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ABSTRACT 

 

The bulk port terminals are important links in world trade; therefore the operations 

offered by the terminals should be efficient and effective. These operations include 

allocating berths to the upcoming vessels, storing and handling bulk materials on the 

stockyard, and assigning and scheduling stacker and reclaimers to collect the material from 

the yard and convey to the vessels. Although yard assignment or storage allocation 

problems at the yard side of the ports have been studied for many years, most of the studies 

mainly focus on storing containers, and bulk port terminals receive less attention than they 

deserve. 

In many port terminals, dry bulk materials are stored and shipped on a regular basis. In 

this thesis, we investigate the yard assignment of dry bulk materials, such as coal, in bulk 

ports. The ultimate goal of this study is to develop a methodology to determine the location 

of stockpiles on the stockyard while minimizing the total travel distance and the total dwell 

time of materials that are handled in ports. Therefore, we present mathematical models 

which address this yard assignment problem by generalizing the well-known multi-

dimensional packing models. 

The first two models proposed in this thesis address the yard allocation problem (YAP) 

in a continuous time and continuous space. Continuous YAP is studied where the length of 

the stockyard as well as the planning time horizon is continuous. On the other hand, the 

third model we propose discusses the YAP in discrete time and discrete space. 

In our models, we consider two types of stockyards: with pads and without pads. In the 

absence of pads, the stockpiles can be stored freely provided that they are parallel to the 

edges of the stockyard. Therefore, in addition to the assignment of materials to the storage 

locations, the first model also determines the orientation of the bulks given that the 

dimensions of each bulk are known. We perform computational experiments which 
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indicate that the models can solve small- and medium-sized real life instances. However, 

since the underlying multi-dimensional packing problems are NP-hard, developing a 

computationally efficient mathematical model is challenging. Thus, a hybrid metaheuristic 

(YATS_VNS) which is based on Tabu Search and Variable Neighborhood Search to solve 

YAP in large-scaled bulk port terminals is presented. Finally, we analyze the performance 

of both the mathematical models and the metaheuristic algorithm with four sets of 

generated data including instances based on real life data. 

For small-sized instances, mathematical models as well as heuristics can solve YAP to 

optimality within a reasonable time. For large data sets, we manage to obtain small gaps at 

least with one of the mathematical models. Moreover, we compare the metaheuristic results 

with the best obtained solutions. The results indicate that we improve the solution quality 

and running time with YATS_VNS in almost every instance. 
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ÖZET 

 

Kuru dökme yük terminalleri dünya ticaretinde önemli bağlantı noktalarını 

oluşturduğundan terminaller tarafından sunulan operasyonların verimli ve etkili olması 

gerekmektedir. Bu operasyonlar rıhtımların gelen gemilere atanması, kuru dökme yüklerin 

elleçlenmesi ve depo alanında depolanması, ve yükleri depo alanından toplayan 

boşaltıcıların atanması ve çizelgelemesini içermektedir. Yük depolama problemi konteyner 

terminallerinde çokça çalışılmış olsa da kuru yük terminallerinde yük depolama problemi 

hak ettiğinden daha az ilgi görmüştür. 

Çoğu dökme yük terminalinde, kuru yükler düzenli olarak depolanmakta ve sevk 

edilmektedir. Bu tezde, dökme yük terminallerinde kuru yükleri depolama problemi (YDP) 

üzerinde çalışılmıştır. Bu araştırmanın amacı, yüklerin depo alanında aldığı yolu ve 

elleçlenmek için bekledikleri süreyi enazlayacak depo alanındaki yerleri belirleyen bir 

yöntembilimi geliştirmektir. Bu amaca ulaşmak için bu tez çalışmasında, YDP’yi çözmek 

üzere Karma Tam Sayılı Doğrusal Programlama (KTSDP) modelleri ve üstsezgisel 

algoritmalar sunulmaktadır. 

Sunulan ilk iki model YDP’yi sürekli zaman ve aralıkta ele almaktadır. Sürekli YDP 

depolama alanı uzunluğu ve planlama dönemi sürekli olduğunda çalışılmaktadır. Öte 

yandan, üçüncü model YDP’yi kesikli zaman ve aralıkta incelemektedir. 

Geliştirilen modellerde iki tip depolama alanını ele alınmıştır: şerit alanlardan oluşan 

depolar ve bölüntüsüz tek alandan oluşan depolar. Şerit depo alanlarının yokluğunda, stok 

yığını depolama alanı üzerinde alan sınırlarına paralel olacak şekilde serbestçe 

yerleştirilebilir. Bunun sonucunda, ilk model yığınların depolama yerinin yanı sıra 

yığınların alandaki yönünü de belirler. Sayısal deneyler, modellerin küçük ve orta ölçekli 

gerçek hayat örneklerini çözebildiğini göstermektedir. Bunun yanı sıra YAP’ın bir özel hali 

olan çok boyutlu kutulama problemleri halihazırda NP-zor problemler kategorisinde olduğu 
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için verimli bir KTSDP modeli sunmak zorlu olmaktadır. Bu nedenle büyük ölçekli 

limanlarda YDP’nin çözümünde kullanılmak üzere Tabu Arama ve Değişken Komşu 

Arama algoritmalarını birleştiren karma bir üstsezgisel algoritma (YATS_VNS) 

önerilmiştir. Son olarak, sunulan KTSDP modellerinin ve üstsezgisel algoritmanın 

performansı gerçek hayat verilerini de içeren dört farklı veri kümesi ile test edilmiştir. 

Küçük ölçekli örneklerde, KTSDP modelleri ve üstsezgisel algoritma YDP için eniyi 

sonucu makul bir sürede elde edebilmektedir. Büyük ölçekli örneklerde ise ikinci KTSDP 

modeli ile eniyi çözüme yakınsayan sonuçlar elde edilmiştir. Bunlara ek olarak, üstsezgisel 

algoritmanın çözümleri KTSDP modelinden elde edilen sonuçlar ile karşılaştırılmıştır. 

Sonuçlara göre, YATS_VNS algoritması ile çözüm kalitesi ve çözüm süresi büyük ölçekli 

örneklerden oluşan dördüncü veri setindeki neredeyse tüm örneklerde iyileştirilmiştir. 
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Chapter 1 

 

INTRODUCTION 

1. D 

According to United Nations Conference on Trade and Development (UNACTAD) 

2014 Report, world merchandise trade volumes expanded in 2013 with a rate of 2.2% 

(UNACTAD, 2014). Consequently, growth in world maritime transportation is announced 

as 3.8% which corresponds to nearly 9.6 billion tons. Maritime transportation is mostly 

based on containerized and dry bulk materials. They comprise the largest share, 

approximately 70%, of all cargos. On the other hand the remaining 30% of shipments 

includes wet bulk materials such as petroleum and crude oil. Containerized materials are 

transported using boxed-shaped equipment with mostly standard sizes, whereas due to 

uniformity of bulk materials, they are stored in a single hold and shipped in large quantities 

without containers. Additionally, as industries, such as manufacturing and construction, 

flourish, the demand for energy and raw materials increase. Big developing countries have 

a tendency to economize energy resources efficiently; therefore they switch to coal 

powered factories. These recent trends, especially the increases in major dry-cargo trade 

volumes, such as coal, affect the maritime transportation volumes as well. In parallel with 

these increments, the trade of bulk commodities grew by 5.5% (UNACTAD, 2014). The 

bulk port terminals are important links in world trade; therefore the operations offered by 

the terminals should be efficient and effective. These terminals establish the backbone of 

the maritime logistics and supply chain. They provide transportation and handling 

operations and assure an integrated management between seaside operations and landside 

operations to handle inbound and outbound materials that traverse the bulk port terminals. 
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By applying a correct planning with a high efficiency, the throughput of bulk port terminals 

can be increased.  Figure 1 shows some of the important operations of bulk port terminals.  

 

 

Figure 1. Operations of bulk port terminals 

 

These operations include allocating berths to the upcoming vessels, storing and 

handling bulk materials on the yard, and assigning and scheduling stacker and reclaimers to 

collect the material from the yard and send to the vessels.  

Although berth allocation problem (BAP) and stacker-reclaimer scheduling problem 

are highly studied, yard allocation problem in bulk port terminals receive less attention. To 

the best of our knowledge, a few studies are conducted in an integrated setting with BAP 

(Robenek et al. (2014) and Boland et al. (2012)). Therefore, the motivation of this research 

is to focus on yard management of bulk port materials and provide exact solutions as well 

as fast and good quality solutions to this problem. 

In this thesis, stockyard allocation problem for bulk materials is studied. Stockyard is 

an enclosed area where bulk materials are stored without any containers. In import 

terminals, the inbound materials are unloaded form vessels and stocked until trains or 

trucks arrive to transfer the material. Similarly, in export terminals, outbound materials are 

brought to the yard by trains or trucks and stored until the relevant vessel comes. Since the 
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storage principles of import and export terminals are similar, in this thesis only export 

terminals are considered. 

 

1.1 Bulk Port Terminals 

 

Nowadays, 90% of import and export merchandise is transported by sea (UNACTAD, 

2014). Maritime transportation is less costly and safer when compared to other means of 

transportation. As world merchandise trade volumes expanded, intercontinental shipment 

volumes are increased. Thus, the effective and efficient management of port terminals is 

becomes more important. 

Figure 2 shows an overview of a bulk port terminal. The bulk materials are mostly 

consisting of raw materials such as coal, iron-ore, petroleum or other underground 

resources that are used in different industries. The bulk materials are arriving to the port by 

trains or trucks depending on the volume and the origin of the material. These materials are 

unloaded to the dump yard and then transported to the stockyard with conveyor belts. 

Stackers load the material and built stockpiles on the yard. These materials are collected 

from the yard with reclaimers. Collected materials are loaded to the incoming vessels 

which are berthing at the quayside of the port. Ship loaders serve these vessels and when all 

the material is loaded to the vessel, it departs from the port. 

Since bulk materials are imported and exported all around the world through these 

terminals, it is very important to serve the arriving vessels promptly and properly. Unlike 

container terminals where containers arrive from different places and after cross-docking 

they are sent to the destinations, in most of the bulk port terminals, the materials sent to the 

destination points directly. Therefore, the most crucial factor that affects the transportation 

time is the time that vessels spent in the bulk port terminal. Thus, any effort that increases 

the efficiency and effectiveness of a bulk port terminal is worthwhile. 
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Boland et al. (2012) emphasize the different characterizations of bulk terminals in terms 

of storage policies. While some terminals perform as a cargo assembly terminal, others 

have dedicated stockyards. Cargo assembly terminals adopt a “pull-based” strategy. They 

order materials based on the demand. For example, once a vessel is nominated then the 

demanded material is brought to the stockyard. On the other hand, in a dedicated 

stockpiling terminal, a “push-based” strategy is adopted. There are predetermined places 

for different bulk material types and materials are prepared to be loaded beforehand. In this 

thesis, we focus on terminals which operate in a “pull-based” manner. 

 Bulk materials are stored in huge volumes and once a stockpile is started to build, 

usually it is not moved to another place. Since the movement operation is costly and time 

consuming, it is crucial to decide the right places for each stockpile. 

 The following sections provide related definitions about bulk port terminals. The 

common types of bulk materials, their storage category and other structures and equipment 

that are used in the terminals are discussed. 

 

1.1.1 Bulk Materials 

 

Bulk materials are materials which are stored in a single hold and shipped in large 

quantities without containers. Bulk materials can be divided into two categories, such as 

dry bulk materials and wet bulk materials. Dry bulk materials, such as iron ore, coal, 

minerals are stored without any containers. These materials are piled at the stockyards of 

port terminals or mines. Due to the uniformity of the materials, they are ordered and 

shipped mostly in large volumes. Since they are shipped in large quantities, bulk materials 

are commonly transported by intercontinental vessels or freight trains. On the other hand, 

wet bulk materials, such as petroleum and gasoline are stored in a single hold and in large 
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volumes. Additionally, these liquid products can be transported by intercontinental tankers 

as well as pipelines. 

 

 

 

Figure 2. An overview of a bulk port terminal 

 

According to UNACTAD (2014), world dry-cargo transportation grew 5.5% and it was 

6.7 billion tons in 2013. The trade of dry bulk commodities continues to increase and 

constitutes the largest share of dry-cargo volumes (Clarkson Research Services, 2014a).  

Moreover, dry bulk materials can be categorized into two as major and minor bulk 

materials. Major bulk materials include coal, iron ore and grain and these commodities 

have the largest share by volume among the dry bulk cargoes. Minor bulk materials are 
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forest products, agricultural cargoes and cement. Every year, approximately 2.9 billion tons 

of major dry bulk materials and 1.4 billion tons minor dry bulks are transported (Clarkson 

Research Services, 2014a). 

 

1.1.2 Stockpiles 

 

 A stockpile is a large supply of bulk material that is kept for future use (Stockpile, 

2015). Since bulk materials are stored without any containers, they are piled at the 

stockyard and stored as stockpiles. Hence it is an important aspect of the bulk material 

handling process. Stockpiles are used to store bulk materials in different environments, 

such as in a port, refinery or manufacturing facilities. An example of a stockpile can be 

seen in Figure 3.  

 

 

Figure 3. A stockpile of iron ore 

  

 Because of the large quantities and the uniformity of the materials, they can be built 

in huge conical shapes at the stockyard. A typical storage form is piles having rectangular 

bases. Figure 4 shows a typical bulk port stockyard and stockpiles. Since bulk materials are 

in large volumes, their locations have a strong effect on the utilization of a stockyard.  
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Figure 4. A typical bulk port stockyard 

 

1.1.3 Pads, Conveyor Belts and Stacker-Reclaimers 

 

At the stockyard of most of the bulk port terminals, there are pads where the bulk 

materials are piled. These pads are separated from each other with a conveyor belt which 

carries the materials. In Figure 4, there are six pads which lie along the quay side. There are 

four stackers-reclaimers moving along the conveyor belts, which were built at the 

stockyard to carry materials.  

Stockpiles are formed using stackers to build piles along the length of a conveyor. In 

most of the cases, stockpiles are built so that they span the entire width of the pad. 

Therefore, the width of the stockpiles can be assumed as equal to the width of a pad. After 

a vessel arrives to the berth, reclaimers retrieve the material from the stockyard for loading. 

 

1.1.4 Rail tracks 

 

In general, there are rail tracks around the ports for the trains which bring the bulk 

material to the port (Figure 5). Trains may come from one or more suppliers to the port. 



 

 

Chapter 1: Introduction  8 

 

Usually, these materials are unloaded to the dump stations, and then carried to the 

stockyard. The scheduling of the trains is also an important problem and studied by Liu and 

Kozan (2009), but it is outside the scope of this thesis. 

 

 

Figure 5. Rail tracks around a port terminal 

 

1.2 Operations in Bulk Port Terminals 

 

Robenek et al. (2014) divides the operations in bulk port terminals into two levels: (1) 

Tactical level and (2) Operational level. Tactical level operations include medium to short 

term decisions. For example, berth allocation problem and stockyard management 

decisions can be listed as the most significant tactical level decisions in bulk port terminals. 

On the other hand, daily operations such as crane scheduling, yard equipment selection can 

be handled at the operational level. In this study, we focus on a tactical level operation 

which is the stockyard allocation problem. 

The vessels arrive at bulk ports to be served, loaded or unloaded. Ship loaders serve the 

upcoming vessels, by either loading them with the material at the stockyard or unloading 
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the material from the vessel. Berth allocation problem (BAP) refers to assigning berths to 

the incoming vessels efficiently so that the demand of the vessels is met with minimum 

delay. BAP mostly considers the decisions of vessels’ docking locations and the berthing 

sequence, concurrently. In most of the bulk ports, the materials are brought to the stockyard 

according to the berthing time of vessels. Therefore, the results of BAP are essential for 

stockyard allocation. The departure times of vessels are provided by solving BAP. Thus, 

the output of BAP can be used as an input to yard allocation problem (YAP).  

 In practice, these decisions can be made by the port managers who are experienced and 

have the insight into port operations. Additionally, scientific approaches based on 

operations research methods can be used as decision support systems. 

Although yard assignment (or storage allocation) problems at the yard side of the ports 

have been studied for many years, in most of the studies, researchers mainly focus on 

storing containers and bulk port terminals receive less attention than they deserve. In many 

port terminals, dry bulk materials are stored and shipped on a regular basis. Therefore, in 

this thesis, the yard assignment of bulk materials, such as coal, in bulk ports are 

investigated. 

 

1.3 Outline 

 

 The organization of the thesis is structured as follows. In Chapter 1, the operations of 

bulk port terminals are briefly introduced and the related definitions are provided. In 

Chapter 2, the yard allocation problem is explained and the associated studies are reviewed. 

In addition to port operations, multi-dimensional packing problems and related 

metaheuristic approaches are surveyed. In Chapter 3, the methodologies adopted in this 

thesis are presented. Chapter 4 provides mixed integer linear programming (MILP) models 

to solve yard allocation problem. In addition to exact solutions, Chapter 5 proposes 
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metaheuristic algorithms based on Tabu Search (TS) and Variable Neighborhood Search 

(VNS). Implementations of TS and TS hybridized with VNS are discussed in this chapter. 

Chapter 6 reports the results of MILP models and metaheuristics, and provides a 

comparison of the models. Finally, Chapter 7 concludes with future research possibilities 

and important remarks. 
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Chapter 2 

 

PROBLEM DEFINITION AND LITERATURE REVIEW 

2.  

2.1 Problem Definition 

 

 The tactical operations at the container terminals (CT) have been studied for many 

years. Comprehensive surveys about CT are provided in Carlo et al. (2014), Bierwirth et al. 

(2010) and Stahlbock and Voß (2008). Although bulk port terminal and container terminal 

operations are similar, their yard sides and storage areas are significantly different. In 

general, containers can be placed on top of each other. However, this cannot occur at the 

bulk port stockyards due to the nature (characteristics) of the piles. Bulk materials are 

stored without any containers therefore they need to be piled on the ground. Piles are built 

as rectangular pyramids; thus, the surface area has a rectangular shape. This rectangular 

surface area of each stockpile will represent its size. In this research, the stockyards which 

only have open air storage areas are considered. Therefore, the height of each stockpile is 

disregarded. Considering this property of the bulk materials, we can approach this problem 

as a multi-dimensional packing problem.  

 The ultimate goal of this study is to develop a methodology to determine the location of 

products at the stockyard while minimizing the total travel distance and the total dwell time 

of materials that are handled in dry bulk material ports. Thus, we developed three 

mathematical models which address the yard assignment problem (YAP) by generalizing 

the well-known multi-dimensional packing models. In our models, we consider two types 

of stockyards; with pads and without pads. In addition to the assignment of materials to the 
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storage locations, first model also determines the orientation of the bulks given that the 

dimensions of each bulk are known. However, since multi-dimensional packing problems 

are NP-hard, developing a computationally efficient mathematical model is challenging. 

Thus, a hybrid metaheuristic which is based on Tabu Search (TS) and Variable 

Neighborhood Search (VNS) to solve YAP in large-scaled bulk port terminals is presented. 

 In order to solve the stockyard assignment problem, two simultaneous decisions should 

be made. The first outcome is the location of the stockpiles at the yard which will be loaded 

to the arriving vessels to minimize the total travel distance of these materials from their 

storage point to the vessel. Secondly, when to start building these stockpiles should be 

determined in contemplation of minimizing the dwelling time of a stockpile at the 

stockyard. Since the ultimate goal of the bulk material terminals is to serve vessels with 

minimum delay, the stockpiles must be loaded to the vessels before the concerned vessels 

depart. Hence, the models proposed in Chapter 4 and Chapter 5 minimize the cost of 

dwelling time and the cost of travel time of a stockpile at the stockyard. 

 

2.2 Assumptions 

 

In this thesis, the following assumptions are made for YAP: 

o The stockyard and the stockpiles are rectangular. 

o The widths and lengths of stockpiles are known. 

o The dimensions of the stockyard are known. 

o In some cases, there are dump stations around the stockyards where trains bring the 

material and piles located onto these places and then they are moved by conveyor 

belts to the stockyard (Boland, 2012). In this thesis it is assumed that trains bring 

the bulk material directly to the stockyard if the stockyard is available at that 
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moment; otherwise piles dwell in the dump stations. Therefore, the time that a 

stockpile spends on the dump station is also important. 

o Building a stockpile can only start after the nomination of a vessel which will carry 

that stockpile. 

o A stockpile must leave before the ship’s departure from the berth. 

o Since bulk materials are stored in huge volumes, once a stockpile is started to build, 

it cannot be moved to another place. 

o The storage times of stockpiles are known. 

o The arrival times of bulk materials are known. 

o The departure times of vessels are known. 

o The stockyards with and without pads are considered. The layout of these 

stockyards can be seen in Figure 6. 

o If pads exist, stockyard consists of 4 pads having same widths and lengths. 

 

 Additionally, the following additional constraints which may be applied to packing 

problems are investigated to determine the similar constraints of some multi-dimensional 

packing problems that correspond to the physical constraints of a bulk port stockyard. One 

of these constraints is orientation constraint. While placing items into the object, items may 

have fixed orientation as well as they can be rotated by 90 degrees. Orientation constraint 

ensures that the orientation of all items is fixed. Additionally, there are guillotine 

constraints. If guillotine constraint is required then all items must be obtained through a 

sequence of edge-to-edge cuts. Thus, one can attain four subtypes of two-dimensional 

packing problems if these two constraints are combined. These four subtypes can be listed 

as below:  

 

 RF: Items can be rotated 90 degrees and no guillotine cutting is required 
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 OF: Orientation of items is fixed and no guillotine cutting is required 

 RG: Items can be rotated 90 degrees and guillotine cutting is required 

 OG: Orientation of items is fixed and guillotine cutting is required 

 

 The physical conditions of a stockyard may require orientation constraint where all 

stockpiles must be parallel to the pads. In the presence of pads we solve the yard allocation 

problem with OF constraints. Additionally, for some small stockyards, the piles can be 

built freely at the stockyard. Therefore no orientation constraint is required. For this type of 

ports, we solve the problem with RF constraints. The layouts of both stockyards can be 

seen in Figure 6. 

 

  

Figure 6. A stockyard without pads (left) and a stockyard with pads (right) 
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2.3 Literature Review 

 

 Although the focus of this research is the yard allocation problem in the bulk port 

terminals, in order to better grasp the nature of the problem and methodologies used in 

related studies, an extensive literature review on general bulk port operations, yard 

allocation problem in bulk port terminals, multi-dimensional packing problems and 

metaheuristic algorithms is conducted and presented in this chapter. 

 

2.4 General Bulk Port Operations 

 

Schott and Lodewijks (2007) identify the emerging research areas with increasing 

supply and demand trend in the dry bulk market. In this paper, the dry bulk terminals are 

analyzed in terms of terminal logistics, layout and design, storage and handling of the bulk 

material, environmental and maintenance issues. For this purpose, the bulk terminals in the 

Le Harve – Hamburg area are investigated. The mentioned terminals are examined and 

compared in terms of handling, discharge capacities, and flexibilities of different 

equipment. Additional costs, environmental issues, and contamination problems are 

discussed for the open air and the covered storage facilities. Since there are various dry 

bulk terminal layouts, the arrangements of the overall layout, equipment and routing, size 

of the stockyard as well as maintenance and stockyard management can differ and these are 

important to study in order to balance the utility of different parts of the system.  

Junior et al. (2012) introduces a greedy heuristic for berth allocation in tidal bulk ports 

to minimize the overall service time. They assume a discrete space for quay length, tidal 

time windows are known in advance and tidal waves occur in a regular frequency. In 

addition, time scale is also assumed to be discrete. The stock level issues in stockyard are 

not considered in this study. The objective is to minimize the total service time over the 
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planning horizon. It is assumed that the expected time of arrival (ETA) is known and used 

for prioritizing vessels accordingly. First, vessels are sorted according to their ETAs. First-

in-first-out (FIFO) rule can be used for sorting. Since the heuristic is greedy, vessels are 

prioritized according to their expected time of arrivals and then using the FIFO rule vessels 

are assigned with the minimum operational cost. One can obtain quick solutions using this 

approach; however, these solutions are limited to local optimal. These results showed that 

further improvements should be done such as adjustment of the port lineup to avoid stock 

level crashes. 

Hu and Yao (2010) study Stacker-Reclaimers (S-R) scheduling problem in bulk port 

terminals to provide more efficient yard operations. The objective function of the proposed 

mixed integer programming (MIP) model is to minimize the makespan of the serviced 

vessels. Since the problem is considered as NP-hard, a parthenogenetic algorithm is 

introduced to solve the S-R scheduling problem near optimal. 

Articles reviewed in Section 2.4 provide a better understanding of bulk port operations 

in general. Some real life constraints are originated from these papers.  

 

2.4.1 Yard Allocation Problem (YAP) 

 

 Although YAP in container terminals appears in the literature considerably, YAP in 

bulk port terminals receive less attention. To the best of our knowledge, a few studies are 

conducted in an integrated setting. Since the berth allocation and yard management are 

interrelated problems, sometimes researchers develop integrated models for these two 

problems. However, the proposed solution methods are either metaheuristics which cannot 

guarantee optimality or complex mixed integer programming models which cannot solve 

even small-sized instances to optimality within an acceptable amount of time. Despite the 

application of decomposition techniques, BAP and YAP with instances for medium-sized 
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port terminals cannot be solved to optimality. Additionally, in consideration of stockyard 

management, the determination of stockyard size for dry bulk terminals is also important. 

 Robenek et al. (2014) provide an overview of bulk port terminal operations. They 

provide insight on making tactical and operational level decisions. They mainly focus on 

tactical level decisions which are the berth allocation problem (BAP) and the yard 

assignment problem (YAP). They present an exact method as well as a metaheuristic 

algorithm to solve the integrated BAP and YAP. They examine a bulk port terminal where 

the length of quay is continuous, vessel arrivals are dynamic and the yard space is 

discretized. They divide stockyard into several locations and quay side is partitioned into 

several sections. Their aim is to minimize the total service time of vessels. They consider 

small-, medium- and large-sized instances with 10, 25 and 40 vessels, respectively. 

Additionally, on the yard side, they consider liquid bulk and dry bulk materials together. 

An exact solution algorithm is proposed based on branch and price. Since the proposed 

mixed integer programming model for integrated problem is complex, it is not likely to 

solve BAP and YAP to optimality even for small-sized ports. Therefore, to reduce the 

problem size, a set partitioning problem is formulated. However, they can only solve some 

small-sized problems to optimality using the set partitioning decomposition technique. 

Moreover, solving medium- and large-sized instances takes hours, with an average 4.11% 

and 3.77% optimality gaps, respectively. In addition, they develop a metaheuristic 

approach based on critical-shaking neighborhood search (CSNS) in order to obtain near 

optimal solutions in a short time. However, although the running time is improved for all 

instances, the average of optimality gaps of the results obtained with the CSNS heuristic 

are 4.78%, 8.02% and 31.16% for small-, medium- and large-sized instances, respectively. 

The results indicate that, although CSNS can obtain solutions within a minute, one 

disadvantage of this algorithm is that the resulting objective values for large-sized instances 

deviates 31.16% from the best known objective value (i.e. the upper bound of objective 
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function obtained by running the exact mathematical model, for an average of 

approximately 3 hours) on average. 

 Boland et al. (2012) describe the coal terminals in Port of Newcastle, Australia. They 

explain port operations in detail as well as the transportation of coal from mine load points 

to the terminals. They differentiate different terminal types with respect to operating 

characteristics such as push based manner or pull based manner. Additionally, they provide 

real life data and constraints which must be complied in the course of the operations of 

bulk port terminals They also focus on a stockyard planning problems which is an 

integrated problem consisting of berth allocation decisions, stockpile location decisions and 

stockpile assembly start time decisions. They consider stream of ship arrivals and 

reclaiming start times of materials. Their objective is to maximize throughput which is 

obtained by minimizing the mean delay time of ships. They introduced a hybrid algorithm 

which consists of a greedy construction heuristic, enumeration and integer programming. 

