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Assets, Counterparty Risk and Bank Networks 

 

Abstract 

 

       This thesis consists of two essays discussing shock propagation and counterparty risk in 

financial networks. The first essay explores the resilience of financial networks to systemic shocks 

under regulatory solvency constraints.  We generalize the contagion under fire sale model of 

Cifuentes, Ferucci and Shin (2005) by allowing financial institutions to be connected through assets 

they hold in their portfolios. We simulate the model under different combinations of debt and asset 

networks and observe how shocks spread across markets. In the second essay, we provide a 

dynamic model of financial contagion to identify the source of systemic risk when banks can 

borrow from each other as well as from external creditors to invest in a risky portfolio. Our 

framework differs from earlier work as it describes how a bank’s value function depends on 

counterparties’ risky behavior. We analyze the implications of the model in the case of a ring 

network of banks where liabilities of a bank are held by a single counterparty. We show that the 

network effect is positive for the banks whose risky investment is less than the average of the rest. 

In other words, we show that the counterparties’ risky behavior increases the probability of default 

of a bank. We also show that the uniform Value at Risk (VaR) constraint doesn’t reflect the real 

probability of default when the network effect is considered. Therefore, we propose a policy 

function which assigns different VaR values for each bank in the network, and obtain that the target 

level imposed by the social planner is achieved. 
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Varlıklar, Komşu Riskleri ve Banka Ağları 

 

Özet 

 

 

Bu tez, şokların yayılmasını ve komşu risklerini irdeleyen iki tane bölümden oluşmaktadır.  İlk 

bölüm, devlet düzenlemeleri altında finansal ağların şoklara olan direncini anlamaya çalışmaktadır. 

Bu amaçla, Cifuentes , Ferruci ve Shin (2005) tarafından ortaya konan model, finansal kurumların 

portfölyelerinde tuttukları ortak varlıkları da dikkate alarak genelleştirilmiştir. Borç ve varlık 

ağlarının farklı kombinasyonları üzerinden simulasyonlar yapılmış ve şokların nasıl yayıldığı 

gözlemlenmiştir. İkinci bölümde ise, bankaların hem birbirlerinden hem de yatırımcılardan 

topladıkları fonlar ile portfölyö yatırımı yaptıkları bir ortamda, sistemik riskin kaynağını saptamak 

adına dinamik bir finansal yayılma modeli önerilmiştir. Ortaya konan modelin, önceki modellerden 

farkı, bankaların değer fonksiyonlarının komşu bankaların riskli davranışlarını içeriyor olmasıdır. 

Modelin çıkarımlarını halka şeklindeki bir ağda inceledik. Halka ağı, her bankanın borcunun 

sadece baska bir banka tarafından tutulduğu ağ şeklidir. Ağ efektinin, diğer bankaların 

ortalamasından daha az oranda riskli yatırım yapan bankalar için pozitif olduğunu gösterdik. Diğer 

bir deyişle, komşularının aldığı riskin, bankanın batma riskini arttırdığını gösterdik. Bununla 

beraber, ağ efekti göz önüne alınınca, tek bir Riske Maruz Değer (RMD) ölçütünün gerçek batma 

olasılığını yansıtmadığını gösterdik. Bu yüzden, ağ içindeki her bir bankaya farklı bir RMD değeri 

atayan bir fonksiyon önerdik. Bu sayede, sosyal planlayıcının hedef olarak koyduğu RMD 

değerinin ulaşıldığını ispat ettik. 
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Abstract

This thesis consists of two essays discussing shock propagation and counterparty

risk in financial networks. The first essay explores the resilience of financial networks

to systemic shocks under regulatory solvency constraints. We generalize the contagion

under fire sale model of Cifuentes, Ferucci and Shin (2005) by allowing financial in-

stitutions to be connected through assets they hold in their portfolios. We simulate

the model under different combinations of debt and asset networks and observe how

shocks spread across markets. In the second essay, we provide a dynamic model of

financial contagion to identify the source of systemic risk when banks can borrow from

each other as well as from external creditors to invest in a risky portfolio. Our frame-

work differs from earlier work as it describes how a banks value function depends on

counterparties risky behavior. We analyze the implications of the model in the case of

a ring network of banks where liabilities of a bank are held by a single counterparty.

We show that the network effect is positive for the banks whose risky investment is

less than the average of the rest. In other words, we show that the counterparties risky

behavior increases the probability of default of a bank. We also show that the uniform

Value at Risk (VaR) constraint doesnt reflect the real probability of default when the

network effect is considered. Therefore, we propose a policy function which assigns

different VaR values for each bank in the network, and obtain that the target level

imposed by the social planner is achieved.
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1 Introduction

Recent economic events have highlighted the importance of networks for capturing the po-

tential effects of shocks to the financial system. Policy actions are reconsidered accordingly

and stress-test frameworks are motivated by incorporating the impact of the network struc-

ture to the resilience of the financial system to external shocks. The aim of this master thesis

is twofold. In the first chapter, it attempts to advance the model proposed by Cifuentes,

Ferrucci and Shin (2005) by adding multiple assets through which the financial system is

handled as the combination of two seperate categories of networks. On the one hand, banks

have mutual debts to each other, as it is the dominant type of connections in the financial

network literature. Yet, we additionaly integrate a setup in which banks share common

assets, which is the second category of network. In the second chapter, we analyze the role

of the counterparty risk in the value function of the banks connected through the interbank

debt network. The aim of the proposed setup is not to trace the effect of the shock but to

understand the result of the counterparty risky behavior due to the network effect.

In the model proposed by Cifuentes, Ferrucci and Shin (2011), there is a set of financial

institutions interlinked through mutual debts to each other. They are required to satifsy a

threshold ratio, called the capital asset ratio. It is the ratio of the bank’s equity value to

the mark to market value of its assets. If any bank violates the ratio, it must sell its assets

until the capital asset ratio is equal or above the required ratio. Yet, the prices of the assets

endogenously decline, as banks sell their assets. This process causes some other banks to

find themselves violating the capital asset ratio as well, depending on the size of the shock

and the structure of the connection between the banks.

We modify the CFS model above for two reasons. Firstly, integrating different assets

and liability networks and comparing them could give the role of the asset commonality

among the financial institutions in times of financial contagion. We ask as to what extent

the commonality of assets in banks’ balance sheets prepares the ground for an initial shock
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to propagate. Secondly, we try to identify the asset shocks which result in the decrease of

the prices of other assets. This is the recently obversed phenomena in the last financial crises

in the U.S.(See, Longstaff (2010)) The shock is represented as the unexpected decline in the

cash flow of the asset. We try to provide boundary levels for different type of shocks under

different networks. Instead of one asset, we have multiple assets and this feature brings

another network structure into analysis. The financial network consists of two sub-networks.

Firstly, it is the network determined by banks’ debt obligation to each other. Secondly, it is

the allocation of assets among financial institutions. It provides a measure indicating how

likely for any set of banks are exposed to same shock through the assets in their portfolios.

We present an algorithm to obtain the equalibrium when the CFS model is extended with

the multiple assets.

