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ABSTRACT 

Many perceptual decisions are inevitably subject to the tradeoff between speed and accuracy 

of choices (SAT). Sequential sampling models attribute this ubiquitous relation to random 

noise in the sensory evidence accumulation process and assume that SAT is adaptively 

modulated by altering the decision thresholds at which the level of integrated evidence should 

reach for making a choice. Although neuroimaging studies have shown a relationship between 

right pre-SMA activity and threshold setting, only a limited number of brain stimulation 

studies aimed at establishing a causal link. However, these studies led to inconsistent results. 

Additionally, they were limited in scope as they only examined the effect of pre-SMA activity 

unidirectionally through experimentally inhibiting the neural activity in this region. The 

current study aims to investigate the predictions of the striatal theory of SAT by 

experimentally assessing the modulatory effect of right pre-SMA on threshold setting bi-

directionally. To this end, we applied both offline inhibition and excitation to right pre-SMA 

utilizing transcranial magnetic stimulation in a within-subjects design and tested participants 

on a Random Dot Motion Task. Decision thresholds were estimated using the Hierarchical 

Drift Diffusion Model. Findings of our planned comparisons showed that right pre-SMA 

inhibition leads to significantly higher, whereas right pre-SMA excitation leads to 

significantly lower thresholds. 

Keywords: speed-accuracy tradeoff, presupplementary motor area, drift diffusion model, 

theta burst stimulation 
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ÖZET 

Çoğu algısal kararımızın hızı ve doğruluğu arasında kaçınılmaz bir ödünleşim (hız-doğruluk 

ödünleşimi; HDÖ) vardır. Ardışık örnekleme modelleri, bu hız-doğruluk ödünleşimini 

duyusal kanıt biriktirme sürecindeki rastgele gürültüyle ilişkilendirir ve HDÖ’nün karar 

vermeden önce toplanan kanıtın ulaşması gereken karar eşiğinin değiştirilerek adaptif bir 

şekilde modüle edilebiledileceğini ileri sürer. Beyin görüntüleme çalışmaları sağ pre-SMA 

aktivitesi ile belirlenen karar eşiği arasında bir ilişki olduğunu göstermektedir. Ancak bu 

değişkenler arasında nedensel bir bağ kurmayı amaçlayan beyin stimülasyon çalışmaları 

sınırlı sayıdadır ve bu çalışmalardan elde edilen bulgular birbiriyle çelişmektedir. Buna ek 

olarak, bahsi geçen çalışmalar pre-SMA’daki sinirsel aktivitenin etkisini bu bölgedeki 

aktiviteyi baskılama yoluyla tek yönlü olarak incelediklerinden kapsamları sınırlıdır. Bu 

çalışmada pre-SMA'nın karar eşiği belirleme üzerindeki rolünün iki yönlü olarak incelenmesi 

ve sonuçların striyatal teori kapsamında değerlendirilmesi amaçlanmıştır. Bunun için 

transkraniyel manyetik stimülasyon yöntemiyle farklı seanslarda pre-SMA aktivitesi 

baskılanmış ve stimüle edilmiş, ardından katılımcılar rastgele nokta hareketi prosedüründe 

test edilmiştir. Sürüklenme-yayılım modeli kullanılarak katılımcıların karar eşikleri tahmin 

edilmiştir. Sonuçlar pre-SMA’nın baskılanmasının karar eşiklerinde yükselmeye, bu 

bölgedeki aktivite seviyesinin stimüle edilmesinin ise karar eşiklerinde düşüşe yol açtığını 

göstermiştir. 

Anahtar Sözcükler: hız-doğruluk ödünleşimi, presuplementer motor alan, sürüklenme 

dağılım modeli, teta burst stimülasyon 
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1. INTRODUCTION 

In our daily life, we encounter numerous occasions that require us to make a choice 

between various options such as deciding which of the two lines at the supermarket cashier 

runs faster (perceptual judgments). Since the sensory information and/or its processing are 

subject to noise, making an adaptive choice typically requires accumulating some evidence. 