They develop a stockyard planning technology which can be applied to the coal terminals 

for better management. However, since they do not provide any exact model, they only 

compare the efficiency of proposed heuristic algorithms. They test the efficacy of their 

algorithms with real-life data from the Port of Newcastle. 

 Vianen et al. (2013) propose a methodology, sustained with a simulation tool, to decide 

the required stockyard size in bulk port terminals. They focus on stockyards for dry bulk 

materials such as coal or iron ore. They investigate inventory models to store dry bulk 

materials and provide a simulation based approach to determine the stockyard size for bulk 

terminals. Finally, they perform a case study, in which they apply their methodology to the 

mentioned problem and present their findings. 
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2.4.2 Multi-Dimensional Packing Problems 

 

 Since YAP in bulk port terminals resembles multi-dimensional packing problems 

(MDPP), exact models and heuristic algorithms should be examined to incorporate the 

similar constraints in both problems.  

 Multidimensional packing operations can be observed in different environments. 

Hopper and Turton (2001) define packing problems as optimization problems engaging in 

to find a good arrangement of multiple smaller items in larger container objects (usually 

called as bin). Thus, in many industries packing problems need to be solved with different 

constraints including aforesaid orientation and guillotine constraints and different 

objectives. In most of the industries, manufacturing, service or telecommunication, some 

portion of the limited resources need to be allocated to the tasks or jobs. For example, 

manufactured goods need to be packed into containers to be shipped and the objective is 

minimizing the number of these containers. This type of packing problems called three-

dimensional bin packing (3D-BP) problems and it is one of the well-known MDPP. In YAP 

a pad can be considered as a bin whereas, stockpiles are items that are placed on the pads. 

Additionally, since we study only open air storage areas, the height of the stockpiles are not 

considered. Therefore, the third dimension of a bin can represent the planning horizon.  

 Chen et al. (1995) study three-dimensional palletization and developed a mathematical 

model to place items into bins while minimizing the unused space. They consider multiple 

containers and multiple item sizes. They also investigate the cases where changing the 

orientation of an item in a bin and overlapping of items in a container are allowed. In one 

of our models we allow rotating stockpiles 90 degrees at the stockyard. Therefore, we 

borrow the concept which combines non-overlapping constraint and the orientation 

constraints for three dimensional packing problems from Chen et al. (1995). 

 Bay et al. (2010) focus on space and time allocation problem for shipyard assembly 

halls which is closely related to the three-dimensional bin packing problem due to the non-
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overlapping constraints. They study space and time allocation for blocks (prefabricated 

keel elements), which cannot be placed on top of each other; therefore, they relate the third 

dimension in the bin packing problem with the time allocation to produce these large 

building blocks. In addition, they develop a Guided Local Search (GLS) heuristic for the 

3D-BP problem. Their study aims to order the blocks into the rectangular areas, without 

overlap, and without violating the time constraints. 

 Martello and Vigo (1998) evaluate the two-dimensional finite bin packing problem. 

They analyze a well-known lower bound and perform a worst-case analysis. Additionally, 

they propose new lower bounds to use within a branch-and-bound algorithm. Their results 

indicate that the worst case performance analysis is valid even if the items are allowed to 

rotate by any angle. 

 Lodi et al. (2002a) present a survey on two-dimensional packing problems. They 

discuss mathematical models, survey lower bounds, approximation algorithms, heuristic 

and metaheuristic methods and exact enumerative approaches. They include papers which 

present two-dimensional bin and strip packing problems and knapsack problems. Exact 

models and approximation algorithms are presented in detail.  

 Lodi et al. (2002b) focus on recent advances on two-dimensional bin packing (2D-BP) 

problems. Upper and lower bounds, exact models, heuristic and metaheuristic algorithms 

are presented. They discuss the variants of 2D-BP problems. In real life contexts additional 

constraints such as orientation and/or guillotine cuts may be required. A typology for the 

possible cases produced by the aforesaid constraints is presented. 

 Arahori et al. (2012) propose an exact algorithm to solve the two-dimensional strip 

packing (2D-SP) problem with and without 90 degrees rotation of items. They derive a 

methodology to obtain new lower bounds and use the branch and bound method. The 

computational results indicate that their algorithm succeeds to find the optimal solutions for 
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some of the benchmark instances which have not been solved by any of the other 

algorithms. 

 Castro and Oliveira (2011) develop scheduling inspired models for two-dimensional 

packing problems. They developed exact mixed integer linear programming models for 

two-dimensional packing problems as well as hybrid discrete/continuous time-space 

heuristic algorithms. They also consider the rotation of the rectangles while packing them.  

 Along with the other two-dimensional packing problems Lodi et al. (2002) investigate 

the 2D-BP problems. They examine mathematical models, and survey lower bounds, 

approximation methods, heuristic and metaheuristic algorithms and exact enumerative 

approaches. Additionally, they consider some special cases where the items have to be 

packed into rows by forming levels. The level structure in the paper can be incorporated to 

our model as the arrival-departure times of stockpiles. In addition to all approximation 

algorithms, they also consider the proposed metaheuristic techniques with lower bounds for 

2D-BP problems. 

 

2.4.3 Metaheuristic Approaches 

 

 In the literature, metaheuristic algorithms are studied, surveyed and presented in many 

research articles. Since the scope of this thesis is yard allocation problem inspired by multi-

dimensional packing models, metaheuristics including but not limited to Tabu Search (TS), 

Genetic Algorithms (GA) and heuristic algorithms Bottom-Left (BL), First Fit (FF) for 2D-

BP, 2D-SP problems and container loading problems (CLP) are reviewed in this section. 

 Tabu Search (TS) is introduced by Glover (1986) and it guides a local search method to 

examine the solution space beyond the local optimality. According to the classification 

suggested by Glover and Laguna (1998) TS exploits adaptive memory, some systematic 

neighborhood search to select the next move or to improve the current solution and moves 

from one solution to another in each iteration. 
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 Mladenović and Hansen (1997) propose the Variable Neighborhood Search (VNS) 

which systematically allows changes in the neighborhood. Since then, VNS is used to solve 

various combinatorial optimization problems. Beltrán et al. (2004) proposed a hybrid VNS 

and Greedy Randomized Adaptive Search Procedure (GRASP) algorithm for the strip 

packing problem and Behnamian et al. (2009) solve parallel-machine scheduling problems 

with sequence-dependent setup times using an Ant Colony Optimization (ACO) with VNS 

and Simulated Annealing (SA) with VNS algorithms. 

 Jain and Gea (1998) study two-dimensional packing problems using genetic algorithms. 

They introduce a new concept of two-dimensional genetic chromosome. Moreover, the 

results indicate that their approach is suitable and quite effective for packing problems with 

any kind of items including irregular items with holes. 

 Berkey and Wang (1987) analyze the performance of existing and a new packing 

heuristic for a special case of 2D-BP problem where the number of bins is finite. They 

propose a new heuristic by adapting well-known heuristics such as bottom-left, next-fit, 

first-fit, and best-fit to finite bin case. They implement a best-fit-decreasing-height heuristic 

followed by a best-fit-decreasing heuristic and called it finite best-strip. Their results imply 

that the proposed heuristic reflects the proven worst case bounds for the existing two-

dimensional packing heuristics.  

 Bortfeld and Gehring (1998) propose Tabu Search to solve container loading problems 

(CLP). CLP resembles to multi-dimensional packing problems where there is only one 

container (bin) and a set of rectangular goods, referred to below as items. The aim of this 

problem is to find a feasible packing of all items in the container to maximize the stowed 

item volume. Additionally, any orientation or guillotine cut constraints can be required. In 

Bortfeld and Gehring (1998) the solutions are created by using an integrated greedy 

heuristic. Thus, the overall control mechanism of the heuristic is a superior TS. In addition, 

Bortfeld and Gehring (2001) design a genetic algorithm to solve CLP. Later, Bortfeld 
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(2005) adapt Bortfeld and Gehring’s (2001) GA for the 2D-SP problem with rectangular 

pieces. The aim of the proposed algorithm is to provide a GA for the 2D-SP problem that 

works without encoding any solution. 

 Hopper and Turton (2001) hybridize two heuristic approaches which are based on 

bottom-left (BL) heuristic with three meta-heuristic algorithms (genetic algorithms (GA), 

simulated annealing (SA) and naı̈ve evolution (NE)) and local search heuristic (hill-

climbing) to solve two-dimensional packing problems. They compare the results of the 

algorithms with respect to the solution quality and the computational time. In their study, 

SA achieves best solution quality whereas the computational time of GA and NE are less 

than that of SA.  

 Lodi et al. (1999) investigate all four cases of bin packing problems that are mentioned 

before. Those cases arise from the restrictions made on the orientation of the items and 

whether they can be obtained through guillotine cuts or not. They introduce a new heuristic 

for each class of problem and a TS which can be adapted to these specific problems only by 

applying the heuristic introduced for that problem. They conclude that among the different 

metaheuristic algorithms, TS recently proved to be particularly effective for 2D-BP 

problems. The essential characteristic of their TS algorithm is that the neighborhood 

structure is dynamically changing its size.  

 In addition to these papers, Coffman et al. (1983) generalize the online bin packing 

models into dynamic one-dimensional bin packing (1D-BP) problem. They mainly focus 

on FF algorithm to obtain a performance bound. They claim that no online packing 

algorithm can perform better than FF in terms of bounds. 

 Epstein and Levy (2010) enhanced the idea of dynamic 1D-BP problem into dynamic 

multi-dimensional bin packing problem. The aim is to pack arriving multi-dimensional 

items, such as rectangles or boxes into bins, such as squares, or cubes. They consider the 

online problem where the future input, that is, arrival or departure of an item, is not known. 
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However, in this thesis, it is assumed that arrival and departure times of items (stockpiles) 

are known at the beginning of the planning horizon. Moreover, they consider where items 

are assigned to bin permanently but relocation of an item within a bin is possible. In the 

classical multi-dimensional online packing problems, when an item is assigned to a place, 

its location is not changed. We also adopt the classical approach, where if a stockpile is 

built at the stockyard, then its location does not change during the planning horizon. 

    Similar to Epstein and Levy (2010), Han et al. (2010) study dynamic bin packing of unit 

fraction items. They also focus on FF algorithm to find theoretical results.  

 For further information about metaheuristics and their applications the reader is referred 

to Laporte and Osman (1995), Gendreu et al. (1995), Al-Mahmeed (1996), Charon and 

Hudry (1996), Osman and Kelly (1996). 
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Chapter 3 

 

METHODOLOGY 

3.  

   

 To the best of our knowledge, since bulk port terminals receive less attention than 

container terminals, only a few exact and heuristic approaches are proposed to solve yard 

allocation problem in bulk port terminals in the literature.  In order to provide better yard 

management for port terminals, we adopt two approaches in which we provide exact 

solutions and near optimal but quick solutions. The methodologies used in this thesis to 

solve the yard allocation problem are provided in this chapter.   

 Three mixed integer linear programming models focusing on different characteristics of 

the problem are developed to determine the optimal positions of every stockpile on the yard 

and the optimal start time of building a stockpile. Additionally, metaheuristic algorithms 

are proposed to provide a better yard management for large-scaled bulk port terminals. In 

Section 3.1 a brief explanation about the MILP models is provided.  

 Moreover, a TS which utilizes a bottom-left-fill like heuristic is proposed to obtain near 

optimal results within a reasonable time. Furthermore, to obtain better results, a 

hybridization of the TS with VNS is presented. Therefore, in Section 3.2 the basic steps of 

TS and VNS algorithms are discussed. 

 

3.1 Mixed Integer Linear Programming Models 

 

 Mixed integer linear programming (MILP) models are used to solve various 

combinatorial optimization problems. They are mathematical models that consist of both 
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continuous and integral decision variables, a linear objective function and linear 

constraints. The running time of the MILPs solely depend on the complexity of the 

problem. Thus, for complex problems, running an MILP can be very time consuming even 

for mid-size instances. On the other hand, they provide the optimal solution (i.e. global 

maximum or minimum, depending on the nature of the objective function) of the problem. 

 In this study, three MILP models inspired by multi-dimensional packing problem 

models are introduced to solve the continuous and the discrete yard allocation problems 

individually. 

 The first and the second models proposed in this thesis address the YAP in a continuous 

time and continuous space. Continuous YAP is studied where the length of the stockyard as 

well as the planning time horizon are continuous. On the other hand, the third model we 

propose discusses the YAP in discrete time and discrete space. In all models the same two 

objectives are adopted: minimizing the total distance travelled at the stockyard and 

minimizing the total dwelling time over all stockpiles. 

 Although most of the real-life bulk port terminals have conveyor belts that were built at 

the stockyard and divide it into small areas called pads, first a more general purpose 

mathematical model is proposed. Then, this property of bulk port stockyards is considered 

in the second and the third models. 

 The stockpile assignment problem resembles to multi-dimensional packing problem 

where there are multiple objects (bins) having the length and the width same as the pads at 

the stockyard and the items are stockpiles which will be placed on the pads. Since the 

height of each stockpile will not be important (the stockyard is an open air storage area), 

we can use the third dimension as the time. 

 There is no need to force guillotine constraints which are discussed in Section 2.2 in a 

bulk port stockyard due to physical capabilities of yards. On the other hand, in most of the 

stockyards, the width of pads determines the width of stockpiles therefore the orientation of 
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the piles must be fixed. However, some small-sized stockyards may allow rotation of 

stockpiles if they do not require conveyor belts at the stockyard. If the considered stockyard 

is assumed to be without pads, then the orientation constraint can be relaxed. Therefore, in 

this thesis, RF and OF types of multi-dimensional packing models are considered. 

 

3.2 Metaheuristic Approach 

 

 Talbi (2009) defines heuristics as methodologies used to find 'good' solutions for large-

size problem instances. Heuristics perform at acceptable costs and level in a wide range of 

problems. However, they do not guarantee any approximation bounds on the obtained 

solutions. Thus, they are designed and tailored to solve a specific problem and/or an 

instance. 

 Metaheuristics, on the other hand, are general-purpose algorithms. They can be adopted 

to solve almost any optimization problem. Metaheuristics utilize high level methodologies 

when compared to heuristics. They can be used as guidelines that control the underlying 

heuristics.  

 Metaheuristic term is coined with the Glover’s (1986) paper in which the Tabu Search 

is introduced. Thereafter, metaheuristics became widely applied methods to find good 

quality solutions for optimization problems.  

 Although many metaheuristics exist in the literature, notable examples can be listed as 

simulated annealing (SA), tabu search (TS), genetic algorithms (GA), variable 

neighborhood search (VNS), ant colony optimization (ACO), naı̈ve evolution (NE) and 

particle swarm optimization (PSO). In this thesis, a hybridization of TS and VNS are 

utilized. 

 Hopper and Turton (2000, 2001) differentiate metaheuristics by their encoding and 

decoding requirements. They divide metaheuristics into three groups as follows: 
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 1) In the first group, algorithms use encoding and decoding the solutions in order to 

obtain final results. The search is conducted in the space of the encoded solution. Move 

operators, crossover or mutation operators are always problem-independent. Thus, a 

decoding routine is required to transform encoded solutions into complete solution space. 

 2) The second group incorporates methods that usually uses encoded solutions but these 

solutions already contain geometrical information about the final solution. Mostly problem 

specific operators are used in these algorithms. Although there is information about the 

solution space information within the encoded solution space, additional decoding routine 

is required for the final positioning. 

 3) Finally, search is conducted directly in the fully defined solution space for the third 

group. Since the methods search the original problem space, the solutions are manipulated 

by specific operators. As a result, additional decoding routine is not required in this group 

of algorithms. 

 In this thesis, a tabu search (YATS) and a tabu search hybridized with variable 

neighborhood search (YATS_VNS) algorithms which uses a Bottom-Left-Fill (BLF) like 

heuristic are proposed. Detailed explanations of these models and the components of 

proposed YATS and YATS_VNS are provided in Chapter 5. 

 The proposed algorithms are included in the first category characterized by Hopper and 

Turton (2000, 2001). Therefore, problem independent neighborhoods are selected. 

Moreover, a complex encoding and decoding routine is needed in order to obtain the final 

solution. The algorithms utilize a BLF like heuristic as a decoder to transform encoded 

solutions into the stockyard assignments to the piles. BLF is a well-known heuristic for 2D 

packing problems. 
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3.2.1 Tabu Search 

 

In the literature, metaheuristics are grouped under various categories according to 

different characteristics of them. Glover and Laguna (1998) classify metaheuristics in terms 

of three basic design categories: (1) the use of memory, (2) the used neighborhood 

exploration strategy and (3) the number of solutions generated to carry next iteration. 

According to these categories, TS exploits adaptive memory, a systematic neighborhood 

search to select the next move or to improve the current solution, and moves from one 

solution to another in each iteration. 

The basic TS algorithm is introduced by Glover (1986). Basic steps of TS Algorithm 

are provided in Figure 7. TS guides a local search method to examine the solution space 

beyond the local optimality. The most important component of TS is the tabu list. Recently 

visited solutions are recorded in a tabu list and this list comprises the memory component 

of TS. The solutions in the tabu list are restricted to be visited for a predetermined number 

of iterations. Another component of TS is tabu tenure. It denotes how many iterations a 

solution will be kept in the tabu list. Therefore, the tabu tenure and the attributes of a 

solution which will be added to the tabu list should be determined prior to the search.  

The basic steps of tabu search can be summarized as follows. The search starts with an 

initial solution and an empty tabu list. Therefore, the solutions only in the admissible 

neighborhood, that is, solutions which are not in the tabu list can be visited in the following 

iterations. After evaluating the admissible neighborhood, the best solution is chosen. Then, 

the selected solution is added to the tabu list. Moreover, the tabu list and the objective 

value are updated accordingly. This process continues until a stopping condition is evoked. 

By this approach, possible cycles can be avoided. Thus, one can escape from a local 

optimum. 

 

 



 

 

Chapter 3: Methodology  30 

 

 SIMPLE TABU SEARCH 

 

1. Select an initial 𝑥 ∈ 𝑋and let 𝑥∗ ≔ 𝑥. Set the 

iteration counter 𝑘 = 0 and begin with 𝑇 

empty. 

2. If 𝑆(𝑥) − 𝑇is empty, got to Step 4. 

Otherwise, set 𝑘 ≔ 𝑘 + 1 and select 𝑠𝑘 ∈
𝑆(𝑥) − 𝑇 such that 

𝑠𝑘(𝑥) = OPTIMUM (𝑠(𝑥): 𝑠 ∈ 𝑆(𝑥) − 𝑇). 

3. Let 𝑥 ≔ 𝑠𝑘(𝑥). If 𝑐(𝑥) < 𝑐(𝑥∗), where 𝑥∗ 

denotes the best solution currently found, let 

𝑥∗ ≔ 𝑥. 

4. If a chosen number of iterations has elapsed 

either in total or since 𝑥∗ was improved, or if 

𝑆(𝑥) − 𝑇 = ∅ upon reaching this step directly 

from Step 2, stop. 

Otherwise, update 𝑇 (as subsequently 

identified) and return to Step 2. 

 

Figure 7. Basic steps of TS Algorithm (Glover, 1986) 

 

3.2.2 Variable Neighborhood Search 

 

Mladenović and Hansen (1997) propose Variable Neighborhood Search (VNS), a 

metaheuristic which systematically allows changes in the neighborhood. Due to relative 

easiness of application of the procedure, VNS can be used as a standalone approach as well 

as a hybridization element of other metaheuristics to solve various combinatorial 

optimization problems. For example, Beltrán et al. (2004) proposed a hybrid VNS and 

GRASP algorithm for the strip packing problem and Behnamian et al. (2009) solve 

parallel-machine scheduling problems with sequence-dependent setup times using an ACO-

VNS and SA-VNS algorithms. 
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VNS applies a local search within multiple neighborhoods systematically. In order to 

apply VNS, maximum number of neighborhoods, the structures of these neighborhoods and 

the local search procedure should be determined. 

The basic steps of variable neighborhood search can be summarized as follows. First, 

an initial solution is identified. Then, the first neighborhood of this solution is searched to 

obtain a new solution in random. Then, a local search is performed on the selected random 

solution and if a better solution is achieved, the incumbent and the best objective values are 

updated. Moreover, the search continues with the first neighborhood. Otherwise, the 

neighborhood is changed and the above steps are performed in that neighborhood. 

Whenever a better solution is obtained, then the search returns to the first neighborhood. 

Until a stopping condition is met, the previous steps are repeated. The steps of the basic 

VNS proposed by Mladenović and Hansen (1997) can be seen in Figure 8. 

 

Initialization Select the set of neighborhood structures 𝑁𝑘 for 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 that will be 

used in the search; find an initial solution 𝑥; choose a stopping condition; 

Repeat the following sequence until the stopping condition is met: 

(1)Set 𝑘 ← 1; 

(2)Repeat the following steps until 𝑘 = 𝑘𝑚𝑎𝑥: 

(a) Shaking Generate a point 𝑥′ at random from the 𝑘𝑡ℎ neighborhood of 𝑥(𝑥′ ∈

𝑁𝑘(𝑥)); 

(b) Local search Apply some local search method with 𝑥′ as initial solution; denote 

with 𝑥′′ the so obtained local optimum; 

(c) Move or not If this local optimum is better than the incumbent, move there 

(𝑥 ← 𝑥′′), and continue the search with 𝑁1(𝑘 ← 1); otherwise, set 𝑘 ← 𝑘 + 1; 

 

Figure 8. Steps of the basic VNS (Mladenović and Hansen, 1997) 
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Chapter 4 

 

MIXED INTEGER LINEAR PROGRAMMING MODELS TO SOLVE YAP 

4.     

 In this chapter, three mixed integer linear programming (MILP) models to solve yard 

allocation problem in bulk port terminals are proposed. We introduce two continuous and 

one discrete MILP model by generalizing the well-known multi-dimensional packing 

models with additional constraints derived from real life bulk port terminals. 

 

4.1 Continuous Yard Allocation Model in the Absence of Pads (CSA) 

 

 In small-sized terminals, the bulk material handling may be performed by mobile 

equipment such as loaders and various shuttles instead of stationary machinery such as 

conveyor belts which are built at the stockyard. In the absence of conveyor belts, hence 

pads, it is assumed that the area of the stockyard is a whole rectangle. Similarly, all piles 

are assumed to be rectangles and the orientation of each pile at the stockyard need to be 

decided. In this section, first, the sets, parameters, the decision variables are defined. 

Secondly, the continuous stockyard allocation model is presented. Finally, the objective 

function of the model and the constraint sets are explained. 

 

Sets and Parameters 

 

𝑆 Set of stockpiles. 

𝐿 Length of the stockyard. 
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𝑊 Width of the stockyard. 

𝑇 Maximum time period. 

𝑀 Arbitrarily large number. 

𝑐𝑡 Cost of transferring a stockpile per meter. 

𝑐𝑤 Cost of dwelling a stockpile per hour. 

𝑎𝑟𝑟𝑇𝑖𝑚𝑒𝑠 Arrival time of stockpile 𝑠 ∈ 𝑆. 

𝑑𝑒𝑝𝑇𝑖𝑚𝑒𝑠 Departure time of vessel that stockpile 𝑠 ∈ 𝑆 will be uploaded into. 

𝑙𝑒𝑛𝑔𝑡ℎ𝑠 Length of stockpile 𝑠 ∈ 𝑆. 

𝑤𝑖𝑑𝑡ℎ𝑠  Width of stockpile 𝑠 ∈ 𝑆. 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝑠 Storage time of stockpile 𝑠 ∈ 𝑆 at the stockyard. 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 X-coordinate of the connection points of conveyor belts to the ship loaders. 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 Y-coordinate of the connection points of conveyor belts to the ship loaders. 

 

Decision Variables 

 

𝑥𝑠: Position of stockpile 𝑠 ∈ 𝑆 on the X-axis. 

𝑦𝑠: Position of stockpile 𝑠 ∈ 𝑆 on Y-axis. 

𝑡𝑠: Start time of building stockpile 𝑠 ∈ 𝑆. 

𝑜𝑠 = {
1, if lenght of stockpile 𝑠 ∈ 𝑆 is parallel to X-axis,
0, otherwise.                                                             

  

𝑎𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 is at the left side of stockpile 𝑘 ∈ 𝑆,
0, otherwise.                                                                      

  

𝑏𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 is at the right side of stockpile 𝑘 ∈ 𝑆,
0, otherwise.                                                                                   

  

𝑐𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 is behind stockpile 𝑘 ∈ 𝑆,
0, otherwise.                                                       

  

𝑑𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 is in front of stockpile 𝑘 ∈ 𝑆,
0, otherwise.                                                            
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𝑒𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 is below stockpile 𝑘 ∈ 𝑆,
0, otherwise.                                                           

  

𝑓𝑠𝑘 = {
1,  if stockpile 𝑠 ∈ 𝑆 is above stockpile 𝑘 ∈ 𝑆,

0,  otherwise.                                                      
 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠: Rectilinear distance traveled by stockpile 𝑠 ∈ 𝑆. 

 

Model 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑡 ∗ 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠

𝑆

+ ∑ 𝑐𝑤 ∗ 𝑡𝑠

𝑆

                                                                                   (𝐴0) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑥𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ∗ 𝑜𝑠 + 𝑤𝑖𝑑𝑡ℎ𝑠 ∗ (1 − 𝑜𝑠) ≤ 𝑥𝑘 + (1 − 𝑎𝑠𝑘) ∗ 𝐿                          ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴1)  

𝑥𝑘 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑘 ∗ 𝑜𝑘 + 𝑤𝑖𝑑𝑡ℎ𝑘 ∗ (1 − 𝑜𝑘) ≤ 𝑥𝑠 + (1 − 𝑏𝑠𝑘) ∗ 𝐿                        ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴2) 

𝑦𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ∗ 𝑜𝑠 + 𝑤𝑖𝑑𝑡ℎ𝑠 ∗ (1 − 𝑜𝑠) ≤ 𝑦𝑘 + (1 − 𝑐𝑠𝑘) ∗ 𝑊                        ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴3) 

𝑦𝑘 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑘 ∗ 𝑜𝑘 + 𝑤𝑖𝑑𝑡ℎ𝑘 ∗ (1 − 𝑜𝑘) ≤ 𝑦𝑠 + (1 − 𝑑𝑠𝑘) ∗ 𝑊                      ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴4) 

𝑎𝑟𝑟𝑇𝑖𝑚𝑒𝑠 ≤ 𝑡𝑘 + (1 − 𝑒𝑠𝑘) ∗ 𝑇                                                                                ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴5) 

𝑎𝑟𝑟𝑇𝑖𝑚𝑒𝑘 ≤ 𝑡𝑠 + (1 − 𝑓𝑠𝑘) ∗ 𝑇                                                                               ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴6) 

𝑎𝑠𝑘 + 𝑏𝑠𝑘 + 𝑐𝑠𝑘 + 𝑑𝑠𝑘 + 𝑒𝑠𝑘 + 𝑓𝑠𝑘 = 1                                                                  ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴7) 

𝑎𝑠𝑠 + 𝑏𝑠𝑠 + 𝑐𝑠𝑠 + 𝑑𝑠𝑠 + 𝑒𝑠𝑠 + 𝑓𝑠𝑠 = 0                                                                     ∀𝑠, 𝑘 ∈ 𝑆 ∶ 𝑠 ≠ 𝑘  (𝐴8) 

𝑥𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ∗ 𝑜𝑠 + 𝑤𝑖𝑑𝑡ℎ𝑠 ∗ (1 − 𝑜𝑠) ≤ 𝐿                                                                             ∀𝑠 ∈ 𝑆  (𝐴9) 

𝑦𝑠 + 𝑤𝑖𝑑𝑡ℎ𝑠 ∗ 𝑜𝑠 + 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ∗ (1 − 𝑜𝑠) ≤ 𝑊                                                                         ∀𝑠 ∈ 𝑆  (𝐴10) 

𝑡𝑠 + 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝑠 ≤ 𝑇                                                                                                             ∀𝑠 ∈ 𝑆  (𝐴11) 

𝑡𝑠 ≥ 𝑛𝑜𝑚𝑇𝑖𝑚𝑒𝑠                                                                                                                             ∀𝑠 ∈ 𝑆  (𝐴12) 

𝑡𝑠 + 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝑠 ≤ 𝑎𝑟𝑟𝑇𝑖𝑚𝑒𝑠                                                                                             ∀𝑠 ∈ 𝑆  (𝐴13) 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠 ≥ |(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 − 𝑥𝑠) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 − 𝑦𝑠)|                                                 ∀𝑠 ∈ 𝑆 (𝐴14) 

𝑥𝑠, 𝑦𝑠, 𝑡𝑠 ≥ 0                                                                                                                                   ∀𝑠 ∈ 𝑆  (𝐴15) 

𝑎𝑠𝑘 , 𝑏𝑠𝑘 , 𝑐𝑠𝑘 , 𝑑𝑠𝑘 , 𝑒𝑠𝑘 , 𝑓𝑠𝑘 ∈ {0,1}                                                                                           ∀𝑠, 𝑘 ∈ 𝑆  (𝐴16) 

 



 

 

Chapter 4: Mixed Integer Linear Programming Models to Solve YAP 35 

 

Our objective is to minimize the distance to the quay side for all stockpiles and 

minimize the total idle time of stockpiles. Since these two quantities are different in units, 

(i.e. distance vs. time) we associate these quantities with their respective costs and obtain a 

single monetary objective. Therefore, the objective function (A0) minimizes the cost of 

assigning a location to a stockpile where the assignment costs are calculated regarding to 

the cost of transferring each stockpile to the quay and the dwelling cost of stockpiles. 

