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This thesis investigates how latent decision making processes are affected in 

subclinical and clinical samples, with the overarching aim of testing and 

demonstrating the clinical relevance of decision theoretic approaches. Specifically, I 

investigated how variables that characterize different aspects of decision-making 

within the framework of Drift Diffusion Model (DDM; Ratcliff, 1978) relate to 

anxiety, perfectionism, obsessive compulsive (OC) traits and Obsessive Compulsive 

Disorder (OCD). DDM analyzes response time and accuracy data gathered in two 

alternative forced choice (2AFC) tasks in a unified manner, leading to explanations 

for choice behavior based on concepts such as cautiousness, non-decision related 

slowing, decision biases, and evidence accumulation efficiency.  

Chapter I aims to characterize latent decision processes of a non-clinical 

population who rank on various levels on OC scales. We predicted that those who 

rank higher on OC traits would be more cautious in their decisions. Indeed, the first 

study found that higher checking and rumination tendencies as well as high scores in 

total OC scales predicted more cautious responding (e.g. higher threshold settings).  

Chapter II follows up on the first study and investigates latent decision 

processes in drug-free pediatric OCD patients and healthy controls. Similar to the first 
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study, we predicted higher caution (e.g. threshold settings) and lower evidence 

accumulation efficiency (e.g. drift rates) for OCD patients. As hypothesized, OCD 

patients accumulated evidence less efficiently but exhibited only a tendency to be 

more cautious than healthy controls. Furthermore, OCD patients became more 

cautious whereas healthy controls became less cautious after errors compared to after 

correct responses. 

 Chapter III gamifies and validates a new 2AFC task to overcome the typical 

disadvantages of traditional approaches in the study of pediatric and clinical groups 

and investigates how latent decision processes change for high and low scorers on 

perfectionism, OC and anxiety traits in this task. We found that the Hierarchical Drift 

Diffusion Model (Wiecki, Sofer, & Frank, 2013) provided good fits to the data and 

the latent variables behaved in expected directions as a function of task parameters. 

Moreover, consistent with the literature, evidence accumulation rates were found to 

be lower for participants with high anxiety, perfectionism, and obsessive-compulsive 

trait scores.   

 Overall, efficiency in accumulating perceptual evidence seems to be a key 

variable that differentiates both OCD from healthy control populations as well as 

those who have high, medium and low levels of perfectionism, OC and anxiety traits. 

Our results point at the advantages of using computational methods in understanding 

decision making in conditions of clinical relevance. 
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ÖZET 
 

Bu tez klinik ve subklinik örneklemlerde altta yatan karar verme süreçlerinin 

nasıl etkilendiğini araştırır, karar teorik yaklaşımlarını klinik alanlarda test etmek ve 

klinik alanlarla ilintisini göstermeyi amaçlar. Özellikle, hesaplamalı modelleme 

yöntemleri (sürüklenme-yayılım modelleri; drift diffusion model: DDM, Ratcliff, 

1978) dahilindeki karar verme süreçlerinin farklı yönlerini tanımlayan değişkenlerin 

kaygı, mükemmelliyetçilik, Obsesif Kompulsif (OK) özellikler ve Obsesif Kompulsif 

Bozukluk (OKB) ile ilişkisi araştırılmıştır. DDM, iki seçenekli zorunlu seçim 

senaryolarında toplanan tepki süreleri ve kararın doğruluğu verisini bir bütün olarak 

analiz eder ve tedbirlilik, karar dışı geçen süre, kişinin seçeneklerden birine karşı 

eğilimi, ve sinyali işlemleme kalitesi gibi karar vermeyle ilgili kuramlar ile ilgili 

çıkarımlar yapar. 

Birinci bölümde klinik teşhisi olmayan ve OK ölçeklerinde farklı seviyelerde 

yer alan kişilerin altta yatan karar verme mekanizmalarının tanımlanması amaçlandı. 

Bu çalışmada, OK ölçeklerinde yüksek puan alanların kararlarında daha temkinli 

olacağını öngördük. Öngördüğümüz gibi kontrol etme ve ruminasyon eğilimi ve 

toplam OK puanı yüksek olan kişilerin daha temkinli kararlar verdiğini (daha yüksek 

eşik uzaklıkları olduğunu) bulduk.  

İkinci bölüm, birinci çalışmayı takip etti ve ilaç almayan pediyatrik OKB 

hastaları ve sağlıklı kontrollerin altta yatan karar verme süreçlerini araştırdı. Birinci 

çalışmaya benzer olarak, OKB hastalarının hem daha temkinli (ör. daha yüksek eşik 

uzaklıkları) hem de sinyal işlemleme kalitelerinin daha düşük olacağını (ör. 

sürüklenme hızı) öngördük. Öngördüğümüz gibi, OKB hastaları sağlıklı kontrollere 

göre sinyali daha az vermimli bir şekilde işlemledi ve daha temkinli olma eğilimi 

gösterdi. Ayrıca, OKB hastaları doğru yanıt sonrasına oranla, hatalardan sonra daha 
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da temkinli karar verirken, sağlıklı kontroller hatalardan sonra daha az temkinli 

kararlar verdi. 

Üçüncü bölüm geleneksel iki seçenekli zorunlu seçim görevlerinin klinik ve 

pediyatrik popülasyonlarda uygulanırken ortaya çıkabilecek dezavantajlarını aşmak 

için, görevi hem oyunlaştırıp hem yarattığı oyunun geçerliliğini test etti. Bu çalışma 

aynı zamanda altta yatan karar verme süreçlerinin yüksek ve düşük OK, 

mükemmelliyetçilik ve endişe seviyesi olan kişilerde nasıl değiştiğini ölçmeyi 

amaçladı. Hiyerarşik sürüklenme-yayılım modeli (HDDM, Wiecki et al., 2013) 

tahminleri ampirik veriyle uygunluk gösterdi ve altta yatan karar verme süreçleri, 

oyunun parametrelerine göre beklenen yönlerde değişti. Ayrıca, literatürle uyumlu 

olarak, sinyali işlemleme hızı yüksek endişe, mükemmelliyetçilik ve obsesif 

kompulsif karakteristikleri olan kişiler için daha düşük bulundu.  

Özetle, algısal kanıt toplama verimliliği değişkeni hem OKB ve sağlıklı 

kontrol gruplarını birbirinden ayıran, hem de yüksek, orta ve düşük seviyelerdeki 

mükemmelliyetçilik, OK ve endişe niteliklerini birbirinden ayıran ana değişken olarak 

gözükmektedir. Sonuçlarımız klinik yatkınlıklarda hesaplamalı modelleri kullanmanın 

avantajlarını ortaya koymuştur. 
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THESIS INTRODUCTION 

This thesis aims to investigate decision processes in relation to various 

Obsessive Compulsive (OC) trait related conditions. Traditional analyses that 

separately analyze error rates (ER) and response times (RT) in psychological tasks 

cannot disentangle concepts such as speed accuracy trade-off, time allocated to non-

decision related processes, possible biases to either choice or evidence accumulation 

efficiency. In other words, one cannot tap into generative processes that lead to 

decisions by the isolated analysis of accuracy and speed of choice behavior. On the 

other hand sequential sampling models such as the Drift Diffusion Model (DDM; 

Ratcliff, 1978) overcome this problem by utilizing a combination of accuracy and RT 

data to explain such latent decision making processes. The three chapters presented in 

this thesis, all incorporate the use of two alternative forced choice (2AFC) tasks and a 

DDM-based approach to the accuracy and response time data with the overarching 

goal of uncovering differences in the choice behavior of various clinical and 

subclinical conditions. While the first two chapters use the dot motion discrimination 

task (a commonly utilized task in decision science), the third chapter incorporates a 

gamified 2AFC task. Such gamification sought to better engage participants, improve 

their experience and thereby increase data quality, which are issues that become 

particularly relevant in various samples (e.g., pediatric, clinical). 

In the field of psychiatry, there is the need for a paradigm shift in analytical 

approaches to data collected from traditional neuropsychological tasks (Abramovitch 

& Cooperman 2015) to reach at theory-driven and more extensive characterization of 

clinical conditions. To this end, sequential sampling methods (Wiecki, Poland, & 

Frank, 2015) and especially DDM (White, Ratcliff, Vasey, & McKoon, 2010a) are 

argued to be good candidate integral tools for the experimental clinical area, attested 
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by its successful utilization in studies conducted with ADHD (e.g. Metin et al., 2013; 

Mulder et al., 2010), anxiety (White, Ratcliff, Vasey & McKoon, 2010b), depression 

(Pe, Vandekerckhove, & Kuppens, 2013), and OCD (Banca et al., 2015).  

DDM assumes a noisy evidence accumulation process, starting from a 

particular point in a decision space (starting point) constrained by two thresholds, the 

two possible options for the given decision task. The evidence accumulation continues 

with a steady rate (drift rate) until the amount of evidence reaches one of the two 

thresholds, at which point the corresponding choice is made. DDM also distinguishes 

response times that are due to the decision process and processes outside of decision-

making (e.g. signal detection, encoding, motor processes; non-decision time) 

(Ratcliff, 1978; Ratcliff & McKoon, 2008). Each decision variable output in DDM 

corresponds to a different psychological process. The width of threshold separation 

refers to how cautious the decision maker is, which in turn determines the speed-

accuracy tradeoff adopted by the decision-maker. The drift rate indexes efficiency 

with which the evidence is accumulated. Starting point bias indexes a prior preference 

for either of the two choices (i.e., prior belief state) and the non-decision time indexes 

duration allocated to processes other than decision making.  

Incorporating the DDM, the first chapter focuses on latent decision variables 

mentioned above, for non-clinical participants who differentially rank on the 

Obsessive Compulsive (OC) scales. The second chapter uses the same task, dot 

motion discrimination task, and seeks to investigate the latent decision processes in 

pediatric OCD patients. The third chapter develops and validates a gamified version 

of the 2AFC task and investigates latent decision making differences between those 

who rank high, medium and low on scales of perfectionism, anxiety and OC traits. 

Perfectionism, a transdiagnostic trait, was particularly added given it had not been 
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studied in a DDM paradigm before and that its existence is argued to be a common 

maintaining factor for both anxiety and OC traits (Egan, Wade & Shafran, 2011).  

Altogether this thesis, through the investigation of latent decision variables 

within the framework of DDM, was able to reveal signatures that set apart both high 

and low levels of anxiety, OC and perfectionism traits as well as a healthy control and 

clinical pediatric OCD group. Additionally, it introduced a participant-experience-

centered gamified task and validated it as a 2AFC task that can be accounted for by 

DDM. Studies presented add to an increasing number of explorations using 

computational decision-theoretic approaches to reveal characterization of behavior in 

clinical and subclinical populations.  
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CHAPTER I 

Obsessive compulsive features predict cautious decision strategies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 

Abstract 

Introduction: Obsessive Compulsive Disorder (OCD) is occasionally characterized by 

decision-making deficits. Compared to the isolated analysis of the choice and 

response times, characterizing decision outputs at the level of latent processes can be 

a more powerful approach in revealing differences, even in subclinical cases. We 

hypothesized that participants with higher Obsessive Compulsive (OC) features 

would set their decision thresholds higher and thus make more cautious decisions. 

Method: We used a perceptual two alternative forced choice (2AFC) task (dot motion 

discrimination) to test this hypothesis in a non-clinical sample (N=74). We fit the data 

with the diffusion model and evaluated the optimality of decision outputs. We also 

conducted exploratory analyses to reveal which subscales best predicted the 

differences at the level of latent decision processes. 

Results: Higher OC total scores in Maudsley and Padua scales significantly predicted 

higher threshold settings (cautiousness). The follow-up exploratory analyses with 

subscale scores showed that checking and rumination tendencies predicted higher 

threshold settings whereas washing tendency predicted faster non-decision times.  

Conclusions: Our primary results showed that participants with higher degrees of OC 

features exhibited more cautious decision-making. Our exploratory analyses also 

revealed distinctions based on different types of OC features in both controlled 

(cautiousness in decision making) and automatic (faster non-decision times) elements 

of the decision process.  

 
Keywords: Decision Making, Drift Diffusion Model, Obsessive-compulsive disorder, 
Checking, Rumination 
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Introduction 

Obsessive Compulsive Disorder (OCD) is a debilitating psychiatric condition 

with the manifestation of obsessions and/or compulsions (American Psychiatric 

Association, 2013). It is sometimes depicted as a decision making disorder (Sachdev 

& Malhi, 2005). However, traditional decision-making experiments with OCD 

patients have yielded inconsistent results. For example, several studies that have used 

the Iowa Gambling Task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994) (e.g. 

Nielen, Veltman, De Jong, Mulder, & Den Boer, 2002; Lawrence et al., 2006) found 

comparable results between healthy controls and OCD patients as a group, in terms of 

advantageous responding. In contrast, other studies that have also used the IGT 

reported that OCD patients make more disadvantageous decisions (Cavedini et al., 

2002; Rocha, Alvarenga, Malloy-Diniz, & Corrêa, 2011; Starcke, Tuschen-Caffier, 

Markowitsch, & Brand, 2010).  

Similarly, findings regarding executive function and processing speed showed 

inconsistencies between tasks OCD patients were tested on. In a recent meta-analysis 

Abramovitch, Abramowitz and Mittelman (2013a) summarized 115 OCD studies and 

reported a medium mean effect size for both processing speed and executive functions 

indicating worse performance for OCD patients. However there is much heterogeneity 

between the findings of individual studies. For instance, in the Go/NoGo task, several 

studies showed that the number of errors and response times of OCD patients did not 

differ from those of healthy controls (e.g., Bohne, Savage, Deckersbach, Keuthen, & 

Wilhelm, 2008). Differently, other studies revealed that OCD patients had slower 

response times (RTs) and higher number of comission errors than healthy controls 

(e.g. Abramovitch, Dar, Hermesh, & Schweiger, 2012). 
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On the other hand, the isolated analysis of RTs and error rates is not always 

sufficient to reveal possible differences present at the level of latent decision 

processes. Furthermore, central tendency measures of RTs do not provide information 

regarding the shape of the distribution resulting in incomplete understanding of the 

data and the underlying generative processes. Instead, distributional analyses use all 

the RT information within the experiment providing a much more complete 

understanding of the participant’s performance (Heathcote, Popiel, & Mewhort, 

1991). This rich set of RT information combined with the relative densities of correct 

and error RTs (i.e., accuracy) can be accounted for in a psychomechanistically 

meaningful fashion by several decision-theoretic approaches such as the Diffusion 

Model (e.g., Ratcliff, 1978).  

The Drift Diffusion Model (DDM) is a random walk model that enables the 

combined analysis of error rates and RTs and helps explain the processing dynamics 

that underlie decision-making (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & 

McKoon, 2008). This approach paves the way to psychomechanistic explanations for 

choice behavior based on notions such as cautiousness, non-decision related slowness, 

decision biases, and the quality of information processing (e.g., White et al., 2010a).  

The DDM assumes that sensory evidence is accumulated in a noisy fashion 

starting from a particular point in a decision area demarcated by two fixed thresholds 

(referring to two hypotheses/options in the task). A decision is made when the amount 

of accumulated evidence reaches one of these two thresholds. The threshold hit 

determines the choice and the first threshold crossing time is the decision time 

(Ratcliff, 1978; Ratcliff & McKoon, 2008). The simple form of DDM has four core 

parameters: boundary separation (a), drift rate (v), starting point (z), and non-decision 
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processing time (T0).  

Each of these parameters refers to different psychologically meaningful 

elements in the decision process. For instance, the boundary separation indexes how 

cautious the decision maker is while making a choice (e.g., wider decision boundary 

suggests a more cautious decision strategy); the drift rate describes the amount of 

evidence gained per unit time from the stimulus (e.g., higher drift rate indicates more 

information gained per unit time; higher signal-to-noise ratio); the starting point 

accounts for response bias (e.g., starting closer to a threshold suggests a pre-existing 

response bias for the corresponding choice); and the non-decision time indexes delays 

in signal-detection and/or motor responses not related to the decision process (e.g., 

higher non-decision time indicates slower signal-detection and/or manifestation of a 

decision) (White et al., 2010a). The extended form (Ratcliff & Rouder, 1998) of DDM 

includes trial-to-trial variability parameters in addition to these core parameters, 

which are variabilities in non-decision time, drift rate, and starting point. With these 

extra parameters DDM can account for unequal correct and error RTs. 

The DDM might prove useful in revealing differences in the choice behavior 

of different clinical conditions because it enables making inferences regarding latent 

decision processes. This possibility has recently commanded attention in the field. For 

instance, the advantages of incorporating diffusion models in the clinical area have 

been emphasized by White et al. (2010a). In recent years, DDM has been used in the 

study of decision-making in ADHD (e.g. Metin et al., 2013; Mulder et al., 2010), 

anxiety (White et al., 2010b), depression (Pe et al., 2013), and recently OCD (Banca 

et al., 2015). 

