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ABSTRACT

In this thesis we present and discuss some basic aspects of homotopic algebra.

We present how elements from category theory can be helpful in studying homotopy

theory.

Homotopy theory arises in studying topological spaces. Here we present a mean-

ingful way to extend the notion of homotopy to other categories such as chain com-

plexes. Then we present the axioms for closed model categories, which capture com-

mon features of categories in which we can talk about homotopy.

After describing how we can do some homotopy theory starting with a few axioms,

we construct the main object of study which is the homotopy category associated to a

closed model category. After construction we will prove that the homotopy category

is just a localization.

Finally we present some features of the homotopy category in order to emphasize

the advantages of doing homotopy in closed model categories and give brief mention

of homotopy limits and colimits in the final section. All of the above are done keeping

in mind the main examples which are topological spaces and chain complexes.
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Chapter 1

INTRODUCTION

1.1 Why category theory?

The practice of algebraic topology is assigning algebraic objects to topological spaces

in order to learn more about the space. Homotopy groups, chain complexes and

homology groups associated with a space are fundamental instances of this practice.

How does category theory help?

First, the class of topological spaces themselves can be seen as a category Top,

where arrows between two spaces are continuous maps. Similarly we can talk about

the category of pointed spaces, that as a matter of fact is the comma category ? ↑ Top

where ? is the one point space. In light of this, the associations of chain com-

plexes X 7→ C?(X), homology groups X 7→ C?(X) 7→ Hn(X) and homotopy groups

(X, x0) 7→ πn(X, x0) are functorial.

But of course there is a lot more. Imposing the homotopy relation between maps

in Top yields a new category πTop where maps between objects are homotopy classes

of maps rather than all maps. The isomorphisms in this category are called homotopy

equivalences.

The notion of homotopy comes naturally in Top. But we can extend the notion

to other categories as well in a ”meaningful” way. The singular n-chain functors
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Cn : Top −→ModR that assigns to each space X ∈ Top the free R-module generated

by the n-simiplicies ∆n → X assemble to a functor

C? : Top −→ ChR

where ChR denotes the category of non-negatively graded chain complexes over a

commutative ring R.

One observes that a homotopy H : X × I −→ Y between maps f, g : X → Y

in Top gives rise to maps s : Cn+1(X) → Cn(Y ) (called prism maps) having the

property that

f] − g] = s∂ − ∂s

where f], g] : C?(X) −→ C?(Y ) are the induced map and ∂ denotes the boundary

maps of these chain complexes. Exactly as above we can define the homotopy relation

between maps in ChR. And we are in a situation where the singular chain functor

sends homotopic maps in Top to homotopic maps in ChR.

Moreover, homotopic maps in ChR have the property that they induce the same

maps between homology groups. Therefore homotopic maps in Top induce the same

maps between homology groups. There is a distinguished class of maps f : A −→ B in

ChR that induce isomorphisms between all homology groups f? : Hn(A) −→ Hn(B)

called quasi-isomorphisms. These maps will serve as weak equivalences for chain

complexes.

Another distinguished class of maps is the collection of weak homotopy equivalences

in Top. These are maps f : X −→ Y that induce isomorphisms on all homotopy

groups fn : πn(X, x) −→ πn(Y, f(x)) for all x ∈ X and a bijection f0 : π0(X) −→
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π0(Y ) between path connected components. We would like to consider these maps as

isomorphisms and we deal with this via localization of categories.

This being the situation, certain properties of maps are highlighted, for example

the homotopy lifting property. Maps satisfying this property are called Serre fibrations.

In ModR projective modules are central to homological algebra because of their lifting

properties. On the level of chain complexes we can produce projective resolutions

associated to each R-module.

Therefore it is useful to be able to talk about homotopy in an abstract setting, in

many different categories. And of course if we want to talk about homotopy in some

category C we want this category to share some features with Top and ChR. Quillen

introduced the axioms for closed model categories, axioms that are satisfied not only

by Top and ChR but by many other categories such as various diagram categories

and simplicial sets. We will see closed model categories and the homotopy in these

categories in some detail.
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Chapter 2

SOME BACKGROUND AND TERMINOLOGY FROM

CATEGORY THEORY

2.1 Colimits and limits

Definition 1. Let C be a category. An initial object in C is an object ∅ such that for

all objects A ∈ C there is a unique morphism ∅ → A. Dually, an object ? is said to

be terminal if for all objects X ∈ C there is a unique morphism X → ?

One can verify that initial and terminal objects are unique up to unique isomor-

phism, therefore in this sense we can say the terminal object ? and the initial object

∅. Notation is inspired by the category Set, where the empty set is the initial object

and the one point set is the terminal object. The same is true for the category of

spaces Top.

We say that a category D is small if the classes of objects Ob(D) and morphisms

Mor(D) are sets, and we say that D is locally small if for any two objects X, Y ∈ D

the class of morphisms between these objects homD(X, Y ) is a set.. The categories

Top and Set are not small but just locally small. In general, categories of interest

will not be small but rather locally small. However small diagrams in those categories

may be of interest depending on the occasion.

Definition 2. Let C be a category and D be a small category. A diagram of shape”

D in C is a functor X : D→ C.
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For example, if D is the category {a→ b} then a diagram of shape D in C is just

a map A → B in C. Given a small category D we can think of all diagrams D → C

as objects in a category CD. For two diagrams X, Y : D → C a map f : X → Y is

the data of maps fi : Xi → Yi for all i ∈ D that respect the structure of the diagrams

X and Y , i.e. f is a natural transformation between functors X and Y .

This being said, we can see the category C fully embedded in CD, meaning that

any object A ∈ C can be seen as a diagram A : D → C where Ai = A for all i ∈ D

and all maps in the diagram are idA. This is called the constant diagram at A. It is

easy to observe that a diagram map between constant diagrams A and B is the same

as just a map of objects A → B in C. Therefore we can talk about a well defined

functor

∆ : C −→ Cd

that sends each object to the corresponding constant diagram. ∆ is called the constant

diagram functor.

Now we define two concepts that are ubiquitous in mathematics, colimits and

limits.

Definition 3. Let C be a category, D be a small category and X : D −→ C a diagram

of shape D in C. A cone object over the diagram X consists of an object A ∈ C and

structure maps Xi → A for i ∈ D that respect the maps in the diagram X.

We can see a cone object as a constant diagram, and alternatively we can say

that a cone object is a constant diagram A : D −→ C equipped with a diagram map

X → A. The cone object which is initial with respect to this property is called the

colimit of the functor X.

Definition 4. Let C be a category, D be a small category and X : D −→ C a diagram
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of shape D in C. The colimit of the diagram X in C is a cone object colimiXi such

that for any other cone object A over X there is a unique morphism colimiXi → A

between constant diagrams commuting with the structure maps of the colimit and A

In other words, the colimit colimiXi is an object in C such that for all objects

A ∈ C there is a natural bijection

homC(colimiXi, A) ∼= homCD(X,A)

We can see colimit as a functor CD −→ C, and instead of the above we can define

colimit as just being the left adjoint to the constant diagram functor

colim : CD � C : ∆

Pushouts are a type of colimit we often encounter. If D is the three object category

{a ← b → c} then the colimit of a diagram of this shape Xa ← Xb → Xc is called

pushout. We can illustrate the universal property with the diagram:

XaXb

Xc colimX

A

∃!

The top commutative square is referred to as a pushout square. In light of this

the coproduct (or direct sum) A
∐
B can be seen as a pushout over the diagram

A ← ∅ → B, where ∅ is the initial object. Other examples of colimits are direct



Chapter 2: Some background and terminology from category theory 7

limits and arbitrary coproducts.

Dually we may define the limit functor.

Definition 5. Let C be a category, D be a small category. The limit functor is defined

to be the right adjoint of the constant diagram functor

∆ : C � CD : lim

If we let D be the category {a → b ← c} the limit gives the dual notion of the

pushout, called the pullback. For a diagram Xa → Xb ← Xc of shape D in C we

illustrate the limit with the diagram:

Xb

Xa

Xc

limX

A

∃!

