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Abstract

Both school voucher and reserve programs have recently become popular affirmative

action policy tools to provide low-income students with further alternatives. While the

idea of voucher is simply to fund private school expenses of these students through pub-

lic resources, affirmative action aims at making good public schools more accessible for

them. The current practice is to treat these options separately, they are separate and

independent programs. We argue that the two policy tools can be considered together

because (1) both reserve seats and school vouchers aim at providing better alternatives

for low-income students, and (2) there might be unintended consequences when they are

considered separately, that is, when a disadvantaged student is endowed with the right

of both reserve seats and vouchers. Our contribution is the design of a mechanism which

simultaneously determines an assignment of school seats and voucher allocation. The out-

come of this mechanism improves students’ welfare compared to the outcome when these

tools are considered separately.
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Özet

Devlet bursları ve devlet okullarındaki rezerv uygulamaları düşük gelirli öğrencilere

daha iyi alternatifler sunma amacıyla günümüzde sıkça kullanılmaktadır. Devlet bursları,

devlet kaynaklarıyla düşük gelirli öğrencilerin özel okul masraflarının karşılanması amacıyla

kullanılırken, rezerv kontenjanlar yoluyla yapılan pozitif ayrımcılık bu öğrencilerin daha

çok tercih edilen devlet okullarına girişini kolaylaştırmak amacıyla kullanılmaktadır. Mev-

cut uygulama bu iki farklı aracı ayrık ve bağımsız olarak kullanmaktır. Bizce bu iki araç

birlikte dikkate alınarak uygulanmalıdır çünkü (1) her iki araç da finansal olarak dezavan-

tajlı öğrencilere daha iyi alterna-tifler sunmayı amaçlamaktadır, (2) bu araçlar bağımsız

kullanıldığında istenmeyen sonuçlar görülebilir: finansal anlamda dezavantajlı bir öğrenci

hem rezerv hem de devlet bursu hakkına sahip olmuş olabilir. Bu çalışma devlet burslarını

ve okul kontenjanlarını birlikte dağıtan bir mekanizma ortaya koymaktadır. Bu mekaniz-

manın verdiği sonuç öğrencilerin tercihlerini karşılama noktasında bu iki aracın bağımsız

kullanımına göre daha iyi sonuç vermektedir.

Anahtar sözcükler: Okul seçimi, stabilite, burs, pozitif ayrımcılık
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1 Introduction

School choice is an important policy tool to provide the parents with the opportunity to choose

their child’s school. Basically, parents reveal a list of schools in a preference ordering and

school districts determine the assignment of school seats based on these preferences and schools’

priorities over the students. Schools’ priorities are obtained from a set of criteria, the most

important of which is the walk-zone. Unfortunately, for the districts where there is strong

spatial and economic segregation, this system with walk-zone priorities elevates segregation

through schooling. Many school districts in the US (including Chicago, Boston, and New York

City), concerned with a high level of segregation and the resulting lack of diversity, developed

and embedded affirmative action systems in school choice. These systems typically introduce

certain slots for disadvantaged groups.

A separate policy to extend choice for disadvantaged groups is a school voucher system which

has recently become quite popular in some countries including the US, Sweden, Chile, and Hong

Kong. The idea is to fund private school expenses of students from lower socioeconomic tiers

through public resources. We argue that by considering affirmative action and school vouchers

together (as opposed to the current practice, that is, using these two different systems as

separate policy tools), it is possible to improve students’ welfare. We propose a mechanism

which simultaneously determines an assignment of school seats and voucher allocation. The

outcome of this mechanism improves students’ welfare compared to the outcome when these

tools are considered separately.

School choice programs are widely using the deferred acceptance (DA) algorithm (Gale

and Shapley, 1962) to determine the assignment of school seats. This mechanism has been

popular in practice since it guarantees that no student ever envies a student with lower priority

(stability). The mechanism is such that revealing true preferences is the dominant strategy,

thus eliminating gains through strategic manipulation. It is not problem-free though: the

outcome of the DA algorithm can be inefficient, although it is efficient when the assignments

are restricted to be stable. An important part of the school choice literature is based on models
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of improving students’ welfare by giving up on the full bite of stability.

Affirmative action policies are usually considered within the framework of the DA mecha-

nism: how can school districts improve diversity and provide better choices for low-income and

disadvantaged students, stability and students’ welfare being the main concerns? The practice

is often to reserve certain slots for these groups and weaken stability such that priorities can

be violated by the students assigned to these seats. We adopt the same approach and model

affirmative action as the reserved seats for the low-income students.

A different policy to provide low-income groups with better options is the school voucher

system: students are given vouchers which they use to pay tuition for private schools. While

there is a hot debate whether the voucher system is constitutional, and it has become a political

issue in the US, it is currently an important component of schooling in the US. School voucher

programs are adopted by 13 states: of those, eight states offer vouchers to special needs students,

four states plus D.C. offer them to low-income students or students from failing schools, and

two states offer them to certain rural students.1 However, school voucher programs are not

problem-free: in Louisiana, 9,100 scholarships were offered in 2014, but only a little less than

7,400 students chose to take advantage of the program and over 3.7 million USD of the related

funding has not been used.2

Our model embeds the school voucher system into school choice with affirmative action.

We argue that the two policy tools can be considered together because (1) both affirmative

action and school vouchers aim at providing better alternatives for low-income students, and

(2) there might be unintended consequences when they are considered separately, that is, when

a disadvantaged student is endowed with the right to both reserve seats and vouchers. We

show that there is a better way to utilize these programs compared to the current practice

where vouchers are distributed by means of a lottery and separately from the affirmative action

policy. We propose a mechanism to improve the efficiency aspect of the school assignment

by a weakening of the notion of the stability with reserve seats further by differentiating a
1http://www.ncsl.org/research/education/school-choice-vouchers.aspx
2http://www.nola.com/politics/index.ssf/2014/11/louisiana-private-voucher-prog.html
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disadvantaged student with a voucher from the one without a voucher. This weakening allows

for possibilities to improve welfare; we analyze how these gains can be obtained by means of a

mechanism.

1.1 Related Literature

The school choice problem is modeled with students with preferences on the one side and

schools with priorities on the other side of the market (Abdulkadiroğlu and Sönmez, 2003).

Gale and Shapley Student Optimal Deferred Acceptance Algorithm (Gale and Shapley, 1962) is

the algorithm that gives the most efficient outcome for students among stable ones for these

types of problems (Abdulkadiroğlu and Sönmez, 2003).

