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ABSTRACT

Nanoindentation has risen in popularity as an @adtiive approach to mesoscale measurements
for characterizing material properties. However,ngnaf the difficulties inherent to the
measurement and characterization of viscoelastienmaés at nanoscale have not been yet
solved. In this research, we compare nanoindemtatiol mesoscale measurements performed
on polychloroprene rubber and attempt to betteretstdnd the observed differences. We
conducted nanoindentation creep experiments usiadkdBich and flat punch tips. Our
mesoscale measurements consisted of normal congressnsion, and relaxation, and a
Shore-A hardness test. We fit a 5-parameter GepedaMaxwell model to the normal
relaxation data and a corresponding Kelvin-Voigtdeldo the creep data. We observed that
nanoscale measurements returned higher elasticlosoehlues than mesoscale measurements.
Hence, the surface material properties of the fddyoprene specimens are different than their
bulk material properties. However, it is importaint emphasize that differences in the
measurement devices, measurement methods, andingoaktumptions may have contributed

to the discrepancies in the results.



OZET

Nanoindentasyon, materyal 0zelliklerinin nitelerdiesi icin kullanilan orta 0&lgekli
yontemlere alternatif olarak yayginlk kazananydintemdir. Ancak, viskoelastik maddelerin
nano boyutta nitelendiriime ve o6lctilmesindesay@gan zorluklar, hala ¢ozulemegtii. Bu
aratirmada, polikloropren lastik tzerinde nanoindeywasve orta olcekli yontemlerle elde
edilen olcumler kamlastirilarak, bu iki yontem hakkinda genkapsaml bilgi edinilmesi
hedeflenmjtir. Bu sebeple, calmada Berkovich ve diz delgi uclar kullanilarak
nanoindentasyon yontemi ile siriinme deneyleri yagtir. Orta 6lcekli yontemlerle yapilmi
Olcimler; normal siktirma, germe, gaeme ve Shore-A sertlik testlerinden ghaktadir.
Normal gegeme verileri, 5-parametrelik bir Generalized Maxwebdeline; stirinme verileri
ise 5-parametrelik bir Kelvin-Voigt modeline yakamsngtir. Nano Olcekte elde edilen
Olcimlerin, orta 6lcek yontemiyle elde edilen dl¢éra gore ¢cok daha yiksek elastik modul
deserlerine sahip olduklari goézlemlergtii. Bdylece, polikloropren orneklerinin ylzey
maddesel 6zelliklerinin, i¢ 6zelliklerinden farkdldugu sonucuna varilngtir. Ancak, élgiim
cihazlari, o6lcim yontemleri ve modelleme varsayrmia aralarindaki farkhliklarin,

sonugclardaki tutarsigla katki sglamis olabilecekleri unutulmamalidir.



ACKNOWLEDGEMENTS

| thank Professor Cagatay Basdogan, the Robotat$/mthatronics Laboratory members and
alumni, the Koc University community, and my famitr their support during my studies. |

also thank our partners in the MeProVisc projectfieir input.

| am grateful for Koc University’'s Graduate SchobBciences and Engineering, the Scientific
and Technological Research Council of Turkey (TUSK]), and the European Association of
National Metrology Institutes (EURAMET) for provity resources and information in various

parts of the course of my master’'s degree research.



