we find better 

schedule according to the total production cost. On the other hand, the average PDs of the 

total energy cost values are positive, which means that VNS has worse performance for 

minimizing total energy cost. Namely, when we have the average PD of the VNS results 

from the optimal solution, we obtain a better schedule for the total production cost 

objective and a worse schedule for the total energy cost objective. In addition, when the 

instance sizes get larger, the absolute values of the PD values get higher. The reason of the 

deviation is that we consider the F|sijl, prmu|∑(Cj+Energyj) problem without inserted idle 

time during scheduling in the VNS algorithm. When we increase the value of the weighted 

sum parameter of the energy cost objective, we obtain some worse results, since our 

objective acts more like non-regular objective. 
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For the large-sized problems seen in Table A13-36, we observe that we improve the 

NEH solutions with the proposed VNS algorithm by improving the total production cost 

and the total energy cost almost equally. Namely, both the total production cost and the toal 

energy cost values are improved by VNS algorithm. For some of the instances, some 

positive PD values are observed. It means that the total cost is still improved by the 

proposed VNS algorithm; however the improvement is done by worsening one of the 

objective function value (which has positive PD value). 
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Chapter 6 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

6.1 Conclusions  

 

In this thesis, we studied two flowshop scheduling problems with sequence 

dependent setup times (FS-SDST): F|sijl, prmu|Cmax and F|sijl, prmu|∑(Cj+Energyj). In the 

F|sijl, prmu|Cmax problem, each job is characterized with a processing time on each machine 

and setup times according to the predecessor and successor jobs. We aimed to schedule the 

jobs to be processed on all machines to minimize the makespan. In the F|sijl, 

prmu|∑(Cj+Energyj) problem, we studied energy-aware FS-SDST problem. We used the 

strategy that when the machine is kept idle for a long time, instead of keeping the machine 

idle, turning off and on the machine can consume lower energy. For the F|sijl, 

prmu|∑(Cj+Energyj) problem, we considered that all machines consume energy during 

processing a part, idle period, turning off/on the machine and setup operations. While 

considering the energy consumption, we desired to minimize the completion time of the 

jobs to minimize the in-process inventory. In the F|sijl, prmu|∑(Cj+Energyj) problem, the 

aim is to schedule the jobs to be processed on all machines and to decide about the status of 

the machine between scheduled jobs so as either to keep the machine idle or to turn off and 

turn on the machine, when the objective is to minimize both the total completion time and 

the total energy consumption. 

We proposed a Variable Neighborhood Search (VNS) algorithm for these two FS-

SDST problems. The proposed VNS algorithm uses two neighborhood structures and a 

local search procedure systematically. After the preliminary tests, we decided to start the 
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algorithm with NEH heuristic initialization. As the neighborhood structures, we used the 

maximum setup one-job insertion and the swap neighborhood structures in that order for 

the ‘shaking’ phase of the VNS algorithm. To improve the quality of the solution, we 

applied the local search procedure based on the node insertion neighborhood with the 

steepest descent strategy. We observe that the node insertion neighborhood structure is a 

powerful move operation for the FS-SDST problem. We also used the simulated annealing-

like acceptance criterion for ‘move or not’ phase of the algorithm, which provides 

diversification to the proposed VNS. 

We analyzed the performance of the VNS algorithm for the F|sijl, prmu|Cmax 

problem by using the well-known instance set. We compared our results with the genetic 

algorithm (GA), memetic algorithm (MA), MA with modified local search (MA_LS), ant 

colony optimization algorithm (PACO), iterated greedy (IG) and IG with local search 

(IG_LS) from the literature. While the VNS algorithm gives better results in comparison to 

GA, MA, PACO and IG algorithms, the MA_LS and IG_LS outperform the proposed VNS 

algorithm. For the F|sijl, prmu|∑(Cj+Energyj) problem, since it is studied for the first time 

in the literature, we generated a set of instances for the energy-related parameters. We 

solved small-sized problems with MILP model and proposed VNS algorithm, and 

compared the results to analyze the performance of VNS algorithm. For large-sized 

problem instances, we compared the VNS results with the well-known NEH constructive 

heuristic. This comparison indicates how much we improve the NEH solutions by the 

proposed VNS algorithm. We observed that the proposed VNS algorithm is a robust 

algorithm for the FS-SDST problem for different objectives. The proposed VNS algorithm 

gives competitive and acceptable results for the F|sijl, prmu|Cmax problem and the F|sijl, 

prmu|∑(Cj+Energyj) problem. 
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6.2 Future Research  

 

 Since the VNS algorithm has some decisions to make, the performance of the 

algorithm still can be improved by changing the some of the decisions made in the 

algorithm. New neighborhood structures can be proposed or the number of neighborhood 

structures can be increased. The solution quality is mostly improved by the local search 

phase compared to neighborhoods, hence another local search procedure can be proposed. 

For the F|sijl, prmu|∑(Cj+Energyj) problem, the algorithm can be improved by inserting 

idle time to the schedule. Moreover for the calculation of the total completion time 

objective, some speed up algorithms can be developed for future research. 
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APPENDIX 

 

This Appendix presents the maximum, the minimum and the average percentage 

deviation (PD) of the total production cost, the total energy cost and the total cost values of 

the VNS solutions from the optimal and NEH heuristic solutions, according to the size of 

the instances for the F|sijl, prmu|∑(Cj+Energyj) problem.  

 

Table A1 Percentage deviation of the VNS results from the optimal solutions for the 10x2 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 2.45 -0.72 0.43 11.70 0.00 3.35 2.23 0.00 0.70 

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Medium 

0.1 0.9 0.00 -5.00 -2.36 24.58 0.00 8.57 8.49 0.00 2.53 

0.5 0.5 0.00 -2.17 -0.83 21.46 0.00 9.10 1.99 0.00 0.88 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

High 

0.1 0.9 0.00 -3.88 -1.76 25.58 0.00 7.79 14.52 0.00 4.21 

0.5 0.5 0.00 -1.76 -0.50 15.42 0.00 9.81 4.01 0.00 2.06 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SD
ST

5
0

 

Low 

0.1 0.9 0.00 -0.62 -0.22 0.94 0.00 0.46 0.09 0.00 0.04 

0.5 0.5 0.48 0.00 0.12 0.00 -2.26 -0.56 0.33 0.00 0.08 

0.9 0.1 0.00 0.00 0.00 5.00 0.00 1.25 0.04 0.00 0.01 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Medium 

0.1 0.9 0.00 -22.97 -10.95 11.42 0.00 6.39 6.61 0.00 2.72 

0.5 0.5 0.00 -0.93 -0.28 3.89 0.00 1.07 1.01 0.00 0.25 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

High 

0.1 0.9 0.00 -22.97 -11.70 10.91 0.00 6.36 8.23 0.00 4.10 

0.5 0.5 0.00 -1.85 -0.51 4.44 0.00 1.20 1.69 0.00 0.44 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A2 Percentage deviation of the VNS results from the optimal solutions for the 10x2 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.00 -2.62 -0.66 6.59 0.00 1.65 1.74 0.00 0.43 

0.5 0.5 0.00 -0.03 -0.01 0.53 0.00 0.13 0.03 0.00 0.01 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Medium 

0.1 0.9 0.00 -9.50 -4.69 7.28 0.00 3.17 5.15 0.00 2.05 

0.5 0.5 0.00 -2.62 -0.66 4.80 0.00 1.20 0.50 0.00 0.13 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

High 

0.1 0.9 0.00 -18.56 -7.39 5.99 0.00 3.18 3.72 0.00 2.26 

0.5 0.5 0.00 -8.74 -2.84 7.48 0.00 3.00 1.60 0.00 0.70 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.00 -2.27 -0.69 3.51 0.00 1.38 1.14 0.00 0.48 

0.5 0.5 0.00 0.00 0.00 0.14 0.00 0.03 0.02 0.00 0.01 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Medium 

0.1 0.9 0.00 -18.04 -7.19 4.96 0.00 1.82 2.01 0.00 0.70 

0.5 0.5 0.00 -1.91 -0.48 2.07 0.00 0.52 0.18 0.00 0.05 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

High 

0.1 0.9 0.00 -10.74 -4.85 5.39 0.00 2.05 4.38 0.00 1.56 

0.5 0.5 9.89 0.00 2.47 0.00 -3.77 -0.94 0.51 0.00 0.13 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A3 Percentage deviation of the VNS results from the optimal solutions for the 10x3 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 5.88 -1.98 0.97 14.38 -15.27 -0.22 1.42 0.00 0.54 

0.5 0.5 0.00 0.00 0.00 0.48 0.00 0.12 0.02 0.00 0.00 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -23.43 -5.90 0.00 0.00 0.00 

Medium 

0.1 0.9 5.03 -14.98 -3.98 50.98 0.69 18.26 21.48 0.95 8.87 

0.5 0.5 3.31 -1.62 0.06 13.84 -6.29 3.82 1.67 0.00 0.79 

0.9 0.1 0.00 -0.24 -0.06 7.67 0.00 1.92 0.09 0.00 0.02 

1.0 0.0 0.00 0.00 0.00 0.00 -8.41 -2.10 0.00 0.00 0.00 

High 

0.1 0.9 -4.75 -18.04 -12.08 51.35 5.36 21.83 31.31 1.34 12.31 

0.5 0.5 5.45 -4.44 0.65 27.31 -4.37 6.22 4.70 0.00 2.08 

0.9 0.1 0.00 0.00 0.00 0.67 0.00 0.17 0.05 0.00 0.01 

1.0 0.0 0.00 0.00 0.00 0.00 -20.10 -6.75 0.00 0.00 0.00 

SD
ST

5
0

 

Low 

0.1 0.9 0.00 -4.88 -1.70 6.07 0.26 3.23 0.92 0.12 0.50 

0.5 0.5 0.00 -0.12 -0.03 2.51 0.00 0.81 0.09 0.00 0.04 

0.9 0.1 0.00 0.00 0.00 0.58 0.00 0.22 0.01 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -2.81 -0.88 0.00 0.00 0.00 

Medium 

0.1 0.9 0.00 -13.65 -5.08 15.69 0.00 7.37 10.30 0.00 5.26 

0.5 0.5 3.33 0.00 1.06 1.26 -2.14 0.07 0.92 0.00 0.61 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

High 

0.1 0.9 0.00 -24.20 -9.91 16.67 0.00 7.72 11.89 0.00 5.84 

0.5 0.5 0.00 -9.03 -3.83 13.96 0.00 5.79 2.99 0.00 1.48 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -1.72 -0.43 0.00 0.00 0.00 
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Table A4 Percentage deviation of the VNS results from the optimal solutions for the 10x3 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.00 -5.98 -2.56 7.51 0.30 4.01 2.58 0.17 1.15 

0.5 0.5 0.00 0.00 0.00 1.29 0.00 0.39 0.19 0.00 0.06 

0.9 0.1 0.00 0.00 0.00 1.29 0.00 0.69 0.02 0.00 0.01 

1.0 0.0 0.00 0.00 0.00 0.00 -0.12 -0.03 0.00 0.00 0.00 

Medium 

0.1 0.9 16.26 -14.99 -2.77 11.50 0.78 4.60 8.26 1.58 3.70 

0.5 0.5 -0.81 -1.98 -1.41 3.80 1.05 2.19 1.12 0.14 0.52 

0.9 0.1 0.00 0.00 0.00 1.46 0.00 0.36 0.22 0.00 0.05 

1.0 0.0 0.00 0.00 0.00 0.80 -0.14 0.17 0.00 0.00 0.00 

High 

0.1 0.9 -3.50 -14.99 -8.68 12.88 2.05 5.68 10.79 1.78 4.70 

0.5 0.5 -1.25 -4.84 -2.56 6.04 1.34 3.04 2.57 0.55 1.25 

0.9 0.1 0.00 0.00 0.00 1.33 0.00 0.33 0.32 0.00 0.08 

  1.0 0.0 0.00 0.00 0.00 0.00 -0.13 -0.03 0.00 0.00 0.00 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.27 -3.69 -0.86 3.71 -0.04 1.03 0.84 0.00 0.33 

0.5 0.5 3.03 0.00 0.76 0.00 -0.39 -0.10 2.45 0.00 0.61 

0.9 0.1 0.00 0.00 0.00 0.29 0.00 0.07 0.01 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -0.76 -0.22 0.00 0.00 0.00 

Medium 

0.1 0.9 -3.86 -10.83 -7.34 6.06 2.55 4.50 4.81 2.03 3.50 

0.5 0.5 1.76 -1.39 -0.43 5.23 0.07 2.33 2.12 0.45 1.13 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -0.68 -0.17 0.00 0.00 0.00 

High 

0.1 0.9 -3.86 -20.65 -12.45 6.82 2.65 4.95 5.47 2.39 4.02 

0.5 0.5 5.98 -2.62 0.33 2.86 -1.36 1.53 1.99 0.81 1.27 

0.9 0.1 0.29 0.00 0.07 0.00 -0.35 -0.09 0.14 0.00 0.04 

1.0 0.0 0.00 0.00 0.00 0.00 -0.54 -0.13 0.00 0.00 0.00 
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Table A5 Percentage deviation of the VNS results from the optimal solutions for the 10x4 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 0.00 -4.77 -1.58 20.41 0.18 10.94 3.08 0.03 1.62 

0.5 0.5 0.54 -0.14 0.07 3.22 -10.85 -0.82 0.10 0.06 0.08 

0.9 0.1 0.00 0.00 0.00 2.88 0.00 0.87 0.01 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -0.40 -0.10 0.00 0.00 0.00 

Medium 

0.1 0.9 -0.82 -22.24 -8.45 54.12 2.19 28.93 24.14 1.05 14.59 

0.5 0.5 0.00 -2.87 -0.90 12.55 0.00 8.84 3.07 0.00 1.72 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 -3.40 -1.14 0.00 0.00 0.00 

High 

0.1 0.9 0.71 -22.24 -9.90 56.18 7.52 30.03 36.02 2.16 19.79 

0.5 0.5 -0.24 -6.03 -3.85 29.82 1.32 18.05 6.52 0.17 3.48 

0.9 0.1 0.00 -0.18 -0.11 3.14 0.00 1.67 0.12 0.00 0.05 

1.0 0.0 0.00 0.00 0.00 0.00 -0.86 -0.21 0.00 0.00 0.00 

SD
ST

5
0

 