In the second chapter, our aim is to investigate how banks’ collection of funds from out-

side increase the probability of default of the banks in the network. In particular, by mixing

the two existing models , we examine how counterparty risk arises in an environment where

banks have claim on each other, collect deposit and invest in a portfolio. Taking the coun-

terparty risk into account, our model explains why the value at risk value imposed by the

goverment fails to achieve the target level. In addition, we illustrate how the heterogeneity

among the banks in the network generates the counterparty risk.

We analyze for an infinite horizon economy with n banks. At each date, banks choose how

much to invest in the risky asset and to hold the riskless asset. We assume that banks need

to borrow from other banks and collect deposits to invest in a portfolio. Therefore, banks

are connected through their liability sides. This connectedness over the lending/borrowing

relation generates the network structure between the banks. Banks are heterogenous in the

sense that they collect different amount of deposits. After shocks on asset returns are real-

ized, banks make payment to each other and to the depositors. The payment equilibrium

arises as in the Eisenberg and Noe model (2001). We assume that the depositors has priority
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over the interbank debts. Hence, if any bank’s portfolio return is not sufficient to pay its

debts, the payment are done in an order within which the depositors have priority. The

bank’s income is comprised of the payments from other banks and the portfolio return. If

the bank’s income is not sufficient to pay its debts, the bank defaults. Therefore, the bank’s

choice is to minimize probability of default and ,at the same time, to maximize expected

cash flow as in Ibragimov, Jaffee and Walden (2011).

One of the implications of our model is shown under the ring network in which all liabil-

ities of a bank are held by a single counterparty. We show that the banks that collects the

lower level of deposit than the average of the rest has a positive network effect. It means

that for any of the banks in the network, the counterparty risk rises as the bank collects less

deposit than the rest. On the contrary, the counterparty risk is zero for the bank that has

a higher level of deposit then the average of the rest. It is intiutive in the sense that the

default risk is already highest for the banks that collect a higher level of deposit because

their portfolio volume is higher. Therefore, the counterparty risk is expected to be zero.

Secondly, in the ring network, we show that the probability of survival is lower than

the one that is imposed the VaR constraint due to the network effect and the seniority of

deposits. Hence, the VaR level doesn’t reflect the real probability of default when banks are

put in an interbank lending/borrowing network. Subsequently, our results suggest that as

the level of the deposits increases, the probability of survival decreases for all banks in the

network. The probability of survival is equal to the level imposed by the VaR constraint

only if banks don’t collect deposit and invest in portfolio. In other words, funds that are

collected from the outside of the network and invested in a portfolio increase the default

probability for all banks in the network. Since banks have claims to each other through

the interbank borrowing/lending network, an increase in the level of deposit collection and

portfolio volume results in a decrease for the probability of survival of all the banks.
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Lastly, in the policy suggestion, we show that the network effect becomes zero, if the

government announces different level of VaR contraint for each bank. Although it’s practical

implication is nearly impossible, it gives a basic idea about the regulation strategy. If the

bank collects more deposit and invest in a portfolio, than the regulator should require a lower

VaR constraint. In other words, the regulator should demand a lower VaR for the banks

who collect deposit more than the rest of the average to reduce the network effect.

1.1 Related Literature

The study of financial networks dates back to the work of Allen and Gale (2000) in which

they show that the possibility of contagion depends heavily on the network structure between

the banks. They conclude that more equally distributed interbank debts reduce the possibil-

ity of contagion. As it is also our starting point, the framework proposed by Eisenberg and

Noe (2001) also demonstrates that an initial shock to a bank in a network might cause other

banks’ default, depending on the structure of the network. Their model forms the basis of

many other models within which financial institutions are part of single payment mechanism;

see, e.g., Elsinger (2009), Rogers and Veraart (2013), Gourieroux et al. (2013), Acemoglu

et al. (2015) There are two important assumptions in their model, which are also followed

here. The first one is that remaining assets are distributed pro rata to creditors when any

default occurs. The second one is the limited liability which ensures that the payment of a

bank can be at most its total income. For the model we propose in chapter 2, our motive is

not to demonstrate quantitatively how the initial shock amplifies through the network. (see,

for example Glessarman and Young (2014), Gai et al. (2011), Acemoglu et al. (2015) ) Yet,

we used their model to relate the bank’s risky invesment decisions to each other and analyze

the bank’s value accordingly.

The literature on financial networks is heavily devoted to figure out the trade-off between

the risk-sharing and the likelihood of the financial contagion. On the one hand, increasing
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connections over networks lead to diversification of risky choices. But, they also create

channels through which shocks can spread. In their work, Cabrales, Gottardi and Redondo

(2016) examine this trade-off with respect to the properties of the distribution of the shocks.

They find different optimal choices of networks for different class of distributions. Basically,

networks that features uniform level of exposures among the nodes, is proved to be optimal

when the distribution of shocks belong to a canonical class. On the contrary, networks

having sparser connectivity performs better for the distribution of shocks with mass points.

On the same line, Elliot et all (2014) and Acemoglu et al (2015) charactarize the structure

of networks and the magnitude of shocks to analyze financial contagion. The former focuses

on role of the cross-holdings of assets in the propogation of shocks. The latter inspects the

fragility of the financial system over the intensity of interconnections and the magnitude

of shocks. The findings of these papers, like the others, are given under various type of

conditions. For example, Elliot et al. (2014) defines two different phenomena, namely the

level of integration and diversification, and examines the financial fragility of the networks

over the degree of these terms. Therefore, the question about the trade off between the

risk-sharing and the increasing possibility of the contagion doesn’t have a clear cut answer.

The answers are subjected to change under different conditions. Our model in chapter 2

suggests that the heterogeneity among the banks could be the potential answer in the sense

that the network effect is not the same for all banks in the network, it depends on bank-level

characteristics.

In the same line of literature, Ibragimov, Jaffee, Walden (2011) discuss risks evaluated

by individual intermediaries versus society. Their model provides an explanation how risk

diversification, which is the optimal choice for an individual bank, may be suboptimal for

society. We contribute to this discussion by integrating networks into analysis. We use their

model to show that how counterparties’ risky choices affect the banks value function. We

formally define the network effect and show the role of the interconnections between the

banks in determining banks’ values.

The amplification of shocks over different markets attracts a huge attention after the
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2008 financial crises. (see, for example, IMF Survey: New Channels Spread U.S. Subprime

Crisis to Other Markets, Longstaff (2010)) The related literature on the discussion we have in

chapter 1, is mainly on regulatory constraints and fire sales. (see, for example, Brunnermeier

et al (2012), Shleifer and Vishny (2011)) Since our aim ,in that chapter, is to generalize the

model proposed by Cifuentes, Ferrucci and Shin(2005) with multiple assets, our discussion

is directly related with the propogation of shocks over seperate markets. In the CFS model,

the setup is a system of interconnected financial institutions and there is only one asset

whose price declines as banks sell it to satisfy regulatory constraints. The generalization

enables us to compare the performance of different network structures as well as to introduce

high-dimensional networks within which banks are connected through interbanks debts and

common assets.

