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ABSTRACT

Today machine learning algorithms are an integral part of many high-tech products and
services. They are extensively used in the decision-making processes in virtually all the
products and services of well-known information companies such as Google, Facebook
and Yahoo. Typically, users' online history (e.g. web pages visited, social media
messages and products viewed/purchased) is used by machine learning algorithms to
infer age, gender, location, income level, and other demographics. Then, this
information, along with the current context, is used by recommendation engines fo
predict the ‘rating' or ‘preference' that a user would give to items such as to movies,
books, research articles, search queries, social tags and products in general. Targeted
advertising systems use similar data to serve ads that a user is most likely to notice and
take action. As the number of users of these companies increase, the effects of these

algorithms on the users are getting more complex and significantly more important.

To this end, this thesis models the effects of the machine learning algorithms on user
preferences. Specifically, this thesis (a) proposes a mathematical model of the potential
effects of machine learning algorithms on users' preferences, and (b) utilizes the insights
from this model for proposing a system design framework for altering user preferences
in a desired manner. A state-space model is introduced, where the user’s internal state of
preferences is represented using a first order Markov chain. An additional observation
model stage is added to represent observable user actions based on the latent
(unobservable) internal state. The complete system is designed to estimate the latent

state of the users from observations.

Estimation process of the latent internal state is extensively studied in the machine
learning literature such as in the regression, classification and recommendation
frameworks. However, as novel contributions of this work, the following goals are

accomplished:

e We model the effects of machine learning algorithms such as recommendation
engines on users through a causal feedback loop. We introduce a complete state-
space formulation modeling: (1) evolution of preferences vectors, (2) observations
generated by users, and (3) causal feedback effects of the actions of algorithms on

the system. All these parameters are jointly optimized through an Extended Kalman

e
PO

[

Filtering framework.
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We introduce algorithms to estimate the unknown system parameters with and
without feedback. In both cases, all the parameters are estimated jointly. We
emphasize that we provide a complete set of equations covering all the possible
scenarios.

To tune the preferences of users towards a desired sequence, we also introduce a
linear regression algorithm and introduce an optimization framework using
stochastic gradient descent algorithm. Unlike all the previous work that only use the
observations to predict certain desired quantities, as the first time in the literature,
we specifically design outputs to “update” the internal state of the system in a

desired manner.
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Chapter 1: Introduction

OzET

Giiniimiizde makine 6grenmesi algoritmalar1 teknolojik tiriin ve servislerin degismez bir
parcasi haline gelmistir. Google, Facebook ve Yahoo gibi bilgi sirketlerinin
{iriinlerindeki karar mekanizmalarinda yaygin halde kullanilmaktadirlar.  Bu
algoritmalar, kullanicinin online verilerini (ziyaret ettigi web sayfalari, sosyal medya
mesajlarl, baktigi ya da satinaldigi tirtinler gibi) kullanarak yas, cinsiyet, lokasyon, gelir
seviyesi ve diger demografik bilgileri ile ilgili ¢ikarimlar yapar. Kullanicilarm film,
kitap ve diger iiriinlere verecegi potansiyel notlar veya bu iiriinlerle ilgili tercihleri
tavsiye motorlar1 tarafindan bu bilgiler kullanilarak tahmin edilir. Hedefli reklam
sistemleri de benzer verileri baz alarak kullanicinin ilgisini ¢ekecek ve tiklama ihtimali
yiiksek reklamlari segip gosterirler. Bu sirketlere ait iiriinlerin kullanict sayilart arttikga
algoritmalarin  kullanicilar iizerindeki etkileri daha karmagik ve Onemli hale

gelmektedir.

Bu tezde makine dgrenmesi algoritmalarinin kullanici tercihleri iizerindeki etkileri
modellenmistir. Tezde (a) kullanici davranis ve tercihlerinin matematiksel bir model ve
(b) bu model kullanilarak kullanict tercihlerini istenen sekilde degistirebilecek bir
gerceve sistem oOnerilmektedir. Kullanicinin gézlemlenemeyen i¢ durumunu birinci
derece Markov zinciri kullanarak modelleyen bir durum-uzay modeli gelistirilmistir.
Ayrica bu i¢ duruma bagli olarak ortaya cikan gdzlemlenebilir kullanici hareketleri icin
de bir gbzlem modeli eklenmistir. Sistemin tamami gozlemlerden i¢ durumu tahmin

etmek tlizere tasarlanmistir.

fbrahim Delibalta - February 2018 5
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Regresyon, simiflandirma ve tavsiye motorlari gibi makine Ggrenme literatiiriinde 1¢
durumun tahminlenmesi genis bir sekilde ¢aligilmis olsa da bu tez ¢cahsmasinin 6zgiin
kazanimlari su sekildedir:

e Makina 6grenme algoritmalarinin kullameilar iizerindeki etkileri sebep-sonuc geri
bildirim déngiisii ile modellenirken durum-uzay formiilasyonu su sekilde formiile
edilmistir: (1) tercih vektdrlerinin evrimi, (2) kullanic1 gozlemleri, ve (3) sebep-
sonu¢ geri bildirim dongiisii ile kullanict aksiyonlarmun sistem iizerindeki ektisi.
Biitiin sistem parametreleri ortak olarak Genisletilmis Kalman Stizgecleri ile
optimize edilmistir.

e Bilinmeyen sistem parametrelerini tahmin etmek iizere geri bildirimli ve geri
bildirimsiz durumlar icin algoritmalar gelistirilmistir.

e Kullanict tercihlerini istenen bir sekilde ayarlamak icin dogrusal regresyon ve
stokastik gradyan inisi gergevesinde algoritmalar gelistirilmistir. Ciktilarin sistemin

ic durumunu istenen sekilde ayarlamas literatiirde ilk kez yapilmistir.

6 Ibrahim Delibalta - February 2018
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I INTRODUCTION

Recent innovations in communication technologies, coupled with the increased use of
interactive media and smartphones, greatly enhanced the ability of companies and
governments to gather and process an enormous amount of information on individual
users. Today, information can be collected from many sources, including, but not
limited to, content users share on social networks and blogs, behavioral data collected
from online services, intelligent device activities, and security camera recordings.
Efficient and effective processing of this “big data" have the potential to significantly
improve the quality of many real life applications or products since this enormous
amount of data can be used to accurately profile and, then, target particular users. This
unprecedented quantity of information has already attracted the attention of knowledge
conglomerates such as Google, Yahoo and Microsoft. These companies use this

information not only to steadily increase quality of their services by designing highly

8 [brahim Delibalta - February 2018
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sophisticated machine learning algorithms, but also to influence the behavior of
consumers and users due to their extensive access into our daily lives (Stoicescu 2015).
To this end, we seek to mathematically model the effects of machine learning
algorithms on users, particularly preferences of the users, and then use this
mathematical model to tune the overall system in order to change the

behaviors/preferences of the users (if possible) in a desired manner.

Unlike conventional applications of machine learning algorithms whereby available
data is used to make inferences about users and predict, for example, the most suitable
movie for a particular user, new generation of machine learning systems employed by
these enormously large companies have the capability, ability and potential to change
the underlying problem framework, i.e., the user itself, by design (Brodersen et. al.
2015; Zarsky 2004). As an example, consider “Yemek Sepeti", which provides services
such as food delivery, user ratings, restaurant search and recommendation. Based on
the user history, Yemek Sepeti tries to provide the most appropriate content and the
well-tuned offers to its users. In a large scale, this comparably powerful medium can be
used not only to provide targeted content, but can also be used to change user behavior,
inclinations or preferences, e.g., unhealthy eating habits of a consumer can potentially
be changed by suggesting more healthier foods with high ratings similar to usual
preferred diet of the user. Hence, this abundance of new sources of information and
previously unimaginable ways of access to consumers' data have the potential to
substantially change the underlying applications and classical machine learning
approaches by incorporating the effects of the algorithm on the intended user in the

design.

Ibrahim Delibalta - February 2018 9
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We argue and mathematically model that the actions of the machine learning
algorithms, such as recommending targeted healthier food to users, can affect the
preferences and behaviors of users by changing their internal state, however, there are
certain attributes of the internal state that cannot be altered. In the next chapters and as
summarized in the following, we show that we can represent both effects using a
statistical approach, which depends on both immutable characteristics of the user
(incorporated as a side information and a state equation) as well as on inputs (or actions)
from the environment (or the machine learning algorithm) incorporated as a deriving

term.

Digital Media: " : Data Collection:
igi drtinne: Social media, digital Actions Cookies, tweets/posts,
Digital Interventions: ab. Fiobile AR R

How do they affect your next set of actions?
Are they just what you want to see?
Or what someone else wants you to see?

search, IPTV and app analytics

Message and Product

news feeds recommendations  Side Information:

Age, income, education..

User Model

Advertisements Search engine
results

| " - y | Measure how the user reacts
Machine Learning Algorithms,

(Big data companies - Google, Yahoo, 7

Facebook etc.; government institutions) update algorithms accordingly

to each intervention and

Figure 1 The Digital Feedback Loop

The machine learning algorithms produce digital interventions or triggers to users in the
form of online advertisements, social media and news feeds, product recommendations
and search engine results. The user acts on these interventions by reading a

recommended article, clicking on a search result or an online advertisement. These

10 Ibrahim Delibalta - February 2018
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actions leave digital footprints for the big data companies to collect, process and feed
their machine learning algorithms. And this completes the digital feedback loop as
shown in Figure 1. As the loop is repeated, the algorithms get smarter and more
effective in knowing how the user behaves and reacts to interventions. Thus, the
algorithms not only produce more effective interventions but also learn to steer the user

behavior in an intended manner.

We model this phenomenon using a state-space model as shown in Figure 2. Next, we
provide a high level description of our model and the structure of the thesis. In the
figure, the current preferences of the user are represented by pt and the next state of the
preferences by pt+1. These preferences are latent and can only be indirectly observed by
the user actions, modeled as X:t. The user actions are a collection of Facebook shares,
comments, status updates, spending patterns and all other digital footprint. The model
assumes that the user actions are a function of his/her preferences p: and the side
information St. The side information consists of age, gender, residency and other
demographics. Machine learning algorithms choose digital interventions, a:, based on
the observations, Xt. The next state of the preferences pt+1 are modeled as a function
current preferences, the side information and the digital interventions. With such a
model, the interventions can be chosen in a way to update the user preferences. The

model also takes into account random noise effects, indicated by vt in the figure.

In Chapter 2, we study how the data input of the model, Xt and st are produced and
processed. This data input can be extracted from the abundant digital footprint of the
user (about 13GB per month per capita, for a total of 96 exabytes (96 billion gigabytes)
in 2016 (Cisco 2017)). We take a look at the steps involved in processing

(preprocessing, encoding and processing) this enormous amount of raw data efficiently

[brahim Delibalta - February 2018 11
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and effectively to extract meaning and insight. In Chapter 3, we focus on the anomalies
in the data since irregularities can convey valuable information as well as the
mainstream data. We study the overall anomaly detection landscape and then introduce
a novel anomaly detection algorithm. In Chapter 4, we dive deep into the state-space
model to mathematically prove that user preferences, pt, can be changed by the machine

learning algorithms in a desired manner.

gender, age, other demographics observations (actions of the user):

order food, tweet, shop, read news

Vi 3B
external effects: ——=

random fluctuations
seasonal effects

State-Space

\Feedback Model
.

digital triggers (actions of the algorithm):
display ads, search results, recommended
news & products

Figure 2 The State-Space Model with Feedback

1.1 Datasets
The data set we use in Chapter 2 is a collection of tweets gathered through a case-study

which includes 1440 tweets written in Turkish. The tweets are collected from 168

12 Ibrahim Delibalta - February 2018
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different users between April 10th, 2013 and May 28th, 2013. There are at most 10
tweets from a single user. The tweets, whose contents can be related to anything, are
freely worded and unstructured. There are 3 classes, i.e., a tweet falls into one of three
categories, which are “No Statement(0)”, “Specific(1)” and “General(2)”. These
categories reflect the level of statement about other people in a tweet. Tweets are
manually labeled by human coders. Three coders were trained for six months. A subset
of their coding results were cross-checked by an expert in order to make sure their

coding results were correct and consistent with each other.

In Chapter 3, we use the Istanbul Stock Exchange (ISE) dataset for real data benchmark
purposes. Daily price data of nine stocks are downloaded from
‘http://finance.yahoo.com’ and ‘http://imkb.gov.tr’ from January 5, 2009 to February
22,2011 and the prices are converted to returns over 536 samples. We randomly add 64
(nearly 10 percent) anomalous samples to this dataset. The anomalous data are
generated from a multivariate Gaussian process whose mean is the negative of the batch

mean of the nominal data (with the same estimated covariance).

We made an effort to use existing datasets to validate and verify our algorithms and
models. However, there are inherent difficulties with using true big data to be able to do

validation at a large scale. We touch on such difficulties in the remainder of this section.

Data is abundant and ever increasing due to an increasing number of new digital
platforms and usage methods (Bradlow et al. 2017). The impression of data being
abundant is typically fueled by data conglomerates such as Facebook, Google and
Amazon (Wedel and Kannan 2016). Another giant, Walmart, collects 2.5 petabytes of
data from 1 million customers every hour about transactions, customer behavior and a

number of other things (McAfee et al. 2012). There is an obvious theme here, big data

[brahim Delibalta - February 2018 13
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implies big user base. There are other sources of data such as surveys and experiments.
However, these not only lack the “big” qualifier but also suffer from some inherent
problems. The accuracy of many surveys and experiments are subject to
misrepresentation and self-consciousness. Many times these surveys and interviews
involve counterfactual questions which may lead to major inaccuracies. Since
experiment setup may influence the results of the experiment, especially in retail,

companies prefer field experiments rather than lab experiments (Sudhir 2016).

Algorithms and models developed for predicting user preferences, psychological traits
and states require big data. These algorithms and models evolve to make better use of
data size and variety. Insights that might otherwise be completely obscure come into
light with the use of advanced models and big data. The data needs to be not only big
but timely as well (Bradlow et al. 2017). Micro-targeting and behavioral targeting
requires real-time or near real-time data. Context, including location and psychological
states, is transient. The relevance of insights gained from the data might have a short
period of effectiveness. Therefore both data collection and processing need to be very

efficient to allow real-time results.

14 Ibrahim Delibalta - February 2018



Chapter 2: From Raw Data to Insight

2 FROM RAW DATA TO
INSIGHT

In this chapter, we study the data aspect of our state-space model. The main data input
to the model is about user actions, the observable reflections of latent user preferences.
A supplemental set of data input to the model is the user side information which
consists of age, gender, residency and other demographics. We take a close look at the
steps involved in going from raw data to a form of data that can be fed into the model.
We outline the state of the art for these steps of data processing. While this chapter
focuses on methods which use the mainstream data points to extract knowledge for the
model, the data points that are not part of the mainstream data can be precious. In the
next chapter, we look into how we can make use of irregular or outlier data points to get

further information for the model.

