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Abstract

Optical antennas are still in infancy as compared to their RF counterparts although
they have been proposed and studied with variety of shapes and for variety of appli-
cations. One would have expected that the maturity of RF antennas, both in design
and analysis, would have had a more pronounced effect in the development of optical
antennas. So far, optical antennas have only utilized the geometrical attributes of the
RF antennas, but none of the analysis tools that provided a great deal of intuition to
antenna engineers in the design of RF antennas.

This study intends to narrow the gap by introducing an easy-to-understand and
easy-to-implement analysis tool, commonly known as the cavity model, for RF patch
antennas into the optical regime.

Of course, due to some fundamental differences between RF and optical antennas,
mapping the entirety of the cavity model and the functionality of patch antennas into
optics may not be possible at all, or may require further studies.

The importance of this approach is not because of its simplicity in understanding
and implementation, rather its applicability to a broad class of patch antennas, such
as rectangular, circular, triangular, etc., with a wealth of applications developed in
RF, and more importantly its ability to provide intuition with which one can as-
sess the outcome (radiation pattern, polarization, impedance matching, loading and
tuning antenna properties, etc.) without going through complex trial-and-error simu-
lation studies with no or very little intuitive guidance by the user. This study intends
to open up a new gateway full of new design approaches, functionalities and intuitions
in optical antennas.

Keywords: plasmonics, nano-optics, nano-photonics, optical antenna, RF antenna,
patch antenna, cavity model



Özetçe

Optik antenler çeşitli geometrilerde ve farklı uygulamalar için önerilmiş ve çalışılmıştır.
Ancak RF antenlerle karşılaştırıldıklarında optik antenlerin henüz olgunlaşmadıkları
görülür. RF antenlerin çok gelişmiş tasarım ve analiz yöntemlerinin optik antenlerin
gelişiminde de etkili olmasi beklenir. Oysa ki optik antenler RF antenlerin sadece
geometrilerini miras almış olup RF anten tasarımında mühendislere öngörü saglayan
önemli analiz teknikleri henüz optiğe uyarlanamamıştır.

Bu çalışma iki frekans bölgesi arasındaki boşluğu kapatmak üzere bir köprü niteli-
ğinde olup anlaşılması ve uygulaması çok basit bir RF yama anten analiz yöntemi
olan kavite modelini optik antenler için önermektedir.

RF ve optikteki önemli birtakım farklılıklar sebebiyle kavite modelini ve yama
antenlerin işlevselliğini tamamen optiğe eşleştirmek mümkün olmayabilir ya da daha
ileri araştırmalar gerektirebilir. Bu çalışmanın amacı optik antenler için yeni tasarım
yaklaşımları, işlevsellik ve öngörü sağlayan bir kapı açmaktır.

Bu yaklaşımın önemi sadece kolay anlaşılabilir ve uygulanabilir oluşu değil, daire-
sel, üçgensel, dikdörtgensel gibi radyo frekanslarında çok geniş uygulama alanı bulmuş
çeşitli yama anten geometrilerine uygulanabilir oluşu ve daha da önemlisi sezgiden
uzak deneme yanılma tekniklerinin aksine çok geniş öngörüye olanak sağlamasıdır.

Anahtar Kelimeler: plazmonik, nano-optik, nano-fotonik, optik anten, RF anten,
yama anten, kavite modeli
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Chapter 1

Introduction

Antennas are indispensable parts of all natural and man-made communication sys-

tems operating over almost the entire spectrum, when the terms antenna and com-

munications system are used in a broader sense. Nature seems to have perfected

the use of antennas in optical frequencies to harvest the light energy in photosyn-

thetic systems through natural selection [1], in addition to all other frequencies with

many different functionalities, while man-made systems have been employing them

for about a century to control and manipulate electromagnetic radiation, having al-

most matured in the radio frequency (RF) band after having gone through market

(military and commercial) selection [2–5]. Therefore, a wealth of knowledge and ex-

perience on the design and analysis is available in RF regime with a potential of use in

the optical regime. However, with such a background on the topic, albeit over differ-

ent frequency bands, it has been only recently that some use of antennas entered into

man-made optics [6–11]. Their late arrivals in man-made optical systems were mainly

due to the lack of fabrication techniques with nanometer precision. Once fabrication

techniques have been improved to yield geometries with a few nanometers precision

and become accessible to researchers in universities and research labs, there has been

a flurry of activities and interests in optical antennas and their applications [12–25].

However, optical antennas have mainly exploited the geometric shape of RF antennas

(dipole, bow-tie, yagi uda, etc.) and some of their fundamental performance charac-

teristics, such as radiation pattern, directivity and gain, input impedance etc., even
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though there are a few well-developed, tested and successfully utilized analysis and

design tools in RF, apart from the full-wave approaches like Finite Element Method

(FEM) [26], Finite-Difference Time Domain Method (FDTD) [27,28] and the Method

of Moments (MoM) [29], that may provide some additional boost to the development

and understanding of the potential of optical antennas [22,30]. Inspired by this assess-

ment, in this study, we have focused on the transfer of accumulated knowledge in one

of the most widely employed and versatile antenna configurations in RF, the patch

antennas, also known as microstrip antennas, to the optical frequencies, with special

emphasis given to their modeling and computational aspect [2]. To achieve this goal,

the crucial step is to establish an equivalence, or some sort of mapping, of patch

antennas in RF to those in optics, while maintaining the integrity of the model in RF

that helps efficiently analyze and design the antenna as well as providing intuition

upon the operation of the antenna.

The patch antennas, upon their ideation in 1950’s [31] and realization in 1970’s

[32], have been one of the most studied and innovative classes of antenna work in RF,

with several variations in patch shape, feeding and substrate configurations, array

implementations, analytical and semi analytical models and design techniques [33].

They are still in demand in RF because of system requirements for antennas with

low-profile, low-weight, low-cost, easy integrability, polarization diversity, or dual or

multiple functionalities [34]. However, at least for now, most of these advantages of

patch antennas in RF may not directly translate to optical frequencies, but some, like

polarization diversity, dual or multiple functionalities and the variety in design may

become useful in optics to some degrees.

A typical configuration of a patch antenna consists of a piece of metal trace on

a substrate backed by a metal ground plane, as shown in Fig. 1-1 for a rectangular

patch shape.
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Figure 1-1: A typical rectangular RF patch antenna. A metal trace with dimensions
𝑎 and 𝑏 and thickness 𝑑 on a dielectric substrate backed by a ground plane.

Since the main goal of this study is to establish a proper equivalence and mapping

between RF and optical patch antennas, in order to pave the way to design optical

patch antennas with similar intuitions, ease and functionalities, the basic operation of

patch antennas in RF, as referenced to Fig. 1-1 for an example, need to be summarized

in a few sentences, as to provide context for the following discussions. Regardless

of the operating mode, transmitting or receiving, currents on the patch and the

associated fields between the patch and the ground plane are excited either by a feed

or incident wave. Since the distance between the patch and the ground plane, i.e.,

the thickness of the substrate, is usually quite small as compared to the wavelength

of operation, electric field components parallel to the ground plane must be very

small throughout the substrate, resulting in only significant 𝐸𝑧(𝑥, 𝑦), 𝐻𝑥(𝑥, 𝑦) and

𝐻𝑦(𝑥, 𝑦) field components. If the characteristic length of the patch (𝑎 or 𝑏 for the

rectangular patch in Fig. 1-1) is close to 𝜆/2 or its integer multiple, the patch element

resonates and sustains relatively large currents and associated field amplitudes in the

structure, becoming the source of radiation. Due to the equivalence theorem, there

are mainly two models, or interpretations, to describe the radiation mechanism of such

antennas. Either the antenna can be viewed as the patch with the resonating current

on, or equivalently, as a cavity formed by the patch and the ground plane enclosed

laterally by the slot-type radiators with the resonating field inside [35]. So, the cavity

interpretation for the radiation has inspired a model, known as the cavity model, that

has proven to be very efficient, intuitive, easy to understand and use for the analysis

and design of patch antennas of some canonical shapes [36–38]. Perhaps the most

crucial trait of the cavity model for optics is that it can provide an understanding
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of the operating principles of such antennas, making it useful in design as well as in

the determination of the limitations in the performance of the antenna, and in the

development of new antenna configurations or modifications to an existing antenna

design.

After having established a strong analogy between optical and RF antennas [30],

and having developed fabrication techniques that can produce structures at nanome-

ter precision [22], both of which are essential to realize the full potentials of antennas,

there has been an intense study on the use of antennas in optics, ranging from infrared

imaging [8], high-resolution microscopy [6,9, 39,40] to solar cells [41,42], optical sen-

sors [43], metasurfaces [44] and graphene detectors [45], and many more. It should be

stressed here that, in most optical antenna applications, the term "design" of the an-

tenna merely refers to the optimization of the dimensions of the antenna using one of

the commercially available full-wave Maxwell solvers, like FDTD and FEM, which are

widely used in optical antenna optimization [46,47]. Although such rigorous full-wave

Maxwell solvers are readily available and provide accurate results, they are usually

burdened with a large number of discretization of the solution domain (usually sur-

faces for MoM and volumes for FEM and FDTD), and perhaps more importantly for

the antenna design, they are impenetrable and incapable of providing any intuition

to users. Motivated from such an intense study and the possibility of widespread use

of antennas in optics, and the need for a design tool that builds intuition on the op-

eration of antennas in optics, the cavity model for patch antennas, with all their bells

and whistles in RF, are introduced and translated into the optical frequencies, despite

the fact that material properties and wave-matter interaction are almost completely

different in these two frequency regimes. The cavity model, by itself, is an important

tool for the design of patch antennas, as it covers not only the rectangular patch but

also other canonical shapes like circular, elliptic, triangular and their many variations

as well, which is likely to inspire variety of functionalities and use of patch antennas

in optics with similar ease and intuition as in their RF counterparts.

Even before the introduction of an intuitive tool, there have been a few applica-

tions of patch antennas in optics; to achieve a large Purcell factor, collection efficiency
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and spectral width [48], or to achieve inter- or intra-chip optical communications and

sensing [23], or to control the spontaneous emission rate and the radiation pattern of

quantum dots [49]. Apart from their intended use in optics, the tools that are used

to analyze these patch antennas have been either the simplest model, namely the

transmission line (TL) model [2], with mediocre accuracy, little intuition and limited

to rectangular patches only [23, 50], or the full-wave approach with good accuracy

but no intuition at all [48,49]. However, the one that has been an inspiration for this

study is the design of optical patch antennas for single photon emission using surface

plasmon (SP) resonance [48], where they considered a thin metallic patch to enhance

the capabilities of single photon sources. Hence, we have realized that, to employ the

cavity model, one does not need to have two parallel metal plates to form a cavity,

instead a free-standing metal patch of one of the canonical shapes as provided in the

following chapters, or the metal patch over a dielectric substrate, or the metal patch

over a dielectric substrate backed by another metal plane can be considered as an

optical patch antenna suitable for the cavity model, provided the complex reflection

coefficients regarding the propagating SPs, the so called surface plasmon polaritons

(SPP), from the edges of the patch can be obtained. The main difference relevant

to the subject matter of this study is the wave-matter interaction at the interface

between dielectric and metal, which manifests itself as surface currents in RF and

SPPs in optics. The key idea behind the use of the cavity model in optics is that the

SPP modes supported by the patch are equivalent to and agree well with the surface

current distribution corresponding to one or combination of the modes of the cavity.

From the basic principles, it is clear that the use of the cavity model for optical patch

antennas is possible as long as the differences of the wave-matter interactions in these

frequency regimes, and in turn, the resonance conditions are properly adressed.

Optical antennas are strongly analogous to their RF counterparts, however, there

are some crucial differences in their scaling and physical properties since metals in

the optical regime are no longer perfect conductors as in RF. With the introduction

of the SPs, that mainly is due to the metal behavior in the optical domain, a wave-

matter interaction at the subwavelength scales has been reached. The subwavelength
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interaction is introduced with a significant emphasis on the metal behavior in the

second chapter that is entitled the Light-Matter Interaction, for the reason that light

designates the electromagnetic wave in optics. In Chapter 2, the metal behavior

in the optical regime is investigated in detail with Drude model and the interband

transitions. Drude model, interband transition contributions and the experimental

Johnson and Christy results are discussed for their validity and limitations on the

determination of the metal dispersion. The propagating and localized forms of the

SPs are introduced, moreover, the propagating SPs on single and multi interfaces and

the localized SPs on nanostructures are examined analytically and numerically.

The robust analogy between RF and optical antennas inspires a mapping between

the two domains but there is a gap in between these two domains due to the metal

behavior and the scaling. The metal behavior in optics, as discussed in the second

chapter, causes the SP excitations which replace the RF surface currents in optics.

So, the optical antenna resonant lengths need to be calculated so that SPPs generate

the standing waves. Also, for a powerful mapping of the cavity model, the intrinsic

wavenumber, at which the optical antenna resonates, needs to be observed accurately.

Due to their nanometer sizes, optical antennas can no longer be fed by TLs, but

instead they are excited via coupling to the emission from nearby scatterers. In

Chapter 3, an effective wavenumber is defined and derived and the optical antenna

excitation techniques are introduced.

The patch antennas in RF and the cavity model for their design is introduced in

Chapter 4. Under the light of the previous chapters, a mapping of the cavity model

to optics is proposed and with the analytical and computational results regarding the

antenna modes and the corresponding radiation patterns the proposed mapping is

proven to be highly accurate.

Knowing the current distribution of a mode of an equivalent cavity guides us where

to locate the surce in order to excite that mode, and provides intuition on how to

tune the resonance, radiation pattern and the polarization. In Chapter 5, inspired by

the cavity model, tuning of the resonant frequency and feeding for the CP operation

are examined. The resonance of the antenna by introducing a slot on the patch is
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proven to be tuned as expected by the cavity model, yet needs to be further studied

in order to count in various slot sizes. CP operation research launches a new degree

of freedom, the orientation of the source, different from the RF point of view where

CP is obtained upon feeding the antenna from specific locations.

Lastly, in Chapter 6, we have given a conclusive information over this study and

proposed some ideas to overcome the challenges we have experienced. As a result of

the enormous ongoing research in the optical antennas, there are some new ideas that

need to be explored in the future.

With this study, we intend to bridge the gap between RF and optical regimes

by introducing an easy-to-understand and easy-to-implement RF analysis tool, the

cavity model, into optics. The importance of this approach is not its simplicity

in understanding and implementation, rather its applicability to a broad class of

patch antennas and more importantly its ability to provide intuition with which one

can assess the outcome without going through trial-and-error simulations with no or

little intuitive guidance by the user. We have focused on transferring accumulated

knowledge in patch antennas, to the optical frequencies, with special emphasis on their

modeling and computational aspect. As such, we aim to open up a new gateway full

of new design approaches, functionalities and intuitions in optical antennas. It has

been observed that the cavity model equivalent in optics has achieved the intended

goal, i.e., providing intuition on the operation of the patch antennas. That is, the

current distribution on the patch and the associated radiation pattern can now be

imagined for a given location of the feed in optics as well. The same analysis and

intuitions can now be carried onto a range of patch geometries that the cavity model

can be used. In addition, some of the tools that have been used for the rf patch

antennas, like adding slot to tune the resonance and designing the CP operation,

have been proposed and implemented in optics.
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Chapter 2

Light-Matter Interaction

Optical antennas increase the efficiency of light-matter interaction at subwavelength

scales and provide high field enhancement, strong field localization and large absorp-

tion cross section. In a similar fashion to their RF counterparts, optical antennas

control and manipulate electromagnetic waves and efficiently convert propagating ra-

diation to localized fields, and vice versa. Despite the strong analogy, optical antennas

are crucially different in their scaling and physical properties due to the lossy metal

behavior in the optical domain. Metals at microwave and radiowave frequencies are

highly reflective and do not let electromagnetic waves propagate through them. How-

ever, at higher frequencies towards the visible regime the field penetration increases

leading to increased dissipation. The physics behind the light-matter interaction is

mainly designated in the metal’s complex dielectric function, 𝜖(𝜔).

In contrast to antennas, traditional optical devices like lenses, mirrors and diffrac-

tive elements cannot control electromagnetic fields on subwavelength scales. The sizes

of such optical devices are restricted by the diffraction limit that imposes a minimum

guided mode size of 𝜆/2𝑛 where 𝑛 is a positive integer number. There has been a

revolutionary progress and innumerable discoveries in the miniaturization of these

devices following the foundation of the photonic crystals [51]. Yet, light-matter inter-

action at subwavelength scale has been reached only after the introduction of plasmon

waveguides as the smallest devices with optical functionality [52].

A new way of photon modulation, Surface Plasmon (SP), is observed due to
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the negative dielectric constants of the metal in the optical regime hence similar

behavior cannot be reproduced in other spectral ranges because of the dispersive

nature of the metals. The existence of the SPs is a feature of the interaction of metal

nanostructure with light. The field of SP study, dealing with the unique optical

properties of the metallic nanostructures and the subwavelength scale light-matter

interactions, is named as Plasmonics by Harry Atwater’s group at Caltech in 2001

and there has been an immense research on the field since then [52].

Optical antennas exploit the unique properties of metal nanostructures. Since

metals no longer behave as ideal conductors at optical wavelengths metallic nanos-

tructures exploit the SPs, hence achieve optimum interaction with optical fields. SPs

are collective oscillations of the charges at the same frequency of outside electromag-

netic wave but with a much shorter wavelength allowing the manipulation of light

below the diffraction limit.

"There is plenty of room at the bottom"

Feynman, 1959 [53]

A lecture "There is plenty of room at the bottom" given by Richard Feynman at

Caltech in 1959 is considered as a seminal event in the nanotechnology history for

the reason that it inspired the conceptual beginnings of the field decades ago. And,

nowadays nanometer scale optical interactions open up new phenomena and perspec-

tives into the nanoworld driven by recent advances in nanofabrication capabilities,

sample characterization technologies, and theoretical and numerical simulation tools.

This chapter is dedicated to the metal behavior in optics and its consequences in

optical antenna design. In the first part of this chapter, the physical properties of the

metal behavior in the optical domain will be explored in detail whereas in the second

part SPs, a new light modulation technique, caused by this metal behavior will be

investigated both for localized and propagating cases.
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2.1 Optical Properties of Metals

Metals are highly reflective at frequencies up to the optical regime and do not let

electromagnetic waves propagate through them, whereas at higher frequencies to-

wards the near-infrared (near IR) and visible, penetration of the field into the metal

increases. Dispersive nature of the metal, simply determined by the free movement

of conduction electrons within bulk and interband excitations due to photons with

energy exceeding the bandgap, is described via a complex dielectric function 𝜖(𝜔) [54].

In the presence of an electric field, an electron that is identified with a dipole

moment 𝜇⃗ = 𝑒𝑟⃗ is displaced by 𝑟⃗. A macroscopic polarization defined in (2.1) per

unit volume is observed upon cumulative effect of 𝑛 free electrons as 𝑃 = 𝑛𝜇⃗.

𝑃 (𝜔) = 𝜖0𝜒𝑒(𝜔)𝐸⃗(𝜔) (2.1)

𝐷⃗(𝜔) = 𝜖0𝐸⃗(𝜔) and 𝐸⃗(𝜔) = 𝜖0𝐸⃗(𝜔) + 𝑃 (𝜔) are very well known properties that

lead to (2.2) where 𝜒𝑒 is the dielectric susceptibility.

𝜖(𝜔) = 1 + 𝜒𝑒(𝜔) (2.2)

2.1.1 Drude Model

The Drude model is a fast and practical way for rough estimates and basic pictures of

the theory of metallic conduction, albeit more precise comprehension need complexity

analysis. In Drude model, the highly successful kinetic theory of gases is applied to a

metal that is considered as a gas of electrons. Gas molecules are treated as identical

solid spheres in the kinetic theory and their movement is assumed to be in straight

lines until they collide with each other where time for a single collision is neglected.

All forces between the particles are neglected as well, except for the forces during

each collision [55].

In gases there is only one kind of particle, however in metals there are at least

two, since the electrons are negatively charged but the metal is electrically neutral.

Upon close neighborhood of atoms, valence electrons are assumed to be detached
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and wander freely through metal whereas metallic ions intact and act as immobile

positive charges. Kinetic theory is applied to the gas of conductive electrons which

has a number of 𝑛 electrons with a mass of 𝑚𝑒 per electron and moves against a

background of positive immobile ions.

These electrons oscillate in response to the applied electromagnetic field and their

motion is damped via collisions occurring with a characteristic collision frequency

𝛾 = 1
𝜏

where 𝜏 is the relaxation time of free electron gas and 𝛾 is the damping term.

The equation of motion for an electron of plasma sea is given in (2.3) where 𝑒 is

the charge of free electrons and 𝐸⃗ is the applied electric field.

𝑚𝑒
𝜕2𝑟⃗

𝜕𝑡2
+ 𝑚𝑒𝛾

𝜕𝑟⃗

𝜕𝑡
= 𝑒𝐸⃗ (2.3)

Damping term is given by 𝛾 = 𝜐𝐹
𝑙

where 𝜐𝐹 is the Fermi velocity and 𝑙 is the

electron mean free path between scattering events.

Considering the time harmonic driving field, 𝐸⃗ = 𝐸⃗0𝑒
−𝑖𝜔𝑡 (2.3) changes into (2.4)

which can be reorganized as (2.5) for 𝑟⃗0.

𝑚𝑒(−𝜔2)𝑟⃗0𝑒
−𝑖𝜔𝑡 + 𝑚𝑒𝛾(−𝑖𝜔)𝑟⃗0𝑒

−𝑖𝜔𝑡 = 𝑒𝐸⃗0𝑒
−𝑖𝜔𝑡 (2.4)

𝑟⃗0 =
𝑒𝐸⃗0

−𝑚𝑒(𝜔2 + 𝑖𝜔𝛾)
(2.5)

Displaced electrons contribute to the macroscopic polarization in (2.1) as 𝑃 =

𝑛𝜇⃗ = 𝑛𝑒𝑟⃗, so (2.6) can be obtained which then leads to (2.7) for 𝜒𝑒(𝜔) where 𝜔𝑝 is

the plasma frequency.