Low 

0.1 0.9 9.55 -2.47 1.18 5.52 -0.78 2.62 3.55 0.73 1.81 

0.5 0.5 0.00 -0.12 -0.04 1.61 0.00 0.85 0.25 0.00 0.10 

0.9 0.1 0.00 0.00 0.00 3.13 0.00 0.93 0.08 0.00 0.02 

1.0 0.0 0.00 0.00 0.00 0.79 -0.64 0.08 0.00 0.00 0.00 

Medium 

0.1 0.9 -9.05 -25.00 -16.89 18.17 6.80 13.63 12.14 4.56 9.27 

0.5 0.5 -0.63 -3.27 -1.90 10.30 3.20 5.93 3.00 0.88 1.75 

0.9 0.1 0.00 0.00 0.00 0.73 0.00 0.18 0.09 0.00 0.02 

1.0 0.0 0.00 0.00 0.00 0.57 -0.74 -0.13 0.00 0.00 0.00 

High 

0.1 0.9 -9.05 -29.48 -18.61 17.41 6.33 13.58 14.33 5.12 10.90 

0.5 0.5 -2.16 -6.38 -4.23 11.32 4.48 8.03 5.26 1.74 3.43 

0.9 0.1 0.00 -0.12 -0.03 0.94 0.00 0.63 0.17 0.00 0.10 

1.0 0.0 0.00 -1.08 -0.27 1.44 -1.60 -0.34 0.00 -1.08 -0.27 
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Table A6 Percentage deviation of the VNS results from the optimal solutions for the 10x4 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -0.13 -3.14 -1.33 3.90 1.63 2.28 1.68 0.34 0.81 

0.5 0.5 0.00 0.00 0.00 1.50 0.00 0.55 0.24 0.00 0.09 

0.9 0.1 0.00 0.00 0.00 1.50 0.13 0.59 0.03 0.00 0.01 

1.0 0.0 0.00 0.00 0.00 -0.14 -1.98 -0.67 0.00 0.00 0.00 

Medium 

0.1 0.9 -6.11 -14.29 -12.04 7.65 2.54 5.27 5.80 1.69 3.82 

0.5 0.5 -0.03 -0.99 -0.47 2.20 0.04 1.31 1.18 0.01 0.59 

0.9 0.1 0.00 -0.02 0.00 1.17 0.00 0.73 0.16 0.00 0.11 

1.0 0.0 0.00 0.00 0.00 -0.14 -1.93 -0.77 0.00 0.00 0.00 

High 

0.1 0.9 -13.54 -15.62 -14.30 8.28 3.00 5.24 6.97 2.06 4.26 

0.5 0.5 -0.03 -5.14 -2.81 5.33 0.08 2.89 2.52 0.05 1.30 

0.9 0.1 0.00 -0.20 -0.06 1.11 0.72 0.91 0.26 0.08 0.19 

  1.0 0.0 0.00 0.00 0.00 -0.03 -1.41 -0.64 0.00 0.00 0.00 

SD
ST

1
2

5
 

Low 

0.1 0.9 -0.19 -9.20 -3.60 11.05 2.45 5.45 1.92 1.50 1.63 

0.5 0.5 0.00 -0.35 -0.14 2.20 0.00 1.08 0.22 0.00 0.06 

0.9 0.1 0.00 0.00 0.00 0.63 0.00 0.19 0.02 0.00 0.01 

1.0 0.0 0.00 0.00 0.00 0.14 -0.55 -0.10 0.00 0.00 0.00 

Medium 

0.1 0.9 -4.62 -29.97 -14.28 13.01 1.29 6.31 8.44 0.88 4.43 

0.5 0.5 -0.05 -4.00 -2.27 4.33 0.47 2.39 1.63 0.27 0.71 

0.9 0.1 0.85 -1.70 -0.21 6.38 -3.70 0.90 0.16 0.00 0.06 

1.0 0.0 0.00 0.00 0.00 0.30 -0.12 0.06 0.00 0.00 0.00 

High 

0.1 0.9 -10.90 -29.97 -20.42 8.18 2.25 5.60 6.09 1.27 4.32 

0.5 0.5 -0.05 -8.46 -4.24 5.77 0.46 3.58 2.38 0.34 1.69 

0.9 0.1 1.75 -0.16 0.40 1.38 -4.22 -0.59 0.28 0.00 0.15 

1.0 0.0 0.00 0.00 0.00 0.25 -0.33 -0.10 0.00 0.00 0.00 
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Table A7 Percentage deviation of the VNS results from the optimal solutions for the 10x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 0.32 -5.44 -2.16 27.58 5.85 16.14 4.02 1.41 2.76 

0.5 0.5 0.00 -0.10 -0.03 8.05 2.95 4.37 0.31 0.07 0.19 

0.9 0.1 0.00 0.00 0.00 4.31 1.23 2.75 0.03 0.01 0.02 

1.0 0.0 0.00 0.00 0.00 1.08 -5.18 -2.07 0.00 0.00 0.00 

Medium 

0.1 0.9 -6.85 -21.72 -14.78 61.91 26.35 38.21 30.90 10.88 18.31 

0.5 0.5 4.24 -2.30 0.34 26.64 0.03 10.72 5.66 0.67 3.11 

0.9 0.1 0.00 -0.02 -0.01 10.04 3.09 5.91 0.50 0.17 0.30 

1.0 0.0 0.00 0.00 0.00 -0.64 -11.85 -5.51 0.00 0.00 0.00 

High 

0.1 0.9 -6.85 -30.58 -17.27 75.81 20.86 41.56 45.43 14.60 25.88 

0.5 0.5 -0.14 -4.26 -2.01 37.43 3.30 17.89 9.65 1.11 4.78 

0.9 0.1 0.71 0.00 0.18 8.87 -4.28 2.75 0.77 0.27 0.41 

1.0 0.0 0.00 0.00 0.00 -0.40 -5.57 -3.09 0.00 0.00 0.00 

SD
ST

5
0

 

Low 

0.1 0.9 0.00 -2.81 -1.41 9.57 2.15 4.88 4.38 0.46 1.98 

0.5 0.5 0.00 -1.34 -0.34 9.53 0.79 3.50 0.32 0.10 0.19 

0.9 0.1 0.00 0.00 0.00 1.67 0.27 1.17 0.03 0.01 0.02 

1.0 0.0 0.00 0.00 0.00 0.20 -2.26 -0.86 0.00 0.00 0.00 

Medium 

0.1 0.9 -8.58 -26.02 -17.99 20.45 7.79 14.60 14.42 4.88 10.06 

0.5 0.5 0.00 -4.76 -2.90 10.56 4.45 6.86 2.71 0.52 1.94 

0.9 0.1 0.00 0.00 0.00 1.63 0.80 1.24 0.20 0.10 0.16 

1.0 0.0 0.00 0.00 0.00 0.10 -1.81 -0.99 0.00 0.00 0.00 

High 

0.1 0.9 -9.76 -23.53 -17.05 18.82 7.42 14.18 15.78 5.91 11.71 

0.5 0.5 6.50 -12.66 -4.82 15.77 -0.40 8.16 4.64 1.77 3.23 

0.9 0.1 0.00 -1.17 -0.29 5.73 0.59 2.19 0.29 0.12 0.23 

1.0 0.0 0.00 0.00 0.00 -0.21 -1.99 -1.15 0.00 0.00 0.00 
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Table A8 Percentage deviation of the VNS results from the optimal solutions for the 10x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 12.25 -1.73 2.18 3.33 -3.20 0.83 1.80 0.48 0.99 

0.5 0.5 0.00 -0.06 -0.02 0.49 0.13 0.31 0.11 0.03 0.06 

0.9 0.1 0.00 -0.02 0.00 0.88 0.13 0.42 0.03 0.00 0.01 

1.0 0.0 0.00 0.00 0.00 -0.06 -1.06 -0.54 0.00 0.00 0.00 

Medium 

0.1 0.9 -0.53 -16.14 -10.95 10.00 3.02 7.02 7.77 2.81 5.44 

0.5 0.5 -0.88 -9.27 -4.28 8.25 2.15 4.40 1.31 0.77 1.04 

0.9 0.1 0.00 -0.09 -0.02 0.56 0.00 0.30 0.11 0.00 0.04 

1.0 0.0 0.00 0.00 0.00 0.06 -1.07 -0.36 0.00 0.00 0.00 

High 

0.1 0.9 -0.53 -22.98 -13.23 10.67 2.03 7.21 9.39 1.95 6.11 

0.5 0.5 -0.88 -13.32 -5.49 9.21 2.18 5.16 3.55 1.50 2.39 

0.9 0.1 0.00 -0.09 -0.02 0.54 0.00 0.31 0.16 0.00 0.07 

  1.0 0.0 0.00 0.00 0.00 0.59 -1.08 -0.17 0.00 0.00 0.00 

SD
ST

1
2

5
 

Low 

0.1 0.9 -0.68 -4.62 -2.91 6.90 1.91 3.88 2.41 0.42 1.19 

0.5 0.5 2.36 -0.03 0.58 0.93 -7.41 -1.50 0.35 0.00 0.16 

0.9 0.1 343.54 0.00 85.88 1.11 -96.87 -23.55 0.03 0.00 0.02 

1.0 0.0 0.00 0.00 0.00 0.81 -1.62 -0.46 0.00 0.00 0.00 

Medium 

0.1 0.9 -7.74 -19.36 -15.09 7.51 2.32 5.20 5.53 1.69 3.82 

0.5 0.5 -0.51 -8.58 -3.25 6.52 1.44 2.96 1.72 0.71 0.97 

0.9 0.1 0.00 0.00 0.00 1.09 0.55 0.84 0.23 0.11 0.18 

1.0 0.0 0.00 0.00 0.00 0.99 -0.64 -0.05 0.00 0.00 0.00 

High 

0.1 0.9 -13.71 -31.35 -20.55 7.61 3.29 5.63 5.99 2.69 4.58 

0.5 0.5 -1.25 -9.11 -4.33 4.56 1.79 3.27 2.76 0.95 1.56 

0.9 0.1 0.00 -0.14 -0.03 1.55 0.03 0.86 0.44 0.01 0.26 

1.0 0.0 0.00 0.00 0.00 1.10 -0.78 -0.22 0.00 0.00 0.00 
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Table A9 Percentage deviation of the VNS results from the optimal solutions for the 15x2 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 0.75 -0.62 0.03 3.66 0.00 1.78 1.04 0.00 0.31 

0.5 0.5 0.02 0.00 0.00 0.00 -0.77 -0.19 0.00 0.00 0.00 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.23 0.00 0.06 1.10 0.00 0.28 0.23 0.00 0.06 

Medium 

0.1 0.9 0.00 -11.03 -4.14 42.65 0.00 16.68 15.65 0.00 5.03 

0.5 0.5 0.00 -1.67 -0.79 26.20 0.00 9.05 1.11 0.00 0.28 

0.9 0.1 0.07 0.00 0.02 4.72 -1.33 0.85 0.10 0.00 0.04 

1.0 0.0 0.00 0.00 0.00 0.00 -14.56 -3.64 0.00 0.00 0.00 

High 

0.1 0.9 4.71 -11.56 -5.33 46.72 -1.48 18.97 17.08 1.10 7.21 

0.5 0.5 0.84 -1.72 -0.38 24.03 0.00 7.40 2.73 0.00 1.02 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 2.71 0.00 0.68 0.00 0.00 0.00 

SD
ST

5
0

 

Low 

0.1 0.9 3.57 -0.33 1.33 14.16 -7.54 1.50 4.48 0.22 1.91 

0.5 0.5 0.95 -0.16 0.20 19.22 0.00 8.17 1.30 0.00 0.37 

0.9 0.1 0.98 0.00 0.43 35.70 -3.52 8.04 1.04 0.00 0.44 

1.0 0.0 0.04 0.00 0.01 2.94 0.00 0.74 0.04 0.00 0.01 

Medium 

0.1 0.9 0.00 -7.56 -4.05 13.01 0.00 6.96 7.68 0.00 3.73 

0.5 0.5 49.40 -1.71 11.65 5.21 -49.40 -9.60 0.42 0.00 0.19 

0.9 0.1 1.20 -0.46 0.18 29.17 0.00 12.33 1.94 0.00 0.66 

1.0 0.0 0.01 0.00 0.00 0.00 -1.88 -0.47 0.01 0.00 0.00 

High 

0.1 0.9 4.04 -8.33 -1.15 17.44 0.00 7.27 15.09 0.00 5.64 

0.5 0.5 9.40 -3.30 1.35 7.94 -7.92 1.22 2.60 0.38 1.24 

0.9 0.1 0.00 -0.16 -0.04 8.18 0.00 2.05 0.44 0.00 0.11 

1.0 0.0 1.84 0.00 0.62 37.36 -0.22 13.22 1.84 0.00 0.62 

 

 

 

 

 

 



 

 

Appendix                                                                                                                             102 
 

 
 

Table A10 Percentage deviation of the VNS results from the optimal solutions for the 15x2 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.28 -2.68 -0.97 6.18 1.62 4.04 2.81 0.04 0.94 

0.5 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Medium 

0.1 0.9 5.98 -10.05 -1.56 11.50 0.00 4.70 7.18 0.00 3.44 

0.5 0.5 6.72 -4.33 -0.02 18.09 0.00 7.88 6.98 0.00 2.62 

0.9 0.1 3.36 0.00 0.84 0.00 -2.45 -0.61 2.92 0.00 0.73 

1.0 0.0 0.00 0.00 0.00 0.00 -0.30 -0.08 0.00 0.00 0.00 

High 

0.1 0.9 3.11 -10.05 -4.84 11.82 0.79 4.87 9.06 0.79 3.70 

0.5 0.5 3.13 -0.88 0.54 2.06 0.00 1.05 2.58 0.00 0.82 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  1.0 0.0 3.36 0.00 0.84 0.00 -2.83 -0.75 3.36 0.00 0.84 