[brahim Delibalta - February 2018 15
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Data is deemed very valuable. It is the new “oil”. It is also the new bacon and the new
currency... Data is valuable, only if one knows how to use it and what to do with it

(Sondergaard 2015):

Big data is the oil of the 21% century. But for all of its value, data is

inherently dumb. It doesn’t actually do anything unless you know how to use

it.
While the mathematical tools and statistical fundamentals for processing raw data have
been around for a long time, there was neither sufficient useable data nor the amount of
data that could be processed was enough to yield any revelations up until 2010s. The
wide spread use of social media contributed significantly to available data. The
processing power of computers increased enormously over the last three decades. As of
June 2017, the world’s most powerful system, developed by China’s National Research
Center of Parallel Computer Engineering & Technology, has a performance of 93

petaflops (https://www.top500.org/lists/2017/06/). That is about 5 million times more

capable than a Cray-2 supercomputer was in 1985. With the advances in big data, huge
amounts of data can be processed to extract information and insight that would have
otherwise been impossible. Computers started doing the tasks of categorization,
encoding and classification not only much faster but also more accurately than humans.
In the 2015 ImageNet Classification Challenge, Google’s deep learning algorithm was
able to beat a human annotator’s error rate (Russakovsky et. al. 2015). In a study with
86,200 Facebook users who took personality tests, computers predicted personality
more accurately than the Facebook friends of the participants, based on Facebook likes

(Youyoua et al. 2014).
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Chapter 2: From Raw Data to Insight

In fact, the abundant raw data of today’s life style is sufficient to Both the main and
supplemental data inputs to the model can be We take a look at the steps involved in

processing (preprocessing, encoding and processing) this

Today, the problem is not the lack of data. Data is abundant. Willingly or unwillingly,
people share data more than ever. Free and ubiquitous access to social media platforms,
combined with people’s self-expression needs, create a huge amount of data in the
public domain. Social media posts include opinions, feelings and facts. The key task is
to process this enormous amount of raw data efficiently and effectively to extract
meaning and insight. Precise and precious information can be extracted from these
otherwise seemingly useless data (Popescu and Baruh 2013; Huang et. al. 2015; LeCun
et. al. 2015).

If people search for a car dealership using map applications on their cell phones, they
are very likely to see car advertisements next time they use the internet. Soon after
someone emails his/her friend about sports shoes, he/she is more than likely to see
sports shoes advertisements. Individuals are tracked online to better understand their
interests, behavior and preferences. In its privacy notice, Google clearly states that your
emails are processed for such purposes (Google Privacy Notice 2017). However, most
people do not mind this and allow companies and organizations to use their data in
exchange for free services such as email (Datatilsynet 2016). Companies like Google

and Facebook provide free services in order to collect this enormous amount of data.

Recently a new source of data has emerged through self-tracking. Being self-conscience
along with having the capability to conveniently collect one’s own data has fueled the
concept of “The Quantified Self” (Swan 2013). People collect and track self-data on

physical activities, diet, psychological and mental states, environment, any social or
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contextual situation (Augemberg 2012). Virtually all smart phones have applications to
collect physical activity statistics. Data from biosensors add up to huge amounts. 232
million wearable fitness tracking devices were sold in 2015 (IMS 2015). Technology
companies such as Validic has access to patient data from over 400 sources reaching

223M individuals in 52 countries (https://validic.com).

As abundant as the data is, not all of it is the same in conveying useful information.

There is a conceptual usefulness hierarchy in data.
An ounce of information is worth a pound of data.
An ounce of knowledge is worth a pound of information.
An ounce of understanding is worth a pound of knowledge (Ackoff).

In the process of extracting something beneficial and useful from data, feeling the need
for more formalization, initial proposals about a conceptual hierarchy were made in the
1980s (Zeleny 1987; Ackoff 1989). As significance of data was understood more and a
need emerged for going from raw data to more refined forms of data, other proposals
came about to finally converge on the widely used concept of Data-Information-

Knowledge-Wisdom (DIKW) (Rowley 2007; Awad and Ghaziri 2004).

As one moves higher in the DIKW hierarchy, more insight and enlightenment can be
obtained. There is more meaning and value in the higher layers. Data, at the bottom,
does not provide much insight as is. Raw data is a collection of records: manual or
online survey results, phone call records (commonly referred to as call data records or
CDR), search and web browsing history, social media posts including voice, video and
text. It needs to be processed to take our insights to the next level and turn it into

information and then to knowledge and wisdom. Processing the data at the lower layers
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requires compute power and storage capacity but conceptually it is not complex. Since
the abstraction increases at the higher levels, computer processing and programmability
decreases (Rowley 2007). More sophisticated forms of data processing is needed. In the

next section, we look into the problem of data processing more closely.

2.1 Data Processing

Data in question can be in the form of text, image, video or sound. In this thesis, we
limit our studies to text data due to time and resource constraints. The text data can
come from social media, surveys, interviews, TV program transcripts, books, papers or
any kind of source that produces text. Today’s computer systems are capable of
processing enormous amounts of data. However, this sheer processing power may not
be sufficient for extracting information and meaning hidden in the higher layers of the
insight hierarchy. This is where advanced computer algorithms such as deep learning
(LeCun et. al. 2015) come into the picture to extract meanings that may not be obvious

to humans.

The processing of textual data by computers can be conceptually considered in three

sequential steps: pre-processing, encoding, and processing.

2.1.1 Pre-processing

Computer programming requires pre-processing of text before any kind of encoding or
classification can be done. Especially free form text can be challenging to interpret by
computers and therefore requires some form of pre-processing to alleviate this
challenge. Social media data is one of the main sources of free form text. Use of

informal and incorrect language with incorrect grammar and spelling as well as use of
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emoticons and non-standard abbreviations make social media text processing
challenging (Farzindar and Inkpen 2015). To deal with this problem, some of the most

common text pre-processing steps are:

e Corpus Cleaning: Removal of duplicate messages such as retweets, removal of
URLSs and links.

e Spelling Correction: Correction of intentional or unintentional spelling errors:
“c00000l” to “cool”, “u comin?” to “are you coming?”. Techniques using
Recurrent Neural Networks (RNN) and Long-Short Term Memory (LSTM) can
correct spelling errors at success rates well above 90%.

e Stop Word Removal: Some words are common words in a language that do not
convey any extra information or meaning. “and”, “are”, “the” are some of the
stop words that need to be removed in pre-processing.

e Stemming and Lemmatization: The goal of stemming is to reach a common
root or base of a word and it may not always be an actual word. For example, the
stem for the word “typed” may be processed as “typ” since there are words like
“typing”. Lemmatization would, however, try to reach at a real root of this word
as “type”.

e Tokenization: Chopping a stream of text into words or elements that can be
processed more meaningfully. It typically involves finding word boundaries and

removal of punctuation and special characters.

2.1.2 Encoding and Representation
Encoding is one of the techniques used in the process of extracting insight from raw

data in applied sciences (Desrosieres 1998). Data encoding puts potentially very large
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and free form text in more concise forms which facilitates meaning extraction and thus
helps move up in the insight hierarchy. Encoding involves assigning attributes and
concepts from data to categories in a systematic way (Lockyer 2004). These attributes
and concepts are codes which are typically words, numbers or short phrases to capture
the true essence of the data. Codes can be qualitative such as encoding the concept in

the following text as “security” (Saldana 2009):

I notice that the grand majority of homes have chain link fences in front of
them. There are many dogs (mostly German shepherds) with signs on fences

that say “Beware of the Dog.”

Codes can also be numerical such as the number of times a particular word is used in a

script.

Taxonomy, the science of encoding and classification, requires categories. According to
Desrosieres, there are two approaches to forming categories. The first one is the
nominalist approach where categories are pre-defined by public norms, conventions or
commonly accepted procedures. The second approach infers categories based on data.
As more data analysis takes place, categories may get redefined. Thus, categories are
fluid and can be determined based on a method as opposed to a pre-defined system of
the first approach (Desrosieres 1998). The traditional machine learning tasks of
classification and clustering have remarkable similarities to these two approaches,
respectively. In machine learning, classification is the task of assigning a data point to
one of the pre-determined categories. This process resembles the nominalist approach
since the categories are determined in advance and the task at hand is to make

assignments to those categories. In contrast, clustering in machine learning uses a
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method to determine the categories in a similar manner to the second approach as

described by Desrosieres.

Data encoding not only helps human interpretation and analysis but also makes
computer analysis more straight forward (Bourque 2004). Computer analysis of textual
data requires representation. Computers can interpret digital data that consist of 1’s and
0’s. There are potentially countless ways of representing text as 1’s and 0’s. The key is
to find a way to model it such that these models can be manipulated algebraically in an
efficient way and also carry contextual information to enable complex analysis such as
semantic analysis. A representation that can capture contextual information enables
smart algorithms to conduct complex analysis without the need for explicit and manual
encoding. The sentiment of a sentence can be determined to be “sad”, “happy” or even

“sarcastic” without using explicit encoding.

The most common way of text representation is as vectors. This geometric
representation of words as vectors is called “word embedding”. Word embedding is the
process of mapping strings, more specifically words, into vectors. One of the simplest
word embedding choices is to encode them as one-hot vectors, i.e. represent the
existence of a word by 1 and the opposite by 0. The English language, having about 13

million tokens, would have vectors of size 13 million each as:
aardvark=[100...0],a=[010...0],at=[001...0],...,zebra=[00... 0 1]

While this encoding is quite intuitive, it is not very useful since it does not convey any
contextual or semantic information. Also, being very sparse makes it inefficient for
computer processing. Thus, the main goals of word embeddings are to minimize vector

dimensions for efficient computations as well as to find a geometric representation to
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capture semantic relationship between words. It has been shown that words that have a
semantic relationship tend to appear in similar context (Miller and Charles 1991). Based
on this principle, two categories of models for deriving word embeddings have emerged

(Baroni et. al. 2014):

e Count Based Models: The main idea is to count the number of times a
particular word is seen within a certain proximity (window) of each word in the
available data sets, i.e. corpora. Words like “school”, “student”, “book”,
“teacher” are likely to appear together while “school”, “sushi”, “romance”, and
“surfing” are not. Forming co-occurrence based counts requires still very large
dimensional matrices. Dimensionality reduction techniques are applied to make
the dimensions manageable while retaining contextual information. GloVe
(Global Vectors for Word Representation) (Pennington et. al. 2014) is one of the
most widely used co-occurrence methods. Count based models can be formed in
an unsupervised manner, that is, they can be formed without human supervision.

e Predictive Models: The goal is to predict words based on their context. Given
context words, the model tries to predict the center word. In the sentence “A car
accelerates uniformly from rest”, the Continuous Bag of Words (CBOW) Model
treats {“A”, “car”, “uniformly”, “from”, “rest”} as context and tries to predict
the center word “accelerates”. Another well-known predictive algorithm, skip-
gram, does just the opposite: given the center word, it tries to predict the context
words. Predictive models use supervised algorithms. However, they do not incur
the manual annotation costs associated with supervised algorithms since the

context windows used for training can be automatically extracted from an

unannotated corpus (Baroni et. al. 2014).
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Once textual data are represented as geometric word vectors. Similarity is simply a
measure of distance between these vectors. Some of the most common distance
measures used by both classification and clustering tasks are cosine, Jaccard and
Euclidean. If two words are represented as d-dimensional vectors ue R®andv e R?,

the Euclidean distance between these two vectors would simply be
d 2

Ju-v]= /20w
i=1

The Jaccard similarity between two sets of words is the intersection of these sets
divided by the union of the sets. Cosine similarity is especially used in measuring
semantic similarity (Lintean and Rus 2012). It is the cosine angle between two vectors

which indicates how close the two vectors are:

0056’:ﬂ

JullIv]

2.1.3 Processing and Applications

Classification and clustering are common information extraction tasks used in the
processing phase. In classification, the machine learning algorithm to assign data points
to categories learns based on training data points whose category information are
already labeled, typically, by humans. This kind of learning is called supervised
learning since a training set of correctly assigned data points are available. The
algorithm learns from this training set and makes assignments for new data points
whose category information is not available. In contrast, the technique of clustering is

used when training data is not available. Clustering involves grouping together data
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points that are similar to each other. Each cluster makes a category which is formed in a
fluid manner as data is analyzed. A similarity measure is needed to make a decision on
which data points can form a cluster. Clustering is a type of unsupervised learning since

there is no need for training data and thus labeling by humans.

As one moves higher in the Insight Hierarchy, information becomes more subtle.
Meaning extraction based on context, something humans do naturally, is extra
challenging for computers. Scientists and engineers look for algorithms and methods to

process and analyze text semantically without human intervention,

Recurrent neural networks (RNN) are one of the most powerful and widely used
topologies in text processing problems since they are well-suited for sequential patterns
(Liu et. al. 2016). In the process of predicting the next word in a sentence, the actual
sequence of words that came before that particular word matters and hence such
problems fit nicely into the solution space of RNNs. While deep neural networks
typically consist of many layers of neurons each with a different set of parameters, there
is no feedback and thus, deep neural networks are not sensitive to the order in the input
sequence. In contrast, RNNs use a feedback mechanism to account for the impact of the
previous input in computing the state of the neuron for the current input. This
mechanism effectively acts as a memory and make RNNs work well with inputs where
sequences matter. The closer in position the inputs are, the more impact they have on
the state of the neuron. This impact can sometimes vanish quickly over a few positions
in input data and longer term dependencies in input sequences are effectively ignored
those cases. To overcome this problem, long short-term memory networks (LSTM), a

particular flavor of RNNs with longer term dependencies, are more commonly used.
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In many text processing applications, the inputs are sentences that are a sequence of
words, expressed as word embeddings (vector representation as explained in section
2.1.2 Encoding and Representation). The task might be to predict the probability of each
word in a sentence. This, in turn, helps determine the correctness of a sentence by
looking at how probable the sentence might be. This is a typical application of LTSSMs
in machine translation. With the ability of predicting the next word in a sentence, once
can generate new sentences by using high probability sequence of words. This opens up
the possibility of very interesting use cases. Some of the most popular application areas

for text processing are:

e Question Answering: Answering human questions by automated systems in a
way humans would.

e Machine Translation: Auto translation of text entered by humans on the fly or
pre-existing text.

e Semantic Search: The goal is to predict and understand the intent of the user in
context rather than merely matching search terms in documents.

e Named Entity Recognition (NER): Finding entities in text such as names of
people, companies, and locations.

e Sentiment Analysis: Involves determining the sentiment of author, typically as
positive, negative and neutral.

e Summarization: Creating a summary of a document.

e Disambiguation: Finds the actual meaning of a word in the context it is used
when a word has multiple potential meanings.

e Part-of-speech Tagging (POS): Marks word as nouns, verbs, adjectives etc.
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e Recommendation: Predicting the preferences of a user in order to recommend

items such as consumer goods, news articles and music.

2.2 Publications
Our publication in the field of processing raw data to extract more meaning is provided

in Appendix A.
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3 ANOMALY DETECTION

In the last chapter, we looked into ways of extracting information from raw data to feed
into our state-space model. In this chapter, we continue with the data processing aspect
of our model, however, we focus on outliers as opposed to the mainstream data points
which were the focus of the last chapter. We study anomaly detection, the main
technique to deal with outliers, in terms of its challenges, most common applications
and algorithms. Using anomaly detection does not only provide additional information
which the state-space model can benefit from but also fits into the model due to the
nature of our main data source, specifically social media text data. As we will see in this
chapter, such data is incomplete and contains incorrect information which need to be
imputed and cleaned using anomaly detection. We will also look into another interesting
use case of anomaly detection, identifying high impact content and people, i.e.

influencers, and how that can be used by our model. In the next chapter, we look into
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the facts that lead to our model before we provide a deep dive of how we build our

model and then provide a mathematical proof of the effectiveness of the model.

The common way of extracting insight from raw data is to use the data points that
convey mainstream information. Knowledge is built on these examples. Outliers and
exceptions are not considered. If data is so valuable, why would we ignore and waste
these irregular data points? These irregularities might be pointing to peculiar and
unusual events that have just happened or are likely to happen soon. And that is
information leading to insight. Detecting a change in spending habits of a person can
point to a fraud in progress. An unusual traffic pattern on the network could signal a
cyber-attack. A change in the heart rate of a person can be the early sign of a health
condition. These problems of the modern world lend themselves to techniques used in
anomaly detection. Anomaly detection has been an area of research since the end of
1800s (Edgeworth 1887) and continued at a modest pace until early 2000s (Chandola et.
al 2009). With the rise of machine learning and deep learning algorithms, and the wide

variety of use cases, anomaly detection has been an area of research focus recently.