Most relevant to the current study, Banca et al. (2015) investigated 2AFC 

decision making in OCD patients, adopting a DDM-based approach (Hierarchical 
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Drift Diffusion Model - HDDM) to decision analysis. Banca et al. (2015) used the 

random dot motion discrimination task, in which dots moving in different directions 

appeared in a circle in the middle of the screen. While some dots moved randomly, 

introducing uncertainty, a percentage of the dots (referred to as coherence) moved 

either to the right or left cohesively. Monetary rewards and penalties were used as 

indicators of correct and incorrect responses. The goal of the participant was to 

identify in which direction the cohesive dots are moving. HDDM analyses compared 

performance on three levels of signal to noise ratio (SNR): low (coherences 0.025 and 

0.05), medium (coherences 0.15 and 0.25), and high (coherences 0.45 and 0.7). Their 

findings revealed that OCD patients had higher threshold settings than healthy 

controls in low and medium SNR levels. In other words, as the signal was more 

obscure, OCD patients were more cautious and accumulated more evidence than 

healthy controls before making a choice. In addition, in medium and high SNR levels, 

OCD patients were less efficient than the healthy controls in gathering perceptual 

evidence from the visual signal, denoted by lower drift rates. In an alternate condition, 

where participants were rewarded for faster responses and penalized for slower ones, 

OCD patients had similar threshold settings and drift rates to the control participants 

in the low and medium SNR levels, and even lower threshold settings but also drift 

rates in the high SNR condition. Thus, when induced to respond faster, OCD patients 

were able to decrease their threshold settings.  

In the current study, we aimed to elucidate the differences in the decision 

making of non-clinical participants with different rankings on the OCD scales at the 

level of the latent processes within the framework of DDM. More specifically, the 

current study aimed to characterize the decision-making patterns of those who ranked 

differentially on the entirety of the OCD scales and explore how different components 
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of obsessions and compulsions (e.g. rumination, checking etc.) contributed to these 

differences at the level of the latent decision processes.  The doubt component is an 

integral part of indecision attributed to OCD (Sachdev & Malhi, 2005). Repetitive 

behaviors in the daily lives of OCD patients such as checking the stove or frequent 

hand washing may be caused by doubting whether or not these tasks were 

successfully completed previously. The perceptual evidence of having completed a 

task or feedback regarding the decision state might not be functionally sufficient for 

OCD patients to make a timely decision to move on. Instead, they repeat the task to be 

sure (Sachdev & Malhi, 2005).  

We propose that doubt coupled with ideas of rumination, checking, precision 

seeking and other OC tendencies (captured by the subscales of the OCD scales) push 

participants to collect more evidence before making decisions. We therefore 

hypothesized that participants who rank high on OCD scales will have heightened 

thresholds (owing to requiring more evidence before making a decision) but no 

difference in the rate of evidence accumulation. We did not have specific predictions 

regarding the relationship between the OC scores and other DDM parameters (e.g., 

non-decision time) or the differential predictive value of the OC subscales regarding 

these dependent variables. To this end, exploratory analyses (e.g., step-wise 

regression) were conducted to investigate those possible relations. 

  A wider threshold setting reduces the chances of making a mistake at the 

expense of longer response times leading to an accuracy bias when evaluated within 

the framework of optimality (e.g., Balcı et al., 2011; Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006; Maddox, & Bohil, 1998). Thus, we also evaluated how far 

participants diverged from optimality (Balcı et al., 2011; Bogacz et al., 2006; Bogacz, 

Hu, Holmes, & Cohen, 2010) and within the same framework evaluated the level of 
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subjective cost participants attributed to errors in the absence of objective penalties 

for errors (Balcı et al., 2011; Bogacz et al., 2006; Maddox, & Bohil, 1998).  

  To this end, the performance of the participants was evaluated with respect to 

the Optimal Performance Curve (OPC, Equation 1.1) that prescribes the reward rate 

maximizing relationship between the speed and accuracy of decisions given task 

parameters do not change within a block (Figure 1.1; dashed curve; Balcı et al., 2011; 

Bogacz et al., 2006).  
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where DT stands for decision time, the time it takes the decision-maker to gather 

enough information before making a decision and Dtot
 
stands for T0 + RSI where T0 is 

the time it takes to detect the stimulus and implement the decision (e.g. non-decision 

time) and RSI is the response-to-stimulus interval.  
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Figure.1.1 Family of Optimal Performance Curves (OPC) for q values ranging from 0 
to 2.0 in increments of 0.2. The dashed line is OPC when q=0 (no penalty for errors). 
This figure was adapted from Balcı et al. (2011). 

 

The OPC [Eq 1.1] yields the reward rate maximizing normalized decision 

times as a function of the error rates (ER). For example, when the error proportion is 

0.5 (when the signal to noise ratio is 0) and when the error proportion is 0 (when the 

signal to noise ratio is 1), the normalized decision time for maximizing reward rate is 

virtually 0. For error rates between 0.5 and 0, the reward-rate maximization requires 

participants to set thresholds to higher values (accumulate more evidence) in order to 

optimally balance the number of trials (faster response times) and accuracy (Balcı et 

al., 2011; Bogacz et al., 2006; 2010). 

The generalized form of the optimal performance curve that incorporates 

penalties for errors is defined by Equation 1.2 (Balcı et al., 2011; Bogacz et al, 2006). 

Equation 1.1 is a special case of Equation 1.2 for when the q (penalty for errors) is 0. 

The solid curves in Figure 1.1 are the optimal performance curves defined for 

different levels of objective penalties for errors. When the penalty for an error is 

above 0 (i.e., a negative gain), the evidence accumulation becomes relatively more 

important: Participants need to widen their decision boundaries and accumulate more 

evidence to respond correctly because an incorrect response has a non-zero cost.  
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When there is no objective penalty for errors in the task (as in our task), 

Equation 1.2 can be used to estimate the relative value assigned to accuracy vs. speed 

or the subjective penalty of making errors. Penalties require caution because they 

[Eq 1.2] 



 

 

13 

seem to affect the OCD patients more than they do healthy controls. For example 

OCD patients compared to healthy controls, made more errors of commission in 

penalty conditions on a Go/Nogo task (Morein-Zamir et al., 2013). Since we 

incorporated no objective penalties, the best-fitting q parameter to the empirical data 

can indirectly show us how much penalty a participant subjectively assigned to an 

incorrect choice.  

We hypothesize that those who rank high on OCD scales will deviate farther 

from optimality. They will gather more evidence than needed and respond slower, 

sacrificing from reward rate for accuracy. This hypothesis is in line with our 

prediction for higher threshold settings for participants with high OCD scale rankings: 

High threshold settings are indicative of more evidence accumulation and possibly an 

accuracy bias. 

Finally we hypothesize that participants who rank higher on the OCD scales 

will have more pronounced post error slowing. In accordance with the hypothesis that 

participants with OC features will have an accuracy bias, we assume that after an 

error, these participants will be more likely to widen their decision boundaries to 

minimize further errors. This would be evidenced by a larger difference between pre 

and post error reaction times (Dutilh et al., 2012a). 

Methods 

Participants 

Seventy four participants from Koç University undergraduates, graduate students, and 

staff (52 female, 22 male), aged between 18-38 years, were recruited via 

announcements online at Koç University’s website (KUDaily). All participants were 

naïve to the purpose of the study. The announcement called for participants who “get 
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stuck on details, control things more than needed, and worry often”. The experiment 

took 1.5 hours (single session). The study was approved by the Institutional Review 

Board for Human Subjects of Koç University and all participants signed a consent 

form. 

Stimuli and apparatus 

White moving dots (3x3 pixels) appeared in the center of a black computer 

screen within an approximately 3-inch diameter. Participants were asked to remain at 

a certain distance (~60 cm) from the screen. A portion of dots (12%) moved either to 

the right or left, randomized for each trial with equal probability while the rest of the 

dots moved in random directions. MATLAB was used to run the SnowDots 

framework (developed by Joshua Gold at the University of Pennsylvania) on a 21’’ 

LCD screen Mac desktop computer.  

Procedure 

1) Practice session: Each session started with a 2-min practice session in which 12% 

of dots moved either to the right or left and participants were asked to press the ‘M’ 

key if they thought the dots were moving to the right, and the ‘Z’ key if they thought 

the dots were moving to the left. Participants were asked to respond as quickly and as 

accurately as possible. Response to stimulus intervals (RSI) with a mean of 2 sec were 

drawn from a truncated exponential distribution with a lower bound of 1 sec. There 

were no rewards or penalties associated with choices made in the practice session; the 

correct decisions were followed by a ‘beep’ sound. No visual or auditory feedback 

was given after incorrect decisions. To avoid anticipatory responses, a buzzing sound 

followed all premature responses (RT < 100 ms) including the ones occurring before 

the stimulus onset. These responses were also followed by a 1-s timeout period. 



 

 

15 

2) Free response (FR) dot motion discrimination task: Different from the practice 

block, in the test blocks each correct response was awarded 0.02 TL (equivalent to 

one US cent). A single coherence of 12% was used throughout the experiment and the 

task lasted for 8 blocks of 5 minutes each, for a total of 40 minutes. 

3) Signal detection (SD) task: Following the FR blocks, 2 blocks of 2 minute-long SD 

tasks were used to measure the time it takes the participant to detect the dots 

appearing on the screen and give a contingent response. The stimulus was the same as 

in FR blocks. However in one block, participants were asked to press ‘M’ and in the 

other block ‘Z’ as soon as they saw the stimulus appear on the screen.  Each response 

was awarded 0.02 TL if it was not premature. Premature responses resulted in a 

buzzing sound and were penalized with a 1-s timeout period. 

4) Scales: Following the completion of the random dot motion discrimination task, 

participants filled out the Maudsley Obsessive Compulsive Inventory (Hodgson & 

Rachman, 1977) in Turkish: Maudsley Obsesif Kompulsif Soru Listesi (Erol & 

Savaşır, 1988) and the 41 item Padua Inventory (Van Oppen, Hoekstra & 

Emmelkamp, 1995) in Turkish: Padua Envanteri (Beşiroğlu et al., 2005).  

The Turkish version of the Padua Inventory revealed a test re-test reliability 

score of 0.91 for the entirety and 0.81-0.90 for the five subscales of the scale. The 

internal consistency is good with Cronbach’s alpha score of .95 for the entirety and 

0.79-0.92 for the five subscales of the scale (Beşiroğlu et al., 2005).  The five 

subscales are: 1) Impulses, 2) Washing, 3) Checking, 4) Rumination, and 5) Precision. 

The factor analysis for the validity of the Turkish version revealed six factors that 

explained 62.1% of the total variance. The precision subscale was found to be divided 

into two factors of three questions in the Turkish form. Beşiroğlu et al. (2005) 
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concluded that overall, consistent factors with the PI-R are revealed and that 

reliability and validity of the Turkish version is adequate. 

The Turkish version of the Maudsley scale has 37 items formed by adding 7 

items to the original form and revealed a test-retest reliability score of .88 for the 

entirety and .59-.84 for the subscales of the scale (Erol & Savaşır, 1988). The internal 

consistency (Cronbach’s alpha scores) for the entire scale was initially calculated to 

be .44, after which some items were reworded (for understandability and elimination 

of mistakes) and internal consistency score was recalculated to be .86. The internal 

consistency for the subscales revealed Cronbach’s alpha scores of .70 for checking, 

.66 for washing, .31 for slowness and .56 for doubting (Erol & Savaşır, 1988). 

Rumination subscale has been added on with the additional 7 questions (in addition to 

the two from the original scale). The scale revealed three factors instead of the four 

factors in the original form (Erol & Savaşır, 1988). We excluded the slowness 

subscale from our exploratory analyses given its low internal consistency score 

ending up with: 1) Checking, 2) Washing, 3) Doubting and 4) Rumination subscales.  

Both scales offer a composite score of how strong the OC tendencies are, 

however they also measure different aspects of OCD with distinct subscales (e.g. 

checking, precision). Despite the fact that we do not have specific predictions 

regarding the predictive value of the subscales, given the heterogeneity of OCD, we 

find it vital to gain information on all possible subscales because they might attest to 

differences in decision-making. 

Data Analysis 

One participant was removed from the analyses because he did not complete 

the scales. Overall there were 3 omitted questions in the Maudsley Scale (out of 2701) 

and 5 omitted questions in the Padua Scale (out of 2993). The omitted questions were 
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substituted with the statistical mode of the corresponding participant’s responses. A 

repeated measures ANOVA was conducted using test blocks as within-subject 

variables to characterize when error rates reached steady state. Pairwise comparisons 

revealed that error rates in the final block were significantly lower than error rates in 

the first three blocks only. Based on this empirical result, we used data from the last 

five blocks in the analyses assuming that perceptual learning was over and 

participants were closer to the steady state of decision-making. 

The DDM (e.g. Ratcliff, 1978; Ratcliff & McKoon, 2008; Bogacz et al., 2006) 

was fit to the choices and response times (RT) (blocks 4-8) using the Diffusion Model 

Analysis Toolbox (DMAT) (Vandekerckhove & Tuerlinckx, 2008). Two different 

models with different levels of complexity were fit to the data. In the first model, we 

fit the data with the reduced form of DDM (pure DDM), allowing no inter-trial-

variability in the parameters. The starting point was set to a/2, assuming no bias for 

either of the two choices. In the second model, we allowed inter-trial variability in 

drift rate, starting point, and non-decision time (extended DDM).  

The deviation scores from the OPC per participant were calculated by 

subtracting the optimal normalized decision time of each participant (given his/her ER 

- Eq.1) from that participant’s empirical normalized decision time. The q parameter 

(weight that is assigned to accuracy vs. speed) per participant was also estimated by 

finding the modified OPC (Eq. 2) that fit the empirical normalized DT for the 

empirical ER.  

 The RTs on post correct trials, which are at the same time pre error trials were 

subtracted from RTs on post error trials to quantify post-error slowing (hereon 

referred to as post error variable; Dutilh et al., 2012a). Post error RTs were 

compared with the post correct-pre error RTs with a paired samples t-test for those 
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participants who had at least 20 errors in the last five blocks.  

 The DDM parameters (drift rate, threshold setting, non-decision time), 

deviation from the OPC, q values, post-error slowing variable, reaction times on the 

FR blocks, reaction times on the SD blocks, and the accuracy of choices on FR blocks 

were first regressed on the two total OCD scale scores (Padua and Maudsley) 

separately. Second, two sets (separate for Maudsley and Padua subscales) of 

exploratory stepwise multiple regressions were conducted to determine which 

subscales of Padua and Maudsley best predicted each of these outcome variables. 

Standardized coefficients were reported. The Pearson correlations among scale and 

subscale scores were calculated; Benjamini-Hochberg adjusted p values are reported 

for all correlations (Benjamini & Hochberg, 1995).  

Results 

The extended DDM outperformed the pure DDM (ΔAIC: 3281.08, ΔBIC: 

3255.74) based on fits to the pooled data. Thus, the extended DDM was used in 

further analyses. The quantile probability plot for the extended DDM fits is presented 

in Figure 1.2 (note the misfit for the 90th percentile of the response times. A similar 

misfit was reported in Ratcliff & McKoon, 2008). 
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Figure.1.2  Quantile probability plots for the 10th, 30th, 50th, 70th, and 90th 
percentiles of response times (indicated in the figure). “o” marks the mean observed 
and “x” marks the mean predicted data. Errors bars indicate S.E.M. Errors are shown 
on the left and the correct responses are shown on the right. Only those participants 
who had more than 11 errors in the last four blocks are included in the figure (N=61). 
 

 Three subscales were common to both Padua and Maudsley Scales: Washing, 

Checking and Rumination. The two Checking subscales (r=.63, p<.001), the two 

Rumination subscales (r=.83, p<.001), the two Washing subscales (r=.64, p<.001) 

and the total scores of Padua and Maudsley scales (r=.78, p<.001) correlated 

significantly (Benjamini-Hochberg adjusted). The means and ranges of the scale and 

subscale scores are presented in Table 1.1 along with the highest and lowest possible 

scores on these scales. The correlation matrix among all scale scores is presented in 

Table 1.2.  
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Table 1.1 
 
Descriptive Statistics of Scale Scores 

 

 

Note. Values in parentheses indicate the minimum and maximum possible values that can be 
attained in the corresponding scales and sub-scales. 

 

 

 

 

 

 

 

 N Minimum Maximum Mean SE SD 

Padua Total 73 4(0) 116(164) 49.81 2.52 21.54 

Padua Washing 73 1(0) 34(40) 12.40 .81 6.90 

Padua Rumination 73 0(0) 38(40) 16.07 1.03 8.81 

Padua Checking 73 1(0) 23(32) 9.67 .65 5.59 

Padua Impulses 73 0(0) 24(28) 7.12 .63 5.40 

Padua Precision 73 0(0) 16(24) 4.55 .43 3.70 

Maudsley Total 73 2(0) 30(37) 15.11 .70 5.95 

Maudsley Washing 73 0(0) 9(11) 3.68 .28 2.36 

Maudsley Rumination 73 0(0) 9(9) 4.25 .32 2.73 

Maudsley Checking 73 0(0) 9(9) 3.36 .24 2.03 

Maudsley Doubting 73 1(0) 7(7) 3.62 .17 1.43 
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Table 1.2 
 

Pearson Correlation Scores Among the Scale and Sub-Scale Score 
 

 

 

 

 

 

 

 

Note. M stands for Maudsley, P stands for Padua. P values are Benjamini-Hochberg 
adjusted. 
*p< 0.05  
** p<0.01  
 

 

The regression analyses revealed that OCD scale scores are not significant 

predictors of response times in FR and SD blocks, or error rates. This indicates that 

error rates or response times alone did not distinguish between high and low scorers 

on these scales. However, as expected this was not the case for the analyses conducted 

on the outputs of the model fits. Both the Maudsley and Padua total scores 

significantly predicted threshold settings, (β= .30, t(71) = 2.68, p=.01) and (β= .24, 

t(71) = 2.10, p=.04), respectively. These findings revealed that an increase in the 

entirety of OC symptoms, measured by both scales, indicates an increase in 

cautiousness.  