SD
ST

1
2

5
 

Low 

0.1 0.9 1.91 -0.60 0.24 1.38 -0.61 0.36 0.67 0.00 0.24 

0.5 0.5 0.00 0.00 0.00 0.10 0.00 0.03 0.01 0.00 0.00 

0.9 0.1 3.81 0.00 1.28 9.15 -15.64 -3.61 3.89 0.00 1.24 

1.0 0.0 0.00 0.00 0.00 0.00 -0.19 -0.05 0.00 0.00 0.00 

Medium 

0.1 0.9 15.37 0.00 6.44 7.00 0.00 3.63 8.14 0.00 4.03 

0.5 0.5 5.22 -0.36 1.87 6.42 0.04 3.22 5.73 0.29 2.30 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 2.26 0.00 0.94 2.08 -12.12 -3.97 2.26 0.00 0.94 

High 

0.1 0.9 11.99 -11.71 0.76 7.57 0.00 4.65 7.93 0.00 4.24 

0.5 0.5 4.55 -1.22 1.35 7.16 0.66 3.91 6.05 0.94 2.67 

0.9 0.1 0.00 -0.93 -0.23 8.17 0.00 2.04 0.33 0.00 0.08 

1.0 0.0 1.13 0.00 0.38 1.76 -12.60 -5.69 1.13 0.00 0.38 
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Table A11 Percentage deviation of the VNS results from the optimal solutions for the 15x3 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 1.91 -3.18 -0.55 21.50 4.70 12.88 2.46 1.70 2.18 

0.5 0.5 0.56 0.00 0.14 0.43 -3.09 -0.67 0.41 0.00 0.11 

0.9 0.1 0.24 0.00 0.06 14.12 0.00 3.93 0.30 0.00 0.08 

1.0 0.0 0.19 0.00 0.05 11.74 -9.86 0.37 0.19 0.00 0.05 

Medium 

0.1 0.9 33.40 -10.97 7.82 27.95 -11.85 9.09 12.50 2.37 6.67 

0.5 0.5 2.62 -4.52 -0.69 31.65 -6.73 9.03 1.25 0.22 0.94 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.22 0.00 0.10 9.59 -3.64 3.61 0.22 0.00 0.10 

High 

0.1 0.9 1.40 -10.67 -3.56 32.51 6.05 14.42 18.08 3.52 7.68 

0.5 0.5 2.92 -3.42 -1.07 21.66 -1.20 11.83 3.19 1.08 1.79 

0.9 0.1 1.77 0.00 0.44 0.00 -20.00 -5.00 0.00 0.00 0.00 

1.0 0.0 0.16 0.00 0.04 11.77 -2.94 3.03 0.16 0.00 0.04 

SD
ST

5
0

 

Low 

0.1 0.9 -0.22 -10.86 -4.16 13.32 1.54 8.34 3.07 0.26 1.35 

0.5 0.5 3.28 -0.48 0.70 11.97 -9.54 0.83 2.00 0.03 0.68 

0.9 0.1 0.00 0.00 0.00 0.78 0.22 0.39 0.01 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 -0.09 -7.16 -2.34 0.00 0.00 0.00 

Medium 

0.1 0.9 3.29 -0.94 1.36 6.92 1.68 4.09 6.22 1.67 3.52 

0.5 0.5 0.00 -2.51 -1.10 7.65 1.79 4.57 2.00 0.14 1.02 

0.9 0.1 1.30 0.00 0.32 0.34 -7.23 -1.72 0.73 0.00 0.19 

1.0 0.0 0.00 0.00 0.00 0.00 -1.48 -0.72 0.00 0.00 0.00 

High 

0.1 0.9 15.58 -9.50 -1.48 9.90 3.90 7.48 8.04 5.01 6.27 

0.5 0.5 1.85 -2.51 -0.74 7.47 1.82 5.00 4.60 0.49 2.09 

0.9 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1.0 0.0 0.00 0.00 0.00 0.05 -2.81 -0.69 0.00 0.00 0.00 
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Table A12 Percentage deviation of the VNS results from the optimal solutions for the 15x3 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -0.11 -1.79 -0.81 2.96 0.38 1.50 0.88 0.09 0.34 

0.5 0.5 0.56 -0.67 -0.04 6.65 0.38 3.62 0.59 0.02 0.36 

0.9 0.1 0.42 0.00 0.13 4.26 -9.41 -1.24 0.22 0.00 0.10 

1.0 0.0 0.23 0.00 0.06 0.44 -3.57 -0.84 0.23 0.00 0.06 

Medium 

0.1 0.9 3.84 -12.44 -4.69 8.83 0.61 5.48 6.79 1.00 3.97 

0.5 0.5 2.94 -0.87 0.38 8.97 -0.15 3.04 4.09 0.10 1.58 

0.9 0.1 0.00 -0.23 -0.06 8.28 0.00 2.07 0.63 0.00 0.16 

1.0 0.0 0.33 0.00 0.08 3.16 -0.61 0.60 0.33 0.00 0.08 

High 

0.1 0.9 5.73 -18.73 -9.78 10.08 5.07 7.45 9.72 2.97 5.89 

0.5 0.5 -1.54 -2.96 -1.97 4.32 3.04 3.72 1.71 1.13 1.44 

0.9 0.1 0.82 0.00 0.20 0.51 0.00 0.20 0.77 0.00 0.20 

  1.0 0.0 0.35 0.00 0.20 1.93 0.00 1.30 0.35 0.00 0.20 

SD
ST

1
2

5
 

Low 

0.1 0.9 2.29 -0.12 1.57 2.88 -0.38 0.66 2.53 0.16 1.10 

0.5 0.5 0.35 0.00 0.09 11.30 0.00 3.21 1.21 0.00 0.43 

0.9 0.1 1.37 0.00 0.48 0.01 -13.64 -4.89 1.07 0.00 0.38 

1.0 0.0 0.62 0.00 0.16 1.00 -6.81 -1.45 0.62 0.00 0.16 

Medium 

0.1 0.9 4.17 -1.82 0.49 5.52 2.32 3.96 5.05 2.53 3.57 

0.5 0.5 4.79 -5.45 -0.64 6.59 -0.99 2.07 1.93 0.06 0.75 

0.9 0.1 1.06 0.00 0.49 1.60 -0.68 0.23 1.00 0.00 0.46 

1.0 0.0 0.05 0.00 0.01 0.47 -2.97 -0.64 0.05 0.00 0.01 

High 

0.1 0.9 -3.91 -10.34 -6.47 6.42 1.31 3.28 5.20 0.74 2.60 

0.5 0.5 2.61 -1.45 0.76 3.77 -0.76 1.09 3.11 0.00 0.99 

0.9 0.1 0.69 0.00 0.25 1.31 -1.07 0.09 0.58 0.00 0.21 

1.0 0.0 0.05 0.00 0.01 0.02 -2.89 -0.73 0.05 0.00 0.01 
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Table A13 Percentage deviation of the VNS results from the NEH solutions for the 20x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -2.48 -9.37 -6.00 -0.91 -22.33 -10.85 -2.16 -10.66 -7.12 

0.5 0.5 -1.90 -6.79 -4.37 6.56 -13.51 -2.63 -2.43 -6.30 -4.34 

0.9 0.1 -2.43 -6.47 -4.47 7.55 -13.98 -2.35 -2.40 -6.45 -4.46 

1.0 0.0 -2.34 -7.15 -4.51 10.52 -12.01 -2.75 -2.34 -7.15 -4.51 

Medium 

0.1 0.9 -1.10 -19.15 -7.44 -3.16 -21.36 -14.89 -8.42 -15.82 -12.12 

0.5 0.5 -2.99 -10.75 -5.88 4.80 -19.41 -7.59 -2.59 -10.15 -6.29 

0.9 0.1 -2.62 -6.76 -4.51 13.12 -12.85 -3.11 -2.33 -6.71 -4.51 

1.0 0.0 -2.43 -7.15 -4.47 10.63 -9.64 -2.19 -2.43 -7.15 -4.47 

High 

0.1 0.9 -1.19 -12.10 -5.54 -4.45 -18.21 -13.41 -6.69 -14.79 -11.39 

0.5 0.5 -1.45 -13.84 -5.99 -0.47 -25.51 -12.68 -4.83 -10.96 -8.16 

0.9 0.1 -2.15 -7.52 -4.68 16.25 -12.27 -0.90 -2.30 -7.23 -4.52 

1.0 0.0 -2.40 -6.91 -4.43 9.05 -15.63 -3.11 -2.40 -6.91 -4.43 

SD
ST

5
0

 

Low 

0.1 0.9 2.01 -14.83 -7.29 -8.17 -20.03 -12.87 -6.46 -12.45 -9.83 

0.5 0.5 -0.93 -8.98 -5.45 -0.10 -17.25 -10.87 -1.68 -9.37 -6.03 

0.9 0.1 -1.45 -8.45 -5.91 4.57 -22.65 -10.90 -1.60 -8.44 -5.98 

1.0 0.0 -1.45 -8.76 -5.91 -0.38 -23.40 -13.16 -1.45 -8.76 -5.91 

Medium 

0.1 0.9 2.96 -11.79 -3.61 -2.31 -17.91 -11.32 -3.94 -15.01 -10.17 

0.5 0.5 -0.10 -10.13 -5.56 -3.62 -17.25 -10.76 -5.31 -11.40 -7.78 

0.9 0.1 -0.89 -9.44 -5.83 -5.44 -18.96 -12.22 -1.78 -9.94 -6.40 

1.0 0.0 -1.45 -8.80 -6.08 -4.15 -27.64 -13.90 -1.45 -8.80 -6.08 

High 

0.1 0.9 5.40 -13.49 -2.91 -7.50 -15.21 -11.84 -7.66 -14.25 -11.07 

0.5 0.5 2.03 -11.41 -7.24 -0.75 -16.28 -12.32 -5.62 -13.26 -10.24 

0.9 0.1 -1.74 -8.44 -4.81 -0.31 -19.51 -9.15 -2.69 -8.01 -5.49 

1.0 0.0 -1.45 -9.30 -6.13 -1.65 -29.17 -12.21 -1.45 -9.30 -6.13 
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Table A14 Percentage deviation of the VNS results from the NEH solutions for the 20x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.04 -13.28 -7.21 -4.59 -17.54 -10.21 -2.84 -12.93 -9.07 

0.5 0.5 -3.45 -10.27 -6.79 -0.63 -21.82 -10.40 -3.64 -11.50 -7.34 

0.9 0.1 -5.55 -11.50 -8.14 0.11 -18.38 -11.55 -5.62 -11.53 -8.21 

1.0 0.0 -5.46 -10.96 -7.98 -9.85 -25.46 -14.50 -5.46 -10.96 -7.98 

Medium 

0.1 0.9 7.47 -13.66 -3.49 -1.41 -16.36 -9.72 -1.50 -15.68 -9.13 

0.5 0.5 -4.19 -12.46 -8.59 -3.30 -16.51 -9.47 -6.22 -10.87 -9.08 

0.9 0.1 -3.70 -11.85 -7.88 -1.04 -13.65 -8.72 -3.39 -12.01 -7.98 

1.0 0.0 -5.55 -11.49 -8.09 -3.09 -24.02 -10.50 -5.55 -11.49 -8.09 

High 

0.1 0.9 3.83 -10.49 -3.42 -5.74 -17.49 -12.36 -5.50 -16.46 -11.88 

0.5 0.5 3.12 -14.61 -6.74 -5.12 -18.87 -11.11 -5.76 -14.81 -9.72 

0.9 0.1 -0.57 -15.08 -8.04 -6.97 -16.49 -10.09 -1.87 -14.60 -8.47 

  1.0 0.0 -4.43 -11.44 -7.97 -6.06 -23.58 -11.36 -4.43 -11.44 -7.97 

SD
ST

1
2

5
 

Low 

0.1 0.9 -1.54 -17.55 -7.77 -8.13 -17.92 -12.72 -5.98 -15.82 -10.47 

0.5 0.5 -3.68 -15.73 -7.98 -3.96 -20.81 -11.14 -4.03 -14.78 -8.48 

0.9 0.1 -4.54 -14.55 -8.49 -0.63 -22.50 -10.35 -4.57 -14.67 -8.53 

1.0 0.0 -4.44 -14.07 -7.84 -0.52 -26.12 -12.08 -4.44 -14.07 -7.84 

Medium 

0.1 0.9 4.47 -9.96 -4.95 -6.46 -17.01 -12.99 -6.30 -15.96 -12.30 

0.5 0.5 -4.22 -14.17 -9.54 -3.36 -14.99 -9.99 -5.49 -12.65 -9.79 

0.9 0.1 -4.72 -12.29 -8.23 -4.93 -25.37 -10.95 -4.82 -14.28 -8.61 

1.0 0.0 -4.45 -14.07 -8.09 1.30 -21.37 -11.72 -4.45 -14.07 -8.09 

High 

0.1 0.9 10.39 -18.04 -6.27 -7.02 -18.79 -12.87 -6.74 -17.97 -12.57 

0.5 0.5 -2.90 -10.56 -7.64 -7.82 -16.57 -12.33 -6.31 -14.78 -10.92 

0.9 0.1 -3.06 -14.11 -9.00 -5.27 -20.79 -12.14 -5.18 -13.55 -9.68 

1.0 0.0 -4.49 -14.07 -7.96 -1.29 -21.42 -11.09 -4.49 -14.07 -7.96 
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Table A15 Percentage deviation of the VNS results from the NEH solutions for the 20x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 2.35 -10.23 -3.66 -5.01 -19.47 -10.85 -3.82 -9.84 -6.15 

0.5 0.5 -2.84 -7.37 -5.04 8.27 -8.02 1.23 -2.78 -6.89 -4.64 

0.9 0.1 -3.22 -7.62 -4.44 9.52 -5.69 2.66 -3.23 -7.61 -4.38 

1.0 0.0 -2.27 -7.38 -4.20 11.87 -1.64 4.45 -2.27 -7.38 -4.20 

Medium 

0.1 0.9 3.32 -12.59 -2.47 -5.99 -14.29 -10.88 -3.64 -11.39 -8.74 

0.5 0.5 -1.82 -10.58 -5.67 0.67 -14.84 -7.42 -3.30 -8.54 -6.18 

0.9 0.1 -3.50 -6.73 -4.53 8.82 -6.47 -0.62 -2.79 -6.65 -4.32 

1.0 0.0 -2.09 -7.40 -4.26 9.48 -3.32 3.90 -2.09 -7.40 -4.26 

High 

0.1 0.9 3.19 -13.65 -2.15 -6.13 -13.69 -9.68 -5.15 -12.02 -8.52 

0.5 0.5 0.94 -15.04 -7.24 0.62 -20.01 -8.47 -4.06 -12.08 -7.82 

0.9 0.1 -2.41 -7.49 -4.86 4.22 -6.54 -0.36 -1.83 -6.50 -4.43 

1.0 0.0 -2.11 -7.29 -4.18 10.70 -2.51 4.36 -2.11 -7.29 -4.18 

SD
ST

5
0

 