3.1 Nature of Detection Problems and Challenges

Anomaly is deviation from what is expected. Observations that deviate from other
observations indicate a potentially different underlying generation mechanism (Hawkins
1980). Anomaly detection focuses on the problem of detecting unusual data points or
observations and predicting any future occurrences of such data points along with
underlying events. One of the main challenges is to define what is usual and expected so
that deviations from the expected can be identified and detected. Many times, the

boundary between what is expected and what is unusual is fuzzy. The blurry boundary
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between these two cases can cause positive data points to be detected as negative and
vice versa. These incorrectly identified cases are called false positives and false
negatives. Especially, ill-intentioned attempts, such as network intrusion, try to imitate
regular events. When an intrusion detection system signals an intrusion incorrectly, a
number of actions might be taken that are unnecessary. These false positives can not
only impact regular system operation but may also be a cause of extra cost. In a medical
application, false negatives can be fatal while false positives may lead to unnecessary
cost and psychological stress. The nature of expected data can be time-dependent. An
increase in spending habits over the holidays has a higher likelihood of being a normal
event compared to an increase during other times. For a data point to be classified as
unexpected, there has to be a certain amount of deviation from the expected and this
amount is context-dependent. Subtle changes in human cell characteristics can be the
cause of a serious condition (Lyons et. al 2016) while significant changes in spending
habits may be quite normal. Another challenge is related to the nature of the problem.
Even though data is abundant, enormous and widely available, anomalies are rare and
irregular by definition. This makes the learning and inference processes extra difficult
since the more data the better the learning. Many anomaly applications, such as network
intrusion, terrorism detection, cancer detection, require quick action, therefore quick
detection. Many times data is noisy and requires noise to be eliminated to detect

anomalies since it can obscure anomaly detection.

3.2 Algorithms and Approaches
When a data point can be identified as irregular or unusual in comparison to the rest of

the points in the dataset, this is a case of point anomaly detection (Chandola et. al 2009).
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Collective (Chandola et. al 2009) or group anomaly (Yu et. al 2010) occurs when a
group of data points are considered to be irregular or unusual in comparison to the rest
of the points in the dataset. Detecting a disease outbreak is an example of group

anomaly.

In applications where labeled data is available, supervised anomaly detection techniques
can be applied. However, just as in any supervised learning case, labeling data can be
cumbersome and costly. In addition, the scarcity of anomalous cases provides an extra
challenge to traditional supervised learning algorithms. Classification-based algorithms
suffer from these problems. They learn what is normal and not based on a dataset that
has data points labeled as expected and unexpected. They compensate for the lack of
sufficient unexpected data points (anomalies) by using oversampling techniques.
Unsupervised anomaly detection algorithms do not require labeled training data. The
algorithm tries to identify anomalous cases based on the nature and properties of the
data it has seen so far. This allows for more powerful and generalized algorithms since
there is no requirement to anticipate the nature of the data in advance. In contrast, the
success rate of supervised learning might be limited by the extent of available

anomalous cases in the training data.

One of the widely used approaches in many anomaly detection algorithms is to build a
case for expected behavior and then try to detect data points that do not fit in. Statistical
approaches using a parametric model for the data distribution build on certain
expectations of the data. The model defines a confidence interval based on the expected
number of anomalies and tries to detect the cases outside of this interval. While
parametric models converge quickly, they can be overly erroneous if the actual data

distribution does not match the distribution assumption. Estimating the underlying
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distribution can be especially challenging for high dimensional data. Non-parametric
statistical approaches build their models without pre-defined expectations. The model is

built based on the data.

When data is represent the data in a vector form, various distance-based approaches can
be used. Such algorithms choose a distance metric. For instance, kNN, a nearest
neighbor algorithm, measures the distance between each data pair and then defines its
distance to the k™ neighbor as a threshold beyond which data points are considered to be
outliers. Another measure of distance can be density, defined as the number of data

points within a radius.

Online anomaly detection algorithms are used in cases where data arrives in a sequential
manner and on the fly decision has to be made for immediate feedback. The model

classifies the incoming data as anomalous or not and then updates itself.

3.3 Applications

The relatively few unusual data points in these routine data sets may contain very useful
information. This inherent feature of anomaly detection enables it to be applied over a
wide range of applications. By using anomaly detection techniques, one can extract very
valuable and actionable information from data sets that are mostly routine and boring.
The outbreak of a contagious disease can be detected from social media data (Xie et al.
2013). The routine financial transactions of a person can contain a few unusual
transactions which may be an indicator of fraud. In a more subtle use case, some
unusual, non-fraudulent nonetheless, spending patterns of people can help identify them

as significant targets in advertising campaigns. Similarly, anomaly detection can be
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used to identify opinion leaders in social media based on some rare but critical

attributes.

Anomaly detection applications can be grouped and classified based on a wide range of
attributes. Online vs offline, image vs text or nature of the data such as social media,
medical, financial or astrological. Many applications include multiple such attributes
and as such, it is possible to group them in a variety of ways. Online systems are
typically used for early warning systems that require timely detection (near real-time) so
that quick action can be taken. Predictive actions may also be necessary as a
consequence of early detection (Goldstein and Uchida 2016). A medical diagnostic
anomaly detection application is typically done offline while it is also an image

detection application.

We will list a number of common as well as niche applications without grouping them

with respect to their attributes.

e Data imputation and cleaning: Many times data is noisy and needs to be
cleaned before meaningful information and insight can be extracted. These are
cases when unusual or irregular data points are not considered to contain extra
information and in fact are considered to pollute the mainstream data. Intentional
or unintentional injection of incorrect information in social media data can make
it hard to find useful information and need to be cleaned. This use case is
particularly important for our state-space model since social media data is one of
the major sources of easily attainable digital footprint of users. Similarly,
surveys may also contain incorrect information and need to be detected and
cleaned. Noise in sensor data is an anomaly and makes it harder to read the

actual signal values from the sensor. The source of noise can be due to
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inaccuracy of the sensor as well as the quality of the network the data is on (the
data points may be dropped or pick up noise as they are being transported over
this network). Anomaly detection techniques can be used to detect these cases to
clean and normalize that data.

Identifying Influencers and Niche Customers: Social media influencers can
have a significant positive impact on sales. Influencer are not limited to
celebrities and famous experts. Anyone might be an influencer and identifying
these influencers is one of the first main tasks of marketer working in this field
(Ranga and Sharma 2014). One might approach the problem of identifying
influencers as an anomaly detection application since they are different from the
norm. Similarly, while niche marketing can result in more profitability and
better market share, there has not been much formal research in the area of
identifying niche customers (Toften and Hammervoll 2013). Niche customers
have rare traits that make them suitable for anomaly detection applications.
Also, high impact content such as online advertisements or news feeds relatively
rare and are potential applications of anomaly detection. Being able to identify
high impact content and influencers can facilitate steering users in making
certain decisions and taking certain actions. We will look futher into this
interesting consequence Chapter 4.

Fraud Detection: Frauds detection aims to identify unauthorized or unlawful
transactions by criminals in various financial fields such as banking, insurance
and securities trading. These transactions are expected to have a pattern that is
different from usual ones and therefore are a good fit as an anomaly detection

application. While timely detection is critical in order to minimize the
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economical negative impact it might have, precision is also very important since
companies do not want to bother customers with false fraud cases.

Early Detection Systems: Detecting an anomaly early (days or weeks in
advance) or in near real-time can be crucial in a wide variety of applications.
Analysis of biosensor data can catch early warnings of some medical conditions
such as cardiac events, skin diseases or diabetes (Swan 2013). Other applications
of early detection systems are typically cases of collective anomaly detection.
Disease outbreaks, natural disasters and terror plots and events can be
detected as anomalies in social media data.

Network Intrusion and Cyber-attack Detection: These types of events are
especially challenging to detect since cyber-attackers try to conceal their attacks
by mimicking the behavior of regular network events.

Data Center Monitoring: Large data centers must do continuous load-
balancing between machines to optimize performance and profit. The particular
load conditions to take an action might be defined as an anomaly and detected
accordingly.

Physical Security: Image and other sensor data are processed to detect
anomalies such as intruders.

Astrological Events: Anomaly detection techniques are used on astronomical
data for various research activities such as detecting unique and interesting
objects.

Manufacturing: Defect and fault detection are essentially about detecting

anomalies to prevent bad parts and products from reaching customers.
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3.4 Publications

Our publication in the field of anomaly detection is provided in Appendix B.
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4 ACTIONS TO STEER
PREFERENCES

In Chapters 2 and 3, we studied how the data inputs to our state-space model are
produced and processed. In this chapter, we focus on the model itself which constitutes
the core of this thesis. We start by making observations that support the foundational
motivations of our model, that is, user preferences can be steered by digital
interventions, which are in most cases the actions or outcomes of machine learning
algorithms. Then we build a state-space model from ground up and then provide a
mathematical proof that user preferences can be steered in a desired manner by the

actions of machine learning algorithms.
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4.1 Motivation

It has been shown by large scale experiments that emotional states of people can be
transferred to others via social networks (Kramera et. al. 2014). The news in one’s
Facebook feed and people’s response to these news may impact one’s emotions and
preferences. In many cases, the people being affected may not even notice the transfer

of emotions.

One of the most well-known cases of steering user preferences has been happening in
the United States recently. There is significant amount of suspicion regarding the
influence of Russians in the 2016 United States presidential elections. It is claimed that
Russians meddled with the U.S. elections by using social media ads and unpaid social
media messages. The U.S. Senate held a hearing with representatives of the social
media platforms, Facebook, Twitter and YouTube on this topic in November 2017

(https://www.intelligence.senate.gov/hearings/open-hearing-social-media-influence-2016-us-elections).

The ads and other social media messages from Russian-linked accounts allegedly aimed
to create racial and political division among the U.S. public. They portrayed Hillary
Clinton, the democratic candidate, as evil and also tried to flare sensitive topics such as
police brutality on blacks. A sample set of these messages can be found in

https://www.nytimes.com/2017/11/01/us/politics/russia-2016-election-facebook.html. Most of the

polls and predictions before the elections were pointing to Hillary Clinton as the winner

of the election. https://www.270towin.com/2016-election-forecast-predictions/ summarizes

predictions from a wide range sources including far right and far left sources. Virtually
all predictions point to Hillary Clinton as a clear winner over Donald Trump. This
makes a strong point for the claim that social media ads and messages, allegedly by

Russians, made significant impact on the election results. What makes these events even

38 Ibrahim Delibalta - February 2018



Chapter 4: Actions to Steer Preferences

more noteworthy is what it takes to achieve the desired results. While the actual amount
of money spent on these advertisements and messages is not determined yet, it is
estimated to be on the order of a few hundred thousand dollars since 2015

(https://www.forbes.com/sites/kathleenchaykowski/2017/10/18/facebook-investigates-

how-messenger-app-was-used-in-russian-meddling/#71{717a53af5). If we assume for a

moment that these messages really helped swing the votes of a number of U.S. citizens
to change the election results, a huge historical impact was achieved with such a low

budget.

According to a Wall Street Journal investigation in 2012

(https://www.wsj.com/articles/SB10001424052970203347104578099122530080836), in the days

leading to the 2012 U.S. Presidential elections, Google produced customized search
results when users searched for Barack Obama, the democratic candidate in the election.
However, no customized results were returned for the searches that involved the
republican candidate Mitt Romney. At this point it is not possible to tell how much
positive impact Google’s search engine behavior had on the election results but the fact
remains that Barack Obama won the 2012 elections. A research study in the United
States and India showed that biased search rankings can sway undecided voters by at

least 20% (Epstein and Robertson 2015).

It is striking to note that Zarsky pointed out the potential impact of online content
providers on the decision making process of people, well before any of Facebook,
YouTube and Twitter were founded (Zarsky 2004). The digital footprint of an internet
user has increased by about 100 times since then. In 2005, one year after Zarsky’s

analysis was published, the amount of global internet traffic was under 3 exabytes
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(http://www.hbtf.org/files/cisco_IPforecast.pdf), about 1/100% of what it was in 2016
(Cisco 2017).

[...] the mixture of several
novel elements produces a result that might prove harmful to our personal
autonomy.  These elements are (1) information  providers’
enhanced ability to garner personal data about their users, especially
regarding their interests, preferences, and possible vulnerabilities; (2)
their ability to analyze such data in an automatic and efficient manner
through the use of data mining applications; and (3) their capability to
reach out and provide every user with a personalized package of content,
especially by making use of the Internet’s unique infrastructure. Content
providers will not only tailor their content to the specific individual
upon delivery, but can constantly assess the effectiveness of their marketing
schemes and persuasion attempts through the new and updated
personal data streaming in from relevant users. Thus, they can create a
feedback loop for every user — with the ability to constantly change the
information they provide, until they achieve an optimal outcome. These
abilities lead to the enhanced opportunity to unfairly persuade and
manipulate — a power vested in the hands of a few — and raise concerns
both in the context of commercial advertising and agenda-setting

by mass media editors.
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4.2 Background

The conceptual foundation of our model is easy to understand since virtually any
internet user can relate to it. However, the mathematical notation and formation may
require some background information to follow. In this section, we explain why we
choose to use a state-space model. Then, we provide a brief background on state-space
models and Extended Kalman Filters, a framework we use to formulate our

mathematical proof.

Statistical models can be discriminative or generative. Discriminative models, e.g.
support vector machines (SVM) and logistic regression, focus on the differences in data.
On the other hand, generative models, e.g. Linear Gaussian systems, Hidden Markov
models (HMM) and state-space model, mimic the source and define the type of
expected data. Thus, they are better at handling missing and incorrect data. As explained
in Chapter 3, social media data, one of the major data sources to our model, can be
incomplete and incorrect, making state-space model a well fit for this case. Another
feature of HMMs is that the states of the model are hidden and can only be observed
indirectly via the observed data. User preferences are very similar to Hidden Markov
states since they are also latent and indirectly observed via digital actions and footprints
of the user. In our model, an additional observation stage is added to represent user
actions based on the latent (unobservable) internal state. The complete system is

designed to estimate the latent state of the users from observations.

HMMs have hidden states with certain probabilities of transitions between states. State-
space models are very similar to HMMs, except that they are continuous while HMM
states are discrete. Figure 3 shows a simplistic example HMM with hidden states and

observable actions.
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Hidden Markov Model (HMM)
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Figure 3 An Example Hidden Markov Model

The Kalman filter, originally invented by Rudolph E. Kalman (Kalman 1960), is a
recursive set of equations to estimate the state of a model or process by minimizing the
measurement error (Welch and Bishop 2001). And the Extended Kalman Filter (EKF) is

an approximation to deal with nonlinearities in the system. An excellent EKF tutorial

exists in https://home.wlu.edu/~levys/kalman_tutorial/.

Using a state-space topology, we build a model to represent the current and next state of
user preferences with the state update equations capturing the impact of digital
interventions (actions or outputs of machine learning algorithms) and other factors such
as noise. We formulate the parameters of our model such that they can be estimated via
the EKF framework. Next, we derive recursive equations for the system parameters
such that the sequence of user preferences are tuned towards a desired sequence of

preferences, e.g., one can desire to sway the preferences of a user to a certain product.
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Finally, we run experimental simulations to show that estimated parameters of the
system converge to the real values of the system, proving that a system can be designed
with the right parameters to allow a sequence of actions or interventions to tune the
preferences of a user in a desired manner. The true parameters of the system are known
to us since we are running our experiments in the form of simulations. Specifically, the
preferences of the user, which are not directly observable in real life, are known in case
of simulations. We run simulations for the EKF formulations we derive to show that our

estimation of the preferences converge to the real preference values.