Constraint sets (A1) – (A4) are non-overlapping constraints. They ensure that none of the 

stockpiles are assigned to on top of each other at the stockyard. Constraint sets (A5) and 

(A6) restrict building stockpiles that overlaps in time. Constraint set (A7) and (A8) 

establish the relationship between two stockpiles. Constraint sets (A9), (A10) and (A11) 

prevent solutions which reach out of the boundaries of the stockyard and time period. 

Constraint sets (A12) and (A13) ensure that processing of a stockpile is between the arrival 

and the departure time of the vessel. Constraint set (A14) provides the travel time of the 

rectilinear distance from port to a location at the stockyard as the cost of storing the pile on 

that location. We can generalize the model by adding this constraint set to the model, where 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 and 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 are the coordinates of the connection points of conveyor belts to 

the ship loaders on the X and Y axis, respectively. Lastly, remaining constraints define the 

range of each decision variable used in the model.  

 

Linearization of constraint set (A14) 

 

 Constraint set (A14): 

 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠 ≥ |(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 − 𝑥𝑠) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 − 𝑦𝑠)|  ∀𝑠 ∈ 𝑆 

 

calculates the rectilinear distance traveled for each stockpile from its storage location to the 

ship loader. To linearize (A14) the absolute value should be expressed in another way. 
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Thus, if the following constraint sets are replaced with (A14), the CSA model will be 

linear. 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠 ≥ (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 − 𝑥𝑠) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 − 𝑦𝑠)  ∀𝑠 ∈ 𝑆  (A14a) 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠 ≥ (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 − 𝑥𝑠) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 + 𝑦𝑠)  ∀𝑠 ∈ 𝑆  (A14b) 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠 ≥ (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 + 𝑥𝑠) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 − 𝑦𝑠)  ∀𝑠 ∈ 𝑆  (A14c) 

𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑠 ≥ (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑋 + 𝑥𝑠) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑌 + 𝑦𝑠) ∀𝑠 ∈ 𝑆  (A14d) 

 

Constraint sets (A14a), (A14b), (A14c) and (A14d) ensure that the traveled distance is 

greater than or equal to the sum of distances between the coordinates of the connection 

points and coordinates of the stockpile on the yard.  

One of the strengths of this model is the flexibility to decide the orientation of the 

stockpile. However, along with this flexibility, the model performs slower when compared 

to other models proposed in the following sections of this chapter. Different than the 

forthcoming models, the distance traveled by each stockpile represents the rectilinear 

distance from bottom-left corner of each stockpile to a ship loader connection point on the 

quay side. Thus, a better representation of the real life problem of yard assignment is 

achieved. 

The size of CSA model in terms of the number of constraints, and the number of binary 

and continuous variables depending on the system parameters is as follows: 

Assume that 𝑛 is the number of stockpiles. Therefore, number of constraints is (9𝑛2 +

3𝑛), number of binary variables is (𝑛2 − 𝑛) and number of continuous variables is (3𝑛). 

 

4.2 Continuous Yard Allocation Model in the Presence of Pads (CSAP) 

 

 As a second step, in addition to the assumptions made in the first model, we presume 

that there are pads at the stockyard where stockpiles can only be placed within the 



 

 

Chapter 4: Mixed Integer Linear Programming Models to Solve YAP 37 

 

boundaries of them. In other words, pads determine the widths of these piles and we can 

only decide the location of a pile along a path. The second and third models are based on 

this assumption. Thus, one dimension which was width can be omitted in these models. 

The new version of the problem resembles to two-dimensional packing problems. Hence, 

the constraints of the following models are similar to the two-dimensional packing models’ 

constraints. 

 Most of the assumptions are the same as CSAP except there are conveyor belts which 

were built at the stockyard. These conveyor belts divide the stockyard into smaller parts 

which are called pads. Therefore, the width of each stockpile is predetermined by the width 

of the pads.  Hence, the decision space of this model can be limited to the location of each 

pile along the length of each pad and the start time of building that stockpile in a 

continuous space.  

 Since most of the bulk port terminals have pads on their stockyards, this assumption 

makes the model more realistic. An overview of a stockyard with pads can be seen in 

Figure 9. 

 In this section, first, the sets, parameters, the decision variables are defined. Secondly, 

the continuous stockyard allocation model is presented. Finally, the objective function of 

the model and the constraint sets are explained. 

 

CSAP 

Sets and Parameters 

 

𝑆 Set of stockpiles. 

𝑃 Set of pads. 

𝐿 Length of the stockyard. 

𝑇 Maximum time period. 
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Figure 9. An overview of a stockyard with pads 

 

 

𝑐𝑡 Cost of transferring a stockpile per second. 

𝑐𝑤 Cost of dwelling a stockpile per hour. 

𝑎𝑡𝑠 Arrival time of stockpile 𝑠 ∈ 𝑆. 

𝑑𝑡𝑠 Departure time of vessel that stockpile 𝑠 ∈ 𝑆 will be uploaded into. 

𝑙𝑠 Length of stockpile 𝑠 ∈ 𝑆. 

𝑝𝑠 Processing time of stockpile 𝑠 ∈ 𝑆. 

 

Decision Variables 

 

𝑋𝑠 Position of stockpile 𝑠 ∈ 𝑆 on the x-axis of a pad. 

𝑇𝑠 Start time of building stockpile 𝑠 ∈ 𝑆. 
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𝑌𝑠𝑖 = {
1,  if stockpile 𝑠 ∈ 𝑆 is on pad 𝑖 ∈ 𝑃,
0,  otherwise.                                          

 

𝐴𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 is on the left hand side of 𝑘 ∈ 𝑆 and they are on the same pad,
0, otherwise.                                                                                                                  

 

𝐵𝑠𝑘 = {
1, if stockpile 𝑠 ∈ 𝑆 and 𝑘 ∈ 𝑆 are on the same pad and 𝑘 is stored after 𝑠,
0, otherwise.                                                                                                 

  

 

Model 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑡 ∗ 𝑋𝑠

𝑠

− ∑ ∑ 𝑐𝑡 ∗ (𝑖 − 1) 𝐿 𝑌𝑠𝑖

𝑖𝑠

+ ∑ 𝑐𝑤 ∗ 𝑇𝑠

𝑠

                                                        (𝐵0) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑋𝑠 + 𝑙𝑠 ≤  𝑋𝑘 + |𝑃|𝐿(1 − 𝐴𝑠𝑘)                                                                                  ∀ 𝑠, 𝑘 ∈ 𝑆: 𝑠 ≠ 𝑘  (𝐵1) 

𝑑𝑡𝑠 ≤  𝑇𝑘 + 𝑇(1 − 𝐵𝑠𝑘)                                                                                               ∀ 𝑠, 𝑘 ∈ 𝑆: 𝑠 ≠ 𝑘  (𝐵2) 

𝑇𝑠 + 𝑝𝑠 ≤ 𝑑𝑡𝑠                                                                                                                                    ∀ 𝑠 ∈ 𝑆 (𝐵3) 

𝐴𝑠𝑘 + 𝐵𝑠𝑘 + 𝐴𝑘𝑠 + 𝐵𝑘𝑠 = 1                                                                                        ∀ 𝑠, 𝑘 ∈ 𝑆: 𝑠 ≠ 𝑘  (𝐵4) 

𝐴𝑠𝑠 + 𝐵𝑠𝑠 = 0                                                                                                                 ∀ 𝑠, 𝑘 ∈ 𝑆: 𝑠 ≠ 𝑘  (𝐵5) 

𝑋𝑠 + 𝑙𝑠 ≤ ∑ 𝑖 𝐿 𝑌𝑠𝑖

𝑖

                                                                                                                       ∀ 𝑠 ∈ 𝑆  (𝐵6) 

𝑋𝑠 ≥ ∑(𝑖 − 1)𝐿 𝑌𝑠𝑖

𝑖

                                                                                                                     ∀ 𝑠 ∈ 𝑆  (𝐵7) 

𝑇𝑠 + 𝑝𝑠 ≤ 𝑇                                                                                                                                      ∀ 𝑠 ∈ 𝑆  (𝐵8) 

𝑇𝑠 ≥ 𝑎𝑡𝑠                                                                                                                                            ∀ 𝑠 ∈ 𝑆  (𝐵9) 

∑ 𝑌𝑠𝑖

𝑖

= 1                                                                                                                                      ∀ 𝑠 ∈ 𝑆  (𝐵10) 

𝑋𝑠 ≥ 0                                                                                                                                             ∀ 𝑠 ∈ 𝑆  (𝐵11) 

𝑌𝑠𝑖 ∈ {0,1}                                                                                                               ∀ 𝑠 ∈ 𝑆, ∀ 𝑖 ∈ 𝑃 (𝐵12) 

𝑇𝑠 ≥ 0                                                                                                                                             ∀ 𝑠 ∈ 𝑆  (𝐵13) 
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𝐴𝑠𝑘 ∈ {0,1}                                                                                                                   ∀ 𝑠, 𝑘 ∈ 𝑆: 𝑠 ≠ 𝑘  (𝐵14) 

𝐵𝑠𝑘 ∈ {0,1}                                                                                                                   ∀ 𝑠, 𝑘 ∈ 𝑆: 𝑠 ≠ 𝑘  (𝐵15) 

 

Similar to the CSA model, there are still two objectives in this model that minimize the 

total cost of distance travelled at the stockyard for all stockpiles and minimize the total cost 

of dwelling stockpiles. The objective function (B0) minimizes the cost of assigning a 

location to a pad where the assignment costs are calculated regarding the cost of distance 

traveled from the location of a pile to the ship loader and the cost of dwelling a stockpile. 

Constraint sets (B1) are non-overlapping constraints. They ensure that none of the 

stockpiles are assigned to on top of each other at the stockyard. Since the widths of 

stockpiles are determined by pads, we can reduce one-dimension in this model when 

compared to CSA. Constraint sets (A1) - (A4), and (A9) and (A10) corresponds to sets 

(B1) together with (B6). Similar to constraint sets (A5), (A6) and (A11) - (A13) in CSA, 

constraint set (B2) restricts building stockpiles that overlaps in time. Constraint set (B3) 

ensures that storing a stockpile is completed before the corresponding vessel of that load 

departs. Constraint sets (B4) and (B5) establish the relationship between two stockpiles. 

Constraint sets (B6) and (B7) prevent solutions which reach out of the boundaries of the 

stockyard and time period. Constraint sets (B8) and (B9) ensure that processing of a 

stockpile is between the nomination time of the corresponding vessel and the planning time 

horizon. Constraint set (B10) ensures that each stockpile must be placed onto exactly one 

pad. Lastly, remaining constraints define the range of each decision variable. 

Since most of the bulk port terminals have pads on their stockyards, this model may be 

preferred when compared to the CSA model. 

The size of CSAP model in terms of the number of constraints, and the number of 

binary and continuous variables depending on the system parameters is as follows: 
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Assume that 𝑛 is the number of stockpiles and  𝑝 is the number of pads. Therefore, 

number of constraints is (6𝑛2 + 2𝑛 + 𝑛𝑝), number of binary variables is (2𝑛2 − 2𝑛 + 𝑛𝑝) 

and number of continuous variables is (2𝑛). 

 

4.3 Discrete Stockyard Allocation Model in the Presence of Pads (DSAP) 

  

 In addition to the continuous models which are presented in Section 4.2 and 4.3, a 

discretized stockyard assignment model will be provided in this section. The assumption of 

having the conveyor belts at the stockyard is also valid in DSAP model. Additionally, the 

stockyard is assumed to be consisting of small squares which will be allocated to the piles 

with respect to their areas. The discretized stockyard can be seen in Figure 10. The 

preliminary results of CSA and CSAP indicate that for some data sets the models may not 

able to obtain an upper bound within a reasonable time. Therefore, we propose a time 

indexed model where we can impose the restricted times and spaces for each stockpile. 

 In this section, first, the sets, parameters, the decision variables are defined. Secondly, 

the continuous stockyard allocation model is presented. Finally, the objective function of 

the model and the constraint sets are explained. 

 

DSAP 

Sets and Parameters 

 

𝐼 Set of stockpiles. 

𝑃 Set of pads. 

𝐿 Set of locations on a pad. 

𝑇 Set of time points on a planning horizon. 

𝑐𝑡 Cost of transferring a stockpile per second. 
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𝑐𝑤 Cost of dwelling a stockpile per hour 

𝑎𝑖 Arrival time of stockpile 𝑖 ∈ 𝐼. 

𝑑𝑖 Departure time of vessel that stockpile 𝑖 ∈ 𝐼 will be uploaded into. 

𝑙𝑖 Length of stockpile 𝑖 ∈ 𝐼. 

𝑝𝑖 Processing time of stockpile 𝑖 ∈ 𝐼. 

𝐿0 Maximum length of the stockyard. 

𝑇0 Maximum planning horizon. 

 

 

Figure 10. An example of discrete stockyard at time t 

 

 

Decision Variable 

 

𝑆𝑖𝑥𝑡𝑝

= {
1, if stockpile 𝑖 is assigned to position 𝑥 at time 𝑡 on pad 𝑝, ∀𝑖 ∈ 𝐼, ∀𝑥 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝑃
0, otherwise.                                                                                                                                            
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Model 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑(𝑐𝑡 ∗ 𝑥 + 𝑐𝑤 ∗ 𝑡) 𝑆𝑖𝑥𝑡𝑝

𝑝𝑡𝑥𝑖

                       (𝐶0) 

 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

∑ ∑ ∑ 𝑆𝑖𝑥𝑡𝑝

𝑝

     𝑑𝑖−𝑝𝑖      

𝑡=𝑎𝑖

𝐿0−𝑙𝑖+1

𝑥=1

= 1                                                                                                        ∀𝑖 ∈ 𝐼  (𝐶1) 

 

∑ ∑ ∑ 𝑆𝑖𝑥𝑡𝑝

|𝑃|

𝑝=1

𝑇0

    
  𝑡=1      

𝐿0

𝑥=min{𝐿0,   𝐿0−𝑙𝑖+2}   
: 𝑙𝑖>1

   + ∑ ∑ ∑ 𝑆𝑖𝑥𝑡𝑝

|𝑃|

𝑝=1

𝑎𝑖−1

     

    
  𝑡=1     
𝑎𝑖>1 

      

𝐿0

   𝑥=1      

+ ∑ ∑ ∑ 𝑆𝑖𝑥𝑡𝑝

|𝑃|

𝑝=1

𝑇0

     
𝑡=min{𝑇0,   𝑑𝑖−𝑝𝑖+1}   

: 𝑝𝑖>1
      

𝐿0

   𝑥=1    

= 0                                            ∀𝑖 ∈ 𝐼 (𝐶2) 

 

∑ ∑ ∑ 𝑆𝑖𝑘𝑙𝑝 

𝑡

     𝑙=max{𝑡−𝑝𝑖+1,   1}        

≤ 1

𝑥

        𝑘=max{𝑥−𝑙𝑖+1,   1}          

|𝐼|

𝑖=1

                  ∀𝑥 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝑃  (𝐶3) 

 

𝑆𝑖𝑥𝑡𝑝 ∈ {1,0}                                                                    ∀𝑖 ∈ 𝐼,      ∀𝑥 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝑃 (𝐶4) 

 

 In DSAP model the objective function (C0), similar to the previous models, minimizes 

the total cost of transferring stockpiles at the stockyard and the total cost of dwelling 

stockpiles. Constraint set (C1) determines the boundaries of the stockyard as well as 

available time periods to build a stockpile and ensures that each stockpile must be placed 

onto exactly one pad. Since we know the restricted space and time, over all stockpiles we 
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can ensure that no stockpile is placed out of the boundaries. Therefore, similar to constraint 

sets (B6) - (B8) in CSAP model, constraint set (C2) restricts solutions which lie along the 

outside of boundaries of the stockyard and available time period. Hence, this constraint 

reduces the search space of the model. Constraint set (C3) contains non-overlapping 

conditions. Constraint set (C3) ensures that none of the stockpiles are assigned to on top of 

each other at the stockyard and also it restricts building stockpiles that overlaps in time. 

Additionally, this constraint set ensures that building a stockpile is completed before the 

corresponding vessel of that load arrives. Constraint sets (A1) – (A6) in CSA and sets (B1), 

(B2), (B6) and (B7) in CSAP corresponds to (C3).  Lastly, remaining constraints define the 

range of the decision variables. 

The size of DSAP model in terms of the number of constraints, and the number of 

binary and continuous variables depending on the system parameters is as follows: 

Assume that 𝑛 is the number of stockpiles, 𝑙 is the number of locations on a pad, 𝑡 is the 

number of time periods in a planning horizon and 𝑝 is the number of pads. Therefore, 

number of constraints is (𝑛𝑙𝑡𝑝 + 𝑙𝑡𝑝 + 2𝑛) and number of binary variables is (𝑛𝑙𝑡𝑝). 

 

4.4 Comparison of the proposed models 

  

 One of the advantages of CSA model is that, the orientation of the stockpiles can be 

determined and CSA is suitable to solve YAP in stockyards where there is no pads. On the 

other hand, with the growth in world maritime transportation, the need for larger stockyards 

is increased. In most of the large-sized stockyards there are conveyor belts, thus there are 

pads. Therefore, CSAP and DSAP models are proposed to meet the physical conditions of 

most of the stockyards.  
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Chapter 5 

 

HYBRIDIZED TABU SEARCH AND VARIABLE NEIGHBORHOOD SEARCH  

5.  

 Some of the physical constraints of YAP, such as restricting placing stockpiles on top 

of each other, are achieved through non-overlapping constraints of multi-dimensional 

packing problems (MDPP). Since MDPP are NP-hard, an MILP models may not find the 

optimal solutions for large instances in a reasonable time.  

 In this chapter, a tabu search (YATS) and a tabu search hybridized with variable 

neighborhood search (YATS_VNS) algorithms which uses a bottom-left-fill (BLF) like 

heuristic are proposed. Detailed explanations of the algorithms and the components of 

proposed YATS and YATS_VNS are provided in Section 5.1 and Section 5.2, respectively. 

Hence, the chosen representation of the problem, proposed neighborhood definitions, move 

operators, the tabu rule, tabu tenure, the stopping criterion and the aspiration criterion are 

discussed. The pseudocode of the heuristic algorithm is presented in order to interpret the 

proposed representation. Along with these definitions, the feasibility check mechanism of 

the algorithm is explained in Section 5.1. 

 

5.1 Implementation of the TS 

 

 In this section the implementation of the TS to solve the yard allocation problem is 

discussed. Initially, the solution representation and how to obtain the initial solution is 

explained. Secondly, the move operator and the corresponding neighborhood structure are 

provided and the search procedure is explained. Then, the tabu list and the tabu tenure, and 
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the stopping and the aspiration criteria are established. Finally, a bottom-left-fill like 

heuristic (YA_BLFLH) which is the decoding and encoding routine of the algorithm and 

the feasibility check procedure are presented.  

 

Solution Representation: 

 

 According to Hopper and Turton’s (2000, 2001) categorization which is provided in 

Chapter 3, some metaheuristic algorithms represent the solution space in a more basic 

form. For example, with respect to the packing problems, metaheuristics can be only used 

to determine the sequence of packing. Then, using a decoding-encoding routine, the 

allocation of items on the object is obtained. 

 Since a complex encoding and decoding routine is adopted in the proposed algorithm, 

it is sufficient to express the solution as a permutation of pile numbers. Moreover, 

algorithms like BLF take the sequence of the items as an input to construct the final 

solution. Therefore, in YATS permutation of stockpile numbers such as [𝑠1, 𝑠2, … , 𝑠𝑛] is 

used as the solution representation. The order of the piles represents the placing order in 

which the YA_BLFLH utilizes. For example, if five stockpiles will be located at the 

stockyard and if the represented solution is [3, 1, 4, 5, 2] then, YA_BLFLH first places pile 

3 then pile 1 and continues with the order.  

  

Initial Solution:  

 

 Different starting points may result in different best solutions. In order to select a better 

initial solution, two different approaches are adopted. In some of the applications of 

packing heuristics, items may be sorted according to their dimensions. One of the 

approaches that are presented is to sort the items according to their arrival times. For 
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example, if piles arrive in the order of 2, 3, 1, 4 and 5 then the initial solution 

representation is [2, 3, 1, 4, 5]. Additionally, random starting solutions can be accepted. 

First, the piles are randomly sorted and then a placing procedure can be applied. The 

preliminary results are discussed in Chapter 6 to indicate the robustness of the algorithms 

in terms of the initial solution. 

 

Neighborhood Structure: 

 

Since a complex decoding routine is adopted, for simplicity of the algorithm a swap 

operator is selected to create the neighborhood. This operator interchanges the order of two 

selected piles. For example, assume that the current solution is [3, 4, 5, 2, 1]. First, two 

random integers are generated between 1 and the number of piles; assume that 2 and 5 are 

generated. Then, the 2
nd

 and the 5
th

 piles are swapped such that the new order becomes [3, 

1, 5, 2, 4]. 

 

Neighborhood Search Procedure: 

 

In order to move to a new solution, the following search procedure is applied. If 𝑠 is 

the current solution, the admissible (non-tabu or allowed by aspiration criterion) 

neighborhood of 𝑠, 𝑁̅(𝑠) is searched systematically to find a better solution 𝑠′. In order to 

explore the different solutions in the search space, instead of visiting all solutions in 𝑁̅(𝑠), 

the number of replications for one solution is predetermined and this number is referred to 

as 𝑛𝑟𝑒𝑝. Therefore, the diversification of the search is increased whereas the intensification 

is sacrificed. In this thesis a steepest descent (best improvement) strategy is selected to 

search the neighborhood and accept the new solutions. The pseudocode of the steepest 
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descent strategy with swap operator is provided in Figure 11. The details of YA_BLFLH 

algorithm used in Step 4 of the search are explained in latter parts of Section 5.1.  

 

 

 

Number of Replications 

 

In this procedure, the neighborhood is searched for a predetermined number of 

replications. Randomly selected two stockpiles in the sequence are swapped and if an 

improvement occurs, the solution and the objective values are recorded. The search 

continues until the number of replications, and the best obtained solution are returned. 

Preliminary tests are conducted in order to decide the number of swap operations 

performed per iteration. These preliminary computational experiments are presented in 

Section 6.3 in detail. 

 

Search and Acceptance Procedure: Steepest Descent with Swap 

1: Input: 𝑛𝑟𝑒𝑝: number of swaps in each iteration 

𝑓(𝑠): current objective value 

2: for 1 to 𝑛𝑟𝑒𝑝 

3:        𝑠′ = Swap two items in the order 

4:        Run YA_BLFLH 

5:        Calculate 𝑓(𝑠′) 

6:         if  𝑓(𝑠′) < 𝑓(𝑠) then 

7:               Update 𝑠 = 𝑠′ and  𝑓(𝑠) = 𝑓(𝑠′)  

8:         end if 

9: end for          

10: Return s 

Figure 11. Search and acceptance procedure: Steepest Descent with Swap 
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Tabu List and Tabu Tenure: 

 

 Tabu lists can consist of whole solution, part of a solution or an attribute of a solution. 

In YATS, the pile numbers swapped are recorded in the tabu list so that in the following 

iteration, these two piles cannot be swapped. In the previous example, 2
nd

 and 5
th

 items 

which correspond to 4
th

 and 1
st
 piles were swapped. Therefore, 4

th
 and 1

st
 piles are kept in 

the tabu list. In the following iterations, either 4
th

 or 1
st
 piles cannot be swapped for a 

number of iterations. The number of iterations for which swapping is forbidden is known as 

tabu tenure. Tabu tenure is decided to be 5 after some preliminary computational 

experiments. The details of these preliminary computational experiments are given in 

Section 6.3. 

 

Aspiration Criterion: 

 

 In some cases, a solution is accepted even though it is in the tabu list. According to a 

predetermined rule, the tabu status of that solution is ignored and the solution becomes the 

new current solution. The aforethought rule is referred to as aspiration criterion. In this 

algorithm, best solution so far is chosen as an aspiration criterion. In other words, if the 

best solution so far is achieved by swapping one of the piles in the tabu list then this swap 

can occur. 

 

Stopping Criterion: 

  

 The algorithm is designed to terminate when the objective function cannot be improved 

for a certain number of iterations (say, T_1). In other words, the stopping criterion is 

chosen to be number of iterations without improvement. Different T_1 values are examined 
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to avoid early convergence or waiting too long even after the acceptable solutions. On the 

other hand, in order to avoid a possible infinite loop in case the algorithm fails to find a 

feasible solution, a threshold value (say, T_2) that limits the maximum number of iterations 

is implemented. Thus, the algorithm stops if it can find a feasible solution and cannot 

improve it for T_1 iterations, or when it reaches T_2 iterations. In order not to cause early 

convergence, T_2 is set to a high number such as 5000. 

 

A bottom-left-fill like heuristic for yard allocation (YA_BLFLH): 

 

A bottom-left-fill like heuristic (YA_BLFLH) algorithm is presented which is used to 

decode the solution representation of YATS. YA_BLFLH tries to find a good feasible 

place for the bottom left corner of each stockpile. Starting from the (0, 0) coordinate of the 

first pad, all piles are placed regarding to their arrival times and the availability of the pad. 

For example, assume that the sequence of piles is [1, 5, 9, 2, 6, 4, …] and there are two 

pads at the stockyard. In Figure 12, the x-axis represents planning time horizon and 

intervals are given in terms of days, whereas on the y-axis the length of pads is shown. 

Each box corresponds to a stockpile where the x-dimension is the storage time of the 

stockpile and y-dimension is the length of the stockpile. The arrival time of a stockpile is 

denoted by letter A and the stockpile number, such that A1 is the arrival time of stockpile 

1. Additionally, letter C denotes a corner point. Moreover, the schedule of stockpiles 1, 5, 

9, 2 and 6 can be seen in Figure 12. Thus, YA_BLFLH will assign stockpile 4 to a place 

after evaluating admissible (feasible points) corner points in each pad, individually. For 

example, in Figure 12, C2-C6, C10, C11, C15-C18 are admissible corner points for 

stockpile 4. YA_BLFLH choses among these points to place the bottom-left corner of pile 

4 while minimizing the cost of distance travelled and the cost of dwelling times over all 
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stockpiles. Moreover, the pseudocode of the proposed heuristic YA_BLFLH can be seen in 

Figure 13. 

 

 

Figure 12. An instance of YA_BLFLH algorithm 

 

Notation 

𝐼: Set of stockpiles. 

