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ABSTRACT 

Complex structures are usually composed of various subsystems coupled by several 

rigid or elastic couplings. Prediction of the vibration response at these complex structures 

such as aerospace, marine and automotive vehicles is an important engineering issue in 

terms of design optimization and component selection.  

Considering this demand, this dissertation presents the vibration response prediction 

(VRP) methodologies such as mount stiffness method, transmissibility matrix method, 

matrix pseudo and direct inversion methods for the structures coupled with rigid and elastic 

couplings. Among the presented VRP methodologies, most consideration is given to the 

matrix inversion methods which involve an inverted frequency response function (FRF) 

matrix and a vector of vibration responses. In accordance with the matrix inversion 

methods, experimental and numerical case studies are conducted. At first, a rigidly coupled 

planar structure is considered and VRP methodology based on the matrix pseudo inversion 

method is applied along with singular value decomposition (SVD). Tikhonov 

regularization with the cross validation functions is investigated for improving the 

prediction results. Secondly, direct inversion method is applied for a structure coupled with 

two rigid links considering the cross-coupling effects. Results of the pseudo and direct 

inversion methods are compared for the case study presented. Effects of the measurement 

errors such as mass loading and existing noise on the prediction results are also 

demonstrated with the same structure. 

Finally, the structures connected with the elastic mounts are discussed since vibratory 

sources are usually connected to the supporting structures via rubber mounts. A hybrid 

methodology that incorporates the numerical model with the experimental measurement 

results is proposed to improve the predicted vibration response. In order to perform the 

hybrid VRP methodology for the rubber linked structure, hyperelastic and viscoelastic 

behavior of the rubber mounts are included within the numerical model and a simulation 
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algorithm is developed. Considerations of this method such as the generation of an accurate 

numeric model and selection of the force identification points are also discussed. Force 

identification points are selected based on a metric that is composed of average condition 

number of the FRF matrix across the whole frequency of interest. The effectiveness of the 

proposed method is demonstrated by comparing the predicted results with the measured 

vibration responses.  
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ÖZETÇE 

 

Kompleks yapılar genellikle rijit veya elastik bağlantı elemanları ile birbirlerine 

bağlanmış birçok alt sistemlerden oluşmaktadır. Otomotiv, hava ve deniz taşıtları gibi 

kompleks yapılarda titreşim tepkisinin öngörülmesi dizayn optimizasyonu ve ekipman 

seçimi açısından önemli bir mühendislik konusudur.  

Bu gereksinim dikkate alınarak bu tezde rijit ve elastik bağlı yapılar için bağlantı rijitlik 

metodu, iletilebilirlik matris metodu, matris tersine çevirme metodu gibi titreşim tepki 

öngörüsü (TTÖ) metotları sunulmuştur. Bahse konu metotlar arasından, en çok matris 

tersine çevirme metoduna odaklanılmıştır. Matris tersine çevirme metodu, tersi alınan 

frekans tepki fonksiyonları (FTF) matrisi ve titreşim tepki vektöründen oluşmaktadır. 

Matris tersine çevirme metoduna ilişkin deneysel ve nümerik çalışmalar yapılmıştır. 

Öncelikle, rijit bağlı düzlemsel yapılar ele alınmış ve benzetik matris tersine çevirme 

metodunu içeren TTÖ teknikleri tekil değer ayrışması (TDA) ile birlikte uygulanmıştır. 

Sonuçları iyileştirmek amacıyla Tikhonov düzenleme teknikleri ile doğrulama 

fonksiyonlarının etkisi incelenmiştir. İkinci çalışma olarak, doğrudan matris tersine 

çevirme metodu ve bağıl etkiler dikkate alınarak iki rijit link ile bağlanmış bir yapı 

üzerinde TTÖ çalışması yapılmıştır. Bu çalışma için, benzetik ve doğrudan matris tersine 

çevirme metotlarının sonuçları mukayese edilmiştir. Ayrıca, kütle etkisi ve sinyalde gürültü 

gibi ölçüm hatalarının sonuçlara olan etkisi aynı yapı üzerinden nümerik bir çalışma ile 

gösterilmiştir. 

Son olarak, titreşim kaynakları kaidelerine genellikle lastik sönümleyiciler ile 

bağlandığından, elastik bağlı yapılar dikkate alınmıştır. Öngörü sonuçlarını iyileştimek 

amacıyla nümerik ve deneysel verileri entegre eden bir hibrid TTÖ metodu önerilmiştir. 

Lastik bağlı yapıda hibrid metodu uygulamak için, lastik sönümleyicilerin hiperelastik ve 

viskoelastik davranışı incelenmiş ve nümerik model ve simulasyon algoritması 
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sunulmuştur. Doğru bir nümerik modelin oluşturulması ve kuvvet belirleme noktarının 

seçilmesi gibi konular da ele alınmıştır. Kuvvet belirleme noktaları, FTF matrisinin tüm 

frekans aralığını içeren ortalama kondüsyon numarasına bağlı bir metrik ile seçilmiştir. 

Önerilen metodun etkinliği, öngörü ve ölçüm sonuçlarının mukayese edilmesi ile 

gösterilmiştir. 
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Chapter 1.                                                                                                       

INTRODUCTION 

 

Noise, vibration and harshness (NVH) have a vital importance especially for the 

complex structures composed of several substructures. Vibration has always been an 

important issue in terms of reliability and quality while noise is essential to the system 

users and also the environment [1]. Besides, noise and vibration have damaging health 

effects. It can result in a large number of physiological and psychological disabilities such 

as hearing loss, fatigue, misunderstanding, decreased working capacity, concentration loss 

and irritation etc. [2] Thus, it is essential to monitor and control the noise and vibration 

characteristics of the structures.  

A vibro-acoustic system mainly consists of two components; active and passive part, 

as illustrated in Fig. 1.1. Active part is basically the source which results in vibro-acoustic 

energy. Two types of sources can be defined; structural and acoustic. Regarding the 

structural sources, these components, such as engines, pumps or compressors etc., excite 

the passive subsystem through structural connections. Acoustic sources can be vibrating 

surfaces producing sound, such as the cylinder cover, and flow induced noise such as 

exhaust pipes, ventilation fans and air intakes. These sources can be characterized by their 

source strength, often measured in volume velocity or displacement.  

Passive side is composed of the receivers and the paths through which the vibro-

acoustic energy is propagated. Paths starting at a structural source are called structure-



 

 

Chapter 1: Introduction     2 

 

 

 

2 

 

borne paths whereas paths starting at an acoustic source are called airborne paths. A 

representative example for typical transfer paths is illustrated in Fig. 1.2 for an engine 

installed on the engine room of a ship.  

Transfer paths can be analytically expressed as transfer functions or frequency 

response functions (FRF). These FRFs used for the structure-borne paths are usually 

measured as receptance, mobility or accelerance. As for the airborne paths, transfer 

functions are referred to as noise transfer functions (NTF) in order to distinguish them from 

other FRFs.  

Final component of the system is the receiver such as a driver, passenger, a vibration 

sensitive device or a point which should be monitored. The receivers can be defined by 

their vibration or acoustic response such as sound pressure or acceleration or displacement.  

 

Figure 1.1 Description of a vibro-acoustic system 
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Figure 1.2 Representative transfer paths of an engine installed on a ship engine room 

 

Traditionally, NVH characteristics of the structure had been analyzed using the 

Modal Analysis approach [3-7]. In this approach, vibration modes of the structure sustain 

motion and carry energy. Each mode is related with a characteristic frequency and vibration 

mode shape yielding information about the dynamic behavior of the structure. The 

response of a structure can be expressed as a sum of contributions from its modes. 

Therefore, the NVH problems can be reduced to a few dominant modes and can be solved 

by changing the modal frequencies. However, modal analysis approach may not be as 

effective when there are too many modes which contribute equally to the dynamics of the 

structure. In those conditions, it is not practical to trace and change all the modes in order 

to solve the problem. Consequently, alternative methods such as Transfer Path Analysis 

(TPA) have been studied to solve the NVH problems in an effective manner. TPA is a test-

based or a simulation-based technique used to identify the paths dominating the vibration 

response at the receiver by splitting it to contributions from the internal paths [8-12]. 

Vibrational energy, created by an exciting force, flows through a set of known paths to a 
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receiver location. Once the dominant paths are determined, the problem is reduced to find a 

solution for minimizing or eliminating their contributions. After initial development in the 

early 90’s, TPA has been extensively used as an effective tool in order to solve NVH 

problems by using experimental data, especially in the automotive industry. TPA mainly 

involves 3 main subtopics which are related to each other, as shown in Fig.1.3. In cases 

when the goal is to determine the operational forces acting on the structure, especially on 

the purpose of source localization or structural health monitoring, Operational Force 

Identification (OFI) subtopic of TPA can be used. If one is just interested in the operational 

response of any point, Vibration Response Prediction (VRP) subtopic of TPA can be 

applied after OFI. This topic can be implemented for design optimization, component 

selection or condition monitoring purposes. Final subtopic of TPA is called Path 

Contribution which actually reveals the problematic path or source. In this topic, the 

dominant paths and the contribution of each path to the response are determined in order to 

solve the NVH problem. In this dissertation, the vibration response prediction subtopic is 

taken into consideration, as explained in the next section. 

 

 

Figure 1.3 Subtopics of transfer path analysis 
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1.1 Introduction to Vibration Response Prediction 

For complex structures coupled with various links, predicting the vibration response at 

the point of interest is of great importance in terms of design optimization and component 

selection especially at where the response cannot be measured due to some physical 

constraints. If one can predict the vibration response of any point on the structure, 

modifications can be easily implemented such as changing the impedance of some of the 

components, increasing the local stiffnesses and retuning the mount rates of the machinery 

etc.  

1.2 Motivation, Research Goals and Contribution 

There are many limitations of the existing vibration prediction methodologies and 

some of these challenges have been explored in the literature to find a combination of fast, 

easy and reliable methods [13-19]. In order to contribute to the literature within the scope 

of vibration response prediction, the following research goals have been defined for this 

thesis. 

 Investigating the advantages and disadvantages of the existing vibration response 

prediction methodologies  

 Improving the existing methods in terms of measurement effort, flexibility and 

easiness. 

 Investigating the effect of measurement errors on the prediction results. 

 Investigating the effect of rubber components which may expose non-linearity to 

the structure. 

 Presenting a new approach which is more practical and reliable compared to the 

existing methods for vibration response prediction. 
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First contribution of this dissertation is to present a unique approach for using the 

direct inversion method in predicting the vibration response of the coupled structures. 

Differently from the classical methods, a measurement approach is presented in which the 

measurements are performed at the source side and the cross-coupling effects are taken into 

consideration. Effect of the existing measurement noise and added mass on the accuracy of 

the prediction results are also demonstrated. 

One of the major contributions of this dissertation is to present the use of Tikhonov 

regularization with the cross validation functions for improving the vibration prediction 

results. Tikhonov regularization is the process of using additional information to solve an 

ill-conditioned problem of the matrix inversion method. In the matrix inversion method, 

unconstrained least squares solution is constrained by applying Tikhonov regularization 

and hence, the results are improved. The most effective cross validation function for 

selecting the regularization parameter is presented with a case study of a rigidly-linked 

structure. 

Another major contribution of this dissertation is to develop a hybrid methodology for 

predicting the vibration response of structures coupled by rigid and/or elastic couplings. In 

this proposed hybrid methodology, numerical modeling results are integrated with the 

experimental measured vibration data. The proposed methodology is validated by 

implementing a case study of a rubber-linked structure. This method plays an important 

role especially when measuring the transfer functions is not feasible due to the complexity 

of the structure and the measurements are affected from the existing noise. 

The other major contribution is to propose a metric for selecting the measurement 

points at where the exciting forces are to be identified as the first step for vibration 

prediction methodology. These so-called force identification points must be selected 

properly such that representative dynamics of the structure is included in the matrix to be 
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inverted. This metric is composed of average condition number of the FRF matrix across 

the whole frequency of interest. 

Another contribution is determining the effect of rubber hardness on the vibration 

response prediction for the rubber-linked structures.  

Overall, this dissertation provides methodologies and relevant considerations for 

predicting the vibration responses at the structures coupled with rigid or elastic couplings 

and demonstrates the considerations via case studies composed of rigidly and rubber-linked 

structures. 

1.3 Organization of the Dissertation 

The dissertation work is divided into 6 chapters. Chapter 2 presents the VRP 

methodologies including Moore-Penrose pseudo inversion, dynamic stiffness method, 

direct inversion method and transmissibility matrix method. Considerations for the 

methods are also discussed. Chapter 3 focuses on VRP methodology based on the matrix 

inversion technique for rigidly-linked structures with experimental and numerical studies. 

Tikhonov regularization technique with the validation functions is investigated for 

improving the prediction results. Additionally, the effects of the measurement errors such 

as mass loading and existing noise on the prediction results are demonstrated. In Chapter 4, 

a hybrid VRP methodology in which the numerical data is integrated with the 

experimentally measured data is proposed and discussed for structures having rubber 

connections. Hyperelastic and viscoelastic behavior of the rubber is included in the 

simulation model to represent the system dynamics accurately. Effect of the rubber 

hardness is also discussed by performing a numerical case study with different shore 

hardness values. Finally, in Chapter 6, all the major results of the thesis are summarized 

and recommendations for further studies are presented. 
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Chapter 2.                                                                                                         

VIBRATION RESPONSE PREDICTION METHODOLOGIES 

 

The major step of vibration response prediction is to identify the operational internal 

forces acting on the transmission paths between active and passive parts of the system. The 

exciting forces at the transmission paths can be directly measured or indirectly calculated. 