𝑛𝑒
𝑒𝐸0

−𝑚𝑒(𝜔2 + 𝑖𝜔𝛾)
= 𝜖0𝜒𝑒(𝜔)𝐸⃗0 (2.6)
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𝜒𝑒(𝜔) =
𝑛𝑒2/𝑚𝑒𝜖0

−(𝜔2 + 𝑖𝜔𝛾)
=

𝜔2
𝑝

−(𝜔2 + 𝑖𝜔𝛾)
(2.7)

Drude model for the dielectric constant can finally be derived as in (2.8) and (2.9)

in separate real and imaginary parts.

𝜖𝐷𝑟𝑢𝑑𝑒(𝜔) = 1 + 𝜒(𝜔) = 1 −
𝜔2
𝑝

𝜔2 + 𝑖𝜔𝛾
(2.8)

𝜖𝐷𝑟𝑢𝑑𝑒(𝜔) = 1 −
𝜔2
𝑝

𝜔2 + 𝛾2
+ 𝑖

𝛾𝜔2
𝑝

𝜔(𝜔2 + 𝛾2)
(2.9)

Drude model gives quite accurate results for photon energies below the threshold

of transitions between the electronic bands of the metals. It needs to be supplemented

in the visible region by the response of the bound electrons. The failures of this model

have found their solutions in the rich and subtle stucture of quantum theory of solids.

Further details on the assumptions of Drude model and their consequences are beyond

the scope of this study.

2.1.2 Interband Transitions

Since higher energy photons can promote electrons of lower-lying bonds into the

conduction band, the measured imaginary part of the dielectric function increases

much more strongly than the Drude model predictions. The inadequacy of the Drude

model in describing the optical properties of gold and silver at visible frequencies can

be overcome by the equation of motion (2.10) for a bound electron with an effective

mass 𝑚 and damping Γ (mainly radiative damping in the case of bound electrons)

and resonance frequency 𝜔0.

𝑚𝑒
𝜕2𝑟⃗

𝜕𝑡2
+ 𝑚𝑒Γ

𝜕𝑟⃗

𝜕𝑡
+ 𝑚𝑒𝜔

2
0 𝑟⃗ = 𝑒𝐸⃗ (2.10)
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(2.11) can be observed by representing (2.10) in time harmonic form.

𝑚𝑒(−𝜔2)𝑟⃗0𝑒
−𝑖𝜔𝑡 + 𝑚𝑒Γ(−𝑖𝜔)𝑟⃗0𝑒

−𝑖𝜔𝑡 + 𝑚𝑒𝜔
2
0 𝑟⃗0𝑒

−𝑖𝜔𝑡 = 𝑒𝐸0𝑒
−𝑖𝜔𝑡. (2.11)

The motion of electrons, 𝑟⃗0, can be observed as in (2.12) by organizing (2.11).

𝑟⃗0 =
𝑒𝐸0

𝑚𝑒(𝜔2
0 − 𝜔2) − 𝑖𝑚𝑒𝜔Γ

(2.12)

A similar procedure to Drude model derivations can be followed in order to obtain

the complex dielectric function in (2.13) for the interband transitions.

𝜖𝑖𝑛𝑡𝑒𝑟𝑏𝑎𝑛𝑑(𝜔) = 1 +
𝑤2

𝑝

(𝜔2
0 − 𝜔2) − 𝑖𝜔Γ

(2.13)

Gold and silver are the most important metals for plasmonics studies in the visi-

ble and near-IR regions although there are other promising plasmonic materials like

silicon, germanium, III-V semiconductors, transparent conducting oxides and many

other oxides and sulfides recently proposed for different applications [56].

Considering gold as an example for noble metals, in Figure 2-1 the metal behavior

in the visible regime can be better understood. The negative real part of the dielectric

constant implies a strong imaginary part of the refractive index (𝑛 =
√
𝜖) and leads

to penetration of light into the metal, whereas the imaginary part describes the dis-

sipation of energy associated with the motion of electrons in the metal. Contribution

of the bound electrons to the dielectric constant is also given in Figure 2-1 through

the interband transitions. A clear resonance behavior is seen for the imaginary part,

whereas dispersion-like behavior is observed for the real part.
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Figure 2-1: Real and imaginary parts of the dielectric constant of gold obtained
analytically via Drude model and the interband contributions. Squares and circles
demonstrate the real and imaginary parts of the dielectric constant of gold calculated
using Drude model. Pluses and diamonds demonstrate the real and imaginary parts
of the dielectric constant of gold by counting in the interband transmissions.

In Figure 2-2 the dielectric constant from the experimental Johnson and Christy

data for gold is given with comparison to Drude model results incorporated with

interband transmissions [57]. Both the experimental Johnson and Christy data and

the Drude-Interband results have a similar behavior for wavelengths above 500nm.

When Drude model is taken into account without the interband transitions, the results

do not match below 650nm [54]. Considering only one interband transition improves

the Drude model results, although the results cannot capture the Johnson and Christy

data below 500nm.
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Figure 2-2: Comparison of the real and imaginary parts of the dielectric constant
of gold calculated using i) Drude model including the interband transition contri-
bution and ii) the experimental Johnson and Christy data. Squares and diamonds
demonstrate the real and imaginary parts of the dielectric constant taken from ex-
perimantally obstained Johnson and Christy data, whereas the circles and crosses
demonstrate the real and imaginary parts of the dielectric constant of gold calculated
using the Drude model with the interband transitions. Drude model is improved with
the interband transitions but still cannot reach the experimental data for wavelengths
below 500nm.

In Appendix A, complex dielectric function expressions using Drude model with

the interband transition contributions are supplied for metals: gold, silver, aluminum

and nickel. Experimental Johnson and Christy data for the refractive index of gold

and silver are also provided in Tables 7.1 and 7.2, respectively.

2.2 Surface Plasmons

Existence of self-sustained collective oscillations at metal surfaces is first predicted in

1957 by Ritchie in his pioneering study of characteristic energy losses of fast electrons

passing through thin metal films [58] and demonstrated in a series of electron energy
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loss experiments in 1959 by Swan and Powell [59, 60] and named as surface plasmon

in 1960 by Stern and Ferrell [61]. SPs are widely recognized and both experimentally

and theoretically investigated since then.

SPs are of great interest to physicists, chemists, metarial scientists, biologists

and engineers due to the recent advances in structuring and characterizing metals

at nanometer scale with the aid of control over specific applications with potentials

in optics, magneto-optic data storage, microscopy, solar cells and such [62]. In plas-

monics, one of the most attractive aspects of SPs is its capability to concentrate and

channel light using subwavelength structures which lead to miniaturized devices.

SPs are light waves that are trapped on the surface because of their interaction

with the free electrons of a conductor, metal. In this interaction the electromagnetic

waves together with the surface charge oscillations generate SP. Surface Plasmon

Polaritons (SPPs) are propagating dispersive electromagnetic waves coupled to free

electrons of a conductor at a dielectric interface, whereas Localized Surface Plasmons

(LSPs) are non-propagating excitations of the conduction electrons of metallic nanos-

tructures coupled to the electromagnetic field [63]. In this section, fundamentals of

the SPPs on single and multilayer interfaces and LSPs on nanostructures will be

surveyed with a slight touch on their dispersive nature, excitation techniques and

resonance conditions.

2.2.1 Surface Plasmon Polaritons

SP is a quasiparticle resulting from the quantization of surface charge density os-

cillations that is used to define the collective oscillations in the electron density at

the metal surface where these oscillations naturally couple to electromagnetic waves

appointing polaritons [54]. A homogeneous solution, the eigenmode of the system

that is solved without external excitation, of the wave equation (2.14) define the

electromagnetic behavior of the SPPs in any system under the appropriate boundary

conditions.
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∇×∇× E(r, 𝜔) − 𝜔2

𝑐2
𝜖(r, 𝜔)E(r, 𝜔) = 0 (2.14)

Using the identity ∇×∇× E = ∇(∇ · E) −∇2E and remembering the absence

of external excitation ∇ ·𝐷 = 0 the wave equation can be reorganized as in (2.15)

∇(
1

𝜖(r, 𝜔)
E(r, 𝜔) · ∇𝜖(r, 𝜔)) −∇2E(r, 𝜔) − 𝜔2

𝑐2
𝜖(r, 𝜔)E(r, 𝜔) = 0 (2.15)

The negligible variation of the dielectric profile over distances on the order of 𝜆

(∇𝜖(r, 𝜔) → 0) leads to the Helmholtz equation (2.16) which is the starting point

of the general SPP analysis. A similar representation for the magnetic field can be

observed naturally, as well.

∇2E(r, 𝜔) + 𝑘2𝜖(r, 𝜔)E(r, 𝜔) = 0 (2.16)

Semi Infinite System

The SPP analysis for a planar interface between two media, one with a complex,

frequency dependent dielectric constant 𝜖1(𝜔) and the other with a real dielectric

constant 𝜖2 (Figure 2-3) can be done by solving the Helmholtz equation (2.16) with

𝜖(r, 𝜔) = 𝜖1(𝜔) if 𝑧 < 0 and 𝜖(r, 𝜔) = 𝜖2(𝜔) if 𝑧 > 0.
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Figure 2-3: SPP excitation at a single metal-dielectric interface where the one of the
regions (𝑧 < 0 in this figure) is a metal with dielectric constant 𝜖1(𝜔) and the other
medium (𝑧 > 0) is a dielectric with a real dielectric constant 𝜖2(𝜔).

SPP excitation is achieved only for 𝑇𝑀 polarization which is easy to comprehend

just by looking at the reflection coefficients. The Fresnel reflection coefficient for

the 𝑇𝑀 polarized incidence in a simple two layer system, given in (2.17), in order

to generate SPP at the interface in Figure 2-3, enforces 𝑘𝑧1 ̸= 𝑘𝑧2 upon maximum

reflection of the incidence at the interface showing maximum transmission radiation.

𝑅𝑇𝑀 =
𝜖1𝑘𝑧2 − 𝜖2𝑘𝑧1
𝜖1𝑘𝑧2 + 𝜖2𝑘𝑧1

(2.17)

𝑇𝐸 polarized incidence, on the other hand, would impose equal perpendicular

wave numbers (𝑘𝑧’s) as easily seen in (2.18) since 𝜇1 = 𝜇2. The continuity is only

satisfied for parallel component, 𝑘𝑥.

𝑅𝑇𝐸 =
𝜇1𝑘𝑧2 − 𝜇2𝑘𝑧1
𝜇1𝑘𝑧2 + 𝜇2𝑘𝑧1

(2.18)

SPPs are dispersive electromagnetic waves that propagate at a metal-dielectric

interface where a negative permittivity metal exists. The field normal to the surface

is evanescent, and decays exponentially with distance from the surface while SPP

propagates along the surface. SPP modes on a planar metal surface are bound to the
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surface and propagates until their energy is dissipated as heat in the metal. Hence, a

𝑇𝑀 polarized illumination originates SPP that propagates in 𝑥-direction and decays

in 𝑧-direction which can be defined as E(𝑥, 𝑦, 𝑧) = E(𝑧)𝑒𝑖𝛽𝑥 where 𝛽 = 𝑘𝑥 is the

propagation constant of the traveling wave and corresponds to the component of the

wavevector in the propagation direction.

The solution to the Helmholtz equation (2.16) can be used to determine the spatial

field profile and dispersion relation of the propagating waves, once the time harmonic

electric and magnetic field components are explicitly expressed as coupled equations

by using the curl (Faraday and Ampere) relations. These identities can be found

in any Electromagnetics textbook, here only the governing equations for 𝑇𝑀 mode

components 𝐸𝑥, 𝐸𝑧 and 𝐻𝑦 are given in (2.19).

𝐸𝑥 = −𝑖
1

𝜔𝜖0𝜖

𝜕𝐻𝑦

𝜕𝑧

𝐸𝑦 = − 𝛽

𝜔𝜖0𝜖
𝐻𝑦

𝜕2𝐻𝑦

𝜕𝑧2
+ (𝑘2

0𝜖− 𝛽2)𝐻𝑦 = 0

(2.19)

Using (2.19) in both half spaces yields (2.20) for 𝑧 < 0 and (2.21) for 𝑧 > 0.

𝐻𝑦(𝑧) = 𝐴1𝑒
𝑖𝛽𝑥𝑒𝑘𝑧1

𝐸𝑥(𝑧) = −𝑖𝐴1
𝑘𝑧1
𝜔𝜖0𝜖1

𝑒𝑖𝛽𝑥𝑒𝑘𝑧1

𝐸𝑦(𝑧) = −𝐴1
𝛽

𝜔𝜖0𝜖1
𝑒𝑖𝛽𝑥𝑒𝑘𝑧1

(2.20)

𝐻𝑦(𝑧) = 𝐴2𝑒
𝑖𝛽𝑥𝑒−𝑘𝑧2

𝐸𝑥(𝑧) = 𝑖𝐴2
𝑘𝑧2
𝜔𝜖0𝜖2

𝑒𝑖𝛽𝑥𝑒−𝑘𝑧2

𝐸𝑦(𝑧) = −𝐴2
𝛽

𝜔𝜖0𝜖2
𝑒𝑖𝛽𝑥𝑒−𝑘𝑧2

(2.21)

34



The boundary conditions at 𝑧 = 0 requires 𝑖) 𝐴1 = 𝐴2 due to continuity of 𝐻𝑦

and 𝑖𝑖) (2.22) due to contunuity of 𝐸𝑥 where 𝑘𝑧𝑖’s are as defined in (2.23).

𝑘𝑧2
𝑘𝑧1

= −𝜖2
𝜖1

(2.22)

𝑘2
𝑧1 = 𝛽2 − 𝑘2

0𝜖1

𝑘2
𝑧2 = 𝛽2 − 𝑘2

0𝜖2

(2.23)

Dispersion relation for the SPP can be observed as (2.24) upon combining (2.22)

and (2.23) which is valid for conductors with or without attenuation.

𝛽 = 𝑘𝑥 = 𝑘𝑆𝑃𝑃 = 𝑘0

√︂
𝜖1𝜖2

𝜖1 + 𝜖2
(2.24)

The normal component of the wave numbers 𝑘𝑧𝑖 can be obtained as in (2.25).

A bound mode on the interface can be reached if 𝑘𝑧’s are purely imaginary in both

media so that it gives rise to exponentially decaying solutions and this can only be

achieved when the denominator in (2.25) is negative.

𝑘2
𝑧𝑖 = 𝑘2

0

𝜖2𝑖
𝜖1 + 𝜖2

(2.25)

The propagating nature of the SPP on the interface designates real 𝑘𝑥, which

counting in the condition (2.26a) results in (2.26b).

𝜖1 + 𝜖2 < 0 (2.26a)

𝜖1𝜖2 < 0 (2.26b)
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Therefore, the condition for the existence of the SPPs is that one of the dielectric

constants must be negative with an absolute value exceeding the other. In order to

excite SPPs both energy and momentum must be conserved which can be analyzed

through dispersion relation. SPP properties like wavelength, propagation length and

decaying length can also be analyzed via dispersion relation.

In order to accomodate the losses, a complex dielectric constant for the metal

is considered as 𝜖1 = 𝜖′1 + 𝑖𝜖′′1 where 𝜖′1 and 𝜖′′1 are real. Then, parallel wavenumber

𝑘𝑥 = 𝑘𝑆𝑃𝑃 can naturally be obtained as complex 𝑘𝑥 = 𝑘′
𝑥 + 𝑖𝑘′′

𝑥 where the real part 𝑘′
𝑥

determines the SPP wavelength 𝜆𝑆𝑃𝑃 as in (2.27) while imaginary part 𝑘′′
𝑥 accounts

for damping of the SPP as it propagates along the interface.

𝜆𝑆𝑃𝑃 =
2𝜋

𝑅𝑒{𝑘𝑆𝑃𝑃}
(2.27)

The propagation length of the SPP, 1/𝑒 decay length of the electric field, is deter-

mined by 𝑘′′
𝑥 that is responsible for exponential damping of the electric field amplitude

and is caused by the ohmic losses that finally result in the heating of the metal. Heat-

ing was considered as a disadvantage until recently, before the emerging research on

the hot electrons. A recently proposed plasmonic energy conversion method based

on the generation of hot electrons through electromagnetic decay of SPPs offers high

conversion efficiencies with low cost for photovoltaic devices [64].

The 1/𝑒 decay length of the SPP electric fields away from the interface, by ne-

glecting the imaginary parts can be observed from 𝑘𝑧𝑖’s as (1/𝑘𝑧1, 1/𝑘𝑧2) for metal and

dielectric respectively for the geometry in Figure 2-3. SPP electric field in 𝑧 direction

can pass through a thin enough metal film. Further discussion on thin films and the

splitting SPPs due to the coupling will be given in the next section for three layer

structures.

Dispersion relation shows two branches, one for high energy and one for low energy.

The Brewster mode, high energy branch, does not describe a true surface wave since

the normal component of the wavenumber is no longer purely imaginary. Low energy
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branch corresponds to true interface wave, SPP. There is a continuous transition from

SP dispersion into high energy branch when damping is fully considered. In Figure 2-

4 the solid line is the light line in air that corresponds to 𝜔 = 𝑐𝑘𝑥. In the same figure,

dispersion relations for gold-silica interface are demonstrated that are obtained via

Drude Model with (pluses) and without (diamonds) interband transition contribution

and via the experimental Johnson and Christy data (circles).
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Figure 2-4: Dispersion diagram for SPP mode at gold-silica interface are obtained
by using Drude Model (diamonds), Drude model with the interband transmissions
contribution (pluses). The experimantal Johnson and Christy data is also shown
(circles). Solid line is the light line. A backbending from low energy branch to high
energy branch is seen. It posses a limit for maximum SP wavenumber, 𝑘𝑆𝑃 .
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Figure 2-5: Dispersion relation of the SPP on the gold-air interface are obtained using
only the real part of the dielectric function of gold.

Dispersion diagram for a gold-air interface can be obtained as in Figure 2-5 con-

sidering only the Drude model with the real parts of the dielectric constant. The high

and low energy branches are clearly seen. The backbending effect has been verified

experimentally [65]. It poses a limit to the maximum SPP wavenumber 𝑘𝑆𝑃𝑃 .

An important consequence of the interaction between the surface charge density

and the electromagnetic field is the momentum mismatch problem : momentum of the

SP being greater than that of free space photon at the same frequency. The physical

reason behind this momentum mismatch is the strong coupling between light and

surface charges. In the form of an SPP, light drags electrons on the metal surface

which can be pictured like light propagating with a cloud of electrons in the metal.

Hence, SPP on the interface cannot be excited by light at any frequency, but by light

with a wavevector component that can be increased over its free space value. There

are many ways to achieve this behavior and couple light to SPPs known as the phase

matching techniques on which details can be found elsewhere [54]. SPP dispersion
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curve being on the right of the light’s dispersion curve also proves that SPPs cannot

be excited with conventional illumination from the adjacent dielectric.

SPPs have both transverse and longitidunal electromagnetic field components.

Magnetic field is parallel to the surface and perpendicular to its propagation direction

since only TM wave can excite the SPPs. Electric field has a component perpendicu-

lar to the surface and a component parallel to the propagation direction. Transverse

component is the dominant electric field.

Two Interfaces

Single interface structure has been studied in the previous section on the semi infinite

geometries and the corresponding SPP properties and dispersion relations are derived.

There is a new degree of freedom due to coupling of the SPP modes introduced to

the problem when two or more interfaces are considered. First, the two interface,

three layer structure, will be investigated and that will be generalized to 𝑁−layer

structures. Independent of the materials of each layer in Figure 2-6, the 𝑇𝑀 mode’s

𝐻𝑦 component can be expressed as (2.28).

ε1, μ1

ε2, μ2
x

ε3, μ3

z

z=d/2

z=-d/2

Figure 2-6: Three layers (two interfaces) structure.

H = 𝑦𝐴𝑒𝑖𝑘𝑧1𝑧𝑒𝑖𝑘𝑥𝑥, 𝑧 > 𝑑/2

H = 𝑦(𝐵𝑒𝑖𝑘𝑧2𝑧 + 𝐶𝑒−𝑖𝑘𝑧2𝑧)𝑒𝑖𝑘𝑥𝑥, −𝑑/2 < 𝑧 < 𝑑/2

H = 𝑦𝐷𝑒−𝑖𝑘𝑧3𝑧𝑒𝑖𝑘𝑥𝑥, 𝑧 < −𝑑/2

(2.28)
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The electric field distributions in all three domains can be obtained as (2.29)

applying the Ampere-Maxwell law to (2.28).

E = 𝑥̂
𝑘𝑧1
𝜔𝜖1

𝐴𝑒𝑖𝑘𝑧1𝑧𝑒𝑖𝑘𝑥𝑥 − 𝑧
𝑘𝑥
𝜔𝜖1

𝐴𝑒𝑖𝑘𝑧1𝑧𝑒𝑖𝑘𝑥𝑥,

𝑧 > 𝑑/2

E = 𝑥̂
𝑘𝑧2
𝜔𝜖2

(𝐵𝑒𝑖𝑘𝑧2𝑧 − 𝐶𝑒−𝑖𝑘𝑧2𝑧)𝑒𝑖𝑘𝑥𝑥 − 𝑧
𝑘𝑥
𝜔𝜖2

(𝐵𝑒𝑖𝑘𝑧2𝑧 + 𝐶𝑒−𝑖𝑘𝑧2𝑧)𝑒𝑖𝑘𝑥𝑥,

− 𝑑/2 < 𝑧 < 𝑑/2

E = −𝑥̂
𝑘𝑧3
𝜔𝜖3

𝐷𝑒−𝑖𝑘𝑧3𝑧𝑒𝑖𝑘𝑥𝑥 − 𝑧
𝑘𝑥
𝜔𝜖3

𝐷𝑒−𝑖𝑘𝑧3𝑧𝑒𝑖𝑘𝑥𝑥,

𝑧 < −𝑑/2

(2.29)

Applying the boundary conditions of the continuity of 𝐸𝑥 and 𝐻𝑦 at 𝑧 = 𝑑/2 and

𝑧 = −𝑑/2, the transcendental equation, dispersion relation, can be observed as in

(2.30). For infinite thickness 𝑑 → ∞ (2.30) reduces to the semi-infinite case derived

previuosly in (2.24).