Given that the overall OC scores explained a significant proportion of variance 

in the threshold settings, we explored the contribution of specific subscales to this 

parameter. A stepwise multiple regression analysis was conducted to reveal which 

 1 2 3 4 5 6 7 8 9 10 

                        1.  P. Total           

2. P. Washing .624**          

3. P. Rumination .830** .258*         

4. P. Impulses  .599** .190 .460**        

5. P. Checking .753** .310* .585** .243*       

6. P. Precision .667** .409** .416** .209 .544**      

7. M. Total .780** .411** .732** .461** .606** .442**     

8. M. Checking .641** .168 .657** .349** .631** .388** .817**    

9. M. Washing .369** .644**  .088 .118 .190 .280* .529** .213   

10. M. Doubting .517** .172 .538** .409** .335** .308* .710** .502** .166  

11. M. Rumination .659** .158 .833** .522** .389** .205 .772** .674** .066 .537** 
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Maudsley and Padua subscale scores (conducted separately for each scale) contributed 

to this relation. Only Maudsley Checking subscale (β= .26, t(71) = 2.29, p=.03) 

significantly predicted the threshold settings whereas it was only the Padua 

Rumination subscale that predicted the threshold settings (β= .27, t(71) = 2.40,  

p=.02). Briefly, increases in checking behavior and ruminative thinking were 

indicative of increases in cautious decision-making. 

Although the simple linear regression analysis with Padua and Maudsley total 

scores did not reveal a significant relationship with other core DDM parameters (i.e., 

drift-rate and non-decision time), our exploratory stepwise multiple regression scores 

revealed that the Padua Washing subscale significantly predicted faster non-decision 

related delays in responding (β= -.24, t(71) = -2.11, p=.04). This finding indicates that 

an increase in washing related behaviors signify a fastening in detection of the 

decision-relevant signal and/or behavioral manifestation of a decision made.  Simple 

linear regressions, conducted for Padua and Maudsley total scores separately (as well 

as the stepwise multiple regressions conducted for the two sets of subscales 

separately) did not reveal any significant predictors of the deviations from OPC or q 

parameters. 

Post error slowing was evident in the data calculated for those participants 

who had at least 20 errors in the last five blocks (N=55). Decisions made after 

incorrect decisions (M=1.36, SD= .80) took significantly longer than decisions made 

after correct decisions that were at the same time pre-error trials (M=1.19, SD= .73), 

t(54)=5.96, p<.001, however the scores on scales or subscales did not predict the 

degree of post error slowing.  

 

 



 

 

23 

Discussion 

 We investigated the differences in decision-making processes of non-clinical 

participants with various rankings on the scale and subscales of OCD within the 

framework of DDM. This constituted the first-time study of an analogue OC sample 

in a DDM and optimality framework. We expected participants who rank high on 

OCD scales to have widened decision boundaries (in the absence of differences in 

drift rates), deviate farther from optimality (calculated by deviations from OPC), and 

weigh accuracy of decisions over their speed (denoted by higher q values). Our 

expectations are in line with another subclinical OC study, in which even in a mildly 

uncertain situation, those who ranked higher on the OCD scales engaged in more 

checking behavior at the cost of time (Toffolo, van den Hout, Hooge, Engelhard, & 

Cath, 2013). Our predictions regarding the threshold setting held with the two OCD 

scales’ total scores. Total OC symptom scores were found to predict more cautious 

decision strategies (widening of the decision boundaries). These findings were also in 

line with and in support of the recent findings with the OCD patients (Banca et al., 

2015). 

 We also conducted exploratory analyses regarding the relationship between 

subscales of Maudsley and Padua and the DDM parameters. Increases in checking 

and rumination scores were found to predict more cautious decision strategies. 

Furthermore, to our surprise increases in washing related behaviors were found to 

predict faster non-decision related durations (e.g. encoding of stimuli, motor 

preparation, or both).  

Checking and rumination are integral parts of OCD and therefore their 

relationship with threshold settings is not surprising. The perceptual evidence 

regarding task completion might not be enough for OCD patients to make/finalize a 
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decision and move on in a timely manner (Sachdev & Malhi, 2005). Consequently, 

OCD patients might tend to check for more evidence to make sure that their decisions 

are accurate. Moreover, both checking (Wu & Cortesi, 2009) and rumination (Flett, 

Madorsky, Hewitt, & Heisel, 2002) are positively correlated with perfectionism. 

Wanting to reach at perfect outcomes, participants with these features may indeed 

choose to acquire more evidence before making decisions.  

Moreover, the neural correlates of rumination and checking overlap with those 

of threshold settings. The studies reviewed by Nolen-Hoeksema, Wisco, and 

Lyubomirsky (2008) point at the ACC as one of the possible neural correlates of 

rumination. Besides, Mataix-Cols et al. (2004) conclude that when checking 

symptoms are provoked, OCD patients had higher activations than controls in regions 

including subthalamic and brainstem nuclei, putamen and globus pallidus, and dorsal 

cortical areas (including right anterior cingulate). Both the ACC and some of the areas 

activated in checking are important in the speed accuracy tradeoff, namely in the 

adjustment of the threshold setting. For instance, a recent review of the neural 

correlates of perceptual decision-making (Mulder, Van Maanen, & Forstmann, 2014) 

indicated that threshold level is related to the activations of the pre-SMA, ACC, and 

the striatal regions. Mulder et al. (2014) discussed that the frontal regions such as the 

ACC modulate the thresholds through the striatum with the possible contribution of 

subthalamic nucleus (STN). While a higher activation of striatum is related to 

speedier responses, higher activation of STN is thought to inhibit fast responding, 

bringing about caution. Although more research is warranted to understand the 

interplay between the parts of the basal ganglia and their relationships with the speed 

accuracy tradeoff (Mulder et al., 2014), given the current findings both checking and 

rumination seem to share neural correlates with threshold settings. 
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On the other hand, research into non-decision time is relatively scarce (Mulder 

et al., 2014). The reason for such scarcity is thought to be the over-general nature of 

the measure/term; encompassing all process durations within a task that are not stated 

as decision making times (Mulder et al., 2014). In a clinical study, Karalunas and  

Huang-Pollock (2013) found that ADHD participants had faster non-decision times 

than healthy controls. In the current study we also found that washing subscale in the 

Padua Inventory predicted faster non-decision times. Faster non-decision times can 

attest to more efficient encoding of stimuli or motor preparation (Karalunas & Huang-

Pollock, 2013) and better/faster preparation between a cue and a target (Karayanidis 

et al., 2010). However it is also possible that the short duration spent in non-decision 

time can be due to rushing to decision making without sufficient encoding or motor 

preparation (Karalunas & Huang-Pollock, 2013) possibly ending up hurting the 

performance.  

In our experiment, performances of those who rank higher on the washing 

subscale were not negatively affected in terms of decision outputs, therefore we can 

gauge that faster non-decision time here points to more efficient encoding and/or 

motor function of washers. The reasons for such a relationship can be investigated 

again by studying the possible neurobiological underpinnings of washing behavior. 

Mataix-Cols et al. (2004) has shown that the Padua-revised washing subscale scores 

were positively correlated with activations in several brain areas including the 

ventrolateral prefrontal cortex (VLPFC), anterior insula and bilateral visual regions. 

The visual cortex is engaged in early encoding of visual task cues whereas (starting 

with left intraparietal sulcus) left posterior VLPFC and left anterior VLPFC are 

engaged in encoding of task rules (Bode & Haynes, 2009). Furthermore, the 

activation of anterior insula (along with other regions) was at baseline during 
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evidence accumulation, peaking at stimulus recognition (Ploran et al.,2007), which 

Ploran et al. (2007) concluded is not explicitly related with the decision making 

process. Recognizing a stimulus and encoding it are parts of non-decision time and 

they are associated with brain areas that exhibit a correlation with the washing 

subscale (Mataix-Cols et al., 2004). With these regions activated, there might be more 

efficient encoding of stimuli and preparation and therefore less time spent on the non-

decision parameter. 

Banca et al. (2015) conducted a study with OCD patients, which was highly 

relevant to the current study. Despite our findings regarding thresholds that 

corroborated their findings, they also found a lower evidence accumulation quality 

(drift rate) for OCD patients in the medium coherence levels (.15 and .25; similar to 

our coherence level of .12). We did not find any significant relationship between OC 

features and the drift rate. It is possible that a lowering in drift rate, an inability to 

accumulate evidence efficiently from the data, is a distinguishing factor between 

clinical and subclinical OC individuals. This difference needs to be addressed in 

future studies.  

 We followed up on the diffusion model fit-based analysis discussed above 

with the evaluation of decision-making performance within the framework of 

optimality. Our analyses did not reveal any significant relationship between deviations 

from optimality and scores on the OCD scales. Thus, despite OC features predicting 

higher decision thresholds, these differences did not lead to significant deviations 

from optimality. Further studies could consider longer training as they might lead to 

more sensitive outcomes (e.g., Balcı et al., 2011). 

Our exploratory analyses revealed that only specific subscales have 

meaningful associations with DDM constructs. This finding is in line with the 
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heterogeneity of OCD (Mataix-Cols et al., 2004) and with research showing that 

distruptions of decision making processes in OCD may vary depending on the 

subtype of the disorder (e.g. Lawrence et al., 2006). Several dimensions of OCD have 

been identified: a) symmetry/ordering, b) contamination/cleaning, and c) 

obsessions/checking (Mataix-Cols, do Rosario-Campos,  & Leckman, 2005 – in DSM 

V hoarding is considered as a disorder separate from OCD (American Psychiatric 

Association, 2013)). Moreover, different dimensions (e.g. checking, washing) are 

found to be associated with differential activations in fronto-striato-thalamic circuits 

(Mataix-Cols et al., 2004). The results of the current study relate to the 

obsessions/checking and contamination/cleaning features of OCD, with no indications 

for the other dimensions. These differential results are important because a treatment 

of the sample as a whole (as high or low scorers on the entirety of the scales) would 

not be able to reach these specific findings. However, it is important to note that we 

did not have a priori predictions regarding the relations with the subscales and these 

findings were gathered from our exploratory stepwise regression analyses.  

This study, despite its relatively large sample size has a few limitations. 

Although we have used two psychological scales to make sure we captured most of 

the variability in the OC trait information we might have still missed some of the 

variability. Moreover, we studied a non-clinical population, and did not use other 

clinical scales to screen for psychiatric disorders. Finally, since the study is conducted 

with a non-clinical sample, we cannot draw inferences for the clinical OCD 

population.  

Although appearing as a limitation, studies conducted with subclinical OC 

samples, also called ‘analogue’ samples are important resources to better understand 

the nature of OCD (Abramovitch, Shaham, Levin, Bar-Hen, & Schweiger, 2015a.; 
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Gibbs, 1996; for a recent review: Abramowitz et al., 2014). OCD is argued to be a 

dimensional and not a categorical disorder (Abramowitz et al., 2014). The severity of 

the symptoms ranges from absent to severe on a continuum. Although different in 

severity, qualitatively the symptoms are mostly comparable in diagnosed OCD 

patients and non-clinical individuals with OC symptoms (Abramowitz et al., 2014). 

Used in cognitive studies (e.g. Abramovitch et al., 2015a; Mataix-Cols, 2003), 

subclinical OC samples have the advantage of capturing the subgroups of the OC 

symptoms (e.g. checking, precision etc.) (Abramowitz et al., 2014) while for the most 

part not having medication (Mataix-Cols, 2003) and comorbid conditions as 

confounds.  

Conclusions  

 Our results overall pointed at differences between people with different 

degrees of OC features in terms of decision threshold settings. Our exploratory 

analyses further revealed differences in both controlled (voluntary and requiring 

attention; threshold settings) and automatic (faster and do not require attention; non-

decision time) decision processes (Cohen, Dunbar, & McClelland, 1990). To our 

knowledge, no studies have been conducted with an analogue OC sample within the 

decision-theoretic framework of DDM or optimality. Adopting a decision-theoretic 

approach such as DDM might be beneficial in revealing differences both between 

clinical disorders as well as between subclinical and clinical populations.  
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CHAPTER II 
 

Disrupted latent decision processes in medication-free pediatric OCD patients 
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Abstract 
 

Background: Decision-making in Obsessive Compulsive Disorder has typically been 

investigated in the adult population. Computational approaches have recently started 

to get integrated into these studies. However, decision-making research in pediatric 

OCD populations is scarce.   

Methods: We investigated latent decision processes in 21 medication-free pediatric 

OCD patients and 23 healthy control participants. We hypothesized that OCD patients 

would be more cautious and less efficient in evidence accumulation than controls in a 

two alternative forced choice (2AFC) task.  

Results: Pediatric OCD patients were less efficient than controls in accumulating 

perceptual evidence and showed a tendency to be more cautious. In comparison to 

post-correct decisions, OCD patients increased decision thresholds after erroneous 

decisions, whereas healthy controls decreased decision thresholds. These changes 

were coupled with weaker evidence accumulation after errors in both groups. 

Limitations: The small sample size limited the power of the study. 

Conclusions: Our results demonstrate poorer decision-making performance in 

pediatric OCD patients at the level of latent processes, specifically in terms of 

evidence accumulation. 

 
Keywords: decision making; Hierarchical Drift Diffusion Model; Obsessive 
Compulsive Disorder; children 
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Introduction 

OCD is a debilitating psychiatric condition with the age of onset spanning a 

range from early childhood to adulthood (Pauls, Abramovitch, Rauch, & Geller, 

2014). OCD affects 1-3% of the pediatric/adolescent population (Valleni-Basile et al., 

1994; Pauls, Alsobrook, Goodman, Rasmussen, Leckman, 1995; Apter et al., 1996).  

The condition includes either or both obsessions and compulsions (American 

Psychiatric Association, 2013), which significantly reduce the quality of the patients’ 

lives.  

A number of previous studies have investigated decision-making in adult 

OCD patients. However there is less research conducted with pediatric OCD 

populations. The Iowa Gambling Task (IGT; Bechara et al., 1994) has been used in 

many studies with adult OCD patients. Some studies revealed that OCD patients made 

more disadvantageous choices (e.g. Cavedini et al., 2002; Rocha et al., 2011; Starcke 

et al., 2010), however other studies revealed comparable performance to healthy 

controls (e.g. Nielen, Veltman, De Jong, Mulder, & Den Boer, 2002; Lawrence et al., 

2006). In the only IGT study conducted with pediatric OCD patients (nOCD=22; 

nControl=22), Kodaira et al. (2012) found more disadvantageous responding of 

participants with OCD on the last block of testing and suggested that pediatric OCD 

patients had impaired decision-making. It is worthy to note that recruiting medication-

free OCD patients is challenging and that some patients in the above mentioned 

studies were on psychiatric medications at the time of the experiment (e.g. Kodaira et 

al., 2012; Lawrence et al., 2006; Rocha et al., 2011; Starcke et al., 2010). 

Much neuropsychological research has been undertaken in adult OCD groups 

but with highly divergent outcomes (Abramovitch, Abramowitz, & Mittelman, 

2013a). A recent meta-analysis with 115 studies revealed an average moderate effect 
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size across domains denoting worse performance for OCD patients, which the authors 

conclude might not allude to clinical significance (Abramovitch et al., 2013a). There 

is much less neuropsychological research conducted with pediatric OCD patients. A 

recent meta-analysis compiling 11 studies investigating executive function, memory, 

processing speed, visuospatial abilities, and working memory has concluded that there 

is no evidence for neuropsychological dysfunction in pediatric OCD populations 

(Abramovitch et al., 2015b). This meta-analysis did find a trend for worse 

performance in neuropsychological tasks for pediatric OCD patients compared to 

healthy controls, but the effect sizes were neither statistically nor clinically 

significant. The authors attributed the lack of statistical significance to the number of 

available studies and sample sizes across studies, and pointed to a need for further 

research.  Importantly, decision making tasks were not included in the meta-analysis.  

In their critical review, Abramovitch and Cooperman (2015) argue that 

neuropsychological tests, although informative for the psychiatric area, can be 

improved with some modifications. For instance, because many neuropsychological 

studies employ commonly used classic experimental procedures and analyses rather 

than venturing to new methods, the conclusions may become restricted and thereby 

uninformative. With different approaches in analyses and changes in the established 

neuropsychological tasks (e.g. adding distractors or manipulating the task load) 

(Abramovitch & Cooperman, 2015), the area can benefit from more in-depth 

characterization of behavior. 

In the area of computational psychiatry, researchers are also striving to come 

up with more in depth analyses of psychiatric problems and shift from a symptom-

based descriptive understanding of psychiatric disorders to descriptions involving 
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“objective computational multidimensional functional variables” (Wiecki et al., 2015, 

p. 378). To this end, Wiecki et al. (2015) point to sequential sampling models as 

important tools for the field of psychiatry. Drift diffusion model (DDM) is a 

prominent sequential sampling model, which utilizes a combination of accuracy and 

reaction time data to explain latent decision-making processes (Ratcliff, 1978; Ratcliff 

& Rouder, 1998; Ratcliff & McKoon, 2008). Through these processes, the model can 

provide psychological explanations (such as cautious responding, non-decision time, 

biases in decision-making and evidence accumulation efficiency) to differences in 

choice behavior (White et al., 2010a).  