2 Liquidity Risk and Asset Holding

Our model is a static one consisting of n financial institutions and m assets that are expected

to generate a cash flow. The chain of events begin with a shock to the cash flow of one of

the m assets. When the holders of the hitted asset face a difficulty in satisfying the capital

asset ratio, they liquidate their balance sheet by selling assets. Since prices are determined

endogenously, the prices of the asset declines, as banks choose to sell the asset. After all

banks satisfy the capital asset ratio, the interbank debt payments take place. If any bank

finds itself in a situation where its income is less than its liabilities, it defaults and the pro-

portional payments are implemented as in the Eisenberg Noe (2000) setup. Subsequently,

the new payment equilibrium results in repetition of the above process until all the remaining

banks satisfy the required capital asset ratio.
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2.1 Model

The liability of bank i to bank j is represented by Lij. By definition, Lij ≥ 0 and Lii =0 for

all i. Thus, the total liability of bank i is the following:

Li =
∑

j Lij

The amount of asset j hold by bank i is denoted by Aij. The asset allocation matrix A

is:

A =



Asset1 Asset2 Asset3 ..... AssetM

Bank˙1 A11 A12 A13 . A1M

Bank2 A21 . . . .

Bank3 A21 . . . .

. . . . . .

. . . . . .

Bank˙N AN1 . . . ANM


We assume that each bank can hold only one type of asset. Assets are identical in terms

of their total supply and initial price but they may differ according to their price elasticity.

Each asset has a price and they are expected to generate a positive cash flow R̃. But the

realized one is Rj = R̃j − εj where ε represents the magnitude of the given shock. Initially,

all banks borrow money from each other such that αi ≥ Li for all i where α denotes income

minus deposit payments. In other words, all of the institutions have financially healthy initial

positions. The deposit side includes the assets and the cash generated by the assets from

the previos period and the debts given to the other institutions. The liability side consists of

the issued debts to the rest of the network. Hence, all banks satisfy the following equation

initially: ∑
jεM(Pj + R̃j)Aij +

∑
jεN Lij −Di ≥ Li for all iεN

Shocks are originated from the changes in cash flows through R̃j. The amplification of a

shock of size ε to asset j arises through two different channels:
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• The set of banks holding asset j might have liabilities to other banks, we call it debt

channel. Suppose bank i holds asset j and borrows from bank k. If bank i is unable

to pay its debt after experiencing a reduction in its cash flow due to shock to the asset

j, bank k will suffer from the shock as well.

• Yet, there is another channel which is not expressed by the liability matrix. Suppose,

bank k is not one of the creditors of bank i (Lik = 0). Moreover, we can assume that

bank k is not a creditor of creditors of bank i. By assuming so, we weaken the debt

channel. But, we assume that bank k shares the same asset or same group of assets

with these creditor banks. That is, there exists m εM and j ε N such that Lij 6= 0 and

Akm, Ajm ≥ 0. The second channel of contagion works over asset commonality. When

bank i fails to pay its debts, creditor banks might unexpectedly liquidate their asset

m at market price which is determined endogenously by quantity demand and supply.

Any reduction in the price of asset m will result in tranmission of shock to bank k.

Therefore, the propogation of a shock depends on its size ε, the liability matrix L and

the asset Matrix A.

The interbank liabilities are of equal seniority and if any bank defaults, the payments

will be proportional to the face value of it’s liabilities. To this end, the proportion matrix π

is defined as follows:

πij =


Lij

Li
if Li > 0

0 otherwise

That is, the payment by bank i to bank j is given by Ciπij where Ci is the market value

of bank i liabilities. Subsequently, the contribution of the payments from other banks to the

cash flow of bank i is:

∑
j Cjπji
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The Eisenberg Noe(2000) framework imposes two conditions which are followed here in

the same manner. Limited Liability states that Ci ≤ Li for all i and priority of debt states

that equity value of bank i is allowed to be greater than zero only if Li=Ci. In the case

where banks are allowed to hold only one type of assets, we obtain the clearing payment

vector C=(C1...Cn) by the following fixed point problem:

Ci = max[min[Li, p
∗
jAij +RjAij +

∑
j

Cjπji − di], 0] (1)

where p∗j is after-shock price of asset j and di is the deposit payment of bank i.

With matrix notation, it is

C = max[min[L,AP ∗ + AR + πTC −Di], 0]

where P ∗ = (p∗1, ..., p
∗
m)T is the vector of prices and R = (R1, ..., Rm)T is the vector of

realized cash flow for each asset.

2.2 Capital Ratio and Equilibrium Pricing of Assets

Following the CFS framework, we impose for each bank to satisfy the capital asset ratio r̄

over the equation :

ri =

∑
M1

(pimAim) +
∑

M1
RimAim +

∑
j Cjπji − Ci −Di∑

M1
pim(Aim − sim) +

∑
j Cjπji +

∑
M1
RimAim

≥ r̄

Again, one asset case reduces the equation of capital asset ratio to the following equation:

ri =
pjAij +RjAij +

∑
j Cjπji − Ci −Di

pj(Aij − Sij) +
∑

j Cjπji +RjAij
(2)

Then, the optimal amount of Si, which is the minimum amount of the illiquid assets

banks need to sell in order to safisy r̄ :
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Si(pj) =



(r̄−1)(pjAij+
∑

j Cjπji+RjAij)+Ci+Di

pj r̄
Si ≤ Ai

Ai Si > Ai

0 Si ≤ 0

where pj is the initial price of the asset j.

When banks holding asset j simultaneously decide how much asset j to be sold to satisfy

r̄ , the pricing function is as follows:

p∗j = e−αj
∑

i Si(p
∗
j ) (3)

2.3 Algorithm for Obtaining Equilibrium

Suppose, we have n banks, 3 assets and each bank holds only one asset. Any shock to the

cash flow of asset 1, that is ε1 is given to the system.

Step 1 : Fix everything in (2), find si1 as a function of pj which is the minimum amount

of asset 1 sold to satisfy r̄ for all banks holding asset 1. After obtaining si1 for all i, we put

them into equation (3), which gives the new price for asset 1, p1
1.

Remark 1 : If for any R and
∑

(cjπji) value , if any bank is unable to meet the given

ratio, then the bank is required to sell all of its assets.

Step 2: Calculating the equation (1) for each bank with the new price for asset 1, p1
1,

yields the new clearing vector, we call it C1. Given C1, if there is no bank such that αi < Li

, then the shock causes only the reduction of the asset price itself. We can terminate the

algorithm.

Definition 1: If an asset shock causes only the reduction of the asset price itself, it is
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called idiosyncratic and isolated shock.

Definition 2: If an asset shock causes only any subset of the banks holding that asset

to default, it is called isolated default shock.

Step 3: If the given shock causes αi < Li for some bank i, we turn back to equation (2)

and calculate Si for the remaining banks. This is the first step for tracing the effects of the

initial shock to the other parts of the network. Calculating si2 and si3 will give the required

amount of assets of type 2 and 3 to be sold, for banks holding them to satisfy r̄.

The new prices for asset 2 and 3 are p1
2 and p1

3, respectively. At this step, we capture the

effect of the shock to asset 1 on the prices of asset 2 and 3.

Definition 3: If an asset shock causes the price reduction for other assets, it is called

idiosyncratic and knock − onshock.

Step 4: Given p1
1, p1

2 and p1
3, we look for the clearing vector in Eq.(2) again and call it C2.