𝑒−2𝑘2𝑑 =
𝑘2/𝜖2 + 𝑘3/𝜖3
𝑘2/𝜖2 − 𝑘3/𝜖3

𝑘2/𝜖2 + 𝑘1/𝜖1
𝑘2/𝜖2 − 𝑘1/𝜖1

(2.30)

Three layer structures with symmetry in terms of the dielectric functions like

Metal-Insulator-Metal (MIM) or Insulator-Metal-Insulator (IMI) show an interesting

special case of symmetric and anti-symmetric modes with dispersion relations in (2.31)

and (2.32), respectively. Symmetry corresponds to even 𝐸𝑥(𝑧) mode (odd 𝐻𝑦(𝑧) and

𝐸𝑧(𝑧)).

𝑡𝑎𝑛ℎ(𝑘2𝑑/2) = −𝑘1𝜖2
𝑘2𝜖1

(2.31)

𝑡𝑎𝑛ℎ(𝑘2𝑑/2) = −𝑘2𝜖1
𝑘1𝜖2

(2.32)
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Figure 2-7: Dispersion relation of the symmetric SPP mode supported in Ag|air|Ag
structure for an air core of thickness 25nm (squares), 50nm (diamonds), 100nm (cir-
cles). Also shown the light line (solid line). Johnson and Christy data is used for
silver.

In the symmetric case of a three layer structure, two identical SPP modes may

couple with each other when the mid-film is thin enough and form two distinct waves

where the propagation constants of the symmetric and the anti-symmetric modes dif-

fer. Odd modes have higher frequencies whereas even modes have smaller frequencies.

Figure 2-7 shows the dispersion relation of the fundamental symmetric mode of an

MIM (Ag|air|Ag) structure for various dielectric thicknesses of 𝑑𝑎𝑖𝑟 = 100nm, 50nm,

25nm where a backbending is observed for the 𝑘𝑆𝑃 .

In Figure 2-8 the low energy (symmetric) modes in the (Au|SiO2|Au) structure is

investigated for SiO2 thicknesses of 100nm (squares), 50nm (stars), 10nm (diamonds),

5nm (circles). As seen in Figures 2-7 and 2-8, with the decreasing insulator thickness

the wavenumbers increase for a specified excitation, and that corresponds to shorter

wavelengths, 𝜆𝑆𝑃𝑃 .
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Figure 2-8: Dispersion relation for the symmetric SPP mode supported by the MIM
(Au|SiO2|Au) structure for a dielectric thickness of 100nm (squares), 50nm (stars),
10nm (diamonds), 5nm (circles) for low energy modes. Also shown the dispersion at
single Au|SiO2 interface (solid line) and the light line (dashed line). As the metal
thickness reduces the 𝑘𝑆𝑃 increases for specified 𝜔. Johnson and Christy data is used
for gold. Backbending is not shown in the results.

MIM structures can squeeze the light in the dielectric region, or in other words

they can shrink the SPP wavelength [66]. SPP wavelength can be shrunk to ten

times smaller values of the free space wavelength which is a property that can lead

to miniaturized plasmonic structures for various applications in nano-medicine and

cancer therapy [67]. In order to visualize the possibility of very small sized struc-

tures with decreasing insulator thicknesses in MIM structures, in Figure 2-9 the SPP

wavelengths for 𝜆0 = 582nm excitation on Ag|air|Ag structure are given. In the same

figure, the losses with respect to the insulator thicknesses can also be found, stressing

the increasing propagation losses for smaller insulator thicknesses. Hence, in order

to engineer small structures, on the order of 1/20𝑡ℎ of the excitation wavelength, one

needs to contemplate the losses.
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Figure 2-9: The SPP wavelength (squares) and the dispersion losses (𝐼𝑚{𝑘𝑆𝑃𝑃})
(circles) with respect to the insulator thickness.

The confinement of the SPP mode to the metal film decreases as the mode evolves

into a plane wave which for real metals means increased SPP propagation length.

Anti-symmetric modes have this behavior and they are called long-ranging SPPs.

Symmetric modes confine the metal, so they are short-ranging and due to the in-

creasing attenuation they are slow.

Another symmetric case is the IMI case inspected in Figure 2-10 for the dispersion

relation where a splitting into high and low energy modes, i.e., odd and even modes

are experienced. The splitting between the energy of odd and even modes increase

with the decreasing thickness since the even mode confines more and more whereas

odd mode confines less.
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Figure 2-10: Dispersion relation of odd and even modes on air|Ag|air structure. Metal
core thicknesses of 50nm (circles) and 20nm (squares). High energy modes are odd,
low energy modes are even. Silver is modeled as Drude metal with no loss. Solid line
is the single air-Ag interface and dashed line is the light line.

The dispersion relation observed by the electromagnetic theory corresponds to the

poles in the expression of the transition radiation, moreover, since the denominators

in the transmission radiation and the reflection coefficient expressions are exactly

the same; dispersion relation can also be determined from the poles of the reflection

coefficient [68] and references therein.

Multiple Interfaces

The eigenmodes of the planar multilayer structure in Figure 2-11 can be found via the

vector wave equation under the continuity constraint of the tangential E-field and the

normal H-field. Uniqueness of the solutions is guaranteed by the Helmholtz theorem.
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Figure 2-11: Multilayer structure where all supported modes including the SPP mode
can be obtained via GRC algorithm.

Various SPP modes can be observed in multiple interface systems since SPPs

associated with individual metal-dielectric interfaces may interact with each other.

The poles of the reflection coefficient from a plane wave incidence on a multilayer

structure define the SPP resonance locations. An implicit dispersion relation is shown

in (2.33) where 𝑅̃𝑖+1,𝑖+2 is the Generalized Reflection Coefficient (GRC) for a wave

passing from layer 𝑖 + 2 to 𝑖 + 1. The GRC derivation for multilayer structures can

be found elsewhere [69]. Replacing 𝑖 = 1 in (2.33) leads to (2.30) which is valid for 3

layer symmetric MIM and IMI structures. GRC root finding algorithm can be applied

to geometries to detect SPP wavenumbers in each and all layers [70].

𝑅𝑖,𝑖+1𝑅̃𝑖+1,𝑖+2 = 𝑒𝑗𝑘𝑧(𝑖+1)2𝑑(𝑖+1) (2.33)

The SPP wavenumbers supported in the symmetric MIM structure are observed

analytically in Figure 2-12 for different mid-layer thicknesses. As the core thickness re-

duces in MIM structures a very strong shrinking behaviour is observed. Shrinking the

SPP wavelength 10 times smaller than the free space wavelength is possible in these

structures, with a simultaneous increase in the loss mechanism given in Figure 2-12.

The split into symmetric and antisymmetric modes after certain dielectric thickness
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can be seen in the same figure obtained using the GRC root finding algorithm.

The coupling and splitting of the SPP modes into odd and even modes as shown

in Figure 2-10 can be further analyzed using the GRC root finding algorithm as the

peak of the magnitude of the reflection coefficients refer to the SPP mode locations.

In Figure 2-12 the split of the 𝑘𝑆𝑃 values at specific metal-film thickness is seen.

The dispersion relation for the propagating SPs are observed both analytically

and via poles of the reflection coefficient using the GRC root finding algorithm for

multilayer structures. The electromagnetic signature of the SPP is identified through

the dispersion relation like its propagation and decay lengths.
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Figure 2-12: The magnitude of the reflection coefficients calculated via GRC root
finding algorithm for air|Ag|air multilayer structure with metal film thickness of a)
25nm, a) 50nm, c) 150nm. The splitting of the 𝑘𝑆𝑃 into high and low energy modes
is seen for thin enough films. Solid line shows the excitation wavenumber 𝑘0.
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2.2.2 Localized Surface Plasmons

A molecule is strongly excited in the vicinity of a metallic nanoparticle (NP) since

the near field is enhanced at the plasmon resonance wavelength of the particle. Non-

propagating excitations of the conduction electrons of the metallic NPs coupled to the

electromagnetic field result in localized surface plasmon (LSP) [63]. NPs are usually

approximated via spheres or spheroids for which analytically exact solutions exist to

all orders as carried out by Mie [71]. Due to the curved nature of the NP, LSPs can

achieve plasmon resonance by direct illumination without phase matching techniques.

Frequency and spectral width of the LSP modes are determined by particle’s shape,

material, size and environment.

The resonant electromagnetic behavior of noble-metal NPs occurs due to the con-

finement of the conduction electrons to a small particle volume. For particles with

diameter much smaller than the wavelength of the incident light (𝑎 << 𝜆), the qua-

sistatic approximation is valid where the entire structure experiences uniform electric

field at any instant of time. Maxwell’s equations are solved directly for the scattering

of electromagnetic waves, and only the dipolar term is retained in the quasistatic

approach whereas higher order modes should be considered for larger particles.

For the particles with diameter 𝑎 << 𝜆, the in-phase movement of the conduction

electrons upon plane wave excitation leads polarization charges to buildup on the

particle surface. These charges act as an effective restoring force and allow resonance

to occur at a specific frequency. The resonance builds up a dipolar field outside the

particle as well as a resonantly-enhanced field inside the particle, which is homoge-

neous throughout its volume. This leads to enhanced absorption and scattering cross

sections for the electromagnetic waves along with a strongly enhanced near field in

the vicinity of the surface of the particle.

In the quasistatic limit, electric fields 𝐸1 inside and 𝐸2 outside of a spherical

metallic NP with a dispersive dielectric response 𝜖𝑚 and a radius 𝑎 << 𝜆 embedded

in a nonabsorbing surrounding medium of dielectric constant 𝜖𝑑 as shown in Figure

2-13 can be found solving (2.34) under the boundary conditions given in (2.35).
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Figure 2-13: Spherical metallic NP in a uniform electric field.

𝐸𝑖 = −∇Φ𝑖 where 𝑖 = 1, 2. (2.34)

Φ1 = Φ2 and 𝜖1
𝜕Φ1

𝜕𝑟
= 𝜖𝑚

𝜕Φ2

𝜕𝑟
(2.35)

At large distances from the sphere, the electric field is the unperturbed applied

field (2.36) by which the potentials can be obtained as in (2.37a) and (2.37b).

lim
𝑟→∞

Φ2 = −𝐸0𝑧 = −𝐸0𝑟 cos 𝜃. (2.36)

Φ1 = − 3𝜖𝑚
𝜖1 + 2𝜖𝑚

𝐸0𝑟 cos 𝜃 (2.37a)

Φ2 = −𝐸0𝑟 cos 𝜃 + 𝑎3𝐸0
𝜖1 − 𝜖𝑚
𝜖1 + 2𝜖𝑚

cos 𝜃

𝑟2
(2.37b)
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A NP in the quasistatic limit can be modeled as a dipole that can be considered

as two point charges +𝑞 and −𝑞 separated by a distance 𝑑 as given in Figure 2-14.

The potential of the dipole at any point 𝑃 can be given as in (2.38) where 𝑟± =

𝑟
√︁

1 ± −→𝑟 ̂︀𝑒𝑧
𝑟2

𝑑 + 𝑑2

4𝑟2
.

Φ =
𝑞

4𝜋𝜖𝑚
(

1

𝑟+
− 1

𝑟−
) (2.38)

If 𝑑 approaches zero in such a way that 𝑞𝑑 product remains constant, the potential

of an ideal dipole can be obtained (2.39).

Φ =
−→𝑝 −→𝑟

4𝜑𝜖𝑚𝑟3
=

𝑝 cos 𝜃

4𝜑𝜖𝑚𝑟2
. (2.39)

In Figure 2-15, the magnitude of the scattered electric field regarding a dipole

and a gold sphere of radius 20𝑛𝑚 are shown at the near field ℎ = 500nm above the

scatterer whare both the dipole and the gold sphere radiate at 𝜆0 = 660nm.

49



−500 0 500
0.4

0.5

0.6

0.7

0.8

0.9

1

x (nm)

|E
s
c
a
t|

 

 

 gold sphere r=20nm

 dipole

Figure 2-15: Near field scattered electric field from a gold sphere and a dipole. A NP,
sphere, is in the quasistatic limit equal to a dipole.

By comparison of the potential outside the sphere (2.37a) to the potential of the

dipole (2.39) the applied field is seen to induce a dipole moment proportional to the

field (2.40) which can also be expressed as in (2.41) in terms of polarizability 𝛼.

−→𝑝 = 4𝜑𝜖𝑚𝑎
3 𝜖1 − 𝜖𝑚
𝜖1 + 2𝜖𝑚

𝐸0 (2.40)

−→𝑝 = 𝜖𝑚𝛼
−→
𝐸0 (2.41)

The polarizability 𝛼 of a NP in Figure 2-14 can be derived finally as (2.42).

𝛼 = 4𝜑𝑎3
𝜖1 − 𝜖𝑚
𝜖1 + 2𝜖𝑚

(2.42)
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The polarizability and the induced homogeneous polarization inside the particle

are resonantly driven at a frequency, Fröhlich frequency, where the denominator shows

a minimum as in (2.43) which is limited by the imaginary part of 𝜖 describing the

ohmic heating losses due to the creation of electron-hole pairs.

𝜖𝑚 + 2𝜖𝑑 −→ 0 (2.43)
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Conclusion

Optical antennas, despite their strong analogy to RF antennas, are crucially different

than their RF counterparts mostly due to the nanometer sizes and the physical prop-

erties of the metals in the optical regime. The physics of the metal behavior is studied

in this chapter by exploring the complex dielectric function, 𝜖(𝜔). It is observed that

the dispersive nature of the metal, determined by the free electron movements, leads

to SPs through collective oscillations of the free electrons in metal with light.

SPs, trapped on a metal-dielectric interface and exhibit collective electron oscilla-

tions in metal coupling to the light wave in the dielectric and propagating as a whole,

the so called SPPs, are studied in single as well as many metal-dielectric interfaces.

NPs supporting LSPs are by themselves optical antennas, yet they can also be

treated as sources for optical antennas where coupling from NP’s emission to the

SPP creates antenna modes. SPP on metal-dielectric interface is the propagating

mode that creates the antenna mode by performing standing waves.

SPPs of an optical wavelength concentrate light in a region that is considerably

smaller than their wavelength, a feature that suggests possibility of using SPPs for

the fabrication of nanostructures operating at optical frequencies.

In this chapter the fundamental physics behind the dispersive behavior of the

metals in optical frequencies are clarified, the SPPs are investigated in single and

multi-layer interfaces with odd and even modes due to coupling and lastly, the NPs

exhibiting LSPs are examined.
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Chapter 3

RF vs. Optical Antennas

The history of antennas dates back to James Clerk Maxwell who is well-known for

Maxwell’s equations unifying the theory of electricity and magnetism and representing

their relations as a set of profound equations. Maxwell also showed that light is an

electromagnetic wave and propagates with a particular speed. The first wireless

system was demonstrated by Heinrich Rudolph Hertz in 1886, however it was 1901

when Guglielmo Marconi managed to send signals over large distances [3].

During World War II modern antenna technology launched and new elements

were primarily introduced. The invention of the microwave sources with frequencies

of 1GHz and above was a contributing factor to this new era. The advances in

computer architecture and technology during 1960s through 1990s had a major impact

on the progress of modern antenna technology. With the introduction of numerical

methods like MoM, FDTD and FEM previously intractable complex antenna system

configurations were analyzed and designed accurately, contributing significantly to

the maturity of the antenna field.

While antennas are a key enabling technology for devices like cellular phones and

televisions using electromagnetic radiation in the radiowave and microwave regime,

their optical analog is basically nonexistent in today’s technology. Once fabrication

techniques have been improved to yield geometries with a few nanometers precision,

since it was the main reason of the late arrival of optical antennas, and become

accessible to researchers in universities and research labs, there has been a flurry of
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activities and interests in optical antennas and their applications [15–20,22,23,30,72].

Even so, one would have expected that the maturity of the RF antennas would have

had a more pronounced effect in the development of optical antennas.

A strong analogy between optical antennas and their RF counterparts has been

observed in terms of the desired operation. The main attraction of RF antennas is

their ability to collect radiated electromagnetic energy efficiently into a small vol-

ume on the receiver side (Rx), and to provide more directive and efficient radiation

of electromagnetic energy into a target volume on the transmitter side (Tx). Like-

wise, optical antennas enable the control, manipulation and visualization of light on

subwavelength structures. (Figure 3-1)

Tx

Rx

Optical 
Antenna

Figure 3-1: Analogy between optical and RF antennas. The information regarding
the emitter (Tx) in the vicinity of the optical antenna is radiated directively to the
destination (Rx). Since antennas are reciprocal, the opposite way of information
transmission is also possible.

Recent research in nanooptics and plasmonics has generated considerable inter-

est in the optical antenna concept and several studies are currently focused on how

to translate established radiowave and microwave antenna theories into the optical

frequency regime [11, 18, 20]. The robust analogy between the optical and the RF

antennas inspires a possible mapping between the two domains.

Though there is a high analogy, there are some important differences between

the optical and RF antennas mainly due the metal behavior and the nanoscale di-

mensions. The main difference relevant to the subject matter of this thesis is the

wave-matter interaction at the interface between dielectric and metal, which mani-

fests itself as surface current at RF and SPPs at optical frequencies. Though metals
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at RF do not let electromagnetic waves propagate through them, at higher frequencies

penetration of the radiation into metal increases, leading to increased dissipation. In

the optical regime, the metals become lossy behaving as a free electron gas; and, as

we go higher to ultraviolet frequencies they achieve a completely different character

acting as a dielectric. While SPPs are highly localized to the dielectric-metal interface

and propagate along the interface with the wavelength smaller than the wavelength

in the dielectric, the electromagnetic fields due to the surface current in RF extend

to the whole dielectric region with the same wavelength as the surrounding dielectric

medium. Therefore, for antennas operating at optical wavelengths, the resonance of

the structure is fundamentally defined by the SPPs and their interactions with the

antenna structure, which introduces a new term, the effective wavelength, 𝜆𝑒𝑓𝑓 [13].

The feeding mechanism in RF and optical antennas differ since optical antennas

cannot be fed via TLs as opposed to their RF counterparts due to the nanoscale

dimensions. Optical antennas are rather fed through coupling to the radiation of a

nearby emitter. Antenna feeding is one important concept since antenna parameters

like radiation, gain, directivity and polarization depend on the feed location due to

the excited resonant antenna mode. As stated above, the resonant antenna modes

are formed by the SPPs in optics and surface currents in RF.

In this chapter, the differences arising due to the metal behavior in optics will

be investigated in terms of the effective wavenumber. Effective wavenumber is a

complex quantity which possesses the information of other important variables like

the effective wavelength, imperfect reflections and the Q factor. In the second half,

the physics of antenna feeding in optics will be discussed.

3.1 Effective Wavenumber

The effective wavenumber is a complex quantity whose real part is related to the

effective wavelength as 𝑅𝑒{𝑘𝑒𝑓𝑓} = 2𝜋
𝜆𝑒𝑓𝑓

and imaginary part is related to the quality

factor (𝑄) as in (3.1).
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𝑘𝑒𝑓𝑓 =
2𝜋

𝜆𝑒𝑓𝑓

(1 + 𝑖
1

2𝑄
) (3.1)

In the second chapter the SPP behavior with its dispersion relation has been

studied. Here, the effective wavenumber will be derived with a review on the effective

wavelengths, the reflections due to the finite antenna sizes and the 𝑄 factor.

3.1.1 Effective Wavelength

RF antennas are at resonance when their characteristic lengths are integer multiples

of half of the wavelength of the incoming radiation. However, for antennas operating

at optical wavelengths, the resonance of the structure is fundamentally defined by the

SPPs and their interactions with the antenna structure, which requires a new defini-

tion of the resonant length, rather than half of the wavelength of the illumination as in

RF. Optical antennas resonate at sizes fundamentally half of the effective wavelength.

The SPPs form the standing waves, creating the resonant antenna modes that will

generate the radiation. The resonance condition for an optical antenna of length 𝑙

can be observed via TL or Fabry-Perot resonator analogy. Assumption here is that

the SPP, supported by the antenna, goes through imperfect, complex reflections from

the antenna terminations.

The resonance condition for the SPP propagating in the TL of length 𝑙 shown

in Figure 3-2 with characteristic impedance 𝑍0, load impedance 𝑍𝐿 and imperfect

reflection due to mismatched loads Γ = |Γ|𝑒𝑖ΦΓ is given in (3.2) due to an in-phase

interference of the propagating SPs.

𝑒𝑖𝑘𝑆𝑃 2𝑙|Γ|2𝑒𝑖2ΦΓ = 𝛼𝑒𝑖2𝜋𝑚 (3.2)
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Figure 3-2: TL with length 𝑙, characteristic impedance 𝑍0 where SP propagates and
imperfectly reflects from boundaries due to mismatched loads 𝑍𝐿.

In a passive system, only the magnitude or the phase of (3.2) can be conserved,

therefore a phase matching condition, (3.3), related to the resonant antenna length 𝑙

can be derived from (3.2).

𝑅𝑒{𝑘𝑆𝑃}𝑙 + ΦΓ = 𝑚𝜋 (3.3)

Effective wavelength calculations are available in the literature for various geome-

tries [13,73–75]. The effective wavelength 𝜆𝑒𝑓𝑓 at which the optical antenna responds

to the external excitation is related to the antenna resonant length 𝑙 as 𝜆𝑒𝑓𝑓 = 𝑚2𝑙

via TL resonance analogy, that being so the effective wavelength can be represented

for the fundamental mode 𝑚 = 1 as in (3.4) in terms of the SP wavenumber and the

complex reflection coefficient.

𝜆𝑒𝑓𝑓 = 2
𝜋 − ΦΓ

𝑅𝑒{𝑘𝑆𝑃}
= 2𝑙 (3.4)

The calculation of the complex reflection coefficient is very important to observe

the correct antenna resonant lengths, therefore different approaches to the problem

are visited here in detail.