 The DDM assumes that in a decision-making task with two choices, the agent 

starts at a point (starting point: z; initial belief state) between the two alternatives and 

accumulates evidence from the noisy signal with some rate (drift rate: v). As the agent 

gathers enough evidence to reach one of the thresholds, the corresponding decision is 

made. The area between the thresholds associated with two alternatives is referred to 

as the boundary separation (e.g. Ratcliff & McKoon, 2008). The core parameters of 

DDM are threshold setting (a), drift rate (v), starting point (z), and non-decision time 

(Ter). The more complex version of the model (extended model; Ratcliff & Rouder, 

1998) includes variabilities in non-decision time (St), drift rate (eta), and starting 

point (Sz). Threshold setting indexes speed accuracy tradeoff or the caution with 

which the decision is made; the higher the threshold setting the more caution the 

decision maker exercises. Drift rate indexes the rate of evidence accumulation or 

signal to noise ratio. The starting point indexes the bias towards either of the two 

choices and the non-decision time indexes the duration of signal detection or motor 

response (e.g. Ratcliff & McKoon, 2008; White et al., 2010a).  
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White et al. (2010a) have pointed out the benefits of using DDM in clinical 

research. In support of this argument, the DDM has indeed been successfully used in 

studies with populations suffering from ADHD (e.g. Karalunas & Huang-Pollock, 

2013; Metin et al., 2013; Mulder et al., 2010), anxiety (White et al., 2010b), 

depression (Pe et al., 2013), and clinical (Banca et al., 2015) and subclinical (Erhan & 

Balcı, 2016) OCD.  

Banca et al. (2015) used the dot motion discrimination task with three 

different levels of signal to noise ratios (SNRs) to study decision-making behaviors of 

mostly medicated adult OCD patients (nOCD=28; nControl=35). Monetary rewards and 

punishments indicated the correct and incorrect responses. Performances on low 

(coherences .025 and .05), medium (coherences .15 and .25), and high (coherences 

.45 and .7) levels of SNRs were compared using Hierarchical Drift Diffusion Model 

(HDDM). The findings revealed higher threshold settings for OCD patients than 

healthy controls at low and medium SNR levels and lower drift rates than healthy 

controls in medium and high SNR levels. In other words, OCD patients responded in 

a more cautious manner and gathered more evidence than controls in lower SNR but 

accumulated evidence less efficiently in higher SNR scenarios.  

Erhan and Balcı (2016) also used the dot motion discrimination task but with a 

single coherence level (12%) and with healthy adult participants  (N=74) who rank on 

various levels on OCD scales. Their findings revealed that increases in rumination 

and checking tendencies as well as an increase in the entire OC score predicted higher 

threshold settings. Differing from the clinical OCD study (Banca et al., 2015) 

subclinical OC traits did not predict drift rates. Authors concluded that a low drift rate 

could be a signature for clinical OCD populations.  
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In the current study, we seek to understand the latent decision variables of a 

medication-free pediatric OCD population (ages 9-16). Even though symptom 

dimensions of OCD are alike across age groups, pediatric and adult OCD populations 

seem to have abnormal neural activations in similar brain locations but in reversed 

directions (Gilbert et al., 2009). Abramovitch, Mittelman, Henin and Geller (2012), in 

their review on neuroimaging in pediatric OCD, also argued that adult OCD and 

pediatric OCD can be distinct and that neurodevelopmental factors such as pruning 

and myelination make it more difficult to pinpoint a common neurobiological basis 

for OCD across ages. 

We sought to fill the empirical gap in the literature regarding the study of 

decision-making in the pediatric OCD group at the level of latent processes. We 

hypothesized that pediatric OCD patients, similar to adult OCD patients (Banca et al., 

2015) would set higher decision thresholds than control participants due to the 

checking and doubting nature of the disorder. Based on the argument that sensory-

perceptual evidence, which lets most people make rapid decisions, is not sufficient for 

patients with OCD (Sachdev and Malhi, 2005), we hypothesized that these patients 

would need higher amounts of evidence before making a decision. We also predicted 

lower drift rates on the part of OCD patients as an alternative basis for decision-

making deficits associated with this group. As an extension of these predictions, we 

also predicted OCD patients to set higher thresholds after errors compared to after 

correct responses.  

Methods 

Participants  

Fifty-three participants partook in the study. Participants with OCD diagnosis 

(n=21) were recruited from the pediatric clinic of a public psychiatric hospital, 
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İstanbul Erenköy Psychiatric Training and Research Hospital. The participants in the 

control group (n=32) were volunteers from a public school in a nearby neighborhood. 

The study was approved by the Koc University and Erenköy Psychiatric Training and 

Research Hospital Ethical Review Boards and related permissions were obtained from 

the Istanbul Provincial Directorate of National Education Board. All parents signed 

informed consent forms and all participants gave assent to partake in the study. 

Subjects were compensated by a fixed amount for participation-related expenses (e.g. 

travel). 

The exclusion criteria for both groups were intellectual disability, major 

neurological disorders, and use of psychiatric medication within the last 6 months. 

The inclusion criterion for the clinical participants was an OCD diagnosis by the 

primary psychiatrist with no comorbid psychiatric disorders. Patients participated in 

the study immediately after the initial diagnosis without having started medication, 

thus, their treatment schedule was not delayed.  

Inclusion criteria for control participants was the absence of current clinical 

diagnosis, assessed by The Development and Well-Being Assessment (DAWBA) 

(Goodman, Ford, Richards, Gatward, & Meltzer, 2000; Dursun et al., 2013) (i.e. less 

than 3 points in all computer assigned diagnostic criteria). For stringency, presence of 

any psychiatric symptom was a reason for exclusion from the control group, even if 

the symptoms did not amount to a full clinical diagnosis. The symptoms for exclusion 

were ascertained by the psychiatrists in our group, who personally assessed the 

DAWBA results in addition to the computerized system. Seven participants were 

removed for having psychiatric symptoms (note that the inclusion of these 

participants in the control group, overall, led to similar findings). An additional two 
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participants were removed because their parents did not complete the DAWBA. The 

final control group was composed of 23 participants. 

Procedure 

All participants completed the Dot Motion Discrimination Task and the block 

design and vocabulary subsections of Wechsler Intelligence Scale for Children 

Revised, in Turkish (WISC-R; Wechsler, 1974; Savasir & Sahin, 1995). The children 

in the clinical group were also administered the CY-BOCS (Scahill et al., 1997; 

Yucelen, Rodopman-Arman, Topcuoglu, Yazgan, & Fisek, 2006). All parents in both 

patient and control groups filled the socio economic status forms and completed the 

DAWBA Interview for Parents with the researcher’s instructions. Participants were 

also provided passwords for DAWBA and were asked to complete it in their own 

time.  

DAWBA is a valid computerized diagnostic package formed of various scales 

and open-ended questions (Goodman et al., 2000). The Turkish translation and 

validation of this tool has been undertaken by Dursun et al. (2013). The interrater 

reliability score in Dursun et al. (2013) was shown to be excellent and the validity 

score to be good to excellent. CY-BOCS is a valid and reliable 10-item semi-

structured clinical interview to measure the severity of OCD symptoms in children 

and adolescents (Scahill et al., 1997). The Turkish version demonstrates good 

interrater reliability scores and researchers report that the translated CY-BOCS can be 

used in clinical research settings (Yucelen et al., 2006). 

Dot Motion Discrimination Task 

Dot motion discrimination task (DMDT) is a commonly used visual 

perceptual decision-making task with several adjustable parameters. In the current 

study, white dots appeared in a circular space with a diameter of 3 inches in the 
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middle of a black screen. While some percentage of the dots (12%) moved cohesively 

to either right or left, the rest of the dots were displaced randomly within the circular 

space. Response to stimulus intervals (M=2 sec) were sampled from a truncated 

exponential distribution with a 1 sec lower bound. The task was to identify to which 

direction the dots were moving and press the corresponding keys. The correct 

responses were followed by a beep sound and were worth one point each. The 

incorrect responses neither had feedback nor penalty. On every 10th response total 

points earned appeared on the screen. The experiment was run on MATLAB, using 

the SnowDots (2012) developed at the University of Pennsylvania by Joshua Gold. 

Each session was formed of a practice session of 2 minutes, followed by a free 

response session of 24 minutes (8 blocks of 3 minutes) and a signal detection session 

of 3 minutes. Different than the first two sessions, in the signal detection session, 

participants were asked to press the corresponding keys immediately as they saw the 

dots emerge on the screen, with no consideration for direction of movement. In all 

sessions a buzzing sound followed all anticipatory responses (RT < 100 ms), which 

were penalized with 1 sec timeout. Participants were told to accumulate as many 

points as possible. 

Data Analysis 

  We used both Bayesian and frequentist independent samples t-tests to check if 

the clinical and control group were comparable with regards to age and IQ levels. The 

difference between accuracy, reaction times and signal detection times between the 

clinical and control group were also assessed by independent samples t-tests.  

  HDDM (Wiecki et al., 2013) was fit to the response times (RT) and choices 

(correct-incorrect) using the software developed by Wiecki et al. (2013) 

(http://ski.clps.brown.edu/hddm_docs/). Our model allowed for changes in both drift 
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rate and threshold setting. On all models we drew 5000 posterior samples using the 

Markov Chain Monte Carlo (MCMC) algorithm discarding first 20 as burn-in. Wiecki 

et al. (2013) suggest mixture models, where a certain percentage of trials are outliers 

that come from a uniform distribution and are generated by processes other than the 

DDM. We set the outlier ratio to be 1% for the between-subject models and 5% for 

the within-subject models. To assess model convergence, we visually observed the 

trace, the autocorrelation, and the marginal posterior. To assess individual fit qualities 

we visually inspected the posterior predictions. To test our hypotheses for the models, 

we compared the posterior probabilities of parameters, which leads to a Bayesian 

probability measure (P). The P value is the probability that one variable’s estimate is 

larger than that of the other, based on their posterior probability distributions. 

  We used paired samples t-tests to compare post-error and post-correct trials in 

terms of reaction times (PES; post error slowing) as well as accuracy. A within-

subjects HDDM was fit to post error and post correct responses for each group (e.g. 

Dutilh et al., 2012b), allowing both drift rate and threshold setting to vary. 

Results 

The ages were matched for the clinical (M =12.00, SD =1.90) and control 

(M=12.46, SD=1.14) groups (t(32.15)=0.98, p=.34, BF01=2.25). The vocabulary (v) 

and block design (b) subtests of the WISC-R were also matched for the clinical 

(Mv=11.55, SDv=2.09; Mb=12.00, SDb=3.42) and control (Mv=12.00, SDv= 1.41; 

Mb=13.61, SDb=3.43) groups (t(32.68)=0.81, pv=.42, BF01=2.51; t(42)=1.56, pb=.13, 

BF01=1.28). In the clinical group one participant could not complete the vocabulary 

subtest due to time constraints. Of the included participants, all parents completed 

DAWBAs. In the clinical group out of 21 participants, 12 completed and 4 partially 
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completed the DAWBAs. In the control group out of 30 participants, 16 completed 

and 1 partially completed the DAWBAs. 

Paired samples t-test scores revealed that both the control and clinical group 

had post-error slowing. In the control group, participants responded faster after 

correct (M=1.44 sec, SD= 0.49 sec) than after incorrect trials (M=1.65 sec, SD=0.77 

sec), t(22)=2.52, p=.02. Same was true for the clinical group such that participants 

responded faster after correct trials (M=1.78 sec, SD=0.64 sec) than they did after 

incorrect trials (M=2.24 sec, SD=1.08 sec), t(20)=2.32, p=.03.  

Paired samples t-tests also revealed that accuracy after correct responses was 

higher than accuracy after error responses for both groups. In the clinical group post 

correct accuracy (M=.74, SD=.10) was higher than post error accuracy (M=.62, 

SD=.08), t(20)=7.78, p<.001. In the control group as well, post correct accuracy 

(M=.79, SD=.13) was higher than post error accuracy (M=.71, SD=.12), t(22)=6.25, 

p<.001. 

 Overall the control group (M=1.48, SD=0.55) had faster reaction times than 

the clinical (M=1.91, SD=0.72) group, t(42)= 2.26, p=0.03, BF01=0.46. The clinical 

(M=.71, SD=.10) and control (M=.78, SD=.14) groups did not differ in their accuracy 

(t(42)=1.82, p=0.08, BF01=0.91). Signal detection times for the control (M=0.40 sec, 

SD=0.06 sec) and clinical (M=0.41 sec, SD=0.10 sec) groups did not differ 

(t(42)=0.45, p=.65, BF01=3.09). 

 HDDM analyses comparing the two groups revealed that OCD patients had 

lower drift rates than controls (P=.99). Moreover, a tendency for higher threshold 

settings was observed in the clinical group (P=.93). The within subject HDDM 

analyses revealed that the post error responses had lower drift rates than the post 

correct responses for both the clinical (P=1.0) and control group (P=1.0). However a 
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difference between the groups emerged in terms of post-error threshold setting. The 

post error responses had higher threshold settings than the post correct responses for 

the clinical group (P=1.0) whereas the post error responses had lower threshold 

settings than the post correct responses for the control group, (P=1.0). 

Discussion 

We investigated the latent decision-making processes of a pediatric OCD 

sample in comparison to a healthy control sample in a two alternative forced choice 

task using HDDM. We hypothesized that OCD patients would have higher threshold 

settings and lower drift rates than control participants. We also predicted that OCD 

patients would set higher thresholds after errors compared to after correct responses. 

Our findings provided support for our predictions: OCD patients displayed lower drift 

rates and showed a strong tendency for higher threshold settings than healthy controls. 

The patients may have compensated their lower evidence accumulation efficiency 

(drift rate) with increased caution, possibly explaining their slower RTs but 

comparable error rates with the healthy control group. 

These results are in support of the findings of the recent clinical OCD study 

(Banca et al., 2015) and in partial support of the findings of the subclinical OC study 

(Erhan & Balcı, 2016). The subclinical OC study found that higher total OC scores 

and higher rumination and checking scores predicted higher threshold settings, with 

no relationship between OC scores and drift rates. The clinical study (Banca et al., 

2015) on the other hand found that patients with OCD had both higher threshold 

settings and lower drift rates than the healthy controls in medium SNR conditions 

(which best represents the SNR used here). In the current study, we found lower drift 

rates for OCD patients with a tendency for higher threshold settings. Taken together 
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these findings indicate that lower drift rates might be a signature of clinical OCD as 

was originally suggested by Erhan and Balcı (2016).  

The threshold setting differences in the pediatric OCD group vs. the healthy 

controls are not as distinct as those reported by Banca et al. (2015) for adults. 

According to recent approaches that rely on signal detection theory, it is reasonable to 

be more cautious when signal detection capacity is low (akin to walking slower and 

more cautiously (e.g. higher threshold setting) in a dimly lit room (e.g. low drift rate)) 

(Lynn & Barrett, 2014). One reason why the pediatric population does not show as 

increased a caution despite low drift rates, as adults do, could be the differences in 

used coping responses possibly due to age (Aldwin, 1994). Overall, people with high 

OC traits have low distress tolerance (e.g. Blakey, Jacoby, Reuman, & Abramowitz, 

2015); however adults might have compensated with better emotion regulation and 

coping strategies. We did not originally incorporate emotion regulation or distress 

tolerance into our interpretation of the decision-making behavior. However, emotions 

have been argued to effect decisions strongly (Lerner, Li, Valdesolo, & Kassam, 

2015), and changing emotional reactions through emotion regulation strategies also 

change decisions (Phelps, Lempert, & Sokol-Hessner, 2014). Future studies can focus 

on the relations of emotion regulation with latent decision variables.  

Our findings regarding the post correct and post error behaviors indicate that 

both groups have lower drift rates while responding after errors than when they do 

after correct trials. Moreover, in line with our hypothesis, OCD patients have higher 

threshold settings responding after errors than after correct trials. Interestingly, this 

pattern is reversed in the healthy control participants for whom threshold settings are 

lower in the post error trials than post correct trials. Our findings are very similar to 

those of White et al. (2010a)’s study, in which participants with high and low anxiety 
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scores performed a recognition memory task. Akin to our study, highly anxious 

participants had significantly increased threshold settings after errors whereas 

participants with lower anxiety scores had reduced (although non-significant) post 

error thresholds. White et al. (2010a) also found that after errors, discriminability 

(difference in drift rate of familiar and novel stimuli) decreased for both groups. 

Although they worked with students with high and low anxiety scores, our findings 

with a clinical pediatric population are highly comparable.  

Results in our study are however different than Dutilh et al. (2012b)’s 

findings, which suggest that post error slowing almost solely results from an increase 

in threshold settings after errors. What we find across groups, a decrease in drift rates, 

point to a dampened evidence accumulation efficiency, possibly due to distraction 

(Dutilh et al, 2012b). This difference in the explanation of post error slowing at the 

level of latent processes could be due to age, and can benefit from more research.  

The symptomatology of OCD as put forth in DSM-V (American Psychiatric 

Association, 2013) matches with the observed latent variables. Time-consuming 

obsessions, compulsions, and efforts to suppress them behaviorally manifest as 

inattention and distraction in individuals with OCD (Abramovitch, Dar, Mittelman, & 

Schweiger, 2013b). This is also what our outcome in terms of latent variables show. 

The pediatric OCD group was found to be less efficient in accumulating evidence 

compared to healthy controls, possibly indicating that they were distracted and less 

attentive to the stimuli. Although OCD patients would also be expected to require 

more evidence before making a decision (higher threshold) based on DSM-V’s 

characterization of this disorder (e.g. checking), albeit strong, this was only a trend in 

the data. 
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Moreover, the proposed neural correlates of drift rate and threshold settings 

match with the proposed neural correlates of OCD. The frontoparietal (e.g. de Vries et 

al., 2014; Melloni et al., 2012) and corticostriatal pathways (e.g. Burguiere, Monteiro, 

Mallet, Feng, & Graybiel, 2015) are implicated in OCD. Similar neurobiological 

mechanisms have been implicated for drift rate and decision threshold. For instance, 

in a recent review Mulder, Van Maanen, and Forstmann (2014) concluded that 

threshold settings are associated with activations in the frontobasal ganglia network 

and changes in drift rates are associated with activations in frontoparietal network.  

