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Abstract 

This thesis consists of three different papers on the subject of decision theory.  Economic 

theory tends to attract attention on binary relations existing between the objects of choice. 

Any rationalization is based upon a so called “Rationale” that solely depends on the 

binary relation over objects; however the unobservable concepts that are related to the 

choice set themselves may affect the choice process. In the first paper, we develop a 

model, where the decision maker has a concept set associated with each element in the 

choice set. Accordingly, she has a hierarchy of the concepts in her mind and orders the 

elements of the choice set with respect to each concept. Then she chooses the top element 

with respect to the most important concept. We will derive the empirical characterization 

and explain the scope of the procedure.  

The second paper suggests a novel way to characterize a certain class of choice procedures 

which are defined by various conditions put on the consideration parameter. By showing 

the equality between the consideration parameter and the well-known hazard rate h, we 

will show that the machinery provided through the hazard rate h will characterize some 

of the famous stochastic choice procedures based on the consideration parameter directly. 

In addition, a new stochastic choice procedure based on a similarity relation is introduced 

and characterized. 

The last paper connects two empirically observed facts through a new theory. The 

randomness of the choices people make and their lack of considering the full set of 

available alternatives are both well-known and empirically supported facts. We present a 

“theory of selves” approach to build a firm connection between these two observations 

by assuming that each decision maker (DM) has multiple deterministic consideration 

filters where she maximizes her well-defined preferences over each resulting 

consideration set. Each consideration filter corresponds to a different self that arises with 

some probability and thus the choice becomes random. We characterize this “Random 

Filtering” procedure using some of the influential consideration filter forms from the 

literature. Several well-known choice anomalies and context effects can be captured by 

the model. 

 

Keywords: Consideration filter, random choice, bounded rationality, theory of selves, 

random utility models, revealed preference, concepts, consideration parameter, hazard 

rate. 

 

 

 



 

 

 

 

Özet 

Bu tez karar teorisi üzerine yazılmış üç adet makaleden oluşuyor. Ekonomik teori 

genellikle seçim objeleri arasında varolan ikili bağıntılara dikkat çeker. Herhangi bir 

rasyonalizasyon bu tip bir ikili bağıntıya dayanan “Rasyonal”e dayanır, fakat seçim 

kümesiyle bağlantılı olan gözlemlenemeyen konseptler de bu süreçte etkili olabilir. İlk 

makalede, her bir elemanla bir konsept kümesini bağdaştıran bir karar alıcıyı 

modelliyoruz. Karar alıcının aklında bir konseptler hiyerarşisi ve her bir elemanı bu 

konseptlere göre sıraladığı bir düzeni var. Kişi, en önemli konseptinin en üst sıraya 

koyduğu elemanı seçiyor. Bu modeli empirik karakterizasyonunu bulup gözlemlenebilir 

kapsamını açıklıyoruz.  

İkinci makale dikkat parametreleri üzerine çeşitli kısıtlamalar konularak oluşturulan 

seçim prosedürlerini karakterize edebilmek için özgün bir yöntem öneriyor. Dikkat 

parametresi ve tehlike hızı arasındaki eşitlik gösterildikten sonra tehlike hızına dayanan 

bu yöntemin dikkat parametresi üzerinden tanımlanan önde gelen rassal seçim 

modellerinden bazılarını açıkladığını göstereceğiz. Ayrıca, benzerlik ilişkisine dayalı 

yeni bir rassal seçim prosedürü tanıtılıp karakterize edilecek. 

Son makale empirik olarak gözlemlenmiş iki unsuru yeni bir teoriyle birbirine bağlıyor. 

İnsanların seçimlerinin rassal olduğu ve mevcut alternatiflerin hepsini dikkate 

almadıkları iyi bilinen ve ampirik olarak da gözlenmiş iki unsurdur. Bu iki gözlem 

arasında sıkı bir bağ kurmak adına bir “kişilikler teorisi” yaklaşımı sunuyoruz: Karar 

alıcı, iyi tanımlanmış tercihlerini, birden fazla olan deterministik ‘dikkat filtreleri’ 

sonucu oluşan ‘dikkat kümeleri’ üzerinde maksimuma çıkarıyor. Her bir ‘dikkat filtresi’, 

belirli bir olasılıkla ortaya çıkan bir kişiliğe tekabül ediyor ve birden fazla kişiliğin farklı 

olasılıklarla ortaya çıkması gözlenen seçimleri rassal hale getiriyor. Bu “Rassal 

Filtreleme” prosedürünü, literatürde etkin olan bazı ‘dikkat filtresi’ formları üzerinden 

tanımlayıp, empirik olarak karakterize ediyoruz. Model iyi bilinen birtakım seçim 

anormallikleri ve bağlam etkilerini açıklıyor. 

 

 

Anahtar Sözcükler: Dikkat filtresi, rassal seçim, sınırlı rasyonalite, kişilikler teorisi, 

rassal fayda modelleri, açıklanan tercih, konseptler, dikkat parametresi, tehlike hızı. 
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Conceptual Choice

Yusufcan Demirkan ∗

Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul Turkey.

August 14, 2017

Abstract

Economic theory tends to attract attention on binary relations existing between
the objects of choice. Any rationalization is based upon a so called “Rationale”
that solely depends on the binary relation over objects; however the unobservable
concepts that are related to the choice set themselves may affect the choice process.
In our model, the decision maker has a concept set associated with each element
in the choice set. Accordingly, she has a hierarchy of the concepts in her mind
and orders the elements of the choice set with respect to each concept. Then she
chooses the top element with respect to the most important concept. We will derive
the empirical characterization and explain the scope of the procedure. Several
extensions and further improvements will be mentioned.

1 Introduction

Standard economic theory focuses on the relations, in particular on “preferences”,
that exists between the objects of the choice set for explaining decision problems. We,
on the other hand, emphasize the importance of concepts that are related to the choice
set. Working backwards, we define two primitive relations based upon the concept set
itself: Every concept has a rank at the hierarchy, and each concept orders elements of
the choice set. The decision maker chooses the element that is at the top according to
the most important concept. Consider the following example taken from Cherepanov et
al. (2013).

Assume an individual is facing an ethically sensible decision, whereby she should
choose between watching movie 1 alone, movie 2 alone or watching movie 1 with a hand-
icapped person. Assume also that she chooses movie 1 to movie 2 given only these two.
If movie 1 alone and movie 1 with a handicapped person are given, then she chooses
the latter one to the former. Finally, given all options she prefers to watch movie 2.
Although such a profile is usually observed, according to the WARP this choice profile
is contradictory. Observe that while the first choice is about choosing a movie alone, the
second and third choices include an additional part whereby you should decide whether
you will watch movie alone or not, because of the availability of the last alternative.

Intuitively, it is natural to associate the first choice with concepts such as movie and
quality; whereas, the third option may evoke concepts such as social impact. Basically,

∗E-mail Address: ydemirkan@ku.edu.tr
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one can treat the first part as if the individual decides according to her own preferences
over movies; while in the second part inclusion of the third option triggers social prefer-
ences. In such a case, a person who cares about the judgement of society upon her choices
may consider social preferences as much more important than her own preferences, so
that the concept of social impact lies above all other concepts. Such a person is moti-
vated to choose watching movie 1 with a handicapped person rather than watching movie
1 alone; however, given the option of watching movie 2 alone that is socially acceptable,
she changes her choice. Consequently, this contradictory choice we observe may be due
to the importance of a concept associated with an option.

Another classic example from the literature is the “Attraction Effect”.1 This is the
widely cited phenomenon in the psychology and marketing literature that is also called
the “Asymmetric Dominance Effect”.2 A typical data corresponding to the attraction
effect is provided below. Although y is chosen when x and y are the only options; x is
chosen whenever d is present, since the alternative d is dominated only by x.

c(xyd) = x, c(xy) = y, c(xd) = x, c(yd) = y

Our choice procedure reveals that a concept related to d is significant for this choice
problem, since the removal of it leads to a choice reversal. In the simplest interpretation,
it can be claimed that d is associated with the concept of dominance. Hence, the newly
added object brings an important concept to the mind of the decision maker and causes
a choice reversal, even though d itself is never chosen.

In general, we build a model where the decision maker has a concept set associated
with each element in the choice set. The elements in the concept space are ranked
according to a complete, asymmetric and transitive relation, .. Besides, each concept
in the concept space induces its own order on the choice set, which is also transitive,
asymmetric and complete. The decision maker chooses the top element according to the
most important concept in her mind.

To empirically test the model, we derive a characterization result that primarily de-
pends on choice reversals. Through choice reversals, we can derive that a concept associ-
ated with a particular object x dominates all concepts associated with another object y.
When this is the case, we say that x conceptually dominates y. If x conceptually dom-
inates y, then removal of y in any set that contains x cannot lead to a choice reversal.
We will call this condition Dominated Reasoning and it will completely characterize our
model.

This is interestingly connected with Dietrich and List (2010), where a connection
between formal rational choice theory and reasoning is built through usage of propositions.
We believe that a “motivating reason” in their terminology can be constructed by the
concepts that affect the choice problem. In the case of a single maximum concept as we
assume here, it is the case that a single proposition that contains this concept is formed
as a reason underlying choice. If we extend our model to the case where the foremost
concepts is formed through logical connectives between multiple concepts, propositions
can be extended respectively by logical connectives so that a more complex reasoning
is constructed. Also, if we consider the last condition with respect to Dietrich and List

1For an interesting approach that captures this effect look at Clippel and Eliaz (2012), where choice
is modeled as a cooperative solution to the bargaining problem between different selves of the decision
maker.

2For notational ease, we suppressed set delimiters, i.e. c({x, y}) = c(xy) and c(S \ {x}) = c(S \ x).
In some circumstances where it can create confusion, standard notation is used.
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(2010), it corresponds to not considering a dominated reason in any choice problem (on
any set S) if the dominating reason is also present.

In a world where majority of decisions are made considerably fast because of the
cost of time and complexity of the calculations, such a map that decisions are based on
is meaningful. We know from psychology literature that our mind works associatively,
and a conceptual map signaled by the choice set is compatible with this feature. Beyond
these; conceptual approach provides a way to form complex justifications in propositional
form, based upon the hierarchy of concepts. In this manner, extending the model into
a stochastic version and considering the concept sets as the priors individuals form in
their minds is useful. Building an extended model capturing both the formation and
accumulation of concepts (in the process of constructing priors) through signals received
from the objects of choice set is our future goal.

In the upcoming section, we will explain the model and the choice process. Then in
Section 3 we will derive the empirical characterization of the model by Dominated Reasoning.
The notion of conceptual dominance is introduced in Section 3.2, where we show our sec-
ond result. In Section 4, we show the independence of our condition and Weak WARP.
Besides, the connection between (LA)WARP and our condition is also demonstrated via
additional examples. We will explore related literature in Section 5. Before the conclu-
sion in Section 7, several possible extensions will be illustrated without going into further
details in Section 6. The proofs of the results are in the Appendix.

2 Model

Let X be a finite set of elements. The set of all nonempty subsets of X is denoted
by X. As usual, the choice function is symbolized by c : X → X where c(S) ∈ S for
all S ∈ X. Denote by cx the concepts associated with each element x ∈ X. The set of
all concepts associated by the decision maker to all S ⊆ X is denoted as cS = ∪x∈Scx.
There is a transitive, asymmetric and complete relation . imposed upon cX . ∀c ∈ cX ,
∃ >c which is also asymmetric, transitive and complete such that it orders objects of X
according to each concept.

Note that we only observe the choice data without any further information on the
concept set and the hierarchy.3 Next, we will define our choice procedure:

Definition 1. (Conceptual Choice ”CC”) A choice function c : X → X is (CC) if and
only if there exists a set of concepts cx ∀x ∈ X, . on cX and >c for all c ∈ cX such that
∀S ⊆ X :

c(S) = arg maxS >{ argmaxcs.}

A special example where a choice anomaly observed is “Small-Large Donation” case
outlined in Cherepanov et al. (2013). Consider the following choice data:

c(sn) = s, c(snl) = n

The decision maker chooses the option of small donation whenever the alternative
of no donation is also given. On the other hand, if we add the option of large do-
nation to the choice set, she chooses to donate nothing. In this case, the option of
large donation behaves like a decoy as in the above example we gave. Let cl = {cost},

3Choice data includes the set of alternatives X and the choice function.
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cs = {social impact} and cn = {parsimony}. It will reveal in the following sections
that cl has the most important concept. Since it is a singleton in this case, cost is con-
sidered to be the foremost concept for the decision maker. For now, assume that cs is the
second important concept. In short,

cl . cs . cn

l >s s >s n

n >l s >l l

justifies this choice data according to our model.