TABLE OF CONTENTS

Y 0151 > V! PR [l
(@ 7] TR v
ACKNOWIEAGEMENTS ... e s e e e e e e e e e e et e et s e e enee e e s e s aaeaeeeeeeeeeeennsnnes \%
IS 0 1= o] =PSRRI Vi
LIST OF FIQUIES ...ttt seeeeea s s e e e e e e e e e e eaeeeeeannnnnes VIl
N[0 =T o F= L PSPPI X
0T (3o 1o U 1
Materials and MethOAS.........oouuii e e s 5
2208 B = T T 1 o = ] ¢= 11 o] o S 5
0 O B = 1= 4 10 Y Tod o T N o 5
2. 1.2, FIAt-PUNCH . ettt e e e e e e e e e e e e e e e as 8
2.2. MeS0SCale MEASUIEIMENLS ........cuvvvriiirieeeeeeeeeeetnnniiasaseeeeeaeeeaeeeeeeensssnnrnnnnnsessnnnnns 10
2.2.1. SNROIE NArdNESS .....vuni e 10
2.2.2. NOIrMal COMPIESSION ...eveiiiiiiiiiiiiiee e et eeeee e e e e s nnas 10
0 TR N[0 1 4 F= LN =1 F= = Lo o 12
2.2.3.1. Relaxation MOUEl..........cooouiiiiiiee e e 13
N S =T 1S | =T I USRS 15
EXperimental RESUILS ..........ccooiiiiiie e e e e e r e e e e e e e e e e e e e e e e eeeeereannnes 17
3.1. NanoiNdentation CrEEP .......ccceiiiiieeees e et eeeeeeettttstnaa s s e e e e e eeeaaeeeeeeneaeeeeeeeeeesnes 17
3.1.1. BEIKOVICN TPttt ettt 17
T N - L U od o TR I8 o P 19
3.2. MeS0SCale MEASUIEIMENTS ........ccceiiiiiiteaaeeeeeeeetteiiaaa s s e e e e e e eeeeeeeeeesesssennnnseeennnnns 19
3.2.1. SNOre NArdnESS .....ccoooiiiiieiiiii et e e e e e e e e e e e e e e e eeeesaeeenneeeseennnnns 19
3.2.2. NOIMal COMPIESSION ...ttt eeeeeee ettt e e e e e e e e e e e eeeeeeeeeees 19
3.2.3. Normal relaxation ..........cooooiiiiiiii e 21
N =T 1S ] [T = PRSP 23
STl 1 11 Lo PRSPPI 24
4.1. DiSCUSSION Of CUITENE FESUILS ... ..o e e e e e e e e e e ee e e e eeeeenaes 24
4.1.1. Departure from continUUM MECNANICS .........ccccciiiiiiiiiiiiiiiieeeee e 26
4.1.2. Data scatter in NanoiNdeNntation............coeeieuiiiiumiiinaar e e 28
4.2. Comparison of nanoindentation results with thdseaslier indentation studies......... 29
[@0] 1] 118153 10 1 O 31
(1] o] [ToTe ] =1 o] o 2RO RURPRPPRP 32
Y o] o 1= T [ R 37



LIST OF TABLES

Table 1 — Overview of all measurements

VI



LIST OF FIGURES

Figure 1 - a) Force-displacement profile for nadeimation creep @Rx= 0.2 mN, pad= 3 S,

thoid = 3000 S); b) Material response in time 6
Figure 2 - Normal compression and relaxation expenital setup. 11
Figure 3 — Computer analysis of the shape facfecef 11
Figure 4 — Generalized Maxwell Model. 13
Figure 5 - Tensile elongation experimental setup. 15
Figure 6 - Sample Berkovich indentation creep ciitvghoid = 3000s). 18

Figure 7 — The results of the creep experiment®paed with the Berkovich indenter. 18
Figure 8 — Stress-strain curves for cycle 1 (dagdimedl and cycles 10 - 17 (solid lines) of the

Neoprene (boxed section magnified). 20

Figure 9 - Elastic modulus versus strain for logdiates of 0.08 mmis(dashed line), 0.16

mms? (solid line), and 0.32 mrris(dash-dotted line). 20

Figure 10- Comparison of different Maxwell modedes in fitting relaxation data. Regression

values are written above curves. 21

Figure 11 — The change in relaxation modulus asation of time for normal strains of 5%

(green), 10% (red), and 15% (blue). 22
Figure 12 — Results of the tensile test. 23
Figure 13 — Summary of results of all experimemiggrmed at nano and meso scales. 26

Figure 14 — Optical microscope (left, 5x) and sdagrelectron microscope (right, 5000x)

images of one polychloroprene (Neoprene) sample. 29

Figure 15 — Comparison of modulus values reported Neoprene rubber in our

nanoindentation experiments with those of earliadiss. 30

Vil



Figure 16- Modulus versus time for one Maxwell arnder ramp-and-hold loading. Varying
E shows a scaling of the curve (left), while inciegt pushes the curve rightward (right). 38
Figure 17 - Modulus versus time for model fit aradgmeter variations on first Maxwell arm

(smallerr). 39

Figure 18 - Modulus versus time for model fit aratgmeter variations on second Maxwell

arm (largerr). 40

Figure 19 - Modulus versus time for model fit angrgmeter variations on steady-state

response coefficient. 40

Figure 20 - R value versus deviation for each model coefficigith other coefficients held

constant). The deviation percentage shows vargiioeach coefficient. 41




NOMENCLATURE

Rate of force loading

Force

Time

Loading time

End of holding time / unloading time
Holding force

Displacement in indentation
Indentation modulus

Included half-angle of indenter tip
Contact-to-total depth constant
Kelvin-Voigt model coefficients
Normal stress

Normal strain

Elastic modulus in Laplace domain
Stress and strain in Laplace domain
Elastic modulus