Limitations 

The relatively low number of participants is a limitation of this study, 

preventing investigation of within-group effects due to factors such as age. In order to 

assure a healthy and homogenous control group devoid of any psychiatric symptoms, 

we further reduced the sample size of our control group from 30 to 23. The sample 

size of our OCD group was limited as we excluded patients with medication use and 

comorbidities. However, the smaller sample sizes were compensated by the 

homogeneity of the groups, which decreases the possibility of confounds and within-

group variability, and bolsters the validity of our inferences regarding the 

corresponding populations. Another limitation is the lack of a structured diagnostic 

assessment tool for the OCD group. However, the lack of such assessment tool was 

compensated with the diagnostic clinical experience of the assessing psychiatrist. 

Conclusion 

Our study revealed that pediatric OCD patients have lowered evidence 

accumulation efficiency and a trend in increased caution, in comparison to healthy 

controls. Moreover, while errors cause distraction in the subsequent trial for both 

groups, the two groups react differently in terms of caution; OCD patients become 
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more cautious after they make an error whereas healthy controls become less 

cautious. Our findings add to a series of studies that emphasize the importance of 

computational decision-theoretic approaches for characterizing latent processes in the 

study of clinical populations. By investigating the latent processes through HDDM, 

we were able to identify differences that match the symptomatology and neurobiology 

of OCD and were not evident in the isolated analysis of the reaction time and 

accuracy data. We also observed indications that comparing latent processes may 

reveal a signature that sets clinical OCD apart from high OC traits alone. The minor 

differences between our findings with a pediatric population and those of studies with 

adult populations point to a need for further research that incorporates development 

and emotion regulation into studies of latent processes in decision making.  
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CHAPTER III 
 

Gamification of Two Alternative Forced Choice:  
Validation based on Drift Diffusion Model and Individual Differences 
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Abstract 
 
 
Two alternative forced choice (2AFC) paradigms, coupled with the unified analysis of 

accuracy and response times within specific decision theoretic frameworks, have 

provided a wealth of information regarding decision-making processes. One problem 

of associated experimental tasks is that they are typically not engaging and do not 

contain stimuli or task representations familiar to participants, resulting in 

contaminants in the data. Furthermore, when investigating decision strategies, use of 

noisy stimulus attributes result in undesired variance in perceptual process 

complicating the analysis and interpretation of results. To address these fundamental 

issues, we developed a 2AFC soccer game in which participants’ task is to score goals 

by making leftward or rightward shots after observing the trajectory of the goalkeeper 

within a trial. The goalkeeper’s location is repeatedly sampled from a normal 

distribution with a constant variance with a mean either to the left or right of the 

midpoint. We tested participants on three difficulty levels parameterized by the 

distance between the two means. We also biased the ball placement to test its effect on 

bias in decisions. We expected rate of evidence integration to decrease with increasing 

difficulty and participants to be biased in accord with ball placement. Drift-diffusion 

model provided good fits to data and their outputs confirmed our primary predictions 

outlined above. Furthermore, consistent with earlier findings, evidence integration 

rates were lower after errors and for those who scored higher on anxiety, 

perfectionism, and obsessive compulsive trait scales. 

 
Keywords: gamification, HDDM, decision making, perfectionism, anxiety 
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Introduction 

Two Alternative Forced Choice (2AFC) tasks have been vastly used in the 

behavioral and neurophysiological study of decision making (e.g., Balcı et al., 2011; 

Gold & Shadlen, 2007). In these tasks, participants simply choose one option or the 

other based on the information available to them in a given trial. These studies have 

greatly benefited from the application of computational models that allow the 

estimation of decision process parameters (Forstmann, Ratcliff, & Wagenmakers, 

2016). One of these signature models is the Drift Diffusion Model (DDM) (Ratcliff, 

1978; Ratcliff & Rouder, 1998; Ratcliff & McKoon, 2008). In DDM, a decision is 

conceptualized as evidence accumulated in a noisy fashion over time (drift), until the 

accumulated evidence passes one of the two thresholds that represent one of the 

options (decision boundary) (Ratcliff & Rouder, 1998). DDM allows a deeper 

understanding of the decision process, by utilizing the basic elements of the 

performance (e.g. response time (RT) and responses) in a unified fashion (in contrast 

to their isolated analyses) to characterize the decision performance in terms of the 

latent variables of the presumed generative process: cautiousness (i.e threshold 

setting), evidence gathering efficiency/difficulty of task (i.e. drift rate), prior tendency 

towards one of the responses (i.e. decision bias), and delay unrelated to the decision 

process (i.e. non-decision time) (Forstmann et al., 2016). 

 Many of the experiments in experimental psychology require participants to 

complete long, repetitive, and relatively dull tasks with the purpose to collect enough 

data for reliable estimates and model fits described above. On the other hand, 

monotonous tasks usually lead to disengagement and boredom, and consequent poor 

and variable task performance (Hawkins, Rae, Nesbitt, & Brown, 2013). 

Disengagement and boredom related performance issues might be more prevalent 
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among pediatric groups and certain clinical disorders (i.e., Attention Deficit and 

Hyperactivity Disorder - ADHD) for instance due to associated lapses in attention. 

These task-engagement related issues might in turn confound the analyses that aim to 

characterize putative differences in the decision process itself.  A potential and 

contemporary way of overcoming these problems is embedding the task rules into 

games or adding game-like elements to the task.  

 Gamification is defined as “the use of game design elements in non-game 

contexts” (Deterding, Dixon, Khaled & Nacke, 2011, p.11), and such practice is 

increasingly applied in various domains (Ninaus, et al., 2015) including experimental 

psychology (Hawkins et al., 2013). For example, in their working memory training 

task, Ninaus et al. (2015) included game elements such as a progress bar, level 

marker, and a theme. The group who completed the gamified version performed better 

than the group who participated in the original (non-gamified) version of the task. 

Moreover both Shaw, Grayson, & Lewis (2005) and Prins, Dovis, Ponsioen, Ten 

Brink, and Van der Oord (2011) tested participants diagnosed with ADHD in gamified 

tasks. Prins et al. (2011) trained one group of ADHD patients for working memory in 

the game format and another group in a non-game format for three weeks. The game 

format group had both higher motivation and performed better than the control group. 

Similarly, Shaw et al. (2005) showed that ADHD patients performed better on a 

gamified continuous performance task (CPT II) than the original version.  

 The commonly used 2AFC tasks (e.g., dot motion discrimination task) are also 

monotonous and it is difficult to sustain the participants’ task focus. In the same vein 

with prior efforts in the domain of working memory and attention, we developed a 

gamified 2AFC task that involved shots made in the context of soccer game. The 

advantages of our gamified task over already existing 2AFC tasks are that 1) the task, 
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its aim, and reward structure are familiar to the participants, 2) it is relatively 

engaging and fun, 3) it is possible to induce bias based on stimulus properties 

(independent of prior history of stimulus frequencies), and 4) the momentary evidence 

(which varies from one frame to the next due to noise) for two alternatives is not only 

observable to the participants but also to the experimenters during data analysis. Due 

to this last advantage, it is possible to reconstruct the evidence accumulation in each 

trial for an ideal observer (e.g., see Figure 3.3). 

Aims: 

There were three primary aims of this work.  The first aim was to test the basic 

form of the game with three difficulty levels to investigate their effect on decision 

outputs (i.e., accuracy and RT) as well as latent decision parameters. This test is 

essential for the validation of the task as a 2AFC paradigm within the framework of 

DDM.  

The second aim was to observe differences in the task performance of the 

participants who ranked differently on various scales that measure: Obsessive 

compulsive (OC) traits (41 item Padua Inventory; Van Oppen et al., 1995; validated in 

Turkish by Beşiroğlu et al., 2005), trait anxiety (STAI; State-Trait Anxiety Inventory 

trait form; Spielberger, Gorsusch & Lushene, 1970; validated in Turkish by Öner & 

Le Compte, 1985), and perfectionism (Frost Multidimensional Perfectionism Scale - 

FMPS; Frost, Marten, Lahart, & Rosenblate, 1990; validated in Turkish by Kağan, 

2011). Pertaining to non-clinical populations, decision-making in anxiety (White et 

al., 2010b) and subclinical OCD (Erhan & Balcı, 2016) have been previously studied 

within the framework of DDM, however perfectionism has not been studied in this 

context before. Perfectionism is a transdiagnostic trait that is argued to be a 

maintaining factor for OCD as well as a risk and maintaining factor for anxiety 
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disorders. Perfectionism thwarts the treatment process, however when it is treated 

symptoms of clinical disorders lessen (Egan, Wade & Shafran, 2011). The close 

relationship of perfectionism with both anxiety and OCD (e.g. Frost & DiBartolo, 

2002) warrants its investigation within the same decision-theoretic framework.  

The final aim of the current work is to provide an adaptable method (i.e., 

gamification of paradigms) to be used for a wide range of research areas in 

psychology in general and in specific to provide the developed game to other 

researchers, with easy documentation to facilitate the integration of a gamified task 

into their ongoing research. We believe that this will improve both the participants’ 

experience during experimentation (an endpoint typically overlooked in experimental 

psychology) and the quality of data collected in the experiments. 

Hypotheses: 

 We expected hierarchical drift diffusion model (HDDM; Wiecki et al., 2013) 

to provide acceptable fit quality for the data gathered from the game. Primarily, we 

predicted error rates and RTs to increase and the drift rate to decrease with increasing 

task difficulty and starting point to be biased in accordance with the non-centralized 

placement of the ball on the screen. We also predicted that there will be slowing and 

increased error rate accompanied by lower drift rates after errors compared to post-

correct responses.  

 As for our second order predictions, we hypothesized people who ranked high 

on OC, anxiety, and perfectionism scales to have higher threshold settings than those 

who ranked lower on these scales (for these relations in subclinical OC traits, see 

Erhan & Balcı, 2016). Since Banca et al. (2015) working with adult, and Erhan et al. 

(2017) working with pediatric OCD patients have shown that those diagnosed with 

OCD generally have lower drift rates than controls, we also predicted a residual 
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decrease in drift rates from low to medium to high rankers on OC traits, 

perfectionism, and anxiety scales.  

Methods 

Shoot, 2AFC Game:  

The primary task in “Shoot” is taking a kick toward the left or right of the 

goalkeeper in the goal area to score as many goals as possible during the experiment. 

The task presents the visual images of a goal, goalkeeper, and ball on a soccer field. 

The goalkeeper continuously moves laterally in the goal area until the participant 

takes the shot. The decision is to which side of the keeper (left or right) to shoot the 

ball at. Immediate feedback is provided after each kick. 

 

 

Figure 3.1. A screenshot from the task: The goalkeeper moves continuously toward 
left and right. The player’s task is to decide shooting the ball to the left or right of the 
goalkeeper. 
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Goalkeeper Motion: 

The task in “Shoot” is to observe the perceptually continuous motion of the 

goalkeeper and to decide which side of the goal area it favors (spends more time on) 

so that shot is taken in the opposite direction. The goalkeeper moves in front of the 

goal area in a lateral fashion (Figure 3.1) and in each trial, the goalkeeper spends 

more time either on the left or right of the goal area. This constitutes the evidence that 

the observer accumulates from one frame to the next. 

The location of the goalkeeper on the horizontal axis is a random variable 

sampled from a Gaussian distribution with mean slightly to the left or right of the 

center (Figure 3.2). This slight deviation of the mean from the center results in the on 

average biased behavior of the goalkeeper. Thus, there are two hypotheses for the 

observer to test given the behavior of the goalkeeper: the goalkeeper’s behavior 

comes from a normal distribution with a mean either to the left (xcenter-Δx) or to the 

right of the center (xcenter+Δx), with the task becoming more difficult as the distance 

between the two distributions decreases. An ideal observer would compute the 

likelihood of a given location under these two hypotheses (two distributions with 

different means and constant variance) and estimate the cumulative sum of these log 

likelihoods with each change in the location of the goalkeeper. The refresh rate of the 

location varies greatly from sample to sample, but averages to about 1 per 100ms. 

As the goalkeeper moves from one location to another, the observer builds 

more evidence regarding which side of the goal the goalkeeper favors. The variability 

in the sampling process of goalkeeper positions leads to a random walk with a bias 

toward the correct threshold when the relative likelihoods of the two partially 

overlapping distributions are summed over time. Note that this makes the evidence 

accumulation process in each trial observable to the experimenter. 
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Figure 3.2. The goalkeeper motion is a series of locations sampled from one of the 
two distributions in a given trial. 
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Goalkeeper Motion Simulation: 

In order to validate the separation of sample location likelihoods, between the 

left-deviated normal distribution and the right-deviated normal distribution, we ran a 

simulation, which was set up to sample from distributions that generated the 

goalkeeper motion in the task. Each of the easy, medium, and hard task conditions 

were simulated for both 50 sample and 1000 sample runs. The 50 sample run 

demonstrates the divergence up to 5 seconds of decision time in experiment (as 

sampling rate of task is approximately 1 per 100ms), while 1000 samples (very long 

evidence accumulation process) demonstrates eventual divergence in all conditions. 

The code for the simulation is provided in Supplement II.  

The simulation computes and aggregates the likelihood ratios for the two 

options (i.e., likelihood ratio test) given the movement of the goalkeeper. This 

computation results in a random walk that resembles the sequential probability ratio 

test (Wald, 1947) and DDM evidence accumulation process when the sampling 

becomes continuous. Figure 3.3 illustrates the results of these simulations; the 

observed trajectory of the decision variable shows clear divergence as the number of 

samples increase. The rate of divergence also closely matches the decline in accuracy 

from easy to hard tasks. 
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Figure 3.3. Simulation results illustrate cumulative likelihood ratio separation of the 
left-deviated and right-deviated normal distributions. Note that the number of trials 
for right-correct and left-correct trials differed due to randomness with the asymptotic 
probability of .5 as the number of trials becomes infinite. Note that since different y-
scales are used for easy, medium, and hard task, the rate of evidence accumulation 
appears similar. 
 
 
 
Player Shot Choice and Feedback: 

The player must choose to shoot either to the left or right by pressing the 

corresponding key on the keyboard. This choice is followed by a shot animation in the 

chosen direction with either a save by the goalkeeper or a score depending on the 

underlying distribution. After the shot is resolved, feedback is provided via text above 

the screen as illustrated in Figure 3.4. Further rewards (e.g. points, monetary reward, 

etc.) may be provided depending on the area that Shoot is being used for. Scoreboard 

visuals may also be added to the game screen.  

 

 

Figure 3.4. In two separate trials, the player shoots to the left. In the first trial, this was 
the correct choice and a goal is scored with appropriate feedback (Gol means Goal in 
Turkish). In the second, it was the incorrect choice, and the goalkeeper saved the shot 
with the appropriate feedback (Kurtardı means Saved in Turkish). 
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We also aimed to induce bias in the choice of right vs. left sides by biasing the 

location of the ball with respect to the center of the goal in order to test if this resulted 

in a bias parameter in DDM. Note that graphs provided in this manuscript provide a 

non-biased location for the ball, which is ideal for experiments in which decision bias 

is not a critical factor. 

Implementation: 

The game was built on the OpenSesame toolkit (Mathôt, Schreij, & Theeuwes, 

2012), PyGame engine and Python code. OpenSesame is a well-documented toolkit 

with tutorials on functionality readily available on their website 

(http://osdoc.cogsci.nl/) and original paper (Mathôt et al., 2012). This infrastructure 

has several layers of complexity. For experimenters with no coding background, there 

is the User Layer. The OpenSesame toolkit provides simple graphical customization 

of the core experiment. For experimenters with coding experience, the Code Layer 

exposes Python code underlying the game for full customization. Along with the 

technical details outlined in this paper, the fully commented ready to use code is 

provided to allow for a quick and clear understanding of the game rules and 

architecture. The source code and installation instructions for this implementation, 

along with a few other experimental setups, may be found in the BitBucket repository 

at https://bitbucket.org/kkaramanci/shoot_exp. 

User Layer: 

The experimental setup consists of 3 sections: Introduction, Warmup, and 

Experiment (Figure 3.5). 
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Figure 3.5. Experimental components setup on OpenSesame. 
 

 

The introduction section consists of a Python block, which sets up all the in-

game objects and configurations, and the instructions block, which provides the 

gameplay instructions to participants. The Warmup section is a section with a small 

number of trials, aimed at providing the participant with initial practice trials, before 

the actual experiment begins. Except for the number of trials, and a “trial” flag in data 

recording, it is identical to the experiment section as outlined below. 

The Experiment section contains the bulk of the functionality and parameters. 

It consists of several components. The first component is the experimental_loop. 

While this is a loop component, which could run several times, it is only run once and 
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is used mainly to initialize the first set of parameters – speed (goalkeeper speed), 

difficulty, and shot speed. These parameters are set in English here, (easy, hard etc.) 

while the translation to actual numeric values is done in code in the entities code 

block. The experimental_loop can be altered to run several iterations with various 

combinations of these settings if desired. 

The block_sequence is a container for components to run in sequence. 

Conditionals may be set for components contained in the sequence. Init_block is a 

python code block, which initializes any variable used in this iteration of the 

experiment. In this case, it is used to initialize the start time for the experiment, so that 

experiment time may be tracked by the program and end the experiment when the 

time is up. 

The block loop is the actual loop of trials run in the experiment. Here we 

define the different variations of experimental parameters to be run in this block. 