3 Empirical Characterization

3.1 Characterization

In this part, we will try to observe the restrictions imposed by our model on the data.
Then, we will show that our model is characterized empirically by C1. In order to do this,
we have to find an apparatus that works whenever a choice data suits Conceptual Choice.
For this purpose, we will use choice reversals.

Assume that a choice reversal occurs when we remove an element from S that is not
chosen from it, i.e. z 6= c(S) and c(S) 6= c(S \ z). Observe that this is only possible
if z has the most important concept of the set cS and according to this concept c(S) is
considered to be the best. Let y be any element in S such that y 6= z. Since by the above
observation we know that z is associated with the maximum concept in cS, removal of no
element except c(S) and z will not change the choice. Note that this is true for any set
T containing such y and z, since the maximum concept associated with z ranks always
better than the maximum concept associated with y. From this observation, we will state
our necessary condition, which we will call simply C1:

Condition 1. (Dominated Reasoning “C1”) c(S) 6= c(S \ x) where x 6= c(S) =⇒
c(T)=c(T\z) for all z ∈ S \ {x, c(T )}.

In addition to its necessity, this condition is also sufficient for the characterization
of our choice procedure. With this condition at hand, we gain a powerful apparatus to
analyze choice data. Lastly, we state the main result of this paper:

Theorem 1. A choice function c satisfies Conceptual Choice if and only if C1 holds.

Recall the “Attraction Effect” example we gave in the introduction. In that example,
there is only one choice reversal in the choice data given. This reversal occurs when we
remove d from {x, y, d}. According to C1, it must be the case that the removal of y
does not change the choice. Indeed, it is so. On the other hand, as we showed in the
introduction, it can be explained by Conceptual Choice. So, “Attraction Effect” is one of
the wide range of examples we can explain with our model.

Let us also see an example where the choice data does not satisfy C1. Taken from
Masatlioglu et al. (2012), consider the following choice data:

z = c(xyz), x = c(xy) = c(xz), y = c(yz)

4



This choice profile we observe is called as “Choosing Pairwisely Unchosen”. Observe
that a choice reversal occurs whenever we remove an element not equal to the chosen
one. This implies that the maximum concept (call it c∗) in the concept set of {x, y, z} is
an element of cx ∩ cy. From x = c(xy) = c(xz), we derive that both x and y are ranked
higher than z with respect to c∗. This is not in accordance with z = c(xyz) which implies
that z is ranked higher than others with respect to c∗. Therefore, Conceptual Choice is
not able to explain such a choice anomaly. It clearly violates our C1. To see this, note
that removal of x from {x, y, z} causes a choice reversal. According to C1, it must be the
case that the removal of y does not change the choice, but it is not the case. Hence, C1

is violated.

3.2 Conceptual Dominance

Our goal here is to derive what we can learn from the choice data. In some examples,
it may be the case that several different representations can lead to the same choice data
we observe. To handle this problem, we define the following:

Definition 2. Suppose c is a Conceptual Choice. We say that x conceptually dominates
y if for all representations the maximum concept associated with x ranks higher than the
maximum concept associated with y.

The problem is to observe this dominance empirically. Following the discussion of
the previous sections, we know that the tool of choice reversal gives us what we want.
For example, if we remove an element that is not chosen from the respective set and the
choice changes, then we conclude that this element must be associated with the maximum
concept. From this observation, we can derive a relation that holds whenever a choice
reversal occurs. Define the following:

Definition 3. xDy if there exists a set S such that c(S) 6= c(S \ x) where x 6= c(S) and
y ∈ S, where y 6= x.

Observe that xDy implies that x conceptually dominates y. In addition, note that
if xDy and yDz, xDz, since underlying . is transitive. Therefore, we can take tran-
sitive closure of D, which is denoted by D. We can conclude that if xDy, then x
conceptually dominates y. Surprisingly, D completely characterizes conceptual dominance.

Theorem 2. Suppose c is Conceptual Choice. Then x conceptually dominates y if and
only if xDy.

Proof of the if part is shown above. For the proof of the only if part, please see the
appendix.

Observe that our decoy element d in the “Attraction Effect” example demonstrates
these notions directly. Since there is a choice reversal in the choice data, dDy and dDx.
Also, there may be two representations where c∗d .1 c

∗
x .1 c

∗
y and c∗d .2 c

∗
y .1 c

∗
x.4 In both

cases, d conceptually dominates others by definition. Therefore, d in this example is a
clear demonstration of what is shown in Theorem 2.

4Superscript * denotes the maximum element of the concept sets with respect to the corresponding
hierarchy .i, i = 1, 2
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4 Comparison to Other Models

In general, the literature of bounded rationality focuses on modeling heuristics that are
shown to be widely used by individuals. We know that Weak WARP empirically charac-
terizes wide range of models in the literature. These include Rationalization (Cherepanov
et al. (2013)), CTC (Manzini and Mariotti (2012)) and Rational Shortlist (Manzini and
Mariotti (2007)). Beyond going into the details of these models, let us state Weak WARP
and show the independence between Weak WARP and C1.

Definition 4. (Weak WARP): {x, y} ⊆ M ⊆ S, x 6= y, c(S) = c(xy) = x =⇒
c(M) 6= y.

By giving counterexamples, we will demonstrate the independence of C1 and Weak
WARP. First consider:

x = c(xywz) = c(xyw) = c(xwz) = c(xy) = c(xw) = c(xz)

y = c(xyz) = c(ywz) = c(yw) = c(yz)

z = c(wz)

This choice data definitely does not satisfy Weak WARP, since {x, y} ⊆ {x, y, z} ⊆
{x, y, w, z}, but y = c(xyz). On the other hand, it does not violate our condition. Indeed;
cw . cz . cx . cy, x >w y >w z >w w, y >z x >z z and other suitable orders induce above
choice data. Thus, Condition 1 is not subsumed by Weak WARP empirically. For the
converse, consider following choice data:

x = c(xyz) = c(xz)

y = c(xy) = c(yz)

t = c(yzt) = c(yt)

z = c(yz) = c(zt)

Observe that our condition is violated. To see this, first note that z causes choice
reversal in the first case where y is also contained. In such case, our condition says that
removal of y from the second case where z also included should not lead to any choice
reversal. Hence, this choice profile violates our condition. On the other hand, it does not
violate Weak WARP. Thus, Weak WARP is not subsumed empirically by our condition.
Therefore, we can conclude that these two conditions are independent empirically.

However, literature is not limited with the condition of Weak WARP. Another version
of Weak WARP is Limited Attention Weak WARP -(LA)WARP- which characterizes
Choice with Limited Attention (CLA) by Masatlioglu et al. (2012). This model differs
from others by providing a very elegant procedure of eliciting preferences from choices
using the notion of “attention”, which is a fundamental cognitive constraint. Recall that
we use choice reversals for empirical analysis of the choice data, so one can expect a
connection between these models. However, this is not the case. First we define:

Definition 5. WARP(LA): For any nonempty S, there exists x∗ ∈ S such that, for any
T including x∗:

if c(T ) ∈ S and c(T ) 6= c(T \ x∗), then c(T ) = x∗

6



Remark 1. C1 implies WARP (LA).

From Masatlioglu et al. (2012), we know by Lemma1 that c satisfies WARP (LA) if
and only if P is acyclic. We will use this lemma to establish that our condition implies
WARP (LA). For the proof, please see the appendix.

Now consider the example given in Section 3.1 that is called “Choosing Pairwisely Un-
chosen”. As demonstrated there, it cannot be explained by our model, however Masatli-
oglu et al. (2012) shows that their model can accommodate such a choice anomaly.
Therefore, we can conclude that our model is empirically subsumed by their model.

Another example can be given from the dual-self theory (a special case of Kalai,
Rubinstein and Spiegler (2002)). Consider

x = c(wxyz) = c(xy), y = c(xyz)

From our model, we can derive that cw . cz and these two are the first and second
concepts that maximize . on the concept set of {w, x, y, z}. Also, we know that x maxi-
mizes >cw on the whole set, while y maximizes >cz on {x, y, z}. This is a further example
that cannot be accomodated by Weak WARP (see Cherepanov et al.s (2013)), but it is
suitable to our model.

As a last example, it is also important to mention that standard theory can be in-
corporated into our model. To see this, assume that the concept set is a singleton, i.e.
cX = {c}. In this case, there is only one order induced by the single concept c, so >c=�.

5 Related Literature

There are two streams in economic theory, one is due to Samuelson and based on per-
fect rationality. The other is due to Herbert Simon and based on bounded rational-
ity. Bounded rationality is a restricted version of perfect rationality, where the agent
is constrained by a cognitive limitation. One way to model this is using consideration
sets. Some of the well-known papers in “two-stage choice” literature are Categorize
Then Choose (CTC) (Manzini and Mariotti (2012)), Rationalization (Cherepanov et al.
(2013)), Choice through Attribute Filters (Kimya (2015)), Rational Shortlist (Manzini
and Mariotti (2007)), and Choosing by Checklists (Mandler et al. (2012)) are exam-
ples of such heuristics. Categories considered in Manzini and Mariotti (2012) are closely
related to the conceptual approach in the sense that formation of categories may be ac-
complished with reference to the concept space. If we determine a line that separates the
concept space into two according to the ranking in the hierarchy, then one of these parts
shade other as a category. Also, since it is noted that categories change in accordance
to the context, defining power of concepts may determine the contextual derivation of
categories. Rationalization due to Cherepanov et al.s (2013) provides a model where the
decision maker chooses the alternative that is best among the ones that she can ratio-
nalize. As you may noted previously, several important examples in this paper are taken
from their work.

Deriving its power from choice reversals, Masatlioglu et al. (2012) developed Revealed
Attention which investigates the implications of a model based on scarce attention. Dif-
fering from the classical bounded rationality literature, it does not depend on a heuristic,
but develops an elegant tool for analyzing the choice theoretic implications of a very
fundamental cognitive constraint. Even though our model and Masatlioglu et al. (2012)
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differ in essence, by the general approach they provide on decision problems, they are
similar. Also, our empirical scope is subsumed by theirs, as shown in Section 4.

A widely used characterization of the heuristic based models is Weak WARP. Ra-
tionalization (by Cherepanov et al. (2013) ), CTC (Manzini and Mariotti (2012)) and
Rational Shortlist models (Manzini and Mariotti (2007)) are characterized empirically by
Weak WARP, which does not characterize our model as shown in the previous part. A
closely connected model which is developed by the same authors (Lleras et al. (2010)) is
Choice with Limited Consideration which is characterized by Weak WARP (since Weak
WARP is implied by Limited Consideration WARP as noted in Manzini and Mariotti
(2012)), so it has the same empirical scope with others such as Rationalization.

Although we did not extend the model to the case where . is stochastic and a search
mechanism is imposed along time, the notion of concepts are very suitable for this ap-
proach. Caplin and Dean (2011), Caplin et al. (2011), Masatlioglu and Nakajima (2013)
and provides examples of these models where the dimension of time included. An ex-
tension where an individual is more likely to realize the elements that are linked to the
‘good’ concepts is meaningful for analyzing search processes.

There is also a well-established literature that tries to model ”reference-dependent”
behavior. In these models, there is either an exogenously or endogenously given reference
point, and this point affects the choice process and the choice. Some prominent papers
trying to model this phenomenon are , Apesteguia and Ballester (2009), Ok et al. (2014),
Masatlioglu and Ok (2013) and Dean et. al. (2016). The last two investigates a special
case of reference, namely ”status quo” bias. In essence, these patterns may originate from
the mind of the individual decision maker. In the scope of our approach, the maximum
concept in the mind of the decision maker may be a reference point. Given any choice
set, such an individual picks the most preferred element with respect to the maximum
concept. Another vein of research is modeling the choice from lists, i.e. what would
happen if the DM is endowed with a list of alternatives. Rubinstein and Salant (2006)
and Yldz (2016) are two papers about choosing from lists.

Salant and Rubinstein (2008) models the choice using frames where a frame concep-
tually captures any information that affects the choice behavior beyond the available
alternatives (our motivation is similar in essence). In our model, concepts are evoked
from the information processed by the individual. Furthermore, these concepts them-
selves affect how to process information along time. Therefore, our model and choice
with frames are similar intuitively.