Affirmative action policies for student placements is prevalent in many parts of the world. A

small body of literature examines affirmative action policies in school choice problem. Alterna-

tive affirmative action practices like implementing majority quotas, which imposes a maximum

number of majority students that can be admitted, and preferential treatment to minority

students, which increases the priority of minority students at some schools, can cause every

minority student to be worse off compared to a no affirmative action case although it is con-

trary to the intention of affirmative action (Kojima, 2012). For diversity constraints in schools,

when there is hard lower and upper bounds for constraints, assignments that satisfy standard

fairness and non-wastefulness properties may not exist, therefore soft bounds which are flexible

depending on the preferences of students are proposed to achieve fairness and non-wastefulness

(Ehlers, Hafalir, Yenmez, and Yildirim, 2014). Affirmative action with minority reserves has

been proposed as a policy superior to majority quotas in terms of efficiency and a new stability

notion, stability with minority reserves is introduced for such a policy (Hafalir, Yenmez, and

Yildirim, 2013). Deferred Acceptance with Minority Reserves mechanism gives the most effi-

cient result among results that are stable with minority reserves (Hafalir, Yenmez, and Yildirim,

2013) and this rule can not be strictly Pareto dominated by Deferred Acceptance with no af-

firmative action. Since there are cases in which using minority reserves is Pareto inferior (not
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strictly) for minority students to not practice any affirmative action, a minimally responsive

rule that makes efficiency improvement over Deferred Acceptance with Minority Reserves is

developed (Doğan, 2015). The improvement of the mechanism is made through weakening the

notion of stability with minority reserves. Using this rule ensures that an affirmative action

policy with minority reserves cannot be Pareto dominated for minority students by a stable

allocation with no affirmative action. In our work we use a fairness notion that is more suitable

to the combined problem of affirmative action and allocation of vouchers, and this notion allows

us to have efficiency improvement over a mechanism that gives outcomes that are stable with

minority reserves. Diversity problems are also analyzed as a matching with contracts model

where schools are seen as branches and slots are school seats with different priorities for stu-

dents determining the affirmative action practice; a generalization of Deferred Acceptance, the

cumulative offer mechanism gives an outcome in the school-student market that corresponds

to student optimal outcome in one to one student-slot market (Kominers and Sonmez, 2016).

In their analysis of high school placements in Chicago, Dur, Pathak, and Sonmez (2016) in-

troduced affirmative action policies that are most preferable to disadvantaged students when

affirmative action policy is explicit or implicit; the order of the processing of school seats plays

a critical role in the analysis because of alternative types of seats in each school that alters the

priority of disadvantaged students .

Another practice in favor of disadvantaged students is allocating vouchers that enables dis-

advantaged students to afford private schools. The voucher allocation problem is first modeled

as adding private schools with priorities and a voucher endowment structure, which indicates

the students with vouchers, to the school choice problem (Afacan, 2016). A mechanism that

allocates vouchers and school seats efficiently is found (Afacan, 2016). In our work we treat

private schools as outside option rather than as schools in the system that has priorities. Also,

we consider affirmative action problem besides the voucher allocation problem.

Literature that is closely related to ours investigates how efficiency gains over stable mech-

anisms can be achieved. The Efficiency Adjusted Deferred Acceptance Algorithm (EADAM),
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which allows students to consent to violation of their priorities which has no affect on their

assignment, is proved to be an improvement over Gale and Shapley Student Optimal Deferred

Acceptance Algorithm in terms of efficiency (Kesten, 2010). Stable efficiency improvement cy-

cles is developed to be used after some tie-breaking to get a constrained efficient outcome in a

case of indifferences in the priority structure of schools (Erdil and Ergin, 2008). A generaliza-

tion of the idea of priority violation is made through a new notion, partial stability, and a class

of mechanisms, Student Exchange Under Partial Fairness (SEPF), which gives constrained ef-

ficient results according to partial stability by using efficiency improvement cycles, is found

(Dur, Gitmez, and Yılmaz, 2015). We also use the idea of priority violation as a part of our

fairness definition along with efficiency improvement cycles and chains to improve the welfare

of the students.

2 The Model

A school choice problem with vouchers and reserves consists of the following elements:

• a finite set of students I = {i1, i2, . . . , in}

• a set of disadvantaged students Id ⊂ I, who are from the lowest socioeconomic tier,

• a finite set of schools S = {s1, s2, ..., sn},

• a capacity vector q = (qs)s∈S, where qs is the number of available seats at school s,

• a reserve vector r = (rs)s∈S, where rs ≥ 0 is the number of reserve seats for the disadvan-

taged students at school s,

• a strict priority structure of schools �= (�s)s∈S where �s is the complete priority order

of school s over I,

• a strict preference profile of students P = (Pi)i∈I such that Pi is student i’s preferences

over S ∪ {∅}, where ∅ stands for the student’s outside option, and R is the associated
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weak preference relation; that is, s Ri s
′ if and only if s Pi s′ or s = s′,

• a voucher endowment structure π0 : Id → {v, 0}, where student i ∈ Id is endowed with a

voucher if and only if π0(i) = v.

We fix all but R and π0 throughout the paper, unless stated otherwise, and denote a school

choice problem with vouchers or simply, a problem, by (R, π0). A matching µ : I → S ∪ ∅

is a function such that for each s ∈ S, |µ−1(s)| ≤ qs. A voucher allocation π : Id → {v, 0}

is a function such that a voucher is allocated to student i ∈ Id if and only if π(i) = v. An

allocation (µ, π) is a pair of matching and voucher allocation functions. A rule is a systematic

procedure of specifying an allocation for each problem.

An allocation (µ, π) is feasible if |π−1(v)| ≤
∣∣π−10 (v)

∣∣ and for each i ∈ Id, µ(i) = ∅ implies

π(i) = v. An allocation (µ, π) is non-wasteful if there are no i ∈ I and s ∈ S such that

s Pi µ(i) and |µ−1(s)| < qs. An allocation (µ, π) is individually rational if for each i ∈ I

such that ∅ Pi µ(i), we have i ∈ Id \ π−10 (v) and π(i) = 0. An allocation (µ, π) violates the

priority of student i ∈ I at s ∈ S via student j ∈ µ−1(s) if s Pi µ(i) and i �s j. An allocation

(µ, π) is fair if there does not exist i ∈ I and s ∈ S such that priority of i is violated at s. An

allocation (µ, π) is stable if µ is non-wasteful, individually rational and fair.

An allocation (µ, π) respects the reserves if there does not exist a pair of a student i ∈ Id

and a school s ∈ S such that s Pi µ(i) and |µ−1(s)∩Id| < rs. An allocation (µ, π) is fair under

reserve seats if the priority of i is violated at s via j ∈ µ−1(s) only if j ∈ Id, i ∈ I \ Id and

|µ−1(s) ∩ Id| ≤ rs. An allocation (µ, π) is stable under reserve seats if it is non-wasteful,

individually rational, respects the reserves and fair under reserve seats.

An allocation (µ, π) Pareto dominates another allocation (µ′, π′) if for each i ∈ I, µ(i) Ri

µ′(i) and for some j ∈ I, µ(j) Pj µ′(j). An allocation (µ, π) is Pareto efficient if it is

not Pareto dominated by another matching µ′. An allocation (µ, π) has wasted vouchers if

there are students i, j ∈ Id such that π(j) = v, µ(j) = s for some s ∈ S and ∅ Pi µ(i). An

allocation (µ, π) is constrained efficient (under reserve seats) if (µ, π) is stable (under

reserve seats) and there does not exist another stable (under reserve seats) allocation (µ′, π′)
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Pareto dominating (µ, π).

Reserve seats policies in the presence of vouchers present certain ambiguities in terms of

how to treat students with vouchers in terms of their rights for reserve seats. This can be seen

by the following example.

Example 1 Let qs = 1 for each s ∈ S. Let rs = 1 for s1, s2 and rs = 0 for s3, s4, s5, s6. Let

Id = {i1, i2, i3, i5, i6, i7, i8} and I \ Id = {i4}. Let π−10 (v) = {i3, i5, i8}.

s1 s2 s3 s4 s5 s6

i4 i4 i4 i6 i5 i7

i1 i2 . . . i8

i3 i3 . . . .

i2 i1 . . . .

. . . . . .

. . . . . .

i1 i2 i3 i4 i5 i6 i7 i8

s2 s1 s1 s1 s5 ∅ ∅ s6

s1 s2 s2 s2 ∅ s4 s6 ∅

∅ ∅ ∅ s3 . . . .