Specifically, we define absolute values for the deviation of the mean of the normal 

distribution (for goalkeeper location) from the center of the goal area. The mean of 

the distribution deviates from the center of the goal area by the function 

goal_area_width / deviation. The larger the number, the smaller the deviation and 

harder to detect the side favored by the goalkeeper. 

In the block_loop, we define 3 separate values for the deviation, thereby 

forming three difficulty conditions. In every trial, one of these values is used at 

random for a total of 500 times each. While 1500 total trials may seem like a large 

number, we also define a break condition for this loop, which is set to break when the 

experiment has been running for 20 minutes. 
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The trial_sequence is the final container component that contains the python 

code, which executes the goalkeeper motion and shot trial, and the logger item, which 

logs each of the experimental variables. 

 
Code Layer: 
 

The code layer contains the Python code that sets up the graphical objects and 

defines their “behavior” in the experiment. While this is done through distribution of 

3 separate block components in the OpenSesame setup, it is important to note that 

they are executed continuously in one run of the experiment, and are not isolated from 

each other. 

Each Python block contains 2 pages of code, Prepare and Run. All of the 

Prepare code is executed first, and before the presentation of any stimuli to players 

(Mathôt et al.,2012). In this way, all the heavy lifting is done before the timed portion 

of the experiment, ensuring that only a small amount of code necessary to run the 

experiment is executed during time logging. This is necessary to minimize 

computational delays during experimentation. 

The entities block sets up all the objects used in the experiment, as well as 

configurations for parameters, and graphical asset locations. Update functions for 

objects, which are run once per frame and responsible for the motion of graphics, are 

defined here. The nested object location coordinates within the objects they are nested 

in are also set here.  

The shoot_once block is the code that initializes the primary Game object, and 

runs through one iteration of the game. In the Prepare code, all the objects defined in 

the entities block are initialized to their initial settings and coordinates on the screen. 

The screen is defined as a 640x640 square, which ensures that almost all screens 

commercially available today should be able to run it in the center of the screen, with 
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no resolution differences or incompatibilities. Alternatively, if a different resolution is 

desired, the resolution setting may be changed. However, all the initialized positions 

for in-game objects must also be redefined to fit the new screen resolution. 

The shoot_once block also defines the main function routine. In this routine, 

the framerate is checked to ensure 60 fps (consistent timing), each of the update 

functions for graphical assets are called, and the keyboard is checked for input by the 

user and –if provided- the input is evaluated. The update routine runs once per frame 

and the game routine runs at 60 fps. Further validation of timing accuracy may be 

found in the original OpenSesame paper (Mathôt et al., 2012). The Run code of the 

shoot_once block runs the main function routine, which starts the presentation of the 

game. Fully commented code for each of the blocks can be found in the Supplement. 

Experimental Validation: 
 
 We tested 50 undergraduates from Koc University. Participants received 

course credit for their participation in the experiment. The experiment was approved 

by the Koc University Ethical Review Board and all participants signed a consent 

form. Participants played Shoot for 20 minutes in which they were instructed that 

being both accurate and fast was important. Afterwards they filled out Padua, Trait 

anxiety form of STAI and FMPS scale to measure OC, anxiety, and perfectionism 

traits, respectively. FMPS scores were calculated omitting the Organization subscale 

as suggested by Frost et al. (1990) and Kağan (2011). We excluded 3 participants 

from our analyses; one due to premature termination of the task (13 minutes instead of 

20), and two due to random responding, spotted through RT data.  

Data analysis: 

 We used one-way repeated measures ANOVA to assess the effect of difficulty 

on behavioral outcomes of the task such as RTs and accuracy. We used paired samples 
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t-tests to compare RT and accuracy after correct and error responses. Participants were 

assigned to one of the three rank groups (i.e., “high”, “medium” and “low”) for each 

scale with a tertiary split (e.g. White et al., 2010b). In the cases where participants 

with the same scores fell in two different groups, the participants in the lower groups 

were automatically re-assigned to the upper group. We used one-way ANOVA to 

assess differences between RTs and accuracy of high, medium and low scale score 

groups. In order to test for bias in keys pressed, we compared the percentage of left 

key presses at each difficulty condition to chance level (0.5) using one-sample t-tests. 

We also used Pearson correlations to assess the linear relationships between scale 

scores. All tests were conducted using both frequentist and Bayesian methods. 

HDDM (Wiecki et al., 2013) was fit to RT and accuracy data to estimate and 

compare latent decision variables such as drift rate, threshold, and starting point for 

different difficulty levels and in post-error compared to post-correct trials. We 

simulated data using the model outcomes to test whether comparable parameters 

could be recovered. 

We used a within-subjects HDDM design to investigate the main effects of 

task difficulty and main effects of errors in previous trials (i.e. post-error effects) on 

drift rate, threshold, and starting point. In addition, we investigated how scores in OC, 

trait anxiety, and perfectionism scales were related to latent variables at different 

difficulty levels by adding the scale groups as between subjects factors.  

Trials with RTs faster than or equal to 100 ms were discarded (amounting to 

less than 1% of all trials) as they were too fast to have come from a decision process 

(premature responding), and thus not relevant for the HDDM analyses. All models 

had 5000 samples with the first 20 draws discarded as burn-in. The models assumed 

that 5% of the trials were outliers generated by processes not related to DDM and 
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came from a uniform distribution. We assessed model convergence using the trace, 

autocorrelation, and marginal posteriors. In order to ensure convergence, the models 

involving difficulty levels had the drift rate and starting point as group-only variables, 

meaning these variables were estimated only on the group level and not on the subject 

level. The post-error models had only the starting point as a group-only variable, as 

drift rate convergence was not a problem for these models. We relied on the 

separation of posterior probabilities (P) of parameters for hypothesis testing. 

Results 

 Participants completed 503 trials (SD=92) on average in 20 minutes, with a 

minimum of 229 trials and a maximum of 668 trials. As expected, RTs got slower as 

task difficulty increased from easy (M=843ms, SD=38ms), to moderate (M=1155ms, 

SD=686ms), to hard (M=1277ms, SD=885ms) conditions, F(1.098, 50.50)=26.95, 

p<0.001, BF10>100. Again as expected, accuracy levels dropped as task difficulty 

increased from easy (M=90.7%, SD=7.75%) to moderate (M= 72.6%, SD=7.97%) to 

hard (M=58.2%, SD=4.64%) levels, F(2, 92)=697.51, p<0.001, BF10>100. We 

observed no difference between RTs or accuracies of different ranked scale groups for 

any scale (p>0.05 for all comparisons, BF01>1 for accuracy differences among OC 

trait groups, BF01>3 for all other comparisons).  

 Overall, participants responded more slowly after errors (M=1178ms, 

SD=821ms) than after correct (M=1070ms, SD= 618ms) responses, t(46)=2.45, 

p=0.02, BF10=2.29. Moreover, accuracy was higher after correct responses 

(M=74.7%, SD=5.52%) than after errors (M=71.9%, SD=8.06%), t(46)=3.95, 

p<0.001, BF10>30. 

 Averaging over difficulty levels, we observed a bias towards responding “left” 

(M=55.3%, SD=5.2%, t(46)=6.99, p<0.001; BF10>100). While left-responding was 
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not above chance level at the easy level (M=51.3%, SD=5.3%, t(46) =1.72, p=0.09; 

BF01=1.62), participants increasingly pressed left from moderate level (M=56.4%, 

SD=6.5%, t(46)=6.77, p<0.001; BF10>100), to hard level (M=58.3%, SD=7.3%), 

t(46)=7.88, p<0.001; BF10>100. There was stronger bias in error trials (M=60.3%, 

SD=9%) than correct trials (M=53.6%, SD=4.7%), t(46)=6.48, p<0.001, BF10>100. 

Perfectionism, OC and trait anxiety scores were all positively correlated with 

each other. Perfectionism had linear relationships with both OC traits (r=0.43, p<0.01, 

BF10>10), and trait anxiety (r=0.48, p=0.001, BF10>30). There was also a linear 

relationship between OC traits and trait anxiety, r=0.54, p<0.001, BF10>100. 

The within-subject HDDM with drift rate, threshold, and starting point values 

that vary according to difficulty levels revealed that as task difficulty increased, drift 

rates decreased (Mv_easy=1.24, Mv_moderate = 0.49, Mv_hard = 0.16; P = 1.0 for all 

comparisons) but threshold levels (Ma_easy= 2.12, Ma_moderate = 2.07, Ma_hard = 2.06; P 

< 0.75 for all comparisons) and the starting points (Mz_easy=0.531, Mz_moderate=0.534, 

Mz_hard=0.536; P < 0.90 for all comparisons, Pz>0.5=1.0 for all difficulty levels) 

remained stable across difficulty levels (Figure 3.6). All parameters were successfully 

recovered from data simulated with the outcome of the model. The within-subject 

model in which drift rate, threshold and starting point were allowed to vary only 

according to post-error and post-correct status indicated that post-error trials had 

lower drift rates than post-correct trials (Mv_pe = 0.47, Mv_pc = 0.59; Pv_pc>v_pe = 1.0), 

but the threshold parameter (Ma_pe = 2.05, Ma_pc = 2.01; Pa_pc>a_pe = 0.39) and the 

starting point parameter (Mz_pe=0.54, Mz_pc=0.53; Pz_pe>z_pc=0.94, Pz>0.5= 1.0 for both) 

remained the same (Figure 3.7). Note that starting point values in the plots (Figures 

3.6 and 3.7) are the output of the HDDM Regression package, where z is estimated in 

the range of plus and minus infinity and the non-biased midpoint is 0. The starting 
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point means reported in the text are converted from these values (with the inverse 

logit function) to the conventional scale where z is bound between 0 and 1 and the 

midpoint is 0.5. All variables in both models had satisfactory convergence. 

 
Figure 3.6. Group mean posterior distributions of drift rates, thresholds, and starting 
points at three difficulty levels. 
 
 
 

 
Figure 3.7. Group mean posterior distributions of drift rates, thresholds and starting 
points in trials after correct and error responses. 
 
 
 

We investigated drift rates for participants grouped in low, medium and high 

perfectionism, OC, and trait anxiety scale scores separately for difficulty levels 

(Figure 3.8). In the easiest level, as expected, low scale scorers had the highest drift 

rates whereas high scale scorers had the lowest drift rates. All drift rate differences 

between scale groups at the easy level were significant (P>0.95). At the moderate 

difficulty level, low scorers on the OC scale had higher drift rates than high scorers 
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(Plow>high>0.99), with a trend for a difference between the medium level with either 

extreme (Plow>medium=0.92; Pmedium>high=0.94). Also at the moderate difficulty level, 

low scorers on perfectionism had higher drift rates than both the medium and high 

scorers (P>0.99 for both), but there was no difference between the moderate and high 

score groups (Pmedium>high=0.34). There was no difference between the groups in the 

trait anxiety scale at the moderate difficulty level. We observed no difference between 

high, medium and low scorers for any scale at the hardest level of difficulty, but there 

was a trend for high scorers in the OC scale to have lower drift rates than medium and 

low scorers (Plow>high=0.93; Pmedium>high=0.92). Thresholds did not change at any 

difficulty level for any scale group. Starting points varied non-systematically in a 

narrow range slightly above the midpoint (0.527 - 0.546, Pz>0.5>0.95 for all). 

Although a few of the differences were statistically significant, they did not point to a 

systematic relationship between starting points, difficulty levels, and scale scores. 

 

Figure 3.8. Group mean posteriors of drift rate as modulated by difficulty level and 
scale score groups. H=High, M=Moderate, L=Low scale score groups. 
 

Discussion 

We developed a gamified 2AFC task in which participants made repeated 

decisions based on observed evidence (i.e., movements of the goalkeeper) about 

which side of the goal to shoot at for a score. We manipulated the task difficulty by 
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parameterizing the distribution that guided the movements of goalkeeper from one 

frame to the next, and introduced a perceptual biasing signal by placing the ball closer 

to one end of the goal. The aim of this study was threefold: 1) to observe whether 

behavioral outputs (e.g. RT and accuracy) as well as latent decision variables 

estimated from model (HDDM) fits behaved in predicted directions and thereby 

validated the “Shoot” as a 2AFC task; 2) to investigate how anxiety, perfectionism 

and OC traits are related to DDM variables; 3) to provide an easy to use gamified task 

for researchers to integrate into decision-making studies. 

Regarding the first facet of the study, we expected response times to increase 

and accuracy and drift rates to decrease with increasing task difficulty (e.g., see Balcı 

et al., 2011) and HDDM to provide good fits to the data. Regarding the second facet 

of the study and based on our previous results reported in Erhan and Balcı (2016), we 

expected those who ranked higher on OC, anxiety, and perfectionism scales to have 

higher threshold settings than those who ranked lower on these scales. Since Banca et 

al. (2015) and Erhan et al. (2017) generally found a decrement in drift rates of OCD 

patients we also expected those who scored high on these scales to have lower drift 

rates. Our prediction/intention regarding the third facet of the study can only be tested 

over the next years.  

Our predictions regarding the basic behavioral and model outcomes were 

confirmed. Specifically, response times and error rates increased whereas drift rates 

decreased with increasing task difficulty as well as after errors compared to after 

correct responses. We did not predict different threshold settings for different task 

difficulties since difficulty levels were randomly assigned for each trial instead of 

being presented in separate blocks (Bogacz et al., 2006). In line with this theory-
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driven rationale, thresholds remained stable across different difficulties. We also 

predicted participants to exhibit bias in the starting point in line with the biased 

placement of the ball during testing. In line with this prediction we observed biased 

starting points in the direction of the ball placement. However, note that we did not 

have a control condition for this test and thus results regarding starting point should 

be interpreted with caution. Even though behaviorally participants increasingly 

pressed left as the task got harder and that starting point bias was observed on all 

difficulty levels, no systematic difference of starting points was observed between 

difficulty levels. This finding suggests that participants tried to process task relevant 

information irrespective of its signal to noise ratio.   

Our predictions regarding the relationship between threshold settings and 

scores on the scales were not confirmed however our predictions regarding the 

relationship between scale scores and drift rates were confirmed. The relationship 

between drift rates and scale scores was more apparent in the easy level, possibly 

because the signal to noise ratio on moderate and hard levels were too low, resulting 

in lower between-subject variance due to floor effect. Specifically, we observed a 

negative relationship between drift rates and OC traits; as OC trait scores increased 

drift rates decreased. This finding is in line with the results of Banca et al. (2015; see 

also Erhan et al., 2017) and Metin et al. (2013) as drift rates were observed to be 

lower in both OCD and ADHD groups compared to healthy controls. On the other 

hand, it is in contrast with the results of Erhan and Balcı (2016), who found that 

threshold settings were increased in participants with higher OC features without any 

apparent differences in drift rates.  

Based on these differential results gathered with subclinical OC and clinical 
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OCD, Erhan and Balcı (2016) argued that changes in drift rates might be a diagnostic 

signature of clinical OCD. Consequently, it is possible that the analytical approach 

adopted in the current study (dividing scores into three groups) increased the 

sensitivity to differences in drift rates even in a subclinical sample. Alternatively, the 

idiosyncratic features of our task (e.g., higher familiarity, single data point per frame) 

might have bolstered the possible differences in the ability to integrate evidence. 

Furthermore, frequent change in difficulty levels from one trial to the next might have 

thwarted differences in threshold settings between participants of various ranks on the 

scales. Further studies are needed to elucidate the factors that might have led to 

differential results between different tasks.  

Importantly, trait anxiety as well as perfectionism, argued to be associated 

with both OC and anxiety traits (Frost & DiBartolo, 2002) also followed the pattern of 

the OC traits; as perfectionism and trait anxiety scores increased drift rates decreased. 

Interestingly, scores on these scales were related to drift rates in a task that 

presumably minimized the between-subject variability in drift rates by minimizing 

differences in perceptual processing of sensory stimulus (due to clear indication of the 

momentary evidence at each frame). Thus, the observed between-group differences 

are more likely due to differences in evidence integration ability itself. For instance, 

each piece of information might be weighted less in participants who score high on 

OC, perfectionism, and anxiety. An alternative explanation relates to the width of the 

window over which information is integrated by participants or the decrement in the 

contribution of previous bits of evidence to the current estimates of the state of the 

world; this window might be shorter or the contribution of the previous evidence 

might be lower for high scorers due to factors such as working memory deficits (e.g. 

de Vries et al., 2014; Eysenck, Derakshan, Santos & Calvo, 2007).  
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An important advantage of the presented game is the ability to record the 

momentary state of evidence as observed by the participants, which allows 

reconstructing the exact trajectory of the belief state of an ideal observer. This 

perfectly tractable information within each trial might prove useful in reducing the 

number of parameters in the models developed/fit to explain the generative processes 

that underlie two alternative forced choice behavior.  

 We believe that this work provides a good exemplar to other researchers for 

participant-experience-centered experiment design to improve task engagement, 

experience of the participants, and the quality of data. This becomes particularly 

beneficial in studies with pediatric and clinical samples. We find that conventional 

tasks with novel stimulus (such as random dot motion discrimination) increase the 

risks of not-understanding task rules, require longer practice to familiarize 

participants with stimulus and task rules, and lead to boredom during testing. One of 

these factors or their combination poses difficulties for gathering high quality 

behavioral data and leads to the contamination of task performance due to factors not 

directly relevant for research questions. Secondly, we believe that improving the 

quality of participant experience is a factor that should be observed during the 

development of experimental tasks for ethical reasons and to minimize attrition in 

studies that require repeated testing. Finally, gamification of conventional tasks paves 

the way to large-scale and high-throughput testing outside the lab setting for instance 

through mobile devices. 
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THESIS DISCUSSION 
 

The chapters included in this thesis focused on the characterization of latent 

decision making processes in subclinical populations and clinical Obsessive 

Compulsive Disorder (OCD) by utilizing the Drift Diffusion Model (DDM). 