Finally, the construction of concepts is not separately mentioned throughout the pa-
per. One obvious candidate for the formation of a concept set is the set of properties
that are associated with the objects in X, but concepts may be more general and ab-
stract than these. There is a connection to Dietrich and List (2010) in the sense that
their propositions are derived from concepts, and a relation is imposed upon the set of
propositions. In several areas such as computer science, cognitive science, philosophy
and psychology the notions of concept and context are used. There is a sub-discipline in
mathematics that is about the analysis of concepts and context, called Formal Concept
Analysis. Gardenfors (2004) uses conceptual spaces to represent knowledge. Kamenica
(2008) derives the informational content included in the markets from the context where
his usage of context is similar to us. Tversky and Simonson (1993) develops an approach
where they form context-dependent preferences.
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6 A Quick Look at Two Extensions

6.1 Memory (inspired from Salant (2003))

Let us assume that an individual has a single memory cell for each object and a
concept, so in our case this cell is of the form (x, cx) where x ∈ X and cx ∈ CX . Define:

f : X × CX → X × CX

where (x, cx) 7→ (y, cy) if:
(i)cy . cx

and
(ii)y >cy x

For such a process to be optimal, it needs to be the case that the individual encounters
all concepts sets and at each stage considers all the alternatives. Therefore, in this case
we may not have the optimal element chosen according to this procedure. However, note
that as the memory grows, the probability that the optimal one chosen increases. In
an interpretation where intelligence is associated with memory, an individual who has a
wider concept set in her memory has more chance to decide optimally, as expected. On
the other hand, an individual that interprets the incoming data from choice objects less
efficiently (i.e. a more intelligent person derives more information from the signals spread
by the choice set) has less chance to decide optimally.

6.2 Limited Concept Set

Assume that we model memory directly with concept sets. An individual with limited
memory will not be able to keep all concepts signaled to her. For example, consider a
limited memory that after some point in time cannot preserve any further concepts. We
can formulate this by claiming that

cX = CT

where CT :=
T⋃
t=1

cXt , so after t = T no further concepts are deposited in the memory

of the individual. Of course, the case of an individual with full memory corresponds
to the model presented above. Another possible representation is taking a T-memory
cell instead of one as we did above. In that case, we approach the problem without
considering the time dimension, but still we have the limited memory we want to model.
It is obvious to see that an individual with limited memory decides suboptimal given it
is possible for another individual to have a wider memory.

7 Conclusion

Our model is based on the intuition that a relational structure exists between the
objects of the world. This is similarly true for the choice set itself. We model this through
forming concept sets. The things a choice set is related to are themselves important for
the choice process, so we defined the “Conceptual Choice” and have shown the relevance
of the procedure through several examples. Empirical characterization and relation to
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the existing literature are investigated. Two extensions are briefly mentioned after we
characterized the model with a condition taking its power from choice reversals. The
next goal is to further improve the model to the point where we fundamentally describe
the major parts of decision behavior.

8 Appendix: Proofs

We will prove Theorem 1 in 3 steps. In the first two steps, the proofs of the acyclicity
of . and >c are given. By the first step, we are able to extend . to a linear order. Then
we use this fact to prove acylicity of >c at step 2. In the last step the sufficiency proof
is provided. Finally, note that we assume WLOG that each element x ∈ X is associated
with a concept set cx that has a single element. The construction of the hierarchy of the
concept sets are done through these sets.

Definition 6. cz . cx if there exists a set S such that c(S) 6= c(S \ z) where z 6= c(S) and
x ∈ S.

Proof of Theorem 1. Neccessity is already shown. Assume that c satisfies C1.

Step 1: . is acyclic

Assume to the contrary that . is cyclic. Then there exist x1, x2, ..., xn such that
xi 6= xj for all i 6= j, and c1, c2, ..., cn are the respectively associated concepts such that
c1.c2.....cn.c1. By definition and cyclicity, there exists Si such that c(Si\xi) 6= c(Si) for

all i, where xi+1 ∈ Si such that xi 6= xi+1 and c(Si) 6= xi for all i. Let S∗ =
n⋃

i=1

Si. Note

that by C1, we can eliminate all Sj \ {xj}, since c(Sj) 6= c(Sj \ xj) for all j. Assuming
c(S∗) ∈ Si, eliminate all Sj \ {xj} such that j 6= i except elements in Sj ∩ Si. Also,
note that xj eliminates xj+1, since c(Sj) 6= c(Sj \ xj) for all j and xj+1 ∈ Sj such that
xj 6= xj+1. Hence, except Si, we can eliminate remaining elements and reduce S∗ to
Si, since c(S∗) ∈ Si. Thus, c(S∗) = c(Si). But c(Si) 6= xi for all i by assumption, so
c(S∗) 6= xi for all i. Since c(S∗) 6= xi and C1 holds, we can reduce S∗ to Si \ {xi}5. Thus,
c(Si \ xi) = c(S∗) = c(Si), a contradiction to our assumption. Therefore, . is acylic.

Remark 2. Note that since we proved the acyclicity of ., we can extend . into a linear
order and denote it by ..

Definition 7. x >cz y if there exists an S such that c(S) = x and cz.cx for all S \ z.

Step 2: >c is acylic for all c ∈ cX .

Assume to the contrary >c is cylic, i.e. x1 >c∗ x2 >c∗ ... >c∗ xn >c∗ x1 for some
c∗ ∈ cX and distinct xi’s from 1 to n in X. Let this c∗ be a related concept to x∗ ∈ X.

By cyclicity and the definition above, we know that there exist Si’s such that c(Si) = xi

for all i, where xi+1 ∈ Si such that xi 6= xi+1. Also from the definition, it must be the case

that c∗.cx for all x ∈ Si \{x∗}. Let S∗ =
n⋃

i=1

Si. By the cycle above, this must hold for all

5In this case, eliminate all Sj \ {xj} such that j 6= i except elements in Sj ∩ Si as shown above. In
the second part, hold xi+1 fixed and eliminate all other xk’s except the ones in Si \ {xi}
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Si defined as above. This implies that c∗.cx for all x ∈ S∗ \ {x∗}. Therefore, we can say
that c(S∗) >c∗ y for all y ∈ S∗ \{c(S∗)}. By C1, S can be reduced to the partition Si that
contains c(S∗). Note that c(S∗) ∈ Si for at least one i. Note that c(S∗) = c(Si) = xi, be-
cause by C1 we can eliminate all Sj \{x∗} except j = i and without eliminating anything
inside Si. Similarly, we can reduce S∗ to Si−1 and thus xi = c(S∗) = c(Si−1) = xi−1, a
contradiction to the assumption of distinct xi’s from 1 to n in X. Thus, >c∗ is acylic.

Step 3: Sufficiency

Assume C1 holds. Then, we know that by definition cz.cx for all x ∈ S \ {z} if
c(S) 6= c(S \ z) where z 6= c(S), i.e. cz has the maximum concept over cS, which means
that if we remove y fom any set that includes z, the choice does not change. Also,
c(S) >cz y for all y ∈ S \ {c(S)}. Thus, c(S) is the maximum element over the order
induced by the maximum concept, and by definition it is (CC). If c(S) = c(S \ z) for all
z ∈ S \ {c(S)}, then since . is a linear order we know that there is a maximal element,
call it c∗. So, c(S) >c∗ y for all y ∈ S \ {c(S)} and we are done.

Proof of Theorem 2. For the proof of the only if part, assume to the contrary xDy
does not hold. By the proof of the Theorem 1, there exists a hierarchy . such that it
puts y over x. By definition of, x does not conceptually dominate y, a contradiction.

Lemma 1. C1 implies that D is acyclic.

Proof of Lemma 1. C1 implies that . is acyclic by the Step 1 of the proof of Theorem
1. Note that by Definition 3 and 6, . is acyclic if and only if D is acyclic. So, D is acyclic.

Proof of Remark 1. Assume to the contrary WARP (LA) does not hold. By Lemma
1 of Masatlioglu et al. (2012), this implies that P is cyclic. As in the proof of Lemma
1, suppose P has a cycle. Then for all i = 1, ..., k, there exists Ti such that xi = c(Ti) 6=
c(Ti \ xi+1) and xk = c(Tk) 6= c(Tk \ x1). By Definition 3, this implies that xi+1Dxi for
all i and x1Dxk, so we get x1DxkDxk−1D...Dx2Dx1, a cycle. This is a contradiction to
Lemma 1.
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Abstract

Following paper suggests a novel way to characterize a certain class of choice
procedures which are defined by various intuitive conditions put on the considera-
tion parameter δ. By showing the equality between δ and the well-known hazard
rate h, we will show that the machinery provided through the hazard rate h will
characterize some of the famous stochastic choice procedures based on δ directly.
In addition, a new stochastic choice procedure based on a similarity relation is
introduced and characterized.

1 Introduction

The simple observation that decision makers do not commit to a single choice led to the
vast literature on stochastic choice. Although the number of papers on the subject is
large and diverse in nature, we can concentrate on two currents that are highly affective
in the literature: Luce value extensions and consideration set approach. The former one
is fairly old and due to Luce(1959), and simply deals with the problem by the logic of
comparing relative values of the objects in the choice set. The other one is new and
due to Manzini and Mariotti (2014) as a stochastic model of the notion of consideration
sets. These two approaches can be seen as rival approaches symbolizing the concepts of
“perfect rationality” and “bounded rationality”, respectively. Obvious from the abstract,
we will mainly deal with the latter approach.

This paper is technical in its essence. Our goal is to introduce a machinery that is
sufficient to characterize a certain class of choice procedures only from the observables,
i.e. the hazard rate derived from the observed choice probabilities. Even though we
remain silent about the relative plausibility of these stochastic choice procedures which
we characterize (because of our technical focus), we introduce two new models based on
familiar notions, namely “similarity” and “duplicates”.

Let us call all choice procedures that are based on the notion of the consideration pa-
rameter δ, C. This class is defined by the given pair (δ,�). These defining characteristics
cannot be identified observationally, so in this sense a definition does not provide empir-
ical characterization, as expected. On the other hand, a certain subset of C that satisfies
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what we call Condition 1 can reveal preferences from the data and thus the second com-
ponent of the defining characteristics can be identified. This ensures that the hazard rate
h that depends on preferences is well-defined. After showing the equality between δ and
h, the unobservable defining characteristic of C turns into an observable characteristic, so
the definition turns into a characterization that can be obtained empirically. Also note
that all models that are not in C but can be translated into such models under certain
conditions can be characterized through the machinery provided. This translation will
be used as we characterize a simple Luce model.

In summary, the machinery is as follows:
1) Translate the choice procedure in such a way that is in C defined by (δ,�).
2) Identify preferences and define the hazard rate h.
3) C is now characterized by h.

2 Model

The machinery we will provide works for a certain class of choice procedures. These
procedures can be distinguished by their dependence on the consideration parameter, δ.
Let us first recall the basic definitions of a stochastic choice rule and a certain subset of
it, namely menu dependent stochastic consideration set rule introduced by Manzini and
Mariotti (2014) (From this point on we will use the abbreviation MM).

Definition 1. A stochastic choice rule is a map p :X ×M → [0, 1] such that
∑

x∈A p(x,A) =

1, p(a,A) = 0 for all a /∈ A, p(a,A) ∈ (0, 1) for all a ∈ A and A ∈M \ ∅ where M is the
set of all menus in X and A = A ∪ {x∗} where x∗ denotes the outside option.

Note that this is the standard definition of a stochastic choice rule. One important
thing to recall the existence of an outside option for the sake of the demonstration. Also
note that p(x∗, ∅) = 1 trivially.

The following definition is the same definition as in MM.

Definition 2. A menu-dependent stochastic consideration rule is a stochastic choice rule
p�,δ for which there exists a pair (�, δ) where � is a strict total order and δ : X×M \∅ →
(0, 1) such that

p�,δ(x,A) = δ(x,A)
∏

y∈A:y�x

(1− δ(y, A))

for all A ∈M and for all x ∈ A.

It is clear from the definition that this specific stochastic choice rule is dependent upon
two primitives, (�, δ). In general, one can put any set of conditions on the consideration
parameter, δ. Thus, we can define any specific menu-dependent stochastic consideration
rule first by identifying the preference relation and then putting certain intuitive condi-
tions on δ. Before giving the full definition of a restricted stochastic consideration set
rule, we need to define the following.

Definition 3. A restriction function f is a truth function f : Prop(δ) → {0, 1} where
Prop(δ) is the set of propositions defined over the consideration parameter δ.

Definition 4. A restricted stochastic consideration rule is a menu-dependent stochastic
consideration rule p�,w that is defined by the set of conditions on δ for which f(w) = 1
where w ∈ Prop(δ).
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The method is as follows: First, with a genuine condition on δ, we will identify
preferences from the observed choices. This condition, which we will call Condition 1 is
a weak condition that is met by the examples we will characterize. After showing that δ
and hazard rate are actually equal to each other, we will replace the set of propositions
on δ with the set of propositions on the hazard rate.

We will also characterize some other Luce type models after a translation of their
models to the language of our models, namely to the language of δ.

Without going further about the method, we need to define what a hazard rate is.

Definition 5. (Hazard Rate)

h(x,A) =
p(x,A)

1−
∑

y∈A:y�x p(x,A)

for all A ∈M and x ∈ A.