3.1.2 Reflection Coefficients

The calculation of the complex reflection coefficients regarding the SPPs propagating

on various structures like antennas, waveguides, resonators is important in order

to design these structures at their resonant lengths for in-phase interference of the

incident and the reflected SPPs. The dielectric waveguide model is proposed for the

57



guided SPPs via Fresnel reflections by taking the refractive index of the medium as

𝑛𝑒𝑓𝑓 = 𝑘𝑆𝑃/𝑘0 [76]. This approach implicitly assumes SPP as a plane wave. The

reflections of SPPs propagating on a semi-infinite metal-dielectric interface is further

studied in a more accurate vectorial approach [77] . This method assumes that SPP is

the dominating field distribution in the region enclosing the metal-dielectric interface.

There is an indirect method for metal nano-strips using full-wave simulations based on

Finite Difference Frequency Domain (FDFD) method where the reflection coefficient

is formalized as the ratio of the incident to reflected electric field measured at a

specific location on the nano-strip [75]. An analytical method for the reflections from

MIM structures is proposed for lossless and dispersion free metals [74]. This model is

improved for real metals with the introduction of the continuity of the poynting flux

in the SP propagation direction [73].

Semi-Infinite Structures

The parallel 𝑥 and 𝑦 components of the electric and magnetic fields are matched at

the boundary as in (3.5)-(3.6) where Γ is the complex reflection coefficient, 𝑖 refers to

incident field, 𝑆𝑃 refers to SPP field and 𝐹𝑆 refers to free space field (Figure 3-3).

(1 + Γ)𝐸𝑆𝑃
𝑥,𝑖 = 𝐸𝐹𝑆

𝑥 (3.5)

(1 − Γ)𝑐𝑜𝑠(𝜃)𝐻𝑆𝑃
𝑦,𝑖 = 𝐻𝐹𝑆

𝑦 (3.6)

Upon Fourier expansion of the magnetic field 𝐻𝐹𝑆
𝑦 and using the boundary con-

ditions the reflection coefficient Γ can be analytically calculated as (3.7) for the semi-

infinite structure in Figure 3-3.
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Figure 3-3: Geometry for the SPP reflection at free space boundary on a semi-infinite
metal-dielectric interface. Region I is a metal slab with dispersive dielectric constant
(𝜖𝑚) that extends infinitely in 𝑦−direction and semi-infinitely in 𝑥− and 𝑧− directions.
Region II is the dielectric region with a dielectric constant 𝜖𝑑.

Γ =
𝐼𝑐𝑜𝑠(𝜃)𝜖2𝑝(𝜖𝑑 − 𝜖𝑚) − 𝜋

√
−𝜖𝑑𝜖𝑚

𝐼𝑐𝑜𝑠(𝜃)𝜖2𝑝(𝜖𝑑 − 𝜖𝑚) + 𝜋
√
−𝜖𝑑𝜖𝑚

(3.7)

The new defined terms 𝜖𝑝 and 𝐼 in (3.7) are expressed in (3.8) where 𝑢𝑧(𝑢) in the

integration 𝐼 is 𝑢𝑧(𝑢) =
√︀

𝜖𝑑 − 𝑢2 − 𝜖𝑝𝑠𝑖𝑛(𝜃)2.

𝜖𝑝 = 𝜖𝑚𝜖𝑑/(𝜖𝑚 + 𝜖𝑑)

𝐼 =
∫︀∞
−∞

(𝜖𝑑−𝑢2)𝑑𝑢

𝑢𝑧(𝑢)(𝑢2− 𝜖𝑝𝜖𝑑
𝜖𝑚

)(𝑢2− 𝜖𝑝𝜖𝑚
𝜖𝑑

)
(3.8)

Upon numerical implementation of the analytically observed representation, the

magnitude and phase of the complex reflection coefficient for the SPPs propagating

on Silver-air interface excited with 𝜆0 = 632nm illumination are shown in Figures

3-4(a), 3-4(b) to be in good agreement with the reference study [77].
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Figure 3-4: Amplitude and phase of the complex reflection coefficient with respect
to excitation (𝜆0 = 632nm) angle 𝜃 for semi-infinite silver-air structure a) magnitude
b)phase.
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Figure 3-5: Resonant lengths for semi-infinite silver-air structure upon 𝜆0 = 632𝑛𝑚
excitation with respect to various illumination angles 𝜃. Solid blue line shows 𝜆𝑆𝑃/2.

The resonant lengths for the semi-infinite silver-air structure upon 𝜆0 = 632nm

excitation with respect to different 𝜃 excitation angles in Figure 3-5 with a solid line

for the resonant length for SPP, half of the SPP wavelength, is given.
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For all the excitation angles the resonant length is smaller than the SPP resonant

length due to imperfect reflection losses.

Two-Interface Structures

Consider a 3-layer structure infinite in 𝑦 direction, discontinuous in 𝑧 direction and has

a boundary to air in 𝑥 direction, in Figure 3-6, where part of the SPPs supported in

the structure can couple to and propagate as free space modes. This structure is first

studied for lossless and dispersionless metals [74], later improved for real metals with

the introduction of the energy conservation at the boundaries in the SPP propagation

direction [73].
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Plane wave
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z

Figure 3-6: Finite length MIM cavity supporting an SPP mode propagation.

In addition to the boundary conditions regarding the continuation of the tangential

fields, an intuitive boundary condition for the conservation of the energy of the fields

on both sides of the termination are given in (3.9).

(1 + Γ)𝐸𝑆𝑃
𝑧 = 𝐸𝐹𝑆

𝑧

(1 − Γ)𝐻𝑆𝑃
𝑦 = 𝐻𝐹𝑆

𝑦∫︁ ∞

−∞
𝑆𝑆𝑃
𝑥 𝑑𝑧 =

∫︁ ∞

−∞
𝑆𝐹𝑆
𝑥 𝑑𝑧 (3.9)

The free space energy is derived in (3.10) using the boundary conditions given

above.
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∫︁ ∞

−∞
𝑆𝐹𝑆
𝑥 𝑑𝑧 = −

∫︁ ∞

−∞
𝐸𝐹𝑆

𝑧 𝐻𝐹𝑆*
𝑦 𝑑𝑧

= −
∫︁ ∞

−∞
(1 + Γ)𝐸𝑆𝑃

𝑧 (1 − Γ*)𝐻𝑆𝑃*
𝑦 𝑑𝑧

= −(1 + Γ)(1 − Γ*)

∫︁ ∞

−∞
𝐸𝑆𝑃

𝑧 𝐻𝑆𝑃*
𝑦 𝑑𝑧 (3.10)

The 𝑧 component of the free space electric field 𝐸𝐹𝑆
𝑧 can be expressed as a super-

position of the plane waves, using the Fourier transform as in (3.11).

𝐸𝐹𝑆
𝑧 =

∫︁ ∞

−∞
𝑓(𝑘𝑧)𝑒

𝑖𝑘𝑧𝑧𝑑𝑘𝑧 (3.11)

Rearranging (3.11) for 𝑘𝑧 = 𝑘0𝑢 leads to (3.12) via the boundary conditions, where

𝑓(𝑘𝑧) = 1
2𝜋

(1 + Γ)
∫︀∞
−∞ 𝐸𝑆𝑃

𝑧 𝑒−𝑖𝑘𝑧𝑧𝑑𝑧.

𝐸𝐹𝑆
𝑧 =

∫︁ ∞

−∞
𝑓(𝑘𝑧)𝑒

𝑖𝑘0𝑢𝑧𝑘0𝑑𝑢 (3.12)

Transforming from 𝑘𝑧 to 𝑢 space; 𝑓(𝑢) is defined as a function of 𝐼1(𝑢) in (3.13).

𝑓(𝑢) =
1 + Γ

2𝜋

∫︁ ∞

−∞
𝐸𝑆𝑃

𝑧 𝑒−𝑖𝑘0𝑢𝑧𝑑𝑧 (3.13)

=
1 + Γ

2𝜋
𝐼1(𝑢) (3.14)

The magnetic field can be observed as in (3.15) correspondingly.

𝐻𝐹𝑆
𝑦 =

−1

𝜔𝜇0

∫︁ ∞

−∞

(1 + Γ)𝐼1(𝑢)

2𝜋

𝑘2
0𝑒

𝑖𝑘𝑧𝑧√︀
𝑘2
0 − 𝑘2

𝑧

𝑑𝑘𝑧 (3.15)

The free space energy can be derived as in (3.16).

62



∫︁ ∞

−∞
𝑆𝐹𝑆
𝑥 𝑑𝑧 = −

∫︁ ∞

−∞
𝐸𝐹𝑆

𝑧 𝐻𝐹𝑆*
𝑦 𝑑𝑧

= −
∫︁ ∞

−∞
(1 + Γ)𝐸𝑆𝑃

𝑧 (1 − Γ*)𝐻𝑆𝑃*
𝑦 𝑑𝑧

= −(1 + Γ)(1 − Γ*)

∫︁ ∞

−∞
𝐸𝑆𝑃

𝑧 𝐻𝑆𝑃*
𝑦 𝑑𝑧

= −(1 + Γ)(1 − Γ*)

∫︁ ∞

−∞
𝐸𝑆𝑃

𝑧

−1

𝜔𝜇0

∫︁ ∞

−∞

(1 + Γ*)𝐼*1 (𝑢)

2𝜋

𝑘2
0𝑒

−𝑖𝑘*𝑧𝑧√︀
𝑘2
0𝑘

*2
𝑧

𝑑𝑘𝑧𝑑𝑧

= −(1 + Γ)(1 + Γ*)
−1

2𝜋𝜔𝜇0

∫︁ ∞

−∞

|𝐼1|2𝑘2
0√︀

𝑘2
0 − 𝑘𝑧*2

𝑑𝑘𝑧 (3.16)

The reflection coefficient Γ is observed in (3.17) via matching the free space and

SPP energies through (3.10) and (3.16).

1 − Γ*

1 + Γ* =

∫︀∞
−∞ 𝑑𝑢−|𝐼1(𝑢)2|√

1−𝑢2

𝜆0

√︁
𝜇0

𝜖0

∫︀∞
−∞ 𝑑𝑧𝐸𝑆𝑃

𝑧 𝐻𝑆𝑃*
𝑦

(3.17)

The original study [74] for lossless and dispersionless metal and without the energy

conservation on the boundary, by using the rest of the boundary conditions above cal-

culates the reflection coefficient as in (3.18) for a 𝐺 defined in (3.19) .

Γ =
1 −𝐺

1 + 𝐺
(3.18)

𝐺 =
1

2𝜋

∫︀∞
−∞

𝑘0

𝑍0

√
𝑘20−𝑘2𝑥

[𝐹.𝑇{𝐸𝑆𝑃
𝑧 }]2𝑑𝑘𝑧∫︀∞

−∞𝐸𝑆𝑃
𝑧 𝐻𝑆𝑃*

𝑦 𝑑𝑧
(3.19)

The magnitude and phase of the complex reflection coefficient with respect to

incident wavelength for various insulator thicknesses 𝑑𝑖𝑛𝑠 = 20nm, 50nm, 100nm are

given in Figure 3-7 for Ag-air-Ag structure.
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Figure 3-7: Reflection coefficient amplitude and phase with respect to incident wave-
length on Ag-air-Ag MIM structure a)amplitude of the reflection coefficient b)phase
of the reflection coefficient. Results observed from analytical derivations and imple-
mented in Matlab.
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Figure 3-8: Reflection coefficient amplitude and phase with respect to the insula-
tor thickness on Ag-air-Ag MIM structure a)amplitude of the reflection coefficient
b)phase of the reflection coefficient. Results observed from analytical derivations and
implemented in Matlab.
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The magnitude and phase of the complex reflection coefficient for various inci-

dences 𝜆0 = 397nm, 1216nm are given in Figure 3-8 for Ag-air-Ag structure as a

function of insulator thickness.

The resonant lengths, mainly the effective wavelengths, are calculated using the

TL resonance condition. In Figure 3-9 the resonant lengths regarding the Ag-air-Ag

structure under an illumination of 𝜆0 = 892nm are shown as a parameter of the

insulator thickness. The dispersive, real silver is considered with continuation of the

energy at the boundary [73].
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Figure 3-9: Resonance lenghts as a function of insulator thickness for different orders
under 𝜆0 = 892nm excitation on Ag-air-Ag MIM structure

The SPP dispersion and propagation on symmetric two-interface structures like

MIM and IMI were given in a similar manner in Chapter 2. The nature of physical

behavior and the mathematical derivations inspires calculation of the SPP reflection

coefficient on IMI structures by using the same method introduced above.

In the literature, the SP reflection on an IMI structure (Figure 3-10), representing

a nano-strip antenna, has been examined using full-wave simulations based on FDFD

method [75] where the reflection coefficient is expressed as the ratio of the incident

to reflected electric field measured at a location 𝑥𝑚.
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Figure 3-10: IMI structure with launch point 𝑥0, end-face 𝑥𝑒 and the measurement
point 𝑥𝑚

In order to solve the IMI problem analytically, the MIM algorithm given above for

dispersive, real metals [73] is implemented for IMI in Figure 3-11 considering a silver

film of various thicknesses for three different excitation wavelengths 𝜆0 = 500nm,

600nm, 700nm.
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Figure 3-11: Reflection coefficient amplitude and phase with respect to the thick-
ness of the metal layer in air-Ag-air IMI structures upon three different excitations
𝜆0 = 500nm, 600nm, 700nm calculated by the analytical approach introduced for
MIM structures. a)amplitude of the reflection coefficient b)phase of the reflection
coefficient.

The observation of the complex reflection coefficients for IMI structures through

the analytical method introduced here for MIM structures is proven to be valid when
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compared to the FDFD results in [75]. In the optical antenna design chapter this will

be more clear as we will be running a test for the antenna resonant lengths, since

the accuracy of the complex reflection coefficients are very important in the resonant

length calculation.

3.1.3 Quality Factor

For an ideal lossless case, the response of an antenna to external excitation is a discrete

set of infinitely narrow peaks, one for each eigenfrequency. 𝑄 factor is a figure of

merit in antenna design that is related to the spectral energy density associated to

the resonant mode and the electric field enhancement on resonance and it is a function

of the antenna’s size, shape and the surrounding environment. 𝑄 factor is defined as

the product of the angular frequency and the ratio of time averaged energy stored to

the power loss per second as given in (3.20).

𝑄 = 𝜔0
Stored energy

Power loss
= 𝜔0

𝑈

𝑃
(3.20)

In the frequency domain, the antenna modes are defined by considering analyt-

ical continuations of the Maxwell’s equations in the complex frequency plane, with

eigenmodes (E,H, 𝜔̃) where 𝑘𝑒𝑓𝑓 = 𝜔̃
√
𝜖𝜇. For real 𝜖 and 𝜇, (E*,−H*, 𝜔̃*) is also

a solution of the Maxwell’s equations. Applying the Green-Ostrogradski formula to

the vector E × H* + E* × H on an arbitrarily closed surface,
∑︀

defining a volume

𝑉 , (3.21) can be observed.

∫︁∫︁
∑︀

(E × H* + E* × H) · 𝑑S = 𝑖(𝜔̃ − 𝜔̃*)

∫︁∫︁∫︁
𝑉

(𝜖|E|2 + 𝜇|H|2)𝑑𝑉 (3.21)

Introducing the time averaged real power through the closed surface
∑︀

𝑃 = 1/2
∫︀∫︀∑︀ 𝑅𝑒{E × H*}𝑑S
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and time-averaged electromagnetic energy stored in the volume 𝑉 ,

𝑈 = 1/4
∫︀∫︀∫︀

𝑉
(𝜖|E|2 + 𝜇H2)𝑑𝑉

equation (3.21) can be reorganized as 𝑃 = 2𝐼𝑚{𝜔̃}𝑈 where 𝑈 and 𝑃 are defined for

the eigenmode. From (3.20) one can interpret (3.22).

𝑄 =
𝑅𝑒{𝜔̃}

2𝐼𝑚{𝜔̃}
(3.22)

In the time domain picture, the energy stored in the cavity is exponentially decay-

ing in time with a decay constant 𝜏 as 𝑈 = 𝑈0𝑒
−𝑡/𝜏 . Radiated power 𝑃 can be found

from derivation of 𝑈 with respect to time as 𝑃 = −1/𝜏𝑈0𝑒
−𝑡/𝜏 . Decay constant is

defined as 𝜏 = 𝑄/𝜔0, as a result 𝑄 factor is a measure of the resonant mode lifetime.

Both frequency and time domain pictures are completely equivalent. Therefore,

a damped oscillation with a real frequency 𝜔0 and time decay 𝜏 = 𝑄/𝜔0 is equivalent

to a lossless oscillation at a complex resonance frequency 𝜔̃ = 𝜔0 + 𝑖𝜔0/2𝑄.

Another approach is via the circuit analysis. The general topology of the equiva-

lent circuit of an antenna, given in Figure 3-12 for 𝑇𝑀𝑚𝑛 modes, can be built with

series connections of parallel resonant sections for each eigenfrequency which for the

special case of the (𝑚,𝑛) mode excitation can be given as in Figure 3-13 with 𝐿′

indicating the negligible contribution of all higher order modes.

C00

R00
L01

C01

R01 R10

L10

C10

L02

R02

C02

R11

C11

L11

TM00 TM01 TM10 TM02 TM11

L∞

Figure 3-12: The equivalent circuit of the RF patch antenna. 𝑄 factor definition
through circuit equivalent of an RF patch antenna.
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L'

Cmn Lmn Rmn

Figure 3-13: The circuit model for patch antenna operating at its (𝑚,𝑛) mode band
where 𝐿′ corresponds to the (negligible) higher order modes’ contribution.

𝑄 factor is a measure of loss of a resonant circuit and it increases as loss decreases.

𝑄 factor for circuits can be derived as in (3.23) starting from (3.20) where the power

loss (𝑃𝑙𝑜𝑠𝑠) and the time averaged energy stored in the capacitor (𝑊𝑒) and the inductor

(𝑊𝑚) are defined in (3.24) for the 𝑅𝐿𝐶 circuit shown in Figure 3-13.

𝑄 = 𝜔
𝑊𝑚 + 𝑊𝑒

𝑃𝑙𝑜𝑠𝑠

(3.23)

𝑃𝑙𝑜𝑠𝑠 =
|𝐼𝑅|2𝑅

2

𝑊𝑒 =
|𝐼𝐶 |2

4𝐶

𝑊𝑚 =
|𝐼𝐿|2𝐿

4

(3.24)

Considering the resonance of the circuit in Figure 3-13, the antenna behavior can

be examined for 𝑄 factor, input impedance and the resonance frequency. The input

impedance of the 𝑅𝐿𝐶 circuit can be derived as 𝑍𝑖𝑛 = ( 1
𝑅

+ 𝑖
𝜔𝐿

−𝑖𝜔𝐶)−1. At resonance

due to 𝑊𝑚 = 𝑊𝑒, the resonance frequency is found as 𝜔0 = 1/
√
𝐿𝐶. 𝑄 factor at

resonance can then be observed as 𝑄 = 𝑅/𝜔0𝐿 = 𝜔0𝑅𝐶 which implies that as losses

decrease (𝑅 increase) 𝑄 increases.

Since 𝑄 factor is related to the inverse of the bandwidth, these quantities can be

examined for their near resonance behavior through reformalized input impedance

relation, 𝑍𝑖𝑛 = ( 1
𝑅
− 𝑖𝜔𝐶(1 − 𝜔2

0/𝜔
2))−1. Near resonance, 𝜔2 − 𝜔2

0 ≈ 2𝜔∆𝜔, hence

input impedance can be derived as 𝑍𝑖𝑛 = 𝑗𝜔𝐶[𝜔−𝜔0(1+ 𝑖 1
2𝑄

)] from where a complex
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angular frequency can be defined as in (3.25).

𝜔̃ = 𝜔0(1 + 𝑖
1

2𝑄
) (3.25)

Examination of the 𝑄 factor through frequency and time domain pictures and

the circuit equivalent of a resonator (antenna, cavity) proved that a complex angu-

lar frequency, hence an effective wavenumber, can be defined using 𝑄 factor of the

resonator.

Derivation of the 𝑄 Factor

𝑄 factor can be derived through the transmitted irradiance which will be maximized

at resonance. A parallel plate under an illumination of a narrow beam can be analyzed

for reflectance and transmittance irradiation [78].

n

n

nf

E0

θi

rE0

tE0 tr'E0

ttr'E0

tt'E0 tt'r'2E0

tr'2E0

...    ...      ...

...    ...    

...    ...    

Figure 3-14: Multiply reflected and transmitted beams in a parallel plate

The parallel plate in Figure 3-14 is illuminated with a plane wave with amplitude

𝐸0 and angle of incidence 𝜃𝑖 where the phase difference between successive transmitted

beams is 𝛿 = 𝑘∇, ∇ = 2𝑛𝑓 𝑡𝑐𝑜𝑠𝜃𝑡 and 𝑟 and 𝑡 refer to external 𝑟′ and 𝑡′ refer to internal

reflection and transmission coefficient amplitudes [78]. The successive terms in the

transmission area are as follows :
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𝐸1 = 𝑡𝑡′𝐸0

𝐸2 = 𝑡𝑡′𝑟′2𝐸0𝑒
−𝑖𝛿

𝐸3 = 𝑡𝑡′𝑟′4𝐸0𝑒
−𝑖2𝛿

𝐸4 = 𝑡𝑡′𝑟′6𝐸0𝑒
−𝑖3𝛿

...

𝐸𝑁 = 𝑡𝑡′𝑟′(2𝑁−2)𝐸0𝑒
−𝑖(𝑁−1)𝛿 (3.26)

The total transmitted field 𝐸𝑇 is a superposition of all 𝑁 modes collected by the

converging lens below and is given in (3.27) which can be further organized to obtain

(3.28).

𝐸𝑇 =
∞∑︁

𝑁=1

𝐸𝑁 = 𝑡𝑡′𝐸0 +
∞∑︁

𝑁=2

𝑡𝑡′𝑟′(2𝑁−2)𝐸0𝑒
−𝑖(𝑁−1)𝛿 (3.27)

𝐸𝑇 = 𝐸0[𝑡𝑡
′ + 𝑡𝑡′𝑟′2𝑒−𝑖𝛿

∞∑︁
𝑁=2

𝑟′(2𝑁−4)𝑒−𝑖(𝑁−2)𝛿)] (3.28)

Factoring 𝑥 = 𝑟′2𝑒−𝑖𝛿 in form of geometric series, due to |𝑥| < 1 (3.28) can be

expressed as in (3.29).