𝐼:̅ Set of stockpiles which are not placed at the stockyard yet. 
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𝑃: Set of pads. 

𝑋𝑇: Set of corner points and start time of building each stockpile on the yard. 

𝜑(𝑖, 𝑥, 𝑡): the partial objective value of 𝑠 when placing pile 𝑖 to the yard.   

𝑥𝑡∗(𝑖): the best known (𝑥, 𝑡) coordinates for pile 𝑖. 

 

 

Figure 13. A bottom-left-fill-like heuristic to solve YAP 

 

 The YATS algorithm utilizes YA_BLFLH algorithm and the components of TS to 

solve yard allocation problem. The pseudocode of YATS is provided in Figure 14. 

 

Algorithm: YA_BLFLH 

1: Input: 𝑠, 𝐼, 𝑃, 𝐼 ̅

2: while 𝐼 ̅ ≠ ∅ do 

3: for 1 to |𝑃| 

4: for ∀(𝑥, 𝑡) ∈ 𝑋𝑇 

5: if placing 𝑖 ∈ 𝐼  ̅on (𝑥, 𝑡) is feasible then 

6: if 𝜑(𝑖, 𝑥, 𝑡) < 𝜑(𝑖, 𝑥𝑡∗(𝑖)) then 

7: Place stockpile 𝑖 on (𝑥, 𝑡) 

8: Update 𝑥𝑡∗(𝑖) and 𝜑(𝑖, 𝑥𝑡∗(𝑖)) 

9: end if 

10: else 

11: Place stockpile 𝑖 on a predetermined infeasible location 

12: Update 𝑥𝑡∗(𝑖) and 𝜑(𝑖, 𝑥𝑡∗(𝑖)) = +∞  

13: end if 

14: end for 

15: end for 

16: end while 
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Notation 

𝑠0: the initial solution. 

𝑠: the current solution. 

𝑠∗: the best known solution. 

𝑓(𝑠): the objective value of 𝑠. 

𝑁(𝑠): the neighborhood of 𝑠. 

𝑁̅(𝑠): the admissible (non-tabu or allowed by aspiration criterion) neighborhood of 𝑠. 

𝑠̅: the best solution ∈ 𝑁̅(𝑠). 

𝑛𝑟𝑒𝑝: the number of search replications in one iteration. 

 

Algorithm: YATS 

1: Initialize: 𝑓(𝑠) = +∞, 𝑇𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒, 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠 = ∅, 𝑛𝑟𝑒𝑝, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 

2: Generate: 𝑠0: sort piles according to arrival times 

3: 𝑠 ← 𝑠0 

4: Run YA_BLFLH 

5: 𝑓(𝑠) ← 𝑓(𝑠0) 

6: while termination criterion is not met do 

7: for 1 to 𝑛𝑟𝑒𝑝 

8: Construct 𝑁(𝑠) 

9: Construct 𝑁̅(𝑠) 

10: Find 𝑠̅ ∈ 𝑁̅(𝑠) 

11: Run YA_BLFLH 

12: if 𝑓(𝑠̅) < 𝑓(𝑠) then 

13: Update 𝑠∗ and 𝑓(𝑠∗) 

14: Update the 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠 

15: end if 

16: end for 

17: end while 

 

Figure 14. Pseudocode of the YATS Algorithm 
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5.2 Implementation of the hybridized algorithm YATS_VNS  

 

The solution representation, initial solution, neighborhood structure, tabu list and tabu 

tenure, search procedure, aspiration criterion, stopping criterion, feasibility check 

mechanism and decoding routine YA_BLFLH components of YATS which are provided in 

Section 5.1 are also applied for the hybridized heuristic referred to as YATS_VNS. 

Moreover, in this section, first a further neighborhood structure and a new tabu list are 

provided. Then, the pseudocode of the YATS_VNS algorithm is presented. 

 

Additional Neighborhood Structure 

 

 In addition to the swap operator, in this section insertion operator is considered.  

Insertion: This operator achieves a new solution by inserting a pile between two other 

piles in the permutation. For example, assume that the current solution is [3, 5, 2, 4, 1]. 

Two random integers are generated between 1 and the number of piles; assume that 1 and 3 

are generated. First generated value is the number which is inserted; second number 

determines the insertion location. In our example, the 1
st
 pile will be inserted next to 5

th
 

such that the new order becomes [5, 2, 3, 4, 1]. 

 

Additional Tabu List 

 

 In the first tabu list, the numbers of piles which are swapped are kept. In addition to the 

first list, in the second list the number of pile which will be inserted as well as numbers of 

piles next to it are stored. From the previous example, there is [5, 2, 3, 4, 1] solution. If this 

solution results in better objective value and is accepted as the new solution, then, 3
rd

, 2
nd

 

and 4
th

 piles are recorded in the tabu list and cannot be moved for the next iterations. The 

reason keeping all these piles is that, if that order results in a good solution, it can be saved 
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for some iterations. Therefore, during a predetermined number of iterations, these three 

piles cannot be moved unless an aspiration criterion occurs. 

 

 The YATS_VNS utilizes YA_BLFLH algorithm and the components of TS as well as 

VNS to solve yard allocation problem. The pseudocode of YATS_VNS is provided in 

Figure 15. 

 

Pseudocode of YATS_VNS 

 

Notation 

𝐼: Set of stockpiles. 

𝑃: Set of pads. 

𝑁𝑘, (𝑘 = 1,2): set of preselected neighborhood structures. 

𝑠0: the initial solution. 

𝑠: the current solution. 

𝑠∗: the best known solution. 

𝑓(𝑠): the objective value of 𝑠. 

𝑁𝑘(𝑠): the 𝑘𝑡ℎ neighborhood of 𝑠. 

𝑁̅𝑘(𝑠): the admissible solutions of the (non-tabu or allowed by aspiration criterion) 𝑘𝑡ℎ 

neighborhood of 𝑠. 

𝑠̅: the best solution ∈ 𝑁̅𝑘(𝑠). 

𝑛𝑟𝑒𝑝: the number of search replications in one iteration. 

𝑚𝑎𝑥𝐼𝑡𝑒𝑟: the maximum number of iterations. 
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Algorithm: YATS_VNS 

1: Initialize: 𝑓(𝑠) = +∞, 𝑇𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒, 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠 = ∅, 𝑛𝑟𝑒𝑝, 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 

2: Generate: 𝑠0: sort piles according to arrival times 

3: 𝑠 ← 𝑠0 

4: Run YA_BLFLH 

5: 𝑓(𝑠) ← 𝑓(𝑠0) 

6: while termination criterion is not met do 

7: for 1 to 𝑛𝑟𝑒𝑝 

8: Set  𝑘 ← 1 

9: Construct 𝑁𝑘(𝑠) 

10: Find 𝑠̅ ∈ 𝑁̅𝑘(𝑠) 

11: Run YA_BLFLH 

12: if 𝑓(𝑠̅) < 𝑓(𝑠) then 

13: Update 𝑠∗ and 𝑓(𝑠∗) 

14: Update the 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡𝑠 

15: Continue search with 𝑘 ← 1 

16: else  

17: 𝑘 ← 𝑘 + 1 

18: end if 

19: end for 

20: end while 

 

Figure 15. Pseudocode of the Hybridized Tabu Search and Variable Neighborhood Search 

Algorithm
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Chapter 6 

 

COMPUTATIONAL EXPERIMENTS 

6.  

 

The computational experiments are conducted in order to test the success of both the 

mathematical models and the metaheuristics. We analyze the performance of both the 

mathematical models and the metaheuristic algorithm with four sets of generated data 

including instances based on real life data. In this chapter, first, the design of the 

computational experiments is provided. Then, the preliminary tests for the parameter 

settings of metaheuristics are presented. Finally, the results of the models are analyzed and 

the comparisons are evaluated. 

 

6.1 Design of the Computational Experiments 

 

To test and compare the performance of the models, the same instances are solved with 

all models. Since one of the mathematical models has a discrete space, to be able to solve 

the same instances with all models concurrently, the parameters are generated consisting of 

only integer numbers. 

In CSAP and DSAP there are pads at the stockyard, therefore no stockpile can be 

placed on two pads such that some proportion of the pile is on one pad whereas the 

remaining part is on the other pad. In other words, a stockpile can only be built on one pad 

such that the width of a stockpile must be equal to the width of that pad. In order to be able 

to compare these models to the CSA which does not have a pad structure, the widths of 

stockpiles are set to the width of pads which is 50 meters. 
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With each model, the same scenarios and for each scenario 5 random instances are 

solved using CPLEX 12.5 with a desktop having 3.40 GHz processor and 8 GB RAM. The 

running time limit for CPLEX is set to half an hour for sets A, B and D and one hour for set 

C. 

 Additionally, stockyard dimensions and arrival times of vessels are taken from a port in 

Australia. Although storage times and dimensions of stockpiles are randomly generated, it 

is important to emphasize that they are agreeable with real life data. Therefore, scenarios 

which represent real life values are tested. Four different data sets are used in order to 

analyze the performance of the algorithms. The generated scenarios can be seen in Table 1. 

  

Table 1. Data Set 

  Set A Set B Set C* Set D 

S (number of 

stockpiles) 
12, 14, 16 

16, 18, 20, 24, 

27, 29 

16, 18, 20, 

24, 27, 29 
48, 54, 58 

L (length of the 

stockyard) 
10, 16 10, 24 24 20 

Stockpile length 

intervals (100 mts) 

[3,5], [1,5], 

[1,3] 

[3,5], [1,5], [1,3], 

[8,10], [2,10], 

[2,6] 

[8,10], 

[2,10], 

[4,8], 6 

[8,10], [2,10], 

[4,8], 6 

Stockpile storage 

times (hrs) 
[12,24] [24,48] [24,48] [36,48] 

Cost of dwelling (per 

hr) 
$100 $100 $100 $100 

Cost of transferring 

(per mt) 
$1 $1 $1 $1 

T (hrs) 120 168, 336 168 336, 504 

 

* The arrival and departure times of stockpiles are assumed to be 1 and end of the planning 

horizon (T), respectively 

 

 The explanation of tables, calculation of performance measures and the representation 

of the scenarios are as follows: 
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 In Tables 6-19, under the Scenario column, the scenarios are given as N_L_(l1_l2)_X 

where N is the number of stockpiles, L is the length of the stockyard, l1_l2 are the length 

interval of stockpiles. Finally, X denotes the time length between arrival of a stockpile and 

the departure of the vessel which will be loaded with that stockpile. If an S appears, it 

means that there is a small gap between arrival of a stockpile and the departure of the 

vessel; it is 48-60 hours. On the other hand, if an L appears, there can be 48-136 hours. 

Under the “Status” column, “Opt.” column shows how many instances can be solved to 

optimality within 30 minutes, “Term.” column shows how many instances are terminated 

due to time limit. In order to measure the performance of the models, the gap between the 

best obtained solution and the lower bound is calculated for the terminated instances. The 

formula to calculate the gap is provided in Equation 6.1.  

 

Gap =
(𝑈𝐵−𝐿𝐵)

𝐿𝐵
× 100          (6.1) 

 

 The minimum, the maximum and the average gaps are calculated for every instance in 

each scenario over 5 replicas. Root gaps as well as gaps after 30 minutes are provided in 

the tables. If there is no gap between the upper and lower bounds, the instance is solved to 

optimality and (-) denotes zero gap.  

 

6.2 Preliminary Tests for Parameter Settings for YATS_VNS 

  

 In Chapter 5 we present the components of the TS and the VNS algorithms. We 

provide different initial solutions, tabu tenure, number of replications and stopping 

criterion. In order to obtain better results we need to find a good combination of the 

presented parameters. The preliminary tests are conducted for the selection of the 

parameters of the YATS_VNS algorithm. We conduct preliminary tests for different 
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scenarios from different data sets. There is no notable difference in behavior between 

different data sets. Hence for the sake of simplicity, the results of the preliminary tests for 

36 instances from Set C are presented. 

 

Initial Solution: 

 In Table 2, the average percentage deviation and CPU times can be seen. The 

compared initial solutions are: (1) the sorted numbers according to the arrival times, (2) the 

randomly ordered piles.  

 The percentage deviations (PD) of objective values are compared for different initial 

solutions. PD is calculated according to formula given in (6.2). 𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒1 corresponds to 

the best obtained value starting with a sequence of sorted stockpiles according to their 

arrival times. 𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒2 is the best obtained value when the search stars with a random 

sequence.  

 

                                 PD =  
(𝐵𝑒𝑠𝑡𝑆𝑜𝑙1−𝐵𝑒𝑠𝑡𝑆𝑜𝑙2)

𝐵𝑒𝑠𝑡𝑆𝑜𝑙2
                                           (6.2) 

 

 In order to decide initial solution, for different initialization procedures the objective 

values and the running times of the algorithm is compared. Table 2 shows that if piles are 

sorted according to their arrival times, then the algorithm provides better objective values 

when compared to the random initial solution. On the other hand, sorting procedure 

increases the CPU time approximately 1 second on average. Despite the increase in running 

time, the better objective values are preferred and sorting according to arrival times is 

chosen as an initial solution. The detailed results of this computational experiment can be 

seen in Appendix 1. 
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Table 2: Average CPU times and percent deviation with different initial solutions for data 

Set C 

  Best Solution with (1) Best Solution with (2)   

  CPU Secs  CPU Secs PD % 

Average 15.85 14.53 0.32 

 

Tabu Tenure: 

The obtained objective values (𝐻𝑒𝑢𝑟𝑉𝑎𝑙𝑢𝑒) of the preliminary tests are compared with 

optimal values (𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑉𝑎𝑙𝑢𝑒) and the gap (𝐺𝑎𝑝ℎ𝑒𝑢𝑟) is calculated according to formula 

provided in (6.3). The average CPU times and the average gaps are presented in Table 3 

and the best results are given in bold.  

 

                                   𝐺𝑎𝑝ℎ𝑒𝑢𝑟=  
(𝐻𝑒𝑢𝑟𝑉𝑎𝑙𝑢𝑒−𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑉𝑎𝑙𝑢𝑒)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑉𝑎𝑙𝑢𝑒
                        (6.3) 

 

Table 3 indicates that the average gaps and the average CPU seconds are very close to each 

other. Hence, we can conclude that tabu tenure value does not affect the performance of TS 

very much. Based on the results, we choose tabu tenure as 5. The detailed results are 

presented in Appendix 3. 

 

Table 3: Average CPU times and average gaps with different tabu tenures for data Set C 

  Tabu Tenure 3   Tabu Tenure 5   Tabu Tenure 10 

  CPU Sec Gapheur   CPU Sec 
  

Gapheur   CPU Sec Gapheur 

Max 35.28 10.76% 
 

29.78 10.19% 
 

45.06 10.96% 

Avg 16.00 3.41% 
 

15.85 3.21% 
 

17.83 3.31% 

Min 3.60 0.00% 
 

3.60 0.00% 
 

3.28 0.00% 
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Number of replications: 

The number of solutions visited in an admissible neighborhood is denoted by the 

number of replications (𝑛𝑟𝑒𝑝). The results of the preliminary tests are provided in Table 4. 

In order to decide the number of swap operations performed per iteration the maximum, the 

average and the minimum of the CPU times and gaps are compared for 𝑛𝑟𝑒𝑝 = 5 and 

𝑛𝑟𝑒𝑝 = 15. 

 

Table 4: Average CPU times and gaps with different number of replications for data Set C 

  𝒏𝒓𝒆𝒑 𝟓   𝒏𝒓𝒆𝒑 𝟏𝟓   

  CPU Sec Gapheur   CPU Sec 
  

Gapheur   

Max 16.75 12.48% 
 

29.78 10.19% 
 Avg 5.40 3.39% 

 
15.85 3.21% 

 Min 1.16 0.00% 
 

3.60 0.00% 
  

 

 Although 5 replications provide faster results, these results are on the average worse 

than 15 replications. Additionally, 5 replications may result in an early convergence. 

Therefore, 𝑛𝑟𝑒𝑝 = 15 is chosen for medium- and large-sized instances. On the other hand, 

for small-sized instances, since the algorithm obtains optimum results in a very short time, 

𝑛𝑟𝑒𝑝 = 5 is used. For example, to illustrate the behavior of the YATS_VNS with different 

𝑛𝑟𝑒𝑝 values, the convergence graphs are provided in Figure 16 and Figure 17. The detailed 

results of the computational experiments can be seen in Appendix 2. We can conclude that, 

when 𝑛𝑟𝑒𝑝 = 15 we obtain better objective values within less number of iterations when 

compared to 𝑛𝑟𝑒𝑝 = 5. 
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Figure 16. Convergence graph of an instance from Set C where 𝑛𝑟𝑒𝑝 = 5 

 

Stopping Criterion: 

In Table 5, the results are presented where the number of iterations without improvement is 

considered as 200, 500 and 1000.  

 

Table 5. Average CPU times and average gaps with different number of iteration for 

stopping criterion for data Set C 

  Stopping 200   Stopping 500   Stopping 1000 

  CPU Sec Gapheur%   CPU Sec  Gapheur%   CPU Sec Gapheur% 

Max 15.44 14.70 
 

29.78 11.21 
 

66.31 11.34 

Avg 5.89 3.96 
 

13.15 3.02 
 

15.67 3.43 

Min 1.61 0.00 
 

3.60 0.00 
 

3.60 0.00 
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Figure 17. Convergence graph of an instance from Set C where 𝑛𝑟𝑒𝑝 = 15 

 

When the stopping criterion is set to 200 iterations without improvement, YATS_VNS 

reaches the result quickly. Although it is fast, the percent deviation from the optimal value 

is the greatest with 200 iterations. 500 and 1000 iterations give similar results in terms of 

gap but sometimes waiting 1000 iterations may not result any improvement and while CPU 

time increases the gap is not decreasing. Therefore we choose the stopping criterion as 500 

iterations. The detailed results of the experiments are given in Appendix 4. 

 

6.3 Results of MILP Models with Instance Set A  

 

 The results of the computational experiments of CSA, CSAP and DSAP models are 

shown in Table 6, Table 7 and Table 8, respectively.  
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 As it can be seen from the results, DSAP model managed to solve all of the instances 

optimally. On the other hand, CSA can solve 50% of the instances to optimality. For CSAP 

model, a less number of instances from half of the scenarios had to be terminated after half 

an hour before the model can obtain the optimal solution. 

 Results of the models individually show that CSA solved 90 out of 180 instances to 

optimality. An investigation into the characteristics of the instances which are terminated 

due to time limit indicates that most of them have 14 and 16 stockpiles. In addition, one 

important characteristic of the solutions is that although CSA could decide the orientation 

of the stockpiles, it gave the similar solutions to other problems. In other words, for small-

sized stockpiles, even though the model could place the piles parallel to the quay side, in all 

of the obtained optimal solutions, the piles were placed perpendicular to the quay side as if 

there are pads. Although, there are instances which CSA cannot solve optimally, Table 6 

shows that the maximum gap among all instances is 11.61%. Additionally, in most of the 

scenarios the maximum gap is less than 5%. Out of 25 scenarios in which there are 

terminated instances, only 6 scenarios has more than 3% average gap.  

 CSAP model managed to solve 132 out of 180 instances optimally. Similar to CSA, 

when there are 14 and 16 stockpiles, the model may not be able to obtain the optimal result 

within half an hour. Even though one of the instances in specific scenarios cannot be solved 

to optimality, other instances might be solved very quickly in the same scenarios. For 

example, the results of 18
th

, 24
th

 or 30
th

 scenarios in Table 7 indicate that other than one 

terminated instance, there are instances which are solved within 5 seconds. The average 

performance with respect to CPU time shows that CSAP model results are better than CSA 

model results.  

 Since all of the instances are solved to optimality with DSAP, the optimality gaps are 

not included in Table 8. In addition, the root gaps for every instance are also zero except 

the 32
nd

 scenario which has less than 1% for maximum gap. The model spends most of the 
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time solving the root node and when it finds the root bounds, the gap is almost 0. Then the 

model obtains the optimal solution instantly. Because constraint sets (C1) and (C2) 

differentiate available and unavailable places for each stockpile at the stockyard, the 

discrete model can perform faster than others. For DSAP model, the maximum CPU time is 

less than 10 seconds for every instance in Set A. On the other hand, for scenarios 3, 9 and 

12 the average CPU time of CSAP is better than that of DSAP. For the rest of the instances, 

DSAP outperforms CSAP and CSA.  

  In addition to the MILP models, these instances are also solved with YATS and 

YATS_VNS. The results are given in Table 9 and Table 10. Since the instance set A is very 

small-sized, YATS and YATS_VNS can find the optimal solution in all instances. 

Moreover, they can obtain optimal solutions almost in the first iterations. Therefore, the 

performances of the algorithms are tested when the stopping criterion, which is the number 

of iterations without improvement, is decreased to 10 for this data set. Number of iterations 

without improvement is set to 10 and the results are presented under the “Stopping criterion 

(1)” (SC1) column and original parameters under the “Stopping criterion (2)” (SC2) 

column in the tables. It can be concluded that, although all instances are solved to 

optimality with SC2, the computation time is approximately 10 times SC1’s running time. 

On the other hand, with SC1, in 7 out of 180 instances the optimal results cannot be 

achieved. However, the optimality gap is very low on average; hence, the maximum gap is 

0.41%.  

 Results in Table 9 and Table 10 indicate that YATS and YATS_VNS can achieve 

optimal solutions in average 5-6 seconds. Additionally, if the number of iterations without 

improvement is decreased, they solve every instance in set A in less than a second without 

sacrificing optimality in most of the cases.  
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Table 6: CSA Model Results with Instance Set A 

    Status Root Gap %   Gap %   CPU Time (sec) 
No. Scenario Opt. Term. Max Avg Min   Max Avg Min   Max Avg Min 

1 12_10_(3_5)_S 4 1 100.00 100.00 100.00   0.68 0.14 0.00 
 

1800.58 386.31 22.93 
2 12_10_(3_5)_L 5 - 100.00 100.00 100.00 

 
-     -     -     

 
308.87 86.28 2.32 

3 12_10_(1_5)_S 5 - 100.00 82.29 49.23 
 

-     -     -     
 

103.40 29.08 3.87 
4 12_10_(1_5)_L 5 - 100.00 64.10 8.87 

 
-     -     -     

 
51.06 15.71 1.47 

5 12_10_(1_3)_S 4 1 100.00 81.24 6.18 
 

0.37 0.08 0.00 
 

1800.70 383.20 1.75 
6 12_10_(1_3)_L 5 - 100.00 65.73 13.79 

 
-     -     -     

 
17.08 6.43 1.92 

7 12_16_(6_8)_S 4 1 100.00 88.21 69.12 
 

0.71 0.15 0.01 
 

1800.66 448.11 20.83 
8 12_16_(6_8)_L 5 - 100.00 100.00 100.00 

 
-     -     -     

 
284.97 89.64 2.29 

9 12_16_(2_6)_S 5 - 100.00 66.24 12.58 
 

-     -     -     
 

17.44 10.10 1.11 
10 12_16_(2_6)_L 5 - 100.00 78.89 16.00 

 
-     -     -     

 
72.48 23.31 1.50 

11 12_16_(2_4)_S 5 - 100.00 40.51 18.24 
 

-     -     -     
 

61.86 18.59 3.07 
12 12_16_(2_4)_L 5 - 100.00 57.86 0.00 

 
-     -     -     

 
355.90 78.81 0.56 

13 14_10_(3_5)_S 1 4 100.00 100.00 100.00 
 

8.10 2.90 0.01 
 

1801.53 1488.41 237.31 
14 14_10_(3_5)_L 1 4 100.00 100.00 100.00 

 
5.53 2.56 0.01 

 
1801.23 1572.79 660.24 

15 14_10_(1_5)_S 3 2 100.00 100.00 100.00 
 

1.84 0.47 0.01 
 

1801.15 774.80 13.56 
16 14_10_(1_5)_L 4 1 100.00 100.00 100.00 

 
4.53 0.91 0.01 

 
1800.61 779.93 90.25 

17 14_10_(1_3)_S 3 2 100.00 100.00 100.00 
 

2.16 0.60 0.01 
 

1804.74 1104.37 98.31 
18 14_10_(1_3)_L 4 1 100.00 100.00 100.00 

 
0.85 0.18 0.00 

 
1800.83 793.59 3.56 

19 14_16_(6_8)_S 1 4 100.00 100.00 100.00 
 

8.01 4.40 0.01 
 

1803.03 1625.91 923.31 
20 14_16_(6_8)_L 1 4 100.00 100.00 100.00 

 
11.61 4.29 0.01 

 
1801.41 1462.61 108.67 

21 14_16_(2_6)_S 4 1 100.00 100.00 100.00 
 

3.69 0.74 0.00 
 

1800.94 512.97 4.67 
22 14_16_(2_6)_L 2 3 100.00 100.00 100.00 

 
4.36 2.05 0.01 

 
1801.29 1184.31 126.50 

23 14_16_(2_4)_S 1 4 100.00 100.00 100.00 
 

3.93 1.48 0.01 
 

1801.19 1602.45 808.35 
24 14_16_(2_4)_L 2 3 100.00 66.57 8.86 

 
3.13 1.06 0.00 

 
1801.36 1091.97 3.92 

25 16_10_(3_5)_S - 5 100.00 100.00 100.00 
 

4.36 3.85 2.48 
 

1801.26 1801.11 1800.75 
26 16_10_(3_5)_L - 5 100.00 100.00 100.00 

 
5.38 4.00 2.04 

 
1802.11 1801.57 1801.32 

27 16_10_(1_5)_S - 5 100.00 100.00 100.00 
 

1.91 0.78 0.24 
 

1801.53 1801.39 1801.25 
28 16_10_(1_5)_L - 5 100.00 100.00 100.00 

 
1.42 0.85 0.32 

 
1801.80 1801.48 1801.19 

29 16_10_(1_3)_S - 5 100.00 100.00 100.00 
 

1.54 0.79 0.33 
 

1801.69 1801.49 1801.36 
30 16_10_(1_3)_L 1 4 100.00 100.00 100.00 

 
1.18 0.61 0.01 

 
1801.57 1445.97 24.27 

31 16_16_(6_8)_S - 5 100.00 100.00 100.00 
 

10.75 8.19 4.83 
 

1801.35 1801.14 1800.67 
32 16_16_(6_8)_L - 5 100.00 100.00 100.00 

 
7.55 6.09 3.26 

 
1801.35 1801.26 1801.14 

33 16_16_(2_6)_S - 5 100.00 100.00 100.00 
 

3.46 2.12 0.52 
 

1801.55 1801.39 1801.23 
34 16_16_(2_6)_L 2 3 100.00 100.00 100.00 

 
3.24 1.64 0.01 

 
1822.10 1281.80 470.61 

35 16_16_(2_4)_S 1 4 100.00 100.00 100.00 
 

2.10 1.40 0.01 
 

1801.36 1447.91 34.95 
36 16_16_(2_4)_L 2 3 100.00 100.00 100.00   2.13 0.78 0.01   1801.31 1303.52 544.69 
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Table 7: CSAP Model Results with Instance Set A 

    Status Root Gap %   Gap %   CPU Time (sec) 
No. Scenario Opt. Term. Max Avg Min   Max Avg Min   Max Avg Min 