Remark 1. h(x∗, ∅) = 1

To see this, note that there is no element in empty set so that there is no strictly
preferred element to x∗. This implies that the denominator is equal to 1 and therefore
h(x∗, ∅) = p(x∗, ∅). By assumption, p(x∗, ∅) = 1.

By the definition of a restricted menu dependent stochastic consideration rule, we
know that the defining primitives of the rule are (δ,�). To characterize such a rule, we
need to identify both parameters from the observed choice probabilities. The strategy
is demonstrated above: First we will reveal preferences from a condition put on δ. This
will help us to define hazard rate h as it is dependent upon the preference relation. After
defining h, we will show the equality of h and δ, so the other defining parameter of the
model is now equal to a parameter which is observed from the data. Thus, one can
directly convert the conditions imposed upon δ to its equivalent condition imposed upon
h after identifying preferences, and the model is immediately characterized.

The condition with which we will identify preferences is the following:

Condition 1.
δ(x,A)

δ(x,A \ y)
≥ δ(y, A)

δ(y, A \ x)
× (1− δ(x,A))

for all x, y ∈ X and A ∈M \ ∅.

Note that this is a condition on δ and obviously an element of Prop(δ). This condition
will help us to identify preferences from the observed choice probabilities. The first lemma
will provide us identification of the preferences.

After showing the equality between δ and h, we will be able to replace Condition 1
with the equivalent stated in terms of h. Again, we will be able to identify preferences
through Lemma 1 using this equivalent condition.

Theorem 1. A restricted menu dependent stochastic consideration rule can be charac-
terized by w∗:

w∗ := {w ∈ Prop(h) : g(w) = 1}

and if preferences cannot be identified from the model, then ∃w� ∈ Prop(h) s.t. w�
implies either x � y or y � x (but not both) where � is assumed to be acyclic and
w� ∈ w∗ for g : Prop(h)→ {0, 1}.
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Proof of Theorem 1. In the proof, we will first identify preferences from observed choice
probabilities. This will be achieved through Condition 1. Note that this does not say we
can identify preferences from h. To do this, we will show in Lemma 2 the equality between
δ and h, and then it is obvious to see that preference identification can be done through
Condition 1 stated in terms of h. Lastly, note that this converted condition is our needed
w� stated in Theorem 1.

Lemma 1.
p(x, xy)

p(x, x)
≥ p(y, xy)

p(y, y)
→ x � y

Proof of Lemma 1. Assume to the contrary y � x. In this case, note that p(x, xy) =
δ(x, xy)(1− δ(y, xy)), p(x, x) = δ(x, x), p(y, y) = δ(y, y) and p(y, xy) = δ(y, xy). So,

p(x, xy)

p(x, x)
≥ p(y, xy)

p(y, y)

if and only if
δ(x, xy)

δ(x, x)
× (1− δ(y, xy)) ≥ δ(y, xy)

δ(y, y)
.
However, this contradicts Condition 1, so x � y.

Lemma 2.
δ(x,A) = h(x,A)

for all x ∈ A and A ∈M \ ∅.

Proof of Lemma 2.
The proof of the lemma is in two steps.

Step 1:
By the definition of a random choice rule, we know that

∑
x∈A p(x,A) = 1. Using the

definition of menu- dependent stochastic choice rule, we can write this in terms of δ. Let
us assume that we enumerated the elements in such a way that X = {x1, x2, ..., xn} where
xi � xi+1 for all i ∈ {1, 2, ..., n}.

1 =
∑
x∈A

δ(x,A)
∏

y∈A:y�x

(1− δ(y, A))

= δ(x1, A) + δ(x2, A)(1− δ(x1, A)) + ...+
∏
xi∈A

(1− δ(xi, A))

where the last term is equal to p(x∗, A). Note that (1− δ(x1, A)) is common to all terms
except the first one. So:

= δ(x1, A) + (1− δ(x1, A))(δ(x2, A) + ...+
∏

xi∈A,i 6=1

(1− δ(xi, A))

. We can take δ(x1, A) to the left and then we can cancel (1− δ(x1, A)) from both sides,
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since δ(x,A) 6= 1 for all x ∈ A where A ∈M \ ∅ by definition. Thus:

1 = δ(x2, A) + δ(x3, A)(1− δ(x2, A)) + ...+
∏

xi∈A,i 6=1

(1− δ(xi, A))

. Note that a similar procedure can be applied also for x2. Repeating this process for each
k ∈ {1, ..., n}:

1 = δ(xk, A) + (1− δ(xk, A))(δ(xk+1, A) + ...+
∏

xi∈{xk+1,...,xn}

(1− δ(xi, A))

for all k ∈ {1, ..., n}.

Step 2:

1−
∑

y∈A:y�x

p(x,A) =
∑

z∈A:x�z

p(x,A)

=
∑

z∈A:x�z

δ(z, A)
∏

y∈A:y�z

(1− δ(y, A))

Similar to the above notation, let us assume that x = xk for some k ∈ {1, ..., n}.Note that
the most preferred element is xk, so all elements that are strictly preferred to xk are also
strictly preferred to {xk+1, ..., xn}. This implies that we can write the above equation in
the following way:

=
∏

xi∈A:xi�xk

(1−δ(xi, A))[δ(xk, A)+δ(xk+1, A)(1−δ(xk, A))+ ...+
∏

xj∈A:xk�xj

(1−δ(xj, A))]

=
∏

xi∈A:xi�xk

(1−δ(xi, A))[δ(xk, A)+(1−δ(xk, A))[δ(xk+1, A)+ ...+
∏

xj∈A:xk�xj

(1−δ(xj, A))]

Note that by Step 1, this last expression reduces to:

=
∏

xi∈A:xi�xk

(1− δ(xi, A))

.
Thus, we proved that:

1−
∑

y∈A:y�x

p(x,A) =
∏

xi∈A:xi�xk

(1− δ(xi, A))

.
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It follows from the definition of menu-dependent stochastic choice rule that:

δ(x,A) =
p(x,A)∏

y∈A:y�x(1− δ(y, A))
=

p(x,A)

1−
∑

y∈A:y�x p(x,A)
= h(x,A)

.

By Lemma 2, we can prove Lemma 1 using the equivalent of the Condition 1 stated
in terms of the hazard rate h.

Lastly; note that the equality between δ and h implies that Prop(δ) = Prop(h). Al-
though δ is not observed from the data, we can observe h. The model is defined by
conditions on δ, i.e. by w for which f(w) = 1 where w ∈ Prop(δ). Note that f(w) = 1
for some w(δ) if and only if g(w∗) = 1 for w∗ = w, since δ = h. Therefore, we can
change conditions on δ with the same conditions on h. By the fact that h is observable,
the model is directly characterized by h. Thus, the proof is complete. �

3 Similarity-Based Stochastic Choice

The first model we will characterize via hazard rate is a new model we developed. In
the abstract we noted that the machinery provided will work for all models that depend
on the consideration parameter δ. Models may differ from each other by the conditions
they impose on this parameter, and in general these conditions rely on either intuition
or experimental evidence.

The notion of similarity is not new to economics, although the models that are based
upon it are small in number. The foremost work is from the psychology literature, due
to Tversky. Tversky (1977) tries to develop a formal model where the similarity between
objects is measured. In economics, Rubinstein (1988) develops a model based on two
primitives, which is the pair (�,∼) where the latter one denotes the similarity relation.
Actually, the two primitives of our model are the same with Rubinstein, and in this sense
our intuition is closest to his. Also, a recent work by Payro and Ulku (2014) builds a
formal model of mistakes in deterministic choice that are attributable to the similarity
between the most preferred element and the others. Without going into the details, first
we will define what the model is and then we will see the characterization of it through
the machinery we provided.

Definition 6. A similarity relation ∼ is a subset of X ×X that satisfies reflexivity and
symmetry.

As Tversky (1977) notes, a similarity relation need not to be transitive in general.
The following stochastic choice procedure we will define is intended to be a very general
one in the sense that it both captures the well-known violations of rationality and reflects
the intuition behind the systematic of our choice process. The only restriction is on the
consideration parameter δ and it is only a mild one. Let us first define the procedure,
and then argue what it captures.

Definition 7. A similarity-based stochastic consideration rule is a menu-dependent stochas-
tic consideration with additionaly given ∼ such that it satisfies the following:
(i)

δ(x,A) 6= δ(x,A ∪ y)→ [x ∼ y]

19



given x 6= y and
(ii)

δ(x,A)

δ(x,A \ y)
=

δ(y, A)

δ(y, A \ x)

for all x, y ∈ A and A ∈M \ ∅ such that x ∼ y.

The first condition is an intuitive one, it says that if the consideration of an element
x changed with the addition of a new element y, then y must be related to x somehow.
Thus, they are similar to each other on some basis that is unknown to us.

The second condition is about the relative effect of two similar elements x and y to
each other. It says that two similar elements affect each other relatively in the same
proportion given the same set, so this condition does not say anything about beyond
”context” effects of these.

As noted in MM, characterizing menu-dependent models is very hard and we need
to put extra strong assumptions upon δ. Note that we put very simple and intuitive
restrictions and it is still hard to get a simple characterization, since there are two sides
of the change: one from the own consideration parameter of the object of choice (let us
call it x), and the other from the uncontrolled changes coming from the strictly preferred
elements to x. We characterized this model, however we do not propose here our charac-
terization. This is because the machinery we provide propose a very simple characterizing
without extracting any additional effort. The only condition we have to check whether
Condition1 that gives the identification of preferences is satisfied or not.

Lemma 3. Similarity-based stochastic consideration rule satisfies Condition 1.

Proof of Lemma 3. To see this, note that by definition (1− δ(x,A)) is always smaller
than 1. So, multiplying the right hand side of Condition (ii) in Definition 7 can only
make the right hand side smaller, and thus Condition 1 is satisfied. The similar logic
applies to the other case

Since we observed that Condition 1 is satisfied, we can identify preferences through
Lemma 1 in the proof of the Theorem 1. After the preferences are identified, we can
define the hazard rate h. Then by Theorem 1, the equivalent of Condition (ii) in terms
of h is sufficient to characterize the model (We do not need the first one since it only
reveals the similarity relation). Thus, the characterization is as follows:

Theorem 2. A stochastic choice rule is a similarity-based stochastic consideration rule
if and only if � is acylic and it satisfies the following:

h(x,A)

h(x,A \ y)
=

h(y, A)

h(y, A \ x)

for all x, y ∈ A and A ∈M \ ∅.

Proof of Theorem 2. The characterization immediately follows from Theorem 1 by
replacing Condition (ii) of Definition 7 with the one that stated in terms of h. We did
not state the characterizing condition for all x, y ∈ A and A ∈M\∅ such that x ∼ y, since
the condition is also satisfied by x’s that are not similar to y trivially by the contrapositive
of the Condition (i) of the Definition 7 (Note that δ(x,A) = δ(x,A ∪ y) for all such x
and y).
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4 Stochastic Consideration Set-MM

MM is a formal model that is founded upon the notion of “consideration sets”. The
most important contribution of the paper is to open a new direction in the research
of stochastic choice rules that depends on the consideration of each alternative in the
choice set. The model MM develops is the most basic version where the consideration of
each alternative is constant through all menus, i.e. the consideration parameter is menu
independent. The choice procedure is already defined in the Model section, but it was the
menu-dependent version of their actual model. Let us define the stochastic consideration
set rule:

Definition 8. A stochastic consideration set rule is a stochastic choice rule p�,δ such
that given a pair (�, δ) where � is a strict total order and δ : X ×M \ ∅ → (0, 1) such
that

p�,δ(x,A) = δ(x)
∏

y∈A:y�x

(1− δ(y))

for all A ∈M and for all x ∈ A

As it is clearly seen from the Definition 8, the only difference from the menu-dependent
stochastic consideration rule is the fact that the consideration of each alternative x is
menu-independent, i.e. δ(x) = δ(x,A) for all x ∈ A and A ∈M \ ∅.

To characterize MM, we need to first check that it satisfies Condition 1 with which
we identify preferences.

Lemma 4. Stochastic consideration set rule satisfies Condition 1.

Proof of Lemma 4. We know that the consideration parameter δ is menu-independent,
so Condition 1 reduces to the following:

1 ≥ (1− δ(x))

which is trivially satisfied by the definition of δ. Hence, we can define the hazard rate h.

Theorem 3. A stochastic choice rule is a stochastic consideration set rule if and only if
� is acyclic and h(x,A) = h(x,B) for all x ∈ A ∩B and A,B ∈M \ ∅.

Proof of Theorem 3. Follows directly from the machinery.