The bottom commutative square is called a pullback square. The product of two

objects A and B, denoted A×B, can be seen as a pullback of the diagram A→ ?← B,

where ? is the terminal object. Arbitrary products and inverse limits are examples of

limits as well.

Of course, limits and colimits might not always exist. They are objects defined in

an abstract context with a universal property.

Definition 6. A category C is said to be complete (resp. cocomplete) if colimits (resp.

limits) exist over all diagrams D −→ C for all small categories D.
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Many categories of interest are complete and cocomplete. For example Top, Set,

ModR and ChR are complete and cocomplete. Another important example of a

category admitting all small limits and colimits is the category Cat, whose objects

are locally small categories and arrows are functors between these categories.

2.2 Localization of categories

Let C be a category and W ⊂ C be a class of morphisms called weak equivalences.

Assume we are in a situation where we want to consider weak equivalences as isomor-

phisms. What we do is construct a new category W−1C with the same objects as C

such that maps in W are isomorphisms in W−1C.

Definition 7. The locatization of C with respect to the class of weak equivalences W

is a category W−1C equipped with a functor

γ : C −→ W−1C

called the localization functor, satisfying the property ”γ(f) is an isomorphism for all

f ∈ W”, and universal with respect to this property, i.e. if D is another category

equipped with a functor F : C −→ D such that F (f) is an isomorphism for all f ∈ W ,

then there is a unique functor η : W−1 −→ D such that ηγ = F

W−1C

C D
F

γ
∃!η

Just like limits and colimits localization of a category is defined in an abstract con-

text satisfying some universal property. But unlike limits and colimits the existence



Chapter 2: Some background and terminology from category theory 9

of localization is always guaranteed because limits and colimits exist in the category

of locally small categories Cat.

Lemma 2.2.1. In the sense of the above definition W−1C exists.

Proof. Let I = {u : a→ b} be a category with two objects and a single map between

them and Ĩ = {ũ : a → b} be a category with two objects and a single isomorphism

between them. There is a functor I → Ĩ sending u � ũ. Let the category
∐

s∈W I

be the coproduct of copies of I indexed over maps s ∈ W .

Then observe that by definition W−1C is given by the pushout diagram:

C

∐
s∈W I

∐
s∈W Ĩ

W−1C
γ

where the functor
∐

s∈W I −→ C is the one that sends the map us : a→ b to the map

s ∈ C.

The above proof tells us that the objects in W−1C are the same as the objects

in C and that the localization functor γ is the identity map on the objects. Arrows

between objects however are not easy to describe in W−1C. All we can say in general

is that they are zig-zags of arrows in C subject to some equivalence relation [2].

The most trivial, and not interesting at the same time, case of localization is when

W coincides with the class of all isomorphisms. In that case the localization W−1C

is just C and γ the identity functor idC in Cat.

A more interesting case is when W is the class of weak equivalences in a closed

model category C. Its localization is non-trivial and the maps in the localization have

nice description. This will be our case of interest.



Chapter 3: Closed model categories 10

Chapter 3

CLOSED MODEL CATEGORIES

3.1 Definitions and terminology

The notion of a closed model category was developed by Quillen [8].

Definition 8. A closed model category is a category C containing three typer of mor-

phisms called fibrations, cofibrations and weak equivalences subject to the following

axioms:

MC1 C has all finite limits and colimits

MC2 For all commutative triangles

X Y

Z

g

h f

if any two of f, g, h are weak equivalences then so is the third

MC3 If f is a retract of g, then f is a fibration/ cofibration weak equivalence

whenever g is.

MC4 For solid arrow commutative squares

U

V

X

Y

i p
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where p is a fibration and i is a cofibration, the dotted arrow exists in case p or i is

a weak equivalence.

MC5 Any morphism f : X −→ Y can be factored as:

1. f = pi where p is a fibration and i is a trivial fibration.

2. f = qj where p is a trivial fibration and j is a cofibration.

The above axioms will allow us to develop a notion of homotopy and a homotopy

category associated to C. As we will see, weak equivalences will play a central role,

because we will consider weakly equivalent spaces as being of the same ”type”.

Definition 9. We say a fibration (resp. cofibration) is acyclic if it is a weak equiva-

lence as well.

Observe that MC1 guarantees the existence of an initial and terminal objects,

which wee will denote ∅ and ∗ respectively.

Definition 10. We call an object A cofibrant in case the map ∅ → A is a cofibration,

and an object X fibrant in case X → ∗ is a fibration.

Let f : X → Y and g : A → B be two maps in C. We say that f has the right

lifting property with respect to g (resp. g has the left lifting property with respect to

f) if for all solid arrow commutative squares

A

B

X

Y

g f

the dotted arrow exists. Shortly we will write that f has RLP with respect to g and g

has LLP with respect to f . So in this terminology MC4 says that acyclic fibrations
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have RLP with respect to all cofibrations and acyclic cofibrations have LLP with

respect to all fibrations.

Before defining homotopy in closed model categories, let us first establish model

category structures on topological spaces and chain complexes. This way we will see

how notions we develop and terminology makes sense.

3.2 Our main examples

3.2.1 Topological spaces

It is not straightforward to show that some category has a model structure. To

establish a model category structure on Top first we have to establish what the

fibrations, cofibrations and weak equivalences will be. First we fix the class of weak

equivalences. As mentioned in the introduction, a map f : X → Y in Top is a weak

equivalence if the induced maps fn : πn(X, x) → πn(Y, f(x)) are isomorphisms for

n > 0 and f0 : π0(X, x)→ π0(Y, f(x)) is a bijection.

Definition 11. A map of spaces p : X → Y is said to be a Serre fibration if it has

RLP with respect to all inclusions A× 0 → A× I, for all CW-complexes A. This is

also called the homotopy lifting property.

In particular, a Serre fibration has RLP with respect to all inclusions Dn × 0 →

Dn × I. But each CW-complex is a colimit of its building blocks, so RLP will be

inherited from the inclusions Dn × 0→ Dn × I to the inclusions A× 0→ A× I.

Lemma 3.2.1. A map of spaces p : X → Y is a Serre fibration if and only if it has

RLP with respect to all inclusions Dn × 0→ Dn × I.
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Proof. Assume p has RLP with respect to all inclusions Dn × 0 → Dn × I. Let A

be a CW-complex and let An be the n-skeleton of A. A = colimnAn, is a filtered

colimit of all its skeletons. And since filtered colimits commute with finite limits,the

inclusion A× 0→ A× I is the colimit of all the inclusions An × 0→ An × I. So it is

enough to show that p has RLP with respect to inclusions An × 0→ An × I.

Moreover, we know that An is obtained by attaching copies of Dn to An−1 along

the boundaries. What we mean is that for cells Dn we attach, that are indexed by

some set Jn, there is a pushout square∐
Jn
∂Dn

∐
Jn
Dn

An−1

An

Therefore to show that p has RLP with respect to An × 0 → An × I it is enough to

show p has RLP with respect to An−1×0→ An−1×I and
∐

Jn
Dn×0→

∐
Jn
Dn×I.

Since the latter is given by assumption, by induction we reduce the proof only for

A0 × 0→ A0 × I, which is easy to see.

We fix the class of fibrations in Top to be the class of Serre fibrations and the

class of cofibrations to be the class of maps that have LLP with respect to all acyclic

fibrations.

As we did with fibrations, we characterize acyclic fibrations with lifting properties.

Lemma 3.2.2. A map of spaces p : X → Y is a Serre fibration and a weak homotopy

equivalence if and only if one of the following equivalent conditions holds:

i) p has RLP with respect to all inclusions of CW-complexes A→ B

ii) p has RLP with respect to all boundary inclusions Sn−1 → Dn
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Theorem 3.2.3. With the above classes of weak equivalences, fibrations and cofibra-

tions Top is a closed model category.