4.3 Publications
Our publication, provided in Appendix C, walks through the details of how build our

model, make the mathematical proof of our claims and then the simulation results.
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5 CONCLUSIONS AND FUTURE
WORK

In this thesis, we model the effects of the machine learning algorithms such as
recommendation engines on users through a causal feedback loop. To this end, we
introduce a complete state space formulation modeling: (1) evolution of preference
vectors, (2) observations generated by users, and (3) the causal feedback effects of the
actions of machine learning algorithms on the system. All these parameters are jointly
optimized through an Extended Kalman Filtering framework. We introduce algorithms
to estimate the unknown system parameters with and without feedback. In both cases,
all the parameters are estimated jointly. We emphasize that we provide a complete set of
equations covering all the possible scenarios. To tune the preferences of users towards a

desired sequence, we also introduce a linear feedback mechanism and introduce an
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optimization framework using stochastic gradient descent algorithm. Unlike previous
work that only use the observations to predict certain desired quantities, we specifically
design outputs to “update” the internal state of the system in a desired manner. Through
a set of experiments, we demonstrate the convergence behavior of our proposed

algorithms in different scenarios.

Our work achieves a significant first step in designing a system which allows a
sequence of actions or interventions to tune the preferences of a user in a desired
manner. We establish a pathway to design such a system. We provide a model of the
system and support its theoretical foundation with mathematical proof and simulations
that such a system can be built with the right parameters. We also provide some of the
building blocks of the system which include ways to process input data to feed the

system.

In Chapter 2, we study the data aspect of our model. The main data input to the model is
about user actions, the observable reflections of latent user preferences. A supplemental
set of data input to the model is the user side information which consists of age, gender,
residency and other demographics. We take a close look at the steps involved in going
from raw data to a form of data that can be fed into the model. This data input can be
extracted from the abundant digital footprint of the user. We outline the state of the art
for these steps of data processing. We present our work on classification and
dimensionality reduction techniques such as random projections and also data pre-
processing techniques such as corpus cleaning. This work constitutes one of the

building blocks of our system.

In Chapter 3, we continue with the data processing aspect of our model, however, we

focus on outliers as opposed to the mainstream data points which were the focus of
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Chapter 2. Anomalies in the outliers can convey valuable information as well as the
mainstream data. We study the overall anomaly detection landscape and then introduce
a novel anomaly detection algorithm to be used in our system. Our algorithm processes
data in a sequential manner. It observes new data, produces its decision and then
adaptively updates all its parameters to enhance its performance. The algorithm mainly
works in an unsupervised manner since in most real life applications labeling the data is
impractical and costly. Using anomaly detection does not only provide additional
information which the model can benefit from but also fits into the model due to the
nature of our main data source, specifically social media text data. As we show in
Chapter 3, such data is incomplete and contains incorrect information which need to be
imputed and cleaned using anomaly detection. We also look into another interesting use
case of anomaly detection, identifying high impact content and people, i.e. influencers,

and how that can be used by our model.

In Chapter 4, we focus on the model itself which constitutes the core of this thesis. We
start by making observations that support the foundational motivations of our model,
that is, user preferences can be steered by digital interventions, which are in most cases
the actions or outcomes of machine learning algorithms. Then we build a state-space
model from ground up and then provide a mathematical proof that user preferences can
be steered in a desired manner by the actions of machine learning algorithms. We

support our proof with simulations.

While we complete the necessary groundwork to build a system in this thesis, a next
step in future studies can be to make the system more stable and also to make the design
process easy and practical for system designers. Further analysis on the convergence of

the system along with more simulations, experiments and numerical analysis are needed
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to take our results to the next level. A direct comparison to previous studies is not
possible for this step of our study since, to the best of our knowledge, this is the first
time a task of this nature is being undertaken. One of the main success criteria in our
work is the fact that estimated parameters converge to the real parameter values.

However, as our framework evolves, one can track its relative performance to our work.

It is worth pointing out that the validation of our framework using real life application
data has significant difficulties. In order to measure the impact of machine learning
algorithms on users at an individual level, interviews and/or surveys might be required.
Hypothetical what-if questions would be asked in such interviews and surveys to
understand what the user would prefer to do had he/she not encounter a particular set of
digital interventions. These are counterfactual questions by definition. The accuracy of
the answers to such questions inherently suffer from misrepresentation and self-
consciousness. Therefore, it is not straight forward to set up these measurement
techniques and get reasonably accurate results. Large scale A-B testing is a commonly
used validation method to overcome these problems at population level (Wedel and
Kannan 2016). In order to use A-B testing, one needs to have access to a large user base
and a robust application. Mainly big data conglomerates and government institutions
have such capabilities. A collaborative effort would be necessary to conduct such
experiments. Data companies such as telecoms and banks have significant reservations
in sharing any such data or collaborating at a meaningful level, mainly due to customer
privacy and company secret security concerns. Lack of employees with the necessary
skill sets to overcome these problems discourages companies from such collaborations

with academia or other 3rd parties.
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The psychological traits and states of people have successfully been predicted from
various forms of data such as text, speech, video and other online data sources (Matz
and Netzer 2017; Cowie et al 2000; Teixeira et al 2012; Alhanai et al 2017; LiKamWa
et al 2013) in the academic world. As these predictions become more robust, accurate
and consistent, we see modeling of human preferences make its way to the industry as a
growing trend. One of the most successful and recent examples in the industry is
Cambridge Analytica (CA) which ran the 2016 U.S. Presidential campaign for Donald
Trump, helping him win against all odds. Only 22 out of 237 national polls in the U.S.
estimated a Trump win (complete list in https://www.270towin.com/2016-polls-clinton-
trump/national/). CA describes itself as a behavioral science and micro-targeting
company. They collect a tremendous amount of data, close to 5000 data points on every
adult American from healthcare to car ownership. They then correlate this data with the
voting decisions to accurately predict voting behavior and more importantly to steer

voting behavior.

Accurate analysis and prediction capabilities using big data has shown its impact in a
number of other industry segments as well. An interesting example is the evolution of
credit scoring. Credit decisions are shifting from traditional decision tools to using

digital footprints of the users (Hurley and Adebayo 2016).

Next, we consider a specific real-life application of our system and discuss how one
might approach designing such a system. Consider a navigation application with traffic
information as a sample system to be used in a city, such as Istanbul, with a number of
bridges. While the main goal of this application may be to help each user find an
optimal route to their destination based on the congestion status of each bridge, a

collective goal can be to optimize the average drive time of all users by balancing the
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traffic across all bridges. In the course of achieving this goal, the system may need to
suggest some users with suboptimal routes. The design of such a system would involve
steering user preferences in a way that the machine learning algorithm desires.
Specifically, the actions taken by the system would have to convince the users to take
the routes suggested by the system. These actions have algorithmic as well as user
experience aspects which support each other. The optimal sequence of actions that the
algorithms select must be presented to the user in a way that will get the best perception
and acceptance by the user. The drivers may want to see how much money and time
they will save by taking the suggested route or in case they do not take the suggested
route, show how much money and time they could have saved. Maybe it would help to
convince the user to show the state of the bridge when they are projected to be on the
bridge instead of the current state of the bridge. All of these are potential actions
computed by the algorithms that require the right user experience to work as expected

by the system.

Conversely, the overall user experience design of the system needs some key data to be
collected and processed by the machine learning algorithms. This data can be collected
within or outside the system. The data collected within the system can help the user
experience. How often does the user select the suggested route? Is there a correlation
between the suggested route selection rate and the route duration or distance, time of
day, weather conditions, day of the week and other conditions? When the algorithms
know the answers to these questions, the right information can be presented at the right

time, providing better user experience and increasing the chance of success.

In the design of our sample system, another set of inputs may come from the data

collected outside the system such as side information and user actions (observations).
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This needs to be considered both at collective and individual basis. The system may
collect and process tweets regarding traffic congestion during rush hours to learn
tendencies of potential users collectively. On an individual basis, whenever the system
can identify a user of the application on different platforms, it continues to increase its
learning about the user. The identification of the user can be by the user opting in
voluntarily. It is also possible for the system to approximately match the user based on

various features such as behavior, style and location.

Another area of focus for future studies is the optimal selection of action sequences. The
system has to decide on the best action strategy, based on the collected information on
the user such as past spending patterns and eating habits. The obvious choice of action
may not always be the best one. For instance, in the scope of a restaurant
recommendation application, users might claim that they choose food based on their
taste. The algorithm may learn in time to suggest restaurants, i.e., the product, to users
predominantly based on what their friends prefer by giving more weight to this
component in the space of context information. In a typical application, the system
would have to decide among K available actions which can represent different products
or services to be provided to the user. By keeping a loss (or conversely a utility)
function based on the difference between the system action and the response of the user,
the algorithm can enhance itself for subsequent actions. One of the algorithms that fit
this setting is the multi-armed bandit problem (Katehakis and Veinott 1987) where each
bandit arm corresponds to a different action, e.g., product or service to be recommended
to the user. However this can be particularly challenging since user preferences can
change over time due to the abundance of new products and services. Algorithms to

optimally select actions may require online learning and decision making in real time to

50 Ibrahim Delibalta - February 2018



Chapter 5: Conclusions and Future Work

accommodate these changes. This is a recent focus area of research (Gokcesu and Kozat

2017).

In our thesis, we do not focus on the ethical implications of the digital feedback loop.
We merely point out and mathematically prove that user preferences can be steered in a
desired manner. It has significant implications on human autonomy regardless of
whether the underlying motives of the entities, e.g. data and content companies and
governments, are positive or negative. According to the Internet Encyclopedia of
Philosophy, “Autonomy is an individual’s capacity for self-determination or self-
governance.” One of the practical implications of achieving this self-determination, one
needs choice (Bernal 2014). Clearly, when the system in question is trying to steer the
preferences of the user such that he/she makes the choice the system desires, an attempt
at manipulating the users behavior is being made. And manipulation interferes with
autonomy (Raz 1986). Even if the system makes a disclaimer about its intent, that can
hardly alleviate the impact of its manipulation attempt because an extremely small
percentage of users read end user agreements (Bakos 2014). Would people truly
understand the implications when they read it? And even if they do, the practical choice
they have is arguable. People opt in for free services especially from conglomerates like
Google even when they know they are being tracked (Datatilsynet 2016). A counter
argument to diminished autonomy might be giving the user an ability to make informed
and good decisions. The system can examine and learn the tendencies of a user based on
data and might be able to provide the user with the best available choices. The system

can eliminate the penultimate choices and allow the user to make a better decision.

People with early signs of significant psychological problems can be identified and be

guided to get help (which helps the society and the individual). On the flip side,
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individuals who are prone to compulsive or addictive behavior could be targeted with
ads for an online casino (Matz and Netzer 2017). While healthy eating habits can be
promoted using models and algorithms described and referenced in this thesis, they can
as well be used to market unhealthy food (Montgomery et al 2017), going as far as

micro-targeting people with such inclinations.
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APPENDIX A

Our publication in the field of processing raw data to extract more meaning is included
in the section. In this study we work on classification and dimensionality reduction
techniques such as random projections and also data pre-processing techniques such as
corpus cleaning. Below, we provide an English version of our paper published in the
Proceedings of The Signal Processing and Communication Application Conference

(SIU), 2016 24 http://ieeexplore.ieee.org/document/7496063/.
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Abstract

In this paper, we study multi-class classification of
tweets, where we introduce highly efficient dimension-
ality reduction techniques suitable for online process-
ing of high dimensional feature vectors generated from
freely-worded text. As for the real life case study, we
work on tweets in the Turkish language, however, our
methods are generic and can be used for other languages
as clearly explained in the paper. Since we work on a
real life application and the tweets are freely worded,
we introduce text correction, normalization and root
finding algorithms. Although text processing and clas-
sification are highly important due to many applications
such as emotion recognition, advertisement selection,
etc., online classification and regression algorithms over
text are limited due to need for high dimensional vec-
tors to represent natural text inputs, We overcome such
limitations by showing that randomized projections and
piecewise linear models can be efficiently leveraged to
significantly reduce the computational cost for feature
vector extraction from the tweets. Hence, we can per-
form mulii-class tweet classification and regression in
real time. We demonstrate our results over tweets col-
lected from a real life case study where the tweets are
freely-worded, e.g., with emoticons, shortened words,
special characters, etc., and are unstructured, We imple-
ment several well-known machine learning algorithms
as well as novel regression methods and demonstrate
that we can significantly reduce the computational com-
plexity with insignificant change in the classification
and regression performance.

Introduction

Due to recent developments in Internet technologies, the
amount of accessible text information has significantly in-
creased with the contribution of forums, columns, blogs,
and social media. Clearly, processing of this big data, ex-
tracting information, performing classification and regres-
sion can significantly contribute to commercial products or
to social sciences. However, text-based analysis proves to be
very challenging due the variability and irregularity of media
for text shares, the rapid variation of user sharing habits, and
the large volume of data to be processed. Although text pro-
cessing and classification are highly important due to many

Copyright (€) 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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applications such as emotion recognition, advertisement se-
lection, ete.. online classification and regression algorithms
over text are limited due to need for high dimensional vec-
tors to represent natural text inputs. Especially, the state of
the art representations such as the N-grams that are widely
used as feature vectors require millions of components for
accurate results, which deem them impractical for real time
processing for text data such as real time emotion classi-
fication or sentiment analysis. This problem is especially
exacerbated for agglutinative morphological structured lan-
guages such as Turkish, Finnish and Hungarian. These spe-
cial languages derive words using extensive suffixes usually
from a single word. Hence, the dimension of the word space
exponentially increase unlike the Anglo-Saxon vocabular-
ies. Because of the fundamental differences of agglutinative
languages i.e. extreme usage of suffixes, making NLP re-
search based on those languages is much more difficult,

To this end, in this paper, we introduce highly novel and
computationally efficient feature extraction methods that can
be even used for agglutinative languages. We emphasize that
our methods directly apply to English, however, we choose
the Turkish language as the real life case study to demon-
strate the versality of our approach. We construct online and
offline algorithms for multi-class classification of tweets,
where we introduce highly efficient dimensionality reduc-
tion techniques suitable for online processing of high dimen-
sional feature vectors generated from freely-worded text,
Since we work on a real life application and the tweets are
freely worded, we introduce a preprocessing pipeline with
text correction, normalization and root finding components.
Note that these components are also essential for other lan-
euages. We then introduce methods to derive feature vectors
corresponding to tweets, which can be efficiently processed
by the subsequent machine learning algorithms. We accom-
plish this by showing that randomized projections and piece-
wise linear models can be efficiently leveraged to signifi-
cantly reduce the computational cost for feature vector ex-
traction from the tweets. Hence, we can perform multi-class
tweet classification and regression in real time, We demon-
strate that our methods increase the speed of text classifi-
cation 10% times over the state-of-art methods such as PCA
(Sebastiani 2002).

The organization of the paper is as follows. In Problem
Definition Section we provide the problem. In Regression
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and Classification on Freely Worded Tweets Section we in-
troduce highly efficient dimensionality reduction techniques
and piecewise linear models for online classification of high
dimensional feature vectors obtained using our vector space
model that is constructed after data preprocessing steps on
our collected data. We illustrate the performance of the in-
troduced algorithms in Simulations Section. In Conclusion
Section we provide certain remarks.

Problem Definition

In this paper, we study mulii class classification of tweets.
For tweetl analysis we introduce preprocessing techniques
due to unstructured and freely worded tweets. We then ob-
tain feature vectors by representing them in our vector space
model. We introduce highly efficient dimensionality reduc-
tion technigues suitable for online processing of high dimen-
sional feature vectors generated from tweets.

Regression and Classification on Freely
Worded Tweets

In this section, we first present our case study and data col-
lection procedure. We then introduce our data preprocessing
steps since the tweets are freely worded. After preprocess-
ing, we construct feature vectors using these tweets and then
introduce our classification and regression methods in a real
life case scenario.

Data Collection

The tweets in our database are gathered through a case
study where 1440 tweets written in Turkish are collected
from 168 different users between April 10th, 2013 and May
28th, 2013. There are at most 10 tweets from a single user.
The tweets, whose contents can be related to anything, are
freely worded and unstructured. There are 3 classes, i.e., a
tweet fall into one of three categories, which are “No State-
ment(0)", “Specific(1)” and “General(2)". These categories
reflect the level of statement about other people in a tweet.
Tweets are manually labeled by human experts.