Obsessive Compulsive (OC) traits were the common focus of all three chapters. The 

first chapter focused on a non-clinical population with various levels of OC traits, the 

second chapter focused on a pediatric OCD sample in comparison to healthy controls, 

and the third chapter focused on differences between high, medium and low levels of 

trait anxiety, perfectionism, and OC traits in a non-clinical population using a novel 

gamified 2AFC task. Thus, the third chapter offers a novel methodological approach 

to the study of choice behavior by using the advantages of gaming. 

The first chapter aimed to understand not only how the entirety of OC scale 

scores predicted latent decision processes but also how various OC components (e.g. 

checking, rumination) contributed to these decision-making variables. Moreover, 

divergence from optimality and subjective cost assigned to errors were also studied 

with respect to OC scale and subscale scores. While OC scores were not predictors of 

traditional behavioral measures (RTs, error rates, post-error slowing), increases in 

entirety of OC scores, rumination, and checking, predicted higher threshold settings 

(e.g. more cautious responding). This chapter was the first to incorporate DDM to 

understand latent variables of decision making in an analogue OC sample. Analogue 

OC samples are important given the argument that OCD is not a categorical but a 

dimensional disorder, and that symptom severity ranges from none to very high on a 

continuum (Abramowitz et al., 2014). Such range deems studying the entire spectrum 

important for both understanding and using the information gained with a non-clinical 

sample to prevent against the disorder. This chapter unlike the study of Banca et al. 
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(2015) did not find a relationship between evidence accumulation efficiency and OC 

traits. Therefore it concludes with the question of whether low drift rates were a 

signature of clinical OCD.  

The second chapter followed up on the first chapter picking up from this 

question. It studied latent decision making in a pediatric OCD population using dot 

motion discrimination task and Hierarchical Drift Diffusion Model (Wiecki et al., 

2013).  It aimed to understand how latent decision making variables differed between 

the clinical and the healthy control groups, trying to answer the question of if it is drift 

rate that sets clinical and healthy groups apart and if low drift rates are indeed a 

signature of clinical OCD as compared to healthy controls. Moreover, it also aimed to 

further investigate the topic of post-error behaviors in OCD. The first chapter found 

that post error slowing was not predicted by OC traits. In this chapter we modeled 

post-decision choices and RTs to investigate if post-error and post-correct decisions 

differ in terms of the related latent decision processes and whether these processes 

differed between clinical and healthy groups. Overall, the pediatric OCD group had 

significantly lower drift rates and slightly higher threshold settings than the healthy 

control group. Such finding is similar to that of adult OCD patients (Banca et al., 

2015), however the pediatric group seems to not have as high increases in threshold 

settings as their adult counterparts. In addition, post-error latent processes differed for 

the clinical and healthy groups. While errors pave way to distraction in the following 

trial for both groups, errors in comparison to correct decisions lead to more caution in 

the OCD group and less caution in the healthy control group.  

The second chapter closes by raising two important questions. The first one is 

why the pediatric OCD population does not show as increased a caution as adults in 

the Banca et al. (2015) study do, despite both groups having lower drift rates than the 
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corresponding healthy controls. The chapter points to possible differences in emotion 

regulation due to age. Such differences in emotion regulation could be due to the 

number of years the participants lived with the disorder and developed coping 

strategies, as well to their medication history. Given decisions can change by way of 

emotion regulation techniques (Phelps et al., 2014), effects of emotion regulation on 

latent decision processes should be a topic of further investigation. The second 

question is whether lower evidence accumulation efficiency is indeed a signature for 

clinical OCD as was suggested in the first chapter. This chapter found that indeed 

HDDM can differentiate the healthy control and clinical OCD groups based on drift 

rates, which, given OCD is argued to be a dimensional disorder, paves way to the 

investigation of just how high and low OC symptoms can be differentiated based on 

drift rates. A reliable differentiation of high and low risk groups in non-clinical 

samples can potentially be used in preventative treatments. Given neurobiological 

bases of latent decision processes are already being studied, these brain regions could 

be targeted in potential research and treatments. Moreover, psychological treatments 

to improve evidence accumulation efficiency as a way to lower decision deficits 

associated with OC symptoms and thereby prevent against a clinical diagnosis can be 

investigated. 

Two necessities emerged from the second chapter. First was the need for more 

engaging tasks. Such need becomes more urgent when running studies with pediatric 

and clinical populations. Second necessity was the need to study anxiety and 

perfectionism alongside OC traits, given the three traits’ close relationship and the 

transdiagnostic property of perfectionism (Egan et al., 2011). The third chapter 

covered both necessities and further sought an answer for whether high and low levels 

of OC, perfectionism and anxiety traits in non-clinical populations can also be 
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differentiated by drift rates.  

In the third chapter we produced a new gamified 2AFC task and investigated 

whether drift rates and/or threshold settings could differentiate participants who rank 

on high, medium and low levels of OC, trait anxiety and perfectionism scales. For the 

task, we developed a 2AFC soccer game with three levels of task difficulty. As 

expected, RTs got slower and accuracy and drift rates decreased with increasing task 

difficulty. Moreover HDDM provided good fits to the data. As expected drift rates 

differentiated participants who rank on high, medium and low levels of OC, 

perfectionism and anxiety scales: drift rates significantly decreased from low to 

medium to high rankers on these scales. It is possible that the gamified task with its 

familiar aim (e.g. scoring a goal) and single data point per frame evidence, while 

decreasing the variance in perceptual processing between groups made the variance in 

evidence integration abilities between low and high rankers on the scales more 

visible. The evidence accumulation efficiency difference between the groups might 

indeed be due to the evidence integration ability, a part of drift rate, which was not 

possible to differentiate in the first chapter. 

To conclude, the first two chapters had raised the question of whether low drift 

rate is a signature of clinical OCD that sets it apart from healthy populations. The 

third chapter however found that drift rate differences are also apparent between high, 

medium and low rankers on OC trait scale in a non-clinical sample in a more familiar 

task representation. Overall, the chapters point to evidence accumulation efficiency as 

being the most reliable latent decision making variable that sets both OCD apart from 

healthy controls, as well as those with high, medium and low levels of OC, 

perfectionism and anxiety traits from each other. Threshold setting differences that 

were predicted by OC symptoms and that were slightly increased in pediatric OCD 
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patients in comparison to healthy controls, although seem to be related to OC traits 

and OCD, need further investigation. This thesis also produced a participant-

experience-centered 2AFC soccer game and validated it by way of DDM. Overall, the 

three chapters add to a rapidly growing literature on mathematical models used to 

better characterize decision making in clinical disorders, especially OCD. 
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Supplement I – “Shoot” game code 
For the open source software please visit http://www.scipy.org/ (Jones, Oliphant & 
Peterson, 2001)  
 
 
entities_run.py 
 
import pygame, math, random, scipy 
from scipy.stats import norm as normaldist 
from pygame.sprite import Sprite 
from openexp.keyboard import keyboard 
 
####### Entities_Run ############################################################## 
# Declerations of experiment object classes  
# and settings/configurations. 
# This code is run in the "run" loop of the experiment.  
# It occurs before experiment presentation. 
# Therefore, it does not hinder experiment runtime performance. 
#  
# Object Classes declared: 
# Target - Shows the location to where the shot is headed 
#  
# Goal - The goal area and graphics 
# 
# Goalkeeper - The goalkeeper object, its motion properties and checking 
# if goals are scored. Nested under the goal object 
# 
# Feedback - Presentation of textual feedback on the top of the screen 
# 
# Ball - Ball object which travels towards target location at set velocity 
# 
# Vector - Generic object for vector calculations. Useful in motion. 
#    
###### CONFIGURATION SETTINGS ################################### 
 
     
# Path of the experiment graphics folder. Must include the final '/' for the adress.  
# Linux or Windows filepaths supported. kkaramanci will be replaced by the 
experimenter’s username 
path = "/Users/kkaramanci/Documents/Shoot/assets/"   
 
# RGB color codes for colors used in experiment for easy setup and reference 
red = (255,0,0) 
green = (0,255,0) 
blue = (0,0,255) 
darkBlue = (0,0,128) 
white = (255,255,255) 
black = (0,0,0)     
 
 
###### EXPERIMENT PARAMETER SETTINGS ############################################## 
# Settings dictionaries that translate worded settings to parameter values in code. 
# Parameters may be altered to fit experiment or new ones may be defined 
# But dictionaries should be used in setting up experiment sequences & trials  
# rather than writing directly in code to ensure proper referenced use throughout 
# experiment and standardization over users of the experiment. 
#################################################################################### 
DIFFICULTY = {  
    'easy' : 1, 
    'medium' : 2, 
    'hard' : 3 
    } 
SPEED = {  
    'slow' : 1, 
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    'medium' : 3, 
    'fast' : 5 
    } 
     
SHOOT_SPEED = {  
    'slow' : 5, 
    'medium' : 7, 
    'fast' : 10 
    } 
 
##### Initialize global experiment variables############### 
# Initialize the previous agency variable for the goalkeeper. 
# This defines the level of control the subject has on scoring 
# a goal in the previous trial 
exp.set('prev_agency', -1) 
 
#The time limit after which the experimental session ends 
exp.set('time_limit', 1200000) #20 mins 
 
         
class Target(Sprite): 
"""  
A target object that is displayed to indicate where a shot will land. 
""" 
    def __init__(self, position, *groups): 
    """ 
    Object is initialized at the 0,0 location and is hidden. 
    """ 
        Sprite.__init__(self, *groups) 
        self.image = pygame.Surface([0, 0]) 
        self.image.set_colorkey(black) 
        self.rect = self.image.get_rect() 
        self.rect.x = position[0] 
        self.rect.y = position[1]                 
 
    def hide(self): 
        self.image = pygame.Surface([0, 0]) 
         
    def show(self): 
    """ 
    Reveals the object at the current location as set in the object Sprite 
coordinates. 
    """ 
        self.image = pygame.image.load(path + "target.png").convert() 
        self.image.set_colorkey(black) 
        self.rect = self.image.get_rect() 
 
 
    def update(self): 
        pass 
         
class Goal(): 
""" 
This is the goal object which displays the goal graphics and serves as an anchor 
container for other objects. 
Contains: 
- A Target object: Target operates within the bounds of the goal rectangle 
- A Goalkeeper object: Goalkeeper operates within the bounds of the goal rectangle 
 
Arguments: 
- position: x,y coordinates of the goals location on screen 
- agency: Defines the agency of the subject. Does the subject have control over the 
shot outcome? (1-agency) is the probability of a random result (goal, nogoal) 
occurring, instead of the subject’s choice. 
- deviation: Sets the deviation from the center of goal, of the contained goalkeeper 
object 
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Other Notes: 
- rect: This is the Sprite argument that defines the rectangular bounds of the goal 
area 
 
 
""" 
    def __init__(self, position, agency, deviation, *groups): 
    """ 
    Initializes the Target and Goalkeeper objects at the relevant location and 
settings. 
    Target is initialized hidden in the goal rectangle 
    Goalkeeper is initialized with a set agency (whether subject has control on 
outcome), at the central x,y 
    coordinates of the goal area with set deviation from the center of the goal 
    """ 
        self.rect = pygame.Rect(0,0,320,200) 
         
        #self.image = pygame.Surface([0, 0]) 
        #self.image.set_colorkey(black) 
        #self.image.fill(white) 
        #self.rect = self.image.get_rect() 
         
        self.rect.x = position[0] 
        self.rect.y = position[1] 
         
        self.agency = agency 
        self.deviation = deviation 
         
        self.target = Target(position, *groups) 
        self.goalkeeper = Goalkeeper([self.rect.centerx,self.rect.centery], self.rect, 
self.agency, self.deviation, *groups) 
         
    def paint_target(self, new_pos = ()): 
    """ 
    Reveals the target at new_pos or at a random location within the goal area if 
new_pos not supplied 
     
    Arguments: 
    - new_pos: x,y coordinates of the location to show the Target 
    """ 
        self.target.show() 
        #If new_pos exists, set x coordinate to x coordinate of new_pos. y coordinate 
is random 
        if new_pos: 
            new_x = new_pos[0] 
            new_y = self.rect.top + random.randrange(self.rect.height - 
self.target.rect.height) 
        #If new_pos does not exist, set x,y to random positions in goal rect area 
        else: 
            new_x = self.rect.left + random.randrange(self.rect.width - 
self.target.rect.width) 
            new_y = self.rect.top + random.randrange(self.rect.height - 
self.target.rect.height) 
        self.target.rect.x = new_x 
        self.target.rect.y = new_y 
 
     
    def update(self): 
        pass 
     
     
class Feedback(Sprite): 
    """ 
    Feedback object displays text messages on the screen. 
    """ 
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    def __init__(self, position, *groups): 
    """ 
    Initializes the text position and color 
     
    Arguments: 
    - position: (x,y) coordinates of position on screen 
    """ 
        Sprite.__init__(self, *groups) 
        self.position = position         
        self.font = pygame.font.SysFont("monospace", 36, bold=True) 
        self.image = pygame.Surface([0, 0]) 
         
        # initial color 
        self.image.fill(black) 
        self.rect = self.image.get_rect() 
        # position and size of initial feedback 
        self.rect.x = self.position[0] 
        self.rect.y = self.position[1]   
        self.rect.width = self.image.get_width() 
        self.rect.height = self.image.get_height() 
     
    def showText(self, text, color): 
    """ 
    Shows feedback text 
    Arguments: 
    - text: the text message to display 
    - color: text color to display 
    """ 
        self.image = self.font.render(text, 1, color) 
        self.rect.width = self.image.get_width() 
        self.rect.height = self.image.get_height() 
        pass 
         
 
    def hideText(self): 
    """ 
    Hides the current feedback message 
    """ 
        self.image = pygame.Surface([0, 0]) 
        pass 
     
    def update(self): 
        pass                     
 
class Ball(Sprite): 
    """ 
    Ball object displays a ball on screen and handles the smooth motion of the ball 
    """ 
    def __init__(self, position, *groups): 
    """ 
    Initializes the ball position and initial velocity & destination/target to 0. 
    Arguments: 
    - position: initial position of the ball 
    """ 
        Sprite.__init__(self, *groups) 
        self.velocity = 0 
        # load the image of the ball 
        self.image = pygame.image.load(path + "sball.png") 
        self.rect = self.image.get_rect() 
        # set the initial position of the ball 
        self.rect.x = position[0] 
        self.rect.y = position[1] 
        # initial velocity set to 0 
        self.velocity_vec = [0, 0] 
        self.position_vec = [0, 0] 
        self.position_init = [0, 0] 
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        self.position_vec[0] = position[0] 
        self.position_vec[1] = position[1] 
        self.position_init[0] = position[0] 
        self.position_init[1] = position[1] 
        # initial target destination for ball is empty 
        self.target = None 
         
    def update(self): 
    """ 
    Update function runs once per frame. At each frame a new position for the ball is 
calculated to simulate ball movement 
    """ 
        # Determine the direction from current position to the ball target 
        self.dir = self.get_direction(self.target)  
        # before updating position check to see the ball is not at the target and has 
a velocity and direction 
        if self.dir and self.velocity and not self.in_target():  
            self.position_vec[0] += (self.dir[0] * self.velocity) # calculate velocity 
vector x component from direction and base velocity 
            self.position_vec[1] += (self.dir[1] * self.velocity) # calculate velocity 
vector y component from direction and base velocity 
            self.rect.center = 
(round(self.position_vec[0]),round(self.position_vec[1])) # move the center of the 
object for 1 time unit by the x,y vectors 
        else: 
            # if ball is not moving or at target/destination, reset velocity to 0 and 
target to None 
            self.velocity = 0 
            self.target = None 
     
     
    def shoot(self, shoot_to = None): 
    """ 
    Ball is assigned a new target/destination and velocity 
    """ 
        if shoot_to: 
            self.target = shoot_to 
            self.velocity = configuration['shoot_speed'] 
     
    def in_target(self): 
    """ 
    Determines if the ball is at the target location. Returns True/False 
    """ 
        return self.target.contains(self.rect) 
         
                                           
                                           
    def get_direction(self, target): 
    """ 
    Get the vector direction from object to target 
    """ 
        if self.target:  
            # create a vector from center x,y value for object 
            position = Vector(self.rect.centerx, self.rect.centery)  
            # create a vector from center x,y value for target 
            targetv = Vector(target.centerx, target.centery) 
             
            # get total distance between target and position 
            self.dist = targetv - position  
            # normalize 
            direction = self.dist.normalize() 
            return direction 
             
    def reset(self): 
    """ 
    Reset the ball position, vector and target to init values 
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    """ 
        self.velocity = 0 
        self.velocity_vec = [0, 0] 
        self.rect.x = self.position_init[0] 
        self.rect.y = self.position_init[1] 
        self.position_vec[0] = self.position_init[0] 
        self.position_vec[1] = self.position_init[1] 
 
        self.target = None 
         
 
class Goalkeeper(Sprite): 
    """ 
    Goalkeeper object displays and moves the goalkeeper on screen. 
    """ 
    def __init__(self, position, goal_rect, agency, deviation, *groups): 
    """ 
    Initialize goalkeeper parameters 
    Arguments: 
    - Position: x,y coordinates of goalkeeper 
    - goal_rect: the goal rectangular area of tended goal 
    - agency: Control subject has over shot outcome (the goalkeepers ability to save) 
    - deviation: deviation of position from center of goal 
    """ 
        Sprite.__init__(self, *groups) 
        # load goalkeeper image 
        self.image = pygame.image.load(path + "gk2.png") 
        self.rect = self.image.get_rect() 
         