Instantaneous, steady state elastic modulus

Poisson’s ratio
Flat punch indenter radius
Shore-A hardness

Shore-A hardness durometer tip radius

Shape factor

Radius of cylindrical samples
Thickness of cylindrical samples
Maxwell model coefficients
Relaxation modulus
Incremental stress
Incremental strain

Tensile force

Surface area

Initial length

Deformation



Chapter 1: Introduction

Chapter 1

INTRODUCTION

Nanoindentation is a new technique for probingrttexhanical properties of a material. It is
increasingly used to investigate the mechanicalabeh of biological materials ([1-4]),

composites ([5]), and thin films ([6—9]). Howevenany factors affect the outcome of the
nanoindentation measurements ([10]). These factmisde the measurement devices and
protocols, indenter type, modeling assumptionscti@ce of sample material ([11,12]), and

environmental conditions such as temperature anddity ([13]).

In nanoindentation, since a small probe penetmteshe large surface of test specimens, some
modeling assumptions are necessary to estimatenthterial properties [11]. These
assumptions would be different, sometimes conttadicto previous assumptions in the
mesoscale. The test specimen’s properties alsataffnoscale indentation measurements
differently from mesoscale measurements [14]. Alsalelicate control of temperature and
humidity is necessary in nanoindentation measuré&awvelnle the mesoscale measurements are
relatively less sensitive to these parameters [M3se factors can further cause discrepancies
between nanoindentation and conventional mesosteasurements, and also between
different nanoindentation techniques. By choosingugable sample material, making valid
modeling assumptions, and keeping environmentalitons steady, we investigate the effect
of nanoindentation devices and protocols and adenter types on the mechanical property
results of a sample soft material; we also invastighe validity of our modeling assumptions,

based on the observed discrepancies.

Indentation has previously been used extensivelprabing the mechanical properties of

various materials, mostly based on the classicatziée [15] model of contact, further
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analyzed by Sneddon [16]. Oliver and Pharr [17¢eded this analysis to micro- and nanoscale
measurements. These analyses and their assumpgiong, with subsequently developed
measurement techniques have later been reseawhied tan optimal method for indenting

each material; a method which leads to a reliafl@&characteristic mechanical properties.

A series of these works are devoted to understgntiow accurately nanoindentation
experiments replicate the results of broadly ammeptonventional measurement tests.
Researchers have obtained mixed results in thisagdgraspecially in the characterization of
viscoelastic materials. For example, Mazeran €tl8] developed a new viscoelastic-plastic
model to fit results from their Berkovich indentereep, quasi-static indentation, and
conventional tensile experiments, with all thresuts agreeing fairly well for 3 different
polymers. Herbert et al. [13] compared flat punehagindenter results to mesoscale dynamic
mechanical analysis (DMA) and creep measuremerdsoaserved agreement between the
results. Monclus and Jennett [19] also have comrdUiDMA using conventional and Berkovich
tip indentation methods, finding synonymous resultaufman et al.’s [20] experiments,
consisting of spherical tip nanoindentation andhmedrcompression, also resulted in agreeable
modulus values. However, Champhekar [11] meastinredtorage and loss moduli of PDMS
samples 2-3 times higher in nanoindentation thacoimventional DMA. Carrillo et al. [21]
also measured the material properties of PDMS sssnding unconfined compression and
guasi-static nanoindentation. They used both Olared Pharr's [17] and Hertz's [15] [22]
model to fit the data, yet obtained modulus valsgmificantly higher than those of the
mesoscale compression experiments. They attridbtedliscrepancy to adhesion effects, but
expressed that extra insight into nanoscale com@chanics is required to fully understand
the underlying phenomena. This pattern also coesinn other works, where results from
nanoindentation methods show signs of measureme®t énd necessitate subsequent

investigation ([9,12]).
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There is also debate in the community as to wimdemter tip provides the most reliable results
in nanoindentation. Each indenter tip and measunémethod has individual advantages and
disadvantages, with each contributing to discrejganoetween its results and corresponding
mesoscale measurements. Recently, flat-punch ndemter tips have gained popularity due
to some geometrical advantages over pyramidal-abifecg. Berkovich) and spherical tips

([13]). In flat punch indentation, shear deformati@gions are remote from the hydrostatic
zone beneath the indenter punch, allowing simplesss tensor assumptions. Flat punch
indenters are also immune to transient behaviotlaernal drift ([13]). Cheng et al. [23] argue

that the flat-punch indenters also have fewer @isl during initial contact compared to the
pyramidal-conical indenters typically used in comon nanoindentation systems. However,
flat-punches tend to introduce heterogeneous stredshigher concentrations on the punch’s
periphery; a significant amount of heterogeneityymavalidate linear viscoelasticity

considerations. An investigation of these advardagel disadvantages would further elucidate

its relative superiority or inferiority to otherdentation tips.