Proof. (of MC1 - MC3)

MC1 and MC2 are not a problem. Regarding MC3, assume f : X → Y is a retract

of f ′ : X ′ → Y ′, meaning that we have a commutative diagram

X X ′ X

Y Y ′ Y

f ff ′

idX

idY

First, it is clear that if f ′ is a weak equivalence then so is f .This is so because the

retract diagram will be preserved to the level of homotopy groups and isomorphisms

are closed under retract.

It is also easy to see that left and right lifting properties with respect to a class of

maps are preserved under retract. For example assume f ′ has RLP with respect to a

map i : A→ B and assume we have the commutative square

A

B

X

Y

i f

Then we have a commutative diagram
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X X ′ X

Y Y ′ Y

A

B

i f ff ′

idX

idY

The right dotted arrow exists because f ′ has RLP with respect to i. Composing with

the map X ′ → X we get the other dotted arrow commuting with everything. In

particular, the left square commutes, proving that f has RLP with respect to i.

With a similar argument we can show that left lifting property is preserved under

retract as well. But cofibrations are defined to be maps having LLP with respect to

acyclic fibrations are defined as maps having RLP with respect to some inclusions.

Therefore these classes are preserved by retracts.

Part of MC4 is immediate by definition of cofibrations. The profs of the rest

of MC4, that fibrations have RLP with respect to acyclic cofibrations, and MC5

depend upon an argument introduced by Quillen called the small object argument.

The small abject argument:

For the setting we take C to be a category containing all small limits and colimits.

Assume we are given a set of morphisms F = {fi : Ai → Bi}i∈I in C and a map

p : X → Y . We wish to decompose p as X → X ′ → Y such that X ′ → Y has RLP

with respect to all maps in F and X ′ is similar” enough to X (otherwise we may just

choose X = X ′).

Let B : Z+ → C be a functor and A ∈ C be an object. The maps B(n)→ colimnB(n)

induce maps homC(A,B(n)) → homC(A, colimnB(n)) compatible enough and there-
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fore we have a map

colimnhomC(A,B(n) −→ homC(A, colimnB(n))

Definition 12. An object A is said to be sequentially small if for all functors B :

Z+ → C the above map is a bijection.

Now consider all commutative squares D of the form:

Ai

Bi

X

Y

fi

gD

hD

p

with fi ∈ F . Define the object G1(F , p) to be given by attaching Bi’s to X with the

pushout diagram

∐
D Ai

∐
D Bi

X

G1(F , p)

∐
D fi

∐
D gD

i1

We have a map p1 = (
∐

D hD, p) : G1(F , p) → Y . We repeat the same process

as above for p1 to get the object G2(F , p) := G1(F , p1) and maps i2 : G1(F , p) →

G2(F , p) and p2 : G2(F , p) → Y . We can go on inductively repeating the process

and define the object G∞(F , p) := colimnG
n(F , p) together with the induced maps

i∞ : X → G∞(F , p) and p∞ : G∞(F , p)→ Y fitting in the commutative diagram:

X

Y

G1(F , p)

Y

G2(F , p)

Y

........

........

G∞(F , p)

Y

p p1 p2 p∞

i1 i2

idY idY
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Claim: In the above situation, if all Ai’s are sequentially small then p∞ has the RLP

with respect to all maps in F .

Proof. (of the claim)

Indeed, if we have a commutative square

Ai

Bi

G∞(F , p)

Y

fi

g

h

p∞

since Ai is sequentially small, there is n > 0 and a map g′ : Ai → Gn(F , p) such that

g factors as A→ Gn(F , p)→ G∞(F , p). Finally we have a diagram

Ai

Bi

Gn(F , p)

Y

Gn+1(F , p)

Y

........

........

G∞(F , p)

Y

f1 pn pn+1 p∞

g′ in+1

h idY

But (g′, h), by definition of Gn+1(F , p), will contribute in attaching Bi to Gn(F , p),

and therefore we get a map Bi → Gn+1(F , p) lifting the diagram. Hence we find the

desired map Bi → G∞(F , p) by composition, ending the proof of the claim.

In our case we consider the family of inclusions F = {jn : Dn × 0 → Dn × I}.

And by the above construction, the map i1 : X → G1(F , p) is a relative CW inclusion

because G1(F is obtained by attaching cylinders to X along the bottom So this map

will have RLP with respect to all Serre fibrations and it will be a weak equivalence

and hence i∞ inherits the same properties as a colimit map. Moreover, since the
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objects Dn are sequentially small, p∞ is a Serre fibration. Therefore we have proven

the following lemma:

Lemma 3.2.4. Each map f in Top can be factored as a f = pi, where p is an acyclic

fibration and i has LLP with respect to all Serre fibrations.

Using this lemma we can finish the proving that Top is a model category.

Proof. (of MC4 and MC 5) Regarding MC4 we have to show that acyclic cofibration

have LLP with respect to Serre fibrations. So let j : A→ B be an acyclic cofibration.

We can write j = pi as in Lemma 2.4. We have the commutative square

A

B

A′

B

j

i

idB

p
∃g

and the map g exists because p is an acyclic fibration and j a cofibration. By MC2,

i is acyclic since j and p are. Moreover j is a retract of i according to the diagram

A A A

B A′ B
g p

idA idA

j ji

And since left lifting properties are preserved by retracts, j has LLP with respect to

Serre fibrations because i does.

MC5 i) is an immediate consequence of Lemma 2.4. To prove MC5 ii) we can

consider the set of inclusions F = {in : Sn−1 → Dn} and use the small object

argument similarly.
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3.2.2 Chain complexes

Let ChR be the category of bounded below chain complexes R-modules for some ring

R. We will put a closed model structure on this category as follows:

Definition 13. Let f : M → N be a morphism in ChR. We say that:

(i) f is a weak equivalence if f is a quasi-isomorphism

(ii) f is a fibration if f is an epimorphism

(iii) f is a cofibration if f is a monomorphism with cokernel projective in each degree

Recall that quasi-isomorphisms are maps that induce isomorphisms on homology

groups, epimorphisms (resp. monomorphisms) in ChR are maps that are surjective

(resp. injective) in each degree. In the sense of the above definition, we can say that

cofibrations are inclusions of the form A ↪→ A ⊕ P where P is a complex which is

projective in each degree, because an exact sequence of R-modules with projective

cokernel always splits.

Theorem 3.2.5. With the above notions of weak equivalence, fibration and cofibra-

tion, ChR is a closed model category.

Proof. (of MC1-MC4) MC1 holds because ModR, the category of R-modules, con-

tains all small limits and colimits, and therefore ChR does. MC2 is clear as well.

MC3 holds in virtue of the fact that inclusions, surjections, and isomorphisms are

preserved by retracts in ModR, and therefore are preserved under retract in ChR.

MC4 (i): Assume we have a commutative square:

A

A⊕ P

X

Y

i

h

g

∼ p
f
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where P is a chain complex which is projective in every degree, and p is a surjective

quasi-isomorphism i.e. ker(p) is acyclic (by the homology long exact sequence). We

wish to show the dashed arrow exists making the whole diagram commute. We

need to find the structure maps of f and we already know that the structure map

corresponding to A is just g. Therefore without loss of generality, we may assume

that A = 0, and just show that the lifting problem:

P Y

X

g

∼ p
f

has a solution.

We can construct f component wise by induction. First, we have a lift f0 : X0 →

Y0 such that p0f0 = g0 since P0 is projective and p0 surjective. Then we also have

a map f̃1 : P1 → X1 such that p1f̃1 = g1. Consider the error map ε = ∂f̃1 − f0∂ :

P1 → X0. We have p0ε = 0 and therefore ε lifts to a map ε′ : P1 → K0, where

K = kernel(p). Since K is acyclic, K1 → K0 is surjective and therefore we can lift

εprime to a map ε′′ : P1 → K1 and we let f1 = f̃1 − ε′′ (we think of ε′′ as a map

P1 → X1). Now it is easy to check that ∂f1 = f0∂. In a similar manner we can

construct all components of f inductively.