𝐸𝑇 = 𝐸0[𝑡𝑡
′ +

𝑡𝑡′𝑟′2𝑒−𝑖𝛿

1 − 𝑟′2𝑒−𝑖𝛿
] (3.29)

The relations 𝑡𝑡′ = 1−𝑟2 and 𝑟 = −𝑟′ being used in 3.29 results in a much simpler

version of 𝐸𝑇 in (3.30) from which the intensity can be obtained as |𝐸𝑇 |2 as in (3.31)

and normalized as (3.32).

𝐸𝑇 = 𝐸0
1 − 𝑟2

1 − 𝑟2𝑒−𝑖𝛿
(3.30)

|𝐸𝑇 |2 = |𝐸0|2
(1 − 𝑟2)2

1 + 𝑟4 − 2𝑟2𝑐𝑜𝑠𝛿
(3.31)
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𝐼𝑇 =
(1 − 𝑟2)2

1 + 𝑟4 − 2𝑟2𝑐𝑜𝑠𝛿
𝐼𝑖 (3.32)

Using the trigonometric identity 𝑐𝑜𝑠𝛿 = 1− 2𝑠𝑖𝑛2( 𝛿
2
), (3.32) can be simplified and

the Airy function (transmittance) can be observed as in (3.33).

𝑇 =
𝐼𝑇
𝐼𝑖

=
1

1 + [4𝑟2/(1 − 𝑟2)2]𝑠𝑖𝑛2(𝛿/2)
(3.33)

Transmittance 𝑇 will be maximum at resonance, hence its denominator will ap-

proach to 0 in the limit. Upon placing the reflection intensity |𝑟|2 = 𝑅 in the Airy

function the denominator can then be expressed as (3.34) for a resonance at 𝜆0 with a

beamwidth of ∆𝜆 where phase difference 𝛿 is represented as a function of wavelength

as 𝛿 = 4𝜋𝑛𝐿𝑐

𝜆
𝜑𝑟.

(1 −𝑅)2

4𝑅
= 𝑠𝑖𝑛2 𝛿(𝜆0 + 1/2∆𝜆)

2
(3.34)

The value of the total phase delay of the parallel plate 𝛿 at resonance can be

replaced into (3.34). From the resonance condition, introduced also in (3.3), 𝛿 =

𝑚2𝜋 = 2𝑘𝑆𝑃 𝑙 + 2𝜑𝑟, (3.35) is derived where 𝑘𝑟
𝑆𝑃 is the real, propagating part of the

SPP mode.

(1 −𝑅)2

4𝑅
= 𝑠𝑖𝑛2{𝑘𝑟

𝑆𝑃 𝑙 + 𝜑𝑟} (3.35)

By defining 𝑛𝑆𝑃 as 𝑘𝑆𝑃 = 𝑘0𝑛𝑆𝑃 + 𝑖𝛼/2 and introducing it to (3.35), one can

extract (3.36) which can be expressed as Taylor series around zero, the first term of

which is the first order derivative that leads to (3.37).

(1 −𝑅)2

4𝑅
= 𝑠𝑖𝑛2{ 2𝜋𝑙

𝜆0 + 1
2
∆𝜆

𝑛𝑆𝑃 (𝜆0 +
1

2
∆𝜆) + 𝜑𝑟(𝜆0 +

1

2
∆𝜆)} (3.36)

(1 −𝑅)2

4𝑅
= 𝑠𝑖𝑛2{2𝜋𝑛𝑆𝑃 𝑙

𝜆0

[1 − 1

2

∆𝜆0

𝜆0

][1 +
1

2

∆𝜆

𝑛𝑆𝑃

(
𝜕𝑛𝑆𝑃

𝜕𝜆
)𝜆0 ] + Φ𝑟(𝜆0) +

1

2
∆𝜆(

𝜕Φ𝑟

𝜕𝜆
)𝜆0}

(3.37)
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Reorganizing the terms in (3.37) and having a separate paranthesis for 𝑄 = 𝜆/∆𝜆

(3.38) can be obtained.

(1 −𝑅)2

4𝑅
= 𝑠𝑖𝑛2{2𝜋𝑛𝑆𝑃 𝑙

𝜆0

+ 𝜑𝑟(𝜆0) +
∆𝜆

𝜆0

[𝜋𝑙(
𝜕𝑛𝑆𝑃

𝜕𝜆
)𝜆0 −

𝜋𝑛𝑆𝑃 𝑙

𝜆0

+
𝜆0

2
(
𝜕𝜑𝑟

𝜕𝜆
)𝜆0 ]} (3.38)

Since at resonance the term 2𝜋𝑛𝑆𝑃 𝑙
𝜆0

+ 𝜑𝑟(𝜆0) will be 2𝜋𝑚, (3.38) reduces down to

(3.39) at resonance.

(1 −𝑅)2

4𝑅
= 𝑠𝑖𝑛2(

∆𝜆

𝜆0

[𝜋𝑙(
𝜕𝑛𝑆𝑃

𝜕𝜆
)𝜆0 −

𝜋𝑛𝑆𝑃 𝑙

𝜆0

+
𝜆0

2
(
𝜕𝜑𝑟

𝜕𝜆
)𝜆0 ]) (3.39)

The small angle approximation 𝑠𝑖𝑛(𝜃) ≈ 𝜃 results in 𝑄 as in (3.40).

𝑄 =

√
𝑅

1 −𝑅
[
2𝜋

𝜆0

𝑛𝑆𝑃 𝑙 − 𝜆0(
𝜕𝜑𝑟

𝜕𝜆
)𝜆0 − 2𝜋𝑙(

𝜕𝑛𝑆𝑃

𝜕𝜆
)𝜆0 ] (3.40)

By defining a group index 𝑛𝑔 = 𝑛𝑆𝑃 − 𝜆0(
𝜕𝑛𝑆𝑃

𝜕𝜆
)𝜆0 , an effective length 𝑙𝑒𝑓𝑓 = 𝑙 −

𝜆2
0

2𝜋𝑛𝑔
(𝜕𝜑𝑟

𝜕𝜆
)𝜆0 and a round-trip effective loss via imperfect reflection 𝑟 as 𝑅𝑒𝑓𝑓 = |𝑟|2𝑒−𝛼𝑙,

(3.41) can be obtained [79].

𝑄 =

√︀
𝑅𝑒𝑓𝑓

1 −𝑅𝑒𝑓𝑓

[𝑘0𝑛𝑔𝑙𝑒𝑓𝑓 ] (3.41)

For narrow resonances and by neglecting the wavelength dependence of the mag-

nitude of the reflection coefficient, 𝑟, a 𝑄 factor given in (3.42) can be obtained.

Generally the penetration length 𝐿𝑝 in 𝑙𝑒𝑓𝑓 = 𝑙 + 2𝐿𝑝 is less than 10% of the length.

𝑄 =
𝑘0

1 −𝑅𝑒𝑓𝑓

𝑛𝑔𝑙 (3.42)

3.2 Excitation of the Antenna

The optical antennas, due to their nanometer sizes, cannot be fed by TLs. Feeding

of the antenna is important in order to generate the desired modes, hence antennas

need to be fed from a precise feed location. In optics, feeding is via coupling of the
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radiation from a scatterer in the vicinity. Such a coupling shows some interesting

physics of the fluorescence enhancement and quenching.

We can consider fluorescence enhancement as a function of plasmon energy and

NP scattering efficiency though we cannot examine each characteristic independently.

There is a clear correlation between the plasmon resonance wavelength and the maxi-

mum radiative rate enhancement such that the radiative rate enhancement is maximal

when the plasmon resonance is tuned to the emission wavelength of the molecule. NP

scattering is highly dependent on the plasmon excitation since the NP scattering

cross section on resonance is strongly enhanced compared to its off resonance value.

NP scattering is optimal when the plasmon resonance corresponds to the molecule’s

emission wavelength as well.

Fluorescence is the product of two processes: i) Excitation by the incident field

influenced by the local environment, and ii) emission of radiation influenced by the

balance of radiative and nonradiative decay. While the source of process i) is the

external radiation field, in process ii) it is the molecule itself which constitutes the

source [72].

The intensity of the light in the near field of the NP is enhanced strongly at the

plasmon resonance frequency. Hence, at a distance of a few nanometers from the

NP the fluorescent of the molecule can be strongly enhanced. Metallic NPs alter

the quantum yield of the molecule by modifying the molecular radiative decay rate

and so influencing the molecular emission. The coupling efficiency of the fluorescence

emission to far field can be increased through NP scattering.

Metallic NPs can be utilized in several ways by controlling the molecule-NP sep-

aration, size and geometry of the NP in order to achieve fluorescence enhancement

and influence emission [80].

Upon understanding the dependence of the fluorescence enhancement on the plas-

mon energy and the NP scattering efficiency we can design strategies for the optimiza-

tion of the enhancement using adjacent metallic nanostructures. The fluorescence

enhancement can be changed by tuning the plasmon resonance since the plasmon

resonance influences both the radiative rate enhancement and the NP scattering ef-
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ficiency [80]. Any internal or external mechanism tuning the plasmon resonance

influences fluorescence enhancement.

Optical antennas have strong influence on the excitation and emission of a single

molecule. Metallic NPs behave as an elementary resonant dipole antenna given a

dipolar radiation pattern and a well defined resonance spectrum as the quasistatic

limit of Mie theory describes the scattering properties and the plasmon spectra of

the NPs. An excited molecule in the vicinity of an optical antenna behaves like a

transmitter, and similarly a molecule in its ground state excited by the localized field

near the optical antenna acts as a receiver. So an optical antenna used to enhance the

molecular fluorescence acts as a two way antenna [72]. Coupling of light to dipolar

radiators lies at the heart of light-matter interaction, furthermore it opens the way

to imaging of nano-objects with nonclassical light.

75



Conclusion

The strong analogy between optical antennas and their RF counterparts inspires a

mapping between these domains. In order to bridge the gap between RF and optics

which is due to the metal behavior and the scaling, a method for the accurate cal-

culations of the resonant lengths for the optical antennas are examined here, so that

the SPPs can generate the standing waves upon reflections from the antenna termi-

nations. Also, for a powerful mapping of the cavity model, the intrinsic wavenumber,

at which the optical antenna resonates, is obtained. Due to their nanometer sizes, op-

tical antennas can no longer be fed by TLs, but instead they are excited via coupling

to the emission from nearby scatterers. In this chapter the coupling mechanism with

a slight touch on the fluorescence enhancement is explored, and a feed mechanism

through coupling to a NP emitter in the vicinity of the antenna is proposed.
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Chapter 4

Optical Patch Antenna Design

RF antennas have been proposed, optimized and designed for various applications

with lots of different configurations since the late 19th century. In the past, antenna

design has been considered as a secondary issue in overall system design, yet today

it is truly an engineering art and plays a critical role since many systems rely on the

design and performance of the antenna [3]. Optical antennas have arrived in the 21st

century thanks to the nano-scale fabrication capabilities. Although there is a wealth of

knowledge and experience on the design of RF antennas with a potential to be mapped

to optics, optical antennas have mainly utilized the RF antenna geometries only. Since

optical antennas have recently become quite popular in the scientific community, due

to their potential applications in the fields of nanotechnology, biology, biomedical

research and nanophotonics, it would be interesting to study the traditional antenna

concepts in the realm of optical frequencies.

Although the introduction of the full-wave approaches like MoM, FDTD, FEM

and FDFD contributed significantly to the maturity of the antenna field with the abil-

ity to analyze and design previously incontrollable complex antenna systems, they are

incapable of providing any intuition to the antenna engineers and they create com-

putational complexity due to large number of discretization of the solution domain.

In addition to full-wave methods there are a number of antenna systems that can be

analyzed with closed form solutions of a boundary value problem. Patch antennas

are one of these structures for which analytical and semi analytical models and design
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techniques are available.

Inspired by this assessment, the transfer of accumulated knowledge in one of

the most widely employed and versatile antenna configurations in RF, the patch

antennas, to the optical frequencies, with special emphasis given to their modeling

and the computational aspect will be presented in this chapter. Cavity model will be

introduced for patch antennas in order to provide an understanding of the operating

principles, determination of performance limitations and development of new antenna

configurations. As such, this thesis intends to open up a new gateway full of new

design approaches, functionalities and intuitions in optical antennas. In the first

part of this chapter, the RF patch antennas and their modeling techniques will be

introduced. Considering the differences between RF and optical properties, given in

the third chapter, a mapping of the cavity model will be proposed with optical feeding

analogs and appropriate resonant lengths. Lastly, antenna mode excitations and the

corresponding radiation patterns obtained both analytically using the cavity model

and numerically using commercial FDTD solver [81] will be given to prove that the

proposed mapping of the cavity model to optics is highly accurate.

4.1 RF Patch Antennas and the Cavity Model

The patch antennas, upon their ideation in 1950’s [31] and realization in 1970’s [32],

have been one of the most studied and innovative classes of antenna work in rf, with

several variations in patch shape, feeding and substrate configurations, analytical and

semi analytical models and design techniques [33]. Patch antennas are prefered low

profile antennas for high performance applications like aircrafts and satellites due

to their simple fabrication, low-weight, low-cost, easy installation, modification and

customization, polarization diversity or dual or multiple functionalities [34].

A typical configuration of a patch antenna consists of a piece of metal trace on a

substrate backed by a metal ground plane, as shown in Figure 4-1 for a rectangular

patch shape.
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Figure 4-1: A typical rectangular patch antenna in RF, consisting of a metallic patch
with dimensions 𝑎× 𝑏 and thickness 𝑑 on a dielectric substrate backed by the ground
plane.

Regardless of the operating mode, transmitting or receiving, the current on the

patch and the associated fields between the patch and the ground plane are excited

either by a feed or incident wave. Since the thickness of the substrate is usually

quite small as compared to the wavelength of operation, the electric field components

parallel to the metal plane would be negligible throughout the substrate, resulting

in 𝐸𝑧(𝑥, 𝑦), 𝐻𝑥(𝑥, 𝑦) and 𝐻𝑦(𝑥, 𝑦) field components only. If the characteristic length

of the patch (𝑎 or 𝑏 for the rectangular patch in Figure 4-1) is close to 𝜆/2 or its

integer multiple, the patch element resonates and sustains relatively large currents

and associated fields in the structure, becoming the source of radiation.

Due to the equivalence theorem, there are basically two interpretations of the

radiation mechanism of such antennas [35]: Either the antenna can be viewed i) as

the patch with the resonating current on, or equivalently, ii) as a cavity formed by

the patch and the ground plane enclosed laterally by the slot-type radiators with the

resonating field inside. As a result, the cavity interpretation for the radiation has

inspired a model, known as the cavity model, that has proven to be very efficient,

intuitive, easy to understand and use for the analysis and design of patch antennas

of some canonical shapes [36–38].

The most popular RF patch antenna analysis methods are the cavity model, trans-

mission line and the full-wave method using the MoM. TL model is the easiest of all,

yet with less accuracy. Full wave method has computational constraints. Cavity

model, on the other hand, is an easy-to-understand and easy-to-implement analysis

tool. The importance of this method is not its simplicity in understanding and imple-
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mentation, rather its applicability to a broad class of patch antennas with a wealth of

applications developed in rf, and more importantly its ability to provide intuition with

which one can assess the outcome without going through trial-and-error simulations

with no or little intuitive guidance by the user.

4.1.1 RF Patch Antenna Feeding Methods

Currents on the RF patch antenna and the corresponding electric and magnetic field

distributions inside the dielectric substrate are excited by a feed. There are various

methods for feeding the patch antenna [36] while the most common two are the probe

and the slot feeding shown in Figures 4-2(a) and 4-2(b) respectively. RF antennas

are fed via TLs that excite electric or magnetic currents and these excited currents

couple to electric (J ·E) or magnetic (M ·H) fields. The aim of the feeding is precise

in antenna theory, to generate proper antenna modes so that the antenna radiates in

a particular direction.

x=az=d x

z

(a)

x=az=d x

z

(b)

Figure 4-2: RF patch antenna feeding methods a) RF patch antenna probe feed-
ing. TL is soldered beneath the patch generating an electric current in the dielectric
substrate that couples to the electric field within the cavity b) RF patch antenna
slot feeding. TL is soldered on both ends of a slot on the ground plane, exciting a
magnetic current that couples to magnetic fields of the cavity for slot feeding.
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4.1.2 Cavity Model

Equivalence theorem demonstrates that the radiation due to the surface current res-

onating on the patch antenna resembles the one due to the resonating fields inside

the cavity equivalent of the patch antenna [35] and inspires the cavity model that

calculates the normalized fields within the dielectric substrate by treating that re-

gion as a cavity, bounded by electric conductors above and below and magnetic walls

along the perimeter of the patch as shown in Figure 4-3. In order to reach the cavity

equivalent of the RF patch antenna, the electric field parallel to the metal plane is

neglected since the substrate is considered to be thin enough. The patch is replaced

with a metal slab slightly larger than the actual patch size so that the fringing fields

are included. The cavity equivalent for the patch antenna is observed in Figure 4-3

with metal planes on top and bottom, considered to be Perfect Electric Conductor

(PEC), and Perfect Magnetic Conductor (PMC) walls on the sides.

x=az=d x

z

PEC

PEC

PMCPMC

Figure 4-3: Cavity equivalent of the RF patch antenna. PEC at 𝑧 = 0, 𝑑 and PMC
at 𝑥 = 0, 𝑎 and at 𝑦 = 0, 𝑏 for a rectangular patch antenna as in Figure 4-1.
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The salient feature of the approach is that it can provide analytical expressions for

the fields inside the cavity of some canonical shapes [37], where the closed-form solu-

tions Ψ𝑚𝑛 of the scalar wave equation ∇2Ψ+𝑘2Ψ = −𝛿 are possible with appropriate

boundary conditions.

Once the equivalence is established between the cavity and the patch, the fields

inside the cavity can be expressed as a superposition of all possible orthonormal modes

𝐸𝑧 =
∞∑︁

𝑚,𝑛=0

𝐸𝑚𝑛Ψ𝑚𝑛 (4.1)

where Ψ𝑚𝑛(𝑥, 𝑦) = 𝑐𝑜𝑠(𝑚𝜋
𝑎
𝑥)𝑐𝑜𝑠(𝑛𝜋

𝑏
𝑦) for a rectangular patch as in Figure 4-1, and

are shown below for other shapes [37]. Hence, all relevant antenna parameters, such

as, current distribution on the patch, stored and radiated energy, radiation pattern

and related impedances, can be obtained in closed forms, enabling the computation

of these parameters, and in turn, the design of the antenna with little effort and great

intuition.

Table 4.1: Patch Antenna Shapes and Closed-form Mode Distributions

Rectangle

a

b

y

x
0

Ψ𝑚𝑛 = 𝑐𝑜𝑠(𝑚𝜋
𝑎
𝑥)𝑐𝑜𝑠(𝑛𝜋

𝑏
𝑦)

𝑘𝑚𝑛 =
√︀

(𝑚𝜋
𝑎

)2 + (𝑛𝜋
𝑏

)2

Circle

a

y

x

0

Ψ𝑚𝑛 = 𝐽𝑛(𝑘𝑚𝑛𝜌)𝑒𝑗𝑛𝜑

𝐽 ′
𝑛(𝑘𝑚𝑛𝑎) = 0
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Ellipse
y

x

2q

η ε

Ψ𝑚𝑛 = 𝑅𝑒𝑚(𝜖, 𝜒𝑒𝑛)𝑆𝑒𝑚(𝜂, 𝜒𝑒𝑛)

𝑅𝑒𝑚(𝑎, 𝜒𝑒𝑛) = 0, 𝑐ℎ𝑖𝑒𝑛 = 𝑘𝑞

major axis 2𝑞𝑐𝑜𝑠ℎ(𝑎) minor axis 2𝑞𝑠𝑖𝑛ℎ(𝑎)

odd modes: replace 𝑒 by 𝑜 above

Equilateral Triangle
y

x

0

a

Ψ𝑚𝑛 = 𝑐𝑜𝑠(2𝜋𝑙
3𝑏

)(𝑢
2

+ 𝑏)𝑐𝑜𝑠(𝜋(𝑚+𝑛)(𝑣−𝑤)
9𝑏

)+

𝑐𝑜𝑠(2𝜋𝑚
3𝑏

)(𝑢
2

+ 𝑏)𝑐𝑜𝑠(𝜋(𝑛−𝐿)(𝑣−𝑤)
9𝑏

)+

𝑐𝑜𝑠(2𝜋𝑛
3𝑏

)(𝑢
2

+ 𝑏)𝑐𝑜𝑠(𝜋(𝐿−𝑚)(𝑣−𝑤)
9𝑏

)

𝐿 = −(𝑚 + 𝑛), 𝑢 =
√
3
2

+ 1
2
𝑦

𝑣 − 𝑤 = −
√
3
2
𝑥 + 3

2
𝑦, 𝑏 = 𝑎/2

√
3

𝑘2
𝑚𝑛 = (4𝜋

3𝑎
)2(𝑚2 + 𝑛2 + 𝑚𝑛)

Right Isosceles

a a
x y

𝑎)Ψ𝑚𝑛 = 𝑐𝑜𝑠(𝑚𝜋
𝑎
𝑥) − 𝑐𝑜𝑠(𝑚𝜋

𝑎
𝑦)

𝑘𝑚𝑛 =
√

2𝑚𝜋
𝑎

𝑏)Ψ𝑚𝑛 = 𝑐𝑜𝑠(𝑚𝜋
𝑎
𝑥)𝑐𝑜𝑠(𝑚𝜋

𝑎
𝑦)

𝑘𝑚𝑛 =
√

2𝑚𝜋
𝑎

Circular Ring Segment

0 a b

α

Ψ𝑚𝑛 = [𝑁 ′
𝜈(𝑘𝑚𝜈𝑎)𝐽𝜈(𝑘𝑚𝜈𝜌)−

𝐽 ′
𝜈(𝑘𝑚𝜈𝑎)𝑁𝜈(𝑘𝑚𝜈𝜌)]𝑐𝑜𝑠(𝜈𝜌)

𝜈 = 𝑛𝜋/𝑎

𝐽 ′
𝜈(𝑘𝑚𝜈𝑎)

𝑁 ′
𝜈(𝑘𝑚𝜈𝑎)

= 𝐽 ′
𝜈(𝑘𝑚𝜈𝑏)

𝑁 ′
𝜈(𝑘𝑚𝜈𝑏)

Circular Ring

x

y

a b

Ψ𝑚𝑛 = [𝑁 ′
𝑛(𝑘𝑚𝑛𝑎)𝐽𝑛(𝑘𝑚𝑛𝜌)−

𝐽 ′
𝑛(𝑘𝑚𝑛𝑎)𝑁𝑛(𝑘𝑚𝑛𝜌]𝑒𝑗𝑛𝜑

𝐽 ′
𝑛(𝑘𝑚𝑛𝑎)

𝑁 ′
𝑛(𝑘𝑚𝑛𝑎)

= 𝐽 ′
𝜈(𝑘𝑚𝜈𝑎)

𝑁 ′
𝜈(𝑘𝑚𝜈𝑎)

Circular Segment

0 a
Ψ𝑚𝑛 = 𝐽𝜈(𝑘𝑚𝜈𝜌)𝑐𝑜𝑠(𝜈𝜑)

𝜈 = 𝑛𝜋/𝑎, 𝐽 ′
𝜈(𝑘𝑚𝜈𝑎) = 0

Disk with slot

0 a

Ψ𝑚𝑛 = 𝐽𝑛/2(𝑘𝑚𝑛𝜌)𝑐𝑜𝑠(𝑛𝜑/2)
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4.2 Optical Patch Antennas

After having established a strong analogy between optical and RF antennas [30], and

having developed fabrication techniques that can produce structures at nanometer

precision [22], both of which are essential to realize the full potentials of antennas,

there has been an intense study on the use of antennas in optics, ranging from infrared

imaging [8], high-resolution microscopy [6,9, 39,40] to solar cells [41,42], optical sen-

sors [43], metasurfaces [44] and graphene detectors [45], and many more. It should be

stressed here that, in most optical antenna applications, the term "design" of the an-

tenna merely refers to the optimization of the dimensions of the antenna using one of

the commercially available full-wave Maxwell solvers, like FDTD and FEM, which are

widely used in optical antenna optimization [46,47]. Although such rigorous full-wave

Maxwell solvers are readily available and provide accurate results, they are usually

burdened with a large number of discretization of the solution domain (usually sur-

faces for MoM and volumes for FEM and FDTD), and perhaps more importantly for

antenna design, they are impenetrable and incapable of providing any intuition to

users. Motivated from such an intense study and the possibility of widespread use of

antennas in optics, and the need for a design tool that builds intuition on the oper-

ation of antennas in optics, the cavity model for patch antennas, with all their bells

and whistles in RF, are introduced and translated into the optical frequencies, despite

the fact that material properties and wave-matter interaction are almost completely

different in these two frequency regimes.