Accumulating more evidence will lead to more accurate but also slower decisions, whereas 

accumulating less evidence will lead to faster but also less accurate decisions. This is referred 

to as the speed-accuracy tradeoff (SAT) and necessitates balancing how fast and accurate one 

aims to be in their decisions for maximizing the reward rate in a given situation [1,2]. 

Data gathered from decision making experiments reveal information about response time 

(RT) distributions for both correct and incorrect responses such as their mean, shape, and 

skewness [3]. When the analyses are based on accuracy or RT data in an isolated fashion, this 

rich information in RT distributions is ignored and/or reduced to convenient but less 

informative descriptives.  

In order to study SAT in two-alternative forced choice (2AFC) tasks in a fashion that sheds 

light on the underlying latent decision process, it is essential to take account of accuracy and 

RT data in a unified fashion by using computational models. The Diffusion Decision Model 

(DDM) constitutes an example to these decision theoretic approaches [3-9]. According to 

DDM, decisions are made based on a noisy evidence accumulation process. The sensory 

evidence starts to accumulate from an initial belief state (starting point) and moves in a 

decision area bounded by two attractors (decision thresholds for correct and incorrect 

options). This accumulation process is represented by a decision variable, which on average 

moves towards the threshold that is supported by the sensory evidence. Once the accumulated 

evidence hits one of these thresholds, the agent makes the corresponding choice [6-8,10-12]. 

Based on the DDM framework, the latent decision process is represented by four key 
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parameters (see Figure 1). The first parameter is drift-rate (v), which represents the average 

amount of evidence accumulated in unit time. This parameter is affected by the quality of the 

sensory evidence (smaller drift-rate for harder tasks). The second parameter is the boundary 

separation (a), which determines the amount of evidence required to make a choice. The third 

parameter, starting point (z), indicates where the decision-maker starts to accumulate evidence 

in the decision area bounded by two decision thresholds. Lastly, non-decision time reflects the 

RT components that are not related to the decision process. 

 

Figure 1. A schematic for the drift-diffusion model where a sample trajectory within a trial is 

illustrated for conservative (purple horizontal dashed lines) and liberal (blue horizontal 

dashed-dotted lines) boundary setting conditions. In the liberal boundary setting condition, the 

decision process takes less time but hits the incorrect (lower) boundary, whereas in the 
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conservative boundary setting condition, the decision variable hits the correct (upper) 

boundary at the cost of a longer decision time. 

 

Within the DDM framework, how wide the decision thresholds are set directly 

determines the SAT. As described above, the sensory/perceptual processing as well as the 

sensory evidence itself is subject to noise, which is reflected in the variability of the path that 

the decision variable travels over time. It is due to this variability that a decision variable with 

a drift in the direction of one of the decision-thresholds can still hit the incorrect threshold, 

leading to the choice of the incorrect option. When the threshold is set high, the probability of 

hitting the incorrect threshold decreases as the noise averages out over the decision process. 

Thus, higher threshold setting increases accuracy at the cost of longer RTs. Setting a lower 

threshold (liberal), on the other hand, means that less evidence will be needed to make a 

decision, leading to faster but more error-prone responses (see Figure 1). Depending on the 

task requirements, one can favor speed over accuracy or vice versa by modulating the 

decision-thresholds in opposite directions. 

There is ample number of studies that have focused on SAT at the level of the 

behavioral outputs and the computational principles that lead to it [13-14]. In contrast, the 

number of studies that have investigated the neural mechanisms of this adaptive modulation 

of SAT is limited [12,15]. Nonetheless, the available neurocomputational and empirical 

evidence of these studies strongly indicate a primary role of the cortico-striatal network in 

adaptive decision-threshold modulation (e.g., neurocomputational studies: Ref. [1,17-19]; 

empirical studies: Ref. [20,21]). According to this theory, when the task demands emphasize 

speed over accuracy, striatal activity is increased via excitatory neural input from pre-SMA, 

which in turn weakens the inhibitory effect of basal-ganglia on the motor execution-related 
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cortical areas leading to faster choices [12,22]. A substantial number of neuroimaging studies 

that showed increased pre-SMA and striatal activity when speed was emphasized in 2AFC 

tasks support the involvement of this pathway in threshold modulation [23-29]. Addressing 

this relation more directly, other studies demonstrated a relation between decision-threshold 

modulation, pre-SMA and striatal activity [22,26] as well as a relation between decision-

threshold modulation efficacy and pre-SMA-striatal connectivity [24]. 