At the end of step 4, if for any bank, holding asset 2 or asset 3, αi < Li, then we conclude

that the initial shock has lead some banks to default.

Definition 4: If an asset shock causes financial contagion as described in the 2nd result,

it is called contagious default shock.

Step 5: We have p1
1, p1

2 , p1
3 and C2. We turn back to Eq.(2) and look whether the

capital asset ratio is satisfied for all banks.

If the ratio is satisfied for all banks, the shock is eliminated and it causes only first-round
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effects.

Definition 5: An asset shock is called first − round effect shock, if it is eliminated

after step 5.

After step 5, if there are banks that are unable to satisfy the capital asset ratio, then

these banks are forced to sell their remaining assets. This process will yield second-round

effects.

Step 6: We first determine the prices then put them in equation (1) and finally obtain

the clearing vector, C3. Among the remaining banks, we look whether αi < Li. Any bank

whose cash flow is less than its liabilities becomes insolvent. Banks that are insolvent just

after C3, are called second-round insolvent banks.

This step is identical with step 5, only differing in terms of the prices and clearing vector.

We repeat the process until all banks satifsy the given ratio.

Definition 6: Banks which default after Cn, are called (n−1)th-round defaulting banks.

Definition 7: Having obtained pn−1
1 , pn−1

2 , pn−1
3 and Cn, if any bank is unable to satisfy

the capital asset ratio, then we define the initial shock as nth − round effect shock.

We terminate the algorithm when the remaining banks satisfy the capital asset ratio r̄.

Definition 8 (Equilibrium): Given the initial shock to the cash flow of asset j, the

liability network πij, and the asset network Aij, if the interbank payments Cij, the prices of

the assets (p1, ..., pm) and all banks satisfy the equations (1), (3) and (2), then (C,p) is the

equilibrium.
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2.4 Simulations

Here, we point out the effect of the asset commonality under different network structures.

Banks are considered as identical institutions in order to keep the network structure in the

center of attraction. For the same reason , we set the elasticity of all assets equal. Given that

the total quantity is 15 for all assets, their elasticity is equal to a value such that it ensures

the price will decline by 50% if all assets are sold. Initially, all assets have the same price

and the same expected cash flow, both of them are 1. Yet, the realized cash flow is 1-ε. We

characterize the size of the given shock as the portion of the balance sheet that is wiped out.

For instance, if the realized shock to the asset i is εi, then the portion that is wiped out from

the asset side of the balance sheet of the bank j is Ajiεi divided by the value of the total assets.

The number of banks is 9 and they are divided into 3 groups. Each group holds one type

of assets. So, the number of different assets is 3. The balance sheet of a typical bank is as

follows:

Balance Sheet

Assets Liabilities

5 Illiquid assets 7 Deposits

5 Liquid assets(Cash Flow) 15 Interbank liabilities

15 Interbank assets 3 Equity

25 Total Assets 25 Net worth and liabilities
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2.5 The Ring Liability Network and Totally Seperated Asset Net-

work

The ring financial network defines an interbank debt relation in which bank i is the single

creditor of bank j. Additionally, totally seperated asset network characterizes an asset

network in which bank i represents the set of banks holding only asset i. As a result, banks

holding only asset i become the single creditor of banks holding asset j. The figure 1 below

shows the structure of the ring liability network and totally seperated asset network:

Figure 1: The network on
the left represents the ring
debt network. Node i in-
cludes all banks holding as-
set i. The matrix below im-
poses that banks in node i
hold only asset i.



Asset1 Asset2 Asset3 ..... AssetN

Node˙1 A11 0 0 . 0

Node2 0 A22 0 0 0

Node3 0 0 A33 0 0

. . . . . .

. . . . . .

Node˙N 0 0 0 0 ANN


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Result 1: Let α denote the portion of the balance sheet that is wiped out after the

given shock. For the financial networks composed of the ring liability network and the

totally seperated asset network, for any idiosyncratic shock, there exists αRl , αRh and αR∗ such

that if

• αRh > α > αRl , then α1 is isolated default shock.

• αR∗ > α ≥ αRh , then α1 is knock-on shock.

• α ≥ αR∗ , then α is contagious default shock.

Given the numerical values as described above, the result for the ring liability and totally

seperated asset network is given in table 1. For example, if the shock to the asset 1 wipes

out the portion of the balance sheet amounting to the any rate between 8% and 11.1%, then

the shock will be an isolated default shock. If it amounts to a ratio between 11.1% and

11.5%, the shock will not be a knock-on shock and reduce the price of the asset held by the

creditor banks. Finally, we find that, if the part of the balance sheet that is wiped out after

the shock, amounts to more than 11.4%, then the shock will cause the default of creditor

banks as well.

2.6 The Star Liability Network and Totally Seperated Asset Net-

work

The star financial network constitutes a debt network such that only bank i has debt obliga-

tions to other banks. Again, totally seperated asset network characterizes an asset network

in which bank i represents the set of banks holding only asset i. Here, banks holding asset

1 are debtor to the all other banks holding different types of assets. The figure below shows

the structure of the star liability network and totally seperated asset network:

16



Table 1: Shock to Balance Sheet Ratio

Totally Seperated Asset Network(n=3)
Shock Ring Liability Star Liability
Isolated Default: 11.1 > α1 > 8 17 > α1 >8.6
Knock-on: 11.5> α1 ≥ 11.1 -
Contagious Default: α1 ≥ 11.5 α1 ≥ 17

2

1

3

4

N



Asset1 Asset2 Asset3 ..... AssetN

Node˙1 A11 0 0 . 0

Node2 0 A22 0 0 0

Node3 0 0 A33 0 0

. . . . . .

. . . . . .

Node˙N 0 0 0 0 ANN



Result 2: Let α denote the portion of the balance sheet that is wiped out after the

given shock. For the financial networks composed of the star liability network and the

totally seperated asset network, for any idiosyncratic shock, there exists αSl , αSh and αS∗ such

that if

• αSh ≥ α > αSl , then α is isolated default shock.

• α > αS∗ , then α is contagious default shock.
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Comparing the results under the ring and star liability network yields that the star net-

work performs better in absorbing the shock. For the same level of shock, the star network

is able to keep the shock isolated by transmitting the shock to several neighbors in a smaller

amount. But, the shock is spread over the ring network without being divided, therefore

the effect to the neighbors of the banks whose asset is hit, is heavier. In other words, it

represents the difference between the situations where the bank borrows from a creditor or

from several creditors to invest in an asset. If the volume of the credit is equal, then the

amount of the debt on which the bank default per creditor is greater when it has only one

creditor. For the reason, the lower bound for the contagious default shock is higher. That is,

the size of the balance sheet wiped out after the given shock is greater for the star liability

network for the shock to be the contagious default shock.

The other interesting feature of the star network here is that it doesn’t allow for a shock

to be a knock-on shock. Hence, the shock causes other banks to default whenever it spreads

to other assets and reduce their price. As long as the shock to the asset is between the

knock-on values given in the table 1, the ring liability network causes the price of other

assets to decline, but the holders don’t default.