MC4 (ii): Suppose we have the commutative square

A

A⊕ P

X

Y

i ∼

h

g

p
f

where P is a chain complex projective at every degree and p is surjective and i is a
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quasi-isomorphism i.e. P is acyclic. Again without loss of generality we will assume

A = 0 and we get the lifting problem:

P Y

X

g

p
f

with P acyclic and projective at each degree and p surjective. Again, we construct f

component wise inductively. First, there is some f0 : P0 → Y0 such that p0f0 = g0.

Since P is acyclic, P1 → P0 is surjective and therefore there is a splitting map s : P0 →

P1 such that ∂s = idP0 . Now lift the map g1s with respect to the surjection p1 : X1 →

Y1 to get a map P0 → X1 commuting with everything, and let f1 : P1 → P0 → X1

be given by composition with ∂. It is easy to verify that ∂f1 = f0∂. Similarly, we

construct the other components of f inductively.

To prove MC5 we will use the small object argument one more time. In order to

implement the small object argument we need a couple or results.

Important observation: Let M be an R-module. Choosing an element m ∈ M is

exactly the same thing as giving a map R → M that sends 1 to m. In other words,

R represents the forgetful functor ModR → Set.

In light of our observation, we can talk about surjectivity simply in terms of lifting

properties. A map of R-modules f : M → N will be surjective if and only if it has

RLP with respect to the map 0→ R. But what about chain complexes?

Definition 14. i) The n-disc in ChR, denoted by Dn(R) or simply Dn, is defined

with Dn
n = Dn

n−1 = R with the identity map as differential and 0 elsewhere.

ii) The n-sphere in ChR, denoted by Sn(R) or simply Sn, is defined with Sn
n = R and

0 elsewhere.
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Observe that in the case R = Z and ModR = Ab, the singular chain complex

associated to the topological n-disc is Dn(Z) (Dn has one n-cell and its boundary as

an (n − 1)-cell) and the one associated to the topological n-sphere is exactly Sn(Z)

(Sn is composed of one n-cell).

Let M be a chain complex of R-modules. Observe that choosing an element

m ∈ Mn is the same thing as giving a map Dn(R) → M . Therefore we have the

following lemma:

Lemma 3.2.6. A map in ChR is a fibration if and only if it has RLP with respect to

inclusions 0→ Dn.

So we characterize fibrations in terms of lifting properties. Moreover, a simple

diagram chase reveals a characterization of acyclic fibrations:

Lemma 3.2.7. A map in ChR is an acyclic fibration if and only if it has RLP with

respect to all inclusions Sn−1 → Dn.

We also need the following lemma.

Lemma 3.2.8. An R-module is sequentially small in case it is finitely presented.

Proof. Recall that an R-module M is finitely presented if there is an exact sequence

Rm → Rn →M → 0

So assume this is the case. We want to show that for all functors B : Z+ → ModR

we have a bijection

colimnhomModR(M,Bn) ∼= homModR(M, colimnB)
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Colimits are right exact, so without loss of generality we may assume M is finitely

generated and free (Rn and Rm being sequentially small implies that M is sequentially

small by an exact sequence argument). But since colimits commute with each other

we may assume that M = R without loss of generality. And since R represents the

forgetful functor ModR → Set and this functor preserves colimits, the bijection is

obvious.

Using these lemmas it is not difficult to prove MC5 using the small object argu-

ment. We will not present a proof here because what is important for us is the fact

that CHR has the proposed model category structure. In next sections we will see

how this structure enables us to do some homotopy theory.

3.3 New model categories from old

Let C be a closed model category. There are other categories that admit a closed

model structure induced by the one in C.

The dual category Cop has a natural model structure. Let an arrow in Cop be a

weak equivalence if the dual arrow in C is a weak equivalence, a fibration if its dual

is a cofibration and a cofibration if its dual is a fibration. A mere observation and

MC1 - MC5 are satisfied by these three classes of morphisms in Cop. We call this

the dual model category on C.

Let A ∈ C be an object. The comma category C ↓ A admits a natural model

structure. For two object f : B → A and g : C → A, say a morphism

B C

A

h

f g
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is a weak equivalence (resp. fibration of cofibration) in case h is a weak equivalence

(resp. fibration or cofibration). Clearly these classes satisfy MC1 - MC5. Nothing

changes much except that in the comma category the terminal element becomes the

map idA : A → A, and hence an object f : B → A is fibrant if and only if f is a

fibration in C. Similarly we may impose a closed model structure on A ↑ C. As a

matter of fact, this category has the dual model structure with respect to C ↓ A.

Let D be a small category. Does the functor category CD admit a natural model

structure as well? By natural we mean that for two objects X, Y : D → C a map

f : X → Y is a weak equivalence (resp. fibration or cofibration) if the maps fi :

Xi → Yi are weak equivalences (resp. fibrations or cofibrations) for all i ∈ D. Again,

verification of MC1- MC4 is a mere observation. But MC5 is not guaranteed to

be satisfied. If we have a natural transformation f : X → Y , since C is a model

category we can factor each map fi : Xi → Yi as fi = piji where pi is a fibration

and ji is a cofibration and one of them is acyclic. However This data is not enough

to factor f because MC5 just postulates the existence of factorizations but it does

not postulate naturality of those factorizations. Functorial factorizations in C would

guarantee MC5 for CD.

When are the factorizations provided by MC5 natural? It turns out we are OK

when C is cofibrantly generated. Let us define the notion precisely.

Definition 15. Let C be a category and F ⊂ C be a class of morphisms. An object

A ∈ C is said to be small for F if for all sequences of arrows in F

X1 −→ X2 −→ X3... −→ Xn −→ ...
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the map

colimnhomC(A,Xn) −→ homC(A, colimnX)

is a bijection

Note that an object is sequentially small as in Definition 5 if it is small for C.

Definition 16. A closed model category C is said to be cofibrantly generated in case

there are two classes of morphisms I and J in C such that:

(i) Sources of the maps in I are small for the class of cofibrations and a map in C is

an acyclic fibration if and only if it has RLP with respect to all maps in I

(ii) Sources of the maps in J are small for the class of acyclic cofibrations and a map

in C is a fibration if and only if it has RLP with respect to all maps in J

In case a category is cofibrantly generated, the class I ”generates” cofibrations

and the class J ”generates” acyclic cofibrations, in the sense that the saturated class

generated by I coincides with cofibrations and the saturated class generated by J

coincides with acyclic cofibrations.

As mentioned previously cofibrations are stable under retract or coproduct. We

can easily see that cofibrations are preserved by pushout as well. Can we produce all

cofibrations like this? The answer is yes for cofibrantly generated categories. Starting

with some cofibrations we can saturate” the class of cofibrations. Saturation is made

precise as follows.

Definition 17. Let C be a category and M ⊂ C be a class of monomorphisms. We

say that M is saturated if the following axioms are satisfied:

A: All isomorphisms are in M .

B: M is closed under pushout, i.e if we have a pushout square
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A C

B
∐

ACB

i i?

then i? ∈M in case i ∈M .

C: Each retract of an element of M is in M .

D: M is closed under countable composition and coproducts.

It is not difficult to see that the class of cofibrations satisfies these axioms. Also,

the intersection of two saturated classes will still be saturated. Therefore we can

talk about a saturated class generated by a bunch of monomorphisms, which we can

define to be the smallest class containing those monomorphisms. In the case of Top,

the class of cofibrations coincides with the saturated class generated by inclusions

Dn × 0→ Dn × I. For a detailed proof see [6].