In addition to these correlational findings, to our knowledge, only three brain 

stimulation studies have been conducted to elucidate the role of pre-SMA in decision-

threshold modulation. In one of these studies, de Hollander et al. [30] applied anodal 

transcranial direct current stimulation (tDCS) to modulate the activity of pre-SMA prior to 

testing participants on a perceptual 2AFC task where either speed or accuracy was 

emphasized in a given trial. In three independent studies, no effect of anodal tDCS of pre-

SMA on threshold modulation (or on other core DDM parameters) was found. The other two 

studies used transcranial magnetic stimulation (TMS) to modulate the pre-SMA activity. 

From these studies, the findings of Georgiev et al. [21] were counter-intuitive since they 

observed that the inhibition of pre-SMA by continuous theta burst stimulation (cTBS) led to 

lower thresholds when accuracy was emphasized in the task. In contrast to Georgiev et al. 

[21]’s findings and consistent with the cortico-striatal theory of decision-threshold 

modulation, Tosun et al. [20] found accuracy bias, increased decision-thresholds, and 

increased drift-rates (with no differential speed or accuracy emphasis) as a result of the 

inhibition of pre-SMA after cTBS. 

The cortico-striatal theory of decision-threshold modulation predicts lower decision-

thresholds with higher and higher decision-thresholds with lower pre-SMA activity. Even 

though the predictions of this model are bi-directional, no TMS study until hitherto ever tested 

this modulatory bi-directional effect using opposing stimulation protocols over pre-SMA in 
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the same participants. The current study had two primary aims: a) replicating our previous 

findings regarding the higher decision-thresholds with inhibition of right pre-SMA using more 

precise localization based on structural MRI-guided neuronavigation, and b) testing the 

directional predictions regarding the effect of excitation in addition to inhibition of right pre-

SMA on decision-threshold modulation. 

  

2. METHODS 

2.1. Participants 

Seventeen right-handed healthy volunteers (12 females) aged between 21-29 years (M=25.27, 

SD=2.49) were recruited for the study. A pre-experimental health form was used to screen for 

contraindications of TMS and magnetic resonance imaging (MRI). Two participants were 

excluded from the study due to having a family history of epilepsy. In order to foster task 

engagement, participants were told that they could receive monetary reward up to 110 TRY 

depending on their task performance but all were paid 110 TRY at the end of the study. The 

study was approved by the institutional review board at Koç University and all participants 

provided written consent for each procedure prior to experimentation. 

  

2.2. Apparatus 

Structural brain images were obtained on a Siemens 3T scanner using a 16-channel array head 

coil. For brain stimulation, a Magstim Super Rapid2 magnetic stimulator (70-mm figure-of-

eight coil) was used. In order to localize target brain regions in real time, an ultrasound-based 

tracking system (CMS20; Zebris Medical GmbH, Germany) was used along with the TMS 

Neuronavigator software (Brain Innovation BV, The Netherlands). All participants were 
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tested on a Macintosh computer with a 21.5-inch monitor. Noise cancelling headphones were 

used for auditory feedback and responses were collected via a mechanical keyboard. 