1 12_10_(3_5)_S 5 - 17.01 8.59 4.81 
 

-     -     -       42.51 11.60 2.54 
2 12_10_(3_5)_L 5 - 32.94 11.78 3.91 

 
-     -     -     

 
30.42 8.22 1.84 

3 12_10_(1_5)_S 5 - 21.00 10.18 2.18 
 

-     -     -     
 

6.94 2.97 1.14 
4 12_10_(1_5)_L 5 - 12.92 6.88 4.62 

 
-     -     -     

 
2.64 1.76 1.48 

5 12_10_(1_3)_S 5 - 10.91 5.62 2.65 
 

-     -     -     
 

7.22 2.64 1.28 
6 12_10_(1_3)_L 5 - 9.89 3.93 1.03 

 
-     -     -     

 
3.67 1.84 1.20 

7 12_16_(6_8)_S 5 - 17.51 12.80 7.59 
 

-     -     -     
 

951.84 212.58 5.57 
8 12_16_(6_8)_L 5 - 15.64 10.49 5.19 

 
-     -     -     

 
190.13 43.50 1.50 

9 12_16_(2_6)_S 5 - 14.98 9.86 4.51 
 

-     -     -     
 

4.96 2.61 1.36 
10 12_16_(2_6)_L 5 - 19.34 9.83 5.71 

 
-     -     -     

 
28.97 9.31 1.39 

11 12_16_(2_4)_S 5 - 24.93 11.85 4.08 
 

-     -     -     
 

5.07 3.63 1.48 
12 12_16_(2_4)_L 5 - 30.00 12.90 0.00 

 
-     -     -     

 
3.25 2.34 0.56 

13 14_10_(3_5)_S 4 1 29.54 16.01 6.60 
 

6.09 1.22 0.00 
 

1800.67 783.24 11.87 
14 14_10_(3_5)_L 3 2 14.94 9.94 6.13 

 
3.78 0.93 0.00 

 
1801.21 1114.54 29.91 

15 14_10_(1_5)_S 5 - 7.47 6.07 5.45 
 

-     -     -     
 

621.51 230.19 3.85 
16 14_10_(1_5)_L 4 1 7.48 5.89 3.30 

 
3.29 0.67 0.00 

 
1800.75 386.20 13.25 

17 14_10_(1_3)_S 4 1 48.22 15.91 4.47 
 

1.81 0.37 0.00 
 

1800.72 467.29 3.99 
18 14_10_(1_3)_L 4 1 7.08 4.64 2.32 

 
0.64 0.13 0.00 

 
1800.88 377.83 1.16 

19 14_16_(6_8)_S 2 3 19.89 15.60 10.14 
 

6.18 2.38 0.00 
 

1801.17 1261.56 74.21 
20 14_16_(6_8)_L 3 2 15.76 13.34 8.56 

 
9.67 2.33 0.00 

 
1800.83 933.28 14.10 

21 14_16_(2_6)_S 4 1 14.15 10.71 8.65 
 

2.97 0.60 0.00 
 

1800.85 486.62 3.79 
22 14_16_(2_6)_L 3 2 14.90 9.85 6.08 

 
3.68 1.08 0.00 

 
1801.38 996.84 10.20 

23 14_16_(2_4)_S 3 2 10.73 7.29 5.84 
 

3.49 0.89 0.00 
 

1801.03 782.67 21.39 
24 14_16_(2_4)_L 4 1 41.11 14.56 2.85 

 
1.17 0.24 0.00 

 
1800.58 676.25 2.26 

25 16_10_(3_5)_S - 5 21.31 11.85 6.84 
 

3.33 2.02 0.24 
 

1801.44 1801.20 1800.70 
26 16_10_(3_5)_L - 5 12.09 10.42 7.67 

 
2.41 1.67 0.25 

 
1801.52 1801.40 1801.22 

27 16_10_(1_5)_S 4 1 8.41 6.64 5.45 
 

0.85 0.18 0.00 
 

1800.94 664.93 154.10 
28 16_10_(1_5)_L 5 - 12.97 10.58 7.59 

 
-     -     -     

 
1340.53 537.79 237.68 

29 16_10_(1_3)_S 4 1 13.62 6.80 1.88 
 

0.89 0.18 0.00 
 

1801.05 610.54 44.29 
30 16_10_(1_3)_L 4 1 6.63 4.74 3.30 

 
0.29 0.07 0.00 

 
1800.83 893.55 4.18 

31 16_16_(6_8)_S - 5 24.48 18.02 11.62 
 

8.33 5.01 1.51 
 

1801.78 1801.41 1800.81 
32 16_16_(6_8)_L - 5 22.37 17.90 11.51 

 
6.50 4.07 1.15 

 
1801.89 1801.64 1801.29 

33 16_16_(2_6)_S 2 3 23.10 13.33 6.31 
 

2.96 1.20 0.00 
 

1804.72 1561.19 956.04 
34 16_16_(2_6)_L 3 2 42.62 15.89 7.22 

 
4.57 1.28 0.00 

 
1801.41 980.29 2.09 

35 16_16_(2_4)_S 3 2 14.68 9.94 6.25 
 

0.80 0.22 0.00 
 

1800.75 1100.13 15.32 
36 16_16_(2_4)_L 4 1 10.43 7.86 3.89   1.53 0.31 0.00   1800.72 692.73 48.27 
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Table 8: DSAP Model Results with Instance Set A 

    Status Root Gap %   CPU Time (sec) 
No. Scenario Optimal Terminated Max Avg Min   Max Avg Min 

1 12_10_(3_5)_S 5 - - - -   2.59 2.49 2.29 
2 12_10_(3_5)_L 5 - - - - 

 
2.70 2.52 2.31 

3 12_10_(1_5)_S 5 - - - - 
 

2.43 2.14 1.89 
4 12_10_(1_5)_L 5 - - - - 

 
2.61 2.30 1.86 

5 12_10_(1_3)_S 5 - - - - 
 

1.87 1.80 1.65 
6 12_10_(1_3)_L 5 - - - - 

 
1.83 1.58 1.40 

7 12_16_(6_8)_S 5 - - - - 
 

6.16 5.65 4.96 
8 12_16_(6_8)_L 5 - - - - 

 
5.85 5.51 5.02 

9 12_16_(2_6)_S 5 - - - - 
 

4.42 3.75 3.06 
10 12_16_(2_6)_L 5 - - - - 

 
4.38 4.05 3.64 

11 12_16_(2_4)_S 5 - - - - 
 

4.02 3.39 2.92 
12 12_16_(2_4)_L 5 - - - - 

 
3.18 2.90 2.62 

13 14_10_(3_5)_S 5 - - - - 
 

4.20 3.22 2.76 
14 14_10_(3_5)_L 5 - - - - 

 
3.81 3.24 3.03 

15 14_10_(1_5)_S 5 - - - - 
 

3.40 2.83 2.12 
16 14_10_(1_5)_L 5 - - - - 

 
3.65 3.01 2.61 

17 14_10_(1_3)_S 5 - - - - 
 

2.29 2.17 2.03 
18 14_10_(1_3)_L 5 - - - - 

 
2.15 1.98 1.84 

19 14_16_(6_8)_S 5 - - - - 
 

8.86 7.11 6.41 
20 14_16_(6_8)_L 5 - - - - 

 
7.43 6.91 6.61 

21 14_16_(2_6)_S 5 - - - - 
 

6.72 5.53 4.56 
22 14_16_(2_6)_L 5 - - - - 

 
6.94 5.44 4.76 

23 14_16_(2_4)_S 5 - - - - 
 

4.79 4.37 4.10 
24 14_16_(2_4)_L 5 - - - - 

 
4.17 3.38 2.90 

25 16_10_(3_5)_S 5 - - - - 
 

4.20 3.66 3.21 
26 16_10_(3_5)_L 5 - - - - 

 
4.13 3.76 3.46 

27 16_10_(1_5)_S 5 - - - - 
 

3.56 3.21 2.81 
28 16_10_(1_5)_L 5 - - - - 

 
3.57 3.27 3.01 

29 16_10_(1_3)_S 5 - - - - 
 

3.04 2.64 2.45 
30 16_10_(1_3)_L 5 - - - - 

 
2.76 2.42 2.18 

31 16_16_(6_8)_S 5 - - - - 
 

9.17 8.59 7.55 
32 16_16_(6_8)_L 5 - 0.47 0.09 0.00 

 
9.08 8.23 7.86 

33 16_16_(2_6)_S 5 - - - - 
 

8.03 6.32 4.81 
34 16_16_(2_6)_L 5 - - - - 

 
6.76 5.88 4.60 

35 16_16_(2_4)_S 5 - - - - 
 

5.54 5.20 4.65 
36 16_16_(2_4)_L 5 - - - -   4.77 4.38 3.98 
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Table 9: YATS model results compared with DSAP results for instance Set A 

  Stopping criterion (1) Stopping criterion (2) 

    Status Gap % CPU Time (sec) Status CPU Time (sec) 
No. Scenario Opt. Max Avg Min Max Avg Min Opt. Max Avg Min 

1 12_10_(3_5)_S 5 - - - 0.44 0.38 0.34 5 4.52 3.80 3.43 
2 12_10_(3_5)_L 5 - - - 0.44 0.39 0.36 5 4.58 3.95 3.74 
3 12_10_(1_5)_S 5 - - - 0.48 0.43 0.39 5 4.82 4.25 3.93 
4 12_10_(1_5)_L 5 - - - 0.51 0.43 0.37 5 4.75 4.22 3.70 
5 12_10_(1_3)_S 5 - - - 0.49 0.42 0.37 5 4.98 4.30 3.85 
6 12_10_(1_3)_L 5 - - - 0.50 0.43 0.38 5 4.92 4.44 3.85 
7 12_16_(6_8)_S 4 0.34 0.07 0.00 0.65 0.44 0.34 5 4.60 4.04 3.47 
8 12_16_(6_8)_L 5 - - - 0.49 0.42 0.36 5 4.34 3.90 3.67 
9 12_16_(2_6)_S 5 - - - 0.53 0.43 0.38 5 4.98 4.28 3.76 

10 12_16_(2_6)_L 5 - - - 0.44 0.42 0.38 5 4.73 4.24 3.74 
11 12_16_(2_4)_S 5 - - - 0.48 0.44 0.38 5 4.85 4.35 3.95 
12 12_16_(2_4)_L 5 - - - 0.52 0.44 0.38 5 5.13 4.40 3.75 
13 14_10_(3_5)_S 4 0.41 0.08 0.00 0.69 0.59 0.49 5 5.79 5.30 4.84 
14 14_10_(3_5)_L 5 - - - 0.79 0.60 0.50 5 5.70 5.39 4.83 
15 14_10_(1_5)_S 5 - - - 0.73 0.63 0.50 5 6.97 6.28 5.12 
16 14_10_(1_5)_L 5 - - - 0.69 0.65 0.58 5 6.54 6.10 5.43 
17 14_10_(1_3)_S 5 - - - 0.83 0.66 0.55 5 6.89 6.26 5.47 
18 14_10_(1_3)_L 5 - - - 1.05 0.78 0.66 5 7.53 6.79 6.04 
19 14_16_(6_8)_S 4 0.38 0.08 0.00 1.13 0.70 0.50 5 6.33 5.41 4.87 
20 14_16_(6_8)_L 5 - - - 0.75 0.59 0.51 5 5.81 5.25 4.59 
21 14_16_(2_6)_S 4 0.21 0.04 0.00 0.90 0.70 0.59 5 8.72 6.88 5.88 
22 14_16_(2_6)_L 5 - - - 0.81 0.66 0.54 5 6.99 6.25 5.44 
23 14_16_(2_4)_S 4 0.40 0.08 0.00 0.79 0.68 0.60 5 7.13 6.48 5.93 
24 14_16_(2_4)_L 5 - - - 0.89 0.70 0.63 5 7.24 6.67 6.25 
25 16_10_(3_5)_S 5 - - - 0.87 0.76 0.65 5 8.21 7.39 6.59 
26 16_10_(3_5)_L 4 0.47 0.09 0.00 0.75 0.71 0.62 5 7.82 6.90 5.95 
27 16_10_(1_5)_S 5 - - - 0.97 0.82 0.69 5 8.66 7.93 7.09 
28 16_10_(1_5)_L 5 - - - 1.20 0.87 0.73 5 8.55 7.91 7.18 
29 16_10_(1_3)_S 5 - - - 1.02 0.91 0.83 5 9.55 8.48 7.57 
30 16_10_(1_3)_L 5 - - - 1.39 0.99 0.75 5 9.73 8.66 7.83 
31 16_16_(6_8)_S 5 - - - 0.87 0.74 0.59 5 7.34 6.72 6.01 
32 16_16_(6_8)_L 5 - - - 1.45 0.95 0.61 5 7.80 7.00 6.00 
33 16_16_(2_6)_S 4 0.23 0.05 0.00 0.96 0.84 0.70 5 9.24 8.40 7.10 
34 16_16_(2_6)_L 5 - - - 1.44 1.05 0.80 5 8.93 8.16 7.67 
35 16_16_(2_4)_S 5 - - - 1.35 0.95 0.78 5 9.16 8.52 7.77 
36 16_16_(2_4)_L 5 - - - 1.33 1.00 0.77 5 9.94 8.66 7.50 
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Table 10: YATS_VNS model results compared with DSAP results for instance Set A 

    Stopping criterion (1)   Stopping criterion (2) 

  
Status Gap % CPU Time (sec) 

 
Status CPU Time (sec) 

No. Scenario Opt. Max Avg Min Max Avg Min   Opt. Max Avg Min 

1 12_10_(3_5)_S 5 - - - 0.45 0.40 0.35 
 

5 4.45 3.81 3.48 
2 12_10_(3_5)_L 5 - - - 0.47 0.41 0.37 

 
5 4.54 3.97 3.70 

3 12_10_(1_5)_S 5 - - - 0.51 0.44 0.40 
 

5 4.88 4.24 3.90 
4 12_10_(1_5)_L 5 - - - 0.51 0.45 0.41 

 
5 4.77 4.26 3.73 

5 12_10_(1_3)_S 5 - - - 0.51 0.44 0.40 
 

5 4.98 4.28 3.81 
6 12_10_(1_3)_L 5 - - - 0.55 0.46 0.40 

 
5 4.94 4.47 3.88 

7 12_16_(6_8)_S 4 0.34 0.07 0.00 0.45 0.41 0.37 
 

5 7.04 4.61 3.48 
8 12_16_(6_8)_L 5 - - - 0.45 0.41 0.39 

 
5 4.37 3.96 3.67 

9 12_16_(2_6)_S 5 - - - 0.52 0.45 0.40 
 

5 5.07 4.32 3.75 
10 12_16_(2_6)_L 5 - - - 0.53 0.45 0.37 

 
5 4.77 4.27 3.78 

11 12_16_(2_4)_S 5 - - - 0.52 0.45 0.41 
 

5 4.96 4.36 3.88 
12 12_16_(2_4)_L 5 - - - 0.50 0.46 0.39 

 
5 5.17 4.42 3.73 

13 14_10_(3_5)_S 5 - - - 0.68 0.61 0.56 
 

5 5.90 5.33 4.79 
14 14_10_(3_5)_L 5 - - - 0.89 0.63 0.52 

 
5 5.70 5.43 4.95 

15 14_10_(1_5)_S 5 - - - 0.79 0.66 0.52 
 

5 7.07 6.26 5.19 
16 14_10_(1_5)_L 5 - - - 0.70 0.65 0.56 

 
5 6.64 6.24 5.80 

17 14_10_(1_3)_S 5 - - - 0.79 0.67 0.59 
 

5 7.13 6.43 5.58 
18 14_10_(1_3)_L 5 - - - 0.80 0.70 0.63 

 
5 7.38 6.81 6.18 

19 14_16_(6_8)_S 4 0.57 0.11 0.00 0.68 0.58 0.51 
 

5 6.41 5.68 4.96 
20 14_16_(6_8)_L 5 - - - 0.59 0.54 0.48 

 
5 5.93 5.28 4.60 

21 14_16_(2_6)_S 4 0.21 0.04 0.00 0.83 0.74 0.60 
 

5 11.05 7.44 5.93 
22 14_16_(2_6)_L 4 0.21 0.04 0.00 0.71 0.65 0.59 

 
5 6.93 6.27 5.56 

23 14_16_(2_4)_S 5 - - - 1.39 0.79 0.61 
 

5 7.16 6.51 5.93 
24 14_16_(2_4)_L 5 - - - 0.86 0.72 0.62 

 
5 7.54 6.75 6.26 

25 16_10_(3_5)_S 5 - - - 1.35 0.91 0.66 
 

5 9.06 7.46 6.35 
26 16_10_(3_5)_L 4 - - - 0.82 0.75 0.63 

 
5 7.75 6.91 6.11 

27 16_10_(1_5)_S 5 - - - 1.38 0.93 0.69 
 

5 8.99 7.97 6.93 
28 16_10_(1_5)_L 5 - - - 0.99 0.83 0.72 

 
5 8.82 8.02 7.13 

29 16_10_(1_3)_S 5 - - - 1.02 0.88 0.80 
 

5 9.53 8.59 7.65 
30 16_10_(1_3)_L 5 - - - 1.21 0.99 0.81 

 
5 9.63 8.74 7.92 

31 16_16_(6_8)_S 5 - - - 0.85 0.71 0.60 
 

5 7.30 6.60 5.86 
32 16_16_(6_8)_L 4 0.29 0.06 0.00 0.81 0.74 0.67 

 
5 7.96 7.03 6.11 

33 16_16_(2_6)_S 4 0.23 0.05 0.00 1.41 0.97 0.77 
 

5 13.60 9.27 7.01 
34 16_16_(2_6)_L 5 0.25 0.05 0.00 1.41 0.96 0.79 

 
5 10.18 8.74 7.70 

35 16_16_(2_4)_S 5 - - - 1.12 0.98 0.88 
 

5 9.27 8.59 7.93 
36 16_16_(2_4)_L 4 0.23 0.05 0.00 1.09 0.96 0.84   5 10.01 8.74 7.62 
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6.4 Results of MILP Models with Instance Set B 

  

 The results of the computational experiments of instance set B solved with CSAP and 

DSAP models are shown in Table 11 and Table 14, respectively. Since preliminary results 

showed that CSA model cannot solve any medium-sized instance optimally, the 

comparisons will be provided with CSAP and DSAP models. Additionally, for instance set 

B, the comparisons of the solutions of MILP models and the metaheuristics are presented in 

this section. Table 11 shows that CSAP model can solve 91 out of 360 instances to 

optimality when the time limit is half an hour. Although the maximum gap is 24.78% for 

an instance from a scenario where there are 29 vessels, the average of maximum gaps for 

all instances is 3.56%. Additionally, the average gap for all instances is 2.12%.  

 Moreover, Table 12 shows the results of instance set B where the time limit is 120 

seconds. As it can be seen in Table 12, the maximum gap is 26.34% when the model stops 

after 120 seconds. Thus the average of maximum gaps is 4.22% and the average gap for all 

instances is 2.72%. The results indicate that CSAP model can find good solutions within a 

short time. In fact, when the upper bounds obtained from CSAP are compared with the 

optimal values, it can be asserted that in most of the cases they are equal. Table 13 shows 

the percentage deviation of the best solution of CSAP and the optimal solution obtained 

with DSAP model. The deviation is calculated by the Equation 5.1. 

 The results of DSAP model shows that out of 72 scenarios, 42 scenarios are solved to 

optimality within a short time. However, after 43
rd

 scenario, the model gives out of 

memory errors on a desktop having 8 GB RAM. Table 14 indicates that the maximum CPU 

time is 63.74 seconds out of fist 210 instances. In order to provide the best found values for 

Table 13, the rest of the scenarios are solved with a laptop having 16 GB RAM. Since a 

CPU time comparison is not fair with different computers having different configurations, 

these results are not included in the table. 
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 In addition to the MILP models, instance set B is solved with YATS and YATS_VNS. 

Table 15 and Table 16 show the results of these metaheuristics. 

 First, in Table 15 YATS model is compared with DSAP model. The bold numbers 

under the CPU time columns show the superior results of YATS over DSAP model with 

respect to average CPU times. Under the gap column, “-” means that there is no gap 

between the best found solution of metaheuristic and the optimal solution obtained by 

DSAP. Most of the cases, YATS model achieves optimal result in shorter time when 

compared to DSAP. Moreover, in Table 16 the solutions of YATS_VNS model are 

compared with DASP model. 

 YATS cannot obtain optimal solutions for only 5 scenarios and within these scenarios 

totally 8 instances are terminated due to time limit. In addition, for 37
th

 scenario, where 

there are 24 stockpiles with lengths between (3, 5) and the length of pads is 10, in one 

instance the model cannot find any feasible solution and terminates due to the maximum 

number of iterations. 

 

6.5 Results of MILP Models with Instance Set C 

 

This data set is a special case of set B where there are only 16, 18 and 20 stockpiles. 

The planning horizon is again 1 week. The major difference is that the arrival times of 

stockpiles are 𝑡 = 1 and departure times of vessels are 𝑡 = 𝑇, meaning that all stockpiles 

are ready at the beginning of the time horizon and there is 1 week time to serve vessels, 

hence to store stockpiles.  

Since the preliminary results indicate that CSA and CSAP cannot obtain any root 

bounds for instance set C within a reasonable time, the data set C will be tested with DSAP 

model, YATS and YATS_VNS algorithms.  
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Table 11: CSAP Model Results with Instance Set B 

    Status Root Gap %   Gap %   CPU Time (sec) 
No. Scenario Opt. Term Max Avg Min   Max Avg Min   Max Avg Min 

1 16_10_(3_5)_S 4 1 5.03 3.53 2.77   1.11 0.23 0.01 
 

1800.40 451.67 20.67 
2 16_10_(3_5)_L 4 1 6.57 3.43 2.45 

 
0.49 0.11 0.01 

 
1804.27 461.62 8.47 

3 16_10_(1_5)_S 5 - 4.36 3.37 2.00 
 

-      -      -      
 

218.03 100.12 5.04 
4 16_10_(1_5)_L 5 - 4.63 3.22 2.00 

 
-      -      -      

 
422.01 138.84 4.93 

5 16_10_(1_3)_S 5 - 2.76 1.84 1.01 
 

0.00 0.00 0.00 
 

732.52 202.10 1.93 
6 16_10_(1_3)_L 4 1 3.23 2.53 1.34 

 
0.17 0.04 0.00 

 
1800.82 380.20 1.95 

7 16_24_(8_10)_S 4 1 12.54 7.65 5.12 
 

1.70 0.35 0.01 
 

1800.91 526.48 23.67 
8 16_24_(8_10)_L 3 2 10.98 7.64 5.31 

 
1.72 0.55 0.01 

 
1800.60 828.03 15.35 

9 16_24_(2_10)_S 5 - 8.65 5.21 3.78 
 

-      -      -      
 

346.17 88.52 3.62 
10 16_24_(2_10)_L 4 1 11.93 6.10 3.84 

 
0.17 0.04 0.00 

 
1800.69 424.38 4.10 

11 16_24_(2_6)_S 5 - 8.51 4.49 2.57 
 

-      -      -      
 

936.01 224.66 4.26 
12 16_24_(2_6)_L 5 - 8.54 5.77 4.50 

 
-      -      -      

 
195.24 40.41 0.94 

13 18_10_(3_5)_S 1 4 5.49 4.27 3.25 
 

0.92 0.29 0.01 
 

1800.75 1541.42 504.54 
14 18_10_(3_5)_L 2 3 4.38 3.86 3.04 

 
1.06 0.55 0.01 

 
1801.23 1363.00 446.13 

15 18_10_(1_5)_S 2 3 5.01 3.03 1.98 
 

0.90 0.22 0.01 
 

1801.13 1200.17 24.02 
16 18_10_(1_5)_L 4 1 3.63 2.92 2.01 

 
0.31 0.07 0.01 

 
1800.81 730.12 8.14 

17 18_10_(1_3)_S 3 2 3.00 2.58 2.15 
 

0.11 0.04 0.01 
 

1804.19 864.31 8.22 
18 18_10_(1_3)_L 3 2 4.93 2.93 1.41 

 
0.44 0.18 0.00 

 
1800.81 933.60 19.11 

19 18_24_(8_10)_S - 5 10.19 8.78 6.75 
 

1.55 0.91 0.28 
 

1801.05 1800.83 1800.66 
20 18_24_(8_10)_L 1 4 10.16 9.02 7.33 

 
2.88 1.29 0.01 

 
1804.16 1575.58 671.35 

21 18_24_(2_10)_S 2 3 6.71 5.57 4.66 
 

0.83 0.34 0.01 
 

1800.95 1356.59 346.26 
22 18_24_(2_10)_L 1 4 8.07 6.08 4.84 

 
0.97 0.39 0.01 

 
1801.04 1460.69 99.44 

23 18_24_(2_6)_S 1 4 7.66 4.52 2.80 
 

1.05 0.46 0.01 
 

1800.91 1525.53 424.39 
24 18_24_(2_6)_L 3 2 6.78 4.25 2.40 

 
1.27 0.33 0.01 

 
1801.28 1024.62 32.73 

25 20_10_(3_5)_S - 5 13.50 6.27 3.98 
 

2.01 0.93 0.34 
 

1804.14 1801.27 1800.48 
26 20_10_(3_5)_L - 5 9.59 6.80 3.37 

 
2.81 0.97 0.34 

 
1800.80 1800.65 1800.52 

27 20_10_(1_5)_S 1 4 5.59 4.01 2.71 
 

0.79 0.55 0.01 
 

1804.06 1513.42 359.72 
28 20_10_(1_5)_L 2 3 6.40 4.20 1.73 

 
0.91 0.26 0.01 

 
1801.00 1227.00 70.54 

29 20_10_(1_3)_S 1 4 4.53 3.07 2.21 
 

1.87 0.57 0.01 
 

1802.35 1733.07 1458.26 
30 20_10_(1_3)_L 3 2 5.22 3.98 2.06 

 
0.80 0.24 0.01 

 
1800.89 1093.45 182.83 

31 20_24_(8_10)_S - 5 16.19 10.24 7.39 
 

4.07 2.33 1.02 
 

1801.28 1801.16 1800.97 
32 20_24_(8_10)_L - 5 13.10 9.65 6.55 

 
7.06 3.20 1.53 

 
1801.25 1801.13 1800.98 

33 20_24_(2_10)_S 2 3 10.47 7.08 4.65 
 

2.25 0.67 0.01 
 

1801.34 1294.21 515.82 
34 20_24_(2_10)_L 1 4 7.69 6.61 5.41 

 
1.75 0.80 0.01 

 
1801.72 1514.66 367.96 

35 20_24_(2_6)_S 2 3 8.13 5.91 4.14 
 

1.60 0.70 0.01 
 

1802.03 1587.81 1231.64 
36 20_24_(2_6)_L 2 3 9.94 6.79 4.33 

 
2.33 0.76 0.00 

 
1801.48 1269.08 23.09 
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  Status Root Gap %  Gap %  CPU Time (sec) 