. . . ∅ . . . .

. . . . . . . .

Suppose voucher transfers are not allowed. Then, there exists a unique allocation which is

stable under reserve seats and induces the following matching:

(s1, i1), (s2, i2), (s3, i4), (s4, i6), (s5, i5), (s6, i7), (i3, ∅), (i8, ∅).

By exchanging their seats, students i1 and i2 can be better off. But, since i3 is a disad-

vantaged student and has a reserve seat priority over i1 at s2 and i2 at s1, this exchange leads

to a violation of stability under reserve seats. Also, i3 has a voucher and enrols in a private

school. Thus, although student i3 has an advantage over other disadvantaged students i1 and i2

in receiving a voucher, she blocks the exchange of these students, which is through the reserve

seats rights (in the form of reserve seat priorities) given to her. Her priority in reserve seats

harms other disadvantaged students. We argue that the reserve priority of a disadvantaged

student enrolling in a private school (via the voucher given to her) can be violated if this leads

to exchanges between other students like in this case since one might consider her voucher as

a practised affirmative action and this should change her status of disadvantaged student at
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schools with reserves. Thus, to respect the reserve seat priority of such disadvantaged students

with vouchers is too strong from fairness perspective.

Another issue with this allocation is that the lack of voucher transfers between students

leads to an allocation with wasted vouchers. Student i5 is endowed with a voucher but she does

not use it since the public school system assigns her to a state school which she prefers over

the private school that she can enrol with her voucher. If the voucher would be transferred

from student i5 to student i6, student i6 would be better off since ∅ Pi6 s4. Since the welfare of

other students would not be affected by this transfer, this is a Pareto improvement. Similarly

if the voucher of i8 is transferred to i7, then i8 is assigned to s6 and i7 to her outside option

(∅), which is a Pareto improvement. In the first case, a voucher is wasted if a transfer from i5

to i6 is not allowed. In the second case, voucher is not wasted but there is a potential efficiency

gain via voucher transfer from i8 to i7.

Respecting the reserve priorities of a disadvantaged student i with a voucher can be consid-

ered as a very strong form of affirmative action rights, since this might hurt other disadvantaged

students without improving student i. To improve students’ welfare, we argue for a two-fold

weakening of the current reserve seats and voucher systems: (i) to allow for violation of reserve-

seat priorities of voucher users, (ii) to allow voucher transfers. The first weakening is a weaker

stability notion.

The following example shows that if we require stability with reserves then we may have

either a wasted voucher or a disadvantaged student who is both using voucher and blocking

the exchange of other students through her reserve seat rights.

Example 2 Let S = {s1, s2, s3} with qs1 = qs3 = qs2 = rs2 = 1 and rs1 = rs3 = 0. Let

14



Id = {i1, i2} and I \Id= {i3} with π−10 (v) = {i2}. Preference and priority profile is as follows:

s1 s2 s3

i3 i1 i2

i1 i3 i1

i2 i2 i3

i1 i2 i3

s1 s1 s2

s2 s2 s1

s3 ∅ s3

∅ s3 ∅

Fairness with reserves implies µ(i2) 6= s1 and µ(i2) 6= s2: Suppose µ(i2) = s1 then this

contradicts fairness with reserves since s1 Pi1 µ(i1) and i1 �s1 i2. Suppose µ(i2) = s2 then

fairness with reserves implies µ(i1) = s1 which implies µ(i3) = s2 by fairness with reserve

again and this is a contradiction. By stability we need µ(i3) = s1: if µ(i3) = s2 this will

violate fairness with reserve because of i2; and if µ(i3) = s3 or µ(i3) = ∅ this will violate

non-wastefulness (because we know that either s2 or s1 will be empty since µ(i2) 6= s1 and

µ(i2) 6= s2). Also, by stability we need µ(i1) = s2 because if µ(i1) = s3 or µ(i1) = ∅ this

will again violate non-wastefulness. Notice that the reserve seat right of i2 is effective since

we have (i) s2 Pi3 µ(i3) = s1, s2 Pi2 µ(i2) and (ii) if we had µ(i3) = s2 and µ(i1) = s1

this would violate fairness with reserve unless we change the status of i2 to non-disadvantaged.

Therefore, to satisfy not giving disproportional benefits to students we need µ(i2) 6= ∅ which

implies µ(i2) = s3. So we have ∅ Pi2 µ(i2) = s3. Thus, vouchers are wasted whoever is

assigned to voucher among disadvantaged students: if π(i2) = v we will have wasted voucher

since µ(i2) = s3 and if π(i1) = v we will have wasted vouchers since µ(i1) = s2.

2.1 Fairness with reserves and vouchers

An allocation (µ, π) is fair under reserve seats and vouchers if the priority violation of i

at s via j implies that j is disadvantaged, |µ−1(s) ∩ Id| ≤ rs, and i is either not disadvantaged

or a voucher user. An allocation (µ, π) is stable under reserve seats and vouchers if it

is non-wasteful, individually rational, respects the reserves and fair under reserve seats and

15



vouchers.

An allocation (µ, π) is constrained efficient under reserve seats and vouchers if it is stable

under reserve seats and vouchers and there is no other allocation (µ′, π′) that is stable under

reserve seats and vouchers and Pareto dominates (µ, π).

3 An Allocation Mechanism

3.1 Modified school choice problem

Each school s ∈ S is replaced by two schools representing reserve seats, s1, and regular seats,

s2, with q′s1 = rs and q′s2 = qs − rs. Let S1 = {s1 : s ∈ S} be the set of all reserve seat schools

and S2 = {s2 : s ∈ S} be the set of all regular seat schools. For each s ∈ S1, each student’s

priority within her group is the same with �s, and for each i ∈ Id and j ∈ I \ Id, i has higher

priority than j. Thus, for each s1 ∈ S1, let �′s1 be defined as follows:

• i, j ∈ Id or i, j ∈ I \ Id, and i �s j ⇒ i �′s1 j,

• i ∈ Id and j ∈ I \ Id ⇒ i �′s1 j.

For each s2 ∈ S2, priorities are given by �s, thus �′s2=�s. The modified priority structure is

given by �′= (�′s1 ,�′s2)s∈S. The modified preferences of students P ′ = (P ′i )i∈I are as follows:

for each i ∈ I, s1 Pi s2 ⇒ s11 P
′
i s

2
1 P

′
i s

1
2 P

′
i s

2
2. We denote the associated weak preference

relation by R′: s R′i s′ if and only if s P ′i s′ or s = s′. We denote the modified school choice

problem by (I, Id, R′, S1 ∪ S2,�′, q′, π0).

Our fairness definition is equivalent to the following definition in the modified school choice

problem: An allocation (µ, π) is fair under reserve seats and vouchers if the following

condition is satisfied:

If there exist i, j ∈ I and s ∈ S1 ∪ S2 such that s P ′i µ(i), µ(j) = s and i �′s j, then we have

s ∈ S1, i ∈ Id, µ(i) = ∅ and j ∈ Id.
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For a given voucher endowment structure π0, the Deferred Acceptance mechanism can be

modified in a straightforward way. The only (trivial) difference is that the preferences of dis-

advantaged students change with the voucher endowment structure: while each student i ∈ Id

such that π0(i) = v and each student j ∈ I \ Id apply (to state schools) only if she prefers

them to ∅, the students in Id with π0(i) = 0 can not get their outside options and must apply

to (state) schools.