5 Monotonicity

Assuming monotonicity of the consideration parameter as it is defined in MM is a natural
extension of the model. Note that such an extension corresponds to random version of
what Lleras et al.(2017) calls a “Competition Filter”. Recall that such a filter obeys the
following rule: If an element x is considered in a superset of S, then it must be considered
in S. In its random counterpart, this dictates that δ(x, S) is decreasing as we move to a
superset.
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Definition 9. A monotonic stochastic consideration rule is a menu-dependent stochastic
consideration with the following restriction: f(w) = 1 if and only if δ(x, S) ≥ δ(x, T )
∀S ⊆ T .

For characterizing monotonic stochastic consideration rule, we need the following
translation of Theorem 1. Recall that via Theorem 1 we reduced the definition of a menu
dependent stochastic consideration set rule which consists of two unobserved parameters
into a model with only one unobserved parameter. Note that the following theorem is
only in terms of observables, so the model can be turned into a model only in terms of
observables.

Theorem 4. A stochastic choice data is consistent with menu-dependent consideration
rule under restriction f if and only if for each x ∈ X there exists a set Yx ⊆ X that does
not include x and that satisfies:

• f( p(x,S)
1−p(Yx∩S,S)) = 1

• For any x, y ∈ X with x 6= y, either Yx ⊂ Yy or Yy ⊂ Yx.

Proof of Theorem 4. Necessity is obvious. For sufficiency, let xPy if Yx ⊆ Yy. Note
that P is acyclic by the second condition. Extending P to a strict linear order we can find
a preference relation �. This allows us to define the hazard rate h and by the equality of
h and δ the proof is complete.

As a corollary, we can see the characterization of monotonic menu dependent consid-
eration set rule.

Corollary 1. A stochastic choice data is consistent with monotonic menu-dependent
consideration set rule if and only if for each x ∈ X there exists a set Yx ⊆ X that does
not include x and that satisfies:

• p(x,S)
1−p(Yx∩S,S) is decreasing for each x ∈ X under set inclusion.

• For any x, y ∈ X with x 6= y, either Yx ⊂ Yy or Yy ⊂ Yx.

The characterization implies that there is at least one alternative whose probability
always falls (weakly) as the set gets bigger, more generally, there is a set of alternatives
Yx for each alternative x (related by set inclusion) such that the hazard rate falls if Yx is
considered to be the upper contour set of x.

6 A Luce Model

Although models founded upon the Luce value type formulas are different from the ones
demonstrated previously, we can turn them into each other by defining δ properly. Beyond
its demonstrative purposes, it comes out that a consideration parameter that is defined in
terms of a Luce value is also meaningful. To see this, note that in the way we define the
consideration parameter in terms of the Luce value v, an element is likely to be considered
more if it has a higher Luce value. On the other hand, as the number of inferior options
rises, the sum of Luce values in the denominator rises and this effect will balance the
higher consideration effect arising from the higher Luce value of the strictly preferred
element.
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We will show that it is possible to define δ in terms of Luce value v such that a
Luce-type choice procedure turns into a menu-dependent stochastic consideration rule.
First, we will define how such a choice procedure looks like. The below definition also
incorporates the existence of an outside option, since the machinery we provide depends
upon the existence of it. The definition is taken from Echenique, Saito, and Tserenjigmid
(2013)(only some small changes are made).

Definition 10. A stochastic choice function p satisfies Luce model if and only if there
exists a utility function v : X ∪M → R≥0 such that it is of the following form:

p(x,A) =
v(x)∑

x∈A v(x) + v(A)

Note that the term v(A) enters with the existence of an outside option and it intu-
itively captures the opportunity cost of not choosing anything from the menu.

To apply our machinery, we need to convert the Luce model into a model that depends
on δ. This can be done with the following theorem.

Theorem 5. A menu-dependent stochastic consideration rule is a Luce model if and only
if it satisfies the following:

δ(x,A) =
v(x)∑

y∈A:x�y v(y) + v(A)

for all x ∈ A and A ∈M \ ∅.

Proof of Theorem 5.

p�,δ(x,A) = δ(x,A)
∏

y∈A:y�x

(1− δ(y, A))

=
v(x)∑

y∈A:x�y v(y) + v(A)

∏
y∈A:y�x

(1− v(y)∑
z∈A:y�z v(z) + v(A)

)

=
v(x)∑

y∈A:x�y v(y) + v(A)

∏
y∈A:y�x

(

∑
z∈A:y�z v(z) + v(A)∑
z∈A:y�z v(z) + v(A)

)

Let us enumerate the elements that are strictly preferred to x such that:

{y ∈ A : y � x} = {x1, x2, ..., xn}

where xi � xi+1 for all i.

=
v(x)∑

y∈A:x�y v(y) + v(A)
×

∑
z∈A\{x1} v(z) + v(A)∑
z∈A v(z) + v(A)

× ...×
∑

z∈A\{x1,...,xn} v(z) + v(A)∑
z∈A\{x1,...,xn−1} v(z) + v(A)

Note that above telescoping product the above multiplication reduces to the following:
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=
v(x)∑

y∈A:x�y v(y) + v(A)
×

∑
z∈A\{x1,...,xn} v(z) + v(A)∑

z∈A v(z) + v(A)

But now note that: ∑
z∈A\{x1,...,xn}

v(z) + v(A) =
∑

y∈A:x�y

v(y) + v(A)

since A \ {x1, ..., xn} =: {y ∈ A : x � y} because of the fact that xn is the next best
alternative that is strictly preferred to x, i.e. xn � x and there exists no t ∈ A such that
xn � t � x.

Thus:

=
v(x)∑

y∈A v(y) + v(A)

So, finally we have:

p�,δ(x,A) = δ(x,A)
∏

y∈A:y�x

(1− δ(y, A)) =
v(x)∑

y∈A v(y) + v(A)

.
Hence, p�,δ satisfies Luce model by Definition 9. �

Why would one want to translate a model into a model of stochastic consideration
sets? Besides the interesting relationships uncovered through such an exercise, we think
that such an exercise is also useful as it allows for an immediate comparison of models
that are not written as consideration models with consideration models.

For instance, the theorem above immediately implies the following corollary.

Corollary 2.

• Luce model is incompatible with Example 1 (baseline MM model), 2 and 4.

• Luce model is a special case of Example 3 if and only if it can be rationalized by
v that satisfies v(T ) ≥ v(S) whenever S ⊆ T , i.e. the value of the outside option
increases as the set gets bigger.

7 Duplicates

Duplicates are element that are similar in attributes. One may argue that two elements
are duplicate of each other if there is no distinguishing feature between them from the
point of view of the decision maker. This can be further advanced to the level that given
the conceptual representation system of two decision makers, their conceptual represen-
tations are isomorphic to each other.

The importance of duplicates in choice problems originates back to famous example
of Debreu(1960). A very well-known work that is developed to solve this example within
a Luce-like framework is Gul et al.(2014). We did not investigate yet the translatability
of their framework into a consideration set framework, we only develop a simple model
of duplicates where the condition put on the δ is related to it. First we will define what a
duplicate is and then consideration parameter that is adjusted for the effect of duplicates:
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Definition 11. A duplicate relation d is a binary relation that is a subset of X ×X and
satisfies reflexivity and symmetry.

Note that there is nothing different in the definitions of being duplicate and similar. In
its meaning, being a duplicate is stronger than being similar. This effects the restriction
put on the consideration parameter, in similarity-based stochastic choice the only effect
of similarity relation was the relative constant effect of two similar elements given a
context. Here, as you will see in the below definition, a duplicate necessarily affects the
consideration of an element in a set. Also, note that a menu independent distribution of
the consideration parameter over the set of elements is given; however, menu-dependence
enter through the effect of the duplicates.

Definition 12. A consideration parameter δ is a duplicate adjusted consideration param-
eter δd if and only if:

δd(x,A) =
δ(x)

η(x,A)

where η(x,A) =
∑

1{y∈A:ydx} for all A ∈ M \ ∅ and for all x ∈ A and in the case
η(x,A) = 0,

δd(x, S) = δ(x)

for all S ⊆ A .

The definition of the stochastic choice procedure is totally the same with the menu-
dependent stochastic consideration rule except the consideration parameter is adjusted
for the effect of the duplicates, i.e. the menu-dependent consideration parameter has a
particular form dependent upon the number of duplicates given a menu..

Definition 13. A duplicate adjusted consideration rule is a stochastic choice rule p�,δd
such that given a pair (�, δd) where � is a strict total order and δd is duplicate adjusted
consideration parameter such that:

p�,δd(x,A) = δd(x,A)
∏

y∈A:y�x

(1− δd(y, A))

for all A ∈M and for all x ∈ A.

Lemma 5.
δd(x, xy)

δd(x, x)
= 1

for all x, y ∈ X.

Proof of Lemma 5. Note that δd(x, x) = δ(x). By the definition of δd, if y is not a
duplicate of x, it is equal to 1. If ydx, then η(x, xy) = 1 and again the fraction is equal
to 1 and we have the lemma.�

Since we have Lemma 4, the two element set version of the Condition 1 that we use
for proving Lemma 1 reduces to the following condition:

1 ≥ (1− δd(x, xy))

which is trivially satisfied by the definition of a consideration parameter. Therefore,
by Lemma 1 we have the preference identification we need for defining the hazard rate.
Since hazard rate is well-defined in this case, the machinery is directly applicable and
thus we have the following:
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Theorem 6. A stochastic choice rule p is a duplicate adjusted consideration rule if and
only if � is acyclic and the following holds:

h(x,A) =
h(x)

η(x,A)

for all A ∈M and for all x ∈ A.

Note that if η(x,X) = 0, then by definition δd(x, S) = δ(x) for all S ⊆ X, hence we
have MM. Thus, according to the definition of duplicate adjusted consideration parame-
ter, if there are no duplicates to a particular element x ∈ X, then x is chosen according
to stochastic consideration set rule of MM.
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Abstract

The randomness of the choices people make and their lack of considering the
full set of available alternatives are both well-known and empirically supported
facts. We present a “theory of selves” approach to build a firm connection between
these two observations by assuming that each decision maker (DM) has multiple
deterministic consideration filters where she maximizes her well-defined preferences
over each resulting consideration set. Each consideration filter corresponds to a
different self that arises with some probability and thus the choice becomes random.
We characterize this “Random Filtering” procedure using some of the influential
consideration filter forms from the literature. Several well-known choice anomalies
and context effects can be captured by the model.

1 Introduction

Think of a decision maker (DM) who does not consider all available alternatives, either
rationally or due to a cognitive lack. Imagine her in the marketplace. She may have
different consideration sets applied to the whole market; in a rainy day she may be
inclined to use her melancholic consideration set and ignore most of the alternatives due
to her unwillingness to spend more time. In a sunny day she may be full of life and full of
motivation, her consideration set might be greater than her melancholic one. Although
unobserved for an outsider, these different selves may be reflected in her consideration
sets, thus the choice of the decision maker becomes random.

The randomness of choices and lack of full consideration are both well-known and em-
pirically supported facts.1Our approach brings these two insights together by modeling
the DM as composed of multiple selves. Each self has a probability to arise and a corre-
sponding deterministic consideration filter. The agent has well-defined stable preferences
that she maximizes over each of her resulting consideration sets. Recall the example of
the DM in marketplace, she has two selves: ‘melancholic’ and ‘happy’. These two selves
arise with some probability, so their corresponding consideration filters are used with the
same probability.

1See Wright and Barbour (1977), Hauser and Wernerfelt (1990), Iyengar and Lepper (2000) Reutskaja
et al. (2011) etc.
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The model directly connects the influential literature on deterministic consideration
sets2 with random choice by presenting a “theory of selves” approach. The random
choice is due to each self’s probability of occurrence, i.e. probability of using a different
consideration filter. Hence, the model allows us to characterize the random counterparts
of influential deterministic models of consideration formation.

Conceptually our model is in the same spirit with the famous Random Utility Models
(RUM) 3. The underlying motive of these models is the variation in the preferences of the
agents, and this is reflected as a probability distribution over the set of utility functions.
We view preferences as a more fundamental and stable part of human decision-making,
and assume that the variation in choice is due to the different consideration filters an
agent uses depending on her psychological state. That is, to the contrary of “variation
in preferences” approach adopted by RUM, our approach takes the view of “stable pref-
erences, variable deterministic consideration”. An advantage of assuming variation in
consideration filters is that the model is able to accommodate certain well-known context
effects unlike RUM which assumes full consideration. We show that the random counter-
part of a deterministic consideration set model will be able to accommodate violations
of regularity, as long as the corresponding deterministic model is able to accommodate
violations of WARP. Hence, the empirical scopes of deterministic models of consideration
are preserved under the assumption of multiple consideration filters.