It would be instructive to briefly mention and to give due credits to a few uses

of patch antennas in optics, mainly to put things into perspective. Recently, there

have been a few applications of patch antennas in optics; namely, to achieve a large

Purcell factor, collection efficiency and spectral width [48], or to achieve inter- or

intra-chip optical communications and sensing [23], or to control the spontaneous

emission rate and the radiation pattern of quantum dots [49]. Apart from their

intended use in optics, the tools that are used to analyze these patch antennas have

been either the simplest model, namely the transmission line model [2], with mediocre

84



accuracy, little intuition and limited to rectangular patches only [23, 50], or the full-

wave approach with good accuracy but no intuition at all [48, 49]. However, the one

that has been an inspiration for this study is the design of optical patch antennas for

single photon emission using surface plasmon resonance [48], where they considered

a thin metallic patch as an SPP cavity. Hence, we have realized that, to employ the

cavity model, one does not need to have two parallel metal plates to form a cavity,

instead a free-standing metal patch of one of the canonical shapes, or the metal patch

over a dielectric substrate, or the metal patch over a dielectric substrate backed by

another metal plane can be considered as a patch antenna suitable for the Cavity

Model, provided the complex reflection coefficients from the edges of the patch can

be obtained.

Here, considering the optical patch antenna geometry in Figure 4-4 the validity

of the proposed mapping of the cavity model for intuition on the optical antenna

behaviour and the resonance will be validated.

x

z y

x=a

y=b

z=d

Figure 4-4: Optical patch antenna made of a single metal layer with sizes 𝑎, 𝑏 and
thickness 𝑑.

4.2.1 Mapping of the Cavity Model to Optics

In the RF patch antenna design and analysis by the cavity model, the complex ex-

citation wavenumber 𝑘, at which the antenna operates, can be obtained by lumping

all the losses into a single "effective dielectric loss" as 𝑘 = 𝑘0
√
𝜖𝑟 [82]. A reasonable

mapping of RF to optical regime is reached through the equivalency of the effective

wavenumber as 𝑘 = 𝑘0
√
𝜖𝑟 = 𝑘𝑒𝑓𝑓 . Thus, the cavity model, in order to predict the
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optical antenna behavior, is mapped to optics by embedding metal losses, arising due

to real, dispersive metal behavior in the optical regime and the imperfect reflections

from the antenna terminations, into a complex dielectric permittivity of the substrate

𝜖𝑟 in Figure 4-1, as in (4.2).

𝜖𝑟 = (
𝑘𝑒𝑓𝑓
𝑘0

)2 (4.2)

Optical antennas cannot be fed via TLs, instead optical means of the two most

commonly used RF patch antenna feeding techniques are given in Figure 4-2.

x

z

x=a
z=d

(a)

x

z

x=a
z=d

(b)

Figure 4-5: Practical means of feeding in RF and Optical regimes. a) Optical means
of probe feeding with a NP in the vicinity. b) Optical means of slot feeding via a
hole/dent.

The resonant lengths have to be obtained for the optical patch antennas as well as

a feed analog has to be defined. Both these challanges are identified in the previous

chapters, and some solutions are proposed.

For the sake of illustration, a free-standing, rectangular gold patch in Figure 4-4

with the thickness 𝑑 = 50nm is illuminated by a plane wave (𝜆0 = 1100nm) to support

the SPP at the gold-air interface, with 𝑘𝑆𝑃 = 5.8×106 + 𝑖1.05×104 (𝜆𝑆𝑃 = 1083nm).

It is safe to assume that 𝑘𝑆𝑃 is independent of the length and width of the antenna,

as the resonator (i.e., the patch) is not well below the diffraction limit. Therefore, the

effective wavelength is computed as 𝜆𝑒𝑓𝑓 = 540nm from (3.4) by using the complex

reflection coefficient Γ𝑒𝑖ΦΓ = 0.095𝑒𝑖0.49𝜋 obtained analytically for the IMI structure

in (3.17).

In order to verify the computed data for the effective wavelength and the reflection
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coefficient, the total scattered power from the gold patch antenna, with the dimensions

of 𝑎 = 𝑏 = 𝜆𝑒𝑓𝑓/2 = 270nm and 𝑑 = 50nm, as a function of wavelength is obtained

from a commercial-grade simulator based on the FDTD method [81] (Figure4-6).

Knowing that the scattered field intensity is at its maximum at resonance, the peak

of the scattered field upon plane wave excitation in Figure 4-6 shows the resonant

wavelength at 1040nm, which is off by 60nm, corresponding to around 5𝑜 error in the

phase of the reflection coefficient, that is 1.5nm difference in the antenna resonant

length. Considering that the fabrication precision is on the order of a few 𝑛𝑚, the

calculated effective wavelength based on the analytical calculation of the reflection

coefficient can be used for all practical purposes. As a result, the quality factor 𝑄 can

be calculated as 1.65 and the effective wavenumber 𝑘𝑒𝑓𝑓 is obtained as 1.16 × 107 +

𝑖3.5 × 106.

With this verification, it has been established that the square gold patch antenna

(𝑎 = 𝑏 = 270nm, 𝑑 = 50nm) can be used for the demonstration of the cavity model

in optics.
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Figure 4-6: Total scattered power measured on a box of monitors around the optical
patch antenna made of gold with sizes 𝑎 = 𝑏 = 270nm and thickness 𝑑 = 50nm for
plane wave excitations of two different polarizations: TM given in (blue) plus and
TE in (red) cross at the insets. The black line shows the excitations wavelength
𝜆0 = 1100nm. 𝜑𝑑𝑖𝑓𝑓 refers to the difference between the analytically calculated and
the indirectly observed phases of the reflection coefficient.
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4.2.2 Mode Excitations and Radiation Patterns

The cavity model provides a strong insight and intuition on the modes as well as

the radiated fields of the antenna. This statement still holds for the optical patch

antenna studied here, where there is no actual cavity, provided that the similar surface

currents (antenna modes) are observed upon similar feeding strategy.

As a result of the cavity model, one can define modes of the antenna in terms

of the modes of the cavity which are referred to 𝑇𝑀𝑚𝑛 modes. Therefore, the field

profile corresponding to a specific mode dictates where to position the source, whether

it is a NP (metallic or molecular) above the patch or a small discontinuity (gap, dent,

etc.) on the patch, in order to excite the required current distribution on the patch

and, in turn, the radiation pattern and the polarization of the radiation. That is, one

needs to position the source, with the dipole moment 𝜇, where it couples the most

to the electric field of the desired mode and less or none to that of the undesired

mode, as the change of energy dissipation of a dipole in inhomogeneous environment

is proportional to Im{𝜇* · 𝐸𝑠} [54].

Based on the modal profile in (4.1) predicted by the cavity model, |𝐸𝑧| is zero

(has a null) at 𝑦 = 𝑏/2 for 𝑇𝑀01 mode and at 𝑥 = 𝑎/2 for 𝑇𝑀10 mode. In Figure

4-7 the corresponding cavity mode that is obtained analytically is seen upon probe

feeding and with good agreement to the numerical simulation results.

x

y

Figure 4-7: Cavity mode on cavity equivalent of RF patch antenna upon probe feeding
at (𝑎/4, 𝑏/2) for 𝑇𝑀10 mode excitation.
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An electric dipole coupling to the optical antenna from the vicinity (𝑥0 ̸= 𝑎/2,

𝑦0 = 𝑏/2, 𝑧0 = −15nm) will excite only the 𝑇𝑀10 mode. The current distributions on

the patch obtained by the Maxwell solver upon 𝑥0 = 𝑎/4 and 𝑥0 = 3𝑎/4 are shown

in Figures 4-8(a), 4-8(b). Although the same standing wave would be observed upon

probe feeding of the RF patch antenna at (𝑎/4, 𝑏/2) and (3𝑎/4, 𝑏/2), a slight difference

is observed on the standing waves upon these two feeds in optical patch antenna. The

asymmetry in the standing wave affect the far field radiation as well.

Although there is no actual cavity for the optical case in Figure 4-8, the mode

distributions and the radiation patterns show that the predictions of the cavity model

are in good agreement with the actual results and can provide a good starting point

in the design of an optical patch antenna.
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Figure 4-8: 𝑇𝑀10 mode excitation on the optical patch antenna. a) Surface current
distribution on optical patch antenna upon coupling to NP oscillating in the vicinity
to feed point (𝑎/4, 𝑏/2). b) Surface current distribution on optical patch antenna
upon coupling to NP oscillating in the vicinity to feed point (3𝑎/4, 𝑏/2). These two
feedings both excite 𝑇𝑀10 modes on the optical antenna with asymmetry in the mode
distributions.
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The radiation patterns are generally given in a similar manner as for dipole anten-

nas on 𝐸 and 𝐻 planes for co (parallel) and cross (perpendicular) polarizations [3].

Therefore, before showing the radiation patterns, the 𝐸 and 𝐻 planes are defined

for the 𝑇𝑀10 mode in Figure 4-9. Electric current distribution is observed on the

𝑥− 𝑧 surface of the antenna for 𝑇𝑀10 mode upon probe feeding; hence 𝑥− 𝑧 is the 𝐸

plane and consequently 𝑦 − 𝑧 is the 𝐻 plane. The co-polarized radiation is from the

component of the electric field that is parallel to the surface current which for 𝑇𝑀10

mode is the 𝐽 electric current; and the cross-polarized radiation is the one due to the

fields perpendicular to 𝐽 . Co-polarized radiation is stronger than cross-polarized [3].

E Plane
H Plane 

x

y

X

Er

EΦ

Eθ

Figure 4-9: 𝐸 and 𝐻 planes for the far field radiation pattern of 𝑇𝑀10 mode

In Figure 4-12, the parallel (co) polarization radiation patterns are given for

𝑇𝑀10 mode excitations from symmetric (𝑎/4, 𝑏/2) and (3𝑎/4, 𝑏/2) locations. The

co-polarization 𝐻 plane radiation pattern for the optical patch antenna highly corre-

lates with the cavity model predictions in Figures 4-10(b)-4-10(d) for both (𝑎/4, 𝑏/2)

and (3𝑎/4, 𝑏/2) feedings. This is expected since a constant field distribution is ob-

served in 𝐻 plane for both RF and optical regimes. The co-polarization 𝐸 plane

radiation pattern for optical patch antenna, on the other hand, provides a contribu-

tion that arises from the lossy metal behavior and the imperfect reflections in this

regime as given in Figures 4-10(a)-4-10(c). A tilt in the 𝐸𝜃 is seen instead of a uniform
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pattern as predicted by the cavity model, which would have a high impact on sensor

applications. The radiation is tilted in opposite directions according to the source

location as seen in Figure 4-12. This behavior in the optical regime holds an advan-

tage in sensing applications owing to the ability to differentiate between different feed

locations that generate the same antenna mode, a behavior that would not be seen

in RF.
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Figure 4-10: Co-polarized radiation patterns. a) (𝑎/4, 𝑏/2) feed co-polarized radiation
|𝐸𝜃|in E plane b) (𝑎/4, 𝑏/2) feed co-polarized radiation |𝐻𝜑| in H plane c) (3𝑎/4, 𝑏/2)
feed co-polarized radiation |𝐸𝜃| in E plane g) (3𝑎/4, 𝑏/2) feed co-polarized radiation
|𝐻𝜑| in H plane. Both the cavity model and the FDTD result is obtained for the
scattered field calculated in the far field of the optical patch antenna.
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The co-polarization radiation pattern in 𝐸−plane shows that the lossy metal

behavior in optical antennas result in better directivity, sensitive to the feed location.

Also, cross-polarization radiation patterns in 𝐸 and 𝐻 planes shown in Figure 4-11

are directed oppositely with (𝑎/4, 𝑏/2) and (3𝑎/4, 𝑏/2) feedings. Cross polarization

is not the desired polarization and much weaker compared to the parallel (desired)

polarization.
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Figure 4-11: Cross-polarized radiation patterns. a) (𝑎/4, 𝑏/2) cross polarized ra-
diation in E plane |𝐸𝜑| b) (𝑎/4, 𝑏/2) cross polarized radiation in H plane |𝐻𝜃| c)
(3𝑎/4, 𝑏/2) cross polarized radiation in E plane |𝐸𝜑| d) (3𝑎/4, 𝑏/2) cross polarized
radiation in H plane |𝐻𝜃|. Both the cavity model and the FDTD result is obtained
for the scattered field calculated in the far field of the optical patch antenna.
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The parallel polarized radiation patterns of the total field due to the dipole exci-

tation and the radiation from the optical patch antenna with 𝑇𝑀10 mode excitation

is given in Figure 4-12.
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Figure 4-12: Co-polarized radiation patterns. a) (𝑎/4, 𝑏/2) feed co-polarized radiation
|𝐸𝜃|in E plane b) (𝑎/4, 𝑏/2) feed co-polarized radiation |𝐻𝜑| in H plane c) (3𝑎/4, 𝑏/2)
feed co-polarized radiation |𝐸𝜃| in E plane g) (3𝑎/4, 𝑏/2) feed co-polarized radiation
|𝐻𝜑| in H plane. The cavity model result is for the scattered field. The FDTD result
is the total field calculated in the far field of the optical patch antenna.

The asymmetric mode distribution in the optical domain resulting in a new feature

of exactly distinguishing between two feeds (𝑎/4, 𝑏/2) and (3𝑎/4, 𝑏/2) as seen in Figure

4-13.
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Figure 4-13: Co-polarized (|𝐸𝜃|) radiation patterns of the total field in electric plane
for feeds |𝐸𝜃| and |𝐸𝜃|.

𝑇𝑀01 mode is excited on the optical patch antenna by feeding in the mid-𝑥 axis

whereas anywhere apart from center in 𝑦-direction on 𝑥0 = 𝑎/2 line.The 𝐸 and 𝐻

plane co-polarized radiation patterns for 𝑇𝑀01 mode are shown in Figures 4-14(a)

and 4-14(b) respectively. A tilt in 𝐸−plane is observed due to the metallic loss and

the imperfect reflections in optics. Lossy metal behavior happens to be an advantage

in optics with promising applications in sensing.
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Figure 4-14: 𝑇𝑀01 radiation patterns upon (𝑎/2, 𝑏/4) feeding a) co (parallel) polarized
radiation in E plane 𝐸𝜃 b) co (parallel) polarized radiation in H plane 𝐻𝜑.
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After having extensively studied the current distributions and the radiation pat-

terns in 𝐸 and 𝐻 planes for the 𝑇𝑀10 and 𝑇𝑀01 modes for various feed locations,

here are some of the observations: i) The radiation pattern in 𝐻-plane for the optical

patch antenna highly correlates with the cavity model predictions (Figures 4-10(b), 4-

10(d)); ii) current density along the resonating length shows a standing wave nature,

but not exactly symmetric as it is for the cavity model, which is attributed to the loss

mechanism in the metal and imperfect reflections from the edges of the patch as a

result of the asymmetry (Figure 4-8), iii) the radiation pattern in 𝐸 plane has become

more directive and tilted slightly from the broadside (Figures 4-10(a), 4-10(c)), and

iv) symmetric feed locations with respect to the center of the patch provide mirror

image symmetric profiles for both current density and radiation pattern, which may

play an important role in sensing applications owing to the ability to differentiate

between different feed locations that generate the same antenna mode, a behavior

that would not be seen in RF.
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Conclusion

In this chapter, after RF antennas and the cavity model have been introduced, a

mapping of the cavity model to optics is proposed. Extensive study on the feeding of

the antenna and the resulting mode distribution on the optical patch antenna surface

even in the absence of a physical cavity together with the strong agreement of the

corresponding radiation patterns is a proof for the validity of the proposed mapping.

Based on the study of the current distributions on and the radiation patterns from

the rectangular patches, it has been established that the optical patch antennas can

be designed by using the cavity model, at least for the initial design phase where one

defines the dimensions of the patch according to the intended frequency of operation

and the feed location(s) for the intended radiation pattern and polarization.

Throughout this study, the main focus has been the transfer of knowledge for the

patch antennas in RF, accumulated more than three decades, into optics with special

emphasis given to the cavity model; a simulation tool that has been the most popular,

intuitive and accurate enough for RF patch antennas. Since the cavity model was

originally proposed and developed for patch antennas that are surrounded by perfect

electrical and magnetic conductors, mapping it into optics, where metals are no longer

perfect conductors, has been proposed. It has been observed that the cavity model

equivalent in optics has achieved the intended goal, i.e., providing intuition on the

operation of the patch antennas. That is, the current distribution on the patch and

the associated radiation pattern can now be imagined for a given location of the feed

in optics as well.
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Chapter 5

Control over Resonance and

Polarization

The expression of the current distribution on the patch obtained by the cavity model

can be used to decide where to feed the patch to excite a specific mode and the

corresponding radiation and the polarization of the radiation, and/or how to tweak

the geometry to tune the resonance, and/or where and how to feed it to get circu-

larly polarized (CP) radiation. Knowing the current distribution of a mode or the

combination of the modes of an equivalent cavity guides antenna designer where to

locate the source on the patch in order to excite that mode, and provides intuition

how to tune the resonance, radiation pattern and polarization of the antenna. In this

chapter the tuning of the resonant frequency and the feeding for the CP operation

will be discussed under the light of the cavity model.

5.1 Tuning the Resonance Frequency

For RF patch antennas, tuning the resonant frequency of a mode can simply be

achieved by introducing a thin slot of length 𝑙 and width 𝑤 on the patch that effec-

tively increases the resonant length of that mode, and in turn, decreases the resonant

frequency as shown in Figure 5-1 for the implementation in optics.
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Figure 5-1: A slot of length 𝑙, width 𝑤, height 𝑑 on the optical patch antenna for tuning
the resonance wavelength. The antenna sizes here are 𝑎 = 𝑏 = 270nm, 𝑑 = 50nm and
the antenna is made out of gold. The dipole source is at 𝑧0 = −15nm.

The general topology of the equivalent circuit of the RF patch antenna operating

at its (𝑚,𝑛) mode band is given in Figure 5-2 [83]. The circuit interpretation of the

resonance tuning is quite simple, as the narrow slot can introduce a parallel capacitor

𝐶𝑠𝑙𝑜𝑡(∝ 𝑙𝑑/𝑤) to the equivalent resonant circuit of the mode (𝑚,𝑛) [38], resulting in

a shift of the resonant frequency, defined by 𝑓 = 1/2𝜋
√︀

𝐿𝑚𝑛(𝐶𝑚𝑛 + 𝐶𝑠𝑙𝑜𝑡).

L'

Cmn Lmn Rmn

Figure 5-2: The circuit model for patch antenna operating at its (𝑚,𝑛) mode band
where 𝐿′ corresponds to the higher order modes’ contribution.

The frequency is inversely and the resonant wavelength is directly proportional to

𝐶 + 𝐶𝑠𝑙𝑜𝑡. 𝐶𝑠𝑙𝑜𝑡 decreases with increasing 𝑤, as a result of decrease in the resonant

wavelength. In Figure 5-3 the resonant wavelength has an increasing trend as slot
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lengths gets bigger since the effective path increases, and so does the capacitance

𝐶𝑠𝑙𝑜𝑡; whereas a decreasing trend is observed as widths get bigger due to capacitive

effect.