  

2.3. Random Dot Motion (RDM) Discrimination Task 

All stimuli were presented using the Psychtoolbox extension [31,32] in Matlab utilizing the 

SnowDots framework developed by Joshua Gold at the University of Pennsylvania. In the 

RDM discrimination task, participants were presented with a set of moving white dots on a 

black background. The dots were presented within a 3-inch circular space centered on the 

screen (see Ref. [33]). On each trial, a predetermined portion of the dots coherently moved 

towards either left or right with equal probability and the remaining dots were randomly 

displaced at each time step. Participants were asked to report the direction of the coherent 

motion by pressing ‘Z’ for left and ‘M’ for right. An auditory tone followed correct responses. 

We used a response-to-stimulus interval (RSI) sampled from a left truncated exponential 

distribution with a mean of 2-s and a lower bound of 1-s. Each correct response was worth 4-

kuruş and there was no penalty for incorrect responses. Responses emitted during the RSI or 

within the first 100-ms of the stimulus onset were considered as premature/anticipatory 

responses and were penalized by a 1-s time-out which started after a buzzing sound (.1% of 

all trials). The cumulative number of correct responses was presented after every 10 trials. 

Each session was comprised of nine 4-min test blocks of free-response RDM task with 

no deadline for responding and two 2-min signal detection (SD - not analyzed here due to 

long delay since stimulation). Participants were instructed to respond as quickly and 

accurately as possible in the FR blocks. The coherence level, that is, the percentage of dots 

showing coherent motion, was set at 8%. Before the first session, participants completed an 
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additional 4-min practice block of FR trials with 16% coherence. Participants could take a 

break of up to 4-min between blocks. The task lasted approximately 45-minutes. 

  

2.4. Design and Procedure 

A repeated-measures design was used in the study. Before the experimental sessions started, 

brain images for all participants were obtained to be used for the localization of the target 

brain regions. In the first (practice) session, participants completed the RDM task without any 

experimental manipulation. In the following three (test) sessions, they completed the same 

task after pre-SMA inhibition, pre-SMA excitation, and vertex excitation/inhibition (control 

condition) in a counterbalanced order. In half of the participants we inhibited the vertex 

whereas in the other half we used excitation for the control condition. 

2.4.1. Structural MRI Scan and Neuronavigation. Structural MRI was performed 

on a 3-T scanner (Siemens Skyra, Erlangen, Germany). A total of 176 coronal slices 

were acquired (TR=1900 ms, TE=2.52 ms, FOV=250mm, 1 mm slice thickness, 

256x256 matrix size, 1x1x1 voxel size and 1 ms excitation time). In order to localize 

target brain regions in real time, an ultrasound-based tracking system (CMS20; Zebris 

Medical GmbH, Germany) was used along with the TMS Neuronavigator software 

(Brain Innovation BV, The Netherlands).  

  

2.4.2. rTMS protocol. In the experiment, we used theta burst stimulation (TBS) for 

modulating brain activity, as this method is superior to traditional repetitive 

stimulation methods. Specifically, administering TBS takes a very short time and it 

has an after-effect that far exceeds that of the traditional repetitive mode [34].  In this 

protocol, each burst consists of three pulses given at 50Hz and is repeated every 
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200ms (5 Hz). We used two different patterns of TBS, namely continuous TBS 

(cTBS) and intermittent TBS (iTBS), in order to establish inhibitory and excitatory 

effects, respectively. In cTBS a 40s uninterrupted train of TBS was applied (600 

pulses). This paradigm has been shown to have an inhibitory after-effect of up to 60 

minutes. For iTBS, a 2s train of TBS was applied with 8-second intervals between 

each train for 190s (600 pulses). The excitatory after-effect of iTBS lasts 

approximately 15-20 minutes.  

The intensity for TBS was set individually at 80% of active motor threshold (AMT). 

AMT was determined as the minimum stimulator output that, when applied to motor 

cortex, induces a motor response in the contralateral hand muscle in at least five out of 

ten trials. AMT was measured at the beginning of the behavioral (first) session and the 

same threshold was used for all TMS sessions. 