This brings up the question of to what extent our approach preserves the empirical
features of these deterministic models. We will show that the connection between the
deterministic model and its random counterpart is rather strong: We show that certain
features of the underlying model are carried over to the random model. For instance,
if the underlying model has no empirical content then the corresponding deterministic
model would also be free of empirical content (see Theorem 1). Similarly, if the under-
lying model is restricted so that what is considered can be directly identified, then the
corresponding random model we construct is empirically equivalent to the underlying
model (see Theorem 2).

We will completely characterize the random counterparts of the following well-known
consideration sets used as the underlying deterministic models:

1)Perfect rationality: A decision maker who is perfectly rational has full consider-
ation, i.e. she considers all of the available alternatives. This is the standard approach
in choice theory.

2)Attention Filter: A form of consideration set is an “Attention Filter” due to
Masatlioglu et al. (2012). Consider an agent who does not pay attention to an alternatives
in a set S (think of the little store in your neighborhood). If I remove that alternative
from S (or from that store), the set of alternative she pays attention to in this subset of S
must be the same with the set of alternatives that takes her attention in S. So, nothing
changes in what the agent considers if we move an alternative she does not consider
previously.

3)Competition Filter: Another well-known consideration set is the so-called “Com-
petition Filter” of Lleras et al.(2017). A competition filter reflects the intuition in its
name, if an alternative x attracts attention in a bigger set, it must attract attention in
a smaller set given it is available, since in a bigger set there is much more competition

2Masatlioglu et al. (2012), Lleras et al. (2017), Cherepanov et al. (2013), and Manzini and Mariotti
(2012).

3see Luce (1959), Block and Marschak (1960), McFadden (1978), Falmagne (1978), and Gul, Natenzon
and Pesendorfer (2010)
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between alternatives to attract attention.
4)Rationalization: In this model, the DM needs a ”Rationale” to consider an alter-

native, thus the set of such alternatives become ”psychologically permissible”. Hence, a
consideration set is formed by underlying unobserved rationales of the decision maker.

5)Categorization: In this paper due to Manzini and Mariotti (2012), an alternative
is considered if it belongs to an undominated category where each category is formed
through an unobserved process.

A perfectly rational agent considers all the available alternatives. As we mentioned
above, in this case multiple filters are equivalent to one single filter where the agent
considers the whole given set. We will show that preference maximization over rational
filters is equivalent to deterministic preference maximization and thus it must satisfy
WARP.

The characterization of attention filters uses the ‘revealed preference’ implied by the
model. Given this model, we show that if the probability of choosing alternative x de-
creases when we remove some alternative z, then it must be the case that x is preferred to
z. In other words, the revealed preference relation is directly obtained from the violations
of regularity. We show that this model is completely characterized by the acyclicity of
this revealed preference. Here, we see that the identification procedure comes as a natural
counterpart of its deterministic version, i.e. the revealed preference analysis is carried to
the random case.

The characterization of an agent using competition filters shows that this is not the
case in general, the probabilistic nature of the process brings further complications to
account for. Correspondingly, the identification of preferences in this part is more com-
plicated than the one in the case of attention filters. The algorithm of identification is
in steps; in the first step we collect alternatives that never decrease in probability, and
we call this set X0. Then, we collect all elements that are decreasing in probability in a
certain subset while elements in a subset of X0 increase in probability in such a way to
compensate this decrease. Such elements are collected in X1. The algorithm continues
in this way until all the alternatives are exhausted. The intuition is as follows: If the
probability of an element x chosen in S decreases in S \z, then there must be at least one
better element than x the DM did not consider previously in S but started to consider
in S \ z for some of her competition filters. Thus, the choice probability of these better
elements must increase. Furthermore, this increase in probability should compensate the
decrease in choice probability of worse alternatives. Hence, random counterpart of the
deterministic model imposes a new ‘cardinal’ condition on the choice data we observe.

The models of Categorization and Rationalization can be expressed in terms of com-
petition filters and vice versa4. This allows us to characterize these models in the same
way we characterize competition filters (see Theorem 7).

The organization of the paper is as follows: In Section 2 we will give a general defini-
tion of “Random Filtering” and build a connection between the probabilistic choice data
and the model we use. In addition, a DM that uses perfectly rational filters is charac-
terized in this part. Then, in Section 3 we will characterize a decision maker who uses
multiple attention filters and present a revealed preference analysis. Section 4 gives the
characterization of a DM using multiple competition filters, rationalization and catego-
rization. Section 5 provides an analysis of ‘context effects’ using our approach. We will
conclude with Section 6 that presents a complete literature review and Appendix which
contains the proofs of the results.

4see Lleras et al. (2017)
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2 “Random Filtering”

We model a decision maker who uses multiple consideration filters. Let X be the set
of alternatives and X be the set of nonempty subsets of X. A menu A is a subset of
alternatives, i.e. A ∈ X. We will observe probabilistic data, meaning the data comes in
the form of a probability function p : X × X → [0, 1] such that it obeys the axioms of
probability. The following is a definition of a random choice rule.

Definition 1. A random choice rule is a map p : X×X→ [0, 1] such that
∑

x∈A p(x,A) =
1, p(a,A) = 0 for all a /∈ A, and p(a,A) ∈ [0, 1] for all a ∈ A and A ∈ X.

To define our procedure, we need to define what a consideration filter is.

Definition 2. (Consideration Filter) A consideration filter is a mapping Γ : X → X
where Γ(A) ⊆ A ∀A ∈ X.

Let Γ be the set of all consideration filters. The following will give a definition of a
restriction put on this collection.

Definition 3. (Restriction) A restriction is a function f : Γ → {0, 1},we say Γ ∈ � is
restricted by f if f(Γ) = 1.

The above definition will become clear with the following formulations of consideration
filters coming from the well-known papers in the literature.

Definition 4. (Rational Filter) A consideration set is a rational filter if and only if
Γ(S) = S ∀S ∈ X. Hence, the restriction function corresponding to a rational filter is
the following: f(Γ) = 1 if and only if Γ(S) = S ∀S ∈ X.

Definition 5. (Attention Filter, Masatlioglu et al. (2012))
An attention filter is a consideration set such that it satisfies the following:

x /∈ Γ(S) =⇒ Γ(S) = Γ(S \ x)

.

Similarly, Γ is restricted by attention filter whenever f(Γ) = 1 we have x ∈ Γ(T ) =⇒
x ∈ Γ(S) ∀S ⊆ T

Definition 6. (Competition Filter, Lleras et al. (2017)) A competition filter is a con-
sideration set such that it satisfies the following:

x ∈ Γ(T ) =⇒ x ∈ Γ(S) ∀S ⊆ T

Definition 7. (Rationalization Filter, Cherepanov et al. (2013))

ΓR(S) = {x ∈ S : ∃Ri ∈ R xRiy ∀y ∈ S \ x}

where R is the set of all rationales (no condition imposed, only a binary relation).

Definition 8. (Categorization Filter, Manzini and Mariotti (2012))

Γ�(S) = {x ∈ S :6 ∃C ∈ S s.t. C � C∗ and x ∈ C∗}

where � is an asymmetric shading relation on the categories C ∈ X and S is the set of
all nonempty subsets of S.
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Next, we define the general deterministic choice procedure for a single consideration
filter. Single Filtered Choice models a DM who maximizes her well-defined preferences �
over what she considers, namely the consideration filter restricted by a condition f.

Definition 9. “Single Filtered Choice”
A choice function c : X→ X is called “Single Filtered Choice ”(SFC) under restriction f
if and only if there exists an asymmetric, transitive and complete preference relation � on
X and a single consideration filter Γ : X → X where Γ satisfies the restriction condition
f such that:

c(S) = arg maxΓ(S) �

for all S ∈ X for all S ∈ X

Note that Single Filtered Choice reduces down to well-known deterministic models
under restriction condition. For instance, Single Filtered Choice under Definition 5 (At-
tention Filter) reduces down to Choice with Limited Attention (CLA) by Masatlioglu et
al.(2012).

Now think of a DM endowed with a collection of consideration sets where each one of
them is restricted by the same condition f. Continuing with the same example, assume
that she has a collection of attention filters, and each one of these filters (associated with
a different self of the DM) has a probability to arise. DM maximizes � over each filter,
so we get the definition for the following procedure, which we call Random Filtering.

Definition 10. “Random Filtering”
A random choice rule is called “Random Filtering”(RF) under restriction f if and only
if there exists an asymmetric, transitive and complete preference relation � on X, a
collection of filters � restricted by f where |�| ∈ Z+ and a probability distribution γ over
� such that:

p(a,A) =
∑
Γ∈�

γ(Γ)1{a∈A:a=arg maxΓ(A)�}

where 1 is the indicator function and A ∈ X and a ∈ A.

The intuition behind the choice procedure is the following: We have a DM that has
filters that correspond to different selves of her. Each such self has a probability to arise
in different environments, these are reflected by the probability distribution γ over the
collection of the filters, �. Given her well-defined preferences, the DM maximizes � on
each filter she has. Thus, the choice probability of a ∈ A is equal to the total probability
weight of the filters a maximizes �.

2.1 Results

Our first result builds a bridge between single (deterministic) and random filtering. A
model is empirically testable if it cannot accommodate some observations. If it is valid
for any observation, then we cannot empirically test it since it allows everything. The
following result says that as long as the underlying deterministic filter gives testable
implications, the random version is not empty, and vice versa.

Theorem 1. Random Filtering restricted by f is empirically testable if and only if the
underlying Single Filtered Choice with f is empirically testable.
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To understand the intuition behind the proof, note that if Single Filtered Choice un-
der restriction f is empirically testable, then we have a choice function c that cannot
be accommodated by this model. We can find a probabilistic model that is a direct
counterpart of this choice function by defining p(x, S) = 1 given c(S) = x. Then this
cannot be accommodated by the Random Filtering model under the same restriction. For
the only if part, assume that Single Filtered Choice is not empirically testable. In this
case, since the underlying model is not empirically testable, it is easy to show that the
Random Filtering model also is not empirically testable.

The following definition is needed for the next result.

Definition 11. A restriction f is a constant restriction if the following is true: ∀Γ 6= Γ′

such that f(Γ) = f(Γ′) = 1 we have Γ(S) = Γ′(S) ∀S ∈ X.

Note that if DM uses a Random Filtering procedure with a constant restriction f , then
given a set S she always considers the same alternatives under different filters. Hence,
random consideration due to different selves turns into a deterministic consideration under
constant restriction. This in turn implies that the Random Filtering is no more random
and equivalent to the underlying Single Filtered Choice under that restriction. If a DM
considers all available alternatives as in the case of a perfectly rational agent, then this
DM is restricted by a constant rule.

Theorem 2. A probabilistic choice data is consistent with Random Filtering under a
constant restriction f if and only if ∀S ∈ X, p(x, S) = 1 for some x ∈ S and the resulting
choice function is consistent with Single Filtered Choice under the constant restriction f .

Theorem 2 allows us to characterize Random Filtering restricted by a Rational Filter
directly, since such a restriction is an example of a constant restriction in which the DM
considers all available alternatives. Random Filtering restricted by a rational filter is
called “Rational Filtering”.

Corollary 1. “Rational Filtering”
A probabilistic choice data is consistent with “Rational Filtering” if and only if ∃x ∈ S for
all S ∈ X such that p(x, S) = 1 and the corresponding choice function satisfies WARP.5

For a probabilistic choice data to be consistent with Random Filtering, we need to
have a collection of consideration sets that results in the probabilistic data we have. Note
that maximizing � on a consideration set corresponds to a choice function. So, given
sufficient number of choice functions, we can represent p(x, S) in terms of the frequency
of choice functions that chooses x in S over the whole set of choice functions. Next result
summarizes this connection:

Theorem 3. A probabilistic choice data is consistent with Random Filtering under f if
and only if there exists a preference relation � and a set of choice functions C with
|C| ∈ R, each consistent with SFC under f, such that the following holds:

p(a,A) ≈ |c ∈ C : c(A) = a|
|C|

for all A ∈ X and a ∈ A.

5For the resulting choice function.
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Proofs of all the results in this section and similarly for all other sections are in
the appendix. Note that beyond establishing a firm connection between single filtering
and random filtering (i.e. the deterministic and random models of multiple filters), we
characterized the first type of consideration sets, namely the consideration sets of a
perfectly rational agent. Including the case of such a cognitively superior agent and
other fully identified cases, we showed that using multiple filters does not create any
randomness in the choice, so in that sense as long as we know what someone considers,
it is insignificant how many filters someone uses, since the DM uses only one single filter
in essence. Another important intuition comes from Theorem 3 and its Corollary, since
it shows us that by creating at least as much choice functions as there are filters, we
can consistently represent any probabilistic data. Beyond ”theory of selves”, it gives a
further intuition into modelling a population of consumers consisting of different types.
Assuming each choice function corresponds to a different type (not a single self of a unique
individual), probabilistic choice represents the choices of the population. Constructing
choice functions that correspond to the filters the DM uses is a crucial part of each proof,
and as it is made clear on the appendix, one can construct these from the observed
probabilistic choice data.