Although it seems reasonable to measure the forces in a direct way by means of force 

transducers, it is almost impossible and entirely impractical for complex structures due to 

the challenges of special load cell applications without affecting the overall dynamics of 

the structure. In cases where the direct measurement is possible, it usually requires 

structural changes to attach the force transducers and it results in a change of the dynamic 

characteristics of the structure.  

Instead of measuring the forces directly, as in the most of the existing studies, the 

operating forces are identified indirectly. In indirect approaches, which have been widely 

studied in the literature [9, 10, 20-41], the structure itself becomes the force transducer. 

Once the operational forces acting on each path are calculated indirectly, the vibration 

response at the point of interest or target, k and the contribution of each path to that point 

can be predicted assuming that the system is linear and time-invariant. Partial contribution 

of each path to the vibration response at the target can be identified by multiplying the 

calculated internal force acting at the path and measured FRF between the target and the 

source location. By adding up these partial contributions, the response at the target is 
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calculated, as seen in Eq.(2.1). In addition to the calculated vibration response, the 

dominant transfer paths are also identified.    

�̈�𝑘(𝜔) = ∑�̈�𝑘𝑖(𝜔)

𝑛

𝑖=1

= ∑𝐹𝑖(𝜔)𝐻𝑘𝑖(𝜔)

𝑛

𝑖=1

 (2.1) 

Using Eq.(2.1), main causes of the high contributions of a dominant path can be 

determined such as high transfer function, high force, high point mobility etc. Then, some 

remedial measures or corrections can be taken by means of reducing transfer function, 

retuning attachment mount rates or increasing local stiffness.  

2.1 Mount Stiffness Method 

Verheij [20] introduced the mount stiffness method which is mainly implemented when 

the connections of the structure are soft such as rubber resilient mounts. In this method, 

resilient mounts can be defined as “force transducers” and accurate complex dynamic 

stiffness data of the mounts is required [42]. The system model is shown in Fig. 2.1. Each 

spring represents one degree of freedom (DOF) of a structural connection, the cross-

coupling between the DOFs is assumed as negligible and the mount behaves like an ideal 

spring [43]. The difference between operational response measured at the source (active) 

and receiver (passive) sides is multiplied with the complex dynamic stiffness data and the 

result yields the dynamic operational force in that direction, as illustrated in Eq. (2.2). 

𝐹𝑖(𝜔) = 𝐾𝑖(𝜔)
�̈�𝑖𝑎(𝜔) − �̈�𝑖𝑝(𝜔)

−𝜔2
 

(2.2) 

where 𝐹𝑖(𝜔) (i=1..n (number of paths)) denotes internal operating force acting on the paths, 

𝐾𝑖(𝜔) is the complex dynamic stiffness data and �̈�𝑖𝑎(𝜔) − �̈�𝑖𝑝(𝜔) is the relative difference 
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between the acceleration of the mount at the source and the receiver side of the transfer 

path i.  

 

Figure 2.1 Model of mount stiffness method 

Mount stiffness method seems to be the easiest, fastest and straightforward way to 

identify the forces. However, there are some limitations regarding the use of this method. 

When the transfer paths include rigid couplings or the mounts are very stiff compared to 

the receiver, the dynamic stiffness method cannot be implemented since the difference of 

the responses across the mount, as in Eq.(2.2), becomes too small. Besides, accurate 

dynamic stiffness data of rubber components are seldom available and dynamic 

measurements of these mounts are pretty expensive. Even if there is, it is only valid for a 

applied loading condition and amplitude since most of the mounts are nonlinear and the 

preload changes during operation, as reported in [43]. In this dissertation, the application of 

this method is not presented along with the case studies since dynamic stiffness data for the 

rubber mounts has not been obtained sufficiently. 
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2.2 Transmissibility Matrix Method 

Transmissibility is basically the relationship between two vibration responses in a 

system measured at two locations of a structure. The use of transmissibility has been 

studied for several purposes such as evaluation of FRFs, finite element model updating, 

transfer path analysis etc. [13, 41, 44-48]  

By using the operational data instead of FRFs, it is aimed to reduce the measurement 

time and complexity of the matrix inversion methods. In this method, the forces are 

replaced by the measured responses at the force identification points and the propagation 

paths are represented by the transmissibilities. As shown in Eq.(2.3), transmissibility can be 

formulated in terms of vibration responses. 

𝑇𝑥𝑦(𝜔) =  
�̈�𝑖(𝜔)

�̈�𝑖(𝜔)
=

𝐻𝑥𝑖(𝜔) 𝐹𝑖(𝜔)

𝐻𝑦𝑖(𝜔) 𝐹𝑖(𝜔)
=

𝐻𝑥𝑖(𝜔)

𝐻𝑦𝑖(𝜔)
  (2.3) 

where 𝐻𝑥𝑖(𝜔) and 𝐻𝑦𝑖(𝜔) are the corresponding transfer functions, i = 1…n and n stands 

for the number of paths.  

Since the transmissibility can be defined in terms of vibration responses, the responses 

of the structure are grouped according to the locations whether at the active or passive side, 

as shown in Fig.2.2. The first step of the Transmissibility Matrix Method is to create 

transmissibility matrix composed of the operational measurements. The structure is excited 

several times by artificial forces and responses are measured for m different operating 

conditions, as stated in Eq.(2.4).  
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Figure 2.2 Transmissibility model 

[�̈�(𝜔)] =  [

�̈�1
(1)

�̈�1
(2)

⋯

⋮ ⋮

�̈�𝑛
(1)

�̈�𝑛
(2)

⋯

 
  �̈�1

(𝑚)

⋮

  �̈�𝑛
(𝑚)

]        [�̈�(𝜔)] =  [

�̈�1
(1)

�̈�1
(2)

⋯

⋮ ⋮

�̈�𝑛
(1)

�̈�𝑛
(2)

⋯

 
  �̈�1

(𝑚)

⋮

  �̈�𝑛
(𝑚)

] (2.4) 

Transmissibility matrix can be estimated from; 

[𝑇(𝜔)] =  [�̈�(𝜔)] [�̈�(𝜔)]
+
  

(2.5) 

In order to apply Eq.(2.5), the artificial excitations should be applied at the same 

positions for the measurements and all sources should be operating during the 

measurements. Besides, the number of indicators should be equal to or greater than the 

number of sources [49]. 

After determining the transmissibility matrix from the measured data of the points 

excited by artificial forces, the partial contribution of each path on the response of a target 

can be predicted by multiplying the transmissibility matrix and the in-situ measured 

vibration responses of the active side, as formulated in Eq.(2.6).  
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𝑆𝑦𝑦
(𝑗)(𝑖, 𝑖) =  |𝑇(𝑗, 𝑖)| 𝑆𝑥𝑥(𝑗, 𝑗)  

(2.6) 

where i and j represent the target and the path number, respectively. 𝑆𝑥𝑥 and 𝑆𝑦𝑦 is the 

autospectrum of the measured data. Therefore, the total response at the i-th receiver can be 

predicted as; 

𝑆𝑦𝑦(𝑖, 𝑖) =  ∑𝑆𝑦𝑦
(𝑗)(𝑖, 𝑖)

𝑛

𝑗=1

   (2.7) 

Since this method seems to be straightforward and practical, it strongly depends on the 

quality of the transmissibility matrix and the predicted responses are influenced by the 

position of the indicators. Therefore, some critical limitations for this method can be listed 

as follows [50, 51]. 

a. The effect of cross coupling (Low cross-couplings between input responses are 

required.) 

b. The effect of coherence (Low coherence between input forces is essential.) 

c. Conditioning problems related to the identification of the transmissibility matrix 

d. The potential errors due to unconsidered paths (All active paths should be 

included) 

e. The position of the indicators (The indicator sensors should be placed close to 

the source as much as possible) 

2.3 Matrix Pseudo Inversion Method 

Another approach, used especially for structures having rigid connections such as bolts 

and bushings, is the matrix inversion method [9, 10, 20, 26, 28]. This method involves 

direct or reciprocal measurement of transfer functions, FRFs and vibration response 

measurements. In this method, before measuring FRFs between the path interface and 
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indicator/target points on the passive side of the structure, the source is removed and FRFs 

are measured between the response and source points respectively such that the 

corresponding path remains in place while all other path connections are disassembled 

from the receiving subsystem of interest. Thus, the cross-coupling effects are eliminated 

since the energy flows only through the remaining path during FRF measurements, FRF 

matrix is constituted by placing these measured FRF values to the corresponding column 

(path number) and row (sensor number). Passive side vibration responses at the path 

interface points are also measured. Operational internal force acting at each path is 

identified by multiplying a vector of measured vibration responses with the inverse of the 

FRF (accelerance) matrix, as stated in Eq.(2.8).  

{𝐹(𝜔)} = [𝐻(𝜔)]−1{�̈�(𝜔)}  (2.8) 

The main point in this method is that the number of response points (m) to be 

measured should be larger than the number of forces to be identified or so-called paths (n). 

Using additional information can help reducing the measurement errors, especially 

occurred due to the noise, which is usually present [29, 34]. As a rule of thumb, m ≥ 2n is 

usually taken [13, 29, 34, 52]. Thus, the system becomes over-determined and a least-

squares solution is required.  Moore-Penrose pseudo inversion technique is one of the least-

squares regression analyses allowing the use of more equations than unknowns as 

presented in Eq.(2.9) and the system model is shown in Fig. 2.3. 



 

 

Chapter 2: Vibration Response Prediction Methodologies   15 

 

 

15 

 

 

Figure 2.3 Matrix pseudo inversion model 

Due to applying over-determination to reduce the measurement errors, the accelerance 

matrix becomes rectangular resulting in a system of linear equations which lacks a unique 

solution. Moore-Penrose pseudo inversion is used to compute a least squares solution to a 

system of linear equations, as illustrated in Eq.(2.9) [53]. 

[
 
 
 
 
𝐹1(𝜔)

⋮
𝐹𝑖(𝜔)

⋮
𝐹𝑛(𝜔)]

 
 
 
 

=

[
 
 
 
 
𝐻11(𝜔) ⋯ 𝐻1𝑛(𝜔)

⋮
𝐻𝑞1(𝜔)

⋮
𝐻𝑚1(𝜔)

⋮
⋯
⋮
⋯

⋮
𝐻𝑞𝑛(𝜔)

⋮
𝐻𝑚𝑛(𝜔)]

 
 
 
 
+ 

[
 
 
 
 
�̈�1(𝜔)

⋮
�̈�𝑞(𝜔)

⋮
�̈�𝑚(𝜔)]

 
 
 
 

 
(2.9) 

where in 𝐻𝑚𝑖(𝜔) is the frequency response function (FRF-accelerance) measured between 

the sensor point m and the applied force at the interface connection of transfer path, i where 

i=1,…,n (number of paths). “+” indicates the Moore-Penrose pseudo inversion and �̈�𝑗(𝜔) 

is the operational response (acceleration) measured at sensor number, j where j=1,.., m 

(number of sensors). Moore-Penrose pseudo inverse of accelerance matrix, H is given by: 

[𝐻(𝜔)]+ = ([𝐻(𝜔)]𝐻[𝐻(𝜔)])−1[𝐻(𝜔)]𝐻 (2.10) 
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where 
H
 indicates the Hermitian transpose (complex conjugate transpose). Hereby, the 

least-squares solution of Eq.(2.9) becomes; 

{𝐹(𝜔)} = ([𝐻(𝜔)]𝐻[𝐻(𝜔)])−1[𝐻(𝜔)]𝐻{�̈�(𝜔)} (2.11) 

It should be noted that the solution should be done for each frequency, separately. The 

identified forces can result in errors due to the ill-conditioning of the accelerance matrix at 

certain frequencies and the measurement errors [30, 31, 43].  These errors are magnified by 

the inversion of the accelerance matrix, especially at frequencies where the condition 

number of the matrix is high. Condition number, which is simply the ratio of the largest 

singular value to the smallest one, is a good indicator for the ill-conditioning problem. High 

condition number indicates that the FRF matrix is ill-conditioned and the solution may not 

be unique.  

Although over-determination improves the acceleration matrix to be inverted, the 

errors may still exist at frequencies where the accelerance matrix is ill-conditioned. This 

can be due to the fact that a few modes contribute considerably to the vibration responses 

near resonances. Thus, in order to improve conditioning of the matrix, the decomposition 

of matrix and regularization of the solution can be applied. 

2.3.1 Decomposition Techniques  

Matrix decomposition is a factorization of the matrix into a product of submatrices and 

can be used for solving a system of linear equations. Some of the decomposition techniques 

can be listed as follows.  

 QR decomposition [54, 55] 

 LU decomposition [56] 

 Singular value decomposition (SVD) [26] 
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Among the mentioned decomposition techniques, singular value decomposition along 

with the Moore-Penrose pseudo inversion is applied in this dissertation. 

2.3.1.1 Singular Value Decomposition 

In earlier studies, singular value decomposition (SVD) algorithm has been performed 

for the accelerance matrix [14, 32, 57-59].  SVD is particularly effective when the 

coherence between the signals is quite large during the FRF measurements. In this regard, 

SVD method can be defined as a regularization method for reducing the effect of random 

errors such as noise on the measured data [26]. By applying SVD, the acceleration matrix, 

denoted by H
mxn

, is partitioned in two orthogonal matrices U
mxm

 and V
nxn

 and a diagonal 

matrix containing singular values Σ
mxn

, as shown in Eq.(2.12).   