Data Preprocessing

Agglutinative morphological structure of languages such as
Turkish, Finnish and Hungarian enables one to derive nu-
merous words using derivational suffixes even from a single
root (Oflazer 1994), Thus, dimension of the word space con-
structed as a collection of distinct words can be considerably
large. Maoreover, we observe that tweets are freely worded,
unstructured and they are not typed correctly all the time.
Same word can emerge in significantly different forms due
to aforementioned issues, Therefore, we apply a number of
data preprocessing technigques to interpret the tweets prop-
erly, Our methods are generic such that they can be applied
to any languages.

To this end, we removed urls, links and location infor-
mation as well as mentions in tweets. We also discarded
retweets, There are some words encountered frequently in
most of the sentences that do not carry importance in terms
of providing thematic content. Hence, we used a list of com-
mon words to eliminate them. We also eliminate numbers
and the words having sizes smaller than 3. We then ap-
ply text correction to correct first the unwanted characters

and then to correct the words that are misspelled. As we
mention earlier, in agglutinatively morphological languages
words having similar meanings can have the same roots. To
be able to represent these words in one form, we apply stem-
ming to obtain the roots, After these operations, final form
of the tweets are obtained. The process pipeline is explained
in Figure 1.

Hemaval af ;
Text Root Final
Tweets I::> wue;nmrv l::) Correctian I:'} Finding I:D‘ For

Figure 1: Processing pipeline of tweets.

Vector Space Model

We use a vector space model to represent tweets in our cor-
pus. In tweet classification we define our vocabulary as the
union of all distinct words used in the whole dataset and
equate the dimension of our vector space to the size of the
vocabulary, We represent the tweets in terms of N-grams (Ju-
rafsky and Martin 2009), which is a representation technigue
consisting of N consecutive words. In this study, we use un-
igrams and bigrams to represent the tweets. An example of
N-grams representation is given in Figure 2.

akgam aksamhuzur
huzur X
R huzureski
eski R
eskimutiu
mutly
o masthumlzik
miizik milzikkarde:
kardes 3
Unigrams Bigrames

Figure 2: Unigram and bigram representation of a tweet.

In vector space model, we express each tweet as a vec-
tor where each component is related to a distinct word and
assign a weight to that component. We use “TF-IDF" mea-
sure to calculate this weight (Rajaraman and Ullman 2011).
“TF" means term frequency and we take it as the relative fre-
quency of a word in a tweet, “IDF” means inverse document
frequency and emphasizes how uncommon of a word is be-
tween other tweets If a word does not appear in many tweets
we increase its emphasis according to “IDF” measure, “TF”
and “TDF" measures are found by

rmLQ={. (1

log(d:)

)
I¢]

IDF(f,dg) =1+

where f is the current word, t is the corresponding tweet and
oy denotes tweel corpus, In our vector space model we use
the multiplication of both term as the weight for a word in a
tweet

TF = IDFis4a,=TF(f i)« IDF(f.d). (3)

At the end of these operations for each tweet 1, in tweet
space T' = {ty,%s..... 1, } we derive a d dimensional feature



vector £; = [uu, o, .....u-'.f]T. Since text inputs are repre-
sented in high dimensional vectors we introduce two meth-
ods to represent them in low dimensional vectors to process
efficiently, namely random projection and principal compo-
nent analysis.

To this end, we present random projection as a simple
and computationally efficient way to reduce the dimension-
ality of the data (Bingham and Mannila 2001). We project
the original  dimensional vector to k-dimensional space by
multiplying it with a random # = d dimensional mairix . We
construct this random matrix F? chosing its entries randomly
from the set {—1.1} or as samples from standard normal
distribution.

Principal component analysis is another dimensionality
reduction technique we employ. We map the high dimen-
sional feature vectors to a lower dimensional space by mul-
tiplying them with a & x d transformation matrix whose rows
are the eigenvectors corresponding to the & largest eigenval-
ues of the covariance matrix of data (Bingham and Mannila
2001},

We verify the validity of the transformations of feature
spaces from high dimension to low dimension using follow-
ing lemma,

Johnson Lindenstrauss lemma: For any () < ¢ < 1 and
any integer n, let k be a positive integer such that

k= 4(e/2 = €/3)  n(n)

Then far any set V of poinis in R, thereisamap [ R —
T3¢ such that W, v

(1 =e)flu—vl; <llu—-vly <@ +e)lu-vl. @

Using the result of Johnson Lindenstrauss lemma (Das-
gupta and Gupta 1999) we show that we can transform
points from a high-dimensional space to a lower dimen-
sional space in such a way that the distances between the
points remain approximately same (Johnson and Linden-
strauss 1984),

Classification

We define antomatic tweet classification as the process of
identifying the class which a tweet belongs to. There is a
space containing tweets T = {fy,t2,....1, }, where each
tweet #y is represented by a o dimensional vector f; =
[TI?],IE'Q.,..,‘!EJ,;]T, where each wy 15 the weight of term
k in tweet ¢, and there is a fixed set of classes ¢ =
{e1. ¢z, ....ce}. Our goal is to build a classification function
malching tweets to their classes,

We carry out classification in two parts. In the first part we
perform offline classification where we use all the data avail-
able. In the second part we introduce online classification of
tweets by using them sequentially,

Offline Classification There are many types of algorithms
used in text categorization (Sebastiani 2002). In this study,
we use the following classifiers

e Support Vector Machines

e K-Nearest Neighbors

e Decision Trees

e Logistic Regression

Appendix

In this part, we employ classification algorithms given
above along with two different dimensionality reduction
techniques, namely random projection and principal com-
ponent analysis. We give the results in simulations section,

Online Classification In this part, we use a piecewise lin-
ear model (Vanli and Kozat 2014) to represent the relation-
ship between features vectors and class labels. We construct
this piecewise linear model combining seperate linear mod-
els trained in disjoint regions that are generated by partition-
ing d dimensional feature space using seperator functions.
Our approach is adaptive in the sense that at each instance
both model parameters and seperator function parameters
are updated. In other words, we adaptively train model pa-
rameters and seperator function parameters to minimize the
final regression error, We point out that as we sequentially
classify tweets both model and seperator function parame-
ters are adjusted such that space partitioning characterizes
the structure of the data better and piecewise linear model
predicts the corresponding class more accurately. In order to
obtain satisfactory results parameter tuning should be done
carefully. In Figure 3 we indicate a sample partitioning of
two dimensional feature space into 4 disjoint regions.

Figure 3: Sample partitioning of a two dimensional feature
space into 4 disjoint regions.

Simulations

In this section, we demonstrate the performances of the algo-
rithms. The dimensions of the feature vectors for unigrams
and bigrams are 2511 and G139, respectively. We reduce
each of these dimensions to 125 and 250 applying different
dimensionality reduction techniques. We obtain the accu-
racy values for classification algorithms by optimizing their
parameters over grid search using 10-fold cross validation.

We point out that the accuracy values obtained using low
dimensional feature vectors are comparably smaller than the
accuracy values obtained without applying dimensionality
reduction, This small loss comes with gain in computational
complexity. For instance, logistic regression classifier utiliz-
ing random projection executes at least 100 times faster than
the standard logistic regression classifier.

The results are given in Table 1 and in Table 2 for uni-
grams and bigrams, respectively. In Table 3 computational
complexities of classification algorithms are given (Bottou
and Lin 2007: Arya et al. 1994; Bingham and Mannila
2001).
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—_— Classifier

Dim. Reduetion——— _ SVM ‘ KNN | DT | Log. Reg. |
No Reduction 0.582 [ 0.591 [ 0.454 [INERT
PCA, 0.573 | 0.565 | 0.525 | 0.598
PCA 200 U580 | 0585 | 0502 | 0.6
RF_, . 0572 | 0064 | 0480 | 0468
RP_..,, 0571 [ 0.566 | 0498 | 10,438
BPGaussinn, 35 0560 | 0.567 | 0.480 .188
RPGuussiany=s 0.574 | 0.573 | 0.50] 0171

Table 1: Accuracy values of classification algorithms for dif-
ferent dimensionality reduction techniques for unigrams.

—— Classifier

Dim. Reduction ————_ SVM | KNN DT Log. Reg. |
No Reduction 0.575 | (0.564 | 0.510 a7
PCALur 0.227 | 0.523 | 0.393 11.562
FCAzz0 0101 | 0.541 | 0411 a7l
RP_ . 0.572 | 0.528 | 0.404 1472
RP_y 1, 0570 | 0.563 | 0.498 | 0436
RP Gaussian, 0568 | 0532 | 0.499 | 0.005
)1 U570 | 0002 | 0485 0430

Table 2: Accuracy values of classification algorithms for dif-
ferent dimensionality reduction techmgues for bigrams.

Algorithm Computational Complexity
SWM O [n')
SVM with PCA O {n")
SWM with RP @] }n' )
KNN Find)
KNN with PCA O {nd)
KNN with RP T (k]
DT O (dn®log(n))
DT with PCA O (kn*Togin})
DT with RP O (dn®log(n])
Log. Reg. e {Jlrf‘J
Log. Reg. with PCA O [nk7) + 0 (nd)
Log. Reg. with RP O [nk™)

Table 3: Comparison of the computational complexities of
classification algorithms. In the table, n represents the num-
ber of training instances, d represents regular dimension, k
represents reduced dimension.

For online classification, we illustrate the performance of
our algorithm having 1, 2 and 4 disjoint regions with respect
to the truncated Volierra filter (Schetzen 1980). In Figure 4
we provide the time accumulated regression errors for each
of them averaged over 10 trials. We emphasize that as the
number of regions increase error value decreases and the
performance of algorithm with 4 regions is comparable to
the performance of Volterra filter.

Conclusion

We study multi class classification of tweets where we
present preprocessing techniques since the tweets are freely
worded, We construct feature vectors from tweets using our
vector space model. Since text inputs are represented with
high dimensional vectors we introduce highly efficient di-
mensionality reduction techniques. We show that we can
significantly reduce the computational complexity with in-
significant change in classification performance. We also
present piecewise linear models suitable for online process-

i Normalized Accumulated Error Performance
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Figure 4: Normalized Accumulated Error Performance.

ing of tweets, We demonstrate their performance over mini-
mization of time accumulated regression error.
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Appendix

APPENDIX B

Online anomaly detection is key in many of the applications covered in this chapter. As
part of our thesis study, we introduce an online anomaly detection algorithm, which
processes data in a sequential manner. The algorithm observes new data, produces its
decision and then adaptively updates all its parameters to enhance its performance. The
algorithm mainly works in an unsupervised manner since in most real life applications

labeling the data is impractical and costly. Below, we provide a copy of our paper
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Online Anomaly Detection Using Nested Decision
Trees

Ibrahim Delibalta, Kaan Gokcesu, Mustafa Simsek, Lemi Baruh, Suleyman S. Kozat, Senior Member, IEEE

Abstract—We introduce an online anomaly detection algo-
rithm, which process data in a sequential manner. At each time,
the algorithm observes a new data, produces its decision and then
adaptively updates all its parameters to enhance its performance.
The algorithm mainly works in an unsupervised manner since
in most real life applications labeling the data is impractical.
However, if feedback is available, the algorithm uses it for better
adaptation, The algorithm has two stages. In the first stage, it
constructs a probability distribution function (pdf) or a score
function to model the underlying nominal distribution (if it is
present) or to fit to the observed data. In the second stage, this
pdf is used to score the newly observed data to provide the final
decision. The decision is given after the well-known thresholding.
We construct the pdf wsing a highly versatile and completely
adaptive nested decision trees. Soft nested decision trees are used
to partition the observation space in an hierarchical manner.
We adaptively optimize every component of the tree including
decision regions, probabilistic models at each node as well as the
overall structure based on the sequential performance. This ex-
tensive in-time adaptation provides strong modeling capabilities,
however, may cause overfitting. We mitigate overfitting issues by
using the nodes of the tree to produce several subtrees from
coarser models to the full extend, which are then adaptively
combined to avoid overfitting. Due to such combination and
adaptation, our algorithm significantly outperforms the state-of-
the-art metheds in the benchmark real life data sets.

[. INTRODUCTION

E introduce an online anomaly detection algorithm that

works on sequentially observed data [1]. [2]. At each
time, the algorithm decides whether the newly observed data is
anomalous or not, and then updaies all its internal parameters.
We mainly work in an unsupervised manner since in most
real life applications labeling the data is usually impractical
[2]. However, if such labeling is present, then we use this
information to improve adaptation. The algorithm has two
stages. In the first stage we assign a sequential probability
{or score) to the newly observed data based on our previous
observations. Based on this assigned probability, we decide
whether the newly observed data is anomalous or not. This
decision is formed by comparing the assigned probability
with a threshold [1], [2]. To assign sequential probabilities,
we use highly versatile soft decision trees [3]-[3], where
we adaptively learn every component of the tree including
decision regions, probabilistic models at each node as well as

the overall structure based on the sequential performance [3].

This  work  is  supported  in part by Turkish  Academy  of
Sciences  Outstanding  Researcher Programme. 8. 5. Kozat, K,
Gokcesu  and M. Simsck are with the Elecirical and  Electronics
Engineering Department, Bilkent University, Ankara, Tarkey, email:
{ kozat kaan, gokeesu,mustafa.simsek } @ee bilkenteduwtr, tel: +90 312 290
2336, fax: +90 312 290 2333, I Delibalta and L. Baruh are with Design.
Technology and Society Program, Koe University, Istanbul, Turkey, email:
{idelibalta.lbaruh } @ku.edu.tr.

Twao-stage anomaly detection methods especially in unsu-
pervised and/or adversarial settings are extensively studied
in the literature [2], [6], [7]. Although there exist several
nonparametric approaches to model the nominal distribution,
especially in adversarial settings [1], [8], parametric models
offer significant advantages such as quick convergence and
high accuracy [8]. However, the parametric models suffer
enormously if the assumed model does not match to the
underlying true model (if such a true model exists) or it is
not rich enough to accurately capture the salient nature of the
data [2]. Even if the assumed model correctly fits to certain
parts, we may still face underfitting or overfitting issues since
these algorithms usually work in highly nonstationary real life
environments.

To this end, we first introduce a highly adaptive and efficient
decision tree, which sofily partitions the observation space.
To boost modeling capabilities, we assign to each terminal
leaf-node a pdf from an exponential-family of distributions,
where parameters of these pdfs are sequentially learned. The
boundaries of the regions assigned to each leaf are soft such
that they are also updated based on the performance. In this
form, the tree structure is similar to Self Organizing Maps
(SOM)s or Gaussian Mixture Models (GMM)s [9]. [10], where
learning the partitions {or boundaries) corresponds to learning
the apriori weights of the Gaussian pdfs in the GMMs (or
SOMs). It is well-known that the mixture models provide high
modeling power [1], [2], [11], however, may overfit due to
excessive number of leaves, i.e., Gaussians in the mixture.
Hence, to avoid overfitting or committing to a fixed decision
tree, we go one step further and use all the nodes of the tree
in addition to the leaf nodes such that each node is assigned to
a particular region with its own pdf. This structure effectively
constructs several subtrees with different depths on the original
tree, which are then adaptively combined to maximize the
overall performance. Since we adaptively merge both coarser
and richer models, our algorithm avoids overfitting issues
while preserving the modeling power [4].

I1. ANOMALY DETECTION FRAMEWORK
A Two-stage Processing

Here', we sequentially receive {z;};~1. where z; € R™,
and seek to find whether the received data i1s anomalous or not
at each time {. To produce the decision, we sequentially con-
struct a pdf py(-) (or a scoring function to be rigorous) using
{®y,..., 21} to model the underlying nominal distribution

"W represent vectors (matrices) by bold lower (upper) case letters, For a
matrix A (or a vector @), A* is the wanspose. ||a|| s the Euclidean norm.
For notational simplicity we work with real data and all vectors are column
vectors.
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Fig. 1: Hard Decision Boundaries for a Depth-3 Decision Tree

(or to fit to the observed data if no such nominal distribution
exists). Then, at each time f, based on the constructed distribu-
tion py(-), we score @&, as p(x,) and produce our decision rft.
We produce the final decision using thresholding [1] (where
such an approach is optimal minimizing the Type-1 error in
cerlain seltings [12]), ie., if

(n
then d; = 0 (not anamolous), otherwise dy =1 {anamolous)
for some time varying threshold 7. Then, this decision is
compared with the correct result o, il available, otherwise we
work in an unsupervised manner [6].