Although the frequency tuning by introducing a slot on the patch and its simple

circuit interpretation of introducing parallel capacitor have been successfully demon-

strated in the optical regime, due to a complex behavior of the resonant wavelength

as evidenced in Figure 5-4, a slot of different widths and lengths in a patch needs to

be studied further.
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Figure 5-3: The SP resonance wavelength that the slot supports as a function of slot
length for different slot widths.
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Figure 5-4: The antenna resonance wavelength surface plot wrt width and length
of the slot. There is no single behavior seen that can be explained through one
mechanism only.

5.2 Circular Polarization

Another attractive feature of the RF patch antennas is their ability and flexibility to

produce and control the polarization of the radiation by simply selecting the position

of the feed, which may become useful in sensing and imaging in optics. For RF patch

antennas, a simple cavity model based approach is used to find the locations of the

feed to achieve CP radiation [38]. The model mainly uses the radiation fields at the

broadside of the antenna, due to the magnetic current densities for 𝑇𝑀01 and 𝑇𝑀10

modes at the edges of the cavity (on the PMC walls of the RF cavity equivalent), to

enforce the condition for CP operation, that is, 𝐸𝑇𝑀01
𝑦 /𝐸𝑇𝑀10

𝑥 = ∓𝑗 in the far field.

This leads to a quadratic equation for the position of the feed (𝑥0, 𝑦0) with possibly

two solutions if the discriminant is a positive real number [36]. However, since the

current distributions obtained by the cavity model for the 𝑇𝑀01 and 𝑇𝑀10 modes

on the antenna do not exactly match the actual current distributions especially near
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the edges of the patch, the phases of the electric field components in the far field are

expected to show some deviations from those obtained by the cavity model, whereas

the magnitudes of the fields are stationary in the far-field zone with respect to small

deviations in the source distribution. Moreover, for the optical patch antennas, there

is one more degree of freedom for the parameters of the feed which is the polarization

of the emitter in addition to its projected location on the patch.

5.2.1 Analytical Derivation of the Feed Locations for CP Op-

eration

One important property of the cavity model is the ability to find the feed locations to

drive the antenna for circularly polarized radiation. For the probe feeding case, which

has a practical analog of a vertical electric dipole (VED) source excitation in optics,

the 𝑥 and 𝑦 components of the far field radiation regarding the RF patch antenna

with sizes 𝑎, 𝑏 is given in (5.1).

𝐸(𝑥) ≈ 𝑐𝑜𝑠(𝜋𝑥0/𝑎)

𝑘 − 𝑘10

𝐸(𝑦) ≈ 𝑐𝑜𝑠(𝜋𝑦0/𝑏)

𝑘 − 𝑘01
. (5.1)

In order to have CP operation at the far field, the field distributions should be

satisfy a ratio of 𝐸𝑦/𝐸𝑥±𝑗 where +𝑗 refers to Left-Hand Circular Polarization (LHCP)

and −𝑗 refers to Right Hand (RHCP).

For a rectangular patch antenna 𝑎 > 𝑏, one way to determine the feed locations

(𝑥0, 𝑦0) is through the geometric relations as shown in Figure 5-5 for phasors 𝑘 − 𝑘10

and 𝑘 − 𝑘01 at an angle of 90𝑜 [36].
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Figure 5-5: Complex 𝑘 plane showing the geometric relations of phasors 𝑘10, 𝑘01 and
𝑘 for CP operation.

In order to find the feeding locations for CP operation a series of relations are

followed. The ratio of the 𝑥 and 𝑦 components of the far field radiation (5.1) can be

expressed as in (5.2) where 𝐴 is defined as in (5.3) which can be expressed as in (5.4)

as well.

𝐸𝑦

𝐸𝑥

= ±𝑗 ≈ 𝐴
𝑘 − 𝑘10
𝑘 − 𝑘01

(5.2)

𝐴 =
𝑐𝑜𝑠(𝜋𝑦0/𝑏)

𝑐𝑜𝑠(𝜋𝑥0/𝑎)
(5.3)

𝐴 =
|𝑘 − 𝑘01|
|𝑘 − 𝑘10|

(5.4)

The similarities of the triangles observed through phasors in Figure 5-5 lead to

(5.5) and (5.6).

|𝑘′′ |
𝑘01 − 𝑘′ =

|𝑘 − 𝑘10|
|𝑘 − 𝑘01|

(5.5)

|𝑘′′ |
𝑘′ − 𝑘10

=
|𝑘 − 𝑘01|
|𝑘 − 𝑘10|

(5.6)
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A quadratic equation for 𝐴 (5.7) can be obtained by combining (5.5) and (5.6)

and introducing (5.4).

𝐴𝑘01 − 𝐴2|𝑘′′ | − |𝑘′′ | − 𝐴𝑘10 = 0 (5.7)

The discriminant ∆ = (𝑘10 − 𝑘01)
2 − 4|𝑘′′|2 when solving (5.7) for 𝐴 defines the

solution set as two distinct roots for positive discriminant, one real root for zero

discriminant and no real roots for negative discriminant. Considering the positive

discriminant case two solutions 𝐴1,2 can be obtained as given in (5.8).

𝐴1,2 =
−(𝑘10 − 𝑘01) ±

√︀
(𝑘10 − 𝑘01)2 − 4|𝑘′′ |2

2|𝑘′′ |
(5.8)

Replacing these solutions in (5.3) the feed locations (𝑥0, 𝑦0) for CP operation can

be found as in (5.9).

𝑐𝑜𝑠(𝜋𝑦0/𝑏)

𝑐𝑜𝑠(𝜋𝑥0/𝑎)
=

𝜋

2

𝑎− 𝑏

𝑎𝑏

1

|𝑘′′ |
±

√︃
(
𝜋

2

𝑎− 𝑏

𝑎𝑏

1

|𝑘′′ |
)2 − 1 (5.9)

The current distributions obtained by the cavity model and the Maxwell solver

do not exactly match as shown in the previous chapter for 𝑇𝑀01 and 𝑇𝑀10 modes,

therefore divergence in the phases of the electric fields in the far field is expected. The

direct application of the cavity-model based approach to the optical patch antenna

discussed and verified earlier was not able to yield positions on the patch for a vertical

dipole to generate the CP operation. However, when the optical rectangular patch

antenna made out of gold, with the parameters of 𝑎 = 275𝑛𝑚, 𝑏 = 265𝑛𝑚, 𝑑 = 50𝑛𝑚

and 𝑧0 = −15𝑛𝑚 is studied for the location and the polarization (𝜃 ∈ [45, 90] with

respect to 𝑧-axis on 𝑥 − 𝑧 plane) of an electric dipole using the Maxwell solver, the

loci of the feed for the right-handed and the left-handed CP operation are obtained

as shown in Figure 5-6. The orientation of the dipole (a combination of VED and

HED) introduces a new degree of freedom for the CP analysis in the optical regime

that needs to be further analyzed.
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Figure 5-6: Locations and polarizations (𝜃 ∈ [45, 90] on 𝑥 − 𝑧 plane) of a dipole
emitter for the right-handed CP operation of a gold patch antenna. The dots are
for the axial ratio of 6𝑑𝐵, and the black circles are for 3𝑑𝐵. Antenna parameters:
𝑎 = 275nm, 𝑏 = 265nm, 𝑑 = 50nm, 𝑧0 = −15𝑛𝑚.
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When the optical antenna with the same effective parameters as 𝜆𝑒𝑓𝑓 = 540𝑛𝑚 and

𝑘𝑒𝑓𝑓 = 1.16× 107 + 𝑖3.52× 106 is examined using the analytical approach introduced

here to identify the feed locations for CP operation, the feed locations for RHCP and

LHCP operations are observed to be very close to the center. The

The solution to (5.7) under a constraint of a zero discriminant produces a curve

that fits quite well to the feed locations constructed by the dipole sources with different

orientations. The fitting line observed for zero discriminant in the analytical approach

is shown in Figure 5-7.
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Figure 5-7: Locations and orientations (𝜃 ∈ [45, 90] on 𝑥 − 𝑧 plane) of a dipole
emitter located at 𝑧0 = −15nm for the CP operation of a gold patch antenna with
dimensions 𝑎 = 275nm, 𝑏 = 265nm, 𝑑 = 50nm. The dots are for the axial ratio of
6𝑑𝐵, and the black circles are for 3𝑑𝐵.The fitted (green) dash-dotted line is observed
for zero discriminant in the analytical approach.
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A proper way of defining the polarization is via Axial Ratio (𝐴𝑅) where 𝐴𝑅 is

the ratio of the orthogonal components of the radiated field. 𝐴𝑅 for perfect CP is

1(0𝑑𝐵) since CP field is created by two orthogonal linear components with the same

magnitude. AR tends to degrade away from the main beam, so a range is usually given

to define the polarization which is generally 𝐴𝑅 < 3𝑑𝐵. The 𝐴𝑅 can be calculated

by using the polarization ellipse in Figure 5-8.
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Figure 5-8: Polarization ellipse with 𝑥, 𝑦 and rotated 𝜉, 𝜂 coordinate systems and
constant 𝐸𝑜𝑥, 𝐸𝑜𝑦 amplitudes.

𝐸𝑥(𝑧.𝑡) and 𝐸𝑦(𝑧, 𝑡) describe sinusoidal oscillations in 𝑥− 𝑧 and 𝑦− 𝑧 planes. The

equation of an ellipse in (5.10) is obtained by eliminating the time-space propagator

𝜔𝑡− 𝑘𝑧 where 𝛿 = 𝛿𝑥 − 𝛿𝑦. Since the equation refers to the polarized light, (5.10) is

called the polarization ellipse where a plot of it is given in Figure 5-8.

𝐸𝑥(𝑧, 𝑡)

𝐸2
𝑜𝑥

+
𝐸𝑦(𝑧, 𝑡)

𝐸2
𝑜𝑦

−
2𝐸𝑥(𝑧, 𝑡)𝐸𝑦(𝑧, 𝑡)

𝐸𝑜𝑥𝐸𝑜𝑦

𝑐𝑜𝑠𝛿 = 𝑠𝑖𝑛2𝛿 (5.10)

𝐸𝑥 and 𝐸𝑦 field components continue to be time-space dependent and as the

polarized beam propagates the polarization ellipse remains fixed due to constant 𝐸𝑜𝑥,

𝐸𝑜𝑦 amplitudes and 𝛿 phase.
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To assess the quality of the CP operation, the contour graph of the 𝐴𝑅 is given

in Figure 5-9, where the contours of 𝐴𝑅 ≤ 3𝑑𝐵 are shown on a surface at a constant

𝑧 in the far-field zone right at the top of the patch. It is observed that almost perfect

CP operation, with the 𝐴𝑅 of 1.13, is achieved by the patch antenna in optics when it

is fed by a dipole emitter with the polarization of 𝜃 = 85𝑜 on 𝑥− 𝑧 plane and located

at (𝑥0 = 72.5nm, 𝑦0 = 182.5nm, 𝑧0 = −15nm).
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Figure 5-9: Contour plot of 𝐴𝑅 on 1𝑚𝑚×1𝑚𝑚 surface at 𝑧 = 1𝑚 above the antenna
for dipole orientation of 𝜃 = 85𝑜 at feed location of 𝑥0 = 72.5nm, 𝑦0 = 182.5nm,
𝑧0 = −15nm. Parameters of the antenna : 𝑎 = 275nm, 𝑏 = 265nm, 𝑑 = 50nm and
the antenna is made out of gold.
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The perfectly fitting curve to the feed locations observed by Maxwell solver for

optics shown in Figure 5-7 corresponds to the root of (5.7) for zero discriminant.

As observed in the results shown here, direct application of the cavity model based

analytical approach needs to be further developed by considering the new degree of

freedom, the dipole orientation.

5.2.2 A New Degree of Freedom : Dipole Orientation

The magnitudes of the fields are stationary in the far field zone with respect to

small deviations in the source distribution whereas the phases of the electric field

components in the far field are expected to show some deviations. The excitation of

𝑇𝑀10 mode weakens as the emitter approaches to the center in 𝑥 direction, and a

similar behavior is observed for 𝑇𝑀01 mode when the emitter approaches to center

in 𝑦 direction. An HED on 𝑥− 𝑧 surface (𝜑 = 0𝑜, 𝜃 = 90𝑜) excites the 𝑥 component

of the electric field stronger than the 𝑦 component as shown in Figure 5-10.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

29

x (nm)

|E
s
c
a
t| 

(a
.u

.)

 

 

|E
x
| with HED

|E
y
| with HED

Figure 5-10: The magnitudes of the 𝑥 and 𝑦 components of the field excited via HED
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The effect of the dipole orientation on the 𝑥 and 𝑦 components of the radiated

electric field is not straightforward for CP operation. In order to seek for further

evidence on the phase deviations, a feed location from Figure 5-7 that drives CP of

𝐴𝑅 = 1.16 is investigated. The excitation of the optical patch antenna is via HED

(𝜑 = 0𝑜, 𝜃 = 90𝑜) at (𝑥0 = −95nm, 𝑦0 = 95nm, 𝑧0 = −15nm) feed location and

𝐴𝑅 = 1.16 is obtained with |𝐸𝑦|/|𝐸𝑥| = 1.12 and 𝜑𝑦 − 𝜑𝑥 = −265𝑜. The variations

of the magnitudes and phases, and the phase differences of the 𝑥 and 𝑦 components

of the radiated electric field and the calculated 𝐴𝑅 are given for different dipole

orientations (𝜃 angles) in Figure 5-11.
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Figure 5-11: The magnitude, phase difference between the 𝑥 and 𝑦 components of
the radiated electric field and the 𝐴𝑅) observed computationally for an optical patch
antenna fed from the vicinity of (𝑥0 = −95nm, 𝑦0 = 95nm, 𝑧0 = −15nm) with respect
to different dipole orientations (𝜃).
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𝐴𝑅 = 1.33 is seen upon feeding with a dipole source that has 𝜃 = 85𝑜 and is located

at 𝑧0 = −15nm above the feed point (𝑥0 = −75nm, 𝑦0 = 55nm). The magnitude and

phase of the radiated field components, the phase difference between them and the

AR are given for different 𝜃 angles (dipole orientations) in Figure 5-12. At 𝜃 = 85𝑜

|𝐸𝑦|/|𝐸𝑥| = 1.05 and 𝜑𝑦 − 𝜑𝑥 = −254𝑜, hence CP radiation is noted.
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Figure 5-12: The magnitude, phase difference between the 𝑥 and 𝑦 components of
the radiated electric field and the 𝐴𝑅) observed computationally for an optical patch
antenna fed from the vicinity of (𝑥0 = −95nm, 𝑦0 = 55nm, 𝑧0 = −15nm) with respect
to different dipole orientations (𝜃).

The phases of the 𝑥 component changes since it can couple to HED as well as

VED, whereas the 𝑦 component can only couple to VED. As seen in Figures 5-11,5-

12 𝜑𝑦 does not change with dipole orientation but due to the changes in 𝜑𝑥 CP can be

observed. Unless a phase difference of odd multiples of 90𝑜 is observed by default at

a particular dipole orientation CP cannot be achieved by only changing the dipole’s

location on the optical antenna.
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In order to have control over CP operation for the optical patch antennas via

an analytical approach inspired by the cavity model, the new degree of freedom, the

polarization of the emitter, needs to be considered in addition to its projected location

on the patch.
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Conclusion

Knowing the current distribution of a mode of an equivalent cavity guides us where to

locate the surce in order to excite that mode, and provides intuition on how to tune

the resonance, radiation pattern and the polarization. In the fifth chapter the tuning

of the resonant frequency and the feeding for the CP operation are discussed under

the light of the cavity model. The tuning of the resonance by introducing slots on

the patch is proven to work as expected by the cavity model, yet needs to be further

studied in order to count in various slot sizes. CP operation research launches a new

degree of freedom, the orientation of the source, different from the RF point of view

where the CP is obtained upon feeding the antenna from specific locations.
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Chapter 6

Discussions and Future Work

There has been a tremondous work on the optical antennas and their applications

[12–25] following the introduction of the nm-accuracy fabrication techniques. The

optical antennas, up to now, mainly inherited the RF antenna geometries with some

fundamental characteristics but none of the design and analysis tools that may provide

intuition in development and understanding of such structures. Motivated from such

an intense study and the possibility of widespread use of antennas, and the need for

a design tool that builds intuition on the operation in optics, in this study we have

introduced the cavity model for optical patch antenna design with a computational

aspect. The full-wave computational techniques like FEM, FDTD and MoM [26–29]

are impenetrable and incapable of providing any intuition to users as compared to

the cavity model, that provides advancement in design, analysis and understanding

of the patch antennas.

In the cavity model analysis [35–38], the patch antenna is treated as a cavity

formed by the patch and the ground plane enclosed laterally by the slot-type ra-

diators with the resonating field inside, which is equivalent to the patch with the

resonating current on. Inspired by this assessment, in this study, we have initiated

an establishment, or some sort of mapping, of the cavity model to the optical domain

as such, this study opens a new gateway full of new design approaches and intutions

in optical antennas. The integrity of the cavity model in RF, which assists efficient

analysis and design of the antenna, is maintained while providing intuition upon the

113



operation, determination of the limitations in the performance of the antenna, and

in the development of new antenna configurations or modifications to an existing

antenna design.

The differences between the two frequency domains, RF and optics, are examined

and necessary modifications for the use of assistance of the cavity model in optics are

introduced. The cavity in optics is formed via the SPPs that replace the surface cur-

rents in RF. For a free standing rectangular optical patch antenna, the resonance in

the optics is defined and the structure is designed to operate at its intrinsic resonant

wavelength. With the intuition gained from the caviy model, the designed optical

patch antenna is fed for specific mode excitations and analyses showed high correla-

tions to cavity model predictions in the mode distributions and correspondingly, in

the radiation patterns.

Cavity model is valid for various patch antenna shapes and with various feeding

configurations. In the future, the mode excitations with the correspondent radia-

tion patterns will be investigated in order to prove the theorem for other canonical

shapes as well. The main consideration for doing so, is the complex reflection coef-

ficient calculations in those shapes. The cavity model is proven to work accurately

for rectangular optical patch antennas, which is sufficient for a proof of principle.

Other excitation techniques, like plane wave excitation on a slot feed, might have

better practicality in doing experiments, compared to excitation via coupling of a

single emitter in a precise feed location which requires optical trapping and accurate

positioning of single quantum emitters.

Based on the study of the current distributions on and the radiation patterns from

the rectangular patches, we have established that the optical patch antennas can be

designed by using the cavity model, where we defined the dimensions of the patch

according to the intended frequency of operation and the feed locations for intended

radiation pattern and polarization. The frequency tuning by introducing a slot on the

patch and its circuit equivalent have been successfully demonstrated in the optical

regime. In the future, slots of different widths and lengths need to be further studied

since there is complex behavior due to the coupling between the parallel plates in
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addition to some other possible mechanisms that need to be clarified.

Another attractive feature of patch antennas, the ability to produce and control

the polarization by simply selecting the feed position, is considered to be an important

tool for sensing and imaging applications in optics, hence, we have studied the CP

excitation and observed that there is a new degree of freedom, the orientation of the

feed, introduced for optical patches. Direct implementation of the cavity model based

analytical approach was not able to yield the feed positions in optics, since it analyzes

the optical patch antenna for VED feed as that is the optical analogue of a probe

feed.

As we have mentioned that a metal patch over a dielectric substrate, or a metal

patch over a dielectric substrate backed by another metal plane can also be considered

as an optical patch antenna suitable for the cavity model, these structures will be

investigated in the future. For the MIM case especially, due to a new degree of

freedom which is the thickness of the insulator, it is possible to have very small-scale

antennas with sizes around 20 times smaller then the operating wavelength [66].

Another idea to be explored in the future is the design of dual mode antennas with

the advantage of the coupling of the SPPs in symmetric MIM and IMI structures.

Two different SPPs (symmetric and asymmetric) a symmetric structures supports,

by arranging the antenna resonant lengths correspondingly for each SPP, can both

resonate by a single feed.

To sum up, the main focus throughout this study has been the transfer of knowl-

edge for the patch antennas in RF into optics with special emphasis given to the

cavity model, a simulation tool that has been the most popular, intuitive and accu-

rate enough for RF patch antennas. Since the cavity model was originally proposed

and developed for the patch antennas that are surrounded by perfect electrical and

magnetic conductors, mapping it into optics, where metals are no longer perfect con-

ductors has been proposed. It has been observed that the cavity model equivalent

in optics has achieved the intended goal, providing intuition on the operation of the

patch antennas. That is, the current distribution on the patch and the associated

radiation patterns can now be imagined for a given location of the feed in optics as
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well. The same analysis and intuitions can now be carried onto a range of patch ge-

ometries, in addition, some tools like adding slot to tune the resonance and designing

CP operation have been proposed and implemented in optics.
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Chapter 7

Appendices

7.1 Appendix A - Complex Dielectric Function

Drude model and the interband transition contributions are discussed in the Light-

Matter Interaction chapter for the dispersive nature of metals in the optical regime.

Here, the Drude model expressions reinforced with the interband transitions are sup-

plied for gold, silver, aluminum and nickel. The expressions are derived according to

and valid for the wavelength representations normalized to nm and the corresponding

angular frequency representation in eV.

The complex dielectric function, 𝜖(𝜔), observed via Drude model with the rein-

forcement of the first interband transition is given in (7.1) for gold and silver, where

𝜖𝑟 = 5.967, 𝜔𝑝 = 8.729, 𝛾 = 0.065, ∆ = 1.09, Φ = 2.684 and Γ = 0.433 for gold and

𝜖𝑟 = 4.6, 𝜔𝑝 = 9, 𝛾 = 0.07, ∆ = 1.1, Φ = 4.9 and Γ = 1.3 for silver.