[𝐻(𝜔)] = [𝑈(𝜔)][𝛴(𝜔)][𝑉(𝜔)]𝑇 (2.12) 

In order to improve the conditioning of the accelerance matrix, insignificant singular 

values should be rejected according to a threshold value. A threshold can be based on either 

the error in FRF measurments or in vibration responses [14, 59]. Hence, the solution is 

given by; 

{𝐹(𝜔)} = [𝑉(𝜔)][𝛴(𝜔)]+[𝑈(𝜔)]𝑇{�̈�(𝜔)} (2.13) 

As seen in Eq.(2.13), inverting very small singular values results in higher errors in the 

identified forces. Rejecting this singular values prior to inversion can help to reduce the 

identification errors. However, rejecting singular values can also cause the loss of valuable 

information.  
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2.3.2 Regularization Techniques  

In addition to pseudo-inverse (non-regularized) and matrix decomposition methods, 

regularization techniques can also be applied in order to overcome the effects of ill-

conditioned accelerance matrix [26]. Rejecting singular values less than some threshold 

value means the loss of some valuable information. Additionally, a minor change in the 

threshold for rejection may cause significant error in the results. This problem can be 

prevented by regularizing the matrix via regularization techniques. Regularization is simply 

the process of using additional information to solve an ill-conditioning problem. One of the 

various regularization techniques is Tikhonov regularization (ridge regression) which is 

mainly discussed for the use in the matrix pseudo inversion method.  

2.3.2.1 Tikhonov Regularization 

Tikhonov regularization is commonly used  for regularizing the ill-conditioned 

problems named for Andrey Nikolayevich Tychonoff [60]. It is also known as ridge 

regression and related to the Levenberg-Marquardt algorithm for non-linear least-squares 

problem. Tikhonov regularization has been used for the acoustic source identification [61, 

62] and also considered for the inverse force identification in structural dynamics [33, 35]. 

Basic idea of this method is to replace the unconstrained least-squares solution by a 

constrained optimization problem which would provide a valid solution. Tikhonov 

regularization can be named as an alternative method of regularizing a matrix by means of 

allowing more gradual control than singular value rejection [63]. Consider the vector of 

predicted vibration responses that are represented as  

{�̈�(𝜔)} = [𝐻(𝜔)] {𝐹(𝜔)} + {𝑒(𝜔)} (2.14) 

where [𝐻(𝜔)] {𝐹(𝜔)} is the true response and 𝑒(𝜔) is the error vector occurred due to 

the combination of measurement errors and ill-conditioning problem. In an ordinary least-
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squares solution, forces are determined by minimizing these errors, i.e. 𝑚𝑖𝑛{𝑒𝐻 𝑒} where H 

indicates the Hermitian transpose. On the other hand, Tikhonov applies a regularization 

parameter to minimize the cost function given by 

{𝐽(𝜔)} = 𝑚𝑖𝑛{(𝑒𝐻(𝜔) 𝑒(𝜔)) +  𝜆(𝜔) (𝐹𝐻(𝜔)𝐹(𝜔))} (2.15) 

where 𝜆 is the regularization parameter to be determined. This cost function introduces a 

bias into the solution. By changing 𝜆, the magnification of errors are tried to be limited 

[33]. The minimization of the cost function results in Eq.(2.16). 

{𝐹(𝜔)} =  ([𝐻(𝜔)]𝐻[𝐻(𝜔)] + [𝐼(𝜔)] 𝜆(𝜔))−1[𝐻(𝜔)]𝐻 {�̈�(𝜔)} (2.16) 

Eq.(2.16) can also be rewritten by using singular value decomposition of the 

accelerance matrix; 

{𝐹(𝜔)} =  [𝑉(𝜔)]([𝛴(𝜔)]𝑇[𝛴(𝜔)] + [𝐼(𝜔)] 𝜆(𝜔))−1[𝛴(𝜔)]𝑇  [𝑈(𝜔)]𝐻{�̈�(𝜔)} (2.17) 

where ([𝛴(𝜔)]𝑇[𝛴(𝜔)] + [𝐼(𝜔)] 𝜆(𝜔))−1[𝛴(𝜔)]𝑇is a diagonal matrix having singular 

elements 𝑠𝑖/(𝑠𝑖
2 +  𝜆) which is different from 𝑠𝑖

−1, the elements of usual 𝛴(𝜔). As can be 

seen in Eq.(2.16), the regularization parameter modifies or weights the singular values in 

the inverse and allows more gradual control than singular value rejection [35]. Especially 

when the condition number of the accelerance matrix is high, the effect of small singular 

values can be disregarded by selecting an appropriate regularization parameter. Since 

adding a regularization parameter to the singular values results in bias at some extent, it is 

essential to select a proper value of 𝜆 so that it will introduce negligible bias while 

minimizing the errors. In order to achieve this, mathematical concepts such as ordinary 

cross validation (OCV), selective cross validation (SCV), and generalized cross validation 

(GCV) are used to choose the optimal value of 𝜆. In this dissertation, these concepts are 
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applied for the rigidly coupled planar surfaces and comparison results will be presented in 

Chapter 3. 

2.3.2.1.1 Ordinary Cross Validation (OCV) 

Cross-validation is based on removing one of the data points and then solving the 

inverse problem using all of the remaining data points, which is called as ‘leave-out-one’ 

[64]. In this method, out of m responses, (m-1) are used initially in the force identification. 

Identified forces are then used to recreate the remaining response. This predicted response 

is compared with the response of the removed data point and in this way, the prediction 

error is obtained. This process is repeated for each data point to be removed and the sum of 

the squares of all these predicted errors is a measure of chosen 𝜆. Different values of 𝜆 are 

applied and the accuracy of the predicted response indicates the effectiveness of the chosen 

𝜆. For series of values of 𝜆, ∆(𝜆), OCV function, is calculated for each frequency, thus 

frequency, 𝜔 is omitted for the sake of brevity, as shown in Eq.(2.18).  

∆(𝜆) =  
1

𝑚
∑|�̈�𝑘 − {𝐻𝑘} {𝐹𝑘}|

2
𝑚

𝑘=1

  (2.18) 

where 𝐹𝑘 is the force identified with k
th

 element of the response left and 𝐻𝑘 is the 

accelerance row vector containing the transfer functions from the n force locations to the k
th

 

response location. Equation (2.18) can be rewritten in matrix form as, 

∆(𝜆) =  
1

𝑚
 ‖𝐵𝑘(𝜆)(𝐼 − 𝐶𝑘(𝜆))�̈�𝑘‖

2
  

(2.19) 

where ‖. . ‖  indicates the Euclidean norm, 𝐶𝑘(𝜆) is defined as 𝐶𝑘(𝜆)=H(H
H
H +λ I)

-1
H

H
 

and 𝐵𝑘(𝜆) is the diagonal matrix of which the entries are 1/(1 − 𝑐𝑘𝑘(𝜆))  and 𝑐𝑘𝑘 is the 

kk
th

 entries of 𝐶𝑘(𝜆). The value of 𝜆 that corresponds to the minimum of ∆(𝜆) is defined as 

the optimal value of 𝜆.  
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𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛[∆(𝜆)] (2.20) 

2.3.2.1.2 Generalized Cross Validation (GCV) 

In some cases, the identified force is found to be zero when �̈�𝑘 is omitted from the 

accelerance matrix. Thus, reconstructed �̈�𝑘 happens to be zero. Consequently, the matrix 

𝐶𝑘(𝜆) in Eq.(2.19) becomes diagonal. In this case, the OCV function is independent of the 

choice of 𝜆 so that OCV method will not function very well in near diagonal cases, as 

follows; 

∆(𝜆) =  
1

𝑚
∑|�̈�𝑘|

2
𝑚

𝑘=1

  (2.21) 

Golub et al. [65] presented GCV method which is basically a modification of the OCV 

method. In this method, it is stated that any estimate of 𝜆 should be invariant under rotation 

of the measurement coordinate system and GCV function is a weighted version of OCV 

function, as shown in Eq.(2.22).  

∆(𝜆) =  
1

𝑚
∑|�̈�𝑘 − {𝐻𝑘} {𝐹𝑘}|

2
 𝑤𝑘

𝑚

𝑘=1

  (2.22) 

where 𝑤𝑘 is the weighting function as shown in Eq.(2.23) and is used for solving the 

diagonal problem of the measured accelerance matrix.  

𝑤𝑘 = [
1 − 𝑐𝑘𝑘

1 − (
1
𝑚)  𝑇𝑟𝑎𝑐𝑒(𝐶(𝜆))

]

2

  (2.23) 
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Using the singular value decomposition of the accelerance matrix, GCV function can 

be written as; 

∆(𝜆) =
(
1
𝑚)‖(𝐼 − 𝐶(𝜆)) �̈�‖

2

[(
1
𝑚)  𝑇𝑟𝑎𝑐𝑒(𝐼 − 𝐶(𝜆)) ]

2   (2.24) 

GCV rarely results in irregular choices for λ when the GCV function has a minimum 

near zero regularization (i.e., at λ = 0). This is important especially when strongly 

regularized and smoother estimates are needed. 

2.3.2.1.3 Selective Cross Validation (SCV) 

An alternative method, called selective cross validation, has been developed to define 

the proper regularization parameter by creating a variant of OCV [66]. In this method, the 

minimal value (over k) of the validation errors are used instead of minimizing the sum of 

validation errors to select the regularization parameter, as shown in Eq.(2.25) and (2.26). 

The minimum validation error may correspond to the minimum value of the condition 

numbers of the submatrices of accelerance matrix with one row omitted. 

∆(𝜆) = |�̈�𝑘 − {𝐻𝑘} {𝐹𝑘}|
2
 (2.25) 

∆(𝜆) =  ‖𝐵(𝜆)(𝐼 − 𝐶(𝜆))�̈�‖
𝑘

2
  (2.26) 

 

Although the measurement errors are eliminated as much as possible by making the 

accelerance matrix over-determined, main drawback of the pseudo-inversion method is the 

need to perform a large number of FRF measurements after removing the source, which 

results in considerable time consumption. Since the system is required to be disassembled 
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during the FRF measurements, the boundary conditions are not the same anymore and 

disassembling the structures cannot be always possible [16, 17, 67]. Besides, this method 

can also have some random and deterministic errors in the FRFs which is discussed in the 

next chapter. 

2.4 Direct Inversion Method Including Cross-Couplings 

The vibration response of any point depends on corresponding transfer function and 

the force acting on that point if there is only one transmission path. However, if more than 

one source or path is present, the cross-coupling terms should be taken into consideration. 

Cross-coupling means that the response at a particular point depends not only on the force 

acting on that point but also on the other internal forces [13]. Cross-coupling effects are 

considered by means of including all FRFs between the path inputs at the active side. 

Accordingly, vibration response in terms of acceleration can be written in the following 

form;  

�̈�1 = 𝐹1 𝐻11 + 𝐹2 𝐻21 + ⋯+ 𝐹𝑛 𝐻𝑛1 
(2.27) 

where n is the number of path inputs or internal forces. As can be seen in Eq.(2.27), a high 

response at any point does not imply that the force acting on that location is the only 

contributor. Thus, unconsidered cross-coupling terms lead to a false identification of 

operational response at the target point. Biermayer et al [68] state in their study of a 

passenger car that the error can be up to 10 dB if the cross-coupling terms are not 

adequately included.  

In this approach, force identification process is applied at the active (source) side 

whereas in pseudo inversion method, it is based on the measurements at the passive 

(receiver) side. Thus, operational measurements are performed at the connection points of 

the paths and FRFs are measured between the path inputs in order to consider the cross-
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couplings. Moreover, in contrast to the pseudo inversion method, the paths and the source 

are not required to be disassembled prior to FRF measurement in the direct inversion 

method. A schematic representation of direct inversion model is shown in Fig.2.4. 

 

Figure 2.4 Matrix direct inversion model 

A square accelerance matrix, n x n, is created since the number of forces and responses 

are equal to each other. Thus, internal forces can be identified in matrix notation by 

applying ordinary matrix inversion as shown in Eq.(2.28). 

{𝐹𝑖(𝜔)} = [𝐻𝑖𝑗(𝜔)]
−1

{�̈�𝑖(𝜔)} 
(2.28) 

where i=j which denotes the number of paths and forces, respectively.  

Presented methods in this chapter are summarized in Table 2.1 with their advantages 

and disadvantages. As seen in the table, for the structures having rigid or elastic couplings, 

the matrix direct inversion method is faster and more practical compared to other methods. 

Therefore, matrix direct inversion method is selected to be more suitable for the case 

studies presented in the next chapters.  
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Table 2.1 Summary of VRP methods 

 Advantages Disadvantages 

Mount Stiffness 

Method 

 Straightforward 

 Easy to apply 

 

 Dynamic stiffness data 

is seldom available. 

 Dynamic stiffness data 

depends on the loading 

condition. 

 Dynamic measurements 

for the rubber links are 

pretty expensive.  

 Not applicable for rigid 

connections. 

Transmissibility 

Method 

 Straightforward 

 Reduced measurement 

time 

 

 

 Prone to cross-coupling 

effects 

 Measurement points 

must be linearly 

independent 

Pseudo Inversion 

Method 

 High accuracy 

 

 Need of large FRF 

measurements 

 Disassembling the 

structure is required. 

 Boundary conditions are 

not same due to 

disassembling. 

 Not practical and 

feasible always. 

Direct Inversion 

Method 

 Easy to apply 

 Reduced FRF 

measurements 

 Reduced accuracy 

compared to pseudo 

inversion method 

2.5 Considerations of Matrix Inversion Methods  

Number of non-zero singular values in an accelerance matrix defines its rank. 

However, some of the non-zero singular values may be very small compared to other 

singular values. These smaller singular values amplify the error when the matrix is inverted 
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and also lead to the propagation of errors in the vibration responses. Thus, accelerance 

matrix can be defined as “almost singular” or “ill-conditioned” matrix.  