The Deferred Acceptance (DA) algorithm:

Step 1: Each disadvantaged student without a voucher applies to her most preferred school

and each other student applies to her most preferred school if she prefers it to her outside

option ∅; otherwise, she gets ∅. Each school s ∈ S1 ∪ S2 tentatively accepts its most preferred

students among applicants until its capacity is filled or applicants are exhausted. The rest of

the applicants, if any remain are rejected.

Step k: Among the rejected students of Step k-1, each disadvantaged student student

without a voucher applies to her most preferred school by which she has not been rejected yet,

and each other student applies to her most preferred school by which she has not been rejected

yet, if she prefers it to her outside option ∅; otherwise, she gets ∅. Each school s ∈ S1 ∪ S2

tentatively accepts its most preferred students among new applicants and the students it has

tentatively accepted at Step k-1 until its capacity is filled or students are exhausted and it

rejects others if any student remains. The assignment is final if no student is rejected.

The algorithm stops when no rejection occurs and tentative matching in the last step be-

comes the outcome of the mechanism. Let µ0 be this matching. There are finite schools and

students can not apply to any school more than once. At each step except the last, some student

is rejected. Thus, the mechanism terminates at a finite step. Note that voucher endowment

structure π0 has not changed at the end of the algorithm.

Remark 1 The allocation (µ0, π0) is fair under reserve seats and non-wasteful.

Let (µ0, π0) be not fair. So ∃i, j ∈ I such that s P ′i µ0(i), i �′s j and µ0(j) = s. This means
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that i is rejected from s at some step of the mechanism in favour of another student. Note that

at every step, accepted students have higher priority in s than the rejected students. Therefore

by transitivity of the priority structure, we have j �′s i which is a contradiction.

Suppose we get a wasteful outcome (µ0, π0) at the end of the D.A.. Hence, ∃i ∈ I such that

s P ′i µ0(i) for some s ∈ S1 ∪ S2 and |µ−10 (s)| < q′(s). That means i is rejected at some step

from s and at that step s accepted q′(s) many students tentatively. In each of the remaining

steps s considers its tentatively accepted students and new students applied and tentatively

accepts q′(s) of them. Therefore, we can not have|µ−1(s)| < q′(s).

3.2 A Constrained Efficient Mechanism Class

Given an allocation (µ, π) be an allocation, we define the following sets:

• Cµ,π(s1) = {i ∈ Id : µ(i) = ∅} (the set of students whose priorities can be violated by

disadvantaged students at s1 ∈ S1)

• For k = 1, 2: Dµ,π(s
k) = {i ∈ I : sk P ′i µ(i)} (the set of students who prefer sk ∈ Sk to

their assignment at µ)

• Xµ,π(s
1) = {i ∈ Dµ,π(s

1) : i ∈ Id and ∀j ∈ Dµ,π(s
1) \ (Cµ,π(s1) ∪ {i}), i �s1 j, or ∀j ∈

Dµ,π(s
1) \ {i}, i �s1 j} (the set of students who are eligible to take a seat at s1 ∈ S1)

• Xµ,π(s
2) = {i ∈ Dµ,π(s

2) : ∀j ∈ Dµ,π(s
2) \ {i}), i �s2 j} (the set of students who are

eligible to take a seat at s2 ∈ S2)

A student i ∈ Id is a voucher user if µ(i) = ∅. The set of voucher users is denoted by

Id∅ (µ, π). For a student i ∈ Id with µ(i) ∈ S1∪S2 and π(i) = v, we denote the unused voucher

of i by vi(π).

Let G = (V,E) be a directed graph with the set of vertices V , and the set of directed edges

E, which is a set of ordered pairs of V . For each allocation (µ, π), we define G(µ, π) = (I ∪

{vi(π) : i ∈ π−1(v) \ Id∅ (µ, π)}, E(µ, π)) be the (directed) application graph associated
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with (µ, π) where the set of directed edges E(µ, π) is as follows: ix ∈ E(µ, π) (that is, i points

to x) if and only if

• x ∈ I and, for k = 1, 2: i ∈ Xµ,π(s
k) and sk = µ(x), or

• x ∈ Id∅ (µ, π) ∪ {vi(π) : i ∈ π−1(v) \ Id∅ (µ, π)} and i ∈ Id with ∅ P ′i µ(i)

A set of edges in E, {i1i2, i2i3, . . . , inin+1}, is a cycle if the vertices i1, i2 . . . , in are distinct

and i1 = in+1. We say that a cycle φ = {i1i2, i2i3, . . . , iki1} ⊆ E(µ, π) is solved when for each

ij ∈ φ, student i is assigned to µ(j) if µ(j) ∈ S1 ∪ S2, and to her outside option (by a voucher

transfer from j to i) if i is disadvantaged and j is a voucher user, towards a new matching.

Formally, we denote the solution of a cycle φ = {i1i2, i2i3, . . . .iki1} by the operation ◦; that is,

(µ′, π′) = φ ◦ (µ, π) if and only if

• for each ij ∈ φ, µ(j) ∈ S1 ∪ S2 implies µ′(i) = µ(j),

• i ∈ Id and j ∈ Id∅ (µ, π) imply µ′(i) = ∅ and π′(i) = v, π′(j) = 0,

• i′ /∈ {i1, i2, . . . , ik} implies µ′(i′) = µ(i′) and π′(i′) = π(i′).

Note that the fact that there can not be an unused voucher in a cycle is due to the way the

application graph is constructed: unused vouchers do not point.

A set of ordered pairs (i1i2, i2i3, ....invi(π)) is a chain if no student points to i1 and,

{i1, . . . , in} ⊆ I \ Id∅ (µ, π) and in ∈ Id. We call i1 as the tail of the chain. For a chain

φ, the solution of the chain (µ′, π′) = φ ◦ (µ, π) is the same as the solution of a cycle where

µ′(in) = ∅ and π′(in) = v.

A cycle is implementable if there is not a voucher user in the cycle whose priority will

be violated if the cycle is solved. A cycle would not be implementable at (µ, π) in two ways.

First, if a cycle at (µ, π) is constructed by allowing priority violation of a disadvantaged student

who uses a voucher and is present in the cycle to give away her voucher. Second, if the cycle

contains a voucher user whose priority is already violated at (µ, π) unless solving the cycle

prevents violating the priority of the voucher user.
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Let (I, Id, R′, S1∪S2,�′, q′, π0) be a modified school choice problem and (µ0, π0) be the initial

allocation given by the modified Deferred Acceptance algorithm. The following algorithm is

built on solving cycles and chains iteratively in the appropriately defined graph:

The VSERS (Voucher and Seat Exchange under Reserve Seats) Algorithm:3

Step 0 Let (µ0, π0) be the initial allocation.

Step k Given an allocation (µk−1, πk−1),

(k.1) if there is no chain or implementable cycle in G(µk−1, πk−1), then the algorithm

terminates and (µk−1, πk−1) is the allocation obtained;

(k.2) otherwise, choose one of the chains or implementable cycles in G(µk−1, πk−1), say φk,

and let (µk, πk) = φk ◦ (µk−1, πk−1).

Note that this algorithm is well defined since at each step we have chains or implementable

cycles and we implement them or we stop. This algorithm gives a class of mechanisms since

we did not specify which cycles or chains among the others will be chosen at each step. This

class of mechanisms ends in finite step since at every step except the last, at least one student

gets better off and we have finitely many schools and students.

Theorem 1 An allocation (µ, π) obtained by the VSERS is constrained efficient under reserve

seats and vouchers.