The details of why cofibrantly generated model categories admit functorial factor-

izations can be found in [6] and [4]. The proofs for the model structures on Top and

ChR indicate that both these model categories are cofibrantly generated. Therefore

in such model categories one can talk about the model structure on small diagram

categories.
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Chapter 4

HOMOTOPY IN CLOSED MODEL CATEGORIES

4.1 The meaning of ”closed”

Theorem 4.1.1. In a closed model category C

a) A map is a fibration (resp. acyclic fibration) if and only if it has the right lifting

property with respect to all acyclic cofibrations (resp. cofibrations).

b) A map is a cofibration (acyclic cofibration) if it has the left lifting property with

respect to all acyclic fibrations (fibrations).

Proof. Suppose a map f : X → Y has RLP with respect to all cofibrations. By MC5

we can write f = pi where i is a cofibration and p is a trivial fibration. For the

commutative square

X

V

X

Y

idX

p

∃r
i f

the dotted arrow exists by MC4 and therefore f is a retract of p

X V X

Y Y Y
idY idY

i r

f fp

By MC3 we get that f is an acyclic fibration.



Chapter 4: Homotopy in closed model categories 28

Exactly the same argument works when f has RLP with respect to all acyclic

cofibrations. In that case we write f = qj where q is a fibration and j an acyclic

cofibration using MC5, then using MC4 we get that f is a retract of q, and by

MC3 we get that f is a fibration. For the rest of the lemma a similar argument

works.

Our definitions and proofs for the model structures of Top and chain complexes

already indicated that such a fact might be true. In light of this, in Top the inclusions

Dn × 0→ Dn × I are cofibrations.

4.2 Cylinder objects and left homotopy

Let C be a fixed closed model category.

Definition 18. A cylinder object for A ∈ Ob(C) is a commutative diagram

A
∐
A A

A ∧ I

idA + idA

i ∼ q

where q is a weak equivalence.

A cylinder object is called good in case i is a cofibration and very good in case q

is a fibration. Write i0 and i1 the structure maps of i. By MC5 there is at least one

very good cylinder object for each object of C.

Definition 19. Two maps f, g ∈ homC(A,X) are said to be left homotopic is there

is a commutative diagram
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A
∐
A

A ∧ I X

i f + g

H

H is called a good/ very good left homotopy if A∧I is a good/ very good cylinder

object. We denote the relation f ∼l g. We wish to show that when A is cofibrant left

homotopy is an equivalence relation. We do this with the help of some lemmas.

Lemma 4.2.1. i0 and i1 are acyclic cofibrations in case A is cofibrant.

Proof. Recall that A cofibrant means that the map from the initial object ∅ → A is

a cofibration. A
∐
A is given by the pushout

∅ A

A
∐
AA

in0

in1

and since cofibrations are preserved bu pushouts in0 and in1 are cofibrations. We

have i0 = iin0 and i1 = iin1 and therefore both maps are cofibrations as composition

of cofibrations.

Lemma 4.2.2. If we have a left homotopy f ∼l g then:

(i) we can find a good left homotopy f to g

(ii) we can find a very good left homotopy f to g in case X is fibrant.

Proof. (i) Assume H is a left homotopy f to g in homC(A,X) with cylinder object

A ∧ I. Using MC5 we decompose i = pj where j : A ∧ I ′ −→ A ∧ I is a cofibration.

Immediately we can verify that A∧ I ′ is a cylinder object, which is good by construc-

tion, and that Hp gives a good homotopy as desired.
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(ii) Choose a good homotopy H : f ∼l g with cylinder object A ∧ I and choose a

very good cylinder object A ∧ I ′. Since X is fibrant (it has the lifting property with

respect to all acyclic cofibrations) we can solve the following lifting problem:

A ∧ I ′ X

A
∐
A A ∧ I

∃H ′

H∼

∼

and H ′ gives the desired very good left homotopy.

Proposition 4.2.3. If A is cofibrant, the relation ∼l is an equivalence relation on

homC(A,X).

Proof. It is easy to see reflexivity and symmetry To show transitivity, assume f, g, h ∈

homC(A,X) are three maps and we have left homotopies H : f ∼l g and H ′ : g ∼l h

with corresponding cylinder objects A ∧ I and A ∧ I ′ (we may assume both cylinder

objects are good without loss of generality). We have diagrams

A

A ∧ I X

A

i0
f

H

i1
g

and

A

A ∧ I ′ X

A

i′0
g

H′

i′1
h

Let A ∧ I ′′ be the pushout of the maps i1 and i′0 (it will be a cylinder object for A)

and H ′′ : A ∧ I ′′ → X the map induced by H and H ′

A A ∧ I ′′

A ∧ I

A ∧ I ′

X

i1

i′0

∼

∼

H ′′
H

H ′
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and H ′′ gives the desired homotopy f ∼l h proving the transitivity of left homotopy.

We will write πl(A,X) for the set of equivalence classes with respect to left homo-

topy on homC(A,X) in case A is cofibrant, and for the set of classes of the equivalence

relation generated by left homotopy in case A is not cofibrant.

Recall that if p : X → Y is a morphism, we have an induced map p∗ : homC(A,X)→

homC(A, Y ) given by composition. But composition preserves homotopy, therefore we

have an induced map on the level of homotopy classes p∗ : πl(A,X)→ πl(A, Y ).

Lemma 4.2.4. Let A be cofibrant. Then p∗ is a bijection in case p is an acyclic

fibration.

Proof. Let [f ], [g] ∈ πl(A,X) be two classes and assume p∗[f ] = p∗[g]. Choose a good

homotopy H : pf ∼l pg. Then we can lift the homotopy in πl(A,X) since p is an

acyclic fibration according to the diagram:

A
∐
A X

YA ∧ I

f + g

H

i ∼ p∃H ′

Therefore p∗ is injective.

Since p is an acyclic fibration and A cofibrant, if h : A → Y is a map, there is a lift

h̃ : A→ X, and hence p∗ is surjective.

It is easy to guess what a cylinder object for a space X ∈ Top is. As terminology

suggests, X × I, the cylinder with bases X, together with the projection map to X

and the structure maps i0 and i1 being the top and bottom inclusions, is a very good

cylinder object for X. Also, observe that the homotopy diagram
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A
∐
A

A ∧ I X

i f + g

H

is equivalent to the classical homotopy diagram

A

A× I X

A

i0
f

H

i1 g

Every topological space is fibrant, and every CW-complex is cofibrant.

Regarding chain complexes, the cofibrant objects are those complexes P such that

Pk is acyclic for all k > 0 and Hn(P ) = 0 for all n > 0. And all chain complexes are

cofibrant objects.

Let M be a chain complex. Then define the complex Cyl(M) with

Cyl(M)n = Mn ⊕Mn−1 ⊕Mn

and differential

∂(a, b, c) = (∂a+ b,−∂b,−b+ ∂c)

Let the map i : M ⊕M → Cyl(M) be given by the structure maps i0(a) = (a, 0, 0)

and i1(c) = (0, 0, c). And let the map p : Cyl(M)→M be given by p(a, b, c) = a+ c.

It is easy to verify that Cyl(M) is a cylinder object for M with the maps i and p

defined as above. Moreover, it is also easy to see that the left homotopy relation

induced by Cyl(M) is the same as the usual one on maps of chain complexes.

But it is not the case that this is always a good cylinder object. We can verify that
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p is a quasi-isomorphisms all the time. However, by construction coker(i) = M [−1]

and hence i is a cofibration if and only if M is cofibrant.

As weird as the definition of the cylinder object looks, it is actually quite natural.

For a space X we constructed the cylinder X × I. For an n-simplex of X, there are

three simplicies of X × I: two n-simplicies on the top and bottom of the cylinder,

and one n − 1-simplex in X × (0, 1). If we scrutinize this carefully we see that

C?(X × I) = Cyl(C?(X)). For more details see [9].