The significance of the singular values can be determined by condition number which 

is also a function of the number of response points. The condition number is simply the 

ratio of the largest singular value to the smallest singular one, as stated in Eq. (2.29). High 

condition number implies almost singular or ill-conditioning status and is a consequence of 

strong modal behavior of the structure where one or a small number of modes dominate 

[31-33].  

К2([𝐻]) =  
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
 (2.29) 

Condition number of the accelerance matrix is a measure of the sensitivity of the 

pseudo-inverse. Since the accelerance matrix is inverted at each frequency, the condition 

number varies with the frequency. Large condition numbers exist near and at resonances 

and the maximum condition number of accelerance matrix of 100 is an acceptable value for 

the matrix inversion method. Condition number is closely related to the various factors, 

especially the number of participating modes, the number of forces to be identified, the 

damping factor at resonant, and the number of measurements.  

 The number of response measurement: As discussed before, over-

determination, in other words measuring more responses, reduces the condition number. As 

a rule of thumb, the number of responses included in the analysis should be at least 2 times 

greater than the number of forces to be identified.  

 The damping factor: Damping is the mechanism of dissipating energy from 

a system by converting kinetic energy into heat. The damping factor is effective especially 

at resonant frequencies where the system’s response is dominated by the particular mode. 

Thus, it becomes more of an issue. In a system with higher damping, the neighboring 
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modes have larger contribution to the response at that frequency. Thus, higher damping 

results in lower condition number, as discussed in Mas et al [29].   

 The number of forces to be identified: Ideally, the condition number should 

be 1 for single force identification. Condition number of the accelerance matrix generally 

increases with increasing number of forces to be identified. The number of forces to be 

identified is limited by the number of the modes included in the analysis, which will be 

explained in the following section.   

 The number of significantly participating modes: Over-determination can 

help reducing the condition number of the accelerance matrix especially at high 

frequencies, but it is usually ineffective at low frequencies where only a few modes 

contribute to the vibration response [31, 32, 69]. The number of participating modes (p) 

plays an important role in the linear dependency of the columns of the accelerance matrix 

[30]. In the case of low modal density, small number of modes dominates the dynamics of 

the structure. Thus, the operating forces would excite the same mode for the points having 

similar spatial locations. As a consequence, the columns or rows of the accelerance matrix 

become almost linearly dependent resulting in a rank deficient matrix. In this condition, the 

columns or rows can be defined as the linear combination of the dominant modes. Linear 

dependency leads to ill-conditioning of the matrix and amplifies the prediction errors when 

the matrix is inverted. For this reason, it is suggested that the number of forces to be 

identified should be less or equal to the significantly participating modes at some frequency 

(n ≤ p) [30, 70]. If many modes contribute to the responses, the columns of the accelerance 

matrix will be independent and hence, this will result in low condition number [31, 32, 69]. 

However, during the force identification process, it is not easy to determine the number of 

modes that contribute to the responses precisely, especially for complex structures. 

Therefore, it can be stated that this problem is generally unavoidable. 
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Chapter 3.                                                                                          

VIBRATION RESPONSE PREDICTION FOR STRUCTURES COUPLED WITH 

RIGID CONNECTIONS 

 

The aim of this chapter is to present case studies to demonstrate the vibration response 

prediction methodologies mentioned in Chapter 2. The vibrating structures coupled with 

rigid connections are of primary interest since real and complex structures have many 

coupled rigid links. Besides, having a low insertion loss with rigid links, the cross-coupling 

terms become more of an issue be considered. 

In accordance with the statements, rigidly-linked set-ups are created in order to predict 

the vibration response at the defined target by applying the matrix inversion method. First 

experimental set-up consists of planar surfaces connected rigidly to each other by means of 

screw and nuts. The second set-up involves two substructure coupled with two rigid links.  

3.1 Rigidly Coupled Planar Surfaces 

In order to implement the VRP methodology and determine the effectiveness of the 

Tikhonov regularization technique for the rigidly linked structures, an experimental set-up 

is built. The set-up consists of four plates rigidly coupled to each other. The mechanical 

properties of the plate components are tabulated in Table 3.1. A modal shaker is fixed to 

Point 1, as shown in Fig.3.1 and used to generate the excitations representing the operating 

source. The vibration energy is transmitted through two paths resulting in two internal 
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forces. Since a pure one dimensional force is applied to the structure, the moments and 

lateral forces are introduced. However, these quantities are ignored in the calculations since 

it is so difficult to measure them. 

 

Figure 3.1 Rigidly coupled planar set-up 

Table 3.1 Material and physical properties of the plate components of the set-up 

Properties Plates 

Material 

Young’s modulus (GPa) 

Density (kg/m
3
) 

Length (mm) 

Width (mm) 

Thickness (mm) 

Steel 

200 

8095 

230 

50 

1.5 

 

Experimental study is composed of three parts. First, the vibration responses are 

measured as acceleration by using accelerometers (PZB Model 333B30). The responses are 

measured as complex quantities having magnitudes and phase information. Therefore, they 

can be derived for each frequency by using auto- and cross-spectra as 
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𝑎𝑖 = √𝐺𝑖𝑖 𝑒
−𝑗∠𝐺𝑖1 (3.1) 

where Gii is the auto-spectrum of the response at point i, which gives the amplitude and Gi1 

is the cross-spectrum between the reference position,1 and point i, which forms the 

complex part. It should be noted that Eq.(3.1) should only be used if the coherence function 

between a1 and ai is about one and the reference position should be one of the points at 

where the vibration response is measured [32, 71]. In this case study, frequency range of 

interest is selected as 0-100 Hz. Responses are measured at six points, as shown in Fig.4.1. 

Five of them are taken into account in order to make the system over-determined. The 

remaining one is selected as the point of interest, so-called target, at where the response is 

aimed to be predicted. Thus, measured FRFs (accelerances) and vibration response 

corresponding to the target are not included in the force identification algorithm. 

Nevertheless, the response at the target is used for comparison purposes. 

Second part of the experimental study is measuring the FRFs of the structure via 

impact hammer (PZB model 086C03) from the source to the target locations respectively 

such that the corresponding path remains in place while other path connection is 

disassembled, as shown in Fig.3.2.(a) and (b). Thus, the cross-coupling effects are 

eliminated, since the energy flows through only the remaining path during FRF 

measurements. Accelerance matrix is constituted by importing FRFs to the corresponding 

columns and rows which represent the paths and the sensor numbers, respectively. In this 

case study, H1, which is preferably used when there is noise in the output response signals, 

is taken into account as the transfer function. 
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(a) 

 

(b) 

Figure 3.2 FRF measurements on the set-up; 

(a) Path 1 (Path 2 is disassembled) (b) Path 2 (Path 1 is disassembled) 

Finally, third part of the study is composed of data processing, implementing the 

presented decomposition and regularization techniques, and presenting the results as well 

as comparing the calculated response of the target with the measured one. This comparison 

serves as an indicator of the quality of the methods. 

Moore-Penrose pseudo inversion method (no regularization), Tikhonov regularization 

with OCV, GCV and SCV concepts are applied to predict the vibration response at the 

selected point of interest. As presented in Chapter 2, the operating internal forces acting at 

each path is identified by the inversion method as follows; 

[
 
 
 
 
𝐹1(𝜔)

⋮

𝐹𝑛(𝜔)]
 
 
 
 

=

[
 
 
 
 
𝐻11(𝜔) ⋯ 𝐻1𝑛(𝜔)

⋮
𝐻𝑞1(𝜔)

⋮
𝐻𝑚1(𝜔)

⋮
⋯
⋮
⋯

⋮
𝐻𝑞𝑛(𝜔)

⋮
𝐻𝑚𝑛(𝜔)]

 
 
 
 
+ 

[
 
 
 
 
�̈�1(𝜔)

⋮
�̈�𝑞(𝜔)

⋮
�̈�𝑚(𝜔)]

 
 
 
 

 (3.2) 

where 𝐻𝑚𝑖(𝜔) is the FRF (accelerance) measured between the sensor point m and the 

internal operating force at the interface connection of transfer path, i where i=1,…,n 
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(number of paths, n = 2). “+” indicates the Moore-Penrose pseudo inversion and �̈�𝑗(𝜔) is 

the vibration response (acceleration) measured at sensor number, j where j=1,.., m (number 

of sensors, m = 5). The solution is regularized by introducing a constrained optimization 

via regularization parameter, as discussed in detail in Chapter 2. Hence, the force 

identification by Tikhonov regularization is;  

{𝐹(𝜔)} =  ([𝐻(𝜔)]𝐻[𝐻(𝜔)] + [𝐼(𝜔)] 𝜆(𝜔))−1[𝐻(𝜔)]𝐻 {�̈�(𝜔)} (3.3) 

where 𝜆 is the regularization parameter to be determined by the validation functions. 

Vibration response at the target point is predicted by implementing the following equation 

and compared with the measured response. 

�̈�𝑘(𝜔) = ∑�̈�𝑘𝑖(𝜔)

𝑛

𝑖=1

= ∑𝐹𝑖(𝜔)𝐻𝑘𝑖(𝜔)

𝑛

𝑖=1

 (3.4) 

The predicted response at the sensor point, S4 is presented in Fig.3.3 whereas the 

condition number of the accelerance matrix is shown in Fig.3.4. Moreover, prediction 

errors are calculated as the root mean square differences between the measured and 

predicted responses and tabulated in Table 3.2. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.3 Vibration response at S4 – measured -- predicted by; (a) Pseudo inversion 

without regularization (b) Tikhonov-OCV (c) Tikhonov-GCV  (d) Tikhonov-SCV 

 

 

Figure 3.4 Condition number of accelerance matrix  
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Table 3.2 Average prediction errors in dB 

Method Average Errors in dB 

Moore-Penrose Pseudo Inversion 

(no regularization) 

 

3.22 

Tikhonov – OCV 0.76 

Tikhonov – GCV 2.82 

Tikhonov – SCV  4.52 

 

According to Fig.3.3.(a), Moore-Penrose pseudo inversion method captures the 

spectral character of the measured response with slight differences and it can be seen that 

the accuracy of the prediction increases when the condition number is low. Thus, it is 

validated that the condition number is a good quality indicator for VRP study, as discussed 

in [31, 72]. In the meantime, Tikhonov regularization based on OCV gives the most 

improvement on the prediction result and GCV is found to perform similarly with minor 

variations. However, it is observed that at specific frequencies, the prediction errors in the 

regularized results are higher than the errors in the non-regularized results. Considering the 

condition numbers at those frequencies, it is found that at low condition numbers, 

Tikhonov regularization degrades the result and gives rise to error amplification. In the 

meantime, it is observed that SCV appears as the most inefficient method for the rigidly 

coupled structures. 

In addition to vibration response prediction, the dominating path can also be 

determined by generating path contribution plots (PCP). PCP shows amplitude of the 

partial contributions for the paths as a function of frequency. Two major peaks are 

observed in PCP, as shown in Fig.3.5. The dominant path for the first and second peaks (at 

39 ve 83 Hz) is found to be Path 1 and Path 2, respectively.   
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Figure 3.5 Path contribution plot for S4 

3.2 Rigidly Linked Structures 

In this study, vibration response prediction is discussed for rigidly–linked vibrating 

structures since the real and complex structures have many coupled rigid links. Differently 

from the previous set-up, two subsystems coupled with rigid links are used in accordance 

with the statements of VRP methodologies. Both pseudo and direct inversion methods are 

presented. Applicability and accuracy of direct inversion method, which is more practical 

and time efficient, is presented. Besides, the importance of the cross-coupling terms and 

measurement errors are discussed. 

This set-up consists of two rigidly linked subsystems. The lower beam, clamped at one 

side, is the active part of the system while the upper beam is the passive one. The set-up is 

shown in Fig.3.6, the material and physical properties are tabulated in Table 3.3. The 

validation is conducted both experimentally and numerically. 
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Figure 3.6 Rigidly-linked set-up 

Table 3.3 Material and physical properties of the set-up 

Properties Upper Beam Lower Beam Links 

Material 

Young’s modulus (GPa) 

Density (kg/m
3
) 

Length (mm) 

Width (mm) 

Thickness (mm) 

Steel Steel Aluminum 

200 200 78 

8095 8095 2700 

265 230 86 

40 50 20 

15 1.5 10 

3.2.1 Experimental Study 

As explained in Section 3.1, in the first part of the experimental study vibrational 

responses as accelerations are measured by using accelerometers. A modal shaker is used as 

the operating source and coupled to the structure. In the second part, the accelerances are 

measured from the path inputs to the target locations by using the modal shaker. In this 

study, the frequency range of interest was selected as 0-300 Hz. As in the previous study, 

the moments and lateral forces are also introduced, but ignored in the calculations since 

they are very hard to measure. Nevertheless, the aim of this study is to estimate the internal 
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forces acting in the vertical direction and thus, the operational responses, assuming that the 

system is time-invariant and linear. 

3.2.1.1 Moore-Penrose Pseudo Inversion Method Solution 

First study is conducted in relation to Moore-Penrose pseudo inversion method as 

explained in Section 2.2. After the operational measurements are conducted, the system is 

disassembled at each path respectively and FRFs are measured through each path between 

the sensor and the source point by using the impact hammer. Accelerance matrix is 

constituted as by importing FRFs to the corresponding columns and rows which represent 

the paths and the sensor numbers, respectively. Vibration response and FRFs are measured 

at five sensors located at the passive side, as shown in Fig.3.6. Four of them are taken into 

account in order to make the system over-determined since the number of sensors should 

be at least equal to the number of forces to be identified, as a rule of thumb. The fifth one is 

selected as the point of interest, so-called target, at where the operational response is aimed 

to be predicted. Thus, measured transfer functions and operational response corresponding 

to the target are not included in the force identification algorithm. Nevertheless, the 

operational response at the target is used for comparison purposes.   