To construct the sequential distribution, we use decision
trees. A decision tree is a hierarchical structure composed of
both internal nodes and terminal nodes, 1e., the leaf nodes.
Unlike [3], [4]. [13], we do not require the tree to be complete.
After we observe x,, each node 5 produces its probability or
SCOTe as

plEe) = m,

pyley), if 1 is a leaf,
.ftr{wt} = Jflr,lf(:rl]‘ J?.'(mf) 2 0 £20 o l'igh[ child, (2)
Forlme)  ogla:) < 0 go to left child,

where o,(-) is the hard decision boundary of the node 1 as
shown in Fig. 1. In this letter, we use linear separating hyper
planes for decision boundaries such that n',,(-'j is given as
oy(@;) = nl[x:1], where n, is the normal vecior of the
separating hyper plane and we extend x,; as [x;: 1] to include
the bias term for a compact notation, Our approach is generic
such that one can also use nonlinear separation boundaries,
however, we use linear boundaries to avoid overfiiting. Here,
Fatl@®e) (or fyr(@)) s the score of the left hand (or the right
hand) child node. Each leafl node % is assigned a pdf from an
exponential family of distributions as
pola) = ex]:(ﬂ?l,—:ng —G(8,)) o),
where 8, is from some convex set, G(#,)) is sufficient statistics
and F,(x,) is for normalization [9]. For each x,, the final
robability is given b

PP R Y ) = (),
which is the score of the root node and the recursion starts
from the root node until we reach to one of the leaves.

As the first extension to the basic decision tree, we use soft
partitioning [3] similar to the SOM models and set
(3)
where we use x; instead of [a; 1] with an abuse of notation.
Then, for each node, we set

frf{rt)

— prt‘.wl‘}!
Jn{wr}fr;t{-?r]' + tl o ql’f{xr}}.fﬂf'{xr}

a,lzy) =1/ [1 + exp (—'nga:,.,}] .

if 17 is a leaf,
otherwise.
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Fig. 2: Nested Combination Structure for a Depth-2 Decision
Tree

For the soft decision tree, the calculation starts from the leaf
nodes such that all the leaf nodes contribute to the final pdf,
unlike a hard decision tree (2). We start from bottom of the
tree and proceed to the top node, ie., to the root node, as in
Fig. 2 1o get the final score.

As the second and final extension, we assign pdfs from
exponential-family distributions to all nodes of tree, including
both the terminal and internal nodes. In the previous cases,
either hard or soft, only the leaves of the tree, i.e., the finest
and the most detailed structure of the tree. were used to
pmilinn the space of observations or assign scores. Here. by
assigning pdf to the internal nodes, we also represent much
coarser models or partitions of the observation space. After
this assignment of pdfs, we define for each node

fw[ma)
prr{xr}‘.
=4 Bapgle) + (1 — [ )=
[l:?rr{:ﬂg)f”.[{ﬂfg) +(1- dfﬂ(mij).fﬂ"'(mlj]

if 1 is a leaf,
else

4)
where () < ,'?,J < 1 for all #. Since, we use the stochastic gra-
dient descent for optimization [14], we satisfy this constraint
by reparametrizing the mixture weight as

Ay =1/ [1+exp (—ay)], (3)

where a, € IR. The final probability is given by p(x;) =
felm). Here, after we observe @, the calculation of the final
probability starts from the bottom of the tree, where not only
each leaf but also all the internal nodes contribute to the final
probability.

In this form, for a decision tree of depth o, we have
7 = 2% — 1 nodes including both internal and terminal nodes.
For each internal node, we have a tpple {5,,0,,0,} (or
equivalently {cv,, 1y, 8, 1), the mixture coefficient that merges
score of the node with its children’s scores, the soft partition
parameter that is similar to the apriori weights assigned to
each child and finally pdf parameters assigned to the node.
For terminal nodes, we only have one parameter set {8, }.
Remark: In [5] and [4], the combination weights are fixed in
time and equal to &, = 1/2 for all nodes ». In [13], these
weights are again fixed in time, however, set to a desired



Algorithm 1 Online Anomaly Detection Algorithm

1= Initialize tree and all parameters oo 1. ¥y, To
Zfori=11to... do

: Receive observation, ¢

4 for all nodes do

3: Calculate @y ¢, Jy,¢. fry(ae) according to (3), (3), (4)
6: end for

7 I{r(m] = fila)

b

|l"‘J

: oy = max(0, sgn (pe(ze) — 7)) X
9: if (dy = 0) or {d; 1s not avaliable and d; = ) then
10: for all nodes do

11: Calculate 8y 4 according to (10, (113, (12)

12 Caleulate Val_lr(mj T My [:J:r)jr'_.?(h..‘ Vﬂ,_l le{my)
according to (7), (). (9)

13 Update parameters &y s 41, Cmep1, Tog a1
according w (13}, (140 (13)

14: end for

15: end if

16 if dy is available then

17: dp = (14 exp (= (70 = pefme)))) 7"

18: Tol = Te — pg(elp — dy Jdy (1 — oy )

19: end if

20: end for

apriori values based on the user input. In [3], in a regression
framework, these weights are unconstraint, ie., 3, € R, can
even take non-negative values and adapted in time to minimize
the final regression error. Here, inspired from [10] and since
we work with probabilities, we constraint these weights to the
unit simplex, i.e.. 3, € [0,1].

Remark: Although the soft decision tree, which only uses the
leaf nodes, i.e., the finest models, has the highest modeling
power, there is no guarantee that it would provide the best
performance in applications involving online or sequential
data. The modeling power comes with increase in the number
of parameters that must be sequentially learned. Hence, when
there are limited data or the data is highly nonstationary,
coarser models, 1.e., subtrees of the full tree. may perform bet-
ter. By adaptively combining both the coarser and finer models
we retain the breadth of the finest model while alleviating the
overfitting problems associated with too powerful modeling.

III. THE ONLINE ALGORITHM

In this section, we train our algorithm in an online manner.
We have two cases. In the first case, the true label is not present
at time f. Then, we decide the label of the data based on (1).
If d; = 0, then the new observation x; can be used to update
(<) If dy = 1. then we discard it. In the second case, we
have the correct label ;. If o, = 0, then we naturally update
(<) If dy = 1, no update is necessary on p(-). When we
have «;, we also update the threshold.

When :L = 0 or o, = 0 (if it is available), we update
the p¢(-). In this case, we measure the performance of our
sequential probability assignment using the most obvious loss
measure [9], which is the negative log probability

(6)

To optimize and learn the system parameters, we use the
Stochastic Gradient Descent (SGD) algorithm [14]. The SGD
recursion enjoys deterministic bounds in sequential convex
optimization problems [16]. The pdf estimation problem is
convex under the loss (6) when we have only one exponential

Er.[mx) = — 1113‘3,_(:13;]_
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distribution. However, due to the sigmoid nonlinearities in (3)
and (5), the underlying problem is not convex.

To use the SGD, we need to calculate the gradient of the
final loss with respect to all parameters. We observe that the
soft decision structure shown in Fig. 2 is similar to a neural
network architecture where the bottom of the tree corresponds
to the input layer with p,(@)’s as inputs, i.e.. the input
layer has 2 neurons, and the output layer corresponds to
the root of the tree, where the final output of the system is
given by pi(®;) = f,(x;). In this sense, 3,’s correspond to
gating functions and o,,"s correspond to combination weights
at each layer [9]. Hence, to calculate the gradients at each
level, we can use the well-known back-propagation algorithm
[91, which is basically the chain rule. The back-propagation
algorithm proceeds as follows. When @ arrives, we start
from the leaf nodes, ie., from the input layer, and calculate
all the terms, o4, 3. p,i_.«{a:i} and fi; (). This is the
“forward-propagation” [9]. We are now ready for the backward
propagation. In the back-propagation step, we start from the
top, i.e.. from the root node, and calculate step by step the
gradient until we reach to the bottom nodes, ie.. to the leaves.
For any internal » including the root node, using the chain rule,
we have

V.gqir.{ﬂfe} = By e By g (24 (:l:le - VQ,IC;(Bq_f.)) .M
D) Dy = S (1 = By.0) Bt (polen) -

[oa(@e) (o) + (1= ag@)) for(@)]), (8)
Vﬂ,..'tt{mt} - drj.!{l - .Brj.t.}x
(1= ayl@ oy lxe) (foale) = fyealEd) 2, (9)

where 4, ¢ = Hy(x)/Of, (2,). We calculate 4, , using the
back-propagation. For the root node, by using (6), we get
Gy = =1/pilxe). (1

Since we start from the top node, we back propagate to the
lower nodes. For any internal node, we distinguish left and
right children. For a node #, which is the left child of some
71, we have
Oy = Ol ) /O f5 () (1 — Gg0das (@) (11
Similarly for a node r, which is the right child of 7, we have
Gy = Ol(@) /O f5lme) (1= G50)(1 — aqelz)). (12)
The recursion stops at the terminal leaf nodes. Then, we update
the corresponding parameters using the SGD as

Qi1 =041 — #f.vgn'tf[xE) (13)
Oy 141 = iy — ,llral!r{‘zl},/aﬂ'q (14)
Ty o1 = T e — eV, () (15)

for some learning rate pi;.

When we have the feedback, we train the threshold again
using the SGD approach. As the error we use the square error,
(d; —dy)?, and get
— pe(dy — d)od, jdr. (16)

Tt41 = Tt

Since ff_r given 1n (1) 1s not differentiable, as widely done in
the signal processing literature [14], we use

dy = 1/ [1 4 exp (—(ry — pe(2)))] .
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(a) Time averaged anomaly detection error of hard, soft and
nested depth d = 2 and d = 4 decision trees for ISE dataset
[15] in a s = 0.2 feedback probability environment averaged
over 10 trials.

Hence, (16) yields
Tepl = Tp — falde — ﬂi:)&:{l = fin)

This completes the full set of equations,
The complete algorithm is given in Algorithm 1.

(17)

IV, EXPERIMENTS AND FINAL REMARKS

We use the Istanbul Stock Exchange (ISE) [15] dataset
for real data benchmark purposes. Daily price data of nine
stocks are downloaded from “hutp://finance.yahoo.com’ and
“hup:ffimkb.gov.tr’ between dates January 5, 2009 to February
22, 2011 and prices are converied to returns [15], yielding
@, © R?, m = 9, over 536 samples. We randomly add 64
(nearly 10 percent) anomalous samples to this dataset. The
anomalous data are generated from a multivariate Gaussian
process whose mean is the negative of the batch mean of the
nominal data (with the same estimated covariance).

We run online anomaly detection algorithms using a hard
decision tree, soft decision tree and nested decision tree. Our
algorithm, i.e., the nested decision tree, combines the beliefs
of all internal nodes as well as the terminal nodes. Soft
decision tree is the first extension where the self combination
weights of internal nodes are zero, ie., 3, = 0 for all  and
7. However, a soft decision tree still updates its boundaries
since o, (@) is the sigmoid function. For the hard decision
tree, we again have 5,; = 0, however, o, (@} is the unit
step function, Le., the boundaries do not change. We use a
depth 3 to train all algorithms, where the depth is arbitrarily
set. We set g = 1//T [6] for all ¢ to get a decreasing
learning rate to compensate the nonstationarity of the data.
We normalize each dimension of the feature vectors to [—1,1].
We run a multivariate Gaussian density estimator in each node.
Initially the self combination weight of each node 3, ; is set
o 1/2 and 7, = 1 for all algorithms. The boundaries are
selected such that, the split at the first layer of the tree splits
according to the first feature, i.e., whether it is greater or
less than zero; the second layer splits according to the second
feature, etc. All Gaussian density estimators are started from
zero mean and identity covariance matrices. In Fig. 3a, we
illustrate the average online anomaly detection performance of
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(b) Time averaged anomaly detection error of hard, soft and
nested depth d = 3 decision trees for ISE dataset [15] ina s =
0.5 and s = 1 (full feedback) feedback probability environment
averaged over 100 trials.

all algorithms using depth f = 2 and d = 4 trees ina s = 0.2
feedback probability environment, i.e., with s probability we
provide the true label o, at each time f. In Fig. 3b, we
illustrate the average online anomaly detection performance of
all algorithms using depth d = 3 trees ina s =05 and s = 1
{full feedback) feedback probability environment. The plotted
results are averaged over 100 independent trials. Since hard
decision trees have less parameters to learn, they show better
performance than soft trees at the beginning, but are quickly
outperformed after a while. Nevertheless, both hard decision
trees and soft decision trees are continuously outperformed
by the nested decision trees. As shown in Fig. 3a, both hard
decision and sofi decision trees perform better with depth 2
trees, since they have less parameters to learn. However, the
depth selection is not an issue for nested decision trees, since
they also use the internal nodes for comparable performance.
In Fig. 3b, we illustrate that higher feedback provides higher
performance as expected. However, the algorithms dependence
on feedback changes with the combination structure. Soft trees
with s = (1.5 feedback show comparable performance to hard
trees with s = 1 feedback. Similarly, nested trees with s = (1.5
feedback outperform soft trees with s = 1 feedback. Using
nested trees mitigates overfitting and undertraining issues and
thus outperforms other combination structures.

We introduced a highly versatile and effective online
anomaly detection algorithm based on nested trees. Based
on the sequential performance, we learn every component
of the tree including decision regions, probabilistic models
at each node as well as the overall structure. We mitigate
overfitting issues by using all nodes of the tree to produce
several subtrees from coarser models to the full extend, which
are then adaptively combined to avoid overfitting.
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Abstract

In this paper, we provide a causal inference framework to model the effects of machine learning algorithms on user preferences. We then
use this mathematical model to prove that the overall system can be tuned to alter those preferences in a desired manner. A user can be
an online shopper or a social media user, exposed to digital interventions produced by machine learning algorithms. A user preference
can be anything from inclination towards a product to a political party affiliation. Our framework uses a state space model o represent
user preferences as latent system parameters which can only be observed indirectly via online user actions such as a purchase activity or
social media status updates, shares, blogs or tweets. Based on these observations, machine learning algorithms produce digital
interventions such as targeied advertisemenis or tweets. We model the effects of these interventions through a causal feedback loop,
which alters the corresponding preferences of the user. We then introduce algorithms in order to estimate and later tune the user
preferences to a particular desired form. We demonstrate the effectiveness of our algorithms through experiments in different scenarios.

Introduction

Recent innovations in communication technologies, cou-
pled with the increased use of Internet and smartphones
greatly enhanced institutions” ability to gather and process
an enormous amount of information on individual users on
Social Networks or consumers in different platforms (Gup-
ta et al. 2014; Ruta 2014; Wang and Djuric 2015; Buttou
and Le Cun 2005). Today, many sources of information
from shares on Social Networks to blogs, from intelligent
device activities to security camera recordings are easily
collectable. Efficient and effective processing of this “big
data™ can significantly improve the quality of many real
life applications or products, since this data can be used to
accurately profile and then target particular users (Buttou
and Bousquet 2007; Yan et al. 2009; Peng et al. 2013). In
this sense, abundance of new sources of information and
previously unimaginable ways of access to consumer data
have the potential to substantially change the classical ma-
chine learning approaches that are tailored to extract in-
formation with rather limited access to data using relatively
complex algorithms (Bottou et al. 2013: Subakana et al.
2014; Achbany et al. 2008; Jahrer et al. 2010).

Copyright © 2017, All rights reserved.