3 Attention Filtering

Consider a DM who is not perfectly rational, she has lack of attention, however her
attention may not be deterministic. The usual approach to model the randomness of the
attention (as in Masatlioglu and Cattanea 2017) is assuming that each subset of a set
has a probability of attracting attention in that particular set. In contrast, we model
random attention as if it arises due to randomness of the psychological state the DM is
in. Thus, our model gives a direct and solid interpretation of what a random choice is.
One can reach the attention probability of a set S ∈ X by summing over the probabilities
of the filters that result in that particular subset, i.e. given q(A, S) is the probability that
A ⊆ S attracts attention in S, we have:

q(A, S) =
∑

{Γ∈�:Γ(S)=A}

γ(Γ)

.
This natural interpretation provides an important insight: The randomness of at-

tention paid to a certain set of alternatives does not originate from the alternatives
themselves, they come from the cognitive capabilities of the agent, and these depend on
the psychological state the DM is in.

In this section, we will assume that structure of the consideration set is an Attention Filter
(see Example 2)). Such a collection of filters will be denoted by �AF where the subscript
AF denotes the restriction of being a attention filter. The intuition of an attention filter is
straightforward, it says that given an element does not attract attention in a set S, then
removing that alternative should not change what the decision maker pays attention to.
Note that since there are multiple filters for DM, the DM may pay attention to different
subsets of a set of alternatives in each filter she uses. The following definition will be the
basis of our characterization:

Definition 12.
aRb if p(a,A \ b) < p(a,A)
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for some A ⊆ X.

The intuition behind the above definition is the following: Note that if we remove b
from A, Γs in which b /∈ Γ(A) remains the same. Thus, given a maximizes some of these
filters, the probability change does not come from these unchanged attention filters. This
implies that the change in the choice probability of a comes from an attention filter Γ
where b ∈ Γ(A) and a is the most preferred element in Γ(A). Observe what happened in
such attention filters: As we removed b, these attention filters did not remain the same
and changed so that we observed a decrease in the choice probability of a. Hence, another
element which is not previously in Γ(A) entered Γ(A \ b) and strictly preferred to the
best element of Γ(A), which is a, and therefore we observed the decrease in the choice
probability of a. Since a is the best element of Γ(A) and we know that b ∈ Γ(A), a is
better than b, i.e. aRb. This implies that the acyclicity of R is a necessary condition for
the data to be consistent with Attention Filtering. The following theorem shows that it
is also sufficient.

Theorem 4. “Attention Filtering” (AF)
Random Filtering is an Attention Filtering if and only if R is acyclic.

To see the intuition behind the proof, note that we can construct sufficiently many
consideration sets. Then, we can distribute each element to these filters so that the choice
probabilities are compatible with this distribution. We need to ensure that each of these
consideration set is an attention filter. To achieve this, we use the acyclicity of R and
show that we can distribute these elements in such a way that they do not violate the
property of being an attention filter. In this step, acyclicity ensures that there are enough
cells to be filled by each element and these cells do not overlap with each other.

Note that one can also do a revealed preference analysis in line with the deterministic
counterpart. The following is the definition of revealed preference:

Definition 13. (Revealed Preference) Suppose a probabilistic choice data is consistent
with Attention Filtering. Let {�k,�k} be all possible representations consistent with the
data. Then a is revealed preferred to b if and only if a �k b ∀k.

First, let us take the transitive closure of R, denote it by R.The argument given before
the characterization theorem shows that if aRb then a is revealed to be preferred to b. It
turns out that this is the revealed preference in the model.

Theorem 5. (Revealed Preference Theorem) a is revealed preferred to b if and only if
aRb.

4 “Competition Filtering”

This section assumes another structure for the consideration sets which is the competition
filter. Recall that a competition filter satisfies the following condition:

x ∈ Γ(T ) =⇒ x ∈ Γ(S) ∀S ⊆ T

Such a collection of filters will be denoted by �CF where the subscript CF denotes the
restriction of being a competition filter. The idea of a competition filter is to capture
the competition between alternatives in a given choice set. If an alternative x attracts
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attention in a bigger set, it means that it is sufficiently competitive to attract attention
in a smaller set. To characterize this model, we need to construct a preference relation
over the alternatives. To do this, we need the following construction of the “level sets”:

Definition 14. (Level sets)

X0 := {x ∈ X : p(x, S) ≥ p(x, T ) ∀S ⊆ T}

X1 := {x ∈ X>0 : ∃S ⊆ T ∈ X p(x, S) < p(x, T ) and
∑
y∈M

p(y, S)−p(y, T ) ≥ p(x, T )−p(x, S)}

where X>0 = X \X0 and M ⊆ X0.

Xk+1 := {x ∈ X>k : ∃S ⊆ T ∈ X p(x, S) < p(x, T ) and
∑
y∈M

p(y, S)−p(y, T ) ≥ p(x, T )−p(x, S)}

where X>k = S∗ = X \
k⋃

i=1

X i and M ⊆
k⋃

i=1

X i.

Define these level sets until n such that Xn = {∅}. Let X∗ = ∪n−1
i=1 X

i.

Although the above defined “level sets” may look complicated, the intuition behind the
construction is clean-cut. The construction of the level sets depends on the observation
that a decrease in the probability of y must be balanced at least by one element that is
better. To see the logic, note that we observe a decrease in the probability of an element
in a subset, because a better element entered the competition filter in that subset and
preferred to the previous best element, y. Thus, such better elements than y must
balance the decrease in y. Since the alternatives in X0 never decrease in probability,
these elements are candidate for this compensation and certainly the best element of
X belongs to this set (Note that the choice probability of the best element can never
decrease, since by the property of a competition filter it must be considered in every
subset of it, and by the virtue of being the best element). If the data is consistent with
Competition Filtering then we can repeat this construction until we exhaust the whole
set of alternatives. It also turns out that if the above-defined level sets exhausts the set
of all alternatives then the data is consistent with Competition Filtering.

Theorem 6. Random Filtering is a Competition Filtering if and only if X∗ = X.

To prove the only if part, we need to construct sufficiently many competition filters
where the observed choice probabilities are compatible with the implied construction.
Intuitively, such construction is possible by the definition of level sets. Note that the first
level set takes the best elements, i.e. the elements that never decrease in probability. The
next level set is the set of elements that are balanced by the best elements, so in this
sense they are second-best, because of the logic we explained in the previous paragraph
before Definition 15: At least one better element should always balance out the decrease
in a worse one by increasing in probability at least that in the same amount. The proof
is in the appendix.

4.1 Rationalization/Categorization

As pointed out in Lleras et al.(2017), even though the model of rationalization is not a
two-stage model, it can be expressed in terms of such a model. Recall that we can model
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the first stage with the following “Rationalization Filter”: ΓR(S) = {x ∈ S : ∃Ri ∈
R xRiy ∀y ∈ S \ x}. An alternative x is considered in the first stage if there is a
reason, i.e. a ”Rationale” maximized by that alternative. In the second stage, the DM
chooses according to an order (as we mentioned, we use the theory of order rationalization
and the definition of an order coincides with our usual definition of a preference relation).
Conversely, given x ∈ Γ(S) and y /∈ Γ(S), we can define a “rationale” Ri such that xRiy.
Thus, these two models can be expressed in terms of each other. Hence, this model can
be characterized by Theorem 6, since it is a general characterization for any finite number
of competition filter.

Similarly, one can express Categorization(Manzini and Mariotti, 2012) in terms of
a competition filter, and vice verse. Recall the competition filter needed to express,
”Categorization Filter”:

Γ�(S) = {x ∈ S :6 ∃C ∈ S s.t. C � C∗ and x ∈ C∗}

An alternative x is considered if there is no category that dominates the category x
belongs to. A DM that uses Categorization Filter“ing” is has the following type collection
of filters: Γ(S) = Γ�(S) ∀Γ ∈ � and ∀S ∈ X. We will denote this collection by ��. For
the converse, define a shading relation � in the following way: T � x if x /∈ Γ(T ). Also
similarly, Theorem 6 is sufficient to characterize this model.

Theorem 7. The following are equivalent:
1) A RF is a “Competition Filtering”.
2) A RF is a “Rationalization Filtering”.
3) A RF is a “Categorization Filtering”.

5 Context Effects

One of the important merits of these various models is the fact that they do not satisfy
the well-known regularity condition: p(x, T ) ≥ p(x, S) ∀T ⊆ S. A classical violation of
regularity is provided by Debreu (1960). Consider three alternatives: red bus (R), blue
bus (B) and a train (T). Imagine that in every two element subset of this set, we ob-
serve that each element has the choice probability of 1/2, but in the whole set the choice
probability of a train is higher than 1/2. Note that this example violates regularity, since
train has a higher probability of choice in the whole set. The main point of this example
that there are two very similar alternatives, R and B, which only differ by their color.
As we move to the whole set, these very similar alternatives seem as a one and train
apparently differentiates from these (assuming the color of the bus does not matter for
the DM). Because of this feature, this example is called as the “duplicates problem” in
the literature. Next, we will present two different approaches to explain this phenomena
with our Random Filtering model that uses first attention filters and then competition
filters, i.e. respectively Attention Filtering and Competition Filtering. In the following
examples, assume that γ(Γi) = 1/6.
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Attention Filtering
Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

RBT R RT RBT BT BT B
RB R R R B B B
RT R RT RT RT R R
TB B B TB TB TB B

Assume that each element has the probability of being chosen equal to 1/2. In addition
to that, let

p(T,RBT ) = 2/3, p(R,RBT ) = p(B,RBT ) = 1/6

The above table is an example of a DM who uses Attention Filtering and has 6 of them.
Each column satisfies the condition of being an attention filter, but as you see what she
pays attention to differ from filter to filter. The following preference profile of the DM
would give the “duplicates problem” as a result: T � R and T � B. Note that given
this ordering, T maximizes the attention filters from 2 to 5 in the whole set. This gives
us p(T,RBT ) = 2/3. The rest follows similarly. The following table explains the same
example from the perspective of a DM that uses Competition Filtering.

Competition Filtering
Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

RBT R B T T T T
RB R B B B R R
RT R R RT T T T
TB B B TB T T T

This above table summarizes a DM who uses 6 different competition filters. The logic
is similar to the previous example about attention filters, however we need a different
preference profile. Let it be the following: B � T and R � T . To give an example from
the table, look at the line of the subset R,B. From 3 to 6, the DM considers the options
mixed in a such a way that train is always considered but buses equally likely. In the
first one the DM considers only the red one and in the second only the blue one. Since
the DM prefers the option of bus to the train no matter what the color is, we have the
desired probabilities of choice. One can check that all 6 filters satisfy the condition of
being a competition filter.

The final result shows us that it is not surprising to have a violation of regularity
in these models, since the random model is directly connected to the underlying model,
which allows for choice reversals.

Theorem 8. RF violates “regularity” if and only if underlying SFC violates WARP.

Theorem 8 puts a loose restriction for a RF to violate regularity. If the underlying
model violates WARP, then we must observe a choice reversal as we move from a set
to its subset in a way that the DM does not choose what she chooses in a smaller set.
This amounts to saying that she will choose a particular element x in a bigger set more
frequently and violates regularity. Conversely, if regularity is violated, then there must
exist at least one choice function that selects x in a superset but not on its subset, recall
Theorem 3 that gives such a connection. Such a choice function violates WARP.
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6 Literature Review

As we particularly emphasized, our paper forms a connection between the considera-
tion set and random choice literature by presenting a “theory of selves” approach. The
recent literature of deterministic consideration models started to become highly devel-
oped, there are various papers on this subject. Although we presented some of these in
the introduction, we will give a brief summary of these without falling into too much
repetition.