Following the constitution of the accelerance matrix, SVD is applied to improve the 

condition number of the matrix and then the modified matrix is inverted by implementing 

Moore-Penrose pseudo inversion in order to calculate the operational internal forces, as 

illustrated in Eq.(3.5). After identifying the operational force, the vibration response at the 

selected point of interest is predicted by multiplying the correspondent FRFs with the 

relevant forces, as shown in Eq.(3.6).  
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[
 
 
 
 
𝐹1(𝜔)

⋮

𝐹𝑛(𝜔)]
 
 
 
 

=

[
 
 
 
 
𝐻11(𝜔) ⋯ 𝐻1𝑛(𝜔)

⋮
𝐻𝑞1(𝜔)

⋮
𝐻𝑚1(𝜔)

⋮
⋯
⋮
⋯

⋮
𝐻𝑞𝑛(𝜔)

⋮
𝐻𝑚𝑛(𝜔)]

 
 
 
 
+ 

[
 
 
 
 
�̈�1(𝜔)

⋮
�̈�𝑞(𝜔)

⋮
�̈�𝑚(𝜔)]

 
 
 
 

 (3.5) 

where 𝐻𝑚𝑖(𝜔) is the FRF (accelerance) measured between the sensor point m and the 

internal operating force at the interface connection of transfer path, i where i=1,…,n 

(number of paths, n = 2). “+” indicates the Moore-Penrose pseudo inversion and �̈�𝑗(𝜔) is 

the vibration response (acceleration) measured at sensor number, j where j=1,.., m (number 

of sensors, m = 4). 

�̈�𝑘(𝜔) = ∑�̈�𝑘𝑖(𝜔)

𝑛

𝑖=1

= ∑𝐹𝑖(𝜔)𝐻𝑘𝑖(𝜔)

𝑛

𝑖=1

 (3.6) 

where k stands for the points of interest, S3 and S4.  

The predicted responses at the sensor point S3 and S4 are presented in Fig.3.7.(b) and 

(d) whereas the FRFs measured between sensor and the path connection points (H31: FRF 

between sensor point 3 and path 1 connection point) are presented in Fig.3.7.(a) and (c). 

The FRFs indicate that the structure does not expose similar modal contribution through 

the paths, which results in linear independency at the corresponding columns of the 

accelerance matrix, as mentioned in Section 2.2.3. Therefore, predicted responses at the 

targets almost match with the measured ones. However, there are still some discrepancies 

between the predicted and measured responses. For point S3, it is clearly observed that the 

variation occurs especially at 100 Hz and 150 Hz range.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.7 (a) FRFs measured at S3 (b) Vibration response at S3 (c) FRFs measured at S4 

(d) Vibration response at S4 

Figure 3.8 shows the condition number of the accelerance matrix as a function of 

frequency. This actually confirms that the condition number is a good quality indicator of 

the identification based on the matrix inversion method since one can observe noticeably 

large condition numbers between 100-150 Hz region. It is also clearly detected that over-

determination reduces the condition number of the accelerance matrix at higher 

frequencies, but it is ineffective at lower frequencies where only a few modes contribute to 

the response, as discussed in [31-33, 73]. However, at higher frequencies, where the modal 

contribution is greater, over-determination gives significant reduction in condition 

numbers. Since measurement errors occur in any FRF measurement, these errors are 

amplified by the inversion of the accelerance matrix, especially at frequencies where the 

condition number is high and thus, the condition numbers serve as the parameters 

influencing the error amplification. Over-determination and singular value decomposition 
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improve the conditioning of the matrix and reduce the effect of the measurement errors but 

cannot exactly compensate for them. 

 
Figure 3.8 Condition number of the accelerance matrix 

3.2.1.2 Direct Inversion Method Solution 

Matrix direct inversion method, presented in Section 2.4, is also applied for the same 

experimental set-up in order to determine its effectiveness. The schematic representation of 

the set-up and measurements is illustrated in Fig.3.9.(a) and (b). Vibration responses are 

measured as acceleration at S1 and S2 located at the path inputs while the responses at the 

target locations are just measured for comparison purposes. In the meantime, FRFs are 

measured between the path inputs and the targets at the passive side without disassembling 

the set-up. 
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(a) (b) 

Figure 3.9 (a) Vibration response measurements (b) FRF measurements for matrix direct 

inversion method 

FRF matrix is constituted by importing FRFs measured between the path connection 

points in order to include the cross couplings, as illustrated in Fig.3.9.(b). Exciting internal 

forces are identified by applying direct inversion method as in Eq.(3.7) and the vibration 

responses are predicted. Same points, S3 and S4 are selected as the targets on the purpose 

of comparison with Moore-Penrose pseudo inversion method and predicted results are 

compared with the measured ones in Fig.3.10.  

{
𝐹1(𝜔)
𝐹2(𝜔)

} = [
𝐻11(𝜔) 𝐻12(𝜔)
𝐻21(𝜔) 𝐻22(𝜔)

]
−1

{
�̈�1(𝜔)

�̈�2(𝜔)
} (3.7) 

As shown in Fig.3.10, the direct inversion method captures the spectral character of the 

measured response with slight magnitude differences and it can be stated that there is an 

acceptable correlation between the measured and predicted results.  
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(a) 

 

(b) 

Figure 3.10 Vibration responses; (a) at S3  (b) at S4 

 

In addition to the VRP study, the question is now to determine the path dominating the 

response at a particular frequency by these methods. For that purpose, path contribution 

plots (PCP) are generated. PCP shows the amplitude of the partial contributions for the 

paths as a function of frequency. Since at 220 and 240 Hz, the response of point S3 has the 

highest value over the entire frequency range, the PCPs are exhibited between 200 and 300 

Hz in Fig.3.11. 

 

(a)  

 

(b)  
Figure 3.11 Path Contribution Plots (PCP) for S3; (a) Direct Inversion Method (b) Pseudo 

Inversion Method 
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As shown in Fig.3.11, path 2 is determined as the dominant path on the response at 220 

and 240 Hz. and both methods have a good agreement on the path contribution with 

corresponding frequencies. 

According to the predicted responses by the direct inversion method, there are some 

unavoidable discrepancies which can be occurred due to the combination of some 

assumptions and measurement errors. In this study, the rotations, moments and lateral 

forces are neglected as in many experimental analyses [52]. Additionally, it is assumed that 

the sum of energy flowing through all paths to the target is always equal to the total energy 

as measured at the target location. However, there may be transmission loss through the 

active subsystem. 

In addition to the linear energy flow assumption, there are also measurement errors in 

the experimental studies. The testing process is prone to errors introduced by various 

factors. Among these, one of the factors is the mass loading effect of the force transducer. 

As illustrated in Fig.3.9, a modal shaker is used for the FRF measurements and connected 

to the structure through a force transducer by means of a screw and nut. Since this 

transducer is mounted on the structure, the dynamic of the set-up is changed and thus, the 

measured FRF contain errors consequently, as discussed in [74-76]. Besides, excessive 

tightening of the nut can result in additional inertia mass. This mass loading effect can be 

significant since the set-up is a light-weighted structure. Another factor is the alignment of 

the shaker. Misalignment is an important item of concern which can cause distortion of the 

measured data [77]. Moreover, measured data is usually contaminated with other adverse 

effects such as noise. 

3.2.2 Numerical Study 

A numerical case study is also presented to verify the method as well as to demonstrate 

the effects of the mass loading and noise on the experimental results of the VRP 
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methodology. A Finite Element Model (FEM) of the experimental set-up is built to perform 

the numerical study, as seen in Fig. 3.12 and the flow chart of the numerical VRP study is 

illustrated in Fig. 3.13.  

The structure is excited at the lower beam by using the force spectral data obtained 

from the experimental study. The energy created by the excitation force propagates through 

the links to the upper beam. Thus, internal forces are introduced at the links and identified 

by applying both methods mentioned in Chapter 2. However, numerical study conducted in 

accordance with direct inversion method is presented for the sake of brevity. Accelerance 

matrix, a size of 2x2, is composed of transfer functions measured at the points S1, S2 and 

also between each other on the purpose of including the cross-coupling effects. Vibration 

responses at S1 and S2 are used in identifying the internal forces with the accelerance 

matrix whereas the others are employed for comparison purposes. Thus, responses at the 

points of interest on the upper beam are predicted and compared with the actual one. 

 
Figure 3.12 Numerical FE model of the set-up 
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Figure 3.13 Numerical VRP study flow chart 

The predicted and actual numerical response of S3 is shown in Fig.3.14. As shown in 

the figure, predicted response fits well with the actual one. The resonance frequencies are 

exactly the same while the amplitudes differ slightly. The internal operational forces are 

also determined without including cross-coupling terms. In other words, each internal force 

acting on the link is identified by using corresponding path input and its point transfer 

function, as follows; 

𝐹1(𝜔) = 𝐻11(𝜔)−1 �̈�1(𝜔);  𝐹2(𝜔) = 𝐻22(𝜔)−1 �̈�2(𝜔) (3.8) 

From Fig.3.14, it can be clearly observed that the prediction without including cross-

coupling terms increases the overall error with about a rate of 10-12 % in the frequency 

band. Note that, a similar behavior is observed for the other measurement locations (eg. S4, 

S5, S6 and S7). 
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Figure 3.14 Predicted vibration response at S3 

The comparison of measured and predicted responses can be accomplished by using a 

metric developed in previous validation studies [78, 79]. This metric is based on the 

variance of the calculated and measured values. Variance, 𝜎2, is a measure of variability 

involving the deviations from the mean and gives the extent of concentration around the 

mean value [80]. The change of the variance with frequency can be defined by the power 

spectral density (PSD), 𝑆𝑥𝑥  which gives the power of the signal as a function of frequency.  

𝜕𝜎2(𝜔)

𝜕𝜔
= 𝑆𝑥𝑥(𝜔) (3.9) 

Hence, the variance can be expressed as a function of frequency range; 

𝜎2(𝑓1, 𝑓2) = ∫ 𝑆𝑥𝑥(𝜔)𝑑𝜔

𝑓2

𝑓1

 (3.10) 

The variance, shown in Eq.(3.10) can also be described as the cumulative absolute 

variance which is the contribution of frequency components within a frequency range to 
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the total variance [81]. The accuracy of the methods is determined by utilizing the square 

root of the variance, 𝜎. For both experimental and numerical studies, the ratio of σ between 

the measured and calculated responses with applied methods is tabulated within a number 

of bandwidths in Table 3.4. The value of such metric highlights the correlation level 

between the measured and calculated results. The unity (1) value indicates a perfect match 

and values closer to unity are accepted as satisfactory. 

 

Table 3.4 Comparison of measured and calculated responses 

Applied Methods 
𝜎𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑/𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  

0-50 Hz 50-100 Hz 100-200 Hz 200-300 Hz 0-300 Hz 

Pseudo 

Inversion 

Experimental 1 0.80 1.03 0.85 0.91 

Numerical 1 1 1.13 1.19 0.99 

Direct 

Inversion 

Experimental 1.12 1.63 0.37 0.70 1.37 

Numerical 0.99 0.90 0.87 1.15 1.07 

 

According to Table 3.4, the pseudo inversion method reveals a bit more accurate result 

than the direct inversion method does over the entire 0-300 Hz range. This is due to the fact 

that since the active side is separated from the passive side while determining the transfer 

functions, the cross-coupling effects are prevented. 

As shown in the results, in the numerical study the predicted response matches with 

the actual one considerably well compared to the experimental study. The difference 

between the numerical and experimental results is assumed to be occurred due to the 

measurement errors. These errors are magnified by the inversion of the accelerance matrix. 

Since real measurements are never made under perfect conditions, further simulations are 

focused on the measurement errors and applied to identify the significance of these effects 

on the VRP study. These adverse effects are composed of mass loadings due to the force 

transducer and shaker connections and the existing noise during the FRF measurements. 
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3.2.3 Demonstration of Mass Loading Effects on the VRP 

The mass loading effects occurred due to the force transducer and the shaker 

connections are usually ignored in the experimental studies, based on the assumption that 

they are negligible compared to that of the structure. Nevertheless, if the structure is light-

weighted, then these mass effects can be significant. Thus, in order to demonstrate the 

effect of the mass loading on the operational response predictions, point mass is 

intentionally added to the shaker connection points at the path inputs during the numerical 

FRF analysis. After obtaining the FRF data altered by the additional mass loadings at the 

path inputs, the accelerance matrix is constituted and the direct inversion method is 

applied. As can be seen in Fig.3.15, the condition number of the accelerance matrix is 

increased at each frequency and thus, the error in response prediction is expected to be 

larger compared to the ideal numerical result. The vibration response of S3 is presented in 

Fig.3.16. It is observed that the discrepancies are occurred especially between 200 and 250 

Hz, as expected according to the condition number. As illustrated in Fig.3.16, mass 

loadings can affect the results having discrepancies between 20 and 30 dB in magnitude 

and similar results in the experimental study are also observed at mentioned frequency 

range in Fig.3.10.(a).   
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Figure 3.15 Condition number of the accelerance matrix 

 
Figure 3.16 Vibration response at sensor point S3 

3.2.4 Demonstration of Noise Effects on the VRP 

Along with the mass loading effects, FRFs measured in reality are also contaminated 

with other adverse effects such as noise. In any FRF measurements, noise exists at both the 

input and the output channel. For frequencies close to resonance and anti-resonances, the 
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noise can be ignored since the vibration response is dominant. However, for the other 

frequencies the noise can affect the FRF measurement from both ends [82]. In this study, 

further simulations are conducted to examine the result of the operational response 

prediction in the case of noisy FRF data and consequently accelerance matrix. Thus, FRFs 

are numerically contaminated with additive white noise with a degree of contamination 

being 5 % which result in ill-conditioned accelerance matrix, as illustrated in Fig.3.17. The 

procedures of the direct inversion method are applied again and the operational response of 

sensor S3 is predicted. The contamination of the FRF data with a degree of 5 % results in 

errors up to 6 dB as shown in Fig.3.18.   