Low 

0.1 0.9 2.40 -13.27 -6.07 -0.53 -12.25 -6.98 -2.01 -12.28 -6.60 

0.5 0.5 -2.53 -6.83 -4.39 3.83 -15.15 -5.16 -2.76 -6.28 -4.52 

0.9 0.1 -2.17 -7.07 -4.93 5.23 -12.26 -4.95 -2.30 -6.95 -4.93 

1.0 0.0 -3.90 -7.20 -5.29 5.02 -9.41 -3.26 -3.90 -7.20 -5.29 

Medium 

0.1 0.9 3.28 -9.57 -3.79 -2.79 -10.54 -6.74 -3.13 -10.39 -6.48 

0.5 0.5 -1.11 -10.67 -6.08 -1.46 -9.96 -5.70 -4.44 -7.54 -5.88 

0.9 0.1 -1.28 -7.01 -4.73 2.78 -13.17 -4.24 -1.80 -6.10 -4.68 

1.0 0.0 -3.80 -7.20 -5.40 -0.08 -11.13 -5.32 -3.80 -7.20 -5.40 

High 

0.1 0.9 4.43 -8.25 -2.16 -2.63 -10.48 -7.48 -2.75 -10.03 -7.21 

0.5 0.5 2.00 -14.84 -6.26 -3.97 -12.64 -6.72 -5.17 -9.33 -6.67 

0.9 0.1 -1.04 -7.41 -4.45 -0.14 -10.17 -4.80 -2.40 -6.36 -4.54 

1.0 0.0 -3.94 -7.54 -5.33 -2.42 -6.51 -4.33 -3.94 -7.54 -5.33 
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Table A16 Percentage deviation of the VNS results from the NEH solutions for the 20x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 3.04 -8.84 -3.97 -4.42 -9.85 -7.02 -3.46 -8.77 -6.12 

0.5 0.5 -1.16 -7.74 -5.31 0.10 -14.25 -5.72 -2.47 -8.21 -5.52 

0.9 0.1 -4.39 -7.95 -6.31 0.68 -11.32 -5.35 -4.48 -8.02 -6.30 

1.0 0.0 -3.49 -8.01 -5.45 -3.56 -16.29 -7.81 -3.49 -8.01 -5.45 

Medium 

0.1 0.9 4.41 -8.65 -2.06 -2.16 -8.58 -6.22 -2.19 -8.01 -5.99 

0.5 0.5 3.55 -12.65 -4.94 -1.09 -9.83 -5.39 -2.56 -9.13 -5.27 

0.9 0.1 -1.95 -6.45 -4.92 1.68 -11.46 -4.01 -2.18 -6.26 -4.76 

1.0 0.0 -3.62 -8.34 -5.95 -3.07 -13.19 -8.02 -3.62 -8.34 -5.95 

High 

0.1 0.9 6.60 -6.87 -1.52 -3.86 -8.80 -6.42 -3.73 -8.73 -6.26 

0.5 0.5 2.82 -9.30 -3.41 -2.21 -8.85 -5.69 -3.51 -7.86 -5.20 

0.9 0.1 0.14 -10.72 -5.29 1.29 -10.76 -5.43 -1.36 -8.06 -5.37 

  1.0 0.0 -3.65 -8.34 -5.91 -2.90 -13.03 -8.32 -3.65 -8.34 -5.91 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.05 -11.64 -6.26 -2.37 -8.74 -6.24 -3.59 -9.33 -6.22 

0.5 0.5 -2.99 -9.75 -6.74 -1.26 -9.33 -5.67 -3.49 -9.39 -6.50 

0.9 0.1 -2.87 -10.87 -6.68 3.34 -15.93 -8.06 -2.68 -10.73 -6.75 

1.0 0.0 -4.07 -9.39 -7.12 -1.05 -12.85 -7.14 -4.07 -9.39 -7.12 

Medium 

0.1 0.9 4.84 -11.15 -3.88 -2.53 -8.86 -5.89 -2.64 -8.82 -5.79 

0.5 0.5 0.99 -12.04 -5.52 0.12 -8.34 -4.61 -2.86 -7.38 -4.94 

0.9 0.1 -0.63 -7.16 -4.93 1.90 -8.26 -2.96 -1.07 -7.39 -4.52 

1.0 0.0 -4.25 -10.87 -7.33 0.24 -11.94 -6.11 -4.25 -10.87 -7.33 

High 

0.1 0.9 4.06 -15.89 -4.48 -1.11 -8.86 -5.97 -1.12 -8.77 -5.93 

0.5 0.5 0.60 -11.71 -4.22 -2.17 -9.09 -6.24 -2.74 -7.81 -5.84 

0.9 0.1 -2.98 -8.92 -5.27 -4.15 -8.85 -5.76 -3.76 -7.83 -5.43 

1.0 0.0 -4.31 -9.29 -7.08 -1.77 -9.62 -6.83 -4.31 -9.29 -7.08 
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Table A17 Percentage deviation of the VNS results from the NEH solutions for the 20x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 3.60 -11.54 -4.22 7.20 -13.73 -4.35 -2.94 -6.33 -4.49 

0.5 0.5 -1.78 -6.11 -3.70 11.11 -4.93 3.96 -1.36 -5.03 -3.00 

0.9 0.1 -1.35 -5.32 -3.33 12.21 -5.64 3.47 -1.27 -5.32 -3.25 

1.0 0.0 -1.35 -4.63 -3.24 9.60 -3.45 2.39 -1.35 -4.63 -3.24 

Medium 

0.1 0.9 3.42 -3.21 0.01 -6.63 -10.91 -8.85 -5.61 -8.73 -7.29 

0.5 0.5 1.03 -7.46 -3.59 -2.35 -13.53 -6.01 -3.18 -5.64 -4.54 

0.9 0.1 -1.13 -5.25 -3.35 5.48 -6.18 0.12 -1.59 -4.91 -3.07 

1.0 0.0 -1.35 -4.54 -3.18 8.39 -0.64 4.44 -1.35 -4.54 -3.18 

High 

0.1 0.9 3.93 -3.04 0.14 -4.00 -13.45 -7.75 -3.74 -12.28 -6.95 

0.5 0.5 0.16 -9.18 -3.64 -2.90 -8.86 -6.15 -3.36 -6.68 -4.91 

0.9 0.1 -2.30 -4.86 -3.66 5.73 -7.41 -0.92 -2.20 -4.15 -3.32 

1.0 0.0 -1.35 -4.54 -3.25 10.11 -1.09 4.09 -1.35 -4.54 -3.25 

SD
ST

5
0

 

Low 

0.1 0.9 1.04 -10.44 -3.20 -0.03 -5.99 -4.03 -2.37 -5.38 -3.78 

0.5 0.5 -0.57 -5.60 -3.25 0.11 -5.35 -3.27 -1.71 -5.43 -3.29 

0.9 0.1 -1.32 -5.59 -3.06 1.96 -7.49 -1.36 -1.37 -5.44 -3.01 

1.0 0.0 -1.94 -5.31 -3.34 4.69 -7.08 0.08 -1.94 -5.31 -3.34 

Medium 

0.1 0.9 1.77 -5.18 -0.66 -2.76 -8.98 -5.47 -2.48 -8.60 -5.16 

0.5 0.5 -1.38 -11.31 -5.24 0.67 -6.35 -3.30 -2.63 -5.16 -4.05 

0.9 0.1 -1.29 -7.71 -3.43 -1.79 -7.00 -4.08 -1.91 -7.43 -3.56 

1.0 0.0 -1.96 -5.54 -3.29 1.65 -5.17 -1.66 -1.96 -5.54 -3.29 

High 

0.1 0.9 3.81 -2.59 0.69 -2.44 -7.90 -5.37 -2.22 -7.57 -5.16 

0.5 0.5 -0.35 -6.12 -2.45 -2.55 -7.40 -4.55 -2.15 -6.03 -4.06 

0.9 0.1 -0.73 -6.75 -4.40 0.42 -5.39 -1.85 -1.01 -5.71 -3.68 

1.0 0.0 -1.73 -5.36 -3.15 2.84 -5.04 -1.41 -1.73 -5.36 -3.15 
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Table A18 Percentage deviation of the VNS results from the NEH solutions for the 20x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 1.81 -9.62 -3.14 -2.46 -6.85 -4.27 -1.95 -6.27 -4.07 

0.5 0.5 -2.41 -4.32 -3.33 -0.25 -6.15 -2.90 -1.99 -4.30 -3.22 

0.9 0.1 -2.67 -6.78 -4.30 3.23 -6.40 -2.11 -2.58 -6.68 -4.20 

1.0 0.0 -2.27 -6.86 -4.38 -1.27 -8.35 -4.36 -2.27 -6.86 -4.38 

Medium 

0.1 0.9 3.45 -7.57 -1.03 -2.32 -6.42 -4.52 -2.15 -6.40 -4.39 

0.5 0.5 1.47 -6.47 -2.95 -2.14 -6.36 -4.12 -2.54 -5.58 -3.83 

0.9 0.1 -0.45 -6.53 -3.93 0.34 -6.18 -2.74 -1.99 -5.25 -3.63 

1.0 0.0 -1.93 -6.97 -4.32 -0.67 -10.12 -3.57 -1.93 -6.97 -4.32 

High 

0.1 0.9 3.52 -5.82 0.00 -3.58 -7.24 -4.85 -3.62 -7.04 -4.75 

0.5 0.5 2.67 -8.70 -4.62 -1.26 -6.24 -3.61 -1.58 -5.08 -3.78 

0.9 0.1 0.64 -8.90 -4.11 1.34 -4.85 -2.41 -1.27 -5.27 -3.48 

  1.0 0.0 -2.54 -6.83 -4.29 0.71 -10.97 -4.36 -2.54 -6.83 -4.29 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.70 -9.52 -2.98 -1.28 -7.10 -4.18 -1.52 -6.05 -3.93 

0.5 0.5 -2.84 -7.70 -4.35 2.36 -7.50 -3.35 -2.85 -4.78 -4.02 

0.9 0.1 -2.22 -7.26 -4.49 -1.35 -9.55 -4.66 -2.47 -6.95 -4.51 

1.0 0.0 -2.46 -7.22 -4.34 -0.57 -9.97 -4.60 -2.46 -7.22 -4.34 

Medium 

0.1 0.9 4.24 -9.11 -1.69 -2.07 -5.88 -3.94 -1.93 -5.76 -3.86 

0.5 0.5 1.29 -7.61 -3.16 -1.10 -6.36 -4.08 -2.50 -5.56 -3.90 

0.9 0.1 -0.84 -7.15 -3.64 1.21 -4.84 -2.12 -1.16 -5.19 -3.21 

1.0 0.0 -2.44 -7.04 -4.50 1.44 -8.39 -4.20 -2.44 -7.04 -4.50 

High 

0.1 0.9 8.13 -8.61 0.46 -2.03 -6.49 -4.29 -1.85 -6.40 -4.21 

0.5 0.5 0.23 -7.95 -3.18 -1.75 -5.82 -4.05 -1.54 -5.51 -3.93 

0.9 0.1 -0.19 -8.81 -4.38 0.96 -6.94 -3.78 -1.41 -5.59 -4.16 

1.0 0.0 -2.70 -7.22 -4.38 0.00 -9.78 -4.29 -2.70 -7.22 -4.38 
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Table A19 Percentage deviation of the VNS results from the NEH solutions for the 50x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -2.19 -9.59 -6.89 1.81 -12.65 -4.75 -3.04 -8.77 -6.66 

0.5 0.5 -4.79 -9.99 -6.90 3.78 -15.96 -6.41 -4.97 -9.90 -6.89 

0.9 0.1 -4.27 -8.24 -5.90 -1.59 -16.86 -7.95 -4.26 -8.25 -5.90 

1.0 0.0 -4.34 -8.46 -5.58 0.44 -10.55 -6.08 -4.34 -8.46 -5.58 

Medium 

0.1 0.9 -2.93 -15.31 -9.38 -3.39 -13.44 -7.90 -5.83 -13.92 -8.78 

0.5 0.5 -4.65 -8.84 -6.47 4.43 -15.98 -8.20 -5.04 -7.98 -6.65 

0.9 0.1 -3.61 -7.96 -5.97 0.83 -9.92 -5.69 -3.59 -7.97 -5.96 

1.0 0.0 -4.58 -8.29 -5.60 6.01 -17.01 -4.94 -4.58 -8.29 -5.60 

High 

0.1 0.9 -3.08 -13.81 -6.77 -4.68 -13.81 -9.01 -5.08 -9.47 -8.09 

0.5 0.5 -4.17 -9.80 -7.24 -1.13 -16.14 -7.10 -5.17 -8.88 -7.26 

0.9 0.1 -4.14 -8.10 -6.05 0.50 -10.45 -5.46 -4.24 -7.93 -6.03 

1.0 0.0 -4.49 -8.02 -5.87 4.68 -14.25 -5.94 -4.49 -8.02 -5.87 

SD
ST

5
0

 