4.3 Path objects and right homotopy

Definition 20. A path object for X ∈ Ob(C) is a commutative triangle

XI

X ×XX

s ∼
(idX , idX)

p

where s is a weak equivalence.

A path object is called good is p is a fibration and very good if in addition s is a

cofibration. Write p0 and p1 for the structure maps of p.

Definition 21. Two maps f, g : A −→ X are said to be right homotopic if there is a

map H : A −→ XI for some path object XI , such that p0H = f and p1H = g.

A XI

X

X

p0

p1

f

g

H

H is called a good/ very good homotopy if XI is good / very good. We denote the

right homotopy relation ∼r
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Of course, right homotopy is dual to left homotopy. Instead of giving the above

definition we can just say that a path object is just a cylinder object in Cop with the

closed model structure induced by the one in C. Therefore without doing any work,

we can just state the results dual to the ones proved for cylinder objects:

Lemma 4.3.1. If X is fibrant then the structure maps of p, p0 and p1, are both acyclic

fibrations.

Lemma 4.3.2. If we have a right homotopy f ∼r g then:

(i) we can find a good right homotopy f to g

(ii) we can find a very good left homotopy f to g in case A is cofibrant.

Proposition 4.3.3. If X is fibrant, the relation ∼r is an equivalence relation on

homC(A,X).

We will write πr(A,X) for the set of equivalence classes with respect to left homo-

topy on homC(A,X) in case X is fibrant, and for the set of classes of the equivalence

relation generated by left homotopy in case X is not fibrant. If i : C → A is a

morphism, we have an induced map i∗ : πl(A,X)→ πl(C,X) given by composition.

Proposition 4.3.4. Let X be fibrant. Then i∗ is a bijection in case i is an acyclic

cofibration.

The relation between left and right homotopy is given by the following proposition,

which is an ”exponential law” very good path and cylinder objects satisfy:

Proposition 4.3.5. Let f, g : A→ X be two maps.

(i) In case A is cofibrant, f ∼l g implies f ∼r g.

(ii) In case X is fibrant, f ∼r g implies f ∼l g.
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Proof. The two statements are dual so it is enough to prove one of them, say the

first one. Choose a good cylinder object A∧ I for A and assume we have a homotopy

H : A∧I −→ X from f to g. Then choose a good path object ps : X → XI → X×X.

A

A ∧ I X

A

i0
f

H

i1
g

We can lift the diagram

A

A ∧ I

XI

X ×X

i0

sf

(fq,H)

p

to get a map K : AI −→ XI and the map Ki1 : A −→ XI gives the desired right

homotopy.

The following theorem describes a fundamental aspect of weak equivalence, that

is being homotopy invertible. This is a version of Whitehead’s theorem for closed

model categories.

Theorem 4.3.6. Let A,X ∈ C be two objects which are both fibrant and cofibrant. A

map f : A → X is a weak equivalence if and only if f is homotopy invertible, i.e. if

there is a map g : X → A such that fg ∼ idX and gf ∼ idA.

Proof. Assume first that f is a weak equivalence. We may factor f as pi : A→ B → X

where p is an acyclic fibration and i an acyclic cofibration. The object B will be both

fibrant and cofibrant: the map ∅ → B is a composition of two cofibrations, i and

∅ → A, and hence it is a cofibration and the map B → ? is the composition of two
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fibrations, p and X → ?, and hence it is a fibration. If i and p are homotopy invertible

then so is f . So without loss of generality we can assume that f is a cofibration (the

result for fibrations is dual).

In case f is an acyclic cofibration, we can lift the diagram

A A

X ?

idA

f ∼ ∃g

to get a map g : X → A such that gf = idA. But Proposition 2.17 tells us that

we have a bijection f? : π(X,X) → π(A,X). And we know that f?[idX ] = [f ] and

f?[fg] = [fgf ] = [f ] and therefore fg ∼ idX , so that g is a two-sided homotopy

inverse of f .

Conversely assume that f is homotopy invertible and let g be its homotopy inverse.

Again we may factor f = pi where p is a fibration and i an acyclic cofibration. So

without loss of generality, we may assume that f is a fibration because by MC2 if p

is a weak equivalence then so is f .

In case f is a fibration, choose a good homotopy H : X ∧ I → X between fg and

idX . Then lift the homotopy according to the diagram using MC4:

X

X ∧ I X

A
g

i0 ∼

H

f
∃H ′

H ′ gives a homotopy from g to a map s = H ′i1. Moreover fs = fH ′i1 = Hi1 = idX ,

so that we get a retract diagram
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A A A

X A X
s f

idA idA

f fsf

But sf is a weak equivalence since it is homotopic to the weak equivalence idA.

Therefore f is a weak equivalence by MC3.

For a space X a path object, as we can imagine, is the space C(I,X) of continuous

maps I → X equipped with the compact open topology. The map s sends all points

in X to the constant path at that point. The maps p0 and p1 send each path to its

endpoints respectively.

For a chain complex M , we define a path object M I as

M I
n = Mn ⊕Mn ⊕Mn+1

with boundary map

∂(a, b, c) = (∂x, ∂y, (−1)n(a− b) + ∂z)

Again, careful scrutiny will reveal the naturality of this definition. If we consider the

singular chain complex of the path object for a space X, an n-simplex of C(I,X) is

the same as two n-simplicies (top and bottom) and another (n+ 1)-simplex.
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Chapter 5

THE HOMOTOPY CATEGORY

Again we fix a closed model category C. We wish to consider objects up to weak

equivalence and maps up to homotopy. We will construct the homotopy category

Ho(C) using the results we proved above. First lets define the following useful sub-

categories of C:

Cf : the full subcategory of fibrant objects

Cc: the full subcategory of cofibrant objects

Ccf : the full subcategory of objects which are both fibrant and cofibrant

πCf : the full subcategory of fibrant objects with morphisms right homotopy classes

πCc: the full subcategory of cofibrant objects with morphisms left homotopy classes

πCcf : the full subcategory of objects which are both fibrant and cofibrant with mor-

phisms homotopy classes

5.1 Cofibrant and fibrant replacement

For each object X ∈ Ob(C), we can decompose the maps ∅ → X and X → ∗ as

X∅

QX

∼ pX

and ∗X

RX

iX ∼
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using MC5(ii) and MC5(i) respectively. By construction QX is cofibrant and RX is

fibrant. Basically, we are saying that C has ”enough” fibrant and cofibrant objects in

virtue of MC5.

Lemma 5.1.1. If f : X → Y is a map, then there is a map f̄ : QX → QY making

the following diagram commute:

QX QY

X Y

pX ∼ pY ∼
f

f̄

Moreover, f̄ is unique up to right or left homotopy and is a weak equivalence if and

only if f is. If Y is fibrant then f̄ depends only on the homotopy class of f .

Proof. The existence of f̄ is guaranteed by the lifting property of the cofibrant object

QX with respect to the acyclic fibration pY . The fact that the left homotopy class of f̄

depends solely on f is a consequence of the fact that p∗Y : πl(QX,QY )→ πl(QX, Y ) is

a bijection, and that since QX is cofibrant left homotopy induces right homotopy. If Y

is cofibrant, then we have a bijection p∗−1X p∗Y : πl(QX,QY )→ πl(QX, Y )→ πl(X, Y ),

which tells us that the homotopy class of f̄ is determined uniquely by the homotopy

class of f .

The lemma is just a recapitulation of the work done in previous sections but now

we can speak of a well-defined functor

Q : C −→ πCc
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which is called the cofibrant replacement functor. The lemma also tells us that we

have a well defined functor

πQf : πCf −→ πCcf

given by first restricting Q to fibrant objects, and then using the last part of the

lemma we can restrict morphisms to homotopy classes of morphisms.

Dually, we can talk about functors:

R : C −→ πCf

called the fibrant replacement functor and

πRc : πCc −→ πCcf

In Top the cofibrant replacement is a manifestation of the well known fact that

every space has the homotopy type of a CW-complex [5].