No. Scenario Opt. Term Max Avg Min   Max Avg Min   Max Avg Min 

37 24_10_(3_5)_S - 5 100.00 28.28 8.58 
 

5.32 2.83 0.12 
 

1801.32 1801.07 1800.59 
38 24_10_(3_5)_L - 5 100.00 26.49 6.54 

 
5.41 3.46 1.95 

 
1801.23 1801.07 1800.89 

39 24_10_(1_5)_S - 5 19.22 8.07 4.21 
 

2.60 1.31 0.44 
 

1801.33 1801.08 1800.74 
40 24_10_(1_5)_L - 5 17.01 8.77 4.95 

 
2.70 1.96 1.30 

 
1801.39 1801.25 1801.15 

41 24_10_(1_3)_S - 5 10.41 6.25 4.24 
 

2.13 1.46 0.82 
 

1804.49 1801.75 1800.66 
42 24_10_(1_3)_L - 5 17.17 6.30 2.45 

 
2.79 1.16 0.38 

 
1802.29 1801.71 1800.86 

43 24_24_(8_10)_S - 5 14.50 13.53 11.72 
 

7.48 6.36 5.43 
 

1800.92 1800.75 1800.60 
44 24_24_(8_10)_L - 5 100.00 46.18 9.88 

 
5.61 5.09 4.59 

 
1801.15 1801.04 1800.90 

45 24_24_(2_10)_S - 5 16.61 11.78 5.13 
 

6.22 4.27 2.00 
 

1801.92 1801.58 1801.00 
46 24_24_(2_10)_L - 5 16.65 9.51 6.13 

 
7.40 3.29 1.58 

 
1801.61 1801.28 1800.98 

47 24_24_(2_6)_S - 5 13.53 8.82 6.25 
 

6.33 3.13 2.00 
 

1801.81 1801.40 1800.65 
48 24_24_(2_6)_L - 5 23.98 14.53 5.09 

 
3.87 2.75 1.85 

 
1801.61 1801.42 1801.10 

49 27_10_(3_5)_S - 5 100.00 82.49 12.43 
 

6.09 5.23 4.58 
 

1801.11 1800.95 1800.84 
50 27_10_(3_5)_L - 5 15.54 13.32 10.57 

 
7.69 5.02 3.59 

 
1801.24 1801.06 1800.85 

51 27_10_(1_5)_S - 5 11.66 7.93 3.76 
 

2.40 1.73 0.76 
 

1801.45 1801.21 1800.81 
52 27_10_(1_5)_L - 5 6.94 5.32 3.26 

 
2.24 1.80 0.81 

 
1801.38 1801.09 1800.54 

53 27_10_(1_3)_S - 5 7.56 4.58 2.50 
 

2.65 1.49 1.00 
 

1801.47 1801.31 1801.03 
54 27_10_(1_3)_L - 5 7.62 4.84 2.94 

 
1.93 1.37 0.72 

 
1801.58 1801.37 1801.28 

55 27_24_(8_10)_S - 5 100.00 65.77 13.50 
 

9.18 7.35 2.91 
 

3601.13 2520.81 1800.55 
56 27_24_(8_10)_L - 5 23.27 18.11 12.79 

 
7.92 6.57 4.41 

 
1801.27 1801.20 1801.06 

57 27_24_(2_10)_S - 5 19.93 13.09 7.37 
 

6.68 4.77 2.77 
 

1803.69 1801.49 1800.65 
58 27_24_(2_10)_L - 5 22.57 13.72 8.12 

 
6.42 4.00 3.20 

 
1802.17 1801.59 1800.86 

59 27_24_(2_6)_S - 5 9.76 7.57 5.19 
 

3.45 2.90 2.23 
 

1801.99 1801.45 1801.15 
60 27_24_(2_6)_L - 5 16.44 9.65 5.57 

 
5.63 2.92 1.67 

 
1801.58 1801.29 1800.58 

61 29_10_(3_5)_S - 5 100.00 28.55 9.60 
 

5.51 4.75 4.29 
 

1801.20 1800.94 1800.70 
62 29_10_(3_5)_L - 5 100.00 29.05 2.58 

 
5.40 3.32 0.04 

 
1804.19 1802.30 1800.89 

63 29_10_(1_5)_S - 5 15.40 10.14 5.83 
 

2.82 2.06 1.24 
 

1801.36 1801.02 1800.67 
64 29_10_(1_5)_L - 5 19.40 10.95 4.93 

 
4.15 1.99 0.88 

 
1801.99 1801.54 1801.30 

65 29_10_(1_3)_S - 5 12.55 7.27 4.20 
 

2.36 1.77 1.26 
 

1803.90 1801.46 1800.75 
66 29_10_(1_3)_L - 5 8.62 5.21 3.84 

 
1.97 1.30 1.03 

 
1804.18 1802.28 1801.39 

67 29_24_(8_10)_S 1 4 100.00 51.63 16.93 
 

0.12 0.09 0.06 
 

1801.11 1440.91 0.55 
68 29_24_(8_10)_L - 5 100.00 50.88 14.20 

 
24.78 10.45 5.54 

 
1801.12 1801.06 1800.98 

69 29_24_(2_10)_S - 5 20.27 13.24 8.04 
 

7.09 4.43 2.68 
 

1802.18 1801.66 1801.24 
70 29_24_(2_10)_L - 5 16.10 13.69 8.69 

 
8.07 4.94 3.33 

 
1801.56 1801.22 1800.91 

71 29_24_(2_6)_S - 5 17.22 12.62 9.04 
 

5.64 3.75 2.83 
 

1802.53 1801.96 1800.56 
72 29_24_(2_6)_L - 5 19.96 11.96 8.63 

 
4.24 2.82 2.25 

 
1801.64 1801.52 1801.45 
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Table 12: CSAP Model Results with Instance Set B terminated after 120 sec 

    Status Root Gap %   Gap %   CPU Time (sec) 
No. Scenario Opt. Term Max Avg Min   Max Avg Min   Max Avg Min 

1 16_10_(3_5)_S 2 3 5.03 3.53 2.77 
 

1.77 0.63 0.01 
 

121.09 83.22 20.08 
2 16_10_(3_5)_L 1 4 6.57 3.43 2.45 

 
1.34 0.57 0.01 

 
120.92 98.36 8.80 

3 16_10_(1_5)_S 3 2 4.36 3.37 2.00 
 

0.34 0.13 0.01 
 

120.74 69.35 5.60 
4 16_10_(1_5)_L 3 2 4.63 3.22 2.00 

 
0.38 0.1 0.01 

 
120.90 56.15 5.37 

5 16_10_(1_3)_S 3 2 2.76 1.84 1.01 
 

0.38 0.15 0.00 
 

120.81 55.91 2.46 
6 16_10_(1_3)_L 4 1 3.23 2.53 1.34 

 
1.01 0.21 0 

 
120.62 44.50 2.36 

7 16_24_(8_10)_S 1 4 12.54 7.65 5.12 
 

2.68 1.32 0.01 
 

121.14 101.49 24.20 
8 16_24_(8_10)_L 2 3 10.98 7.64 5.31 

 
3.20 1.58 0.01 

 
121.21 83.32 15.88 

9 16_24_(2_10)_S 4 1 8.65 5.21 3.78 
 

0.39 0.08 0 
 

120.78 43.60 4.28 
10 16_24_(2_10)_L 4 1 11.93 6.10 3.84 

 
2.55 0.61 0 

 
120.78 57.04 4.70 

11 16_24_(2_6)_S 4 1 8.51 4.49 2.57 
 

0.89 0.18 0 
 

120.71 61.79 4.26 
12 16_24_(2_6)_L 4 1 8.54 5.77 4.50 

 
0.33 0.07 0 

 
120.65 25.57 1.20 

13 18_10_(3_5)_S - 5 5.49 4.27 3.25 
 

1.83 1.19 0.53 
 

121.10 120.91 120.56 
14 18_10_(3_5)_L - 5 4.38 3.86 3.04 

 
2.15 1.65 0.48 

 
121.07 120.97 120.89 

15 18_10_(1_5)_S 1 4 5.01 3.03 1.98 
 

1.19 0.55 0.01 
 

121.34 101.58 23.70 
16 18_10_(1_5)_L 1 4 3.63 2.92 2.01 

 
1.32 0.40 0.01 

 
121.20 98.33 7.86 

17 18_10_(1_3)_S 1 4 3.00 2.58 2.15 
 

0.64 0.27 0.01 
 

121.26 98.61 8.77 
18 18_10_(1_3)_L 1 4 4.93 2.93 1.41 

 
0.75 0.33 0.00 

 
121.24 100.77 19.73 

19 18_24_(8_10)_S - 5 10.19 8.78 6.75 
 

4.28 3.31 2.11 
 

121.14 120.98 120.76 
20 18_24_(8_10)_L - 5 10.16 9.02 7.33 

 
4.59 3.75 2.99 

 
121.23 120.98 120.84 

21 18_24_(2_10)_S - 5 6.71 5.57 4.66 
 

1.54 1.17 0.37 
 

121.21 121.15 121.10 
22 18_24_(2_10)_L 1 4 8.07 6.08 4.84 

 
1.66 1.12 0.01 

 
121.15 116.16 96.89 

23 18_24_(2_6)_S - 5 7.66 4.52 2.80 
 

1.83 0.92 0.42 
 

121.34 121.22 121.10 
24 18_24_(2_6)_L 1 4 6.78 4.25 2.40 

 
2.05 0.75 0.01 

 
121.54 103.35 32.03 

25 20_10_(3_5)_S - 5 13.50 6.27 3.98 
 

3.10 1.92 1.34 
 

121.14 121.02 120.89 
26 20_10_(3_5)_L - 5 9.59 6.80 3.37 

 
3.80 2.10 1.49 

 
121.10 120.98 120.81 

27 20_10_(1_5)_S - 5 5.59 4.01 2.71 
 

1.62 1.07 0.38 
 

121.14 121.09 121.06 
28 20_10_(1_5)_L 1 4 6.40 4.20 1.73 

 
1.75 0.73 0.01 

 
121.26 110.99 70.59 

29 20_10_(1_3)_S - 5 4.53 3.07 2.21 
 

1.91 0.77 0.17 
 

121.42 121.30 121.15 
30 20_10_(1_3)_L - 5 5.22 3.98 2.06 

 
1.16 0.44 0.09 

 
121.28 121.17 120.93 

31 20_24_(8_10)_S - 5 16.19 10.24 7.39 
 

6.02 4.11 2.52 
 

120.99 120.89 120.79 
32 20_24_(8_10)_L - 5 13.10 9.65 6.55 

 
8.26 4.89 3.61 

 
121.12 121.00 120.89 

33 20_24_(2_10)_S - 5 10.47 7.08 4.65 
 

2.70 1.51 0.81 
 

121.28 121.15 120.95 
34 20_24_(2_10)_L - 5 7.69 6.61 5.41 

 
2.69 1.79 0.81 

 
121.32 121.09 120.95 

35 20_24_(2_6)_S - 5 8.13 5.91 4.14 
 

2.53 1.47 0.67 
 

121.38 121.19 121.03 
36 20_24_(2_6)_L 1 4 9.94 6.79 4.33 

 
2.61 1.07 0.00 

 
121.21 100.83 19.92 
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  Status Root Gap %  Gap %  CPU Time (sec) 

No. Scenario Opt. Term Max Avg Min   Max Avg Min   Max Avg Min 

37 24_10_(3_5)_S - 5 100.00 28.28 8.58 
 

6.41 4.68 3.29 
 

120.96 120.79 120.57 
38 24_10_(3_5)_L - 5 100.00 26.49 6.54 

 
7.64 4.43 2.68 

 
121.03 120.85 120.68 

39 24_10_(1_5)_S - 5 19.22 8.07 4.21 
 

3.60 1.93 1.20 
 

121.09 120.96 120.75 
40 24_10_(1_5)_L - 5 17.01 8.77 4.95 

 
3.65 2.64 1.75 

 
121.12 121.00 120.81 

41 24_10_(1_3)_S - 5 10.41 6.25 4.24 
 

2.23 1.55 0.82 
 

121.15 121.01 120.89 
42 24_10_(1_3)_L - 5 17.17 6.30 2.45 

 
2.95 1.35 0.57 

 
121.28 121.16 121.01 

43 24_24_(8_10)_S - 5 14.50 13.53 11.72 
 

8.24 7.32 6.49 
 

121.07 120.92 120.81 
44 24_24_(8_10)_L - 5 100.00 46.18 9.88 

 
8.25 6.74 5.63 

 
121.04 120.90 120.79 

45 24_24_(2_10)_S - 5 16.61 11.78 5.13 
 

7.61 4.85 2.33 
 

121.09 120.95 120.84 
46 24_24_(2_10)_L - 5 16.65 9.51 6.13 

 
7.81 3.94 2.34 

 
121.18 121.01 120.93 

47 24_24_(2_6)_S - 5 13.53 8.82 6.25 
 

6.33 3.33 2.19 
 

121.32 121.17 120.98 
48 24_24_(2_6)_L - 5 23.98 14.53 5.09 

 
4.45 3.23 1.98 

 
121.20 121.09 120.93 

49 27_10_(3_5)_S - 5 100.00 82.49 12.43 
 

6.67 5.90 5.39 
 

135.10 123.72 120.78 
50 27_10_(3_5)_L - 5 15.54 13.32 10.57 

 
8.12 5.74 4.29 

 
121.10 121.00 120.93 

51 27_10_(1_5)_S - 5 11.66 7.93 3.76 
 

2.62 2.15 1.47 
 

121.17 121.05 120.95 
52 27_10_(1_5)_L - 5 6.94 5.32 3.26 

 
2.52 2.06 0.99 

 
121.28 121.16 121.04 

53 27_10_(1_3)_S - 5 7.56 4.58 2.50 
 

2.65 1.50 1.02 
 

121.29 121.19 121.07 
54 27_10_(1_3)_L - 5 7.62 4.84 2.94 

 
2.00 1.52 0.85 

 
121.24 121.16 120.96 

55 27_24_(8_10)_S - 5 100.00 65.77 13.50 
 

10.08 9.39 9.03 
 

121.04 120.96 120.89 
56 27_24_(8_10)_L - 5 23.27 18.11 12.79 

 
8.80 7.38 4.82 

 
121.10 121.00 120.84 

57 27_24_(2_10)_S - 5 19.93 13.09 7.37 
 

6.91 5.07 3.10 
 

121.28 121.12 120.99 
58 27_24_(2_10)_L - 5 22.57 13.72 8.12 

 
7.41 4.41 3.24 

 
121.29 121.06 120.84 

59 27_24_(2_6)_S - 5 9.76 7.57 5.19 
 

3.66 3.06 2.39 
 

121.48 121.29 121.15 
60 27_24_(2_6)_L - 5 16.44 9.65 5.57 

 
5.88 3.02 1.69 

 
121.21 121.10 120.95 

61 29_10_(3_5)_S - 5 100.00 28.55 9.60 
 

6.16 5.27 4.85 
 

121.32 121.09 120.95 
62 29_10_(3_5)_L - 5 100.00 48.53 10.54 

 
5.84 4.86 4.11 

 
121.12 120.97 120.65 

63 29_10_(1_5)_S - 5 15.40 10.14 5.83 
 

3.00 2.26 1.48 
 

121.14 121.01 120.90 
64 29_10_(1_5)_L - 5 19.40 10.95 4.93 

 
4.56 2.43 1.17 

 
121.28 121.14 121.04 

65 29_10_(1_3)_S - 5 12.55 7.27 4.20 
 

2.40 1.85 1.31 
 

121.28 121.15 120.98 
66 29_10_(1_3)_L - 5 8.62 5.21 3.84 

 
2.11 1.34 1.06 

 
121.42 121.22 120.96 

67 29_24_(8_10)_S 1 4 100.00 51.63 16.93 
 

13.35 9.77 6.51 
 

121.49 97.05 0.55 
68 29_24_(8_10)_L - 5 100.00 50.88 14.20 

 
26.34 11.44 6.19 

 
121.26 121.09 120.89 

69 29_24_(2_10)_S - 5 20.27 13.24 8.04 
 

7.23 4.61 2.83 
 

121.23 121.04 120.84 
70 29_24_(2_10)_L - 5 16.10 13.69 8.69 

 
8.58 5.13 3.61 

 
121.28 121.11 120.87 

71 29_24_(2_6)_S - 5 17.22 12.62 9.04 
 

5.64 3.87 3.03 
 

121.29 121.08 120.92 
72 29_24_(2_6)_L - 5 19.96 11.96 8.63 

 
4.59 2.98 2.34 

 
121.40 121.15 121.01 
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Table 13: The average percent deviation of CSAP model results from DSAP model for 

instance Set B 

No. Scenario Avg PD %   No. Scenario Avg PD % 

1 16_10_(3_5)_S 0.00   37 24_10_(3_5)_S 0.09 
2 16_10_(3_5)_L 0.00 

 
38 24_10_(3_5)_L 0.06 

3 16_10_(1_5)_S 0.00 
 

39 24_10_(1_5)_S 0.06 
4 16_10_(1_5)_L 0.00 

 
40 24_10_(1_5)_L 0.07 

5 16_10_(1_3)_S 0.00 
 

41 24_10_(1_3)_S 0.05 
6 16_10_(1_3)_L 0.00 

 
42 24_10_(1_3)_L 0.02 

7 16_24_(8_10)_S 0.00 
 

43 24_24_(8_10)_S 0.04 
8 16_24_(8_10)_L 0.00 

 
44 24_24_(8_10)_L 0.09 

9 16_24_(2_10)_S 0.00 
 

45 24_24_(2_10)_S 0.44 
10 16_24_(2_10)_L 0.00 

 
46 24_24_(2_10)_L 0.17 

11 16_24_(2_6)_S 0.00 
 

47 24_24_(2_6)_S 0.21 
12 16_24_(2_6)_L 0.00 

 
48 24_24_(2_6)_L 0.11 

13 18_10_(3_5)_S 0.00 
 

49 27_10_(3_5)_S 0.30 
14 18_10_(3_5)_L 0.00 

 
50 27_10_(3_5)_L 0.19 

15 18_10_(1_5)_S 0.00 
 

51 27_10_(1_5)_S 0.16 
16 18_10_(1_5)_L 0.00 

 
52 27_10_(1_5)_L 0.11 

17 18_10_(1_3)_S 0.00 
 

53 27_10_(1_3)_S 0.04 
18 18_10_(1_3)_L 0.00 

 
54 27_10_(1_3)_L 0.10 

19 18_24_(8_10)_S 0.00 
 

55 27_24_(8_10)_S 0.05 
20 18_24_(8_10)_L 0.00 

 
56 27_24_(8_10)_L 0.55 

21 18_24_(2_10)_S 0.00 
 

57 27_24_(2_10)_S 0.26 
22 18_24_(2_10)_L 0.04 

 
58 27_24_(2_10)_L 0.32 

23 18_24_(2_6)_S 0.02 
 

59 27_24_(2_6)_S 0.26 
24 18_24_(2_6)_L 0.00 

 
60 27_24_(2_6)_L 0.16 

25 20_10_(3_5)_S 0.00 
 

61 29_10_(3_5)_S 0.22 
26 20_10_(3_5)_L 0.00 

 
62 29_10_(3_5)_L 0.18 

27 20_10_(1_5)_S 0.00 
 

63 29_10_(1_5)_S 0.11 
28 20_10_(1_5)_L 0.00 

 
64 29_10_(1_5)_L 0.15 

29 20_10_(1_3)_S 0.00 
 

65 29_10_(1_3)_S 0.20 
30 20_10_(1_3)_L 0.00 

 
66 29_10_(1_3)_L 0.06 

31 20_24_(8_10)_S 0.00 
 

67 29_24_(8_10)_S 0.67 
32 20_24_(8_10)_L 0.07 

 
68 29_24_(8_10)_L 0.53 

33 20_24_(2_10)_S 0.04 
 

69 29_24_(2_10)_S 0.38 
34 20_24_(2_10)_L 0.07 

 
70 29_24_(2_10)_L 0.46 

35 20_24_(2_6)_S 0.00 
 

71 29_24_(2_6)_S 0.24 
36 20_24_(2_6)_L 0.02   72 29_24_(2_6)_L 0.24 
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Table 14: DSAP Model Results with Instance Set B 

    Status Root Gap %   CPU Time (sec) 

No. Scenario Opt. Term. Max Avg Min   Max Avg Min 

1 16_10_(3_5)_S 5 - 0.00 0.00 0.00 
 

6.74 6.10 5.54 

2 16_10_(3_5)_L 5 - 0.00 0.00 0.00 
 

6.77 6.09 5.71 

3 16_10_(1_5)_S 5 - 0.00 0.00 0.00 
 

5.63 5.25 4.57 

4 16_10_(1_5)_L 5 - 0.00 0.00 0.00 
 

5.73 5.34 4.68 

5 16_10_(1_3)_S 5 - 0.00 0.00 0.00 
 

4.40 4.04 3.60 

6 16_10_(1_3)_L 5 - 0.00 0.00 0.00 
 

4.62 3.83 3.01 

7 16_24_(8_10)_S 5 - 0.00 0.00 0.00 
 

63.74 37.41 28.36 

8 16_24_(8_10)_L 5 - 0.00 0.00 0.00 
 

43.68 36.61 31.00 

9 16_24_(2_10)_S 5 - 0.00 0.00 0.00 
 

28.53 24.41 22.46 

10 16_24_(2_10)_L 5 - 0.00 0.00 0.00 
 

39.81 28.64 22.56 

11 16_24_(2_6)_S 5 - 0.00 0.00 0.00 
 

21.48 18.02 15.27 

12 16_24_(2_6)_L 5 - 0.00 0.00 0.00 
 

22.71 19.91 16.79 

13 18_10_(3_5)_S 5 - 0.00 0.00 0.00 
 

15.63 9.64 7.02 

14 18_10_(3_5)_L 5 - 0.00 0.00 0.00 
 

12.50 9.65 7.68 

15 18_10_(1_5)_S 5 - 0.00 0.00 0.00 
 

8.17 7.45 6.27 

16 18_10_(1_5)_L 5 - 0.00 0.00 0.00 
 

9.16 6.90 5.76 

17 18_10_(1_3)_S 5 - 0.00 0.00 0.00 
 

6.65 5.98 5.06 

18 18_10_(1_3)_L 5 - 0.00 0.00 0.00 
 

4.54 4.17 3.64 

19 18_24_(8_10)_S 5 - 0.00 0.00 0.00 
 

43.88 37.90 33.34 

20 18_24_(8_10)_L 5 - 0.00 0.00 0.00 
 

50.11 42.12 33.15 

21 18_24_(2_10)_S 5 - 0.00 0.00 0.00 
 

49.11 32.66 24.77 

22 18_24_(2_10)_L 5 - 0.00 0.00 0.00 
 

36.86 29.35 21.17 

23 18_24_(2_6)_S 5 - 0.00 0.00 0.00 
 

24.82 21.87 17.85 

24 18_24_(2_6)_L 5 - 0.00 0.00 0.00 
 

27.58 21.50 17.71 

25 20_10_(3_5)_S 5 - 0.00 0.00 0.00 
 

12.23 10.65 8.47 

26 20_10_(3_5)_L 5 - 0.00 0.00 0.00 
 

8.49 7.80 7.54 

27 20_10_(1_5)_S 5 - 0.00 0.00 0.00 
 

7.21 6.43 5.79 

28 20_10_(1_5)_L 5 - 0.00 0.00 0.00 
 

6.58 6.33 5.73 

29 20_10_(1_3)_S 5 - 0.00 0.00 0.00 
 

5.48 4.84 4.40 
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  Status Root Gap %  CPU Time (sec) 

No. Scenario Opt. Term. Max Avg Min   Max Avg Min 

30 20_10_(1_3)_L 5 - 0.00 0.00 0.00 
 

5.18 4.62 4.09 

31 20_24_(8_10)_S 5 - 0.00 0.00 0.00 
 

47.75 43.71 39.30 

32 20_24_(8_10)_L 5 - 0.00 0.00 0.00 
 

56.15 50.78 48.41 

33 20_24_(2_10)_S 5 - 0.00 0.00 0.00 
 

36.02 32.48 25.04 

34 20_24_(2_10)_L 5 - 0.00 0.00 0.00 
 

45.18 36.81 28.58 

35 20_24_(2_6)_S 5 - 0.00 0.00 0.00 
 

28.49 25.33 21.83 

36 20_24_(2_6)_L 5 - 0.00 0.00 0.00 
 

25.62 22.11 15.73 

37 24_10_(3_5)_S 5 - 2.86 0.77 0.00 
 

36.54 23.31 17.16 

38 24_10_(3_5)_L 5 - 0.94 0.33 0.00 
 

26.54 21.13 18.13 

39 24_10_(1_5)_S 5 - 0.00 0.00 0.00  18.88 16.70 12.21 

40 24_10_(1_5)_L 5 - 0.10 0.02 0.00 
 

24.24 20.75 16.47 

41 24_10_(1_3)_S 5 - 0.00 0.00 0.00 
 

15.16 12.62 9.27 

42 24_10_(1_3)_L 5 - 0.00 0.00 0.00 
 

13.29 12.27 11.09 
   

 

Table 15: YATS Model Results when compared with DSAP results for Instance Set B 

      YATS   DSAP Model 

      Gap% CPU Time (sec)   CPU Time (sec) 
No. Scenario Opt Term Max Avg Min Max Avg Min   Max Avg Min 

1 16_10_(3_5)_S 5  -      -     -     5.11 4.69 4.32   6.74 6.10 5.54 
2 16_10_(3_5)_L 5  -     -     -     5.11 4.60 4.05 

 
6.77 6.09 5.71 

3 16_10_(1_5)_S 5  -     -     -     5.70 5.49 5.00 
 

5.63 5.25 4.57 
4 16_10_(1_5)_L 5  -     -     -     5.43 5.25 5.03 

 
5.73 5.34 4.68 

5 16_10_(1_3)_S 5  -     -     -     6.13 5.70 5.24 
 

4.40 4.04 3.60 
6 16_10_(1_3)_L 5  -     -     -     6.38 6.02 5.67 

 
4.62 3.83 3.01 

7 16_24_(8_10)_S 5  -     -     -     4.90 4.54 4.01 
 

63.74 37.41 28.36 
8 16_24_(8_10)_L 5  -     -     -     5.09 4.62 4.18 

 
43.68 36.61 31.00 

9 16_24_(2_10)_S 5  -     -     -     5.86 5.45 4.87 
 

28.53 24.41 22.46 

10 16_24_(2_10)_L 5  -     -     -     5.71 5.47 5.17 
 

39.81 28.64 22.56 
11 16_24_(2_6)_S 5  -     -     -     6.02 5.82 5.49 

 
21.48 18.02 15.27 

12 16_24_(2_6)_L 5  -     -     -     6.29 6.07 5.66 
 

22.71 19.91 16.79 
13 18_10_(3_5)_S 4 1 0.07 0.01 0.00 6.67 6.14 5.58 

 
15.63 9.64 7.02 

14 18_10_(3_5)_L 5  -     -     -     7.58 6.44 5.33 
 

12.50 9.65 7.68 
15 18_10_(1_5)_S 5  -     -     -     7.22 6.72 6.16 

 
8.17 7.45 6.27 
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    YATS  DSAP Model 

    Gap% CPU Time (sec)  CPU Time (sec) 

No. Scenario Opt Term Max Avg Min Max Avg Min  Max Avg Min 

16 18_10_(1_5)_L 5  -     -     -     7.10 6.79 5.93 
 

9.16 6.90 5.76 
17 18_10_(1_3)_S 5  -     -     -     7.58 7.30 7.13 

 
6.65 5.98 5.06 

18 18_10_(1_3)_L 5  -     -     -     8.06 7.88 7.64 
 

4.54 4.17 3.64 
19 18_24_(8_10)_S 5  -     -     -     6.31 5.80 5.30 

 
43.88 37.90 33.34 

20 18_24_(8_10)_L 5  -     -     -     6.24 5.69 5.28 
 

50.11 42.12 33.15 

21 18_24_(2_10)_S 5  -     -     -     7.09 6.80 6.35 
 

49.11 32.66 24.77 
22 18_24_(2_10)_L 5  -     -     -     7.30 7.05 6.52 

 
36.86 29.35 21.17 

23 18_24_(2_6)_S 5  -     -     -     7.87 7.07 6.51 
 

24.82 21.87 17.85 
24 18_24_(2_6)_L 5  -     -     -     8.54 7.93 7.45 

 
27.58 21.50 17.71 

25 20_10_(3_5)_S 5  -     -     -     7.37 6.99 6.52 
 

12.23 10.65 8.47 
26 20_10_(3_5)_L 5  -     -     -     10.13 7.22 5.60 

 
8.49 7.80 7.54 

27 20_10_(1_5)_S 5  -     -     -     14.80 10.21 7.92 
 

7.21 6.43 5.79 
28 20_10_(1_5)_L 4 1 0.11 0.02 0.00 10.08 8.97 8.53 

 
6.58 6.33 5.73 

29 20_10_(1_3)_S 5  -     -     -     9.70 9.16 8.60 
 

5.48 4.84 4.40 
30 20_10_(1_3)_L 5  -     -     -     10.66 10.26 10.07 

 
5.18 4.62 4.09 

31 20_24_(8_10)_S 5  -     -     -     8.20 7.44 6.61 
 

47.75 43.71 39.30 

32 20_24_(8_10)_L 4 1 0.85 0.17 0.00 8.72 7.15 5.99 
 

56.15 50.78 48.41 
 33 20_24_(2_10)_S 5  -     -     -     10.12 9.52 9.14 

 
36.02 32.48 25.04 

34 20_24_(2_10)_L 5  -     -     -     14.80 10.14 8.66 
 

45.18 36.81 28.58 
35 20_24_(2_6)_S 5  -     -     -     9.87 9.19 8.50 

 
28.49 25.33 21.83 

36 20_24_(2_6)_L 5  -     -     -     12.28 10.47 9.89 
 

25.62 22.11 15.73 
37 24_10_(3_5)_S 4 1* -     -     -     10.28 10.28 10.28 

 
36.54 23.31 17.16 

38 24_10_(3_5)_L 1 4_    0.74 0.30 0.00 41.16 20.69 13.97 
 

26.54 21.13 18.13 
39 24_10_(1_5)_S 5  -     -     -     25.42 16.53 11.65 

 
18.88 16.70 12.21 

40 24_10_(1_5)_L 5  -     -     -     13.71 12.47 9.69 
 

24.24 20.75 16.47 
41 24_10_(1_3)_S 5  -     -     -     15.55 14.16 13.47 

 
15.16 12.62 9.27 

42 24_10_(1_3)_L 5  -     -     -     15.99 15.36 14.84   13.29 12.27 11.09 
* YATS model could not find any feasible solution in one  instance 