 
Figure 3.17 Condition number of the accelerance matrix  
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Figure 3.18 Vibration response at sensor point S3 

As can be observed in the numerical results, the experimental FRF measurements are 

prone to the errors due to mass loadings and existing noise. These errors are almost 

unavoidable and result in larger condition numbers in accelerance matrix. Since the matrix 

is inverted, these errors are magnified at particular frequencies, as presented in [57, 58] and 

thus, some discrepancies are determined at the operational response identified by the direct 

inversion method, as also seen in the experimental results. It can also be concluded that if 

the primary concern is the VRP study and path contribution in terms of design 

optimization, condition monitoring, taking remedial measures, the direct inversion method 

can be implemented for this kind of structures since these methods require less effort and 

measurement time. 
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3.3 Summary and Conclusions: 

In this chapter, the vibration response prediction based on the matrix inversion 

methods for the structures with rigid connections is discussed with the numerical and 

experimental case studies. In the first case study, a rigidly coupled planar structure is taken 

into account. Moore-Penrose pseudo-inversion method and Tikhonov regularization along 

with the parameter selection concepts on the VRP are applied. Over-determination as well 

as singular value decomposition is also considered to improve the accelerance matrix to be 

inverted in order to identify the operational internal forces and then, predict the vibration 

response at the point of interest. It is shown that Moore-Penrose pseudo inversion method 

gives satisfactory prediction results with some discrepancies at specific frequencies where 

the condition number is high. Thus, it can be stated that the condition numbers serve as the 

parameters influencing the prediction errors. Tikhonov regularization technique with OCV 

and GCV is found to be robust in improving the prediction results in the case of rigidly 

coupled structures. On the other hand, SCV method cannot be defined as an effective 

concept. Considering all Tikhonov regularization results, it is seen that it does not improve 

the prediction results considerably when the condition number is low. Thus, it may not be 

beneficial to apply regularization at all frequencies and the condition number should be 

taken into consideration. As a consequence, pseudo-inversion technique is proven to be 

reliable but its application requires huge effort as well as extensive time since the paths 

should be disassembled and a huge amount of FRF measurements are needed. 

On the purpose of seeking faster and easier methods, the direct inversion method is 

investigated in the second case study which is composed of a rigidly linked structure. 

Compared to pseudo-inversion technique, this method is less time consuming, less 

challenging and the real boundary conditions are present since no disassembling is 

required. However, it has some limitations besides its advantages. All structures exhibit a 

certain amount of cross-coupling between the path inputs. Therefore, reliability of the 
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predicted responses strongly depends on the degree of cross-coupling since the system is 

not required to be disassembled. Accordingly, the vibration response of the target is 

predicted by implementing this method which includes the cross-couplings between the 

path inputs and a comparison metric based on the variance is used for determining the 

effectiveness with respect to defined frequency bandwidths. The results show that 

including cross-coupling terms improves the results with a rate of about 10-12 % and the 

predicted responses agree quite closely both in character and magnitude having some 

discrepancies occurred due to the measurement errors. As demonstrated in the numerical 

study, the operation responses identified by the direct inversion method are prone to 

measurement errors such as mass loadings and existing noise. These errors are almost 

unavoidable and result in discrepancies at particular frequencies of the predicted response, 

as demonstrated in the case study. As a consequence, the direct inversion method including 

cross-couplings can be implemented for the rigidly linked structures if they are almost 

impossible to be disassembled and the primary concern is predicting the operational 

response as well as determining the dominant paths in terms of structural health monitoring 

and design optimization. 
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Chapter 4.                                                                                                   

VIBRATION RESPONSE PREDICTION FOR STRUCTURES COUPLED WITH 

ELASTIC CONNECTIONS 

 

As mentioned in previous chapters, a dynamic system yields a vibrational energy 

flowing through the transfer paths. The most common way to reduce the energy flow to the 

receiver is to either reflect the vibrational energy by altering the impedance or to dissipate 

it by generating additional damping [83]. The former is achieved by using a much elastic 

and softer link compared to the receiving structure. These softer components are called as 

the vibration isolators or mounts. Rubber mounts have been used in the field of automotive 

vehicle engine mounting systems to isolate the vehicle chassis from the engine vibration 

[84]. In an engine mount, the elastic properties, namely dynamic stiffness, of rubber store 

and return most of the energy to the engine at higher frequencies resulting in transmission 

reduction to the vehicle chassis. On the other hand, the viscous properties, namely 

damping, are effective in terms of reducing the low frequency vibration generated during 

idling of the engine [85-88]. Therefore, the dynamic properties of rubbers make it an 

excellent choice for vibration isolators or so called transfer paths. Among these 

characteristics, they are compact, easily available, cost effective and maintenance free.  

The main goal of this chapter is to propose a hybrid VRP methodology in which the 

numerical data is integrated with the experimentally measured ones. Then, the proposed 
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methodology is applied for a rubber linked structure to predict the vibration response with 

the considerations.  

4.1 Hybrid Vibration Response Methodology 

As discussed Chapter 2, major step of the vibration response prediction (VRP) is to 

identify the exciting forces acting on the structure. However, this may not be possible due 

to the complexity of the structure and the challenges of load cell applications. 

Consequently, indirect methods have been widely studied in the literature [9, 10, 20-35]. 

One of the indirect methods, matrix inversion method basically involves multiplication of a 

vector of vibration responses with an inverted matrix constituted by the frequency response 

functions (FRFs). The main drawback of this method is the need of the FRF measurements. 

However, measuring FRFs are sometimes not possible especially for complex structures. 

Even when it is possible; it is very time consuming and prone to significant errors based on 

excitation, environment, sensor, structure and unconsidered sources. The possible sources 

of the above measurement errors are shown in Fig.4.1. [74, 75, 89-93]. 

 

Figure 4.1 Possible errors in FRF measurements 

Modal behavior of the structure has also an influence on the reliability of the matrix 

inversion method. In the condition that the structure has a strong modal behavior where one 

or few modes dominate the responses at given frequencies, the rows or columns of the FRF 

matrix become linearly dependent. Hence, the condition numbers of the FRF matrix are 
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quite high at these frequencies and in this case, the solution may not be unique and the FRF 

matrix can be defined as “almost singular” or “ill-conditioned” [30, 31].  

As discussed in Chapter 2, combination of the insufficient modal contribution and 

measurement errors cause erroneous results in the force identification process and so, in the 

response prediction. Thus, eliminating these problems is of great importance in order to 

improve the accuracy of the prediction results. Previous studies focused on either reducing 

the experimental measurement efforts and/or improving the conditioning of the FRF 

matrix. In order to overcome the experimental challenges as well as measurement errors, 

numerical simulations have been widely used. However, the responses required for the 

inverse method cannot be computed accurately in a numerical simulation. 

Conditioning methods result in additional measurements and using numerical model 

causes reduced accuracy due to the mismatch between the simulation model and the real 

system. Considering these challenges, a hybrid VRP methodology, in which numerical 

modeling results are integrated with the experimental data, is proposed in this chapter. In 

the proposed hybrid methodology, the experimental errors and difficulties of FRF 

measurements as well as time consumption are eliminated since FRFs are calculated 

numerically. Moreover, inverse problem is improved by reducing the condition number of 

the FRF matrix. An accurate numerical model and selection of the force identification 

points are critical before constructing the FRF matrix. If the representative dynamics of the 

structure is not included in the measured FRFs due to a wrong selection of the 

measurement locations, the forces are not identified correctly, and it affects the accuracy of 

the response prediction process. Accordingly, force identification points are selected based 

on the “combined condition number” metric within the scope of hybrid VRP. 

Hybrid VRP methodology differs from the classical VRP methods in the construction 

of the FRF matrix. The FRFs are obtained from the numerical model of the structure and 
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accelerance (FRF) matrix, [𝐻𝑖𝑗(𝜔)] of Eq.(4.1) is formed by the numerical FRFs whereas 

acceleration vector, {�̈�𝑖(𝜔)} is measured through the experimental studies.  

{𝐹𝑖(𝜔)} = [𝐻𝑖𝑗(𝜔)]
−1

{�̈�𝑖(𝜔)} 
(4.1) 

where i=j which denotes the paths and forces, respectively. Once the exciting internal 

forces acting at each path are determined, the vibration responses are predicted as follows; 

�̈�𝑘(𝜔) = ∑�̈�𝑘𝑖(𝜔)

𝑛

𝑖=1

= ∑𝐹𝑖(𝜔)𝐻𝑘𝑖(𝜔)

𝑛

𝑖=1

 (4.2) 

where n is the number of paths and k stands for the target. 

For obtaining accurate predictions from the hybrid VRP, an accurate numerical model 

of the structure must be created and validated. In this approach, two important steps must 

be completed before performing a hybrid VRP; 

(a) Numerical FRFs on the structure must be validated using measured FRFs.  

(b) Force identification points must be selected properly such that representative 

dynamics of the structure is included in the measured FRFs. Condition number of the FRF 

matrix is used as a metric to select the measurement points and it is related to the spatial 

position of the measurement points depending on the modal behavior of the structure.  

A flow diagram of the hybrid VRP is shown in Fig.4.2. The detailed process is as 

follows;   

(a)  Create a FE model of the structure including all components.  

(b) Determine the validation points at where the numerical and experimental FRFs are 

compared. If there are discrepancies between the FRFs over the frequency of interest, the 

FE model should be updated.  

(c)  After validation process, select m candidate points to determine best force 

identification points. 
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(d) Create combination with each set of two candidate points.  

(e)  Calculate coupled FRFs between the points for each combination 

(f)  Construct FRF matrix, [𝐻𝑖𝑗(𝜔)], (2x2) for each set of two measurement points (i,j). 

(g) Calculate the combined condition number, 𝐶𝑖𝑗 as follows.  

𝐶𝑖𝑗 =  
1

𝑛
 (∑𝐾2([𝐻𝑖𝑗(𝜔)])

𝜔

) (4.3) 

where n is the number of discrete frequencies and 𝐾2 stands for the 2-norm condition 

number. 

(h)Select the combination having the minimum combined condition number.  

(i) Measure vibration responses at the selected points. 

(j) Calculate FRFs between the selected and target points from the numerical model. 

(k)Perform hybrid VRP based on the direct matrix inversion method with the set of 

experimental measurements and numerical FRFs. 
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Figure 4.2 Hybrid VRP flow chart 
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4.2 Rubber Linked Structure  

In accordance with the statements of hybrid VRP methodology and rubber theory 

presented in Appendix A, a rubber linked set-up is created in order to predict the vibration 

response at the defined target by applying the direct inversion method. This set-up, shown 

in Fig.4.3, consists of two subsystems coupled with two rubber mounts with a shore 

hardness of 75 A, product of Tekno Kaucuk A.S. The lower beam, clamped at both sides, is 

the passive part of the system while the upper beam is the active one. 

 

Figure 4.3 Rubber linked set-up 

The schematic representation of the experimental set-up with the force and response 

measurement locations, T1, T2 and T3 are shown in Fig.4.4. Equation (4.1) is used to 

predict the response at T1, T2 and T3. A modal shaker is fixed to the structure and used to 

generate the excitations representing the operating source, F. Although there is one 

operational force acting on the structure, vibrational energy flows through the rubber links 

resulting in internal forces. The moments and rotations are ignored in the calculations since 

it is very difficult to measure those quantities. Internal forces acting at each path are 

identified via direct inversion method and the responses at the targets are predicted as 

mentioned above.  
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Figure 4.4 Schematic representation of the set-up 

4.2.1 Numerical Model Construction and Validation 

Within the scope of hybrid VRP methodology, a numerical FEM model of the set-up is 

created in ANSYS and shown in Fig.4.5. In order to represent the system behavior 

accurately in the numerical simulation, the hyperelastic and viscoelastic properties of the 

rubber components are obtained by experimental measurements which are presented in 

Appendix A.  

 

Figure 4.5 Numerical FE model of the set-up 

A system with rubber components can display nonlinearity due to the hyperelastic 

properties of the rubber. Equation of motion of a general nonlinear system, subjected to a 

time dependent excitation, is as stated in Eq.(4.3).  

[𝑀] {𝑥(𝑡)} + [𝐶] {�̇�(𝑡)} + 𝑖 [𝐷] {𝑥(𝑡)} + [𝐾] {𝑥(𝑡)} + {𝐺(�̇�(𝑡), 𝑥(𝑡)} =  {𝑓(𝑡)} (4.3) 
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where M, C, D and K are mass, viscous damping, hysteretic damping and stiffness 

matrices, respectively. Nonlinearity of the system is represented by the nonlinear vector, G 

which is a function of all displacements and velocities in general case. Owing to nonlinear 

material properties of the model, linear harmonic analysis cannot be performed by FEM 

solvers. Instead, transient analysis can be considered since it results in more accurate 

solutions but more time consumption and computational power. The responses obtained in 

time domain are transformed to the frequency domain via using the numerical simulation 

algorithm in MATLAB, as described in Fig.4.6. In this algorithm, calculated data is divided 

into smaller blocks in order to compute FFTs instead of computing a single FFT for the 

whole data set. Overlapping, which is a process of using a percentage of the previous data 

block to calculate the FFT of the current data block, is applied on the measured data. When 

combined with windowing, overlapping increases the use of data set. Windowing reduces 

the effect of leakage which occurs due to the FFT calculations for aperiodic data blocks. 

Additionally, averages are taken to obtain a good representation of the spectrum and 

improve the accuracy of FFT.  