        #position goalkeeper in goal area 
        self.rect.centerx = position[0]  
        self.rect.centery = position[1] + 30 
        self.goal_rect = goal_rect 
        self.velocity_vec = [0, 0] 
        self.position_vec = [0, 0] 
        self.position_init = [0, 0] 
        self.position_vec[0] = position[0] 
        self.position_vec[1] = position[1] 
        self.position_init[0] = position[0] 
        self.position_init[1] = position[1] 
        self.target = None 
        self.saving = False 
         
        # randomly decide left or right deviation and alter center position by that 
amount 
        self.center = random.choice([self.goal_rect.centerx - (self.goal_rect.width / 
deviation), self.goal_rect.centerx + (self.goal_rect.width / deviation)]) 
        #generate a normally distributed random variable with mean at deviated center 
and std at 1/4 the width of goal 
        self.norm = normaldist(self.center, self.goal_rect.width/4) 
        # pick first target location from the normally distributed random variable        
self.target = pygame.Rect(self.norm.rvs(1)[0], self.rect.centery,5,5) 
        # set initial velocity for goalkeeper 
        self.velocity = 5 
         
         
    def update(self): 
    """ 
    At every frame, update the goalkeepers position depending on target location and 
velocity 
    """ 
        # before a shot is taken, this section enables the goalkeeper to wander 
        # according to a normal distribution 
        if not self.saving: 
            # get direction from current position to target location 
            self.dir = self.get_direction(self.target)  
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            # check if velocity exists and not arrived at target 
            if self.dir and self.velocity and not self.in_target(): 
                #set direction of horizontal velocity 
                self.velocity = math.copysign(self.velocity, self.dir[0]) 
                # update new horizontal position by moving 1 time unit in direction at 
velocity 
                self.position_vec[0] += (self.velocity) 
                self.rect.centerx = round(self.position_vec[0]) 
         
                # if goalkeeper arrives at or passes by target position, pick new 
location 
                # from normally distributed random variable 
                if self.velocity < 0 and self.target.left > self.rect.left: 
                    self.target.x = self.norm.rvs(1)[0] 
                if self.velocity > 0 and self.target.right < self.rect.right: 
                    self.target.x = self.norm.rvs(1)[0]  
             
            else: 
                self.target.x = self.norm.rvs(1)[0] 
         
        # after the shot, if the goalkeeper will save the shot, he moves towards the 
target location of the ball for the save 
        # if he doesn't save, he stands still 
        else: 
            self.dir = self.get_direction(self.target)  
            if self.dir and self.velocity and not self.in_target():  
            # calculate speed from direction to move and speed constant 
                self.position_vec[0] += (self.dir[0] * self.velocity)  
                self.rect.centerx = round(self.position_vec[0]) 
            else: 
                self.velocity = 0 
                self.target = None 
 
    def move(self, move_to = None): 
    """ 
    Assigns a target location for the goalkeeper to move to and sets motion velocity 
    """ 
        if move_to: 
            self.save = True 
            self.target = move_to 
            self.velocity = 10 
         
 
    def get_direction(self, target): 
    """ 
    Get the vector direction from object to target 
    """ 
        if self.target:  
            # create a vector from center x,y value for object 
            position = Vector(self.rect.centerx, self.rect.centery)  
            # create a vector from center x,y value for target 
            targetv = Vector(target.centerx, target.centery) 
             
            # get total distance between target and position 
            self.dist = targetv - position  
            # normalize 
            direction = self.dist.normalize() 
            return direction 
             
             
    def in_target(self): 
    """ 
    Determines if the goalkeeper is at the target location. Returns True/False 
    """ 
        return math.fabs(self.target.centerx - self.rect.centerx) <= 
math.fabs(self.velocity) 
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class Vector(): 
    ''' 
    Generic vector object to handle direction, position, and speed 
    ''' 
    def __init__(self, x, y): 
        self.x = x 
        self.y = y 
 
    def __str__(self):  
    # printing vectors in console 
        return "(%s, %s)"%(self.x, self.y) 
 
    def __getitem__(self, key): 
        if key == 0: 
            return self.x 
        elif key == 1: 
            return self.y 
        else: 
            raise IndexError(str(key)+" is not a vector key") 
 
    def __sub__(self, o):  
    # vector subtraction 
        return Vector(self.x - o.x, self.y - o.y) 
 
    def length(self):  
    # get vector length 
        return math.sqrt((self.x**2 + self.y**2))  
 
    def normalize(self):  
    # normalize vector by length 
        l = self.length() 
        if l != 0: 
            return (self.x / l, self.y / l) 
        return None 

 
 
init_block_run.py 
 
# experimental block start time is recorded for timed experiments. Quit signal is 
reset. 
exp.set('block_starttime', self.time()) 
exp.set('exp_exit_signal', 0) 

 
 
shoot_once_prepare.py 
 
####### shoot_once_prepare 
############################################################## 
# This section initializes objects, configurations and graphics during the preperation 
of the experiment. 
# Occurs before running a trial so that processing times do not affect experimental 
timing 
#  
# Initializes the main Game singleton object, as well as the individual graphic assets 
# Assigns initial positions to all assets on screen, as a function relative to screen 
size 
# The main run routine is also declared, which updates the asset positions, once per 
frame 
# The update() functions of each object is called once per frame 
# Subject actions are also defined in the main routine 
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#  
 
 
 
###### EXPERIMENT PARAMETERS & CONFIGURATION ################################### 
 
# Load experiment parameters 
# These are read in from trial block loop spreadsheets in the OpenSesame experiments 
# may vary per trial or be fixed throughout experiment as setup in the experiment 
i_speed = self.get('i_speed') 
i_difficulty = self.get('i_difficulty') 
i_agency = 1 
i_shoot_speed = self.get('i_shoot_speed') 
i_deviation = self.get("i_deviation") 
 
# configurations to define default screen size 
#(should be small enough to ensure compatibility across screens) 
# configurations to locate settings dictionaries as declared in the entities_run ile 
configuration = { 
        'screen_size': (640,640), 
        'speed': SPEED[i_speed], 
        'difficulty': DIFFICULTY[i_difficulty], 
        'shoot_speed': SHOOT_SPEED[i_shoot_speed], 
        'agency': 1, 
        'deviation': i_deviation, 
        'bar_size':200, 
        'sound_nogoal': path + 'nogoal.wav', 
        'sound_goal': path + 'goal.wav', 
        'sound': True 
    } 
     
class Game(object): 
""" 
Main singleton Game class which contains the entire experiment setting and graphics 
""" 
    def __init__(self, configuration, input_state): 
    """ 
    Initialize all settings and the initial graphics environment. Indicate the 
locations of 
    each of the graphics assets 
    """ 
        # initialize game clock 
        self.game_clock = pygame.time.Clock() 
 
         
        # initialize game states         
        self.shooting = False 
        self.scored = False 
        self.not_scored = False 
        self.cleanup = False 
        self.correct = None 
         
        self.configuration = configuration 
        self.input_state = input_state 
        # load background image 
        self.background = pygame.image.load(path + "bg.jpg").convert() 
        # initialize all sprites (game graphics assets which update once per frame) 
        self.sprites = pygame.sprite.OrderedUpdates() 
        # Position the goal object and add it to the Game sprites list 
        self.goal = Goal((configuration['screen_size'][0]/4, 
                                 configuration['screen_size'][1]/3),  
                                 configuration['agency'], 
                                 configuration['deviation'], 
                                 self.sprites) 
        # Position the feedback object and add it to the Game sprites list 
        self.feedback = Feedback((configuration['screen_size'][0]*7/18, 
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                                 configuration['screen_size'][1]*2/10), self.sprites) 
        # Position the ball object and add it to the Game sprites list                
        self.ball = Ball((self.goal.rect.centerx, 
                                 configuration['screen_size'][1]*3/4), self.sprites) 
        self.ball.rect.centerx = self.goal.rect.centerx 
         
        self.agency = configuration['agency'] 
        self.sound_nogoal = pygame.mixer.Sound(configuration['sound_nogoal']) 
        self.sound_goal = pygame.mixer.Sound(configuration['sound_goal']) 
        self.reset_game(random.random()<0.5) 
        self.running = True 
         
         
    def play_sound(self, sound): 
    """ 
    Function that plays a sound 
    """ 
        if self.configuration['sound']: 
            sound.play() 
         
    def reset_game(self, serveLeft=True): 
        pass 
     
    def update(self): 
    """ 
    Main update function for the game. Runs once per frame. 
    Triggers all other object update functions. 
    """ 
        # If game is in cleanup state 
        if self.cleanup: 
            self.running = False 
            self.shooting = False 
            self.scored = False 
            self.not_scored = False 
            self.cleanup = False 
            self.feedback.hideText() 
            #self.slider.reset() 
            #self.ball.reset() 
            #self.goal.paint_target(self.slider.get_pos()) 
             
        # If the game is in a shooting state, we will check for when it arrives at 
target. 
        # Game will be reset 1s after arriving at target at the conclusion of the 
trial. 
        elif self.shooting: 
            if (self.ball.in_target()): 
                self.shooting = False 
                now = pygame.time.get_ticks()             
                self.release_time = now + 1000             
 
        # If the game is in a scored state, the appropriate feedback is shown and 
correct states are set 
        # Once the 1s timer expires (which was set at the end of shooting state), the 
trial is reset 
        elif self.scored: 
            self.feedback.showText("GOL!!!", green) 
            #self.sound_goal.play() 
            if(pygame.time.get_ticks() > self.release_time): 
                self.scored = False 
                self.running = False 
                self.cleanup = True 
             
        # If the game is in a not scored state, the appropriate feedback is shown and 
correct states are set 
        # Once the 1s timer expires (which was set at the end of shooting state), the 
trial is reset 
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        elif self.not_scored: 
            self.feedback.showText("KURTARDI", red) 
            #self.sound_nogoal.play() 
            if(pygame.time.get_ticks() > self.release_time): 
                self.not_scored = False 
                self.cleanup = True 
         
        # If a keyboard input is entered and is one of the correct inputs, game enters 
"shooting" state 
        elif self.input_state['key'] == pygame.K_a or self.input_state['key'] == 
pygame.K_d: 
            #now = pygame.time.get_ticks()             
            #self.release_time = now + 1500             
             
            self.shooting = True 
             
            #check to see if goalkeeper position allows for a save, given the keyboard 
input 
            saved = self.saved() 
 
            # If not saved, set the appropriate states 
            if not saved: 
                self.goal.goalkeeper.saving = True 
                self.ball.shoot(self.goal.target.rect) 
                self.scored = True 
                self.correct = True 
                self.goal.goalkeeper.move(pygame.Rect(self.goal.rect.centerx, 
self.goal.rect.centery,1,1)) 
                 
            # If saved, set the appropriate states and set the target of the 
goalkeeper to match ball trajectory 
            else: 
                self.goal.goalkeeper.saving = True 
                self.ball.shoot(self.goal.target.rect) 
                self.goal.goalkeeper.move(self.goal.target.rect) 
                self.not_scored = True 
                self.correct = False 
                     
         
        # Trigger update functions of each object contained in the Game object. Occurs 
once per frame 
        self.sprites.update() 
 
    def draw(self, display_surface): 
    """ 
    This function draws all graphics onto the game screen in given positions and 
settings 
    """ 
        self.sprites.clear(display_surface, self.background) 
        return self.sprites.draw(display_surface) 
     
    def saved(self): 
    """ 
    Checks if the input keyboard action is the right one, given the deviation of the 
goalkeeper from the center 
    Returns True/False 
    """ 
        if self.input_state['key'] == pygame.K_a: 
            self.goal.paint_target([self.goal.rect.x+25, 0]) 
            return self.goal.goalkeeper.center < self.goal.rect.centerx 
        else: 
            self.goal.paint_target([self.goal.rect.x+self.goal.rect.width - 50, 0]) 
            return self.goal.goalkeeper.center > self.goal.rect.centerx 
                 
    def is_correct(self): 
    """ 
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    Returns true if the keyboard action was the correct one for the trial 
    """ 
        return self.correct  
         
 
# initialize pygame module 
pygame.init() 
# initialize global clock 
clock = pygame.time.Clock() 
 
# initialize color RGB values 
red = (255,0,0) 
green = (0,255,0) 
blue = (0,0,255) 
darkBlue = (0,0,128) 
white = (255,255,255) 
black = (0,0,0) 
 
# initialize display surface global variables and load background image 
display_surface = win 
output_surface = display_surface.copy() 
output_surface = pygame.image.load(path + "bg.jpg").convert() 
 
# initialize keyboard input state 
input_state = {'key': None} 
# create game singleton object 
game = Game(configuration, input_state) 
 
# Main routine that runs the experiment. Is called once per trial 
def run(): 
    # initialize response time and t1 to help calculate response time 
    rt = 0 
    t1 = 0 
    timestamp = 1 
     
    #runs forever while game has not exited or trial not concluded 
    while game.running: 
        # Ensures that game runs at 60 frames per second (fps). Delays if faster. 
        clock.tick_busy_loop(60) 
         
        #Calculate and display fps every 2 seconds 
        now = pygame.time.get_ticks() 
        if timestamp > 0 and timestamp < now: 
            timestamp = now + 2000 
            print clock.get_fps() 
             
        # Handler for game quit and keyboard press events 
        for event in pygame.event.get(): 
            # quit game if quit event triggered 
            if event.type == pygame.QUIT: 
                game.running = False 
            # trigger quit event if escape key is pressed 
            elif event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE: 
                game.running = False 
                exp.set('exp_exit_signal', 1) 
            # ignore key press event if pressed keys are not relevant to experiment 
            elif event.type == pygame.KEYDOWN and not(event.key == pygame.K_a or 
event.key == pygame.K_d): 
                pass 
            # record the key that was pressed if relevant to the experiment. Calculate 
and record response time 
            elif event.type == pygame.KEYDOWN and not(input_state.get('key')): 
                rt = self.time() - t1 
                input_state['key'] = event.key 
 
         



 

 

95 

        # call update functions (occurs once per frame) 
        game.update()            
        display_surface.fill(black) 
         
        # draw graphics (or redraw altered graphics) in the second (hidden) screen 
        game.draw(output_surface) 
        display_surface.blit(output_surface, (0,0)) 
        # present the hidden screen 
        pygame.display.flip() 
        # set the start time of the experiment, if not set. Used to calculate rt 
        if (t1 == 0): 
            t1 = self.time() 
     
    # at the conclusion of the experiment, return the response time and result 
    return rt, game.is_correct() 
 

 
shoot_once_run.py 
 
####### shoot_once_prepare 
############################################################## 
# This section runs the trial. Assets were previously initialized in preparation.  
# Has minimal code to ensure timing accuracy.  
#  
#  
 
# Set previous trial agency. Used in agency experiments. 
exp.set('prev_agency', i_agency) 
 
# Run the main trial function. Response time and accuracy are returned. 
rt, cor = run() 
 
# Response keypress, response time and accuracy are recorded 
exp.set_response(response=input_state['key'], response_time=rt,correct=cor), 

 

Reference: 
Jones, E., Oliphant, E., Peterson, P. (2001) SciPy: Open Source Scientific Tools for 
Python, http://www.scipy.org/. 
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Supplement II - Simulation code 

shootsim.py 
 
""" 
Likelihood Divergence Simulation of Samples for Shoot Task 
  
This simulation samples from a normal distribution that matches the experiment 
task distribution, deviated either to the right or left of center. 
It then plots the sum of log likelihood ratios for the pdf of left 
and right deviated normal distributions for each sample obtained. 
""" 
  
import numpy as np 
import scipy.stats as st 
import matplotlib.pyplot as plt 
  
  
  
# mean and std for normal distributions match the experimental distributions 
# for each of the easy, medium and hard settings of the experiment 
meanL = [240,294,312] 
stdL = [80, 80, 80] 
meanR = [400,346,328] 
stdR = [80, 80, 80] 
taskLabel = ['Easy','Medium','Hard'] 
taskOrder = [0, 1, 2] 
  
# number of samples and experimental runs to simulate 
sampleCount = 100 
roundCount = 10 
  
  
  
# for each of easy, medium and hard tasks 
for task in taskOrder: 
  
# setup the normal distribution variables 
    normL = st.norm(meanL[task], stdL[task]) 
    normR = st.norm(meanR[task], stdR[task]) 
  
# Generate 10 rounds at random to left or right of goal. 0 for L, 1 for R 
  
    LorR = np.random.randint(2, size=roundCount) 
  
# For each shooting round (with goalie to the L or R) 
    for pick in LorR: 
        
# Generate values for normal distribution to the left and right of goal 
        simL = normL.rvs(sampleCount) 
        simR = normR.rvs(sampleCount)  
        
        if pick:       #1 is R, 0 is L 
        
#plot the cumulative sum of log likelihood ratios for L and R normal  distributions 
#likelihood accumulation resembles evidence accumulation model 
         likeDistL = normL.logpdf(simR) 
         likeDistR = normR.logpdf(simR) 
         plt.plot(np.cumsum(likeDistR - likeDistL), color='blue') 
        else: 
         likeDistL = normL.logpdf(simL) 
         likeDistR = normR.logpdf(simL) 
         plt.plot(np.cumsum(likeDistR - likeDistL), color='red') 
          
#Plot for each of easy, medium and hard tasks          
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    plt.xlabel('Sample Number') 
    plt.ylabel('Cumulative Log Likelihood Ratio') 
    plt.title(taskLabel[task] + ' Task') 
    plt.savefig(taskLabel[task] + '.png')  
    plt.show() 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