Low 

0.1 0.9 -4.59 -8.33 -6.38 -3.26 -14.02 -8.31 -4.97 -8.83 -6.95 

0.5 0.5 -3.35 -7.56 -6.26 -7.20 -18.00 -11.61 -3.69 -7.57 -6.53 

0.9 0.1 -4.05 -8.73 -6.19 -1.47 -17.29 -8.76 -4.07 -8.77 -6.20 

1.0 0.0 -4.90 -7.32 -6.29 -2.44 -15.09 -8.64 -4.90 -7.32 -6.29 

Medium 

0.1 0.9 -1.11 -9.19 -5.29 -4.07 -14.22 -10.16 -5.02 -11.12 -8.82 

0.5 0.5 -2.79 -9.68 -6.55 2.02 -12.89 -8.51 -3.27 -9.48 -7.08 

0.9 0.1 -4.17 -9.62 -6.75 -5.26 -14.79 -10.54 -4.21 -9.59 -6.91 

1.0 0.0 -4.03 -7.55 -6.10 3.55 -14.45 -7.32 -4.03 -7.55 -6.10 

High 

0.1 0.9 0.38 -8.23 -3.64 -7.22 -13.18 -10.50 -6.99 -11.44 -9.35 

0.5 0.5 -3.78 -8.04 -6.04 -5.91 -12.15 -9.28 -5.26 -9.48 -7.29 

0.9 0.1 -4.77 -9.07 -6.43 -5.64 -15.17 -10.11 -5.16 -9.52 -6.70 

1.0 0.0 -4.35 -8.15 -6.04 -4.63 -13.62 -8.85 -4.35 -8.15 -6.04 
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Table A20 Percentage deviation of the VNS results from the NEH solutions for the 50x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -2.46 -12.16 -6.93 -3.29 -15.61 -8.79 -4.70 -10.65 -7.74 

0.5 0.5 -5.60 -9.92 -7.45 -2.79 -15.52 -9.78 -6.02 -9.57 -7.66 

0.9 0.1 -4.19 -9.69 -7.32 -6.66 -14.56 -9.96 -4.21 -9.73 -7.34 

1.0 0.0 -3.32 -11.07 -6.94 -2.96 -11.94 -8.80 -3.32 -11.07 -6.94 

Medium 

0.1 0.9 1.35 -9.97 -4.65 -3.83 -10.10 -7.01 -3.55 -9.69 -6.55 

0.5 0.5 -2.55 -9.21 -6.73 -1.94 -13.00 -8.45 -4.89 -10.40 -7.29 

0.9 0.1 -5.38 -11.16 -8.15 -4.31 -18.79 -9.89 -5.31 -11.19 -8.25 

1.0 0.0 -6.02 -9.74 -7.92 -1.59 -17.00 -10.63 -6.02 -9.74 -7.92 

High 

0.1 0.9 2.51 -5.50 -2.72 -5.54 -15.35 -9.67 -5.36 -14.21 -8.89 

0.5 0.5 -3.77 -7.90 -5.89 -1.06 -11.34 -7.88 -4.35 -9.52 -6.87 

0.9 0.1 -4.37 -10.93 -7.77 -8.02 -15.48 -10.00 -4.87 -11.38 -8.00 

  1.0 0.0 -4.56 -9.11 -6.87 -2.12 -15.92 -9.10 -4.56 -9.11 -6.87 

SD
ST

1
2

5
 

Low 

0.1 0.9 -2.32 -12.04 -7.43 -3.31 -16.15 -7.67 -2.77 -12.96 -7.48 

0.5 0.5 -5.59 -9.47 -7.76 -4.99 -20.30 -10.20 -5.62 -10.57 -7.93 

0.9 0.1 -6.57 -11.46 -9.05 -1.43 -15.54 -9.73 -6.59 -11.48 -9.06 

1.0 0.0 -4.37 -9.88 -7.45 -5.41 -14.34 -9.51 -4.37 -9.88 -7.45 

Medium 

0.1 0.9 1.03 -11.49 -3.90 -3.74 -15.69 -8.13 -4.35 -14.16 -7.42 

0.5 0.5 -4.33 -9.39 -6.37 -7.66 -14.54 -10.57 -5.89 -9.69 -7.92 

0.9 0.1 -4.40 -10.69 -7.86 -3.79 -15.02 -9.31 -4.39 -10.87 -7.96 

1.0 0.0 -4.32 -11.79 -7.87 -0.70 -14.80 -8.85 -4.32 -11.79 -7.87 

High 

0.1 0.9 1.80 -8.46 -3.38 -6.92 -12.63 -9.71 -6.55 -11.64 -9.07 

0.5 0.5 -3.60 -12.70 -6.79 -2.93 -12.98 -9.38 -4.28 -10.79 -8.12 

0.9 0.1 -3.80 -9.48 -7.01 -5.40 -14.92 -8.58 -3.97 -9.30 -7.20 

1.0 0.0 -3.33 -10.14 -6.72 -2.62 -12.87 -8.64 -3.33 -10.14 -6.72 
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Table A21 Percentage deviation of the VNS results from the NEH solutions for the 50x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -3.61 -7.41 -5.05 3.10 -10.81 -4.54 -3.59 -6.51 -4.93 

0.5 0.5 -1.87 -6.12 -4.44 3.83 -9.60 -3.87 -1.96 -5.91 -4.42 

0.9 0.1 -2.32 -6.69 -4.30 3.52 -7.29 -1.76 -2.31 -6.66 -4.29 

1.0 0.0 -3.16 -6.12 -4.33 2.56 -4.83 -1.12 -3.16 -6.12 -4.33 

Medium 

0.1 0.9 -1.20 -5.97 -2.77 -5.89 -14.11 -9.97 -4.10 -9.46 -7.09 

0.5 0.5 -2.97 -7.61 -4.89 1.79 -10.89 -4.45 -3.53 -5.91 -4.83 

0.9 0.1 -3.90 -5.85 -4.57 4.19 -10.26 -2.17 -3.75 -5.80 -4.50 

1.0 0.0 -2.23 -6.54 -4.01 6.17 -5.68 -1.33 -2.23 -6.54 -4.01 

High 

0.1 0.9 3.26 -6.95 -2.69 -5.64 -15.61 -9.58 -4.70 -12.73 -7.77 

0.5 0.5 -2.63 -7.83 -5.07 -0.12 -9.14 -5.81 -4.00 -6.95 -5.29 

0.9 0.1 -3.24 -5.95 -4.61 11.28 -10.35 -3.19 -3.13 -5.62 -4.55 

1.0 0.0 -2.66 -6.48 -4.17 2.56 -10.77 -3.47 -2.66 -6.48 -4.17 

SD
ST

5
0

 

Low 

0.1 0.9 -1.76 -8.88 -5.17 -2.07 -9.38 -5.35 -2.71 -8.03 -5.21 

0.5 0.5 -2.57 -5.50 -4.16 -0.67 -10.13 -4.87 -2.39 -5.25 -4.22 

0.9 0.1 -2.12 -4.75 -3.95 0.31 -13.00 -5.84 -2.15 -4.82 -3.97 

1.0 0.0 -2.63 -5.57 -4.43 -0.10 -10.00 -5.40 -2.63 -5.57 -4.43 

Medium 

0.1 0.9 -0.94 -10.04 -4.11 -1.31 -9.68 -5.76 -2.91 -9.26 -5.50 

0.5 0.5 -2.45 -6.99 -3.71 -1.63 -8.59 -5.31 -2.59 -6.61 -4.33 

0.9 0.1 -2.98 -5.52 -4.33 -1.34 -8.49 -5.44 -3.02 -5.75 -4.42 

1.0 0.0 -2.81 -5.39 -4.20 0.01 -8.10 -4.16 -2.81 -5.39 -4.20 

High 

0.1 0.9 0.88 -4.38 -1.40 -4.19 -10.16 -6.94 -4.04 -9.32 -6.40 

0.5 0.5 -3.13 -8.56 -5.65 -3.77 -8.41 -5.98 -4.80 -7.90 -5.83 

0.9 0.1 -3.10 -6.06 -4.15 0.77 -9.20 -4.62 -3.12 -5.96 -4.22 

1.0 0.0 -2.60 -6.03 -4.17 -0.96 -6.37 -3.49 -2.60 -6.03 -4.17 
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Table A22 Percentage deviation of the VNS results from the NEH solutions for the 50x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -3.33 -8.17 -5.06 -2.20 -8.22 -5.09 -3.32 -6.64 -5.08 

0.5 0.5 -2.17 -6.73 -5.15 -3.70 -10.72 -6.63 -2.45 -7.02 -5.32 

0.9 0.1 -3.35 -5.90 -4.50 3.20 -9.75 -3.50 -3.43 -5.89 -4.49 

1.0 0.0 -3.23 -7.17 -5.15 -1.52 -9.94 -5.55 -3.23 -7.17 -5.15 

Medium 

0.1 0.9 4.75 -6.27 -1.15 -3.10 -8.26 -5.10 -3.38 -6.87 -4.66 

0.5 0.5 -2.79 -7.41 -5.23 -3.50 -7.79 -5.54 -4.28 -6.25 -5.38 

0.9 0.1 -3.34 -5.42 -4.39 1.88 -10.65 -5.13 -2.97 -5.65 -4.48 

1.0 0.0 -4.19 -6.66 -5.16 -0.96 -13.93 -7.00 -4.19 -6.66 -5.16 

High 

0.1 0.9 2.87 -7.80 -2.49 -3.16 -8.39 -5.60 -3.26 -7.69 -5.40 

0.5 0.5 0.37 -6.26 -3.55 -1.95 -7.40 -5.71 -2.74 -6.52 -4.95 

0.9 0.1 -3.12 -8.71 -4.98 -2.28 -8.69 -4.81 -3.28 -7.90 -4.96 

  1.0 0.0 -2.74 -6.90 -4.64 -1.64 -11.36 -6.40 -2.74 -6.90 -4.64 

SD
ST

1
2

5
 

Low 

0.1 0.9 -0.79 -7.70 -3.73 -2.80 -7.86 -5.55 -3.61 -5.99 -4.84 

0.5 0.5 -3.25 -6.65 -5.07 4.10 -9.94 -5.07 -2.23 -6.95 -5.06 

0.9 0.1 -3.08 -7.14 -4.84 0.26 -9.58 -4.78 -3.05 -7.15 -4.84 

1.0 0.0 -3.63 -6.98 -5.60 -2.89 -9.59 -4.86 -3.63 -6.98 -5.60 

Medium 

0.1 0.9 -1.36 -7.61 -4.10 -4.97 -8.19 -6.58 -4.69 -7.60 -6.33 

0.5 0.5 -2.35 -6.06 -4.18 -2.24 -10.07 -6.73 -3.62 -6.60 -5.54 

0.9 0.1 -4.08 -7.77 -5.63 1.71 -11.17 -5.74 -3.92 -7.78 -5.65 

1.0 0.0 -4.50 -8.01 -6.29 1.32 -9.10 -6.34 -4.50 -8.01 -6.29 

High 

0.1 0.9 9.06 -13.25 -2.32 -3.34 -10.60 -5.79 -3.38 -9.98 -5.61 

0.5 0.5 -1.42 -7.23 -3.54 -2.38 -8.25 -5.26 -2.05 -6.87 -4.68 

0.9 0.1 -2.64 -6.24 -4.77 -0.61 -7.65 -4.47 -3.08 -6.45 -4.71 

1.0 0.0 -3.69 -8.02 -5.11 1.16 -12.05 -4.92 -3.69 -8.02 -5.11 

 

 

 

 

 

 



 

 

Appendix                                                                                                                             115 
 

 
 

Table A23 Percentage deviation of the VNS results from the NEH solutions for the 50x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -1.42 -6.34 -4.03 -0.06 -10.80 -4.38 -3.21 -5.41 -4.17 

0.5 0.5 -2.11 -5.45 -3.44 7.62 -3.83 -0.14 -2.14 -5.14 -3.26 

0.9 0.1 -2.46 -5.33 -4.21 9.69 -7.43 -0.66 -2.50 -5.32 -4.19 

1.0 0.0 -2.52 -5.18 -4.05 12.86 -6.68 -1.24 -2.52 -5.18 -4.05 

Medium 

0.1 0.9 0.36 -4.00 -1.34 -3.70 -10.06 -6.99 -2.58 -7.77 -5.47 

0.5 0.5 -2.04 -4.58 -3.15 -0.48 -7.32 -4.86 -2.77 -4.97 -3.63 

0.9 0.1 -2.21 -5.40 -3.70 11.49 -3.11 1.07 -2.22 -5.02 -3.49 

1.0 0.0 -2.50 -5.36 -4.03 8.06 -4.47 -0.46 -2.50 -5.36 -4.03 

High 

0.1 0.9 0.48 -5.70 -1.63 -4.32 -8.51 -6.94 -4.40 -7.69 -6.05 

0.5 0.5 -2.21 -10.24 -4.26 -0.04 -8.79 -4.67 -2.72 -6.29 -4.44 

0.9 0.1 -2.46 -6.68 -3.92 3.98 -3.04 -0.25 -2.42 -5.88 -3.64 

1.0 0.0 -2.96 -5.54 -4.06 8.29 -4.09 0.65 -2.96 -5.54 -4.06 

SD
ST

5
0

 

Low 

0.1 0.9 -0.84 -4.96 -2.96 -2.13 -7.26 -4.56 -1.99 -4.67 -3.88 

0.5 0.5 -1.93 -5.37 -3.45 -0.10 -5.93 -2.57 -1.93 -5.05 -3.32 

0.9 0.1 -2.15 -5.85 -3.86 1.65 -4.64 -1.92 -2.12 -5.78 -3.82 

1.0 0.0 -1.40 -4.77 -3.27 0.23 -7.70 -2.98 -1.40 -4.77 -3.27 

Medium 

0.1 0.9 0.88 -4.48 -1.98 -3.43 -5.54 -4.32 -3.34 -5.08 -4.08 

0.5 0.5 -1.22 -4.74 -3.34 -0.59 -4.81 -2.96 -2.57 -3.76 -3.15 

0.9 0.1 -1.28 -5.51 -3.19 0.70 -6.91 -2.69 -1.61 -5.07 -3.14 

1.0 0.0 -2.19 -5.12 -3.71 0.21 -6.34 -3.38 -2.19 -5.12 -3.71 

High 

0.1 0.9 -0.16 -3.83 -2.20 -1.59 -6.29 -3.88 -1.65 -5.97 -3.78 

0.5 0.5 0.37 -8.06 -3.81 0.31 -7.06 -3.48 -1.22 -4.86 -3.63 

0.9 0.1 -1.81 -5.14 -3.22 0.85 -4.34 -1.68 -2.12 -4.16 -2.92 

1.0 0.0 -1.43 -4.86 -3.50 -0.15 -9.22 -3.36 -1.43 -4.86 -3.50 
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Table A24 Percentage deviation of the VNS results from the NEH solutions for the 50x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.24 -4.74 -2.27 -3.03 -6.03 -4.36 -2.93 -5.03 -3.64 