 

   

 

 



 

  

Chapter 6: Computational Experiments  82 

 

Table 16: YATS_VNS Model Results when compared with DSAP results for Instance Set B 

      YATS_VNS   DSAP Model 

      Gap% CPU Time (sec)   CPU Time (sec) 
No. Scenario Opt Term Max Avg Min Max Avg Min   Max Avg Min 

1 16_10_(3_5)_S 5  - - - 4.78 4.54 4.31  6.74 6.10 5.54 
2 16_10_(3_5)_L 4 1 0.17 0.03 0.00 5.14 4.60 3.94  6.77 6.09 5.71 
3 16_10_(1_5)_S 5  - - - 5.49 5.40 5.20  5.63 5.25 4.57 
4 16_10_(1_5)_L 5  - - - 5.34 5.16 4.88  5.73 5.34 4.68 

5 16_10_(1_3)_S 5  - - - 5.95 5.62 5.22  4.40 4.04 3.60 
6 16_10_(1_3)_L 5  - - - 6.23 5.94 5.74  4.62 3.83 3.01 
7 16_24_(8_10)_S 5  - - - 6.85 5.22 3.99  63.74 37.41 28.36 
8 16_24_(8_10)_L 5  - - - 4.88 4.46 4.01  43.68 36.61 31.00 
9 16_24_(2_10)_S 5  - - - 5.75 5.41 4.97  28.53 24.41 22.46 

10 16_24_(2_10)_L 5  - - - 5.64 5.32 4.93  39.81 28.64 22.56 
11 16_24_(2_6)_S 5  - - - 6.03 5.67 5.42  21.48 18.02 15.27 
12 16_24_(2_6)_L 5  - - - 6.15 5.88 5.37  22.71 19.91 16.79 
13 18_10_(3_5)_S 4 1 0.07 0.01 0.00 6.64 5.98 5.55  15.63 9.64 7.02 
14 18_10_(3_5)_L 4 1 0.07 0.01 0.00 6.20 5.49 4.92  12.50 9.65 7.68 
15 18_10_(1_5)_S 5  - - - 7.33 6.79 5.96  8.17 7.45 6.27 

16 18_10_(1_5)_L 5  - - - 7.16 6.73 5.87  9.16 6.90 5.76 
17 18_10_(1_3)_S 5  - - - 7.27 7.08 6.78  6.65 5.98 5.06 
18 18_10_(1_3)_L 5  - - - 7.90 7.68 7.42  4.54 4.17 3.64 
19 18_24_(8_10)_S 5  - - - 6.26 5.40 4.95  43.88 37.90 33.34 
20 18_24_(8_10)_L 5  - - - 5.66 5.36 4.88  50.11 42.12 33.15 
21 18_24_(2_10)_S 5  - - - 8.33 7.29 6.61  49.11 32.66 24.77 
22 18_24_(2_10)_L 5 1 0.07 0.01 0.00 7.64 7.20 6.84  36.86 29.35 21.17 

23 18_24_(2_6)_S 5  - - - 7.67 7.07 6.51  24.82 21.87 17.85 
24 18_24_(2_6)_L 5  - - - 8.60 8.01 7.38  27.58 21.50 17.71 
25 20_10_(3_5)_S 5  - - - 7.84 7.05 6.01  12.23 10.65 8.47 
26 20_10_(3_5)_L 5  - - - 11.02 7.64 6.27  8.49 7.80 7.54 

27 20_10_(1_5)_S 4 1 0.10 0.02 0.00 9.89 8.89 7.73  7.21 6.43 5.79 
28 20_10_(1_5)_L 4 1 0.11 0.02 0.00 9.84 8.97 8.38  6.58 6.33 5.73 
29 20_10_(1_3)_S 5  - - - 12.49 9.79 8.67  5.48 4.84 4.40 
30 20_10_(1_3)_L 5  - - - 10.43 10.13 9.94  5.18 4.62 4.09 
31 20_24_(8_10)_S 4 1 0.32 0.06 0.00 8.44 7.25 6.57  47.75 43.71 39.30 
32 20_24_(8_10)_L 4 1 0.53 0.12 0.00 9.78 7.44 6.61  56.15 50.78 48.41 
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    YATS_VNS  DSAP Model 

    Gap% CPU Time (sec)  CPU Time (sec) 

No. Scenario Opt Term Max Avg Min Max Avg Min  Max Avg Min 

 33 20_24_(2_10)_S 5  - - - 16.99 11.54 8.90 
 

36.02 32.48 25.04 
34 20_24_(2_10)_L 5  0.11 0.02 0.00 9.55 9.11 8.54 

 
45.18 36.81 28.58 

35 20_24_(2_6)_S 5  - - - 9.69 9.25 8.81 
 

28.49 25.33 21.83 
36 20_24_(2_6)_L 5  - - - 17.78 11.46 9.72 

 
25.62 22.11 15.73 

37 24_10_(3_5)_S 4 1* 0.15 0.03 0.00 172.04 43.17 10.52 
 

36.54 23.31 17.16 

38 24_10_(3_5)_L 4 1_ 0.95 0.35 0.00 14.14 11.07 8.76 
 

26.54 21.13 18.13 
39 24_10_(1_5)_S 4 1_ 0.23 0.05 0.00 15.65 13.77 11.35 

 
18.88 16.70 12.21 

40 24_10_(1_5)_L 5  - - - 16.71 13.64 9.94 
 

24.24 20.75 16.47 
41 24_10_(1_3)_S 5  - - - 16.47 14.33 13.45 

 
15.16 12.62 9.27 

42 24_10_(1_3)_L 5  - - - 19.75 16.11 14.94   13.29 12.27 11.09 
* YATS_VNS model could not find any feasible solution in one  instance 

 

Moreover, to obtain better bounds, DSAP model is tested with a time limit of 1 hour. 

According to Table 17, within an hour, 137 out of 180 instances can be solved to 

optimality. For other instances the maximum gap is 3.95% which is not a large gap. On the 

other hand, the average CPU time is approximately 1060 seconds. Therefore, a 

metaheuristic is needed to obtain fast and good quality results.   

Additionally, The YATS and YATS_VNS heuristics are compared with the best 

obtained solutions of DSAP. The results are provided in Table 18 and Table 19.  

Although YATS can achieve as good results as DSAP in 61 instances, in others the 

gaps are also not very large. For example, in Table 18 the maximum gap is 14.41% 

whereas, the overall average gap is 5.39%. On the other hand, the CPU times are decreased 

in considerable amount. In 138 out of 180 instances, DSAP can achieve the optimum 

results.  

In Table 19, YATS_VNS also exhibits similar results. The overall average gap is 

decreased to 4.37% while the overall average CPU time remains the same with 

YATS_VNS. Additionally, the maximum gap is decreased to 12.48%. 
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Table 17: DSAP Model Results with Instance Set C 

    Status Root Gap % Gap %   CPU Time (sec) 
No. Scenario Opt Term Max Avg Min Max Avg Min   Max Avg Min 

1 16_10_(8_10)_S_336 5 - 8.83 3.92 0.37 -     -     -       223.58 115.97 44.18 
2 16_10_(8_10)_L_336 5 - 3.35 1.80 0.00 -     -     -     

 
720.43 182.50 38.67 

3 16_10_(2_10)_S_336 5 - 10.29 5.77 0.00 -     -     -     
 

91.01 49.68 24.91 
4 16_10_(2_10)_L_336 5 - 15.63 9.57 4.29 -     -     -     

 
94.13 58.80 35.77 

5 16_10_(4_8)_S_336 5 - 0.00 0.00 0.00 -     -     -     
 

23.29 18.91 15.88 
6 16_10_(4_8)_L_336 5 - 0.00 0.00 0.00 -     -     -     

 
20.87 16.94 14.32 

7 16_10_(6_6)_S_336 5 - 3.68 2.24 0.65 -     -     -     
 

170.96 128.90 51.34 
8 16_10_(6_6)_L_336 5 - 9.78 6.78 3.14 -     -     -     

 
283.92 159.11 84.33 

9 16_10_(8_10)_S_504 5 - 24.67 14.31 4.19 -     -     -     
 

681.88 406.98 138.64 
10 16_10_(8_10)_L_504 5 - 18.27 12.76 7.70 -     -     -     

 
567.44 273.49 53.07 

11 16_10_(2_10)_S_504 5 - 0.00 0.00 0.00 -     -     -     
 

26.13 19.82 15.63 
12 16_10_(2_10)_L_504 5 - 0.00 0.00 0.00 -     -     -     

 
19.10 17.83 16.90 

13 16_10_(4_8)_S_504 4 1 5.99 2.72 0.74 0.19 0.04 0.00 
 

3600.15 848.49 89.28 
14 16_10_(4_8)_L_504 5 - 7.80 3.84 1.53 -     -     -     

 
245.50 152.20 74.79 

15 16_10_(6_6)_S_504 5 - 15.69 9.49 4.26 -     -     -     
 

904.99 566.60 248.21 
16 16_10_(6_6)_L_504 5 - 18.04 13.29 8.96 -     -     -     

 
885.28 477.10 240.46 

17 18_10_(8_10)_S_336 5 - 0.00 0.00 0.00 -     -     -     
 

24.15 19.96 17.22 
18 18_10_(8_10)_L_336 5 - 0.00 0.00 0.00 -     -     -     

 
32.23 26.98 21.64 

19 18_10_(2_10)_S_336 3 2 4.98 3.06 1.24 1.46 0.39 0.00 
 

3601.83 2433.15 323.92 
20 18_10_(2_10)_L_336 4 1 6.09 4.00 0.40 0.84 0.17 0.00 

 
3602.11 1227.84 117.45 

21 18_10_(4_8)_S_336 1 4 21.21 11.79 8.02 1.73 0.85 0.00 
 

3600.83 3482.41 3009.93 
22 18_10_(4_8)_L_336 - 5 16.00 12.28 9.12 1.38 0.90 0.52 

 
3600.89 3600.60 3600.33 

23 18_10_(6_6)_S_336 5 - 0.00 0.00 0.00 -     -     -     
 

33.29 28.77 22.34 
24 18_10_(6_6)_L_336 5 - 0.00 0.00 0.00 -     -     -     

 
33.13 27.10 21.51 

25 18_10_(8_10)_S_504 2 3 6.01 3.48 2.09 1.22 0.53 0.00 
 

3601.72 2420.26 340.25 
26 18_10_(8_10)_L_504 4 1 4.71 2.25 0.55 2.07 0.41 0.00 

 
3600.42 1256.79 241.02 

27 18_10_(2_10)_S_504 - 5 14.35 11.14 7.89 2.55 1.64 0.72 
 

3601.15 3600.62 3600.24 
28 18_10_(2_10)_L_504 - 5 18.98 13.79 9.99 3.60 2.55 1.83 

 
3601.34 3600.61 3600.22 

29 18_10_(4_8)_S_504 5 - 0.00 0.00 0.00 -     -     -     
 

50.73 37.50 23.82 
30 18_10_(4_8)_L_504 5 - 0.00 0.00 0.00 -     -     -     

 
38.58 30.98 25.37 

31 18_10_(6_6)_S_504 2 3 3.65 2.50 1.22 1.37 0.40 0.00 
 

3601.85 3064.64 1352.92 
32 18_10_(6_6)_L_504 2 3 6.70 4.46 3.29 2.11 0.55 0.00 

 
3600.72 2624.20 529.31 

33 20_10_(8_10)_S_336 - 5 14.87 10.70 8.52 3.95 2.86 1.58 
 

3602.01 3600.66 3600.25 
34 20_10_(8_10)_L_336 - 5 15.73 12.69 3.55 2.76 2.12 0.95 

 
3602.19 3600.76 3600.08 

35 20_10_(2_10)_S_336 5 - 0.00 0.00 0.00 -     -     -     
 

54.23 44.72 34.21 
36 20_10_(2_10)_L_336 5 - 0.00 0.00 0.00 -     -     -       55.44 45.96 32.60 
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Table 18: YATS Model Results when compared with DSAP results for Instance Set C 

    YATS DSAP Model 

  
Gap% CPU Time (sec) 

 
CPU Time (sec) 

No. Scenario Max Avg Min Max Avg Min 
 

Max Avg Min 

1 16_24_(8_10)_S 5.30 2.35 0.00 8.99 5.44 3.27   223.58 115.97 44.18 
2 16_24_(8_10)_L 11.06 4.35 0.68 4.33 3.85 3.36 

 
720.43 182.5 38.67 

3 16_24_(2_10)_S 5.30 3.92 2.46 7.68 6.11 4.63 
 

91.01 49.68 24.91 
4 16_24_(2_10)_L 11.34 5.74 2.93 6.26 5.59 5.14 

 
94.13 58.8 35.77 

5 16_24_(6_6)_S - - - 5.35 5.25 5.20 
 

23.29 18.91 15.88 
6 16_24_(6_6)_L - - - 5.35 5.26 5.19 

 
20.87 16.94 14.32 

7 18_24_(8_10)_S 3.50 2.01 0.56 10.05 6.07 4.86 
 

170.96 128.9 51.34 
8 18_24_(8_10)_L 5.71 2.92 0.41 7.16 5.07 4.29 

 
283.92 159.11 84.33 

9 18_24_(2_10)_S 9.57 7.07 3.91 8.26 6.60 5.59 
 

681.88 406.98 138.64 
10 18_24_(2_10)_L 13.06 5.92 0.59 8.71 7.05 5.94 

 
567.44 273.49 53.07 

11 18_24_(6_6)_S - - - 7.39 7.07 6.94 
 

26.13 19.82 15.63 
12 18_24_(6_6)_L - - - 7.47 7.08 6.96 

 
19.1 17.83 16.9 

13 20_24_(8_10)_S 4.34 2.39 0.29 9.68 6.97 5.67 
 

3600.15 848.49 89.28 
14 20_24_(8_10)_L 5.03 3.50 0.87 15.26 9.13 5.70 

 
245.5 152.2 74.79 

15 20_24_(2_10)_S 7.39 5.83 3.77 21.38 12.98 8.68 
 

904.99 566.6 248.21 
16 20_24_(2_10)_L 10.63 4.89 1.42 17.09 10.69 7.41 

 
885.28 477.1 240.46 

17 20_24_(6_6)_S - - - 9.51 9.23 8.94 
 

24.15 19.96 17.22 
18 20_24_(6_6)_L - - - 9.05 8.92 8.78 

 
32.23 26.98 21.64 

19 24_24_(8_10)_S 10.96 3.67 0.32 20.76 12.87 7.46 
 

3601.83 2433.15 323.92 
20 24_24_(8_10)_L 11.34 4.55 1.90 17.87 11.04 9.03 

 
3602.11 1227.84 117.45 

21 24_24_(2_10)_S 14.41 10.26 6.27 19.14 14.83 12.51 
 

3600.83 3482.41 3009.93 
22 24_24_(2_10)_L 10.35 8.74 7.93 29.69 19.49 11.44 

 
3600.89 3600.6 3600.33 

23 24_24_(6_6)_S - - - 13.43 13.11 12.79 
 

33.29 28.77 22.34 
24 24_24_(6_6)_L - - - 13.34 12.95 12.44 

 
33.13 27.1 21.51 

25 27_24_(8_10)_S 10.08 3.85 1.06 36.56 20.47 11.86 
 

3601.72 2420.26 340.25 
26 27_24_(8_10)_L 13.30 4.17 0.34 17.96 14.44 11.20 

 
3600.42 1256.79 241.02 

27 27_24_(2_10)_S 12.52 7.61 5.83 36.87 27.41 15.29 
 

3601.15 3600.62 3600.24 
28 27_24_(2_10)_L 9.81 8.74 7.57 36.99 24.76 16.67 

 
3601.34 3600.61 3600.22 

29 27_24_(6_6)_S - - - 20.57 18.47 17.07 
 

50.73 37.5 23.82 
30 27_24_(6_6)_L - - - 18.44 17.99 17.64 

 
38.58 30.98 25.37 

31 29_24_(8_10)_S 7.93 5.12 0.92 26.45 20.11 15.81 
 

3601.85 3064.64 1352.92 
32 29_24_(8_10)_L 9.74 5.18 2.83 31.25 21.84 15.78 

 
3600.72 2624.2 529.31 

33 29_24_(2_10)_S 12.97 8.83 4.94 33.94 29.52 25.94 
 

3602.01 3600.66 3600.25 
34 29_24_(2_10)_L 10.29 7.65 4.90 66.31 43.85 27.41 

 
3602.19 3600.76 3600.08 

35 29_24_(6_6)_S - - - 22.69 21.40 20.43 
 

54.23 44.72 34.21 
36 29_24_(6_6)_L - - - 28.49 23.94 20.43   55.44 45.96 32.6 
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Table 19: YATS_VNS Model Results compared with DSAP results for Instance Set C 

    YATS_VNS DSAP Model 

  
Gap% CPU Time (sec) 

 
CPU Time (sec) 

No. Scenario Max Avg Min Max Avg Min 
 

Max Avg Min 

1 16_24_(8_10)_S 1.69 0.84 0.22 4.52 4.11 3.80   223.58 115.97 44.18 
2 16_24_(8_10)_L 4.40 2.28 0.68 4.59 3.94 3.60 

 
720.43 182.5 38.67 

3 16_24_(2_10)_S 6.01 2.51 0.00 16.21 8.83 5.67 
 

91.01 49.68 24.91 
4 16_24_(2_10)_L 7.17 3.14 0.47 7.23 5.91 4.76 

 
94.13 58.8 35.77 

5 16_24_(6_6)_S - - - 5.49 5.36 5.23 
 

23.29 18.91 15.88 
6 16_24_(6_6)_L - - - 5.95 5.52 5.28 

 
20.87 16.94 14.32 

7 18_24_(8_10)_S 3.70 2.68 1.57 5.64 5.22 4.76 
 

170.96 128.9 51.34 
8 18_24_(8_10)_L 4.76 2.26 0.41 9.12 6.18 4.66 

 
283.92 159.11 84.33 

9 18_24_(2_10)_S 5.56 4.86 3.72 12.05 8.79 6.19 
 

681.88 406.98 138.64 
10 18_24_(2_10)_L 7.10 3.27 0.41 9.84 8.17 5.77 

 
567.44 273.49 53.07 

11 18_24_(6_6)_S - - - 7.57 7.32 7.21 
 

26.13 19.82 15.63 
12 18_24_(6_6)_L - - - 7.29 7.15 7.01 

 
19.1 17.83 16.9 

13 20_24_(8_10)_S 4.90 2.15 0.29 14.42 9.00 5.81 
 

3600.15 848.49 89.28 
14 20_24_(8_10)_L 4.60 3.02 0.46 10.95 7.31 5.93 

 
245.5 152.2 74.79 

15 20_24_(2_10)_S 8.37 5.99 0.00 24.60 14.71 7.26 
 

904.99 566.6 248.21 
16 20_24_(2_10)_L 10.26 6.23 2.82 18.31 11.34 8.86 

 
885.28 477.1 240.46 

17 20_24_(6_6)_S - - - 9.57 9.30 8.87 
 

24.15 19.96 17.22 
18 20_24_(6_6)_L - - - 9.17 9.02 8.85 

 
32.23 26.98 21.64 

19 24_24_(8_10)_S 5.65 1.86 0.72 16.74 11.99 8.75 
 

3601.83 2433.15 323.92 
20 24_24_(8_10)_L 6.39 2.98 0.75 14.46 11.25 9.65 

 
3602.11 1227.84 117.45 

21 24_24_(2_10)_S 12.48 7.58 4.83 28.93 19.49 12.11 
 

3600.83 3482.41 3009.93 
22 24_24_(2_10)_L 11.59 8.18 6.11 19.76 17.80 12.17 

 
3600.89 3600.6 3600.33 

23 24_24_(6_6)_S - - - 13.30 13.15 12.85 
 

33.29 28.77 22.34 
24 24_24_(6_6)_L - - - 13.87 13.33 12.86 

 
33.13 27.1 21.51 

25 27_24_(8_10)_S 7.90 3.58 0.97 27.55 20.95 14.26 
 

3601.72 2420.26 340.25 
26 27_24_(8_10)_L 3.14 1.48 0.00 21.79 17.09 13.68 

 
3600.42 1256.79 241.02 

27 27_24_(2_10)_S 10.97 8.02 4.24 30.91 25.08 20.26 
 

3601.15 3600.62 3600.24 
28 27_24_(2_10)_L 10.61 8.69 6.16 31.69 24.73 15.93 

 
3601.34 3600.61 3600.22 

29 27_24_(6_6)_S - - - 19.73 18.50 17.48 
 

50.73 37.5 23.82 
30 27_24_(6_6)_L - - - 18.40 18.06 17.50 

 
38.58 30.98 25.37 

31 29_24_(8_10)_S 8.97 4.37 1.08 32.56 25.35 17.90 
 

3601.85 3064.64 1352.92 
32 29_24_(8_10)_L 3.78 2.52 0.34 43.50 26.32 20.29 

 
3600.72 2624.2 529.31 

33 29_24_(2_10)_S 10.39 6.90 4.36 43.10 29.78 18.48 
 

3602.01 3600.66 3600.25 
34 29_24_(2_10)_L 12.48 9.52 4.76 35.55 25.23 18.34 

 
3602.19 3600.76 3600.08 

35 29_24_(6_6)_S - - - 23.11 21.32 20.59 
 

54.23 44.72 34.21 
36 29_24_(6_6)_L - - - 28.49 23.94 20.43   55.44 45.96 32.6 
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6.6 Results of MILP Models with Instance Set D 

 

 This data set is used to generate large-sized instances where there are 48 to 58 

stockpiles arriving to the stockyard in a planning horizon of 2 to 3 weeks. Since the 

dimensions of the stockyard as well as the planning horizon are large, the DSAP model 

gave out of memory errors for all instances. Since DSAP model has 1,317,216 constraints 

for the smallest problem. However, the largest problem size in set D that we can solve with 

CSAP model has 20,532 constraints, and 6,844 binary and 116 continuous variables. 

 We compare the CSAP model results with metaheuristics YATS and YATS_VNS for 

instance Set D. First, the results of CSAP model with a time limit of half an hour are 

presented in Table 20. Although for all instances in Set D, CSAP model is terminated due 

to time limit, the optimality gap over all scenarios is 3.58%. The maximum optimality gap 

is 12.54% whereas the minimum gap is 0.80%. Therefore, the results indicate that although 

the model cannot obtain optimal solutions within 30 minutes, the ability to find a good 

solution is acceptable. Moreover, in order to assess the performance of CSAP heuristic, we 

compare the objective values at different time intervals such that 30, 60 and 120 seconds. 

Table 21 shows that the model can obtain good solutions even within 30 seconds. 