 

Figure 4.6 Numerical simulation algorithm 

In this case study, a sine sweep signal (see Fig.4.7) is generated as the excitation signal 

for FRF calculation. The amplitude of the signal is taken as 1 N and sweep frequency is 

considered up to 100 Hz having a sampling frequency of 600 Hz. Step size is taken as 4800 

and two sweeps are generated. Numerical model is excited by this sine-sweep signal and 
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transient analysis is conducted. Vibration responses are calculated in time domain and 

transformed to frequency domain by a code written in MATLAB. By applying this code, 

consecutive blocks of time signal are overlapped by 50 % and Hanning window is applied. 

Then, data in time domain is transformed to frequency domain by using the simulation 

algorithm. Finally, FRFs are calculated by using the ratio of the calculated responses and 

the excitation signal in the frequency domain. A representative FRF of the structure is 

shown in Fig.4.8 and it can be observed that the numerical FRF agrees quite well with the 

experimental one. Other selected points are also verified to assure that simulation algorithm 

works accurate, thus, numerical model is valid and can be used for a VRP study.  

 

Figure 4.7 Sine-sweep signal  

0 1 2 3 4 5 6 7 8
-1

-0.5

0

0.5

1

Time (sec)

A
m

p
lit

u
d
e



 

 

Chapter 4: Vibration Response Prediction for Structures Coupled with Elastic Connections 64 

 

 

64 

 

 

Figure 4.8 A representative FRF of the set-up  

4.2.2 Selection of the Force Identification Points 

Another consideration for hybrid VRP is the condition number of accelerance matrix 

to be inverted. Thus, numerical simulations are carried out to select the points where the 

force is to be identified according to the combined condition number. 17 candidate points 

are defined, as presented in Fig.4.9 and the accelerance matrix, [𝐻𝑖𝑗(𝜔)], is created for 

each set of two candidate points. Total of 136 combinations are considered. Combined 

condition numbers, calculated for each combination, are shown in Fig.4.10. According to 

the figure, out of 136 combinations, the best and worst combinations are determined as 5-8 

and 13-16, respectively. The condition numbers of the accelerance matrices formed by 

these combinations are given in Fig.4.11 as a function of frequency. As seen in the figure, 

the condition numbers are reduced considerably when the accelerance matrix is created by 

the best combination. 
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Figure 4.9 Candidate force identification points 

 

Figure 4.10 Combined condition number for each combination of two points 
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Figure 4.11 Condition numbers of best and worst combinations 

4.2.3 Experimental and Hybrid VRP Results 

After selecting the measurement points, the vibration response of the targets on the 

structure, shown in Fig.4.4, are predicted by implementing VRP methodology. The internal 

forces acting on the rubber mounts are identified by implementing Eq.(4.4). As shown in 

the equation, FRFs between point 5 and 8 are used to form the accelerance matrix. 

{
𝐹1(𝜔)
𝐹2(𝜔)

} = [
𝐻55(𝜔) 𝐻58(𝜔)
𝐻85(𝜔) 𝐻88(𝜔)

]
−1

{
�̈�5(𝜔)

�̈�8(𝜔)
} 

(4.4) 

Once the forces acting on path inputs are identified, the responses of T1 and T2 are 

predicted by Eq.(4.2). Predicted responses of T1 and T2 points by hybrid VRP with the 

best and worst combinations are compared with the experimentally measured ones in 

Fig.4.12.(a) and (b). All of these results are also compared with the responses predicted by 

the experimental VRP where all required operational responses and FRFs are obtained 

experimentally for validation purposes.  
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The condition number of the numerical accelerance matrix is considerably lower than 

that of the experimental accelerance matrix, as seen in Fig.4.13. Due to the reduction in the 

condition numbers, it is seen that hybrid VRP method with the best combination improves 

the results significantly. Note that, a similar behavior is also observed for the other 

measurement location, T3. It can be observed that the combined condition number is an 

efficient guide for selecting the force identification points. However, it is observed that 

there are some discrepancies at specific frequencies for both methods. These discrepancies 

may have occurred due to the unconsidered in-plane lateral forces, rotations and moments.  

 

(a) 

 

(b) 

Figure 4.12 Predicted acceleration responses: (a) Sensor T1 (b) Sensor T2 
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Figure 4.13 Condition numbers of experimental and numerical accelerance matrices 

4.2.4 Effect of Shore Hardness  

In this section of the study, the effect of shore hardness on the operational response 

prediction is investigated by using the simulation model introduced in Section 4.2.1. The 

same numerical set-up is used with different pair of mounts having shore hardness 45, 60 

and 75 A, respectively. Numerical VRP studies are performed for each pair of rubber 

mounts having different shore hardness values. According to the results, the standard errors 

in predicting the vibration responses at the passive side are calculated and shown in 

Fig.4.14. Standard error is calculated by using standard deviation of the absolute error.  



 

 

Chapter 4: Vibration Response Prediction for Structures Coupled with Elastic Connections 69 

 

 

69 

 

 
Figure 4.14 Overall standard error 

It can be clearly observed in Fig.4.14 that the prediction error increases with increasing 

shore hardness of rubber. This observation is a result of linear relationship between the 

points at the active side. As explained above, VRP based on matrix direct inversion 

method, depends on the vibration response and FRF measurements at the active side. FRFs 

calculated between force identification points constitute the FRF matrix and the condition 

number of the FRF matrix is of great consideration. Higher condition number implies that 

the rows or columns of the FRF matrix are linearly dependent. Therefore, the relationship 

between the force identification points is essential. Averaged condition numbers of the FRF 

matrix with respect to different rubber mounts through the whole frequency of interest is 

tabulated in Table 4.1. It is observed that when harder rubber mounts are used, force 

identification points are getting linearly related to each other and exhibit similar responses. 

Therefore, the condition number increases and so the prediction error does.  
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Table 4.1 Average condition number of FRF matrix with respect to rubber hardness 

 Average condition number of  

FRF matrix 

Sh 45 A 3.51 

Sh 60 A 3.85 

Sh 75 A 4.47 

4.3 Summary and Conclusions: 

A hybrid vibration response prediction method based on the direct matrix inversion 

method is proposed for rubber linked structures with numerical and experimental case 

studies. FRF measurements were obtained numerically and vibration responses were 

measured experimentally in the proposed method. For this reason, a numerical model of the 

structure was created which also represent hyperelastic and viscoelastic behavior of the 

rubber mounts and validated by comparing calculated FRFs with the measured ones. In this 

study, it is also demonstrated that the point selection for force identification plays an 

important role in determining the condition number of the accelerance matrix. The force 

identification point selection is based on a metric that is composed of average condition 

number of the FRF matrix across the whole frequency of interest. The results show that the 

proposed hybrid methodology is superior to other alternative methods whereas the 

predictions are only based on the numerical results or experimental measurements. 

Although the application of hybrid VRP method is demonstrated for coupled structures 

with rubber mounts, it can be used for structures having rigid connections. Consequently, 

hybrid method can be considered as a reliable and efficient tool to predict the operational 

responses especially for complex structures. 

Another consideration, the effect of the hardness of the couplings is also discussed by 

performing a numerical case study with different shore hardness values. It is observed that 
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the condition number of the accelerance matrix is reduced when softer couplings are used. 

This is due to the linear relationship between the points at the active side. 
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Chapter 5.                                                                                                        

CONCLUSIONS 

5.1 Summary of Dissertation and Conclusions: 

Complex structures are usually composed of various subsystems coupled by several 

rigid or elastic couplings. Prediction of the vibration response at these complex structures 

such as aerospace, marine and automotive vehicles is an important engineering issue in 

terms of design optimization and component selection.  

Considering these needs, this dissertation presents the vibration response prediction 

(VRP) methodologies such as mount stiffness method, transmissibility matrix method, 

matrix pseudo and direct inversion methods for the structures coupled with rigid and elastic 

couplings. Among the presented VRP methodologies, most consideration is given to the 

matrix inversion methods which involve an inverted FRF matrix and a vector of vibration 

responses. In some cases measuring FRFs are almost impossible, even if possible, they may 

be prone to significant errors. Besides, the FRF matrix to be inverted may become ill-

conditioned due to the one or few modes that dominate the dynamics of the structure. 

Considering these problems, a hybrid vibration response prediction methodology, in which 

the numerical modeling results are integrated with the experimental measured data, is 

proposed. Considerations of this method such as the generation of accurate numeric model 

and the selection of points at where the force is to be identified are discussed within the 

scope of combined condition number of the FRF matrix. 
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In accordance with the presented methodologies, experimental and numerical case 

studies are conducted. Vibrating structures with rigid connections are of primary interest 

since real and complex structures usually composed of rigidly coupled substructures. At 

first, a rigidly coupled planar structure is considered and VRP methodology based on the 

matrix pseudo inversion method is applied along with singular value decomposition (SVD). 

Tikhonov regularization with the cross validation functions is investigated for improving 

the prediction results. A comparison of cross validation functions, which are used for 

selecting the regularization parameter, is presented. It is shown that Moore-Penrose pseudo 

inversion method gives satisfactory prediction results with some discrepancies at specific 

frequencies where the condition number is high. Thus, it can be stated that the condition 

numbers serve as the parameters influencing the prediction errors. Tikhonov regularization 

technique with OCV and GCV is found to be robust in improving the prediction results in 

the case of rigidly coupled structures. On the other hand, SCV method is found to be 

ineffective. Considering all Tikhonov regularization results, it is seen that it does not 

improve the prediction results considerably when the condition number is low. As a 

consequence, pseudo inversion technique is proven to be reliable but its application 

requires huge effort as well as extensive time since the paths should be disassembled and a 

huge amount of FRF measurements are needed. 

Secondly, direct inversion method is applied for a structure coupled with two rigid links 

considering the cross-coupling effects and a comparison metric between the pseudo and 

direct inversion methods is presented. Compared to pseudo inversion technique, this 

method is found to be less time consuming, less challenging and the real boundary 

conditions are present since no disassembling is required. Meanwhile, it is shown that 

including cross-coupling terms improves the results with a rate of about 10-12 % and the 

predicted responses agree well having some discrepancies occurred due to the 

measurement errors. Moreover, effects of the measurement errors such as mass loading and 
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existing noise on the prediction results are demonstrated. It is observed that mass loadings 

can affect the results with discrepancies between 20 and 30 dB in magnitude whereas the 

contamination of the FRF data with a degree of 5 % results in errors up to 6 dB. 

Finally, the structures connected with the elastic mounts are discussed since vibratory 

sources are usually connected to the supporting structures via rubber mounts in order to 

reduce the structure-borne noise transmissibility. In order to perform the hybrid VRP 

methodology for the rubber linked structure, hyperelastic and viscoelastic behavior of the 

rubber mounts are incorporated within the numerical model and a simulation algorithm is 

developed. Considerations of this method such as the generation of an accurate numeric 

model and the selection of force identification points are also discussed. Force 

identification points are selected based on a metric that is composed of average condition 

number of the FRF matrix across the whole frequency of interest. The effectiveness of the 

proposed method is determined by means of comparing the results with the experimental 

VRP results. The results show that the presented selection metric is an effective tool for 

determining the measurement points and the proposed hybrid methodology is superior to 

other alternative methods whereas the predictions are only based on the numerical results 

or experimental measurements. Consequently, hybrid method can be considered as a 

reliable and efficient tool to predict the operational responses especially for complex 

structures. 

Another consideration for the structures having rubber mounts, the effect of the rubber 

hardness is also discussed by performing a numerical case study with different shore 

hardness values. It is observed that the condition number of the accelerance matrix is 

reduced when softer couplings are used. 
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5.2 Future Research: 

This dissertation answers many questions related to the vibration response prediction 

studies. However, following areas can be explored in future studies. 

 Application of strain gauges instead of accelerometers is of interest since the strain 

gauges present less cross-coupling at the path inputs and besides, sensor effects are 

minimized. This may result in low condition number of the FRF matrix. 

 Since FRF measurements are prone to significant errors, analytical methods for 

FRF estimates should be developed.  

 Time domain response prediction becomes critical for the shock loading especially 

on the naval platforms. The use of impulse response functions and convolution integral for 

the time domain response prediction should be investigated. 
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APPENDIX A.                                                                                                               

THEORY OF RUBBER AND RUBBER MODELING 

 

A.1 Theory of Rubber  

Rubber or elastomeric materials are widely used as vibration isolators having elastic 

and viscous properties such as high inherent damping, deflection capacity and energy 

storage. Among these characteristics, they are compact, easily available, cost effective and 

maintenance free. The dynamic properties of these components are of primary concern in 

designing rubber isolators to reduce transmissibility. In order to determine the dynamic 

properties of the rubber, mathematical models are created in terms of hyperelasticity and 

viscoelasticity. The hyperelastic and viscoelastic material models represent the nonlinear 

elastic and strain-rate dependencies of the overall rubber behavior, respectively. 

Hyperelastic material model captures the material’s nonlinear elasticity with no-time 

dependence whereas viscoelastic model describes the material response which contains an 

elastic and viscous part depending on time, frequency and temperature.  

Several studies have been conducted to characterize the rubber’s mechanical properties. 

Lin et al. [94] presented a simple experimental method to evaluate the frequency dependent 

stiffness and damping characteristics of a rubber mount. This experimental method 

involves measuring complex FRF by an impact test and curve fitting the data obtained from 

the test. Kren and Vriend [95] used dynamic indentation tests in order to determine the 

viscoelastic properties of rubber components. The results were compared for rubbers with 
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different shore hardness and a semi-empirical relationship between hardness and the 

rigidity was derived. Lu et al. [96] conducted experiments with a rubber mount and 

developed a nonlinear finite element model (FEM) to investigate its large deformation 

behavior and compared the model and experimental results to validate their approach. 