4 Improvement over efficient voucher allocation

It is desirable to make improvement over a mechanism that gives an allocation in which vouchers

are efficiently distributed (by taking into account initial voucher endowments) without any

priority violation. Achieving this gives further incentives for the usage of such mechanism.

An allocation (µ, π) satisfies improvement over efficient voucher allocation if for each

student i ∈ Id whose priority at some school s ∈ S1 is violated there does not exist another
3The example in Appendix A demonstrates how the algorithm works.
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allocation (µ′, π′) which is constrained efficient with respect to usual fairness definition (so that

for the original problem the allocation is constrained efficient with respect to fairness with

reserve) such that µ′(i) P ′i µ(i).

In the modified school choice problem, satisfying this property means that if there is a

student whose priority is violated at an allocation then this student should not be better off

at an allocation in which there is no priority violation. The following example shows the

importance of this property.

Example 3 Let I = Id = {i1, i2, i3, i4, i5} and S = {s1, s2, s3} with qs = rs = 1 for each s ∈ S.

We have π0 = ((i1, 0), (i2, 0), (i3, 0), (i4, v), (i5, v)). Since each student is a disadvantaged student

and each school has reserve seats only, the modified problem is exactly equivalent to the original

problem.

s1 s2 s3

i1 i3 i2

i4 i4 i4

i5 i2 i3

. . .

. . .

. . .

i1 i2 i3 i4 i5

∅ s2 s3 s1 s1

s1 s3 s2 s2 ∅

. ∅ s1 s3 .

. . . ∅ .

At Step 0 we get the result of Deferred Acceptance as µ0 = ((i1, s1), (i2, s3), (i3, s2), (i4, ∅), (i5, ∅))

and π0 as allocation.

⇒ Dµ0,π0(s1) = {i4, i5}, Dµ0,π0(s2) = {i2, i4}, Dµ0,π0(s3) = {i3, i4} and Cµ0,π0(s) = {i4, i5} for

each s ∈ S.

⇒ Xµ0,π0(s1) = {i4, i5}, Xµ0,π0(s2) = {i2, i4}, Xµ0,π0(s3) = {i3, i4}.

⇒ i1 points to i4 and i5 for their vouchers.

We have 3 implementable cycles in G(µ0, π0) to apply:

1) (i2i3, i3i2),
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2) (i4i1, i1i4),

3) (i1i5, i5i1)

Suppose we applied the 3rd cycle first. Then we get µ1 = ((i2, s3), (s2, i3), (i4, ∅), (i1, ∅), (i5, s1))

and

π1 = ((i1, v), (i2, 0), (i3, 0), (i4, v), (i5, 0)).

⇒ Dµ1,π1(s1) = {i4}, Dµ1,π1(s2) = {i2, i4}, Dµ1,π1(s3) = {i3, i4} and Cµ1,π1(s) = {i1, i4} for each

s ∈ S.

⇒ Xµ1,π1(s1) = {i4}, Xµ1,π1(s2) = {i2, i4}, Xµ1,π1(s3) = {i3, i4}.

⇒ No one points to voucher users.

We have only one cycle in G(µ1, π1) to apply: (i2i3, i3i2).

We apply this cycle and get µ2 = ((i1, ∅), (i2, s2), (i3, s3), (i4, ∅), (i5, s1)) with π2 = π1.

⇒ This is the final allocation we get since there are no cycles or chains.

Now suppose we do not let priority violation, we apply the Deferred Acceptance and get

µ′0 = ((i1, s1), (i2, s3), (i3, s2), (i4, ∅), (i5, ∅)) and π0 as allocation at Step 0 same as previously.

⇒ Dµ0,π0(s1) = {i4, i5}, Dµ0,π0(s2) = {i2, i4}, Dµ0,π0(s3) = {i3, i4}.

⇒ Xµ0,π0(s1) = {i4}, Xµ0,π0(s2) = {i4}, Xµ0,π0(s3) = {i4}.

⇒ i1 points to i4 and i5 for their vouchers.

We have only 1 cycle to apply in G(µ′0, π0): (i4i1, i1i4).

We apply this cycle and get µ′1 = ((i2, s3), (s2, i3), (i4, s1), (i1, ∅), (i5, ∅)) and

π′1 = ((i1, v), (i2, 0), (i3, 0), (i4, 0), (i5, v)).

⇒ Dµ′1,π
′
1
(s1) = {i5}, Dµ1,π1(s2) = {i2}, Dµ1,π1(s3) = {i3}.

⇒ Xµ′1,π
′
1
(s1) = {i5}, Xµ′1,π

′
1
(s2) = {i2}, Xµ′1,π

′
1
(s3) = {i3}.

⇒ No one points to voucher users.

We have only 1 cycle in G(µ′1, π′1) to apply: (i2i3, i3i2).

We get µ′2 = ((i1, ∅), (i2, s2), (i3, s3), (i4, s1), (i5, ∅)) and π′2 = π′1.

⇒ This is the final allocation we get since there are no cycles or chains.
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When we did not let priorities of students to be violated, i4 whose priority was violated in

the first final allocation gets a better match in the second final allocation. Thus, if we use a

cycle selection rule resulting as in the first case then this would be worse for some students

whose priorities are violated compared to a matching got by just efficiently allocating vouchers.

So a rule that results in the first final allocation may not be giving enough incentive people to

let their priorities be violated. Furthermore, in the second case inefficiency caused by priority

of i4 is solved by just efficiently allocating vouchers without using priority violation. So if we

use a cycle selection rule as in the first case i4 may have a right to say that the inefficiency was

not due to her priority but to inefficient allocation of vouchers which will hurt our justification

to violate priorities.

We will try to find a subclass in VSERS that will satisfy such a property. A candidate is a

mechanism in which at every step if we can find cycles or chains in which no priority violation

occurs we apply them, if not we can apply implementable cycles or chains at every step until

no implementable cycle or chain remains. Such a mechanism may have close relationship with

the Top Priority Rule.

5 Incentives to apply vouchers

We say a disadvantaged student has incentive to apply to voucher if by not applying to voucher

he does not get a better match.

In this example we will show that by not applying to vouchers a disadvantaged student can

get a better match if she is not given a voucher during the mechanism at any step. If instead

we are allowed to give the student voucher at some step then this example would not work.

Example 4 Let all the students be in the set Id = {i1, i2, i3, i4} and S = {s1, s2} be the set of

state schools such that qs = rs = 1 for s = s1, s2 which means all seats are reserve seats in both
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schools. And suppose that π0(i) = v for i = i1, i3, i4 and π0(i2) = 0.

s1 s2

i2 i1

i4 i3

i1 i2

i3 i4

i1 i2 i3 i4

s1 s2 s2 s1

∅ s1 ∅ ∅

s2 ∅ s1 s2

Since s1 and s2 has only reserve seats and we have only disadvantaged students in this

example the modified problem will be exactly the same as the original problem.

When we apply D.A. step of our mechanism we get µ0 = ((i1, ∅), (i2, s1), (i3, s2), (i4, ∅))

⇒ Dµ0,π0(s1) = {i1, i4}, Dµ0,π0(s2) = {i2} and Cµ0,π0(s) = {i1, i4} for all s ∈ S.

⇒ Xµ0,π0(s1) = {i1, i4}, Xµ0,π0(s2) = {i2}.

The mechanism terminates since there is no cycle or chain in G(µ0, π0). We get (µ0, π0).