Additionally, instance set D is solved with YATS and YATS_VNS heuristics and the 

results are provided in Table 22 and Table 23, respectively. The results indicate that, YATS 

can solve within 197 seconds on average over all instances. Additionally, it can obtain 

better objective values than the CSAP model within 1800 seconds. On average -0.15% gap 

is attained over all instances. The * indicates that, in the 3
rd

 scenario CSAP is not able to 

find any feasible solution in one instance. Moreover, in Table 23, YATS_VNS heuristic 

results are compared with CSAP model. Similar to YATS results, YATS_VNS can obtain 

better results than CSAP model. In almost all instances, YATS_VNS improves the 

objective value when compared to CSAP. However, in the 2
nd

 and 3
rd

 scenarios the model 

cannot find any feasible solution in one instance each. 
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Table 20. CSAP Model results with instance Set D 

    Root Gap % Gap %   CPU Time (sec) 
No. Scenario Max Avg Min Max Avg Min   Max Avg Min 

1 48_20_(8_10)_L_336 100.00 84.74 23.68 9.31 7.63 6.16   1804.964 1802.333 1801.442 
2 48_20_(8_10)_S_336 100.00 83.37 16.85 12.54 7.79 4.62 

 
1802.471 1801.758 1801.436 

3 48_20_(8_10)_M_336 25.92 21.29 15.05 4.86 4.21 3.71 
 

1801.496 1801.34 1801.24 
4 48_20_(2_10)_L_336 27.84 22.31 12.04 6.88 4.08 3.03 

 
1801.636 1801.496 1801.308 

5 48_20_(2_10)_S_336 27.61 19.42 13.01 8.97 4.02 2.29 
 

1804.811 1802.249 1801.426 
6 48_20_(2_10)_M_336 29.13 25.06 21.21 5.68 3.70 2.64 

 
1801.504 1801.365 1801.182 

7 48_20_(6_8)_L_336 100.00 34.70 15.79 5.17 3.76 2.82 
 

1801.784 1801.457 1801.284 
8 48_20_(6_8)_S_336 26.07 18.53 11.97 5.21 3.09 2.11 

 
1802.608 1801.675 1801.33 

9 48_20_(6_8)_M_336 27.91 18.13 9.92 3.47 2.76 2.18 
 

1804.351 1801.983 1801.235 
10 48_20_(4_8)_L_336 100.00 69.60 21.51 6.88 5.82 5.31 

 
1801.513 1801.418 1801.339 

11 48_20_(4_8)_S_336 100.00 37.66 16.73 5.68 4.19 3.57 
 

1801.655 1801.522 1801.345 
12 48_20_(4_8)_M_336 100.00 41.88 23.39 5.94 4.00 3.02 

 
1801.701 1801.527 1801.255 

13 54_20_(8_10)_L_336 100.00 100.00 100.00 11.27 9.53 8.24 
 

1804.662 1802.226 1801.386 
14 54_20_(8_10)_S_336 100.00 84.43 22.16 11.27 8.21 6.71 

 
1801.972 1801.762 1801.52 

15 54_20_(8_10)_M_336 100.00 84.30 21.51 8.77 7.16 4.54 
 

1813.882 1804.585 1801.59 
16 54_20_(4_8)_L_336 100.00 38.38 19.23 5.71 4.55 4.12 

 
1802.112 1801.721 1801.596 

17 54_20_(4_8)_S_336 100.00 39.45 21.95 5.31 4.45 3.77 
 

1801.641 1801.439 1801.142 
18 54_20_(4_8)_M_336 24.19 22.50 20.96 4.25 3.35 2.81 

 
1801.823 1801.552 1801.326 

19 54_20_(6_8)_L_504 21.20 18.00 12.08 2.37 1.84 1.14 
 

1801.637 1801.517 1801.359 
20 54_20_(6_8)_S_504 22.93 14.45 2.99 1.49 1.27 1.06 

 
1801.78 1801.583 1801.326 

21 54_20_(6_8)_M_504 20.33 12.97 2.58 1.60 1.18 0.80 
 

1807.943 1802.839 1801.432 
22 54_20_(2_10)_L_504 22.05 18.99 14.57 3.55 2.54 1.98 

 
1801.55 1801.471 1801.34 

23 54_20_(2_10)_S_504 22.36 17.75 7.65 2.47 2.09 1.60 
 

1801.575 1801.457 1801.348 
24 54_20_(2_10)_M_504 24.80 19.54 14.56 1.84 1.69 1.49 

 
1801.762 1801.484 1801.25 

25 58_20_(8_10)_L_504 100.00 35.22 12.31 4.68 3.65 2.74 
 

1801.581 1801.384 1801.033 
26 58_20_(8_10)_S_504 100.00 34.82 11.51 4.48 3.55 3.08 

 
1801.58 1801.438 1801.354 

27 58_20_(8_10)_M_504 23.23 16.54 9.40 4.07 2.41 1.67 
 

1801.762 1801.464 1801.109 
28 58_20_(2_10)_L_504 23.75 19.88 15.34 2.45 1.94 1.59 

 
1801.768 1801.62 1801.496 

29 58_20_(2_10)_S_504 21.31 16.42 5.59 1.85 1.55 1.33 
 

1801.738 1801.546 1801.44 
30 58_20_(2_10)_M_504 25.73 19.37 13.46 2.30 1.62 1.13 

 
1801.595 1801.453 1801.339 

31 58_20_(6_8)_L_504 26.00 21.93 16.41 2.22 1.69 1.46 
 

1801.691 1801.54 1801.293 
32 58_20_(6_8)_S_504 25.77 18.33 5.51 1.66 1.47 1.40 

 
1801.829 1801.628 1801.466 

33 58_20_(6_8)_M_504 25.48 19.81 12.48 1.41 1.21 0.83 
 

1801.832 1801.572 1801.466 
34 58_20_(4_8)_L_504 22.09 18.11 10.12 3.40 2.65 1.94 

 
1801.671 1801.502 1801.373 

35 58_20_(4_8)_S_504 23.37 18.43 9.30 2.73 2.30 1.92 
 

1801.666 1801.529 1801.371 
36 58_20_(4_8)_M_504 23.83 22.25 20.16 2.05 1.85 1.58   1801.514 1801.439 1801.409 
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Table 21. Comparison of CSAP model results in terms of the average optimality gap with 

different time limits 

  Time Limit: 1800 sec 120 sec 60 sec 30 sec 
No. Scenario Avg Gap% Avg Gap% Avg Gap % Avg Gap % 

1 48_20_(8_10)_L_336 7.63 8.18 8.32 8.55 
2 48_20_(8_10)_S_336 7.79 8.27 8.42 8.91 
3 48_20_(8_10)_M_336 4.21 4.52 4.67 4.98 
4 48_20_(2_10)_L_336 4.08 4.31 4.52 4.64 
5 48_20_(2_10)_S_336 4.02 4.34 4.54 4.61 
6 48_20_(2_10)_M_336 3.70 3.90 4.03 4.09 
7 48_20_(6_8)_L_336 3.76 4.22 4.42 4.57 
8 48_20_(6_8)_S_336 3.09 3.29 3.52 3.73 
9 48_20_(6_8)_M_336 2.76 2.99 3.08 3.18 

10 48_20_(4_8)_L_336 5.82 6.20 6.86 7.10 
11 48_20_(4_8)_S_336 4.19 4.58 4.76 4.92 
12 48_20_(4_8)_M_336 4.00 4.44 4.62 4.83 
13 54_20_(8_10)_L_336 9.53 10.25 10.63 10.80 
14 54_20_(8_10)_S_336 8.21 8.80 9.10 9.15 
15 54_20_(8_10)_M_336 7.16 8.06 8.46 8.64 
16 54_20_(4_8)_L_336 4.55 5.02 5.28 5.39 
17 54_20_(4_8)_S_336 4.45 4.73 5.11 5.24 
18 54_20_(4_8)_M_336 3.35 3.69 3.92 3.93 
19 54_20_(6_8)_L_504 1.84 1.97 2.08 2.11 
20 54_20_(6_8)_S_504 1.27 1.39 1.42 1.44 
21 54_20_(6_8)_M_504 1.18 1.28 1.33 1.38 
22 54_20_(2_10)_L_504 2.54 2.70 2.84 2.93 
23 54_20_(2_10)_S_504 2.09 2.23 2.26 2.39 
24 54_20_(2_10)_M_504 1.69 1.75 1.82 1.85 
25 58_20_(8_10)_L_504 3.65 3.78 4.03 4.15 
26 58_20_(8_10)_S_504 3.55 3.74 3.93 4.00 
27 58_20_(8_10)_M_504 2.41 2.52 2.56 2.61 
28 58_20_(2_10)_L_504 1.94 2.07 2.19 2.19 
29 58_20_(2_10)_S_504 1.55 1.64 1.71 1.71 
30 58_20_(2_10)_M_504 1.62 1.78 1.83 1.85 
31 58_20_(6_8)_L_504 1.69 1.82 1.99 2.02 
32 58_20_(6_8)_S_504 1.47 1.60 1.64 1.66 
33 58_20_(6_8)_M_504 1.21 1.31 1.35 1.35 
34 58_20_(4_8)_L_504 2.65 2.88 3.07 3.17 
35 58_20_(4_8)_S_504 2.30 2.46 2.54 2.68 
36 58_20_(4_8)_M_504 1.85 1.98 2.10 2.13 
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Table 22. Comparison of YATS model results with the best obtained solutions of CSAP 1800 sec 

    YATS 

  
Gap% CPU Time (sec) 

 
No. Scenario Max Avg Min Max Avg Min 

 
1 48_20_(8_10)_L_336 -0.09 -0.25 -0.32 204.66 144.76 97.77   
2 48_20_(8_10)_S_336 -0.09 -0.27 -0.57 169.27 114.66 86.88 

 3 48_20_(8_10)_M_336 0.02 -0.15 -0.28 165.23 145.81 113.92 * 
4 48_20_(2_10)_L_336 -0.02 -0.20 -0.71 250.44 160.85 97.68 

 5 48_20_(2_10)_S_336 -0.02 -0.23 -0.85 176.42 144.24 88.68 
 6 48_20_(2_10)_M_336 -0.06 -0.28 -0.54 304.27 184.01 127.48 
 7 48_20_(6_8)_L_336 -0.02 -0.13 -0.29 147.14 124.68 100.63 
 8 48_20_(6_8)_S_336 0.13 -0.07 -0.27 180.01 155.69 130.14 
 9 48_20_(6_8)_M_336 -0.04 -0.11 -0.23 208.60 160.34 135.53 
 10 48_20_(4_8)_L_336 -0.10 -0.45 -0.67 215.55 131.21 75.99 
 11 48_20_(4_8)_S_336 0.19 -0.10 -0.37 150.56 106.61 72.57 
 12 48_20_(4_8)_M_336 0.00 -0.12 -0.40 223.56 151.77 123.97 
 13 54_20_(8_10)_L_336 -0.27 -0.42 -0.58 216.73 188.42 166.02 
 14 54_20_(8_10)_S_336 -0.27 -0.35 -0.42 241.68 170.19 107.27 
 15 54_20_(8_10)_M_336 -0.30 -0.41 -0.69 404.56 267.82 174.79 
 16 54_20_(4_8)_L_336 -0.06 -0.24 -0.41 228.08 213.57 190.49 
 17 54_20_(4_8)_S_336 -0.16 -0.30 -0.47 374.14 274.36 169.98 
 18 54_20_(4_8)_M_336 -0.19 -0.25 -0.35 364.54 261.84 151.36 
 19 54_20_(6_8)_L_504 -0.01 -0.10 -0.22 283.35 226.53 184.90 
 20 54_20_(6_8)_S_504 -0.01 -0.04 -0.07 217.79 175.08 139.34 
 21 54_20_(6_8)_M_504 0.01 -0.01 -0.04 288.67 234.39 160.30 
 22 54_20_(2_10)_L_504 0.01 -0.12 -0.25 368.58 211.14 131.50 
 23 54_20_(2_10)_S_504 -0.01 -0.04 -0.08 220.55 173.81 115.47 
 24 54_20_(2_10)_M_504 -0.01 -0.04 -0.09 228.76 196.68 172.21 
 25 58_20_(8_10)_L_504 0.00 -0.06 -0.14 219.78 179.38 151.77 
 26 58_20_(8_10)_S_504 0.02 -0.08 -0.20 257.01 204.43 171.19 
 27 58_20_(8_10)_M_504 -0.01 -0.09 -0.20 369.33 215.67 157.03 
 28 58_20_(2_10)_L_504 -0.02 -0.12 -0.21 325.45 263.84 176.47 
 29 58_20_(2_10)_S_504 0.04 -0.06 -0.13 368.78 281.27 206.93 
 30 58_20_(2_10)_M_504 -0.05 -0.07 -0.09 293.29 259.16 202.20 
 31 58_20_(6_8)_L_504 0.05 -0.01 -0.11 301.33 229.00 162.26 
 32 58_20_(6_8)_S_504 0.01 -0.06 -0.19 312.55 209.40 164.45 
 33 58_20_(6_8)_M_504 0.03 -0.04 -0.08 335.89 257.04 174.36 
 34 58_20_(4_8)_L_504 -0.03 -0.11 -0.28 321.48 234.87 160.71 
 35 58_20_(4_8)_S_504 -0.02 -0.12 -0.27 288.91 235.38 176.25 
 36 58_20_(4_8)_M_504 0.00 -0.06 -0.12 327.07 220.01 145.11   
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Table 23. Comparison of YATS model results with the best obtained solutions of CSAP 1800 sec 

    YATS_VNS 

  
Gap% CPU Time (sec) 

 
No. Scenario Max Avg Min Max Avg Min 

 
1 48_20_(8_10)_L_336 -0.02 -0.22 -0.32 130.48 114.52 94.20   
2 48_20_(8_10)_S_336 -0.04 -0.12 -0.32 141.66 107.52 81.52 * 
3 48_20_(8_10)_M_336 0.02 -0.16 -0.32 203.36 139.89 106.81 * 
4 48_20_(2_10)_L_336 -0.02 -0.20 -0.62 222.29 139.17 99.57 

 5 48_20_(2_10)_S_336 -0.02 -0.20 -0.83 284.18 149.98 93.71 
 6 48_20_(2_10)_M_336 0.02 -0.23 -0.46 376.56 188.47 114.96 
 7 48_20_(6_8)_L_336 -0.03 -0.13 -0.23 184.80 158.39 119.33 
 8 48_20_(6_8)_S_336 0.04 -0.08 -0.23 278.78 153.00 81.43 
 9 48_20_(6_8)_M_336 -0.04 -0.14 -0.27 251.71 203.38 132.02 
 10 48_20_(4_8)_L_336 -0.31 -0.49 -0.60 212.50 165.47 129.93 
 11 48_20_(4_8)_S_336 0.04 -0.07 -0.37 207.34 133.27 87.76 
 12 48_20_(4_8)_M_336 0.09 -0.12 -0.55 221.83 150.17 86.83 
 13 54_20_(8_10)_L_336 -0.25 -0.47 -0.63 327.06 226.94 143.45 
 14 54_20_(8_10)_S_336 -0.20 -0.37 -0.58 292.47 193.03 85.21 
 15 54_20_(8_10)_M_336 -0.15 -0.34 -0.56 267.81 189.96 109.44 
 16 54_20_(4_8)_L_336 -0.13 -0.23 -0.38 259.31 198.24 134.80 
 17 54_20_(4_8)_S_336 -0.15 -0.30 -0.44 235.96 217.65 203.94 
 18 54_20_(4_8)_M_336 -0.17 -0.26 -0.41 314.58 218.91 152.27 
 19 54_20_(6_8)_L_504 -0.03 -0.13 -0.29 259.30 218.97 151.93 
 20 54_20_(6_8)_S_504 -0.01 -0.04 -0.07 277.78 213.48 145.25 
 21 54_20_(6_8)_M_504 0.03 0.00 -0.02 326.32 217.13 153.92 
 22 54_20_(2_10)_L_504 -0.03 -0.12 -0.24 307.50 187.03 127.73 
 23 54_20_(2_10)_S_504 0.01 -0.04 -0.08 320.97 227.77 121.60 
 24 54_20_(2_10)_M_504 -0.01 -0.02 -0.05 224.57 208.64 183.97 
 25 58_20_(8_10)_L_504 0.04 -0.06 -0.15 302.53 225.56 163.29 
 26 58_20_(8_10)_S_504 -0.04 -0.11 -0.23 326.67 243.92 170.84 
 27 58_20_(8_10)_M_504 0.00 -0.08 -0.20 511.05 305.92 136.83 
 28 58_20_(2_10)_L_504 0.00 -0.11 -0.21 321.03 241.05 191.86 
 29 58_20_(2_10)_S_504 0.01 -0.06 -0.13 443.20 311.42 185.05 
 30 58_20_(2_10)_M_504 -0.02 -0.06 -0.08 360.11 267.00 180.65 
 31 58_20_(6_8)_L_504 0.01 -0.01 -0.05 249.14 217.09 181.38 
 32 58_20_(6_8)_S_504 0.02 -0.05 -0.18 379.25 289.38 174.06 
 33 58_20_(6_8)_M_504 -0.01 -0.06 -0.11 357.47 237.70 170.16 
 34 58_20_(4_8)_L_504 -0.04 -0.10 -0.22 301.66 238.37 190.61 
 35 58_20_(4_8)_S_504 -0.03 -0.11 -0.24 371.80 260.80 195.77 
 36 58_20_(4_8)_M_504 0.00 -0.07 -0.14 340.94 234.45 168.67   
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Chapter 7 

 

CONCLUSION AND FUTURE RESEARCH 

7.  

 In this thesis, we studied yard allocation problem (YAP) in bulk port terminals. YAP 

allocates each stockpile to a place at the stockyard and each stockpile is stored at the 

stockyard starting from its arrival time till the corresponding vessel’s departure time. In the 

thesis, we studied both the continuous YAP and the discrete YAP. We considered 

minimizing the total travelled distance at the stockyard as well as minimizing the total 

dwelling time over all stockpiles. Since these two quantities are different in units, (i.e. 

distance vs. time), we associated these quantities with their respective costs and obtained a 

single monetary objective. 

 We presented three mixed integer mathematical models (CSA, CSAP and DSAP) 

inspired by multi-dimensional packing problems. While, the first (CSA) and the second 

(CSAP) models proposed in this thesis addressed YAP in continuous time and continuous 

space, the third (DSAP) model we propose discussed YAP in discrete time and discrete 

space.  

 In our models, we considered two types of stockyards: with pads and without pads. In 

the absence of pads, the stockpiles can be stored freely provided that they are parallel to the 

edges of the stockyard. Therefore, the orientations of piles are determined by CSA model. 

On the other hand, we solved YAP in stockyards with pads in CSAP and DSAP models.  

 Since the underlying multi-dimensional packing problems are NP-hard, developing a 

computationally efficient mathematical model for YAP was challenging. Thus, a tabu 

search (TS) algorithm which utilizes a well-known bottom-left-fill like heuristic was 
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presented (YATS). Then, to improve the quality of the solutions, we combined TS with 

Variable Neighborhood Search algorithms (YATS_VNS). YATS_VNS algorithm was used 

to solve YAP in large-scaled bulk port terminals. Computational experiments were 

conducted and the models were validated with four data sets.  

 We analyzed the performance of both the mathematical models and the metaheuristic 

algorithm with four sets of generated data including instances based on real life data. 

Mathematical models as well as heuristics could solve small-sized instances of YAP, which 

are in data Set A, to optimality within a reasonable time. For large data sets, we managed to 

obtain small gaps at least with one of the mathematical models. Moreover, since stockyard 

planning is a tactical level operation and the decisions were given on a weekly or on a 

monthly basis, the running times of MILP models were acceptable. Additionally, we 

compared the metaheuristic results with the best obtained solutions. The results indicate 

that we improved the solution quality and running time with YATS_VNS in almost every 

instance in set D. Hence, the YATS_VNS can be suggested as a decision support system to 

the port managers. 

 Although the proposed methodologies successfully addressed the problem, they can be 

improved by excluding some of the assumptions. First, we assumed that departure and 

arrival times are deterministic. One possible improvement can be making these events 

stochastic. Secondly, since there are various components of TS and VNS algorithms, the 

performance of YATS and YATS_VNS algorithms can be improved by changing 

neighborhoods or adding new neighborhoods. Moreover, the solution quality can be 

improved by adding local search procedures to the algorithms. Finally, since storage 

facilities need to be designed in a way to implement several safety measures and 

precautions, for future work, those specifications can be investigated and incorporated into 

the models.  
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Appendix 1: Presents the computational results for the parameter settings of the tabu 

search with data set C. The best solutions obtained by the YATS algorithm with random 

initial solution, denoted by R, and sorted according to arrival times of pads, denoted by S. 

No. Best Solution with (R) Secs Best Solution with (S) Secs Gap % 

1 440 3.60 440 3.61 0.00 

2 444 4.33 441 4.01 0.68 

3 252 6.36 247 6.64 1.98 

4 211 5.23 212 6.19 -0.47 

5 285 5.24 285 5.26 0.00 

6 273 5.32 273 5.48 0.00 

7 580 4.86 580 5.91 0.00 

8 507 4.80 526 5.67 -3.75 

9 354 5.62 351 7.82 0.85 

10 340 8.71 343 9.73 -0.88 

11 375 6.97 375 7.20 0.00 

12 366 6.96 366 7.25 0.00 

13 634 6.38 645 5.54 -1.74 

14 689 7.45 663 9.86 3.77 

15 475 9.44 462 8.23 2.74 

16 406 7.41 381 9.15 6.16 

17 431 9.28 431 9.57 0.00 

18 459 8.80 459 9.73 0.00 

19 1066 16.00 1049 21.80 1.59 

20 1011 17.87 951 10.74 5.93 

21 609 14.51 598 23.37 1.81 

22 636 11.44 647 21.65 -1.73 

23 609 12.79 609 15.93 0.00 

24 594 12.92 594 14.23 0.00 

25 1183 26.54 1173 30.28 0.85 

26 1221 17.96 1222 14.74 -0.08 

27 763 29.78 803 20.94 -5.24 

28 761 16.67 742 25.94 2.50 

29 712 20.57 712 21.06 0.00 

30 739 18.19 739 19.33 0.00 

31 1422 26.45 1337 21.98 5.98 

32 1506 15.78 1551 14.98 -2.99 

33 914 27.19 949 30.31 -3.83 

34 750 26.31 770 41.18 -2.67 

35 890 20.43 890 23.82 0.00 

36 893 25.25 893 23.88 0.00 

Average   15.85   14.53 0.32 
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Appendix 2: Presents the computational experiments conducted to decide number of 

replications per instance for the YATS algorithm. The tests are conducted with data set C. 

No. Best Solution with (15) Secs Gap % Best Solution with (5) Secs Gap % 

1 440 3.60 0.23% 447 1.16 1.82% 

2 444 4.33 0.68% 444 1.44 0.68% 

3 252 6.36 4.76% 249 2.93 3.75% 

4 211 5.23 2.84% 214 3.25 4.39% 

5 285 5.24 0.00% 285 1.85 0.00% 

6 273 5.32 0.00% 273 1.85 0.00% 

7 580 4.86 1.38% 579 2.46 1.22% 

8 507 4.80 1.78% 503 2.19 1.00% 

9 354 5.62 6.78% 363 2.42 10.00% 

10 340 8.71 0.59% 352 4.46 4.14% 

11 375 6.97 0.00% 375 2.81 0.00% 

12 366 6.96 0.00% 366 2.70 0.00% 

13 634 6.38 2.52% 635 2.26 2.75% 

14 689 7.45 4.79% 688 1.96 4.88% 

15 475 9.44 6.53% 459 4.01 3.38% 

16 406 7.41 9.61% 404 4.55 10.08% 

17 431 9.28 0.00% 431 3.32 0.00% 

18 459 8.80 0.00% 459 3.16 0.00% 

19 1066 16.00 2.81% 1050 5.97 1.35% 

20 1011 17.87 10.19% 976 4.94 7.49% 

21 609 14.51 9.20% 597 6.10 7.96% 

22 636 11.44 8.02% 618 7.40 5.64% 

23 609 12.79 0.00% 609 5.43 0.00% 

24 594 12.92 0.00% 594 5.01 0.00% 

25 1183 26.54 3.72% 1181 11.19 3.69% 

26 1221 17.96 4.91% 1204 5.91 3.70% 

27 763 29.78 5.50% 811 7.68 12.48% 

28 761 16.67 8.94% 752 7.71 8.51% 

29 712 20.57 0.00% 712 7.04 0.00% 

30 739 18.19 0.00% 739 7.57 0.00% 

31 1422 26.45 7.10% 1362 10.16 3.10% 

32 1506 15.78 3.19% 1500 7.70 2.88% 

33 914 27.19 4.70% 951 16.75 9.18% 

34 750 26.31 4.67% 771 11.93 7.83% 

35 890 20.43 0.00% 890 8.11 0.00% 

36 893 25.25 0.00% 893 8.95 0.00% 

Average   13.15 3.21%   5.40 3.39% 
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Appendix 3: The preliminary test results of data set C to decide the tabu tenure. 

  Tabu Tenure 3 Tabu Tenure 5 Tabu Tenure 10 

No. Obj Value Secs Gap Obj Value Secs Gap Obj Value Secs Gap 

1 447 3.60 1.79% 440 3.60 0.23% 446 3.28 1.57% 

2 444 3.93 0.68% 444 4.33 0.68% 444 3.68 0.68% 

3 252 5.88 4.76% 252 6.36 4.76% 244 5.60 1.64% 

4 212 5.70 3.30% 211 5.23 2.84% 219 4.93 6.39% 

5 285 5.16 0.00% 285 5.24 0.00% 285 5.30 0.00% 

6 273 5.26 0.00% 273 5.32 0.00% 273 5.42 0.00% 

7 577 5.38 0.87% 580 4.86 1.38% 577 6.50 0.87% 

8 509 5.60 2.16% 507 4.80 1.78% 510 4.59 2.35% 

9 361 6.56 8.59% 354 5.62 6.78% 343 13.28 3.79% 

10 343 13.40 1.46% 340 8.71 0.59% 348 11.63 2.87% 

11 375 6.94 0.00% 375 6.97 0.00% 375 7.11 0.00% 

12 366 7.12 0.00% 366 6.96 0.00% 366 7.13 0.00% 

13 634 8.25 2.52% 634 6.38 2.52% 633 10.47 2.37% 

14 686 6.78 4.37% 689 7.45 4.79% 668 8.87 1.80% 

15 486 11.71 8.64% 475 9.44 6.53% 474 6.56 6.33% 

16 393 18.65 6.62% 406 7.41 9.61% 398 8.20 7.79% 

17 431 9.21 0.00% 431 9.28 0.00% 431 9.53 0.00% 

18 459 9.17 0.00% 459 8.80 0.00% 459 9.33 0.00% 

19 1050 10.03 1.33% 1066 16.00 2.81% 1112 11.17 6.83% 

20 1011 10.81 10.19% 1011 17.87 10.19% 1011 13.71 10.19% 

21 584 17.38 5.31% 609 14.51 9.20% 597 29.06 7.37% 

22 644 15.23 9.16% 636 11.44 8.02% 632 13.16 7.44% 

23 609 12.85 0.00% 609 12.79 0.00% 609 13.56 0.00% 

24 594 15.04 0.00% 594 12.92 0.00% 594 14.19 0.00% 

25 1197 15.91 4.85% 1183 26.54 3.72% 1161 15.17 1.89% 

26 1200 13.37 3.25% 1221 17.96 4.91% 1168 30.81 0.60% 

27 763 27.26 5.50% 763 29.78 5.50% 771 15.64 6.49% 

28 761 18.44 8.94% 761 16.67 8.94% 761 28.29 8.94% 

29 712 18.53 0.00% 712 20.57 0.00% 712 20.05 0.00% 

30 739 17.93 0.00% 739 18.19 0.00% 739 19.00 0.00% 

31 1422 22.98 7.10% 1422 26.45 7.10% 1393 44.98 5.17% 

32 1509 16.17 3.38% 1506 15.78 3.19% 1562 20.10 6.66% 

33 976 32.26 10.76% 914 27.19 4.70% 949 45.06 8.22% 

34 770 35.28 7.14% 750 26.31 4.67% 803 26.27 10.96% 

35 890 20.99 0.00% 890 20.43 0.00% 890 21.32 0.00% 

36 893 20.26 0.00% 893 25.25 0.00% 893 20.93 0.00% 

max   35.28 10.76%   29.78 10.19%   45.06 10.96% 

avg 

 

16.00 3.41% 

 

15.85 3.21% 

 

17.83 3.31% 

min   3.60 0.00%   3.60 0.00%   3.28 0.00% 
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Appendix 4: The computational results for data set C used to determine the number of iterations for the 

stopping condition 

No. stopping 200 Secs Gap % stopping 500 Secs Gap % stopping 1000 Secs Gap % 

1 440 1.61 0.23 440 3.60 0.23 440 3.60 0.23 

2 444 1.69 0.68 444 4.33 0.68 444 4.33 0.68 

3 246 3.99 2.50 244 6.36 1.67 252 6.36 5.00 

4 219 2.32 6.83 213 5.23 3.90 211 5.23 2.93 

5 285 2.26 0.00 285 5.24 0.00 285 5.24 0.00 

6 273 2.20 0.00 273 5.32 0.00 273 5.32 0.00 

7 594 3.07 3.85 596 4.86 4.20 580 4.86 1.40 

8 506 2.04 1.61 502 4.80 0.80 507 4.80 1.81 

9 353 4.83 6.97 367 5.62 11.21 354 5.62 7.27 

10 363 2.50 7.40 356 8.71 5.33 340 8.71 0.59 

11 375 2.94 0.00 375 6.97 0.00 375 6.97 0.00 

12 366 3.17 0.00 366 6.96 0.00 366 6.96 0.00 

13 633 2.92 2.43 632 6.38 2.27 634 6.38 2.59 

14 720 3.85 9.76 704 7.45 7.32 689 7.45 5.03 

15 484 2.93 9.01 457 9.44 2.93 475 9.44 6.98 

16 397 3.46 8.17 388 7.41 5.72 406 7.41 10.63 

17 431 3.93 0.00 431 9.28 0.00 431 9.28 0.00 

18 459 4.13 0.00 459 8.80 0.00 459 8.80 0.00 

19 1067 6.46 2.99 1051 16.00 1.45 1066 16.00 2.90 

20 947 3.99 4.30 940 17.87 3.52 1011 17.87 11.34 

21 624 8.99 12.84 581 14.51 5.06 609 14.51 10.13 

22 644 4.79 10.09 628 11.44 7.35 636 11.44 8.72 

23 609 5.48 0.00 609 12.79 0.00 609 12.79 0.00 

24 594 5.96 0.00 594 12.92 0.00 594 12.92 0.00 

25 1163 13.32 2.11 1183 26.54 3.86 1183 26.54 3.86 

26 1196 5.71 3.01 1168 17.96 0.60 1221 17.96 5.17 

27 827 7.67 14.70 774 29.78 7.35 763 29.78 5.83 

28 735 15.44 6.06 768 16.67 10.82 761 16.67 9.81 

29 712 8.08 0.00 712 20.57 0.00 712 20.57 0.00 

30 739 8.48 0.00 739 18.19 0.00 739 18.19 0.00 

31 1399 10.35 5.90 1334 26.45 0.98 1422 26.45 7.65 

32 1502 12.64 3.02 1537 15.78 5.42 1506 15.78 3.29 

33 945 12.34 8.50 956 27.19 9.76 914 27.19 4.94 

34 785 9.64 9.79 761 26.31 6.43 750 66.31 4.90 

35 890 8.47 0.00 890 20.43 0.00 890 20.43 0.00 

36 893 10.40 0.00 893 25.25 0.00 893 25.25 0.00 
max   15.44 14.70   29.78 11.21   66.31 11.34 

avg 

 

5.89 3.96 

 

13.15 3.02 

 

15.67 3.43 

min   1.61 0.00   3.60 0.00   3.60 0.00 

 