0.5 0.5 -2.34 -4.93 -3.58 -0.90 -5.48 -3.35 -2.39 -4.68 -3.53 

0.9 0.1 -3.01 -5.14 -3.89 -0.43 -6.41 -3.00 -2.97 -5.05 -3.87 

1.0 0.0 -2.12 -5.31 -3.54 1.55 -7.30 -3.57 -2.12 -5.31 -3.54 

Medium 

0.1 0.9 1.42 -2.22 -0.63 -2.95 -5.40 -3.94 -2.79 -5.07 -3.72 

0.5 0.5 -0.74 -4.87 -2.60 -1.58 -4.70 -3.35 -1.78 -4.38 -3.07 

0.9 0.1 -1.29 -4.58 -3.46 -1.29 -6.14 -3.89 -2.04 -4.63 -3.53 

1.0 0.0 -2.07 -4.88 -3.68 0.19 -6.54 -2.22 -2.07 -4.88 -3.68 

High 

0.1 0.9 2.61 -4.50 -1.67 -3.00 -5.52 -4.29 -2.89 -5.49 -4.19 

0.5 0.5 0.36 -5.14 -3.19 -2.27 -4.94 -3.52 -2.20 -3.92 -3.45 

0.9 0.1 -2.43 -6.21 -4.18 0.11 -4.71 -2.72 -2.41 -5.21 -3.79 

  1.0 0.0 -2.46 -5.42 -4.02 -0.04 -6.23 -3.20 -2.46 -5.42 -4.02 

SD
ST

1
2

5
 

Low 

0.1 0.9 -0.47 -5.37 -3.14 -1.92 -4.31 -3.31 -2.07 -4.61 -3.26 

0.5 0.5 -1.82 -5.47 -3.30 1.60 -5.83 -2.19 -1.76 -4.84 -3.07 

0.9 0.1 -1.66 -6.31 -3.81 -1.32 -9.14 -4.74 -1.68 -6.33 -3.84 

1.0 0.0 -1.69 -6.00 -3.70 -2.74 -8.00 -4.91 -1.69 -6.00 -3.70 

Medium 

0.1 0.9 2.96 -7.63 -1.67 -2.52 -4.99 -3.59 -2.39 -4.60 -3.47 

0.5 0.5 -1.03 -5.56 -3.00 -1.02 -5.42 -3.18 -1.35 -4.81 -3.12 

0.9 0.1 -2.53 -4.18 -3.51 1.25 -5.70 -2.29 -2.33 -4.26 -3.29 

1.0 0.0 -2.20 -5.93 -3.35 -0.67 -5.78 -3.27 -2.20 -5.93 -3.35 

High 

0.1 0.9 -0.18 -8.29 -2.30 -2.02 -4.55 -3.58 -1.99 -4.49 -3.54 

0.5 0.5 0.98 -7.26 -2.27 -1.44 -5.23 -3.66 -1.65 -5.08 -3.35 

0.9 0.1 -2.70 -5.80 -3.72 -1.24 -3.82 -3.03 -2.61 -4.99 -3.52 

1.0 0.0 -2.25 -5.62 -3.50 -0.86 -6.81 -4.09 -2.25 -5.62 -3.50 
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Table A25 Percentage deviation of the VNS results from the NEH solutions for the 100x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -4.08 -6.88 -5.09 -2.97 -11.66 -6.67 -4.01 -6.75 -5.21 

0.5 0.5 -4.20 -7.20 -5.74 1.48 -9.87 -4.82 -4.14 -7.18 -5.74 

0.9 0.1 -4.65 -9.87 -5.75 -1.95 -11.97 -6.70 -4.65 -9.87 -5.75 

1.0 0.0 -2.55 -5.87 -4.41 0.82 -15.41 -6.66 -2.54 -5.87 -4.41 

Medium 

0.1 0.9 -2.22 -7.98 -4.88 -6.80 -15.08 -9.49 -3.95 -9.72 -6.30 

0.5 0.5 -5.29 -7.99 -6.41 -2.71 -12.47 -6.67 -5.27 -7.83 -6.42 

0.9 0.1 -4.16 -7.00 -5.70 -2.44 -15.35 -7.56 -4.19 -7.01 -5.72 

1.0 0.0 -2.69 -5.34 -4.29 -2.33 -12.42 -6.06 -2.69 -5.34 -4.29 

High 

0.1 0.9 -3.79 -10.74 -6.27 -4.12 -15.42 -7.97 -5.47 -9.78 -7.05 

0.5 0.5 -3.17 -8.53 -5.76 0.47 -12.11 -6.58 -3.37 -8.56 -5.85 

0.9 0.1 -3.72 -6.05 -4.92 -3.11 -12.12 -7.19 -3.71 -6.02 -4.96 

1.0 0.0 -3.52 -5.89 -4.68 -3.27 -13.08 -6.98 -3.52 -5.89 -4.68 

SD
ST

5
0

 

Low 

0.1 0.9 -3.27 -7.18 -5.00 -3.59 -12.47 -6.97 -3.79 -7.18 -5.38 

0.5 0.5 -3.33 -6.88 -5.50 -4.03 -14.33 -9.82 -3.41 -7.02 -5.61 

0.9 0.1 -3.06 -6.81 -5.03 -8.78 -13.26 -10.78 -3.09 -6.82 -5.05 

1.0 0.0 -3.10 -7.45 -4.95 -4.37 -12.42 -7.97 -3.10 -7.45 -4.95 

Medium 

0.1 0.9 -2.06 -7.70 -4.46 -5.27 -12.88 -8.96 -5.12 -9.85 -7.10 

0.5 0.5 -3.12 -7.62 -4.81 -3.28 -12.88 -7.59 -3.51 -7.64 -5.24 

0.9 0.1 -2.50 -8.30 -5.52 -3.31 -13.16 -8.76 -2.53 -8.41 -5.59 

1.0 0.0 -1.21 -5.60 -4.08 -0.75 -9.87 -6.51 -1.21 -5.60 -4.08 

High 

0.1 0.9 -0.30 -5.83 -3.35 -5.07 -12.78 -8.37 -3.89 -10.82 -6.98 

0.5 0.5 -3.56 -8.65 -5.26 -5.48 -14.30 -8.57 -4.47 -8.33 -6.08 

0.9 0.1 -4.05 -6.54 -5.32 -8.07 -12.14 -9.78 -4.21 -6.69 -5.49 

1.0 0.0 -2.39 -6.24 -4.65 2.18 -11.22 -7.26 -2.39 -6.24 -4.65 
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Table A26 Percentage deviation of the VNS results from the NEH solutions for the 100x5 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -4.28 -9.48 -5.87 -3.81 -13.73 -6.87 -4.30 -10.38 -6.09 

0.5 0.5 -3.51 -8.36 -5.91 -4.40 -13.75 -8.28 -3.66 -8.43 -6.00 

0.9 0.1 -4.58 -9.65 -6.64 -4.64 -16.87 -10.67 -4.61 -9.70 -6.66 

1.0 0.0 -2.81 -7.76 -5.15 -1.27 -9.89 -5.65 -2.81 -7.76 -5.15 

Medium 

0.1 0.9 -0.95 -5.68 -3.86 -5.76 -11.40 -7.72 -4.65 -9.14 -6.50 

0.5 0.5 -3.70 -7.17 -5.56 -5.09 -9.95 -7.80 -4.00 -7.60 -6.03 

0.9 0.1 -4.22 -8.35 -6.26 -4.76 -11.48 -8.22 -4.24 -8.42 -6.32 

1.0 0.0 -4.23 -8.15 -5.81 -4.82 -11.23 -7.84 -4.23 -8.15 -5.81 

High 

0.1 0.9 -1.15 -6.23 -3.59 -4.68 -9.46 -6.19 -4.21 -8.06 -5.68 

0.5 0.5 -2.30 -6.92 -4.71 -3.07 -11.56 -6.97 -3.22 -7.88 -5.47 

0.9 0.1 -3.77 -7.76 -5.90 -3.89 -11.60 -7.59 -3.78 -7.83 -6.00 

  1.0 0.0 -3.38 -6.14 -5.41 -3.30 -11.57 -7.94 -3.38 -6.14 -5.41 

SD
ST

1
2

5
 

Low 

0.1 0.9 -4.25 -8.59 -6.34 -2.21 -8.60 -6.68 -5.27 -8.47 -6.42 

0.5 0.5 -2.56 -10.75 -5.82 -1.36 -12.57 -7.36 -2.52 -10.81 -5.90 

0.9 0.1 -3.76 -11.77 -6.61 -2.70 -18.63 -8.76 -3.76 -11.80 -6.62 

1.0 0.0 -2.71 -6.81 -5.13 -2.88 -11.61 -7.25 -2.71 -6.81 -5.13 

Medium 

0.1 0.9 0.30 -6.63 -3.61 -3.15 -11.68 -7.10 -2.76 -9.13 -6.11 

0.5 0.5 -3.26 -8.38 -5.46 -3.52 -10.69 -7.17 -3.48 -8.90 -5.86 

0.9 0.1 -5.38 -8.59 -6.83 -6.25 -11.97 -9.40 -5.47 -8.51 -6.92 

1.0 0.0 -3.06 -6.99 -5.36 -2.82 -10.06 -7.22 -3.06 -6.99 -5.36 

High 

0.1 0.9 -1.43 -5.50 -3.57 -5.19 -10.15 -7.48 -4.90 -8.90 -6.79 

0.5 0.5 -2.87 -7.20 -4.98 -4.75 -11.24 -7.24 -3.70 -8.26 -5.79 

0.9 0.1 -5.00 -8.06 -6.69 -2.40 -11.32 -6.86 -5.15 -8.02 -6.71 

1.0 0.0 -2.58 -6.95 -5.16 -5.95 -8.86 -7.12 -2.58 -6.95 -5.16 
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Table A27 Percentage deviation of the VNS results from the NEH solutions for the 100x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -1.88 -5.08 -2.84 0.43 -10.18 -3.82 -1.91 -5.66 -2.97 

0.5 0.5 -1.89 -4.66 -3.32 3.38 -8.23 -1.58 -1.88 -4.53 -3.29 

0.9 0.1 -2.35 -3.98 -3.10 0.13 -7.25 -3.13 -2.35 -3.98 -3.10 

1.0 0.0 -2.52 -4.32 -3.42 1.45 -6.72 -2.17 -2.52 -4.32 -3.42 

Medium 

0.1 0.9 -0.96 -5.09 -3.32 -1.26 -9.99 -4.77 -1.81 -6.62 -3.97 

0.5 0.5 -1.78 -4.42 -3.27 -0.67 -6.09 -2.88 -1.86 -4.14 -3.23 

0.9 0.1 -1.83 -4.79 -3.36 3.90 -9.15 -3.16 -1.81 -4.82 -3.36 

1.0 0.0 -2.50 -5.10 -3.46 1.43 -6.34 -2.92 -2.50 -5.10 -3.46 

High 

0.1 0.9 -1.38 -5.83 -3.03 -2.90 -7.96 -5.43 -3.03 -5.98 -4.50 

0.5 0.5 -1.67 -5.15 -2.88 -0.73 -5.90 -2.57 -1.77 -4.55 -2.84 

0.9 0.1 -2.18 -4.38 -3.36 1.27 -5.71 -3.01 -2.19 -4.39 -3.35 

1.0 0.0 -3.10 -4.91 -3.63 0.52 -6.40 -3.01 -3.10 -4.91 -3.63 

SD
ST

5
0

 

Low 

0.1 0.9 -1.05 -4.10 -2.29 -1.21 -6.39 -3.92 -1.37 -3.87 -2.77 

0.5 0.5 -2.35 -3.70 -2.80 0.14 -8.17 -4.26 -2.49 -3.77 -2.88 

0.9 0.1 -1.71 -4.02 -2.67 -1.94 -7.01 -4.00 -1.71 -4.01 -2.68 

1.0 0.0 -2.42 -3.97 -3.44 -1.80 -8.07 -4.70 -2.42 -3.97 -3.44 

Medium 

0.1 0.9 -0.75 -5.19 -2.33 -2.65 -5.17 -4.13 -2.51 -5.18 -3.66 

0.5 0.5 -1.27 -4.47 -2.76 -0.99 -3.99 -2.63 -1.65 -3.93 -2.73 

0.9 0.1 -1.44 -3.84 -2.71 1.11 -6.64 -2.73 -1.34 -3.97 -2.71 

1.0 0.0 -2.16 -5.38 -3.65 -4.07 -8.14 -6.56 -2.16 -5.38 -3.65 

High 

0.1 0.9 0.37 -4.79 -1.85 -2.54 -7.59 -4.30 -2.23 -6.51 -3.92 

0.5 0.5 -0.82 -3.75 -2.19 -1.16 -6.22 -3.47 -1.40 -3.48 -2.70 

0.9 0.1 -0.96 -3.78 -2.62 -0.90 -4.94 -2.68 -0.95 -3.77 -2.62 

1.0 0.0 -2.36 -4.03 -3.23 -3.15 -6.61 -5.19 -2.36 -4.03 -3.23 
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Table A28 Percentage deviation of the VNS results from the NEH solutions for the 100x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -0.44 -3.96 -2.82 -1.38 -5.64 -3.16 -1.23 -3.89 -2.90 