In ChR cofibrant replacement has much more meaning. Let M be an R-module.

We can see M as a chain complex concentrated at degree 0. The cofibrant replacement

QM has to be an acyclic complex projective in each degree and pM : QM → M has

to be a quasi-isomorphism. Therefore giving a cofibrant replacement for M is exactly

the same thing as giving a projective resolution in the classical sense. Moreover the

functoriality of the cofibrant replacement Q corresponds to the fact that lifts of maps

of modules to the corresponding projective resolutions are unique up to chain map

homotopy [9].

The model structure we established on ChR is called projective model structure

for this reason. The dual model structure is called the injective model structure.
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In the injective model structure, weak equivalences do not change, all inclusions are

cofibrations and fibrations are surjective maps with injective kernel. With this dual

structure, the fibrant replacement gives injective resolutions for modules. But no

matter which structure we use we will eventually end up with the same homotopy

category, which is the real object of interest.

Definition 22. The homotopy category associated to a closed model category C is a

category Ho(C) whose objects are the same as the objects of C and the set of morphisms

is defined to be

homHo(C)(X, Y ) = π(RQX,RQY )

5.2 Inverting weak equivalences

We have seen that for a map f : X → Y in C, we have a corresponding map f̄ : QX →

QY whose homotopy class depends only on f . Moreover we have an associated map

˜̄f : RQX → RQY whose homotopy class depends only on the homotopy class of f̄ .

We illustrate this with the diagram:

X Y

QX QY

RQX RQY

f

pX ∼ pY ∼

iQX ∼ iQY ∼
∃f̄

∃ ˜̄f

Therefore we can talk about a well defined functor:

γ : C −→ HO(C)
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which is identity on the objects and sends maps f to classes [ ˜̄f ] ∈ π(RQX,RQY ).

We know that f is a weak equivalence if and only if f̄ is if and only if ˜̄f is. And we

know that a map in Cc{ is a weak equivalence if and only if it has a homotopy inverse.

Therefore we conclude the following simple but important conclusion:

Lemma 5.2.1. γ(f) is an isomorphism if and only if f is a weak equivalence

We wish to prove that γ is universal with respect to this property. We will do

that with the help of a couple of lemmas.

Lemma 5.2.2. Let C be a closed model category. Assume a functor F : C → D takes

weak equivalences to isomorphisms in D. If f ∼l g or f ∼r g in homC(A,X), then

F (f) = F (g).

Proof. Choose a left homotopy H : A∧I → X between f and g, with a good cylinder

object A
∐
A ↪→ A ∧ I → A, q : A ∧ I → A being a weak equivalence. We have

fq = H = gq. Apply F to get Ff · Fq = Fg · Fq. Since Fq is an isomorphism in D,

we get Ff = Fg. The right homotopy case is dual.

Lemma 5.2.3. The maps in HO(C) are generated via composition by images of maps

in C.

Proof. Every morphism [g] ∈ homHo(C)(X, Y ) = π(RQX,RQY ) can be written as

[g] = γ(py)γ(iQY )−1γ(g)γ(iQX)γ(pX)−1

following the diagram above.
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Proposition 5.2.4. Let C be a closed model category and F : C → D a functor

that takes weak equivalences to isomorphisms in D. Then there is a unique functor

F̃ : Ho(C)→ D lifting F with respect to γ.

C

Ho(C)

D
F

γ ∃!F̃

Proof. We construct F̃ . It is obvious what F̃ is on the objects. Each morphism

[g] ∈ homHo(C)(X, Y ) can be written as

[g] = γ(py)γ(iQY )−1γ(g)γ(iQX)γ(pX)−1

by the above lemma. So we know where to send [g] since the choice of representative

g is unique up to homotopy, and we know that F sends homotopic maps to the

same map in D. It is easy to see that F̃ is a functor and uniqueness follows by

construction.

In other words we have proved that the homotopy category Ho(C) is just the

localization of C with respect to the class of weak equivalences. We could have defined

the homotopy category as a localization from the beginning but then the maps in a

localized category are not easy to handle. But now we have a nice description of

the maps in Ho(C) as homotopy classes. This description is more meaningful and

practical.

Proposition 5.2.5. Let A be a cofibrant object and X a fibrant object in C. Then

the map γ : homC(A,X) → homHo(C)(A,X) is surjective and induces a bijection of

homotopy classes γ : π(A,X)→ homHo(C)(A,X)



Chapter 5: The homotopy category 44

Proof. We have a commutative square

π(RA,QX) π(A,X)

homHo(C)(RA,QX) homHo(C)(A,X)

γ γ

By definition the horizontal arrows are bijections. The left arrow is a bijection as well

by definition. Hence the right arrow is a bijection.

In light of the these results we can characterize elements in the extension groups

Extn(A,B) for R-modules A and B as follows:

Proposition 5.2.6. Let A and B be two R-modules and let Sn(B) be the chain

complex concentrated at degree n. Then there is a natural bijection

homHo(ChR)(A, S
n(B)) ∼= Extn(A,B)

Proof. Recall that a cofibrant replacement for an R-module A is just a projective

resolution. So choose a cofibrant replacement P? → A → 0. Observe that giving a

chain map f : P? → Sn(B) is the same thing as giving a map f : Pn → B such that

f∂ = 0.

0 B 0

Pn+1 Pn Pn−1
∂ ∂

f s

Moreover, homotopy relations by definition will be given by maps s : Pn−1 → B. In

other words, if we look at the complex

... hom(Pn−1, B) hom(Pn, B) hom(Pn+1, B) ...
∂? ∂?
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we see that homChR
(P?, S

n(B)) ∼= kernel∂?, and the image of ∂? : hom(Pn−1, B) →

hom(Pn, B) gives the homotopy relations. Therefore choosing a homotopy class in

π(P?, S
n(B)) is the same thing as choosing a homology class in Hn(hom(P?, B)). By

definition, homotopy classes are just maps in the homotopy category and homology

classes are just elements of the extension groups. Hence we have proven the bijection

in the proposition.

In the category of topological spaces Proposition 3.6 tells us that for a CW-complex

A (a cofibrant object in Top) and any space X, homHo(Top)(A,X) is just the set of

conventional homotopy classes of maps A→ X.

In ChR we can conclude that in the derived category maps between two cofibrant

objects, which are complexes of projective modules, are just homotopy classes between

these complexes.

5.3 Derived functors and Quillen pairs

We have seen that the homotopy categoryHo(C) associated to a closed model category

C is the localization with respect to the class of weak equivalences. Therefore we can

talk about left, right and total derived functors of a functor F : C → D.

Definition 23. Let C be a closed model category and F : C → D be a functor. A

left derived functor of F is a pair (LF, t) where LF : Ho(C) → D is a functor, and

t : LFγ → F is a natural transformation, and this pair is universal with respect to

this property i.e. if we have another pair (G, s) of a functor G : Ho(C) → D and a

natural transformation s : Gγ → F , then there is a unique natural transformation

s′ : Gγ → LFγ such that ts′ = s.
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The right derived functor (Rf, t) is defined dually. The ideal case is when F itself

factors through γ (we know this happens if and only if F sends weak equivalences

to isomorphisms). In that case F itself induces the left derived functor LF and we

actually have the identity LFγ = F . We will see that derived functors exist even if

this is not the case.

Lemma 5.3.1. Let C be a model category and F : Cc → D be a functor such that

F (f) is an isomorphism whenever f is an acyclic cofibration. Then if f, g : A → B

are right homotopic maps in Cc, we have F (f) = F (g).

Proof. Since A is cofibrant, we can choose a very good right homotopy H : A→ BI .

The acyclic cofibration s : B → BI is such that sf = sg = H. And since BI has

to be cofibrant, we get F (s)F (f) = F (s)F (g) with F (s) an isomorphism. Hence,

F (f) = F (g).