  

2.5. Data Analysis 

The units of analysis were the accuracy and RT data obtained from the first four blocks of 

each session, which was decided on prior to any data analysis during study design. We used 

only the first four blocks since the after-effects of iTBS does not exceed 20-minutes. The 

same rule was also applied to the data collected from cTBS and vertex stimulation sessions in 

order to avoid any confounds due to differential fatigue and boredom between the iTBS, 

cTBS, and vertex sessions. In order to compare the change in RT and accuracy data, we 

conducted one-way repeated-measures ANOVAs. We also conducted Bayesian ANOVAs to 

reveal the odds in favor of the null hypothesis. 

In order to evaluate the changes in latent decision processes, we used within-subjects 

hierarchical Bayesian estimation method of DDM parameters (HDDM), which allows 
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constraining the individual fits by the group distribution [35]. Through this way, HDDM 

provides a more powerful way to detect differences in parameter estimates across different 

experimental conditions. In Bayesian estimation method, parameter estimates are quantified 

in the form of posterior distributions using Markov chain Monte-Carlo (MCMC) sampling 

method. Each posterior distribution has a normal, or truncated normal distribution depending 

on the bounds centered around the group mean. Prior distributions were based on previous 23 

studies reporting best-fitting DDM parameters for a variety of decision-making tasks (for 

details see Ref. [36]). Since within-subjects data are slower to converge compared to between-

subjects data, we used a higher sampling rate by drawing 10000 samples from the posterior 

and discarding the first 1000 as burn-in. In order to examine whether the models could 

successfully reproduce the observed data, we ran posterior predictive checks. The results 

indicated that for all models (described below), the observed data were within 95% credible 

interval of the data predicted by the models. 

 In model fitting, it is important to have a theory-driven approach since one can end up 

with the problem of overfitting without a prior hypothesis. For this reason, we adopted a 

theory-driven approach to determine which DDM parameters to vary and which ones to keep 

fixed across conditions. As our main hypothesis was that pre-SMA activity will modulate 

threshold setting, we allowed this parameter to vary across conditions. However, as our 

previous study [20] indicated a change also in drift-rate as a result of the inhibition of pre-

SMA with cTBS, we fitted a second model where both threshold and drift-rate were allowed 

to vary across conditions. Lastly, even though it was not part of our prior hypotheses, we were 

interested in testing if the results regarding threshold change based on the first two models 

survived a more complex model and thus fitted a third model where non-decision time was 

varied in addition to threshold and drift-rate. The inter-trial variability parameters were not 

included in the model. Model comparison statistics favored Model1 (DIC=30616) over 
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Model2 (DIC=30618), although the difference was not significant. Despite that Model3 

provided a better fit than both Model1 and Model2 (DIC=30601), results based on Model3 

should be interpreted by caution due to its exploratory nature. 

3. Results 

3.1. RT and Accuracy Comparisons 

We first analyzed these behavioral outputs in isolation. Results of these analyses indicated 

that accuracy levels did not change across conditions, F(2,28)=0.19, p=.83. The Bayesian 

analyses revealed that the odds were 4.86:1 (strong evidence; Ref. [37]) in favor of the null 

hypothesis that accuracy level did not differ across conditions. The results also showed that 

RTs did not differ, F(2,28)=0.33, p=.72 across conditions (5.24:1 in favor of null hypothesis).  

3.2. Effects on the Latent Decision Process       

In order to investigate the effect of stimulation condition on the latent decision processes, we 

fit three different DDMs outlined above. The models differed in terms of the parameters 

allowed to vary across experimental conditions.  

 Figure 2 illustrates the difference between pre-SMA inhibition/excitation and vertex 

stimulation conditions for each parameter in Model1 (A), Model2 (B), and Model3 (C). For 

Model 1, in which we only allowed the threshold parameter to vary between different 

conditions, we found that decision-thresholds were significantly higher in pre-SMA inhibition 

condition than the vertex stimulation condition (p(ainhibition>acontrol)=.9993), whereas they were 

significantly lower in pre-SMA excitation condition than the vertex stimulation condition 

(p(aexcitation<acontrol)=.9938). The same findings regarding decision-thresholds held for Model 

2, in which threshold and drift-rate were allowed to vary between different conditions 

(p(ainhibition>acontrol)=.9998; p(aexcitation<acontrol)=.9966). There were no significant differences in 
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drift-rates between pre-SMA inhibition vs. vertex stimulation (p(vinhibition>vcontrol)=.9288) or 

pre-SMA excitation vs. vertex stimulation (p(vexcitation>vcontrol)=.5131) conditions.  