For the time being, there are two important limitations for advancing the model to

capture more general cases. The first problem arises when banks choose to have more than

one asset. The optimal choice of which asset to sell is dependent on several factors which are

hard to be incorporated in the model. As it may depend on many other factors, we think

that price elasticity of the assets and the share of the asset held by the bank are decisive

factors. Since the level of the price reduction is mostly determined by these factors, the

optimal decision should take them into consideration. The second problem is the lack of

empirically grounded inverse demand function. Although there are some studies ( Thiery),

the observed values are not captured by a functional form. Overcoming these problems

will help us to analyze high-dimensional networks within which interconnections among the
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banks are over the mutual debts and commonly held assets. Moreover, it will prepare the

ground for explaining the spread of shocks not only from one institutions to the other, but

also from one market to the other.

3 Networks and Counterparty Risk

We analyze for an infinite horizon economy with n banks. At each date, banks choose how

much to invest in the risky asset and to hold the riskless asset. We assume that banks need

to borrow from other banks and collect deposits to invest in a portfolio. Therefore, banks

are connected through their liability sides. This connectedness over the lending/borrowing

relation generates the network structure between the banks. Banks are heterogenous in the

sense that they collect different amount of deposits. After shocks on asset returns are real-

ized, banks make payment to each other and to the depositors. The payment equilibrium

arises as in the Eisenberg and Noe model (2001). We assume that the depositors has priority

over the interbank debts. Hence, if any bank’s portfolio return is not sufficient to pay its

debts, the payment are done in an order within which the depositors have priority. The

bank’s income is comprised of the payments from other banks and the portfolio return. If

the bank’s income is not sufficient to pay its debts, the bank defaults. Therefore, the bank’s

choice is to minimize probability of default and ,at the same time, to maximize expected

cash flow as in Ibragimov, Jaffee and Walden (2011).

Our setup is a mixture of the two models, mentioned above. It leads us to understand the

results of bank’s behavior of bringing money through deposits into the system within which

banks have interbank claims on each other. Since banks increase their portfolio volume as

they collect more deposit, this situation makes the counterparty risk rise depending on the

network type. Our setup takes the collection of deposits of the banks and the network struc-

ture as exogenously given. Subsequently, the date 0 value of each bank and the payment

equilibrium arises endogenously as a consequence of the portfolio choice of the banks and

the network structure. We first solve the model under the Value at Risk (VaR) constraint
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without taking the network effect into consideration. We obtain the portfolio choices of

banks whose probability of default don’t exceed the maximum level that is allowed by the

government. Secondly, we solve the model with the network effect. That is, we allow the

probability of survival of the banks in the network to be exposed to the counterparty risk.

When the counterparty risk is accounted, we show that, the portfolio choice of the banks

under the VaR constraint violates the level imposed by the government. We characterize the

equilibrium under the network effect and point out the effects of the heterogenous deposit

collection on the counterparty risk for a particular network type.

In our model, the structure in which banks are part of a single clearing mechanism, is

taken by Eisenberg and Noe (2001). Since banks are connected through interbank borrow-

ing/lending network, defaults of a single bank has negative effect on the rest of the banks.

This feature enables us to relate the probability of default of a bank with the behaviours

of its neighbors. In our setup, defaults may occur due to risky portfolio choice. Therefore,

the amount of the fund that a bank invests in a portfolio increases the probability of default

for all banks in the network. To formalize this idea, we also use the model proposed by

Ibragimov, Jaffee and Walden (2011). The main point of interest in their model for us is

that it incorporates the probability of default and the expected income jointly in the value

function of the banks. In other words, banks aim to maximize their expected cash flow, but

also they gain disutility as the risk of default increases. Hence, the portfolio choice is sub-

jected to a trade-off between the probability of default and the expected invesment return.

By integrating these two models, we came up with a model which helps us to understand

how one of the banks decision over this trade-off affects its neighbors and the whole network.

3.1 Model

Consider an infinite horizon economy in which there are n heterogenous banks denoted by

(1, 2, ...n) and two assets, whose share in banks’ portolios are denoted by αn1 and αn2 ,

respectively. At the initial date, banks borrow from each other, collect deposit and invest
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in portfolio of two assets which yield returns at the next date. As in the ”coconut” model

of Diamond (1982) and in Acemoglu et all (2013), we assume that banks can’t use their

own funds to invest in a portfolio. Asset 1 is a risk-free bond and asset 2 is a risky asset.

Therefore, asset 1 pays off one dollar at t+ 1 and costs δ < 1 at t. The liability of bank i to

bank j is represented by Lij. The amount of deposit collected by bank i is denoted by xi.

By definition, Lij ≥ 0 and Lii =0 for all i. The total liability of bank is the sum

Li + xi where Li =
∑
j

Lij (4)

As in the Eisenberg-Noe framework, interbank liabilities are of equal seniority and if any

bank defaults, payments will be proportional to the face value of its liabilities. The network

matrix π is defined as follows:

πij =


Lij

Li
if Li > 0

0 otherwise

That is, the payment by bank i to bank j is given by Piπij where Pi is the market value

of bank i liabilities and Pi ≤ Li. Subsequently, the contribution of the payments from other

banks to the cash flow of bank i is:

∑
j Pjπji

For each bank, the amount of available fund to invest in portfolio is equal to its liabilities.

ci = [αi2(1 + r) + αi1)](Li + xi) and (1 + r) = R̃ where r is R.V (5)

Interbank lending and portfolio investment constitute the incomes of the banks. The

fixed point characterization is as follows:

pi = max[0,min[li,
∑
j

pjπji + c(αi1, α
i
2, R̃)− xi]] (6)
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The first term in the minimum expression shows the amount bank i borrows. The second

term is the total income of bank i minus the deposit payment. Since, deposit payment has

priority over interbank debts, banks’ payment to other banks in the network is the minimum

of its total liabilities and its net income after the deposit payment. Hence, the clearing

vector P ∗ is a vector in which banks pay each other the minimum of what they borrow and

what they have after the realization of return shocks and the deposit payment. By matrix

notation, it is P ∗ = (p1, p2.....pn):

P ∗ = max[0,min[L, πtP ∗ + C(αi1, α
i
2, R̃)−X]] (7)

Definition 1: Given the deposits (x1, x2, .....xn), the debt network Π and the realization

of the asset return (R̃), P ∗ is the clearing payment vector, if it solves Eq.(4).

After the realization of the asset return R̃ and the clearing payment vector P ∗, the value

of the financial institution i at t = 1 is the following:

max[
∑
j

p∗jπji + c(αi1, α
i
2, R)− Li − xi, 0]

= Q+
∑
j

p∗jπji + c(αi1, α
i
2, R)− Li − xi

(8)

where Q = max[
∑

j p
∗
jπji + c(αi1, α

i
2, R)− Li − xi, 0] + Li + xi −

∑
j p
∗
jπji − c(αi1, αi2, R)

is the realized value of the option to default. (Ibramigox,Jaffee, Walden, 2011). Since the

limited liability, the value of the banks can’t be lower than zero. The price paid at t = 0 is

the discounted expected value of the option to default and expected return of the risky asset

minus premium d, per unit risk :

δE(αi2R̃(Li + xi) +Q(R̃))− d (9)

The premium d increases as the share of the risky asset in the portfolio α2 rises. The
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ex-ante value of the bank i between t = 0 and t = 1 is then:

di − δ(αi1)(Li + xi)− δE(αi2R̃(Li + xi) +Q(R̃))︸ ︷︷ ︸
t=0

+ δE(αi2R̃(Li + xi) +Q(R̃) + (αi1)(Li + xi)− xi)︸ ︷︷ ︸
t=1

= di − δxi + E[Li −
∑
j

p∗jπji|Ii]

= di − δxi

The result follows because E[
∑

j p
∗
jπji − Li|Ii] = 0 , where Ii is the information set of

bank i.