Now, instead suppose that i1 did not apply to voucher and did not have one and the other

initial voucher assignments are the same, then when we apply the D.A. step we will get:

µ0 = ((i3, ∅), (i4, ∅), (i1, s2), (i2, s1)) and π0 = ((i1, 0), (i2, 0), (i3, v), (i4, v))

⇒ Dµ0,π0(s1) = {i1, i4}, Dµ0,π0(s2) = {i2} and Cµ0,π0(s) = {i3, i4} for all s ∈ S.

⇒ Xµ0,π0(s1) = {i1, i4}, Xµ0,π0(s2) = {i2}.

Here, i1 does not point to i3 for her voucher although she likes her outside option more than s2

because at first she did not apply to vouchers so we think that we can not give her voucher at

any step.

Then we apply the only cycle (i1i2, i2i1) G(µ0, π0) and get µ1 = ((i3, ∅), (i4, ∅), (i1, s1), (i2, s2))

with π1 = π0.

⇒ i1 is better off when he does not apply to voucher.

If we assumed that we can give voucher to a disadvantaged student, who did not apply to

vouchers, in a step other than 0 then we would have another cycle to carry at the end of the

step 0 which is (i1i3, i3i1). This example would not work for a cycle selection rule that selects

(i1i3, i3i1).
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Note: We assumed that every disadvantaged student will apply to vouchers but this exam-

ple shows that there are cases in which a disadvantaged student may benefit from not applying

to vouchers. Therefore applying to vouchers can be treated as an endogenous decision which

we leave for future work.

In general we show that a disadvantaged student may gain from strategically not applying

to vouchers if the mechanism at hand is restricted to find constrained efficient results.

Theorem 2 Constrained efficiency and having an incentive to apply to vouchers are incom-

patible.

Proof.

Let all the students be in the set Id = {i1, i2, i3} and S = {s1, s2} be the set of state schools

such that qs = rs = 1 for s = s1, s2 which means all seats are reserve seats in both schools.

And suppose that π0(i) = v for i = i1, i3 and π0(i2) = 0.

s1 s2

i2 i1

i1 i3

i3 i2

i1 i2 i3

s1 s2 s2

∅ s1 ∅

s2 ∅ s1

Notice that there are 3 constrained efficient allocations in this example:

1)µ = ((i1, ∅), (i2, s1), (i3, s2)) and π = ((i1, v), (i2, 0), (i3, v))

2)µ = ((i1, s1), (i2, s2), (i3, ∅)) and π = ((i1, v), (i2, 0), (i3, v))

3)µ = ((i1, s1), (i2, ∅), (i3, s2)) and π = ((i1, 0), (i2, v), (i3, v)) or π = ((i1, v), (i2, v), (i3, 0)).

If the 1st one is chosen by a mechanism then i1 will be better off by not applying to vouchers.

We will have 2 possible constrained efficient allocations and the mechanism will have to choose

one of these in which i1 is better off:

1)µ = ((i1, s1), (i2, s2), (i3, ∅)) and π = ((i1, 0), (i2, 0), (i3, v))

2)µ = ((i1, s1), (i2, ∅), (i3, s2)) and π = ((i1, 0), (i2, v), (i3, 0))

If the 2nd one is chosen by a mechanism then i3 will be better off by not applying to
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vouchers. We will have 2 possible constrained efficient allocations and the mechanism will have

to choose one of these in which i3 is better off:

1)µ = ((i1, ∅), (i2, s1), (i3, s2)) and π = ((i1, v), (i2, 0), (i3, 0))

2)µ = ((i1, s1), (i2, ∅), (i3, s2)) and π = ((i1, 0), (i2, v), (i3, 0))

If the 3rd one is chosen by a mechanism then i2 will be better off by not applying to vouchers.

We will have 2 possible constrained efficient allocations and the mechanism will have to choose

one of these in which i3 is better off:

1)µ = ((i1, ∅), (i2, s1), (i3, s2)) and π = ((i1, v), (i2, 0), (i3, v))

2)µ = ((i1, s1), (i2, s2), (i3, ∅)) and π = ((i1, v), (i2, 0), (i3, v))

Notice that the first allocation among the three constrained efficient allocations is the unique

outcome of the VSERS mechanism and when i1 does not apply to vouchers VSERS yields

uniquely the second allocation. Here i1 gains from manipulation not because of preventing

his priority to be violated but by first getting into a less desirable school than his outside

option which will enable him to get into his most desired school thorough a mutual trade which

becomes possible by violation of the priority of another student in the course of the mechanism.

6 An Alternative Fairness Definition

In this section we present an alternative fairness definition and compare it to the one we

presented in the text (we combine the definition in the text with respecting reserves property).

The alternative definition is as follows:

An allocation (µ, π) is fair with reserves and vouchers if the following are satisfied:

(i) for each i, j ∈ I and s ∈ S such that s Pi µ(i), i �s j and µ(j) = s we have either

1)j ∈ Id, i ∈ I \ Id and |µ−1(s) ∩ Id| ≤ rs or

2)i, j ∈ Id, µ(i) = ∅ and |µ−1(s) ∩ Id| ≤ rs

(ii) there does not exist i, j ∈ I and s ∈ S such that i ∈ Id, j ∈ I \ Id, s Pi µ(i), µ(j) = s and

|µ−1(s) ∩ Id| < rs unless we have µ(i) = ∅ and j �s i.
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If we use this definition it is possible to see a disadvantaged student whose priority at a

reserve seat is violated by a non-disadvantaged student although reserve seats are not exhausted

at that school. Even though in a subclass of our mechanism class we will try to give precedence

to students whose priorities are violated there will be situations in which the disadvantaged

student with voucher will not be able to get into a school she desires in which she has the

highest priority to get into if any space occurs (whichever fairness definition we use), in this

case the definition in the text will keep the reserve seats exhausted at the school by allowing a

priority violation by another disadvantaged or by not allowing a priority violation (priority from

reserves only) if there is only a non-disadvantaged student who wants to trade mutually with

a disadvantaged student at the school. The definition we have just written allows the priority

of the voucher user to be violated in both cases and resulting in exhausted reserves in the first

case and non-exhausted reserves in the second case. In both cases we know that the voucher

user will not be able to get into the school she desires (we can say this for the subclass of our

mechanism class we try to find but not in general) but we differ in treating disadvantaged and

non-disadvantaged in terms of allowing priority violation if we use the definition in the text.

However, the definition in the text prevents having a situation in which the priority of a voucher

user is violated at some school because of his voucher and there are non-exhausted reserves at

that school. Although as mechanism designer we know that even if he did not get a voucher

the student would not be able to get the seat he desires it might be hard to understand from

the point of view of the parents and students.

If we can not find the desired subclass then uniformity is still an issue. There may be

situations in which we violate the priority of a voucher user and not being able to guarantee

that he would get at best his outside option if he did not allow priority violation. In such a

case if we allow the priority of voucher user to be violated by a non-disadvantaged student the

situation will seem worse because the voucher user will see that reserve seats are not exhausted

and at the same time we will not be able to say that he would not be getting into this school

in any case.
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7 Conclusion

In this paper we improve the efficiency aspect of school assignments thorough two channels: We

allow for voucher transfers and we allow for the priority violation at reserve seats for the case

of a voucher user. Our mechanism VSERS makes every student weakly better off compared to

the case in which we do not allow such priority violations and voucher transfers. It distributes

the seats and vouchers a way that the resulting outcome is constrained efficient in the class of

allocations that are stable under reserve seats and vouchers.