 

Figure 2. Mean difference in the threshold (a; red), drift rate (v; blue), and non-decision time 

(t; green) parameters between pre-SMA inhibition and control (up arrowhead) and pre-SMA 

excitation and control (down arrowhead) conditions for Models 1 (A), 2 (B), and 3 (C).  Error 

bars indicate 95% credible intervals. Note that positive differences indicate higher values in 

the pre-SMA compared with vertex stimulation conditions, whereas negative values indicate 

lower values in pre-SMA compared with vertex stimulation conditions. 

 

Finally, we fit a third model to the data allowing decision-threshold, drift-rate, and non-

decision time to vary across different conditions, in order to explore if the observed threshold 

differences would survive this more complex model. In Model3 (included for exploratory 

purposes) we found the same results with Model1 and Model2 regarding both decision-

thresholds (p(ainhibition>acontrol)=.9998; p(aexcitation<acontrol)=1) and drift-rates 
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p(vinhibition>vcontrol)=.9248; p(vexcitation<vcontrol)=.5275). Additionally, we found a difference in 

non-decision times across conditions. Specifically, non-decision time was significantly higher 

in the pre-SMA excitation compared to the control condition (p(texcitation>tcontrol)=1); whereas 

there was no difference between pre-SMA inhibition and control conditions 

(p(tinhibition<tcontrol)=.7477).  

 

4. Discussion 

The current study investigated the causal role of right pre-SMA in modulating speed-accuracy 

tradeoff in choice behavior by testing the effects of both inhibition and excitation of pre-SMA 

on decision-threshold modulation. To this end, we applied non-invasive brain stimulation to 

right pre-SMA (cTBS for inhibition and iTBS for excitation) and vertex through using 

structural MRI-guided neuronavigation, and compared the DDM-based decision-thresholds, 

as the latent variable of interest, across these three conditions in a within-subject design. 

Based on the cortico-striatal theory of SAT, we predicted decision-thresholds to increase with 

the inhibition of pre-SMA and to decrease with the excitation of pre-SMA in comparison to 

vertex stimulation. Our results confirmed both of these predictions, both replicating our 

previous findings regarding the effect of pre-SMA inhibition on decision-thresholds [20], 

using more precise localization, and also providing a more complete empirical test of the 

cortico-striatal theory of SAT by testing for bi-directionality of this modulatory effect. Note 

that similar to the results of a number of previous studies [3,10,20,21,38,39], these effects 

were observed in the absence of detectable effects at the level of behavioral outputs (i.e., 

accuracy or RT). We think that the mere possibility of having such dissociations demonstrates 

the value of computational approaches to decision-making particularly in elucidating its 

neural basis. Computational models that address the generative processes underlying 
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behavioral outputs are ideal to serve as analytical interfaces for understanding the relationship 

between brain and behavioral processes. 

Within the framework of the striatal theory of SAT, the observed effects of pre-SMA 

stimulation on decision-threshold modulation in our study can be interpreted in terms of the 

downstream effects of our manipulations on striatal excitability. To this end, increase in pre-

SMA activity would excite striatum, which in turn would decrease the inhibitory effect of 

basal ganglia on motor execution-related cortical areas [22]. On the other side of the coin, 

decreased pre-SMA activity would decrease striatal excitability, bolstering the inhibitory 

effect of basal ganglia over its cortical efferents [12,22]. These neural mechanisms would 

effectively correspond to narrower and wider decision-thresholds, respectively [22,24].  