Furthermore, unlike applications where the machine
learning algorithms are used as mere tools to process and
infer using the available data such as predicting the best
movie for a particular user (Toscher et al. 2008), the new
generation of machine learning systems employed by
enormously large and powerful data companies and institu-
tions have the potential to change the underlying problem
framework, i.e., the user itself, by design (Bottou et al.
2013; Chan et al. 2010). Consider the Google search en-
gine platform and its effects on user preferences. The
Google search platform not only provides the most relevant
search results, but also gathers information on users and
provides well-tuned and targeted content (from carefully
selected advertisements to specifically selected news) that
may be used to change user behavior, inclinations or pref-
crences (Epstein and Robertson 2015).

Online users are exposed to persuasive technologies, and
are continually immersed in digital content and interven-
tions in various forms such as advertisements, news feeds,
and recommendations (Salah et al. 2011). User decisions
and preferences are affected by these interventions (Zarsky
2004). We define a feedback framework in which these
interventions can be selected in a systematic way to steer
users in a desired manner. In Figure 1, we introduce “The
Digital Feedback Loop™ on which we base our model.



A Mathematical Model of the Causal Effects of Machine Learning Algorithms on User Behavior

=[] [} ia:
Bowcciand priesoles,
weab, mobits,
search, IPTW

Diglital Interventions:
= lHose do they alloct your mest sel ol actions?
- Are they just what you want to see?

Or what someone else wants you to saa?

Digital Act

Data Collection:
Laokes, MeatsDests,
arline prichases, wob
end 800 anelytics

Usermodel |l biomuten,

SRS

Figure 1: The Digital Feedback Loop

To this end, in this paper, we are particularly interested
in the causal effects of machine learning algorithms on
users (Wang et al. 2015a; Wang et al. 2015b). Specifically,
we introduce causal feedback loops to accurately describe
effects of machine learning algorithms on users in order to
design more functional and effective machine learning
systems (Wang et al. 2015b; Brodersen et al. 2015). We
model the latent preferences and/or inclinations of a user,
as an unknown state in a real life causal system and build
novel algorithms to estimate and, then, alter this underlying
unobservable state in an intentional and preferred manner.
In particular, we model the underlying evolution of this
state using a state space model, where the latent state is
only observed through the behavior of the user such as
his/her tweets, Facebook status shares. The internal state is
causally affected by the outputs of the algorithm (or the
actions of the company), which can be derived from the
past observations on the user or outputs of the system. The
purpose of the machine learning algorithm can be, for ex-
ample, (1) to drive the internal system state towards a de-
sired final state, e.g., try to change the opinion of the popu-
lation towards a newly introduced product; (i1) to maxim-
ize some utility function associated with the system, e.g.,
entice the users to a new and more profitable product, or
(111) to minimize some regret associated with the disclosed
information, e.g., minimize the effects of unknown system
parameters. Alternatively, the machine learning system
may try to achieve a combination of these objectives.

This problem framework readily models a wide range of
real life applications and scenarios (Brodersen et al. 2015;
Wang et al. 2015b). As an example, an advertiser may aim
to direct the preferences of his‘her target audience towards
a desired product, by designing advertisement using data
collected by consumer behavior surveys (Wang et al.
2015b). This framework is substantially different from the
classical problem of targeted advertisement based on user
profiling. In the case of targeted advertising, the goal 1s to
match the best advertisement to the current user, based on
the user’s profile. Another part of the classical problem is
to measure the true impact of an ad (a “treatment” or an
‘intervention” in the general case) and thus find 1ts effec-
tiveness to help the ad selection for the next time or the
next user as well as for billing purposes. Here, we assume
that the underlying state, 1.e., the preferences of the con-

Machins Lsarning Algarithms
(g data compankes — Coogic, Yahoo
Facaboak ate - govemmarn insemsions)

Measure how the user reacts
to each intervention and
update algorithms accordingly

sumers, are not only used to recommend a particular prod-
uct, but also are intentionally altered by our algorithm. As
in some of the earlier work (Sun et al. 2015; Wang et al.
2015a; Toscher et al. 2008), we use a causal framework to
do our modeling. We then take it a step further to mathe-
matically prove that the impact of a treatment can be pre-
designed and the user can, in theory, be swayed in accord-
ance with the designer’s intent. To the best of our
knowledge, this is unique to our work. We can further ar-
ticulate the difference between our work and some of the
earlier work using an example in the context of news rec-
ommendation. The classical approach tries to show the
user news articles he/she might be interested in reading,
based on their profile and possibly some other contextual
data. A separate process collects information on whether
the user clicked on a particular news item and what that
item’s context is. This collected data is then used to aug-
ment the user’s profile so that the recommendation part of
the process makes a better decision the next time or for the
next user. The connection between separate decisions 1s
mainly the enhanced user profile. In reality, the recom-
mended news articles have impacted the user’s news pref-
erences to some degree. This is a classical counterfactual
problem (Bottou et al. 2013). While the user preferences
themselves are latent and cannot be directly measured, the
impact manifests itself in a number of ways that are ob-
servable. For instance, the user might tweet about that
news with a particular sentiment or buy a book online
which is related to the topic in the news item. What we
prove with our framework is that using the observable data
and our model, one can produce a sequence of actions
which will influence and steer the user’s preferences in a
pattern that is intended by the recommender system. These
actions can be in the form of content served to the user
such as news articles, social media feeds and search re-
sults.

In different applications the preferences can be the state
and the advertisements (content, the medium of the adver-
tisement, the frequency etc.) are the actions or output of the
machine learning algorithm. In a different context, the
opmions of the Social Network users on Facebook of a
particular event or a new product can be represented as a
state. Our model 1s comprehensive such that the relevant
information on the user such as his/her age, gender, de-



mographics and residency is collectively represented by a

side information vector since the advertiser collects data on

the consumer such as the spending patterns, demographics,
age, gender and polls.

A summary of our work in this paper is as follows, with
the last bullet being our key contribution:

+ We model the effects of machine learning algorithms
such as recommendation engines on users through a
causal feedback loop. We introduce a complete state
space formulation modeling: (1) evolution of prefer-
ences vectors, (2) observations generated by users, and
(3) causal feedback effects of the actions of algorithms
on the system. All these parameters are jointly optimized
through an Extended Kalman Filtering framework.

¢ We introduce algorithms to estimate the unknown sys-
tem parameters with and without feedback. In both cas-
es, all the parameters are estimated jointly. We empha-
size that we provide a complete set of equations cover-
ing all the possible scenarios.

e To tune the preferences of users towards a desired se-
quence, we also introduce a linear regression algorithm
and introduce an optimization framework using stochas-
tic gradient descent algorithm. Unlike all the previous
work that only use the observations to predict certain de-
sired quantitics, as the first time in the literature, we spe-
cifically design outputs to “update”™ the internal state of
the system in a desired manner.

The rest of the paper is organized as follows. In the next
section, we present a comprehensive state space model that
includes the evolution of the latent state vector, underlying
observation model and side information. In the same sec-
tion, we also introduce the causal feedback loop and possi-
ble variations to model different real life applications. We
then introduce the Extended Kalman Filtering framework
to estimate the unknown system parameters. We investi-
gate different real life scenarios including the system with
and without the feedback. We present all update and esti-
mation equations. In the following section, we introduce an
online learning algorithm to tune the underlving state vec-
tor, i.e., preferences vector, towards a desired vector se-
quence through a linear regression and causal feedback
loop. We then demonstrate the validity of our infroduced
algorithms under different scenarios via simulations. We
include our simulation results to show that we are able to
converge on unknown parameters in designing a system
which can steer user preferences. The final section includes
conclusions and scope of future work.,

A Mathematical Model for User Preferences
with Causal Feedback Effects
In this paper, all vectors are column vectors and denoted

by lower case letters. Matrices are represented by upper-
case letters. For a vector u,
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is the P-norm, where #" is the ordinary transpose. For vec-
tors @R and beR" s ar is the transpose,
[u;b]eR""’"is the concatenated vector. Here, I repre-
sents an identity matrix. @ represents a vector or a matrix of
all zeros and 7 represents a vector or a matrix of all ones,
where the size is determined from the context. The time
index is given in the subscript, 1.e., x, 1s the sample at time
t. 0, is the Kronecker delta functions.

We represent preferences of a user as a state vector py,
where this state vector is latent, i.e., its entries are un-
known by the system designer. The state vector can repre-
sent affinity or opinions of the underlying Social Network
user for different products or for controversial issues like
privacy. The actual length and values of the preferences
depend on the application and context. As an example for
the mood of a person in a context of 6 feelings (happy,
excited, angry, scared, tender, sad), the preference vector
might be [0, 1, 0,0, 0, 01",

The relevant information on the user such as his/'her
age, gender, demographics and residency is collectively
represented by a side information vector 5. The side infor-
mation on users on the Social Networks can be collected
based on their profiles or their friendship networks. We
assume that the side-information is known to the designer
and, naturally, change slowly so that s = s is constant in
time.

The machine learning system collects data on the user,
say x;, such as Facebook shares, comments, status updates
and spending patterns, which is a function of his/her pref-
erences p; and the side information s, given by

x, =F(p,s). (1)
where the functional relationship £7.) will be clear in the
following. Since the information collection process may be

prone to errors or misinformation, e.g., untruthful answers
in surveys, we extend (1) to include these effects as

X, =F(p,s)+n,. (2)
where n; is a noise process independent of p, and 5. We can
use other approaches instead of an additive noise model,
however, the additive noise model is found to accurately
model unwanted observation noise effects (Bishop 2007).
We use a time varying linear state space model to facilitate
the analysis such that we have

x,=Fp +n, (3)

where F; is the observation matrix (Anderson and Moore
1979) corresponding to the particular user, m; is 1.1.d. with

E[nrnf] =0 R,

where R is the auto-correlation matrix. The auto-
correlation matrix R is assumed to be known, since it can
be readily estimated from the data (Anderson and Moore
1979) in a straightforward manner. We do not explicitly
show the effect of § on F for notational simplicity,
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Based on prior preferences, different user effects and
trends, the preferences of the user change. We represent
this change as

pn-| =C;f{p.r:ls)+n.r‘ (4]

with an appropriate G(.) function. To facilitate the analy-
sis, we also use a state space model

Pa=Gp+v, )
where G, is the state update matrix, which is usually close
to an identity matrix since the preferences of user cannot
rapidly change (Sun et al. 2015; Brodersen et al. 2015).
Here. v, models the random fluctuations or independent
changes in the preferences of users, where it is i.i.d. with

r -

El:van" :' = {}f—!'Q
and @ is the auto-correlation matrix. The auto-correlation
matrix @ is assumed to be known, since it can be readily
estimated from the data {Anderson and Moore 1979) in a
straightforward manner, The model without the feedback
effects is shown in Figure 2,

Remark 1: To include local trends and seasonality ef-
fects, one can use »,= B; u,, where B, may not be full rank
local trends exist (local trends can cause some data points
to be derived from others). Also, u, is an i.i.d. noise pro-
cess. Our derivations in the next sections can be general-
ized to this case by considering an extended parameter set.

s
! n

Figure 2: A state-space model to represent evaluation of the user
preferences without feedback effects.

In the following, we model the effect of the actions of
the machine learning algorithm in the “observation™ (3}
and “evolution™ (5) equations,

Causal Inference Through the Actions of the Machine
Learning System

Based on the collected data x,, the algorithm takes an ac-
tion represented by a.. The action of the machine learning
system or the platform can be either discrete or continuous
valued depending on the application (Bishop 2007). As an
example, if the action represents a campaign advertisement
to be sent to a particular Facebook user, then the set of
campaign ads 18 finite. On the other hand, the action of the
machine learning system can be continuous such as provid-
ing money incentives to particular users to perform certain
tasks such as filling questionnaires. We model the action as
a function of the observations as

4, =W (x,).

() )
where W(,) may correspond to different regression methods
(Bishop 2007). To facilitate the analysis, we model the
action generation using a linear regression model as

T
a=W'x,, (6)
If we have a finite set of actions, ie. a, € {1,..., K},

we replace (6) by

af =Q(wlrxf)' {?)
which is similar to saturation or sigmoid models (Kozat et
al. 2007), where Qf.) is an appropriate quantizer. The line-
ar model in (7) can be replaced by more complex models
since x; can contain discrete entries such as gender and age.
However, we can closely approximate any such complex
relations by piecewise linear models (Vanli and Kozat
2014). The piecewise linear extension of (7) is straightfor-
ward (Vanli and Kozat 2014).

Based on the actions of the machine learning algorithm
(and prior preferences), we assume that the preferences of
the user changes in a linear state space form with an addi-
tive model for the causal effect (Wang et al. 2015b;
Brodersen et al. 2015: Sun et al. 2015), which yields the
following state model:

pa+lqur+v.r+ca:' {8)

[}

where ¢; is the unknown causal effect. The complete linear
state space model is illustrated in Figure 3. Although, there
exists other models for the feedback, apart from the lincar
feedback, the linear feedback was found to accurately
model a wide range of real life scenarios provided that
causal effects are moderate (Brodersen et al. 2015), which
is typically the case for social networks, i.e., advertise-
ments usually do not have drastic effects on user prefer-
ences (Sun et al. 2015; Brodersen et al. 2015). Our linear
feedback model can be extended to piecewise linear mod-
els to approximate smoothly varying nonlinear models in a
straightforward manner.

v, Pt —
[« _@ 3 711

wix |

Figure 3: A complete state-space model of the system with action
generation and feedback effects.

Remark 2: We can also use a jump state model to
represent the causal effects for the case where §; 15 coming
from a finite set. In this case, as an example, the causal
effects will change the state behavior of the overall system
through a jump state model as



PH] = G,'in-‘x_l]pr + vr

Our estimation derivations in the following sections can
also be extended to cover this case using a jump state-
model (Anderson and Moore 1979).

Remark 3: For certain causal inference problems, the
actions sequence a, may be required to be predictive of
some reference sequence d,. In a traffic prediction context,
to sway driver preferences p, in a certain direction by dis-
closing estimates a, for a certain road d,, using some pub-
licly available data x.. To account for these types of scenar-
ios, we complement the model in (8) by introducing

d,=H(p)+o,. ©)
where o is 1.1.d. In this case, the feedback loop will be
designed in order to tune d; to a particular value.

In the following, we introduce algorithms that optimize
w; 50 that the overall system behaves in a desired manner
given the corresponding mathematical system. However,
we emphasize the overall system parameters including the
feedback loop parameters are not known and should be
estimated only from the available observations x;. Hence,
we carry out both the estimation and design procedures
together for a complete system design.

Design of the Overall System with Causal In-
ference

We consider the problem of designing a sequence of
actions {a;}=; in order to influence users based on our
observations {x:};, where bechavior of the user is
governed by his/her hidden preference sequence {p:} .
The machine learning system is required to choose the
sequence {w:} s in order to accomplish its specific goal.
The specific goal naturally depends on the application. As
an example, in Social Networks, the goal can be to change
the opinions of users about a new product by sending the
most appropriate content such as news articles and/or
targeted tweets. In its more general form, we can represent
this goal as a utility function and optimize the cumulative
gain

o0

masz[U!], (10
L ——
where U, = U; (p,) is an appropriate utility function for a
specific application. To facilitate the analysis, we choose
the utility function as the negative of the squared Euclidean
distance between the actual consumer preference p, and
some desired state g, We emphasize that, as shown later in
the paper., our optimization framework can be used to
optimize any utility function provided that it has
continuous first order derivatives due to the stochastic
gradient update. In this case (10) can be written as

Appendix

oo
min Y’ £ p, - 4,1, (1
[

The overall system parameters, | F, (. ¢}, are not known
and should be estimated from our observations. We
introduce an Extended Kalman Filtering (EKF) approach
to estimate the unknown parameters of the system. We
separately consider the estimation framework without the
feedback loop, i.e., w = 0. and with the feedback loop, i.e.,
w # . Clearly the estimation task for {F, (7} can be carried
out before we produce our suggestions w. In this case, we
can estimate these parameters with a better accuracy
without the feedback effects since we need to estimate a
smaller number of parameters under less complicated noise
processes. However, for certain scenarios where this
feedback loop is already active, we also introduce a joint
estimation framework for all parameters. A system with
feedback is more general, realistic and comprehensive.
And feedback is needed in order to tune or influence the
preferences of a user in a desired manner. However, a
system with feedback is more complex to design and
analyze. Therefore, we first provide the analysis for a
system without feedback and build on it for an analysis of
a system with feedback. After we get the estimated system
parameters, we introduce online learning algorithms in
order to tune the corresponding system to a particular
target internal state sequence, which can be time varying,
nonstationary or even chaotic (Singer et al. 2002; Kozat et
al. 2007).