Another result we found is that if we require constrained efficiency then a disadvantaged

student may gain from not applying to vouchers. Hence, if we use VSERS a disadvantaged

student can also gain from not applying to vouchers. This seems counter-intuitive since vouchers

enlarge the choice sets of disadvantaged students but the reason behind the manipulability of

VSERS is the following:During the course of the mechanism a disadvantaged student may have

a better trade opportunity at a state school that he prefers less than his outside option.

Lastly, in future work we aim to find a subclass of VSERS which guarantees a voucher user,

whose priority is violated, that she will not be able get a better school if she did not allow

her priority to be violated. Apparently, students will have further incentives to use such a

mechanism.
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Appendix A The VSERS algorithm: An illustrative exam-

ple

Example 5 Let S = {s1, s2, s3, s4}, I = Id = {i1, i2, i3, i4, i5, i6}, π−10 (v) = {i1, i3} and qs =

rs = 1 for all s ∈ S. Since all students are disadvantaged and all seats of schools are reserve

seats the modified school choice problem is exactly equivalent to the original problem.

s1 s2 s3 s4

i5 i2 i6 i4

i1 i5 i3 i6

i3 . i1 .

i2 . i4 .

. . . .

. . . .

i1 i2 i3 i4 i5 i6

s3 ∅ s1 ∅ s2 s4

s1 s1 s3 s3 s1 s3

∅ s2 ∅ s4 . .

. . . . . .

. . . . . .

At Step 0 we get this allocation as the result of Modified Deferred Acceptance:

µ0 = ((i1, ∅), (i2, s2), (i3, ∅), (i4, s4), (i5, s1), (i6, s3)) and π0

⇒ Dµ0,π0(s1) = {i1, i2, i3}, Dµ0,π0(s2) = {i5}, Dµ0,π0(s3) = {i1, i3, i4} and Dµ0,π0(s4) = {i6}

Cµ0,π0(s) = {i1, i3} for each s ∈ S.

⇒ Xµ0,π0(s1) = {i1, i2, i3}, Xµ0,π0(s2) = {i5}, Xµ0,π0(s3) = {i1, i3, i4} and Xµ0,π0(s4) = {i6}.

⇒ i2 and i4 point to i1 and i3 for their vouchers.

We have 8 cycles in G(µ0, π0) and all of them are implementable:

1) (i5i2, i2i5), 2) (i4i6, i6i4), 3) (i4i1, i1i6, i6, i4), 4) (i3i6, i6i4, i4i3), 5) (i2i1, i1i5, i5i2), 6) (i2i3, i3i5, i5i2)

7) (i6i4, i4i3, i3i5, i5i2, i2i1, i1i6), 8) (i6i4, i4i1, i1i5, i5i2, i2i3, i3i6)

Suppose we applied the 1st one:

⇒ µ1 = ((i1, ∅), (i2, s1), (i3, ∅), (i4, s4), (i5, s2), (i6, s3)) and π1 = π0

⇒ Dµ1,π1(s1) = {i1, i3}, Dµ1,π1(s2) = {∅}, Dµ1,π1(s3) = {i1, i3, i4} and Dµ1,π1(s4) = {i6} Cµ1,π1(s) =

{i1, i3} for each s ∈ S.

⇒ Xµ1,π1(s1) = {i1, i3}, Xµ1,π1(s2) = {∅}, Xµ1,π1(s3) = {i1, i3, i4} and Xµ1,π1(s4) = {i6}.
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⇒ i2 and i4 point to i1 and i3 for their vouchers.

In G(µ1, π1) we have 7 cycles and all of them are implementable except the 4th one:

1) (i1i2, i2i1), 2) (i2i3, i3i2), 3) (i4i6, i6i4), 4) (i4i3, i3i6, i6i4), 5) (i4i1, i1i6, i6i4), 6) (i4i3, i3i2, i2i1, i1i6, i6i4),

7) (i4i1, i1i2, i2i3, i3, i6, i6i4)

Suppose we applied the 3rd cycle:

⇒ µ2 = ((i1, ∅), (i2, s1), (i3, ∅), (i4, s3), (i5, s2), (i6, s4)) and π2 = π0

⇒ Dµ2,π2(s1) = {i1, i3}, Dµ2,π2(s2) = {∅}, Dµ2,π2(s3) = {i1, i3} and Dµ2,π2(s4) = {∅} Cµ2,π2(s) =

{i1, i3} for each s ∈ S.

⇒ Xµ2,π2(s1) = {i1, i3}, Xµ2,π2(s2) = {∅}, Xµ2,π2(s3) = {i1, i3} and Xµ2,π2(s4) = {∅}.

⇒ i2 and i4 point to i1 and i3 for their vouchers.

In G(µ2, π2) we have 5 cycles and all of them are implementable except the first two:1)

(i1i2, i2i1), 2) (i4i3, i3i4), 3) (i2i3, i3i2), 4) (i4i1, i1i4), 5) (i4i3, i3i2, i2i1, i1i4)

Applying 5 or 3 and 4 consecutively in two steps we will get the final allocation as:

µ = ((i1, s3), (i2, ∅), (i3, s1), (i4, ∅), (i5, s2), (i6, s4)) and π = ((i1, 0), (i2, v), (i3, 0), (i4, v), (i5, 0), (i6, 0))

Notice that being unable to implement a cycle does not bring an efficiency loss in this

example.

Appendix B The proof of Theorem 1

Remark 2 At every step of the mechanism every student gets weakly better off.

Remark 3 For all s ∈ S1 ∪ S2 we have Dµt,πt(s) ⊆ Dµt−1,πt−1(s)

Let (µ, π) be an allocation obtained by the VSERS.

Lemma 1 (µ, π) is individually rational.

Proof. We show that by D.A. at step 0 we get results that are individually rational. Each

student i ∈ I \ Id or i ∈ Id with π0(i) = v can apply to only schools that they prefer to ∅

so they can not get a school that they do not weakly prefer to ∅. So for each i ∈ I such that
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∅ P ′i µ0(i) we have i ∈ Id and π0(i) = 0. Hence we have individual rationality at the end of step

0. Since at the following steps every agent gets weakly better off the students who can afford

their outside option will get schools that they weakly prefer to their outside option. Also, at

any step if a student i ∈ Id \ π−10 (v), gets a voucher then i will get into ∅ at that step and will

get a weakly better outcome in the following steps. So at any step k of the mechanism if there

is a student i with ∅ P ′i µ0(i) then we have i ∈ Id \ π−10 (v) and πk(i) = 0. Thus our mechanism

gives results that are individually rational.

Lemma 2 (µ, π) is non-wasteful.

Proof. Let (µ0, π0), (µ1, π1), (µ2, π2), ..., (µk, πk), ...(µ, π) be the results we get in the application

of the mechanism. At the end of step 0 we get a non-wasteful outcome by Deferred Acceptance.

Suppose that (µk−1, πk−1) is non-wasteful as an inductive hypothesis. At every step we apply

only a chain or only a cycle.

Case 1: Suppose we applied a cycle at step k and get (µk, πk). When we apply the cycle number

of students in any school do not change. If we have |µ−1k−1(s)| = qs for all s then we have non-

wastefulness. Suppose |µ−1k−1(s)| < qs for some s. Then since (µk−1, πk−1) is non-wasteful we

have Dµk−1,πk−1
(s) = ∅. That means Dµk,πk(s) = ∅ by Remark 2. So (µk, πk) is non-wasteful.