Valente and Molnar [97] compared Mooney–Rivlin and Neo–Hooken hyperelastic material 

models for silicone rubber using Marc Mentat FEM software. Dikmen and Basdogan 

investigated the material properties of a rubber vehicle door seal by means of experimental 

and numerical studies [98]. 

A.1.1 Hyperelastic Constitutive Model 

Hyperelasticity refers to materials which can exhibit large elastic strain that is 

recoverable. Most elastomers such as rubber and many polymer materials are categorized 

in this category. A hyperelastic material is still an elastic material which means that the 

material returns to its original shape once the force is released. The difference is that for a 

hyperelastic material, the stress-strain relationship is related to a strain energy density 

function, W and the model describes the nonlinear relationship between the stress and 

strain, as stated in Eq.(A.1) [99].  

𝜎 =
𝜕𝑊

𝜕𝜀
 (A.1) 

The strain occurred on a deformed rubber material is defined as; 

𝜀𝑖[%] = (𝜆𝑖 − 1)100 (A.2) 

where 𝜆𝑖 is the stretch ratios with i=1, 2 and 3. The stretch ratio is basically the ratio of 

deformed length to initial length in three directions (x, y, z).  
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Strain invariants are basically used to measure the strains which are independent of the 

coordinate system used to measure the strains [98]. Thus, the following three strain 

invariants include the three stretch ratios.  

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 𝐼2 = 𝜆1

2 𝜆2
2 + 𝜆2

2 𝜆3
2 + 𝜆3

2 𝜆1
2   𝐼3 = 𝜆1

2 𝜆2
2 𝜆3

2 (A.3) 

 

Rubber materials can be approximated as incompressible with 𝜆1 𝜆2 𝜆3 = 1 resulting 

in 𝐼3 = 1 [100]. The strain energy density function can be defined in terms of strain 

invariants and stretch ratios. Volumetric and deviatoric terms of the strain energy density 

function for incompressible materials can be written as; 

𝑊 = 𝑊𝑑(𝐼1̅, 𝐼2̅) + 𝑊𝑏(𝐽) (A.4) 

where J is the ratio of the final volume to the initial volume. Since the rubber is assumed to 

be incompressible, meaning that the Poisson’s ratio is very close to 0.5, no additional 

volumetric test is performed. Thus, it is considered that the energy stored in a volume of 

isotropic material is equal to the work done by the deformations expressed by λ1, λ2, λ3. As 

for the deviatoric part, the equation for the stress of an incompressible material based on W 

is written as; 

𝜎1 = 2 [𝜆1
2  (

𝜕𝑊

𝜕𝐼1
) − (

1

𝜆1
2) (

𝜕𝑊

𝜕𝐼2
)] + 𝑝 (A.5) 

where p is a hydrostatic pressure [101]. Several mathematical models for W are proposed 

for the analytical and numerical prediction of stress-strain behavior of elastomer materials 

where the most prominent may be Neo-Hookean, Mooney-Rivlin and Yeoh models [101-

103]. All these models are semi-empirical and require experimental parameters from shear, 

uniaxial or biaxial tests. In this study, Neo-Hookean, Mooney-Rivlin and Yeoh models 

were considered and corresponding mathematical models are shown in Table A.1.  



 

 

Appendix A: Theory of Rubber and Rubber Modeling 91 

 

91 

 

Table A.1 Constitutive hyperelastic material models 

Hyperelastic Model Strain Energy Density Function 

Neo-Hookean 𝑊 = 𝐶10 (𝐼1 − 3) 

Mooney-Rivlin 𝑊 = 𝐶10 (𝐼1 − 3) + 𝐶01 (𝐼2 − 3) 

Yeoh 𝑊 = 𝐶10 (𝐼1 − 3) + 𝐶20 (𝐼1 − 3)2 + 𝐶30 (𝐼1 − 3)3 

A.1.2 Viscoelastic Rheological Model 

As discussed before, hyperelastic model represents the nonlinear elastic response with 

no time dependence. In order to model the time dependency of the rubber behavior, a 

viscoelastic rheological model must be employed. Two major types of experiments can be 

performed for viscoelastic modeling; transient and dynamic. In dynamic experiments, so 

called dynamic mechanical analysis (DMA), the stress or strain is varied sinusoidally with 

time and the response is measured at various different frequencies [100]. On the other 

hand, transient experiments involve deforming the material by simple elongation and 

following the response with time. These experiments are mainly composed of creep and 

relaxation tests. In a creep test, the stress is held constant and the strain increases with time 

whereas in a relaxation test, the strain is held constant and the stress decreases with time 

[104-106]. One of the basic rheological viscoelastic models which can anticipate relaxation 

behavior is Maxwell model which includes both elastic and viscous property of the 

material and consists of a linear ideally viscous Newtonian dashpot and linear elastic 

Hookean spring in series, as shown in Fig.A.1. This model can anticipate relaxation 

behavior and is usually applied for the small deformations [104, 105]. Since the elements 

are connected to each other in series, the stress on each element is the same and equal to 

the imposed stress, while the total strain is the sum of the strain, as stated in Eq.(A.6). 
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Figure A.1 Maxwell model 

𝜎 = 𝜎𝑠 = 𝜎𝑑;  𝜀 =  𝜀𝑠 + 𝜀𝑑 (A.6) 

where the subscripts s and d is denoted for the spring and dashpot, respectively. In a stress 

relaxation test since the strain is held constant, strain rate should be zero [107]. Taking the 

derivative of strain with respect to time; 

𝑑𝜀

𝑑𝑡
=  

𝑑𝜎

𝑑𝑡
 
1

𝐸𝑠
+ 

𝜎

𝜂𝑑
= 0 (A.7) 

Integrating Eq.(A.7), the stress is obtained as a function of time. 

𝜎(𝑡) =  𝜎0 exp (−
𝑡

𝜏
);   𝜏 =  

𝜂𝑑

𝐸𝑠
 (A.8) 

where 𝜎0 is the initial stress and 𝜏 is the relaxation time. As stated in Eq.(A.8), the stress 

decays exponentially with time when the strain is held constant. 

Advanced form of this model, which is called Generalized Maxwell Model, takes into 

account that relaxation does not take place at a single time but during a series of times. 

Thus, it has many spring-dashpot Maxwell elements as shown in Fig.A.2.  

 
Figure A.2 Generalized Maxwell model [108] 
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Prony series is one of the best functions for modeling the linear viscoelasticity and 

generalized Maxwell model.  The resulting stress vs. time data from a tensile relaxation test 

can be fitted with Prony series as seen in Eq.(A.9). 

𝐸(𝑡) =  𝐸∞ + ∑𝐸𝑖 exp (−
𝑡

𝜏𝑖
)

𝑁

𝑖=1

 
(A.9) 

where E∞ is the long-term modulus and N is a finite integer. The instantaneous modulus is 

given by E(t=0). 

A.1.3 Shore Hardness 

Hardness is a measure of an elastomer’s response to a small surface stress. In the 

1920s Albert F. Shore defined a hardness scale and developed a measurement device, 

called durometer, to measure the shore hardness of the elastomers, as shown in Fig.A.3. 

The term durometer is often used for the measurement as well as the instrument itself 

[109].  

 

Figure A.3 Digital durometer [110] 

Shore hardness is an indirect measure of Young’s modulus and related moduli of an 

elastomeric or rubber material [111]. As a property of rubber, modulus is the ratio of stress 

and strain at some loading condition which is similar to the same property of metals. 
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However, unlike metals having a linear stress-strain relationship below the yielding point, 

rubber poses non-linear stress-strain relationship over a range of loading conditions. Stress-

strain curve for the rubber can be considerably influenced by the ambient temperature, as 

mentioned before. Accordingly, the modulus of a rubber depends on the measurement 

conditions. These properties play an important role in the performance of rubber vibration 

and shock isolators. 

Durometer measures the resistance to the penetration of an indenter point into the 

surface of a molded elastomer specimen. Higher durometer indicates harder rubber 

compound. Softer compounds stretch more and fasten better on rough surfaces compared to 

harder ones. Moreover, softer rubber materials creeps more and have a lower tensile 

strength than that of harder material. On the other hand, harder compounds pose greater 

abrasion resistance and resistance to extrusion. Consequently, rubber shore hardness is an 

important property and should be properly selected according to the application. The shore 

hardness scales and some of the applications are given in Fig.A.4. Rubbers used in 

vibration and shock isolators generally fall in the range of 35-75 durometer on the Shore A 

scale. 

 
Figure A.4 Shore hardness scales [112] 

Since shore hardness is an indirect measure of the stiffness, it can be directly related to 

Young’s Modulus. One of the study on this relationship was performed by Gent [113]. He 

derived a semi-empirical equation, as follows;  
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𝐸 = 
0.0981 (56 + 7.62336 𝑆)

0.137505 (254 − 2.54𝑆)
 (A.10) 

where S is the shore hardness and E is the Young’s modulus. Ideally the hardness scale 

should convert a modulus range of 0 →∞ to a hardness scale of 0 →100. Eq.(A.10) 

executes this for S=100 but not for S=0. There are small departures from the master curve 

at S values below 40 given in Gent’s paper. Another relationship between type A shore 

hardness and elastic modulus, E is given by Rigbi. 

𝑆 = 35.22735 + 18.75487 ln(𝐸) (A.11) 

Battermann and Köhler [114] derived an empirical formula which defines the 

relationship between the shear modulus, G and the shore hardness. 

𝐺 = 0.086 (1.045𝑆) (A.12) 

A.2 Rubber Components Modeling 

The rubber mounts used in the case study is made of natural rubber with different 

shore hardness values, 45, 60 and 75 A. In order to evaluate the dynamic properties of the 

rubber, uniaxial tensile and relaxation test are conducted on the specimens created 

according to DIN 53504-S1 with a thickness of 2 mm as seen in Fig.A.5. For each type of 

rubber, identical three specimens are used for all specified tests. Universal tensile test 

machine used for the tensile and relaxation tests is shown in Fig.A.6. 
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 A B C D G R1 R2 

DIN 53504 

(mm) 

115 25 33 6 25 14 25 

Figure A.5 Rubber specimen 

 

 

Figure A.6 Universal tensile test machine 

All tests are performed at constant room temperature under strain control. To study the 

hyperelastic properties, specimens are subjected to quasi static uniaxial tensile loading with 

constant 25 mm/min strain rate and three cycle of experiment was conducted to minimize 

the experimental errors. Fig.A.7 presents the stress-strain responses as obtained from the 

quasi static test and estimated coefficients of hyperelastic models for shore 75 A natural 

rubber are tabulated in Table A.2. 
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Figure A.7 Stress-strain responses from uniaxial tensile test 

Table A.2 Estimated hyperelastic coefficients of shore 75 A natural rubber 

Hyperelastic 

Model 

C10 C20 C30 C01 

Neo-Hookean 0.6933 - - - 

Mooney-Rivlin 0.3724 - - 0.4397 

Yeoh 0.9636 -06213 0.3265 - 

 

The relaxation behavior of the rubber specimens is examined through relaxation tests. 

Fig.A.8 shows the time histories of the stress decrement at a constant strain. Stress 

relaxation data, shown in the figure, is normalized to determine how the behavior of the 

specimen changes with increasing hardness. All curves initially reveal the existence of a 

very fast stress relaxation followed by a very slow rate of relaxation that continues in a 

asymptotic sense, as it is confirmed in [115, 116]. As it is also expected from a relaxation 

test, the shear modulus is decreasing with respect to time, or in other saying, the material 

resistance against the displacement is decreasing. This is due to the viscous effect existing 

in the dashpot of the rheological Maxwell model which eventually approaches to its 
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asymptote [117]. It is also noticeable that decreasing hardness results in faster relaxation. 

In this case study, generalized Maxwell model is used and Prony coefficients are 

determined by applying curve fitting to the relaxation test data. These coefficients are used 

as the viscoelastic model of the rubber. 

 
(a) 

 
(b) 

Figure A.8 Relaxation test results for; (a) Shore 75 A and Shore 60 A (b) Shore 45 A 

In order to validate the experimentally obtained coefficients, a numerical simulation, 

based on finite element method (FEM), is performed. An identical specimen is created, as 

illustrated in Fig.A.9.(a), and the natural rubber with experimentally obtained material 

models is assigned as the material of the specimen to determine the best model. The 

specimen is constrained at one end and a ramp rising displacement at a constant velocity is 

applied on the other end. Reaction forces are calculated at the clamped bottom side of the 

specimen and summed to find out the engineering stress applied to the specimen centroid. 

The results are shown in Fig.A.9.(b) and (c). As shown from the numerical results, among 

three models, Yeoh shows the best agreement with the experimental data. As for the 

viscoelastic model, it can be stated that there is a good correlation between the Prony 

coefficients and the numerical results. 
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(a) 

 

(b) 

 

(c) 

Figure A.9 Numerical simulation results for Shore 75 A natural rubber; (a) FEM model of 

specimen (b) Engineering stress-strain curve comparison (c) Relaxation curve comparison 

The experimentally obtained data is also compared with Gent’s relation and Rigbi 

formula which constitute a relationship between ASTM D2240 shore hardness and the 

Young’s modulus. As seen in Fig.A.10, it is evident that the correspondence between the 

predicted value by Gent’s relation and experimental value is more satisfactory compared to 

that of Rigbi formula.  
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Figure A.10 Shore hardness vs elastic modulus 

In addition, the measured shear modulus with respect to the shore hardness is also 

compared with the predicted values by Battermann-Köhler relation. According to Fig.A.11, 

it can be stated that initial shear modulus obtained by Yeoh model shows a good agreement 

with the Battermann-Köhler relation. 

 

Figure A.11 Shore hardness vs shear modulus 

 