Estimating the Unknown Parameters of the System
Without Feedback

Without the feedback loop, the system is described by
Pa=Gp+v, (12)
x,=Fp +n,. (13)

where ©, and m; are assumed to be Gaussian with
correlation matrices @ and R, respectively. We then define

6, 2[G.(): K.
Where G, (:) is the vectorized G, i.¢., the columns of G, are
stacked one after another to get a full column vector. To
jointly estimate p, and &, we formulate an EKF framework
by considering

g

r+l:€r+£r‘- “4)
where g& is the noise in estimating @ through the EKF.
Then, using (12) and (14), and considering p, and @ as the

joint state vector, we get
X, =f|('ﬂ!P;)+n:

2 95 ¥ v.r
P _( @), | .
9.r+] . 9: gr

where
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f:‘g'(e;)pr)é(;.px

are the corresponding nonlinear equations so that we
require the EKF framework. The corresponding EKF
equations to estimate the augmented states are recursively
given as:

gnlr - g,:,_,] ( —£i(8,.,P,)). (16)
Proy = 10y Pyy) (17)
.,-6, s
L =P HHF H +R)", (19)
P,=P,  -LHP, .
P'Hlf D;P:FD +0, (20)
where

Py 2 Ep %X, 0]
Py éE[p, [ X X 5,e]
8, 260 x.x, ,....]

.r|:— E[e |x; 1= —‘H"']

are EKF terms that approximate the optimal “linear” MSE
estimated values in the linearized case, H, and D, are the
gradients for the first order Taylor expansion needed to
linearize the nonlinear state equations in (15)

{v.ﬂrf( = ]‘pm_]))T
(V f( 1= l’pflr—]))rl

¢

and

D _ v f( fIr’Pr|.r) V f( f|i’p.r|f {21)
£ 'J ! Hl
respectively. Here, L, is the gain of the EKF, P, is the error
variance of the augmented state. The complete set of
equations in (16) to (20) defines the EKF update on the
parameter vectors. We next consider the case when there is
feedback.

Estimating the Unknown Parameters of the System
With Feedback

For estimating the parameters of the feedback loop, ie.. o
(please see Figure 3), we have two different scenarios. In
the first case, where we can control w, we set w = 0,
estimate {F, G} and then subsequently estimate ¢ for fixed
w. For scenarios where the feedback loop is already present
(or we cannot control it), 1.e., w # @, we need to estimate all
the system parameters under the feedback loop. Naturally,

in this case the estimation process is more prone to errors
due to compounding effects of the feedback loop on the
noise processes, We consider both cases separately.

Using (6) in (8), we get

T
pr+l :Gr.pr +v.r+crwr xl
T r
=G.p +v,+cw Fp +cwn,

Hence, the complete state space description with
causal loop is given by

pr—l = ((;.r +c.rwfr‘F: }p.r +vr +watrn.r ! {22)
x,=Fp +n, (23)

In (23), w; i1s known, however, all the parameters
including ¢ are unknown. We have two cases:

Case 1

Since we can control w, we set w = ) and estimate & asF,
and G_, as in the case without feedback. Then, use these
estimated parameters in (23) vielding

~ roe T
pr+| =(G; +C‘W! Fn')p.f +vr +L’|,"’I n
x,=Fp, +n,_ 24)

To estimate the ¢, we mntroduce an EKF framework by
considering ¢ as another state vector

C.r+l =C|, +R‘

where g is the noise in the estimation process, yielding

x: Z‘F.:p.f +"i’
' T
pr+1 — .f_‘&(cﬁp;.} + vr + c,w; ”, (25)
cr+'| C.r g 0
where
f;(c."Pr)é(ér-’_cerﬁ:]p:

is the corresponding nonlinearity in the system.

In the state update equation (25), unlike the previous
EKF formulation, the process noise depends on e: as
cew:'n: . which is unknown and part of the estimated state
vector. Hence, the EKF formulation is more involved.

After several steps, we derive the EKF equations to
estimate the augmented states for this case as

T
Py = 1€, p,)+ S (x,~Ep,, ). @D
€ =€y (28)

L=P _HQ' (29)

S, =c, W, "R, (30)

P,=H'P, H +R. (31)

e ] flr—1



‘Rk =F, _LfH:TRk
‘PH]|r :D{‘Prl.r— DT_BrQ_IBfT+QJ! {32)
‘S:

where
Py = E[p, | x,.x, ....]
Py é**"—“‘:[Jn"’; & AP AP
o éE[cr |x,.x,_,...]

A =
c :ET[C.l |xr 15x1-21"']

fe=1
are EKF terms that approximate the optimal “linear”™ MSE
estimated values in the lineraized case, H, and D, are the
gradients for the first order Taylor expansion needed to
linearize the nonlinear state equations in (25)

¥, (Ep)Y -[ﬁ?]
V. (Ep)y ) L0
and
D — V,p,.-rf;(crlr";'.".rl.f) lvc-,-}r."u{crlr‘prl.r}
’ 0 I '

respectively. Here, L; 1s the gain of the EKF, P; is the error
variance of the augmented state.

-

To obtain an expression for Qi in terms of W we

define the composite error vector b for the state update
equation so that

O =E[bb|x, ,.x, ,...]

b,g("'} M .
2 Lo

After straightforward algebra, we get
0 - Q+w/ RwIl, 0
’ 0 v)

with

where

U=Epp']

and

0
L, é((} I)prp—l [IJ"":F r?|; -

These updates provide the complete EKF formulation
with feedback. In the sequel, we mtroduce the complete
estimation framework where we estimate all the
parameters jointly.

Case 2
We can define a superset of parameters

Appendix

A .
6, =[G,(:: F ()],

and formulate an EKF framework for this augmented

parameter vector with

g

=+l

= ar + gr L
vields

x: =.f;(6.f’p.')+n:

Pua ) _(Ss6-p)) (v} femwi) o
8., Z &) L0
where

1i(8,p)=Fp,
j'-( 9.P.r (GI—C‘M?T.F;)

are the corresponding nonlinear equations so that we
require EKF.

After some algebra, we get the complete EKF equations
as

p."lf p,lr_] _ )
= L _ , )
[erlr ] [9”!_' ]‘l‘ 't (x: 'f4(€!|.f—| pm ))

pl+1|r f (elr’pﬂr)-'-sg_l(x - f-i( J|.’—l'p1|1—|))
€;'+]|r = 9:|.r

L= Rp_1H,Q“
S,=(0 0 I)6,_wR ,
Q=HP, H+R
P, =P, -LH'P,
P, =DP, D -~BQ'B +0,
B =DFP, H, +(i‘]
where
NICHACEY A%
ERNCAACI Y
and

D‘, [V f;( r|r°pr|:) V f;( Flf’pflf)}.
0 I

To obtain an expression for @, in terms of wr we
define the composite error vector by for the state update
equation so that

Qr = E’[bfbf I‘xr—l9xr—2"“']
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with

& v.‘ !
£, 0

After straightforward algebra, we get

~ [Q+w RwL, 0
Qr =[ ] ‘

0 U
where
Q=Evy/]
U=Elge! ]
R=Elnn]
and

R an

Given that the system parameters are estimated through the
EKF formulation, we next introduce learning algorithms on
w; in order to change the behavior of the users in a desired
manner.

Designing a Causal Inference System to Tune
User Preferences

After the parameters are estimated through methods
described in the previous sections, the complete system
framework is given by

xr = ‘F;pr + n: ’
T T
p:+| ={Gf +crw: P‘;)R +v.f +£'wa '"r 2 (35)
with the estimated
W, =F.G =G,¢c =c;.

Our goal in this section is to design w, such that the
sequence of preferences p; are tuned towards a desired
sequence of preferences g, e.g.. one can desire to sway the
preferences of a user to a certain product.

In order to tune the user preferences, we design w, so
that the difference between the preferences pr and the
desired g, 1s minimized. We define this difference as the
loss between the preferences and desired vectors as

S Ups4a,),
k=1

where [f,) is any differentiable loss function. As an
example, for the square error loss, this yields

Sle-a.l - (36)
k=1

To minimize the difference between these two
sequences, we introduce a stochastic gradient approach

where wy is learned in a sequential manner. In the
stochastic gradient approach, we have

Wi =W, _ﬂv...fi(m ,‘I;c), (37)
where g > 0 is a appropriate learning rate coefficient. The

learning rate coefficient is usually selected as time varying
with two conditions

4, —0 as  — 00 and

i
Z Ly, —> 0 as [ —»o00,
k=1
eg M, =1/t
If these two conditions are met, then the estimated
parameters wy through the gradient approach will converge
to the optimal w (provided that such an optimal point
exists) (Bishop 2007). To facilitate the analysis, we set

I(p.q)= HP&- —q, ||2
and get

W =w,— a1, |-
=w,—2u(V, p)(p,—4q,)

In (38), since p; is unknown, we use py.; from the
causal loop case, 1.e. with feedback, and get

W, =W, _zﬂ(vlu, prlr—] )(Pﬂr—l _Qr) . (39)
To get

(38)

V.u_, P
we use the EKF recursion as
Py =G, +¢, w:T-F.: WPyt Lx —H_p 5D
Py = K, Pt M, (40)
where
K =(G, +CIWTE)(I -L_H_).
and

Mr = ((;f +c:w;TE)ert—l ‘

Using (40), we get a recursive update on the gradient as

Vw, Py = Vn-_, K.rpq.r—l + Kavw,Prlr—lvwr M, . @41

From (39), (40) and (41), we get the complete recursive
update as

w.r+l wf _zﬂ(vu p.ll.l—|}(p{|.r—l _q,r)
p.r|:—l = Krpxl;—l + M; (42)

Vw,p.rp'—l = Vw, Krp.'p—l + "l{rvw,.p‘rp'—lvwJ Mr

This completes the derivation of the stochastic gradient
update for online learning of the tuning regression vector.



Experiments

In this section, we share our simulation results to show that
estimated parameters of the system converge to the real
values, proving that a system can be designed with the
right parameters which allows a sequence of actions or
interventions to tune the preferences of a user in a desired
manner. Since our goal is mainly to establish a pathway to
the possibility of designing a system that can steer user
preferences in a desired manner. we suffice our simulation
cases to a basic set based on the mathematical proof we
provided in the form of EKF formulations. The true
parameters of the system are known to us since we are
running our experiments in the form of simulations.
Specifically, the preferences of the user, which are not
directly observable in real life, are known in case of
simulations. We run simulations for the EKF formulations
we derived in the previous sections to show that our
estimation of the preferences converge to the real
preference values. We illustrate the convergence of our
algorithms under different scenarios.

In the first scenario, we have the case where the
carresponding system has no feedback. As the true system,
we choose a second order linear state space model, where
G=09Tand F=TwithQ@=3x 10" Fand R=3 x 107 L.
For the EKF formulation, we choose two different
variances for &, e.g., 10~ and 10 to demonstrate the effect
of this design parameter on the system. We emphasize that
neither F or G are known, hence as long as the system is
observable, particular choices of F and & only change the
convergence speed and the final MSE. However, we
choose F to make the system stable.

In Figure 4, we plot the square error difference between
the estimated preferences and the real preferences

2
vEl|p,~ py [ ]
with respect to the number of iterations, where we produce
the MSE curves after averaging over 100 independent
trials. We also plot the cumulative MSE normalized with
respect to time, i.e.,

imﬁ‘[\

P, Py ||2]

{

to show that as the iteration count increases, the averaged
MSE steadily converges. The plot includes both the
average MSE and the cumulative MSE normalized in time
for estimation of F and G. We observe that the estimation
of F and G are more prone to errors due to the
multiplicative uncertanity, single observation and state
update equations. However, both the estimated preferences
vectors as well as the system parameters converge.
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Figure 4: Estimation of the underlying preferences vector when
there is no feedback. The results are averaged over 100 independ-
ent trials. Here, we have no feedback and parameters of both the
state equation as well as the observation equation are unknown.
The results are shown for two different noise variances for the
EKF formulation,

In the second set of experiments, we have feedback
present, i.e., w ¥ 0. For this case, we now have similar
parameters as in the first set of experiments, except & =
0.91 to give more decay due to presence of feedback. For
this case, we choose two different scenarios, where w, and
¢, are fixed or randomly chosen provided that the overall
system stays stable after the feedback, ie., (G + ¢ w; F)
corresponds to a stable system. Note that this can be
always forced by choosing an appropriate w, However, we
choose randomly initialized w to avoid any bias in our
experiments. Here, although w is known to us, the
feedback amount ¢ as well as the hidden preferences are
unknown. In Figure 5, we plot the MSE between the
estimated preference vectors and the true ones. We observe
from these simulations that although the feedback produces
a multiplicative uncertanity in the state equation and
greatly enhance the nonlinearity in the update equation, we
are able to recover the true values through the EKF
formulation. We observe that although due to feedback we
have more colored noise in the state equation, we recover
true values due to the whitening effects of the EKF. The
MSE error between the estimated feedback and the true
one are plotted, where the MSE curves are produced after
100 independent realizations.
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Figure 5: Estimation of the underlying vector of preferences and
the feedback parameters when there is feedback. The results are
averaged over 100 independent trials. Two different configura-
tions are simulated for the feedback as well as for the linear con-
trol parameters, e.g., the fixed and random initial cases. For both
scenarios, our estimation process converges to the true underlying
processes.

Conclusions

In this paper, we model the effects of the machine learning
algorithms such as recommendation engines on users
through a causual feedback loop. To this end, we introduce
a complete state space formulation modeling: (1) evolution
of preference vectors, (2) observations generated by users,
and (3) the causal feedback effects of the actions of
machine learning algorithms on the system. All these
parameters are jointly optimized through an Extended
Kalman Filtering framework. We introduce algorithms to
estimate the unknown system parameters with and without
feedback. In both cases, all the parameters are estimated
jointly. We emphasize that we provide a complete set of
equations covering all the possible scenarios. To tune the
preferences of users towards a desired sequence, we also
introduce a linear feedback and introduce an optimization
framework using stochastic gradient descent algorithm.
Unlike previous work that only use the observations to
predict certain desired quantitics, we specifically design
outputs to “update” the infernal state of the system in a
desired manner. Through a set of experiments, we
demonstrate the convergence behavior of our proposed
algorithms in different scenarios.

We consider our work as a significant theoretical first
step in designing a system with the right parameters which
allows a sequence of actions or interventions to tune the

preferences of a user in a desired manner. We emphasize
that the main goal of our study is to establish a pathway to
designing such a system. We achieve this by first providing
mathematical proof and then through a basic set of
simulations.

A next step in future studies can be to make the system
more stable and also to make the design process easy and
practical for system designers. Further analysis on the
convergence of the system along with more simulations,
experiments and numerical analysis are needed to take our
results to the next level. A direct comparison to previous
studies is not possible for this first step of our study since,
to the best of our knowledge, this is the first time a task of
this nature is being undertaken. Our main success criteria is
the fact that estimated parameters converge to the real
parameter values. However, as our framework evolves, we
will be able to track its relative performance.

Another area of focus for future studies is the optimal
selection of action sequences. This can be particularly
challenging since user preferences can change over time
due to the abundance of new products and services.
Algorithms to optimally select actions may require online
learning and decision making in real time to accommodate
these changes.
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