Definition 2: The probability of survival q is the probability that the banks’ portfolio

invesment is greater than zero.

Definition 3: The VaR value is the maximum level for the probability of default im-

posed by the government. It is denoted by β.

The probability of survival depends on the information through which the probability is

calculated. We assume that banks in the network know to whom they owe and from whom

they borrow, but they do not know neighbor’s deposits. The information set of bank i is

denoted by Ii. Therefore, for an individual bank i the probability of survival is simply:

Pr([αi2R̃ + (1− αi2)](Li + xi) > 0) = qi (11)

It is because of the fact that bank i’s expectation about the difference between its network

income and liability is equal to zero. It is again because of the fact that we have:

E[Li −
∑
j

p∗jπji|Ii] = 0 (12)
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On the other, in the reality, there is a counterpary risk, therefore the probability of

survival for node i depends also on the deposits of the banks on the network.

3.2 Bank’s Problem under VaR Constraint

The net present value of operating the bank between t = 0 and t = 1 is equal to the ex-

ante value between t = 0 and t = 1, which is di as calculated above. If the bank survives

with the probability qi, the portfolio invesment and interbank lending process is repeating.

The important part is the fact that VaR constraint doesn’t take counterparty risk into

consideration and it only focus on bank’s invesment position. The value of the bank in

recursive form, as in IJW model, is:

V i = di − δxi + δqiV
i

=
di − δxi
1− δqi

(13)

Therefore, banks’ individual problem is to choose over one risky and one risk-free asset.

Assuming that VaR constraint is imposed by the government and short-sale is not allowed,

for all the banks in the network, the problem is the following:

Vi = max
αi
1,α

i
2

di − δxi
1− δqi

(14)

αi1 + αi2 = 1 (15)

αi1, α
i
2 ∈ [0, 1] (16)

qi = Pr([αi2R̃ + (1− αi2)](L+ xi) > 0) ≥ 1− β (17)

For the time being, the risk premium d is only affected by the amount of risky invesment,

in general it is also a function of counterparties’risky behavior. The trade-off that banks face
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is through the risky asset choice. It causes numerator to increase by rising the risk premium,

yet denumerator also rises as the probability of survival declines after each additional risky

asset choice.

Theorem 1: Following the result in IJW model, bank’s problem under VaR constraint

yields that maximum amount of risky asset is chosen, that is Eq.(13) is binding, and the

rest is invested to risk-free asset:

αi2 =
1

1− F−1

R̃
(β))

(18)

αi1 = 1− 1

1− F−1

R̃
(β))

(19)

where F−1

R̃
is the inverse function of the cumulative distribution function of the random

variable R̃.

Condition 1 (No Short-Sale) : Since short-sale is not allowed, the results require the

condition that:

0 ≥ F−1(β) (20)

Eq.(19) describes the set of β′s that are implementable for the model to be solved under

the short-sale constraint.

3.3 Redefining Bank’s Problem under the Network Effect

Now, we formalize the same situation with the network effect. When any of the bank isn’t

capable of paying its deposits, other banks in the network are exposed to the counterparty

risk. The expected difference between the total payments to the bank and the liabilities of

the bank to the network is no longer zero. In fact, it is a function of the deposits of the

banks in the network. Hence, for some function h, we have:
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E[
∑
j

p∗jπji − li] = h(x−i) (21)

Therefore, the probability of survival when the network effect is considered for bank i is:

q∗∗i = Pr([
∑
j

p∗jπji − li + αi2R̃ + (1− αi2)]L− xi > 0) (22)

Subsequently, bank i’s problem is reformulated as follows:

Vi = max
αi
1,α

i
2

di − δxi
1− δq∗∗i

(23)

α1, α2 ∈ [0, 1] (24)

q∗∗i = Pr([
∑
j

p∗jπji − li + αi2R̃ + (1− αi2)](Li + xi)− xi > 0) ≥ 1− β (25)

Hence, as long as
∑

j p
∗
jπji − li 6= 0 and xi 6= 0, we have q∗∗i 6= qi.

3.4 Implication on the Ring Network

In this part, we construct a ring financial network with three heterogenous banks (i, j, k)

such that xi < xj < xk. The Ring network between (i, j, k) is:

i

k j

The direction of the arrows represents interbank lending. The direction from i to j de-

scribes the liability of bank j to bank i. We denote net portfolio income of bank i, which is

portfolio income minus deposits by εi(= ci − xi − Li).
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Proposition 1: In a ring financial network with 3 banks, the failure of bank i happens,

if one of the three events below occurs:

1. (εi < 0)

2. (εi + εk < 0) ∩ (εi > 0)

3. (εi + εj + εk < 0) ∩ (εi + εk > 0)

Note that these events are not necessarily disjoint sets, whether their intersection is

empty set or not depends on the node’s relative level of deposit collection to the rest of the

network. See the Appendix.

Bank i’s problem without counterparty risk considers only the first event. ((εi < 0)).

We denote the solution as αi2 which is the share of risky asset in bank i’s portfolio after the

optimal choice under only individual risk. Therefore, for a given β satisfying Eq.(19),

αi2 =
1

(1− F−1

R̃
(β))

(26)

Now, we solve the same problem under network knowledge which deals also with coun-

terpary default risk when investing in portfolio.

Theorem 2: For a given β under Eq.(19), if xi < xj < xk, then in the ring financial

network represented as above, the probability of survival for node i, j and k are :

q∗∗i = 1− F (

∑
n xi +

∑
n(αi2 − 1)(L+ xi)∑

n(L+ xi)(αi2)
) (27)

27



q∗∗j =


1− F ((1− L

αj
2(L+xj)

)
αi
2(L+Xi)+α

k
2(L+Xk)

2
< αj2(L+Xj)

1− F (
∑

n xi+
∑

n(αi
2−1)(L+xi)∑

n(L+xi)(αi
2)

) otherwise

q∗∗k = 1− F (1− L

αk2(L+ xk)
) (28)

Corollary 1: For a given β under Eq.(19), if the VaR constraint(β) is identical for all

nodes such that xi < xj < xk then in the ring financial network represented as above, the

probability of survival for node i, j and k are :

q∗∗i = 1− F (1− 3L

(α2)
∑

n(L+ xi)
) (29)

q∗∗j =

1− F (1− L
α2(L+xj)

) (xi+xk)
2

< xj

1− F (1− 3L
(α2)

∑
n(L+xj)

) otherwise

q∗∗k = 1− F (1− L

(α2)(L+ xk)
) (30)

The corollary above displays that the probability of survival for the bank that has the

lowest amount of deposit is affected not only by its own deposit but also the deposits of the

other banks. On the other hand, the bank that has the highest amount of deposit, doesn’t

influenced by the holdings of the others. It’s probability of survival only depends on its own

deposit.