This interpretation is supported by Watanabe et al. [40] who showed that the connectivity of 

pre-SMA and striatum, and striatum and globus pallidus interna were affected by the 

stimulation of pre-SMA pointing at the functional interaction between these regions at least in 

relation to response inhibition. It is also possible that the effects induced by the modulation of 

pre-SMA activity were mediated via the resultant effects on other brain regions such as the 

ipsilateral inferior-frontal cortex (e.g. Ref. [41]). Future studies can target other regions that 

have been shown to be functionally connected with right pre-SMA to examine their role in the 

modulation of SAT in 2AFC tasks. 

 Our findings do not support the sub-thalamic nucleus (STN) theory of SAT since 

according to this approach inhibition of pre-SMA would decrease the STN activity and thus 

downregulate the inhibitory effect of basal ganglia on motor execution related cortical 

efferents. According to this theory, excitation (and inhibition) of pre-SMA would result in the 

opposite effects on motor execution related cortical areas by exciting (and not exciting) STN 

[42,43]. Our results regarding decision-thresholds constitute the exact opposite of what would 
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result from these predictions (see Ref. [12] for a critical review of different theories of SAT 

and their predictions).  

 Finally, the implication of our findings for the cortical theory of SAT is equivocal. 

Cortical theory asserts that SAT modulation is achieved through the baseline activity of 

cortical integrator neural populations. When the baseline activity is high the distance that 

needs to be traveled to reach a given threshold would be shorter, leading to fast but error 

prone decisions again due to random noise in evidence accumulation process. If on the other 

hand, when the baseline activity is low this distance to be travelled before making a decision 

would be higher, leading to slow but more accurate decisions. Thus, if right pre-SMA 

contains integrator neurons, our results might very well be explained also by the cortical 

theory of SAT. Different theories of SAT are illustrated in Figure 3. 

The current study differs from our previous work [20] in two main ways. Our previous 

study investigated the effect of offline inhibition of right pre-SMA by cTBS on SAT and 

showed that decision-thresholds were set higher as a result of this manipulation. The current 

work replicated this finding and but also demonstrated that the offline excitation of right pre-

SMA by iTBS reduced the decision-thresholds confirming the primary prediction of the 

cortico-striatal theory of SAT in both directions (i.e., increase and decrease) in a 

comprehensive fashion. Second, in the previous study we used 10-20 EEG electrode 

placement for TMS localization. The current study employed a much more precise method for 

localization by using participant-based structural MRI-guided neuronavigation.   
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Figure 3. Depiction of striatal, cortical, STN, and synaptic theories of SAT. Striatal theory is 

depicted by the primary excitatory projections of right pre-SMA on striatum and thereby the 

modulation of striatal excitability. The cortical theory and the striatal theory are depicted in 

terms of their core assumptions regarding the dynamics of the decision processes (top left 

panels). The comparison of cortical and striatal theories in terms of decision process (top left 

three panels) is inspired by Figure 2 of Bogacz et al. [12]. The STN theory is depicted in 

terms of excitatory projections of dlPFC and pre-SMA onto STN. Finally, for completeness 

the synaptic theory is depicted in the rectangular zoom-in on striatal synapses (not described 

in main text but referred to here). According to this theory, SAT can be modulated by 

changing the efficacy of cortico-striatal synapses and thereby changing the sensitivity of 

striatal neurons to the cortical inputs through processes such as dopamine-dependent long-
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term potentiation [44]. According to this view, long-term depression would effectively 

increase whereas long-term potentiation would effectively decrease the decision thresholds. 

 

Although the direction of the pre-SMA inhibition on drift-rate was consistent with 

Tosun et al. [20] and the effect of pre-SMA stimulation was in the opposite direction, these 

effects were not statistically reliable. This could be due to the fact that different from the 

previous study, we analyzed the data gathered from a shorter test period for the data to be 

comparable between cTBS and iTBS conditions while in the previous study the entire test 

session (due to much longer effect period of cTBS) were included in the analysis. Further 

studies are required to elucidate the mechanisms that are affected in relation to drift-rates in 

2AFC.  
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