It is well-known that people do not consider all available alternatives, so in a sense
they form consideration sets. The papers in the literature put intuitive conditions on
these consideration sets. Masatlioglu et al. (2012) models Attention Filter, where the
removal of an alternative DM is unaware of does not change the set of considered alterna-
tives. On the other hand, Lleras et al. (2017) models Competition Filter. In this model,
an alternative that attracts attention in a bigger set must attract attention in any subset
where this alternative is an element. Although these papers model a similar phenomena,
their empirical implications differ substantively. Observe that these models directly put
conditions on the consideration sets they form. The following models do not explicitly
model a consideration set, however their choice procedure implicitly contains a one. We
outlined such a relation in the previous parts. Categorize Then Choose is an example
of such a model due to Manzini and Mariotti (2012). The DM in this model categorizes
the set of available alternatives according to an unobserved process and there is a sort
of dominance relation between categories which is asymmetric: a category can shade
another. One can deduce a consideration set by collecting all alternatives that belong to
an undominated (unshaded) category. Similarly, Rationalization due to Cherepanov et
al.(2013), tells a completely different story but is connected to consideration set litera-
ture. An alternative is psychologically permissible in their model if there is a rationale to
justify it. The DM has a set of rationales which are defined to be only binary relations,
the consideration set can be deduced by collecting all alternatives that at least maximizes
one relation. Besides these models, there are some other well-known models we did not
explicitly model in this paper: Masatlioglu and Ok(2014) builds a reference-dependent
model where the reference is taken to be the status-quo alternative, a consideration set
is formed given the status-quo. Manzini and Mariotti (2007) first eliminates alternatives
according to some rationale, and then maximizes another rationale among the remaining
alternatives. The set of remaining alternatives are the ones who are considered. Caplin
and Dean(2011), and Caplin, Dean, and Martin(2011) a DM forms implicitly a consid-
eration set that depends on time. Eliaz, Richter, and Rubinstein (2011) models a DM
who forms a consideration set of at most 2 alternatives. Eliaz and Spiegler (2009) uses
the approach of consideration sets in a competitive marketing setting. Kimya (2015) uses
attributes of the alternatives to form consideration sets.

The literature on random choice is also highly developed. One of the foremost works
in this literature is Manzini and Mariotti (2014), where the DM has a fixed probability
of considering each alternative. Brady and Rehbeck (2016) is in the same vein with
Manzini and Mariotti (2014), where menu dependency of choice incorporated with some
restrictions. The other vein of works is famous Random Utility Models (RUM), where
the DM has a probability distribution over the set of utility functions. This in turn is
equivalent to saying that there are different set of preference profiles, i.e. the preferences
of the DM are not stable. As we put out, the approach of “stable preferences, changing
consideration” approach we developed by using multiple deterministic filters is more
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intuitive. Moreover, these random utility models do not allow violation of regularity.
The literature on (RUM) is very old and well-established, some works are: Luce (1959),
Block and Marschak (1960), McFadden (1978), Falmagne (1978), and Gul, Natenzon
and Pesendorfer (2010). A recent unpublished work in progress belongs to Masatlioglu
and Cattaneo, where they model Random Attention by assuming that each menu has a
certain probability of attracting attention. This model has the same empirical implication
with Attention Filtering. Our main difference is the following: We model a DM that
uses each deterministic attention filter with some probability in a set of unobserved
collection of filters; whereas they directly assume the randomness, i.e. each subset has
a certain probability to attract attention. Thus, our model gives an explanation for the
probabilistic attention; it gives also a content to the random choice we observe.6

7 APPENDIX

Proof of Theorem 1. If SFC is empirically testable, then it cannot accommodate every
choice function. Assume that c is one of them. For any set S, define p(x, S) = 1 if
c(S) = x. Note that RF cannot accommodate this, since the underlying model does not
allow c.

Conversely, assume that SFC is not empirically testable, i.e. it can accommodate
any choice function. By definition, RF is a collection of finite number of filters that are
restricted by the same condition. Therefore, RF can accommodate any random data since
underlying choice function can accommodate anything.

Proof of Theorem 2. A constant restriction f says that Γ(S) = Γ′(S) = T where T
is a certain subset of S for all Γ,Γ′ for which f(Γ) = f(Γ′) = 1. Thus, the collection
of all such filters is equivalent to one single filter Γ∗ and RF reduces to a SFC under f .
The converse direction is true by definition, we can write any SFC in terms of a multiple
filters under constant restriction.

Proof of Corollary 1. Directly follows from Theorem 2, since the restriction is a con-
stant restriction.

Proof of Theorem 3. For the if part, note that for each choice function c under
SFC restricted by f, there is a corresponding consideration set Γ under f. Take Γ to
be the collection of these filters. Define γ(Γ) ≈ 1/|C|. Note that |c ∈ C : c(A) =
a| = |{Γ ∈ � : a = arg maxΓ(A) �}| Since 1/|C| is a constant, we can take it out the
summation (hence γ(Γ)) and we are left with

∑
Γ∈� 1{a∈A:a=arg maxΓ(A)�} which is equal to

|{Γ ∈ � : a = arg maxΓ(A) �}| and thus |c ∈ C : c(A) = a|, so the proof of the if part is

complete since
∑

Γ∈� γ(Γ)1{a∈A:a=arg maxΓ(A)�} ≈
|c ∈ C : c(A) = a|

|C|
.

For the only if part, multiply all γ(Γ) (denote it by m) and let C be the set of choice
functions that correspond to each Γ where we produce γ(Γ)/m of each such choice func-
tion. If this is not a rational number, then one can approximate the irrational γ(Γ)/m

6Please refer to these articles to learn more about the marketing and psychology literature evidence
on consideration sets and random choice.
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with a sequence of rational numbers which converge to that irrational number by the dense-
ness of rationals. Hence, we expressed given probabilities that are consistent with RF in

terms of
|c ∈ C : c(A) = a|

|C|
.

Proof of Theorem 4. (“Attention Filtering”)
Necessity already shown, R’s cyclicity implies that the revealed preference has a cy-

cle by the revealed preference theorem and this is a contradiction to the definition of
Attention Filtering. For the only if part, first extend R which is to a strict linear order
over X, denote this extension by �. Enumerate all elements in X by xi, where xi � xi+1

∀i. Define xi(S) = {y ∈ S : xi � y}∪{xi}7 for any set S. We will prove that we can con-
struct a collection of attention filters {�AF} recursively. First, construct a collection of
attention filters such that |�AF| ≤ |X|×|X|. Define ki as the ith minimum probability that
is observed in the data and let k0 = 0. Let γ(Γi) = ki−ki−1.We will start the construction
first by defining it for all 2-element subsets. ∀xi, xi+k ∈ X, Γj(xixi+k) = xixi+k ∀j from
1 to k where the sum of respective γ(Γj)’s are equal to the p(xi, xixi+k). The rest is filled
with xi+k. Suppose that for all sets S ∈ X with |S| < k, the attention filters are formed.
Take T with cardinality k. Let xT1 and xTn be the best and worst elements, respectively.
Consideration sets are formed in the following way: First, put xTn to the last Γi’s such
that the sum of respective γ(Γi)’s are equal to the p(xTn , T ). Then, for any x ∈ T \ xT1 xTn ,
put x to the sufficient amount of Γi’s similar to the above procedure, but starting from
the minimum index k where Γk(x) = x and only to this type filters, in order. We need
to guarantee that there is enough cells to fill in each step. To see this, note that we only
eliminate better elements than xi as we move from xi to any superset T . So; it must be
the case that p(xi, xi) ≥ p(xi, T ), since otherwise we would have p(xi, xi) < p(xi, T ) and
this implies that xi � xk for k < i, a contradiction. Since p(xi, xi) ≥ p(xi, T ), the cells
that are needed by x ∈ T \ xT1 xTn decreases in number. This means that we have enough
cells for all such x. Lastly, distribute xT1 to the remaining cells. We need to show that
in this procedure all xi 6= xj where j > i must stay on different cells. This follows by the
construction, since we already put xj into the cells in xi following the order coming from
the cells of the type Γk(xj) = xj. So, the order following from the Γk(xi) = xi to distribute

xi in any set T uses completely different cells than xj’s cells coming from Γk(xj) = xj.
Now, we need to show that the constructed sets are attention filters. Assume to the

contrary Γi(S) 6= Γi(S \ x) for x /∈ Γi(S). Γi(S) = y for some y ∈ S \ x. x /∈ Γi(S)
implies that x � y. So, it need to be the case that p(y, S \ x) ≥ p(y, S), since otherwise
y � x which is a contradiction. Note that y ⊆ S \ x. Since we put y in S and S \ x
according to the order coming from Γk(y) = y. Γi(S \ x) 6= Γi(S) = y, so y fills more
cells in S than S \x, since they start from the same index but y does not fill the ith index
in S \ x. This implies that p(y, S \ x) < p(y, S) which implies y � x, a contradiction.
Hence, this construction satisfies the condition of being an attention filter for each i.

Proof of Theorem 5. We already showed that if aRb then a is revealed to be preferred
to b. For the other direction, observe that if it is not the case that aRb then we can find
a preference profile � that includes R (recall that it is the transitive closure of R) where
b � a. Then, the proof of Theorem X shows that the data can be rationalized with this
preference.

7For ease of notation, we will use simply x and which set we take on the lower contour set will be
clear from the context.
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Proof of Theorem 6. We need to prove the sufficiency part. Define . in the following
way: x . y if ∈ Xk and y ∈ X l where l > k. Take a preference profile that includes .,
such a preference profile exists since we can extend . to a strict linear order because of
the acyclicity. Enumerate the elements in the same way as in the previous proof. For the
whole set X, define Γj(X) = {xi} ∀j as in the Proof of Theorem 4. We will construct
recursively. Suppose that for all sets S ∈ X with |S| > k, the competition filters are
formed. For |S| = k, define the following:

Γ0(S) =
⋃
S⊂T

Γ0(T )

. The algorithm for constructing the final competition filters Γ∗ is as follows: If p(xi, T ) >
|{Γ0 ∈ �CF : xi = arg maxΓ0(T ) �}|, put xi into Γ ∈ {Γ0 ∈ �CF : xj = arg maxΓ0

i (T ) �}
where i > j and p(xj, T ) < |{Γ0 ∈ �CF : xj = arg maxΓ0(T ) �}|, i.e. we put the better
element into a competition filter maximized by a worse element so that to distribute the
remaining probability. Note that this construction satisfies to be a competition filter, since
by definition all elements in the filters of supersets are contained in S’s filter and the
algorithm only adds new elements to the above defined filters. We only need to show that
this algorithm results in a consistency between the probabilistic data and the construction.
To the contrary, assume that the algorithm does not work, i.e. we cannot distribute the
remaining probability from xk in the described way after we successfully distributed it until
xk (starting from the most preferred until kth one). So, it must be the case that:

∑
l≥k p(xk, S) > γ({Γi ∈ �CF : Γ0

i (S) = {∅}} ∪
⋃

i≥k{Γ0
i ∈ �CF : Γ0

i,xi
}) 8. (1)

Observe the following two equalities:

1=γ({Γi ∈ �CF : Γi0,{∅}(S) ∪
⋃

i≥k{Γi ∈ �CF : Γ0
i,xi
∪
⋃

i<k{Γi ∈ �CF : Γ0
i,xi
}) (2)

1=
∑

i p(xi, S) =
∑

i≥k p(xi, S) +
∑

i<k p(xi, S) (3)

But then, then by (1) and (3):

8For notational ease, we use the following: Γ0
i,xi

= {xi = arg maxΓ0
i (T ) �}. Also,

γ({Γi ∈ �CF : Γ0
i (S) = {∅}} ∪

⋃
i≥k

{Γ0
i ∈ �CF : Γ0

i,xi
})

denotes the sum of the probabilities of using respective Γi’s
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1 >
∑
i<k

p(xi, S) + γ({Γi ∈ �CF : Γ0
i (S) = {∅}} ∪

⋃
i≥k

{Γ0
i ∈ �CF : Γ0

i,xi
})

Using (2) we are left with:

γ(
⋃
i<k

{Γi ∈ �CF : Γ0
i,xi

(S)) >
∑
i<k

p(xi, S)

Note the following:

p(xi, S ∪ xj) ≥ γ({Γi ∈ �CF : Γ0
i,xi

(S)})

Combining this last expression with the previous one, we have the following:∑
i<k

p(xi, S ∪ xj) > γ(
⋃
i<k

{Γi ∈ �CF : Γ0
i,xi

(S)}) >
∑
i<k

p(xi, S)

Finally, the last expression implies:∑
i<k

p(xi, S ∪ xj)− p(xi, S) > 0

Recall our necessary condition: There must be a better element that balances the
decrease in probability, however note that here the sum of top k elements decrease. Thus,
we cannot find any better element to balance this decrease, since there exists no better
element than the ones in {1, ..., k}. This is a contradiction to our necessary condition,
hence the proof is complete.

Proof of Theorem 7. The equivalence between these models are shown in the text. Theo-
rem 6 can be directly applied to “Categorization Filtering” and “Rationalization Filtering”.

Proof of Theorem 8. Assume that it allows for regularity but there is no underlying
SFC that violates WARP. Then, given x is chosen from a set S, it must be the case that
x will be chosen in any subset T of S given x ∈ T . So, for any such subset, the probability
that x is chosen can never decrease, and thus regularity cannot be violated.

For the converse, assume WARP is violated for the underlying SFC, but regularity is
not violated. Since WARP is violated, there can exist x ∈ S ∩ T where T ⊆ S such that
c(S) = x 6= c(T ) for some Γ ∈ �. By Theorem 3, this increases the probability that x is
chosen in S, leading to a contradiction since regularity is violated.
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