Corollary 2: For a given β under Eq.(19), if the VaR constraint(β) is identical for all

nodes such that xi < xj < xk, then the probability of survival for node i is a decreasing func-
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tion of xi, xj and xk. The probability of survival for node k is a decreasing function of only xk.

The probability of survival for all nodes decreases as their own deposits increases. Yet,

Corollary 1 and Corollary 2 indicates that in the ring financial network, the probability of

survival for the bank that has lowest amount of deposit decreases as the other banks rises

their deposits.

Corollary 3: For a given β under Eq.(19), if the VaR constraint(β) is imposed for all

nodes such that xi < xj < xk,, then in the ring financial network represented as above, the

following equalities hold:

q(β) > q∗∗i = q∗∗j > q∗∗k if
xi + xk

2
≥ xj (31)

q(β) > q∗∗i > q∗∗j > q∗∗k if
xi + xk

2
< xj (32)

The corollary 3 shows that the probability of survival decreases as the bank collects more

deposit and invests in a portfolio. The probability of survival imposed by the VaR constraint

is higher than the one realized when network effect is included. That is, the probability of

default for all nodes is higher due to the network effect and seniority of deposit payments.

Corollary 4: For a given β under Eq.(19), if the VaR constraint(β) is imposed and

xi = x for some x ≥ 0 for all i, then

q = q∗∗i = q∗∗j = q∗∗k , if x = 0 (33)

q > q∗∗i = q∗∗j = q∗∗k , if x > 0 (34)
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Corollary 4 says that the probability of survival for the bank i is less than VaR constraint

when the network effect is considered. As the theorem 2 shows, the survival probability for

the bank i is q∗∗i . Since the probability of survival considered under the network effect

and deposit payments, is lower than the VaR constraint for all banks, any potential policy

designed over VaR doesn’t hit the target level. In other words, the probability of default

exceeds the maximum level that is allowed.

Definition 4: The probability of survival neutralized from the seniority of deposit as-

sumption is denoted by q∗. For bank i,

q∗i = P ([(αi2)R̃ + (1− αi2)](L+ xi)− xi > 0) (35)

Corollary 5: For a given β under Eq.(19), in the ring financial network, the VaR con-

straint with xi < xj < xk causes positive network effect for all i whose deposit is less than

the average of the rest of the network. The network effect is silent for the banks whose

deposit is higher than the average deposit of the rest.That is:

q∗i − q∗∗i > 0

q∗∗k = q∗k

q∗j − q∗∗j > 0 if xi+xk
2
≥ xj

q∗j = q∗∗j if xi+xk
2

< xj

The above corollary establishes that the network effect is positive for the banks whose

deposit, therefore the portfolio volume, is less than the average of the rest. In other words,
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for those banks, the financial network affects the survival probability in a negative way be-

cause of the fact that they are exposed to counterparty risk. On the contrary, there is no

counterparty risk for the banks whose deposit is higher than the average of the rest. Thus,

although each bank chooses to have a portfolio regulated by the VaR constraint, the banks

that collect less deposit are exposed to counterparty risk. For those banks, the ring financial

network causes the probability of survival to decrease.

3.5 Policy Suggestion

In this part, we deal with the problem which appears when the network effect is ignored.

If the banks are subjected to the same VaR constraint, although their amount of collected

deposit is different, the network effect is not silent. As the previous section demonstrates,

it leads to a decrease in the probability of survival for some nodes under the ring financial

network. Therefore, we suggest that the network effect disappears if the VaR constraint is

not identical for all banks. We show that is possible to regulate invesment choices of the

banks depending on their leverage level so that the network effect is zero.

Suppose that the target level for the VaR constraint, imposed by the social planner is β

for all banks in the network. If the social planner announces different βpi for all banks, then

it is possible to achieve a portfolio choice such that the network effect is silent.

Theorem 3: If the publicly announced βpi is a function of β such that:

βpi = FR̃(1−
1− F−1

R̃
(β)(L+ xi)

L
) (36)

then the network effect is zero, that is qi = q∗∗i for all i. We denote the relation above by

the function g. That is, βpi = g(β, xi).

The theorem above reflects the fact the counterparty risk through the interbank borrow-
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ing/lending network is prevalent whenever the identical VaR constraint is imposed to the

banks that are heterogenous in terms of their deposits, therefore, of portfolio volume. The

counterparty risk problem can be overcome by imposing different VaR constraint depending

on the collected deposit size. If the government targets the VaR level of the magnitude β,

then it should announce for each different bank βpi = g(β, xi). Thus, the optimally chosen

invesment decisions would not generate counterparty risk.

4 Conclusion

In the first chapter, by extending the CFS model with multiple assets, we incorporate a new

channel over which the propagation of shocks occur. The connections between the banks

are not only determined by the debt claims, but also by the assets held in common. In

financial contagion literature, the role of the sudden decrease in asset prices are studied

and the consequences of the fire sale are presented in theoretical models. Yet, the networks

of high-dimensions are still an open question. In this chapter, we present a model of a

financial network which is more than one dimension in the sense that mutual debts and

asset commonality are two seperate networks. The main finding is that the shock can spread

from one bank to other one, although their connection over the liability network is weak.

Since banks are connected through the asset network as well, the asset shock propagates

over the commonly held assets. Therefore, combining networks of different categories is

of signifance to understand the amplification mechanism of shocks. Here, we propose an

algorithm to obtain the equilibrium of such high-dimensional network examples. We limit

the simulations to the ring and star type of liability networks and to the totally seperated

asset network.

For the time being, there are two important limitations for advancing the model to

capture more general cases. The first problem arises when banks choose to have more

than one asset. The optimal choice of which asset to sell is dependent on several factors

which are hard to be incorporated in the model. As it may depend on many other factors,

we think that price elasticity of the assets and the share of the asset held by the bank

32



are decisive factors. Since the level of the price reduction is mostly determined by these

factors, the optimal decision should take them into consideration. The second problem is

the lack of empirically grounded inverse demand function. Although there are some studies

( Greenwoord et.al.(2012)), the observed values are not captured by a functional form.

In the second chapter, by mixing two existing models, we provide a dynamic model of

financial contagion. Our framework figures out how banks’ value are affected by the decision

of the other banks in the network. We show that the network effect increases as the banks

collect deposit from outside the system and invest in a portfolio. Since the deposits collected

by the banks have priority over the credits taken by the interbank network, the likelihood

of defaults increases as the banks collect more fund and invest in a portfolio.

We also show that the network effect prevents the VaR value to hit its target level. As

a policy instrument, the VaR measure is used to set a limit to the potential loss in value of

a portfolio. Yet, our framework explains how banks’ loss might exceed the VaR constraint

when the network effect is considered. We find that the bank that has the highest amount of

deposit doesn’t influenced by the choices of the other banks. Therefore, the VaR constraint

reflects the true probability of default only for the bank that collect the highest amount

of deposit. On the other hand, the VaR value doesn’t mirror the true default probability

for the banks whose deposits are less than the average of the rest. In other words, banks

that involve in a portfolio invesment less in a volume than the others are exposed to the

counterparty risk. Hence, we show that the systemic risk arises from the banks that have

more indebted to the outside of the system than the other banks and invest in a portfolio

under the same VaR constraint.
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5 Appendix

In all the proofs below, the function F denotes the cumulative distribution fuction of the

asset return.