0.5 0.5 -0.49 -5.99 -3.20 0.56 -7.84 -3.23 -0.40 -5.83 -3.20 

0.9 0.1 -2.16 -5.35 -3.22 -3.04 -6.51 -4.53 -2.17 -5.36 -3.24 

1.0 0.0 -1.88 -6.26 -3.75 -2.91 -7.30 -4.46 -1.88 -6.26 -3.75 

Medium 

0.1 0.9 1.24 -3.54 -2.06 -2.77 -5.58 -3.73 -2.11 -5.11 -3.43 

0.5 0.5 -1.14 -3.43 -2.48 -0.31 -5.20 -2.91 -1.51 -4.03 -2.64 

0.9 0.1 -2.01 -4.81 -3.35 -1.52 -5.33 -3.21 -2.00 -4.72 -3.34 

1.0 0.0 -1.72 -6.66 -3.99 1.22 -7.14 -3.82 -1.72 -6.66 -3.99 

High 

0.1 0.9 0.09 -5.06 -2.17 -1.87 -5.69 -3.21 -1.84 -5.35 -3.10 

0.5 0.5 -0.96 -4.72 -3.21 -1.62 -6.05 -3.78 -1.82 -4.95 -3.50 

0.9 0.1 -1.86 -4.42 -3.10 -0.60 -4.81 -2.99 -1.93 -4.46 -3.09 

  1.0 0.0 -2.57 -6.20 -4.00 -2.51 -5.55 -4.36 -2.57 -6.20 -4.00 

SD
ST

1
2

5
 

Low 

0.1 0.9 -2.21 -4.83 -3.18 -2.80 -4.66 -3.67 -2.81 -4.25 -3.39 

0.5 0.5 -1.22 -5.96 -3.59 -0.64 -5.54 -3.08 -1.16 -5.61 -3.55 

0.9 0.1 -2.92 -7.14 -3.93 -2.13 -8.15 -4.35 -2.94 -7.16 -3.93 

1.0 0.0 -2.25 -5.17 -3.40 -2.49 -7.17 -4.08 -2.25 -5.17 -3.40 

Medium 

0.1 0.9 1.05 -4.28 -2.02 -1.92 -5.52 -3.70 -1.84 -4.85 -3.42 

0.5 0.5 -1.68 -3.85 -2.74 -1.17 -4.22 -2.90 -1.64 -3.65 -2.80 

0.9 0.1 -1.81 -5.38 -3.19 0.14 -5.59 -2.78 -1.76 -5.37 -3.17 

1.0 0.0 -2.15 -4.71 -3.06 1.27 -5.66 -3.36 -2.15 -4.71 -3.06 

High 

0.1 0.9 1.96 -6.20 -1.50 -1.26 -5.23 -3.45 -1.34 -4.90 -3.27 

0.5 0.5 0.07 -3.94 -2.43 -1.81 -5.65 -3.34 -1.98 -4.85 -2.91 

0.9 0.1 -0.81 -5.31 -3.46 -0.58 -5.07 -3.49 -0.93 -5.25 -3.47 

1.0 0.0 -2.45 -4.62 -3.61 -2.00 -6.51 -4.50 -2.45 -4.62 -3.61 
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Table A29 Percentage deviation of the VNS results from the NEH solutions for the 100x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -1.80 -3.10 -2.57 -0.27 -5.80 -2.20 -1.48 -3.11 -2.49 

0.5 0.5 -1.90 -3.77 -2.51 -0.47 -3.23 -2.20 -1.93 -3.72 -2.50 

0.9 0.1 -1.87 -2.63 -2.25 1.35 -2.57 -0.56 -1.87 -2.62 -2.24 

1.0 0.0 -1.88 -2.68 -2.16 3.63 -5.73 -0.94 -1.88 -2.68 -2.16 

Medium 

0.1 0.9 -0.25 -3.03 -1.58 -2.95 -5.79 -4.18 -1.92 -4.47 -3.21 

0.5 0.5 -2.41 -4.47 -3.21 2.84 -3.85 -1.05 -2.63 -3.16 -2.82 

0.9 0.1 -1.54 -2.79 -1.99 0.54 -4.26 -1.16 -1.62 -2.72 -1.97 

1.0 0.0 -1.54 -2.25 -1.74 0.99 -4.12 -1.10 -1.54 -2.25 -1.74 

High 

0.1 0.9 -0.31 -1.72 -1.17 -2.89 -5.70 -3.95 -2.52 -4.69 -3.26 

0.5 0.5 -0.68 -3.72 -2.20 -0.42 -4.07 -2.61 -1.21 -3.82 -2.32 

0.9 0.1 -1.55 -3.22 -2.55 1.42 -1.95 -1.10 -1.55 -3.00 -2.48 

1.0 0.0 -1.80 -2.86 -2.40 1.32 -2.87 -0.40 -1.80 -2.86 -2.40 

SD
ST

5
0

 

Low 

0.1 0.9 -0.51 -2.71 -1.97 0.58 -3.20 -1.84 -0.70 -2.95 -1.91 

0.5 0.5 -1.38 -2.77 -1.98 0.26 -5.41 -1.95 -1.26 -3.00 -1.97 

0.9 0.1 -1.62 -3.09 -2.27 -1.08 -3.48 -2.07 -1.62 -3.09 -2.27 

1.0 0.0 -0.93 -3.66 -1.92 -0.44 -3.53 -1.64 -0.93 -3.66 -1.92 

Medium 

0.1 0.9 -0.90 -3.55 -2.20 -0.96 -5.10 -2.79 -1.39 -4.61 -2.70 

0.5 0.5 -1.39 -2.12 -1.67 -1.21 -4.17 -2.80 -1.51 -2.61 -2.13 

0.9 0.1 -1.71 -3.07 -2.21 -0.42 -1.92 -1.37 -1.67 -2.96 -2.14 

1.0 0.0 -1.02 -2.20 -1.65 -0.22 -2.87 -1.40 -1.02 -2.20 -1.65 

High 

0.1 0.9 0.23 -1.69 -0.48 -2.12 -4.11 -2.96 -1.91 -3.78 -2.73 

0.5 0.5 -1.44 -3.31 -2.35 -1.52 -2.70 -2.24 -1.80 -2.98 -2.29 

0.9 0.1 -1.56 -2.77 -2.08 -0.05 -2.81 -1.27 -1.55 -2.78 -1.97 

1.0 0.0 -0.88 -3.24 -2.35 -0.46 -3.23 -1.81 -0.88 -3.24 -2.35 
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Table A30 Percentage deviation of the VNS results from the NEH solutions for the 100x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -1.67 -4.48 -2.62 0.02 -2.83 -1.31 -1.29 -2.40 -1.88 

0.5 0.5 -1.63 -2.91 -2.32 -0.79 -3.56 -2.14 -1.69 -2.87 -2.30 

0.9 0.1 -1.31 -3.27 -2.19 0.09 -2.91 -1.65 -1.28 -3.26 -2.18 

1.0 0.0 -1.85 -3.57 -2.56 -0.99 -4.82 -3.07 -1.85 -3.57 -2.56 

Medium 

0.1 0.9 0.55 -1.77 -1.02 -1.08 -4.34 -2.39 -0.90 -4.06 -2.25 

0.5 0.5 -0.72 -2.47 -1.57 -0.61 -3.81 -2.17 -1.24 -2.51 -1.87 

0.9 0.1 -1.76 -2.92 -2.16 -0.68 -1.89 -1.45 -1.76 -2.80 -2.09 

1.0 0.0 -1.62 -2.90 -2.03 -0.75 -5.04 -2.49 -1.62 -2.90 -2.03 

High 

0.1 0.9 -0.16 -2.27 -1.46 -1.63 -2.87 -2.40 -1.66 -2.71 -2.35 

0.5 0.5 -0.29 -3.60 -2.28 -1.84 -3.86 -2.96 -2.14 -3.76 -2.72 

0.9 0.1 -1.22 -3.32 -2.24 -1.17 -4.14 -2.60 -1.46 -3.33 -2.31 

  1.0 0.0 -1.99 -2.92 -2.35 -1.83 -4.84 -3.01 -1.99 -2.92 -2.35 

SD
ST

1
2

5
 

Low 

0.1 0.9 -1.78 -2.43 -2.20 -1.17 -2.61 -1.91 -1.43 -2.50 -2.03 

0.5 0.5 -1.10 -3.48 -2.10 -0.76 -1.92 -1.28 -1.16 -3.26 -1.99 

0.9 0.1 -1.01 -3.10 -2.20 1.07 -5.01 -1.51 -0.97 -3.13 -2.19 

1.0 0.0 -2.01 -2.51 -2.30 -0.41 -4.64 -2.40 -2.01 -2.51 -2.30 

Medium 

0.1 0.9 1.58 -3.46 -0.88 -1.92 -3.11 -2.45 -1.75 -3.14 -2.30 

0.5 0.5 -1.36 -2.58 -2.05 -0.25 -2.98 -2.10 -1.33 -2.50 -2.08 

0.9 0.1 -1.56 -3.97 -2.37 -0.93 -4.61 -2.22 -1.64 -4.05 -2.35 

1.0 0.0 -1.22 -3.19 -2.35 -0.43 -5.23 -2.74 -1.22 -3.19 -2.35 

High 

0.1 0.9 0.61 -2.01 -0.56 -1.15 -3.22 -2.51 -1.20 -3.02 -2.40 

0.5 0.5 -0.56 -4.13 -2.25 -1.59 -2.41 -1.86 -1.28 -2.75 -1.99 

0.9 0.1 -0.61 -2.91 -1.96 -0.37 -3.51 -1.47 -0.58 -2.63 -1.86 

1.0 0.0 -1.43 -2.54 -2.03 0.47 -3.54 -2.07 -1.43 -2.54 -2.03 
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Table A31 Percentage deviation of the VNS results from the NEH solutions for the 200x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -1.23 -3.28 -2.12 -0.46 -7.23 -3.07 -1.36 -3.22 -2.18 

0.5 0.5 -1.67 -3.28 -2.46 -0.40 -4.25 -2.46 -1.67 -3.27 -2.46 

0.9 0.1 -1.53 -2.59 -2.10 0.49 -6.54 -2.59 -1.53 -2.59 -2.10 

1.0 0.0 -1.94 -3.15 -2.45 1.00 -6.02 -3.06 -1.94 -3.15 -2.45 

Medium 

0.1 0.9 0.27 -3.48 -1.30 -1.16 -7.10 -3.96 -0.97 -3.95 -2.17 

0.5 0.5 -1.34 -2.60 -2.10 -1.76 -3.97 -2.72 -1.37 -2.62 -2.14 

0.9 0.1 -1.32 -2.67 -2.05 1.11 -5.14 -2.05 -1.32 -2.64 -2.05 

1.0 0.0 -1.63 -3.13 -2.33 0.27 -6.03 -3.10 -1.63 -3.13 -2.33 

High 

0.1 0.9 -0.26 -2.50 -1.45 -1.83 -3.92 -2.90 -1.23 -2.76 -2.12 

0.5 0.5 -0.93 -2.94 -1.92 -0.18 -4.96 -2.50 -1.35 -2.91 -1.98 

0.9 0.1 -1.58 -3.21 -2.33 -0.26 -5.69 -2.99 -1.60 -3.24 -2.34 

1.0 0.0 -1.39 -2.90 -2.25 0.12 -4.93 -2.75 -1.39 -2.90 -2.25 

SD
ST

5
0

 

Low 

0.1 0.9 -1.26 -2.44 -1.73 -0.27 -3.26 -1.47 -1.13 -2.61 -1.69 

0.5 0.5 -1.32 -2.94 -1.92 -0.69 -4.27 -2.55 -1.32 -2.88 -1.94 

0.9 0.1 -1.22 -2.85 -1.97 -0.81 -4.95 -2.18 -1.22 -2.85 -1.97 

1.0 0.0 -1.68 -2.39 -2.09 -0.03 -5.10 -2.62 -1.68 -2.39 -2.09 

Medium 

0.1 0.9 -1.28 -4.70 -2.22 -2.10 -3.65 -2.66 -1.80 -3.87 -2.49 

0.5 0.5 -1.15 -2.47 -1.81 0.46 -2.98 -1.38 -1.16 -2.56 -1.75 

0.9 0.1 -1.46 -2.99 -2.08 -1.06 -3.51 -2.08 -1.47 -2.98 -2.08 

1.0 0.0 -1.66 -2.93 -2.17 -1.67 -5.01 -3.19 -1.66 -2.93 -2.17 

High 

0.1 0.9 0.00 -2.76 -1.39 -0.97 -3.51 -2.21 -1.04 -3.09 -2.00 

0.5 0.5 -0.48 -2.42 -1.82 0.29 -3.47 -2.26 -0.66 -2.59 -1.94 

0.9 0.1 -0.49 -2.50 -1.44 1.30 -3.60 -1.32 -0.40 -2.49 -1.43 

1.0 0.0 -1.80 -2.50 -2.09 -0.62 -3.91 -2.84 -1.80 -2.50 -2.09 
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Table A32 Percentage deviation of the VNS results from the NEH solutions for the 200x10 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 0.00 -2.41 -1.13 1.37 -2.76 -0.79 0.00 -2.38 -1.09 

0.5 0.5 -0.06 -2.56 -1.03 0.56 -3.11 -0.68 -0.08 -2.48 -0.96 

0.9 0.1 0.00 -3.27 -1.33 1.87 -3.57 -1.00 0.00 -3.28 -1.31 

1.0 0.0 -1.32 -3.08 -2.19 -1.42 -4.86 -3.07 -1.32 -3.08 -2.19 

Medium 

0.1 0.9 0.29 -2.63 -1.30 -0.12 -3.84 -1.51 -0.33 -2.63 -1.36 

0.5 0.5 0.00 -2.96 -1.15 1.93 -2.72 -0.78 0.00 -2.62 -1.04 

0.9 0.1 -0.28 -1.99 -1.02 1.25 -2.76 -0.90 -0.17 -2.17 -0.99 

1.0 0.0 -1.02 -3.65 -2.10 -1.10 -5.46 -2.94 -1.02 -3.65 -2.10 

High 

0.1 0.9 0.00 -2.61 -1.23 1.44 -3.13 -0.82 0.00 -2.58 -1.21 

0.5 0.5 0.86 -2.47 -0.64 0.00 -2.84 -1.25 0.00 -2.16 -1.14 

0.9 0.1 0.00 -2.11 -0.97 0.57 -2.10 -0.30 0.00 -2.11 -0.74 

  1.0 0.0 -1.67 -3.09 -2.34 -1.27 -4.11 -3.08 -1.67 -3.09 -2.34 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.00 -0.94 -0.52 1.33 -0.17 0.26 0.00 -0.62 -0.30 