In other words, the lemma asserts that functors F as above factor through the

homotopy category as

Cc D

πCc

F

πF

Proposition 5.3.2. Let C be a closed model category and F : C → D a functor

such that F (f) is an isomorphism whenever f is a weak equivalence between cofibrant

objects. Then the left derived functor (LF, t) exists and moreover, for each cofibrant

object X,

tX : LF (X)→ F (X)

is an isomorphism.
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Proof. By the previous lemma, the restriction F |Cc can be factors through the homo-

topy category. Let us denote F ′ = πF |Cc . We also have the cofibrant replacement

functor Q : C → πCc. The composite F ′Q : C → D sends weak equivalences to

isomorphisms, therefore it factors through the localization functor γ : C → Ho(C) to

give us a left derived functor LF : Ho(Ct→ D. The structure natural transformation

t is given by tX = F (pX) : LF (X) → F (X). By construction, we have of course

Lf(X) = QX.

All we are left to do is verify the universal property. So assume G : C → D is a

functor that sends weak equivalences to isomorphisms and s : G → F is a natural

transformation. For each object X ∈ C we have a commutative square

F (QX)

G(QX)

F (X)

G(X)

sQX

F (pX)

G(pX)

sX

and we know that G(pX) is an isomorphism. Therefore we define for each X ∈

C the map s′X = sQXG(pX)−1, which defines a natural transformation s′ : G →

LFγ. Uniqueness is immediate. Moreover, by construction, if X is cofibrant then

pX is a weak equivalence between cofibrant objects and therefore tX = F (pX) is an

isomorphism.

Now we define morphisms between model categories, which are called Quillen

functors.

Definition 24. Let C and D be closed model categories. A Quillen functor (a mor-



Chapter 5: The homotopy category 48

phism between model categories) is an adjoint pair of functors

F : C � D : G

such that

(i) F preserves cofibrations and weak equivalences between cofibrant objects

(ii) G preserves fibrations and weak equivalences between fibrant objects.

Definition 25. A Quillen functor (F,G) is said to be a Quillen equivalence if in

addition we have

(iii) For all A ∈ Cc and Y ∈ Df we have ”a map A → GY is a weak equivalence if

and only if the adjoint map FA→ Y is a weak equivalence”.

Definition 26. Let C and D be closed model categories and F : C → D a functor. A

total left derived functor of F is a functor

LF : Ho(C)→ Ho(D)

which is the left derived functor of γDF .

By the above proposition (and its dual), for a Quillen functor (F,G) the total left

derived functor LF and the total right derived functor RG exist. However, we can

deduce much more than just existence.

Theorem 5.3.3. Let (F,G) be a Quillen functor between model categories C and D.

Then the total derived functors LF and RG are adjoint functors. Moreover, if (F,G)

is a Quillen equivalence, then LF and RG are equivalences of categories.
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Proof. First, we show that adjointness of F and G respects the homotopy relation,

meaning that for A ∈ Cc and X ∈ Df we have πD(FA,X) ∼= πC(A,GX).

Indeed, from adjointness we can identify homotopy diagrams

FA XI

X

X

X

idX

idX

∼
A GXI

GX

GX

GX

idGX

idGX

∼

since XI will be fibrant, and G preserves fibrations and weak equivalences between

fibrant objects.

Keeping in mind the functors Q : C → Cc and R : D → Df , we may write the

following:

homHo(D)(LF (A), X) ∼= homHo(D)(F (QA), X) ∼= homHo(C)(QA,G(X)) ∼=

homHo(C)(QA,RGX) ∼= homHo(c)(A,RG(X))

proving the adjointness.

Now assume (F,G) is a Quillen equivalence. Let A ∈ Cc. Consider the fibrant

replacement F (A)→ RF (A) in D. By assumption, the adjoint map A→ G(RF (A))

is a weak equivalence in C and since RG(LF (A)) = G(RF (A)) by construction, we

have an isomorphism A ∼= RG(LF (A)). We get the natural equivalence we wanted.

The most famous example of a Quillen equivalence is the pair consisting of the

geometric realization functor and singular simplicial set functor from the category of

simplicial set to the category of topological spaces. Unfortunately this is too big of a

topic to be treated here but in [3] we can find all the constructions and proofs.
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5.4 Homotopy limits and colimits

Let jn : Sn−1 ↪→ Dn be the boundary inclusion in Top. Consider the following

diagram:

Dn Sn−1 Dn

? ?Sn

jn jn

idSn−1

The shown diagram is just a morphism between pushout diagrams in Top where

all vertical arrows are weak equivalences. However, the pushout of the top row is just

Sn and the pushout of the bottom row is ? and the induced map on colimits Sn → ?

is not a weak equivalence in this case.

In an abstract setting, we have a model category C and the category D = {a ←

b → c} and we look at the functor colim : CD −→ C. Assume for the moment

that CD admits the natural model category structure, with a map f : X → Y being

a weak equivalence (resp. fibration, cofibration) if and only if f� : X� → Y� is

a weak equivalence (resp. fibration, cofibration) for � = a, b, c. Then the above

example shows that the colimit functor between model categories does not preserve

weak equivalences and therefore it cannot be lifted to the level of homotopy categories.

However, we can construct its left derived functor.

By definition, the colimit functor is left adjoint to the constant diagram functor.

colim : CD � C : ∆

Besides being an adjoint pair, (colim,∆) is a Quillen pair between model categories.

Indeed, colim will preserve left lifting properties and therefore will preserve acyclic
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cofibrations between cofibrant objects and cofibrations themselves. And by definition

of the model structure on CD the functor ∆ preserves everything. Therefore the

derived functors exist and they form an adjoint pair:

L(colim) : Ho(CD) � Ho(C) : R(∆)

This is called the homotopy pushout. Dually, we can talk about homotopy pullback.

If we let D = {a→ b← c} we have a Quillen pair

∆ : C � CD : lim

which gives us the homotopy pushout as a right derived functor

L(∆) : Ho(C) � Ho(CD) : R(lim)

We are left to prove that CD is a model category for the above cases. We do just the

case of pushout diagrams because the other case is similar.

Proposition 5.4.1. Let C be a model category and D be the category {a ← b →

c}. Then CD has a model category structure with a map f : X → Y being a weak

equivalence (resp. fibration, cofibration) in case f� : X� → Y� is a weak equivalence

(resp. fibration, cofibration) for � = a, b, c.

Proof. MC1 - MC4 obviously hold by construction. The problem is factoring a given

f : X → Y as required by MC5 without having functorial factorizations n C.

We construct a factorization of f : X → Y
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Xa Xb Xc

Ya Yb Yc

fa fb fa

as follows: first factor the map fb : Xb → Yb as fb = pbib : Xb ↪→ Zb � Yb with ib

acyclic cofibration and pb fibration. Then construct pushouts squares

Xa Xb

ZbZa

∼ ib∼ ia

and

Xb Xc

ZcZb

∼ ic∼ ia

to get maps ia : Xa ↪→ Za and ic : Xc → Zc which will be acyclic cofibrations since ia

is an acyclic cofibration and pushouts preserve acyclic cofibration. We have induced

maps Za → Ya and Zc → Yc and a commutative diagram

Xa Xb Xc

Za Zb Zc

Ya Yb Yc

∼ ia ∼ ib ∼ ic

pb

Finally use MC5 to factor the maps Za → Ya and Zc → Yc as pai
′
a : Za ↪→ Z ′a � Ya

and pci
′
c : Zc ↪→ Z ′c � Yc where i′a, i

′
c are acyclic cofibrations and pa, pc are fibrations,

to get the desired factorization
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Xa Xb Xc

Z ′a Zb Z ′c

Ya Yb Yc

∼ i′aia ∼ ib ∼ i′cic

pbpa pc

Note that we do not need the above to talk about homotopy limits and colimits in

cofibrantly generated categories because of the existence of functorial factorizations.

In particular in Top and ChR all homotopy limits and colimits exists.
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