Proof of Theorem 2

P (εi < 0) = P ((αi2)R̃(L+xi) + (1−αi2)(L+xi)−xi < 0) = P (R̃ <
xi + (αi2 − 1)(L+ xi)

αi2(L+ xi)
)

= F (1− L

αi2(L+ xi)
)

P (εi+εk < 0) = P (R̃(αi2(L+xi)+αk2(L+xk))+(1−αi2)(L+Xi)+αk2(L+xk)−xi−xk < 0) =

P (R̃ <
xi + xk + (αi2 − 1)(L+ xi) + (αk2 − 1)(L+ xk)

αi2(L+ xi) + αk2(L+ xk)
)

P ((εi + εk < 0) ∩ (εi > 0)) = P (
xi + (αi2 − 1)(L+ xi)

αi2(L+ xi)
< R̃ <

xi + xk + (αi2 − 1)(L+ xi) + (αk2 − 1)(L+ xk)

αi2(L+ xi) + αk2(L+ xk)
) =

F (
xi + xk + (αi2 − 1)(L+ xi) + (αk2 − 1)(L+ xk)

αi2(L+ xi) + αk2(L+ xk)
)− F (

xi + (αi2 − 1)(L+ xi)

αi2(L+ xi)
)

P ((εi + εj + εk < 0) ∩ (εi + εj > 0)) =

F (

∑
n xi +

∑
n(αi2 − 1)(L+ xi)∑

n α
i
2(L+ xi)

)− F (1− 2L

αk2(L+ xk) + αi2(L+ xi)
)

In addition, since xi < xj < xk, we have P ((εi+ εj + εk < 0)∩ (εi+ εk > 0)∩ (εi < 0)) = ∅
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Hence, we get:

q∗∗i = 1− F (
xi+xk+xj+(αi

2−1)(L+xi)

αi
2(L+xi)+α

j
2(L+xj)+αk

2(L+xk)
)

For k, we have:

P (εk < 0) = P ((αk2)R̃(L+xk)+(1−αk2)(L+xk)−xk < 0) = P (R̃ <
xk + (αk2 − 1)(L+ xk)

αk2(L+ xk)
)

= F (1− L

αi2(L+ xk)
)

P ((εk + εj < 0) ∩ (εk > 0)) = ∅, because xj < xk

P ((εi + εj + εk < 0) ∩ (εk + εj > 0)) = ∅, again because xi < xj < xk

Therefore, we have:

q∗∗k = 1− F (1− L
αi
2(L+xk)

)

P (εj < 0) = P ((αj2)R̃(L+xj)+(1−αj2)(L+xj)−xj < 0) = P (R̃ <
xj + (αj2 − 1)(L+ xj)

αj2(L+ xj)
)

= F (1− L

αj2(L+ xj)
)

P ((εi + εj < 0) ∩ (εj > 0)) = ∅, because xi < xj
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P ((εi + εj + εk < 0) ∩ (εi + εj > 0)) =

F (

∑
n xi +

∑
n(αi2 − 1)(L+ xi)∑

n α
i
2(L+ xi)

)− F (1− 2L

αj2(L+ xj) + αi2(L+ xi)
)

If we assume that:

αi2(L+Xi) + αk2(L+Xk)

2
< αj2(L+Xj) (37)

Then, the probability of the intersection is:

P ((εi + εj + εk < 0) ∩ (εi + εj > 0) ∩ εj < 0) =

F (

∑
n xi +

∑
n(αi2 − 1)(L+ xi)∑

n α
i
2(L+ xi)

)− F (1− 2L

αj2(L+ xj) + αi2(L+ xi)
)

So, we get:

q∗∗j = 1− F (1− L

αj
2(L+xj)

)

Otherwise, given the condition that: αj2(L+ xj) > αi2(L+ xi)

If we assume that:

αi2(L+Xi) + αk2(L+Xk)

2
> αj2(L+Xj) (38)

Then, the probability of the intersection is:
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F (1− L

αj
2(L+xj)

)− F (1− 2L

αj
2(L+xj)+αi

2(L+xi)
)

So, we get:

q∗∗j = 1− F (
∑

n xi+
∑

n(αi
2−1)(L+xi)∑

n α
i
2(L+xi)

))

Proof of Corollary 1

If we put αi2 = αk2 = αj2 = α2 for q∗∗i , q
∗∗
j , q

∗∗
k , then we get the result.

Proof of Corollary 2

Since the function f denotes the probability distribution of the asset return and it is

always greater than zero, it is straightforward to show that:

dq∗i
dxi

= −Lαi2(L+ xi)
−2f(1− Lαi2(L+ xi)

−1) < 0 for all i.

Proof of Corollary 3

For the proof, we assume that xi+xk
2

< xj. The same proof can be applied when

xi+xk
2

> xj.

By Eq.(14), we have F (α2−1
α2

) = β, therefore we get:

q = 1− F (α2−1
α2

).

Since F is strictly increasing function, we have q > q∗∗i , if 1
α2
> 3L

α2
∑

n(L+xi)
. The equality

holds for all xi such that
∑

n xi > 0

By the same reason, we have q∗∗i > q∗∗j , if 3L
α2

∑
n(L+xi)

> L
α2(L+xj)

and q∗∗j > q∗∗k , if

L
α2(L+xj)

> L
α2(L+xk)

. These equalities hold trivially when xk > xj > xi.
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Proof of Corollary 4

Simply put x = xi for all i in Eq.(25)− 26 and also in q∗∗j .

Proof of Corollary 5

q∗i = P ([(αi2)R̃ + (1− αi2)](L+ xi)− xi > 0) ≥ 1− β =

P (R > 1− L
α2(L+xi)

) ≥ 1− β

Therefore, we have:

q∗i = 1− F (1− L
α2(L+xi)

)

Since, 3L
α2

∑
n(L+xi)

< L
α2(L+xi)

, we have

q∗i − q∗∗i > 0

When the same argument is applied for the other nodes, the corollary 5 can be proved to be

true.

Proof of Theorem 3

Since the network effect is non-zero for the node i and also for the node j, depending on

xj, we prove it only for the node i. The same method can be applied to node j, whenever it

has non-zero network effect.

We denote the solution under q∗ for node i as αi∗2 :

αi∗2 =
L

1− F−1(β)(L+ xi)
(39)

We claim that q∗i = q∗∗i for all i, if αi2 = αi∗2 for all i. This can be proved simply by

putting Eq.(34) into Eq.(25).
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Therefore, the condition αi2 = αi∗2 yields that

1

1− F−1(βpi )
=

L

1− F−1(β)(L+ xi)
(40)

where βpi is publicly annouced VaR value for bank i and β is the target VaR value for

the government. By rearranging Eq.(35), we obtain:

βpi = FR̃(1−
1− F−1

R̃
(β)(L+ xi)

L
)
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