0.5 0.5 0.00 -0.70 -0.42 1.88 -0.25 0.40 0.00 -0.62 -0.38 

0.9 0.1 0.00 -1.26 -0.65 0.79 -1.47 -0.32 0.00 -1.26 -0.65 

1.0 0.0 -1.48 -3.85 -2.43 -1.39 -6.20 -3.78 -1.48 -3.85 -2.43 

Medium 

0.1 0.9 0.58 -1.29 -0.26 0.11 -1.24 -0.41 0.00 -0.94 -0.37 

0.5 0.5 0.07 -0.93 -0.28 0.39 -0.94 -0.27 0.00 -0.87 -0.28 

0.9 0.1 1.23 -0.95 0.05 1.38 -1.18 0.53 -0.14 -1.76 -0.60 

1.0 0.0 -1.06 -3.97 -2.53 -1.92 -5.51 -3.54 -1.06 -3.97 -2.53 

High 

0.1 0.9 0.67 -1.40 -0.37 0.23 -0.47 -0.18 -0.04 -0.50 -0.21 

0.5 0.5 0.02 -0.95 -0.40 0.29 -1.40 -0.28 0.00 -0.79 -0.36 

0.9 0.1 1.31 -0.62 0.63 1.58 -0.87 0.69 -0.36 -0.91 -0.44 

1.0 0.0 -0.66 -3.70 -2.51 -2.35 -5.69 -3.83 -0.66 -3.70 -2.51 
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Table A33 Percentage deviation of the VNS results from the NEH solutions for the 200x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -0.30 -2.13 -1.29 -1.13 -3.06 -2.28 -0.64 -2.00 -1.42 

0.5 0.5 -1.12 -1.57 -1.40 -0.25 -1.76 -0.93 -1.14 -1.55 -1.39 

0.9 0.1 -1.23 -2.15 -1.85 -2.10 -5.27 -3.15 -1.23 -2.15 -1.85 

1.0 0.0 -1.02 -1.34 -1.20 -0.07 -3.27 -2.21 -1.02 -1.34 -1.20 

Medium 

0.1 0.9 -0.09 -2.94 -1.65 -1.35 -4.77 -2.44 -1.54 -2.59 -2.03 

0.5 0.5 -1.03 -2.85 -1.75 1.45 -4.01 -1.20 -1.03 -2.37 -1.69 

0.9 0.1 -0.86 -2.51 -1.45 -0.24 -3.48 -1.38 -0.85 -2.53 -1.45 

1.0 0.0 -1.13 -1.75 -1.41 -0.21 -4.29 -2.43 -1.13 -1.75 -1.41 

High 

0.1 0.9 -0.51 -2.02 -1.21 -0.86 -3.24 -2.07 -0.97 -2.32 -1.75 

0.5 0.5 -0.64 -1.62 -1.29 0.45 -3.04 -1.56 -0.77 -1.81 -1.34 

0.9 0.1 -0.96 -2.14 -1.57 -1.23 -3.92 -2.36 -0.97 -2.12 -1.60 

1.0 0.0 -0.91 -1.91 -1.50 -0.36 -3.15 -1.42 -0.91 -1.91 -1.50 

SD
ST

5
0

 

Low 

0.1 0.9 -0.47 -1.15 -0.78 0.15 -1.01 -0.44 -0.51 -0.88 -0.66 

0.5 0.5 -0.66 -1.73 -1.43 0.31 -1.53 -0.76 -0.65 -1.65 -1.39 

0.9 0.1 -0.67 -1.62 -1.17 0.05 -2.00 -1.05 -0.68 -1.61 -1.17 

1.0 0.0 -0.53 -1.64 -1.27 -1.03 -3.07 -1.85 -0.53 -1.64 -1.27 

Medium 

0.1 0.9 -1.34 -1.97 -1.76 -0.71 -1.70 -1.21 -1.01 -1.71 -1.35 

0.5 0.5 -0.80 -2.06 -1.33 -0.91 -1.87 -1.46 -1.05 -1.74 -1.36 

0.9 0.1 -0.90 -2.00 -1.40 0.35 -1.95 -0.32 -0.86 -2.00 -1.35 

1.0 0.0 -0.68 -1.57 -1.17 -0.50 -2.87 -1.68 -0.68 -1.57 -1.17 

High 

0.1 0.9 -0.40 -2.05 -1.20 -0.67 -2.14 -1.26 -0.70 -2.13 -1.25 

0.5 0.5 -0.68 -2.07 -1.38 -0.05 -1.42 -0.52 -0.42 -1.42 -1.03 

0.9 0.1 -1.15 -1.72 -1.43 0.12 -1.98 -0.52 -1.13 -1.63 -1.36 

1.0 0.0 -0.42 -1.41 -1.01 0.05 -1.62 -0.91 -0.42 -1.41 -1.01 
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Table A34 Percentage deviation of the VNS results from the NEH solutions for the 200x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -0.63 -1.71 -1.06 -0.74 -2.28 -1.55 -0.83 -1.91 -1.25 

0.5 0.5 -0.69 -1.47 -0.96 0.20 -1.08 -0.36 -0.65 -1.45 -0.92 

0.9 0.1 -1.04 -1.88 -1.48 -0.31 -2.31 -1.46 -1.05 -1.88 -1.48 

1.0 0.0 -0.84 -1.89 -1.31 -0.97 -2.93 -1.95 -0.84 -1.89 -1.31 

Medium 

0.1 0.9 -0.13 -1.29 -0.73 -0.94 -1.57 -1.29 -0.79 -1.52 -1.19 

0.5 0.5 -0.22 -1.53 -1.08 -0.15 -1.19 -0.88 -0.19 -1.40 -1.01 

0.9 0.1 -0.62 -1.77 -1.05 0.55 -0.90 -0.32 -0.54 -1.70 -1.01 

1.0 0.0 -0.91 -1.94 -1.40 -1.10 -3.03 -2.05 -0.91 -1.94 -1.40 

High 

0.1 0.9 0.15 -1.59 -0.66 -0.89 -1.70 -1.19 -0.78 -1.62 -1.14 

0.5 0.5 -0.24 -1.62 -0.85 0.04 -1.61 -0.97 -0.10 -1.54 -0.91 

0.9 0.1 -0.57 -1.39 -0.90 -0.12 -2.10 -0.79 -0.52 -1.27 -0.89 

  1.0 0.0 -0.58 -1.50 -1.06 -0.44 -3.04 -1.73 -0.58 -1.50 -1.06 

SD
ST

1
2

5
 

Low 

0.1 0.9 -0.41 -1.16 -0.83 -0.43 -1.18 -0.84 -0.48 -1.17 -0.84 

0.5 0.5 -0.66 -1.71 -1.26 0.32 -0.16 0.03 -0.59 -1.58 -1.15 

0.9 0.1 -1.18 -2.12 -1.57 -0.45 -2.05 -1.16 -1.18 -2.11 -1.56 

1.0 0.0 -0.74 -1.82 -1.29 -0.58 -3.13 -1.85 -0.74 -1.82 -1.29 

Medium 

0.1 0.9 1.01 -1.74 -0.42 -0.61 -1.88 -1.36 -0.67 -1.86 -1.21 

0.5 0.5 -0.94 -1.97 -1.59 -0.89 -1.76 -1.25 -1.14 -1.72 -1.46 

0.9 0.1 -0.97 -1.52 -1.32 -0.21 -1.38 -0.82 -0.93 -1.51 -1.29 

1.0 0.0 -1.04 -1.91 -1.42 -1.05 -2.31 -1.58 -1.04 -1.91 -1.42 

High 

0.1 0.9 0.64 -1.44 -0.94 -1.17 -2.04 -1.53 -1.13 -1.97 -1.48 

0.5 0.5 -0.76 -2.11 -1.33 -0.52 -1.80 -1.11 -1.01 -1.37 -1.21 

0.9 0.1 -0.57 -1.54 -1.13 0.64 -1.15 -0.44 -0.52 -1.46 -1.05 

1.0 0.0 -1.17 -1.90 -1.44 -0.90 -1.97 -1.35 -1.17 -1.90 -1.44 
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Table A35 Percentage deviation of the VNS results from the NEH solutions for the 500x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST10 and SDST50 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

 

Low 

0.1 0.9 -0.07 -0.50 -0.30 0.35 -0.96 -0.32 -0.07 -0.53 -0.30 

0.5 0.5 -0.23 -0.61 -0.42 -0.21 -1.23 -0.69 -0.23 -0.61 -0.42 

0.9 0.1 -0.32 -0.58 -0.45 0.01 -2.07 -0.91 -0.32 -0.59 -0.45 

1.0 0.0 -0.37 -0.66 -0.53 -0.30 -2.17 -1.40 -0.37 -0.66 -0.53 

Medium 

0.1 0.9 -0.13 -0.42 -0.24 -0.12 -0.59 -0.32 -0.15 -0.34 -0.26 

0.5 0.5 -0.37 -0.48 -0.42 0.29 -1.81 -0.70 -0.35 -0.53 -0.44 

0.9 0.1 -0.16 -0.41 -0.27 0.07 -1.31 -0.41 -0.16 -0.42 -0.27 

1.0 0.0 -0.40 -0.68 -0.51 -1.20 -2.35 -1.92 -0.40 -0.68 -0.51 

High 

0.1 0.9 -0.22 -1.25 -0.54 0.82 -1.08 -0.35 -0.36 -0.58 -0.46 

0.5 0.5 0.00 -0.73 -0.40 0.07 -1.36 -0.60 0.00 -0.78 -0.41 

0.9 0.1 0.00 -0.53 -0.33 0.00 -2.73 -1.16 0.00 -0.56 -0.34 

1.0 0.0 -0.16 -0.63 -0.40 -1.17 -1.55 -1.38 -0.16 -0.63 -0.40 

SD
ST

5
0

 

Low 

0.1 0.9 -0.27 -0.40 -0.32 0.38 -0.31 -0.09 -0.27 -0.30 -0.28 

0.5 0.5 -0.34 -0.42 -0.39 0.23 -0.14 0.03 -0.33 -0.41 -0.38 

0.9 0.1 -0.31 -0.38 -0.34 -0.02 -0.76 -0.37 -0.31 -0.38 -0.34 

1.0 0.0 -0.28 -0.46 -0.33 0.57 -0.49 -0.11 -0.28 -0.46 -0.33 

Medium 

0.1 0.9 -0.15 -0.32 -0.21 0.05 -0.41 -0.13 -0.04 -0.37 -0.16 

0.5 0.5 -0.14 -0.39 -0.24 0.10 -0.06 0.03 -0.13 -0.32 -0.20 

0.9 0.1 -0.22 -0.48 -0.38 0.42 -0.87 -0.20 -0.21 -0.46 -0.38 

1.0 0.0 -0.14 -0.44 -0.34 -0.18 -0.92 -0.62 -0.14 -0.44 -0.34 

High 

0.1 0.9 -0.03 -0.51 -0.33 0.08 -0.26 -0.08 -0.05 -0.31 -0.15 

0.5 0.5 -0.10 -0.45 -0.27 0.01 -0.43 -0.26 -0.13 -0.45 -0.27 

0.9 0.1 -0.14 -0.41 -0.24 0.47 -0.28 -0.05 -0.14 -0.41 -0.24 

1.0 0.0 -0.13 -0.40 -0.24 0.36 -0.26 0.00 -0.13 -0.40 -0.24 
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Table A36 Percentage deviation of the VNS results from the NEH solutions for the 500x20 

sized F|sijl, prmu|∑(Cj+Energyj) problem when SDST100 and SDST125 

 

Setup  En. Data  w1 w2 PD (%) of Prod. Cost  PD (%) of En. Cost PD (%) of Total Cost 

Group Group (%) (%) Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. 

SD
ST

1
0

0
 

Low 

0.1 0.9 -0.08 -0.52 -0.26 0.35 -0.02 0.21 0.00 -0.33 -0.15 

0.5 0.5 -0.08 -0.16 -0.12 0.53 0.12 0.29 -0.06 -0.15 -0.10 

0.9 0.1 -0.14 -0.41 -0.25 0.35 -0.81 -0.28 -0.14 -0.41 -0.25 

1.0 0.0 -0.23 -0.43 -0.31 0.04 -0.66 -0.21 -0.23 -0.43 -0.31 

Medium 

0.1 0.9 0.04 -0.25 -0.13 0.06 -0.31 -0.07 -0.03 -0.29 -0.09 

0.5 0.5 0.00 -0.41 -0.20 0.18 -0.18 -0.02 0.00 -0.30 -0.17 

0.9 0.1 -0.24 -0.43 -0.35 0.16 -0.28 -0.04 -0.24 -0.42 -0.34 

1.0 0.0 -0.22 -0.61 -0.38 0.27 -1.02 -0.40 -0.22 -0.61 -0.38 

High 

0.1 0.9 0.00 -0.67 -0.32 0.16 -0.50 -0.14 0.00 -0.45 -0.18 

0.5 0.5 -0.02 -0.32 -0.20 -0.05 -0.20 -0.15 -0.07 -0.28 -0.19 

0.9 0.1 -0.14 -0.35 -0.26 0.46 -0.09 0.14 -0.12 -0.33 -0.24 

  1.0 0.0 -0.09 -0.59 -0.39 -0.27 -0.90 -0.58 -0.09 -0.59 -0.39 

SD
ST

1
2

5
 

Low 

0.1 0.9 0.00 -0.25 -0.09 0.82 0.00 0.23 0.00 -0.05 -0.02 

0.5 0.5 -0.04 -0.33 -0.14 0.39 0.01 0.18 -0.03 -0.32 -0.13 

0.9 0.1 -0.12 -0.42 -0.27 0.43 -0.38 0.12 -0.12 -0.42 -0.26 

1.0 0.0 -0.40 -0.70 -0.55 -0.16 -0.74 -0.48 -0.40 -0.70 -0.55 

Medium 

0.1 0.9 0.07 -0.38 -0.20 0.01 -0.28 -0.17 -0.07 -0.31 -0.18 

0.5 0.5 -0.22 -0.68 -0.36 0.26 0.06 0.18 -0.12 -0.50 -0.24 

0.9 0.1 -0.16 -0.43 -0.26 0.26 -0.68 -0.11 -0.16 -0.41 -0.26 

1.0 0.0 0.00 -0.37 -0.22 0.53 -0.56 -0.11 0.00 -0.37 -0.22 

High 

0.1 0.9 0.04 -0.70 -0.35 0.02 -0.57 -0.35 0.00 -0.58 -0.35 

0.5 0.5 0.00 -0.48 -0.19 0.31 -0.20 0.03 0.00 -0.21 -0.11 

0.9 0.1 0.00 -0.17 -0.06 0.35 0.00 0.12 0.00 -0.14 -0.05 

1.0 0.0 -0.16 -0.65 -0.42 0.04 -0.60 -0.28 -0.16 -0.65 -0.42 

 