𝜖(𝜔) = 𝜖𝑟 − (
𝜔2
𝑝

𝜔0(𝜔0+𝑖𝛾)
) − ( ΔΦ2

(𝜔2
0−Φ2+𝑖𝜔0Γ)

) (7.1)

For nickel and aluminum higher order interband transitions are considered for

more accurate results. The complex dielectric function, 𝜖(𝜔), for nickel is given in

(7.2) where 𝜖𝑟 = 1, 𝜔𝑝0 = 4.62, 𝛾0 = 0.021, 𝜔𝑝1 = 6.929, 𝛾1 = 1.77, 𝜔𝑝2 = 7.06,

𝛾2 = 3.44, Γ0 = 1.02, Φ0 = 1.46, ∆0 = 2.1, Γ1 = 2.41, Φ1 = 3.44, ∆1 = 1.2.
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𝜖(𝜔) = 𝜖𝑟 − (
𝜔2
𝑝0

𝜔0(𝜔0+𝑖𝛾0)
) − (

𝜔2
𝑝1

𝜔0(𝑜𝑚𝑒𝑔𝑎0+𝑖*𝛾1)) − (7.2)

(
𝜔2
𝑝2

𝜔0(𝑜𝑚𝑒𝑔𝑎0+𝑖𝛾2)
) − (

Δ0Φ2
0

(𝜔2
0−Φ2

0+𝑖𝜔0Γ0)
) − (

Δ1Φ2
1

(𝜔2
0−Φ2

1+𝑖𝜔0Γ1)
)

The complex dielectric function, 𝜖(𝜔), for aluminum is given in (7.3) where 𝜖𝑟 = 1,

𝜔𝑝0 = 10.83, 𝛾0 = 0.047, Γ0 = 0.333, Φ0 = 0.162, ∆0 = 1940.97, Γ1 = 0.312,

Φ1 = 1.544, ∆1 = 4.706, Γ2 = 1.35, Φ2 = 1.808, ∆2 = 11.39, Γ3 = 3.382, Φ3 = 3.473,

∆3 = 0.558.

𝜖(𝜔) = 𝜖𝑟 − (
𝜔2
𝑝0

𝜔0(𝜔0+𝑖𝛾0)
) − (

Δ0Φ2
0

(𝜔2
0−Φ2

0+𝑖𝜔0Γ0)
) − (

Δ1Φ2
1

(𝜔2
0−Φ2

1+𝑖𝜔0Γ1)
) − (7.3)

(
Δ2Φ2

2

(𝜔2
0−Φ2

2+𝑖𝜔0Γ2)
) − (

Δ3Φ2
3

(𝜔2
0−Φ2

3+𝑖𝜔0Γ3)
)

The experimentally obtained Johnson and Christy data for gold and silver are

given below in tables (7.1) and (7.2) respectively, for three columns showing to the 𝜆

(𝜇m), 𝑟𝑒{𝑛}, 𝑖𝑚{𝑛} where 𝑛 is the refractive index.
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Table 7.1: Johnson and Christy data for gold
0.1879 1.28 1.188

0.1916 1.32 1.203

0.1953 1.34 1.226

0.1993 1.33 1.251

0.2033 1.33 1.277

0.2073 1.30 1.304

0.2119 1.30 1.350

0.2164 1.30 1.387

0.2214 1.30 1.427

0.2262 1.31 1.460

0.2313 1.30 1.497

0.2371 1.32 1.536

0.2426 1.32 1.577

0.2490 1.33 1.631

0.2551 1.33 1.688

0.2616 1.35 1.749

0.2689 1.38 1.803

0.2761 1.43 1.847

0.2844 1.47 1.869

0.2924 1.49 1.878

0.3009 1.53 1.889

0.3107 1.53 1.893

0.3204 1.54 1.898

0.3315 1.48 1.883

0.3425 1.48 1.871

0.3542 1.50 1.866

0.3679 1.48 1.895

0.3815 1.46 1.933

0.3974 1.47 1.952

0.4133 1.46 1.958

0.4305 1.45 1.948

0.4509 1.38 1.914

0.4714 1.31 1.849

0.4959 1.04 1.833

0.5209 0.62 2.081

0.5486 0.43 2.455

0.5821 0.29 2.863

0.6168 0.21 3.272

0.6595 0.14 3.697

0.7045 0.13 4.103

0.7560 0.14 4.542

0.8211 0.16 5.083

0.8920 0.17 5.663

0.9840 0.22 6.350

1.0880 0.27 7.150

1.2160 0.35 8.145

1.3930 0.43 9.519

1.6100 0.56 11.21

1.9370 0.92 13.78
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Table 7.2: Johnson and Christy data for silver
0.1879 1.07 1.212

0.1916 1.10 1.232

0.1953 1.12 1.255

0.1993 1.14 1.277

0.2033 1.15 1.296

0.2073 1.18 1.312

0.2119 1.20 1.325

0.2164 1.22 1.336

0.2214 1.25 1.342

0.2262 1.26 1.344

0.2313 1.28 1.357

0.2371 1.28 1.367

0.2426 1.30 1.378

0.2490 1.31 1.389

0.2551 1.33 1.393

0.2616 1.35 1.387

0.2689 1.38 1.372

0.2761 1.41 1.331

0.2844 1.41 1.264

0.2924 1.39 1.161

0.3009 1.34 0.964

0.3107 1.13 0.616

0.3204 0.81 0.392

0.3315 0.17 0.829

0.3425 0.14 1.142

0.3542 0.10 1.419

0.3679 0.07 1.657

0.3815 0.05 1.864

0.3974 0.05 2.070

0.4133 0.05 2.275

0.4305 0.04 2.462

0.4509 0.04 2.657

0.4714 0.05 2.869

0.4959 0.05 3.093

0.5209 0.05 3.324

0.5486 0.06 3.586

0.5821 0.05 3.858

0.6168 0.06 4.152

0.6595 0.05 4.483

0.7045 0.04 4.838

0.7560 0.03 5.242

0.8211 0.04 5.727

0.8920 0.04 6.312

0.9840 0.04 6.992

1.0880 0.04 7.795

1.2160 0.09 8.828

1.3930 0.13 10.10

1.6100 0.15 11.85

1.9370 0.24 14.08
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7.2 Appendix B - Derivation of the Cavity Model

The thickness of the patch is very small (𝑑 << 𝜆). So the field variations along the

height are constant and the fringing fields along edges of the patch are small. The

electric field is normal to the surface patch which means that the patch only supports

𝑇𝑀𝑧 configurations within the cavity. We have 𝐸 = ̂︀𝑧𝐸𝑧(𝑥, 𝑦) whereas 𝐸𝑥 = 𝐸𝑦 = 0

and 𝐽𝑧 for the probe feeding case.

First, take the Faraday Equation

∇× 𝐸 = −𝑗𝜔𝜇𝐻 (7.4)

|
𝑥̂ 𝑦 𝑧

𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

0 0 𝐸𝑧

| = −𝑗𝜔𝜇(𝑥̂𝐻𝑥 + 𝑦𝐻𝑦)

(7.5)

from where we get 2 equations

𝜕𝐸𝑧

𝜕𝑦
= −𝑗𝜔𝜇𝐻𝑥 and − 𝜕𝐸𝑧

𝜕𝑥
= −𝑗𝜔𝜇𝐻𝑦. (7.6)

Solving Equation 7.6 under the boundary conditions 7.7

𝐻𝑥(𝑥, 𝑦 = 0) = 𝐻𝑥(𝑥, 𝑦 = 𝑏) = 0

𝐻𝑦(𝑥 = 0, 𝑦) = 𝐻𝑦(𝑥 = 𝑎, 𝑦) = 0 (7.7)

we can write 𝐸𝑧 as a superposition of all orthonormal modes Ψ𝑚𝑛 as :

𝐸𝑧 =
∞∑︁

𝑚,𝑛=0

𝐸𝑚𝑛Ψ𝑚𝑛 (7.8)
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Solving the Ampere’s law with the same methodology and introducing the electric

current 𝐽𝑧 into all the equations one can easily obtain the field components as:

𝐸𝑧(𝑥, 𝑦) = −𝑖𝜔𝜇𝐼0𝑙
∞∑︁

𝑚,𝑛=0

Ψ𝑚𝑛(𝑥0, 𝑦0)

𝑘2 − 𝑘2
𝑚𝑛

Ψ𝑚𝑛𝑠𝑖𝑛𝑐(
𝑚𝜋𝑙

2𝑎
) (7.9)

The mode with the lowest order resonant frequency is the dominant mode. The

surface current distributions on the patch surface 𝐽𝑥 and 𝐽𝑦 can be obtained through

𝐻𝑦 and 𝐻𝑥 from 𝐸𝑧.

Standing wave is a wave that remains in a constant position. In patch antennas,

standing wave occurs as a result of the interference between two waves traveling in

opposite directions. The wave from one end is made to reflect from the other end, so

the transmitted and the reflected waves superpose forming a standing wave pattern.

The electric field is zero at the center of the patch, maximum (positive) at one

side, and minimum (negative) on the opposite side. It should be mentioned that the

minimum and maximum continuously change sides according to the instantaneous

phase of the applied signal. The electric field does not stop abruptly at the patch’s

periphery as in a cavity; rather, the fields extend the outer periphery to some degree.

These field extensions are known as fringing fields and cause the patch to radiate.

For a rectangular patch antenna Ψ𝑚𝑛(𝑥, 𝑦) ≈ 𝑐𝑜𝑠(𝑚𝜋𝑥/𝑎)𝑐𝑜𝑠(𝑛𝜋𝑦/𝑏). The far field

components of the radiated electromagnetic field from the antenna can be calculated

from

𝐸(𝑟) =
−𝑖𝜔𝜇𝑒𝑗𝑘𝑟

4𝜋𝑟𝜂
𝑟 ×

∮︁
𝑑𝑠′𝑒−𝑖𝑘𝑟·𝑟′𝑀̄𝑠(𝑟

′) (7.10)

where 𝑀𝑠 can be obtained via

𝑀̄𝑠 = 𝑥̂2[𝐸𝑧(𝑥, 0)𝛿(𝑦) − 𝐸𝑧(𝑥, 𝑏)𝛿(𝑦 − 𝑏)][𝑈(𝑥) − 𝑈(𝑥− 𝑎)] + (7.11)

𝑦2[𝐸𝑧(𝑎, 𝑦)𝛿(𝑥− 𝑎) − 𝐸𝑧(0, 𝑦)𝛿(𝑥)][𝑈(𝑦) − 𝑈(𝑦 − 𝑏)]

122



Bibliography

[1] B. R. Green and W. W. Parson, editors. Light-Harvesting Antennas in Pho-
tosynthesis, volume 13 of Advances in photosynthesis and respiration. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2003.

[2] Y. T. Lo and S. W. Lee. Antenna Handbook. Van Nostrand Reinhold Company,
New York, 1988.

[3] C. A. Balanis. Antenna Theory: Analysis and Design. John Wiley & Sons, Inc.,
New York, 2 edition, 1997.

[4] J. J. Carr. Practical Antenna Handbook. McGraw-Hill/TAB Electronics, 4 edi-
tion, 2001.

[5] J. D. Kraus and R. J. Marhefka. Antennas for all Applications. McGraw-Hill
Book Company, 3 edition, 2001.

[6] R. D. Grober, R. J. Schoelkopf, and D. E. Prober. Optical antenna: Towards a
unity efficiency near-field optical probe. Appl. Phys. Lett., 70:1354–1356, Mar.
1997.

[7] D. W. Pohl. Near field optics seen as an antenna problem. In M. Ohtsu and
X. Zhu, editors, Near-Field Optics: Principles and Applications, pages 9–21.
World Scientific, Singapore, 2000.

[8] C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D.
Boreman. Measurement of the resonant lengths of infrared dipole antennas.
Infrared Phys. Technol., 41(5):271–281, Oct. 2000.

[9] J. N. Farahani, D.W. Pohl, H. J. Eisler, and B. Hecht. Single quantum dot
coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev.
Lett., 95(1):017402, June 2005.

[10] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner.
Improving the mismatch between light and nanoscale objects with gold bowtie
nanoantennas. Phys. Rev. Lett., 94(1):017402, Jan. 2005.

[11] P. Muhlschlegel, H.J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl. Resonant
optical antennas. Science, 308:1607–1609, June 2005.

123



[12] T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van
Hulst. 𝜆/4 resonance of an optical monopole antenna probed by single molecule
fluorescence. Nano Lett., 7(1):28–33, Jan. 2007.

[13] L. Novotny. Effective wavelength scaling for optical antennas. Phys. Rev. Lett.,
98:266802, June 2007.

[14] Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Kall. Optical
antennas based on coupled nanoholes in thin metal films. Nature Phys., 3:884–
889, Nov. 2007.

[15] G. Kino. Optical antennas: Tuning in to optical wavelengths. Nature Photonics,
2(4):210–211, Apr. 2008.

[16] T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst. Optical
antennas direct single-molecule emission. Nature Photonics, 2(4):234–237, Apr.
2008.

[17] J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer,
A. Leitenstorfer, and R. Bratschitsch. Nanomechanical control of an optical
antenna. Nature Photonics, 2(4):230–233, April 2008.

[18] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner.
Large single-molecule fluorescence enhancement produced by a bowtie antenna.
Nature Photonics, 3:654–657, 2009.

[19] P. Bharadwaj, B. Deutsch, and L. Novotny. Optical antennas. Adv. Opt. Photon.,
1:438–483, 2009.

[20] T. Kosako, Y. Kadoya, and H. F. Hofmann. Directional control of light by a
nano-optical yagi-uda antenna. Nature Photonics, 4:312–315, 2010.

[21] J. Dorfmuller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and
K. Kern. Plasmonic nanowire antennas: experiment, simulation, and theory.
Nano Letters, 10, 2010.

[22] L. Novotny and N. van Hulst. Antennas for light. Nature Photonics, 5:83–90,
February 2011.

[23] L. Yousefi and A. Foster. Waveguide-fed optical hybrid plasmonic patch nano-
antenna. Optics Express, 20(16):18326–18335, 2012.

[24] M. Agio and A. Alu. Optical Antennas. Cambridge University Press, 2013.

[25] L. Peng and N. A. Mortensen. Plasmonic-cavity model for radiating nano-rod
antennas. Nature Scientific Reports, 4, 2014.

[26] J. Jin. The finite element method in electromagnetics. John Wiley & Sons, 2014.

124



[27] K. S. Kunz and R. J. Luebbers. The Finite Difference Time Domain Method for
Electromagnetics. CRC Press, 1993.

[28] A. Taflove. Computational Electrodynamics. Artech House, Norwood, MA, 1995.

[29] R. F. Harrington and J. L. Harrington. Field Computation by Moment Methods.
Oxford University Press, 1996.

[30] A. Alu and N. Engheta. Theory, modeling and features of optical nanoantennas.
IEEE transactions on antennas and propagation, 61(4):1508–1517, 2013.

[31] G. A. Deschamps. Microstrip microwave antennas. presented at the Third USAF
Symp. on Antennas, 1953.

[32] R. E. Munson. Flat aerial for ultra high frequencies. U.S. Patent no. 3 921 177
113, November 1975.

[33] K. F. Lee and W. Chen, editors. Advances in Microstrip and printed antennas.
John Wiley & Sons, Inc., New York, 1997.

[34] D. Guha and Y. M. M. Antar, editors. Microstrip and printed antennas: new
trends, techniques and applications. John Wiley & Sons Ltd., 2011.

[35] S. L. Chuang, L. Tsang, and W. C. Chew. The equivalence of the electric and
magnetic surface current approaches in microstrip antenna studies. IEEE Trans.
on Antennas and Prop., 28(4), 1980.

[36] W.F. Richards, Y.T. Lo, and D. D. Harrison. Improved theory for microstrip
antennas. Electronics Letters, 15(2):42–44, January 1979.

[37] Y. T. Lo, D. Solomon, and W. F. Richards. Theory and experiment on microstrip
antennas. IEEE Trans. Antennas Propag., 27:137–145, March 1979.

[38] W. F. Richards, Y. T. Lo, and Daniel D. Harrison. An improved theory for
microstrip antennas and applications. IEEE Trans. Antennas Propag., 29:38–46,
January 1981.

[39] H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger. High-resolution imaging
of single fluorescent molecules with the optical near-field of a metal tip. Phys.
Rev. Lett., 93(20):200801, Nov. 2004.

[40] P. Bharadwaj, P. Anger, and L. Novotny. Introducing defects in 3d photonic
crystals: state of the art. Nanotechnology, 18(4):044017, Jan. 2007.

[41] B. Berland. Photovoltaic technologies beyond the horizon: Optical rectenna solar
cell. Technical report, ITN Energy Systems, 2002.

[42] Nano antenna photo voltaic cells. http://www.inl.gov/featurestories/2007-12-
17.shtml, Jan. 2008.

125



[43] E. J. Smythe E. Cubukcu and Federico Capasso. Optical properties of surface
plasmon resonances of coupled metallic nanorods. Optics Express, 15(12):7439–
7447, June 2007.

[44] N. Yu and F. Capasso. Flat optics with designer metasurfaces. Nature Materials,
13:139–150, February 2014.

[45] Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso.
High-responsivity mid-infrared graphene detectors with antenna-enhanced pho-
tocarrier generation and collection. Nano Letters, 14, June 2014.

[46] R. Kappeler, D. Erni, C. Xudong, and L. Novotny. Field computations of optical
antennas. Journal of Computational and Theoretical Nanoscience, 4:686–691,
2007.

[47] H. Gao, K. Li, F. M. Kong, H. Xie, and J. Zhao, editors. Optimizing nano-optical
antenna for the enhancement of spontaneous emission. Progress in Electromag-
netics Research, JPIER, 2010.

[48] R. Esteban, T. V. Teperik, and J. J. Greffet. Optical patch antennas for single
photon emission using surface plasmon resonances. Phys. Rev. Lett., 104:026802,
Jan 2010.

[49] C. Belacel, B. Habert, F. Bigourdan, F. Marquierand J.P. Hugonin, S. M. de Vas-
concellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.J. Gref-
fet, P. Senellart, and A. Maitre. Controlling spontaneous emission with plasmonic
optical patch antennas. Nano Letters, 13, March 2013.

[50] C. Ciraci, J. B. Lassiter, A. Moreau, and D. R. Smith. Quasi-analytic study
of scattering from optical plasmonic patch antennas. Journal of Appl. Phys.,
114(163108):1516–1521, 2013.

[51] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopou-
los. High transmission through sharp bends in photonic crystal waveguides. Phys.
Rev. Lett., 77:3787–3790, Oct 1996.

[52] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and
H. A. Atwater. Plasmonics - a route to nanoscale optical devices. Advanced
Materials, 13(19):1501–1505, Oct 2001.

[53] R. Feynman. There’s plenty of room at the bottom. APS Meeting, 1959.

[54] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge Univ. Press,
2006.

[55] P. Drude. Elektronentheorie der metalle. Annalen der Physik, 1:566–613, Feb
1900.

126



[56] G. V. Naik, V. M. Shalaev, and A. Boltasseva. Alternative plasmonic materials:
Beyond gold and silver. Advanced Materials, 25(24):3264–3294, 2013.

[57] P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys.
Rev. B, 6:4370–4379, Dec 1972.

[58] R. H. Ritchie. Plasma losses by fast electrons in thin films. Physical Review,
106(5):874–881, 1957.

[59] C. J. Powell and J. B. Swan. Origin of the characteristic electron energy losses
in aluminum. Phys. Rev., 115:869–875, Aug 1959.

[60] C. J. Powell and J. B. Swan. Origin of the characteristic electron energy losses
in magnesium. Phys. Rev., 116:81–83, Oct 1959.

[61] E. A. Stern and R. A. Ferrell. Surface plasma oscillations of a degenerate electron
gas. Phys. Rev., 120:130–136, Oct 1960.

[62] W. L. Barnes, A. Dereux, and T. W. Ebbesen. Surface plasmon subwavelength
optics. Nature, 424:824–830, 2003.

[63] S. A. Maier. Plasmonics: Fundamentals and Applications. Springer (New York),
2007.

[64] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-
oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics,
8, Feb 2014.

[65] E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie. Effect of
damping on surface plasmon dispersion. Phys. Rev. Lett., 31:1127–1129, Oct
1973.

[66] H. T. Miyazaki and Y. Kurokawa. Squeezing visible light waves into a 3nm thick
and 55nm long plasmon cavity. Physical Review Letters, 96:097401, 2006.

[67] H. A. Atwater. The promise of plasmonics. Scientific American, 4:56–62, 2007.

[68] E. N. Economou. Surface plasmons in thin films. Phys. Rev., 182(2):539–554,
June 1969.

[69] N.Kinayman and M.I.Aksun. Modern Microwave Circuits. Artech House, Nor-
wood, MA, 2005.

[70] PhotonicsGlobal@ Singapore, 2008. IPGC 2008. Thickness dependent behavior
of surface plasmon polaritons in layered media. IEEE, 2008.

[71] C. F. Bohren and D. R. Huffman, editors. Absorption and Scattering of Light by
Small Particles. John Wiley & Sons, Inc., New York, 1998.

127



[72] P. Anger, P. Bharadwaj, and L. Novotny. Enhancement and quenching of single-
molecule fluorescence. Physical Review Letters, 96:113002, 2006.

[73] A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma. Metal-
dielectric-metal surface plasmon-polariton resonators. Physical Review B, B
85(085416), 2012.

[74] R. Gordon. Light in subwavelength slit in a metal : Propagation and reflection.
Physical Review B, B 73(153405), 2006.

[75] E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma. Spectral
properties of plasmonic resonator antennas. Optics Express, 16, 2008.

[76] R. Zia, A. Chandran, and M. L. Brongersma. Dielectric waveguide model for
guided surface polaritons. Optics Letters, 30(12):1473–1475, June 2005.

[77] R. Gordon. Vectorial method for calculating the fresnel reflection of surface
plasmon polaritons. Physical Review B, B 74(153417), 2006.

[78] F. L. Pedrotti and L. Pedrotti. Introduction to Optics. Prentice-Hall Inc., NJ,
1987.

[79] J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.L-Pelouard, and P. Lalanne. Ultra-
small metal-insulator-metal nanoresonators : impact of slow-wave effects on the
quality factor. Optics Express, 20(16880), 2012.

[80] M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J.
Halas. Nanoparticle-mediated coupling of light into a nanowire. Nano Lett.,
7(8):2346–2350, Aug. 2007.

[81] Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.

[82] W. Richards. An improved theory for microstrip patches. IEE Proc.,
132:93âĂŞ98, 1985.

[83] M. Ansarizadeh and A. Chorbani. An approach to equivalent circuit modeling
of rectangular microstrip antennas. Progress in Electromagnetics Research B, 8,
2008.

128