Case 2: Suppose we applied a chain at step k and get (µk, πk). By definition of a chain either

a student i ∈ I with µk−1(i) = s for some s ∈ S1 ∪ S2 can be the tail of the chain or a student

i ∈ I \ Id with µk−1(i) = ∅ can be the tail of the chain. If the second is true then the number

of students in any school do not change and proof becomes same with Case 1. If the first is

true then number of students in s decreases by one and it will have unfilled capacity at (µk, πk),

but by definition of the chain Dµk−1,πk−1
(s) = ∅. That means Dµk,πk(s) = ∅ by Remark 2. For

other schools number of students assigned to them do not change so by the argument in Case

1 we can show that (µk, πk) is non-wasteful. So by induction we proved that the outcome we

get at every step, hence at the end of the mechanism is non-wasteful.

Lemma 3 (µ, π) is fair under reserve seats and vouchers.
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Proof. We prove by induction. By Remark 1, (µ0, π0) is fair under reserve seats. Since fairness

under reserve seats and vouchers is a weaker property, the DA satisfies it as well. For inductive

hypothesis we assume that (µk−1, πk−1) is fair. Suppose that there exist i, j ∈ I and s ∈ S1∪S2

such that s P ′i µk(i), µk(j) = s and i �′s j. Since s P ′i µk(i) we have i ∈ Dµk,πk(s). Thus we

have i ∈ Dµk−1,πk−1
(s) since everyone gets weakly better off at every step. Suppose that:

Case 1: µk−1(j) = s. Then, since (µk−1, πk−1) is fair we must have (i)i ∈ Id, s ∈ S1 (ii)

µk−1(i) = ∅ Now we must have µk(i) = ∅ otherwise that means a cycle in which i gives

away his voucher is implemented although j still violates the priority of i after that cycle is

implemented. But such a cycle is unimplementable. It contradicts to the fact that we get

(µk, πk) by our mechanism. Hence we have µk(i) = ∅. Therefore (µk, πk) is fair.

Case 2: µk−1(j) 6= s. Since µk(j) = s we have j ∈ Xµk−1,πk−1
(s). Therefore we have (i)

j �′s i′ for all i′ ∈ Dµk−1,πk−1
(s) \ j, if s ∈ S2 or s ∈ S1 and j ∈ I \ Id; (ii) j �′s i′ for all

i′ ∈ Dµk−1,πk−1
(s) \ (Cµk−1,πk−1

(s) ∪ j), if s ∈ S1 and j ∈ Id; We can not have s ∈ S2 or s ∈ S1

and j ∈ I \ Id since otherwise we will have j �′s i which is a contradiction. So we have s ∈ S1

and j ∈ Id. Since we have i �′s j we must have i ∈ Cµk−1,πk−1
(s). Thus i ∈ Id and µk−1(i) = ∅.

Now we must have µk(i) = ∅ otherwise that means a cycle in which i gives away his voucher

is implemented although j violates the priority of i after that cycle is implemented. But such

a cycle is unimplementable. It contradicts to the fact that we get (µk, πk) by our mechanism.

Thus, we have µk(i) = ∅. Thus, (µk, πk) is fair. So by induction we proved that our mechanism

gives fair results.

Suppose there exists an allocation (µ̃, π̃) which is stable under reserve seats and vouchers

and weakly Pareto dominates (µ, π). Let I ′ be the set of students who are better off at µ̃ than

at µ.

Lemma 4 If there exists an unused voucher at (µ, π), then each such voucher remains unused

at (µ̃, π̃).

Proof. Suppose there exists an unused voucher vj(π) (for some j ∈ Id) at (µ, π) and a student

i ∈ Id such that µ(i) 6= ∅ and µ̃(i) = ∅. Since (µ̃, π̃) weakly Pareto dominates (µ, π), we have
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∅ P ′i µ(i). But then, in the application graph G(µ, π), student i points to that unused voucher.

Note that if a student is better off by using a voucher, the constraints due to stability under

reserve seats and vouchers weakly shrink. Thus, since the allocation (µ, π) satisfies stability

under reserve seats and vouchers, the allocation, where the only difference from (µ, π) is that

student i is a voucher user instead of being assigned to a public school µ(i), satisfies stability

under reserve seats and vouchers as well. Thus, (ivj(π)) is a chain, which contradicts that the

allocation (µ, π) is an outcome obtained by the VSERS.

Lemma 5 If a voucher is used at (µ, π), then it is used at (µ̃, π̃) as well.

Proof. Suppose a voucher is used at (µ, π), but not at (µ̃, π̃). By Lemma 4, this implies that

there exists a school s such that |µ̃−1(s)| > |µ−1(s)|. Thus, school s has an empty seat at µ.

Moreover, each student is weakly better off at µ̃ than at µ. Thus, a student prefers school s to

her assigned school at µ and µ has an empty seat, which contradicts non-wastefulness of (µ, π).

Lemma 6 If I ′ 6= ∅, then there exists an implementable cycle in the graph G(µ, π).

Proof. Let i ∈ I ′ be a student assigned to a public school under µ̃. There exists at least one

student who prefers school µ̃(i) to her current assignment (e.g. i is such a student, since by

definition of the set I ′, µ̃(i) Pi µ(i)). We claim that µ−1(µ̃(i)) ∩ I ′ 6= ∅. Suppose not. Then,

each student in µ−1(µ̃(i)) remains at school µ̃(i) under µ̃. Moreover, student i is placed at

school µ̃(i) under µ̃. This implies that there is an empty seat at school µ̃(i) under µ and student i

prefers school µ̃(i) to µ(i), which contradicts with non-wastefulness. Let j ∈ µ−1(µ̃(i)) ∩ I ′.

We claim that in the graph G(µ, π), a student in I ′ points to j. First, since there is at least

one student who prefers school µ̃(i) to her current school at µ, the set Xµ,π(µ̃(i)) is non-

empty. Thus, there exists at least one student who points to j in the graph G(µ, π). Since

the allocation (µ̃, π̃) is stable under reserve seats and vouchers, by definition, student i being

assigned to school µ̃(i) does not violate any student’s priority at that school. Since each student

in I \ I ′ is assigned to the same school both under µ and µ̃, no student in this set can have
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a higher priority than student i at school µ̃(i). Thus, the set Xµ,π(µ̃(i)) cannot include any

student in the set I \ I ′. Thus, student j is pointed by a student in I ′. Let i ∈ I ′ be a student

assigned to a private school under µ̃. Since i is better off at µ̃, she must be a disadvantaged

student, since otherwise, individual rationality is violated at (µ, π). Thus, i points to a voucher

at µ. By Lemma 4 and 5, this voucher cannot be an unused voucher. Thus, each student

in I ′ is pointed by another student in the same set. Thus, in the graph G(µ, π), there exists

a cycle containing students from the set I ′. If this cycle contains no student with a voucher

at µ, then by definition, this is an implementable cycle and this contradicts that (µ, π) is the

outcome of the VERS algorithm, since the graph G(µ, π) contains an implementable cycle and

the algorithm cannot terminate. We claim that if the cycle contains a student with a voucher

and is not implementable, then there is another cycle containing the same student with a

voucher and is implementable. This follows simply by choosing the top priority student in I ′

in constructing the cycles in I ′ and treating a disadvantaged student at a private school such

that her reserve seat priorities at a public school cannot be violated by another disadvantaged

student. By the same argument above, a student at a public school cannot be pointed by a

student in I \ I ′. Thus, an implementable cycle forms.

By Lemma 6, the algorithm does not terminate at (µ, π), which is a contradiction. Thus, (µ, π)

is constrained efficient.
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