Previously, little comparison has been done betviie¢punch and other indenter geometries
in the characterization of viscoelastic materisi&ang et al. [24] have performed DMA and
guasi-static indentations on PDMS using both Beidtoand flat punch tips. After accounting
for each measurement’s artifacts, they found similedulus values. However, their flat-punch
tip was 1002 um in diameter, larger than usual malemtation flat-punch tips. An appropriate
comparison between results obtained from nanoiatientexperiments with flat-punches and
other geometries and corresponding mesoscalectastselp us further understand the utilities

and setbacks of each method.

In this work, we performed an array of nanoscalé @mventional mesoscale measurements
on polychloroprene rubber samples and discuss dBsilple factors affecting discrepancies
between the measurements. We initially explainrttegleling and experimental procedures

3
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utilized for this investigation (Chapter 2). In Qit@r 3, we report the elastic modulus of
polychloroprene rubber as estimated by the nanatatien creep experiments performed with
Berkovich and flat-punch tips and those obtainedcbgventional mesoscale experiments:
normal compression, normal relaxation, simple tmsiand the Shore-A hardness test.
Afterwards, we further compare our results betweaeh other and with previously reported
mechanical property results for polychloroprene gptene) rubber (Chapter 4). We also
examine discrepancies between the results andvewiemodeling considerations. We believe
this research endeavor to be the first compari$dhnectime-dependent mechanical properties

of polychloroprene rubber in the meso- and nanescal
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Chapter 2

MATERIALS AND METHODS

We performed 2 nanoindentation and 4 conventioredascale experiments to characterize
the material properties of polychloroprene rubl@ngles. The experiments performed at the
mesoscale were a) normal compression, b) normapessive relaxation, ¢) simple tensile
test, and d) Shore-A hardness test. Two creep tatlen experiments were performed

independently at the nanoscale using Berkovichflahgunch tips.

We chose Polychloroprene (Neoprene) rubber foretkgeriments due to its viscoelastic
characteristics. In addition, it showed negligilgkastic deformation in our preliminary
experiments. The material is also resistant tosaaneand temperature fluctuations. Our choice
of material also facilitated the Shore-A hardness, twhose hardness result can be converted
into elastic modulus [25]. Furthermore, earlierds#s performed by Lim and Chaudhri
([12,26]) and others ([11]) have shown that polgcbprene rubber is a good candidate for
performing nanoindentation experiments. The samses in our experiments were extracted
from 3.2 and 6.4 mm thick sheets, acquired fromir@ex Inc. The size and shape of the

samples varied depending on the requirements of €stap and experiment.

2.1. Nanoindentation

2.1.1. Berkovich Tip
We used a UNHT (Ultra Nanoindentation Tester, AnRaar Tritec) with a Berkovich tip

(detailed in [27] and [19]) to perform nanoindeiwatcreep experiments on 10*10 rhsguare
samples of 3.2 mm thickness. The Berkovich tip ithieee-faced pyramid tip, with an
axisymmetric equivalent opening angle of 14@6d a half-included angle of 6533 he tip’s

ending is spherical with a radius of 200 nm. We med and secured the samples on a stage

5



Chapter 2: Materials and Methods

using superglue. After mounting, we conducted messants in three stages (Figure 1): first,
we lowered the indenter with a maximum force offdl® onto the sample in 1, 3, or 10 seconds
(loading time). The indenter was held at this fdiaevarious holding times ranging from 10
to 3000 seconds. Afterwards, the force was unloadetl0 seconds. We repeated each
measurement 10 to 17 times at different locationthe sample (Table 1). The output of this
experimental procedure, known as a ramp-hold iradiemt test, is the time-displacement curve
(Figure 1, right). We varied loading and holdingéis to observe the effect of these values on
the measured material parameters. All experimerdgse wonducted in a controlled lab

environment with a temperature of 23®1°C and a relative humidity of 40%.

0.25 6000

0.2 E 5000

z £ 4000
£0.15 )

@ £ 3000
S 01 S

L 22000

0.05 8 1000

0 0

0 2000 4000 6000 1 10 100 1000 10000
Displacement [nm] Time [s]

Figure 1 - a) Force-displacement profile for nandémtation creep (Rax= 0.2 MmN, bad = 3 S, told =
3000 s); b) Material response in time

We used viscoelastic correspondence analysis lmastte Boltzmann superposition principle
from continuum mechanics to calculate the indeoatnoduli from the experimental creep
data ([28]). In the loading segment, the rate ofdok = dP/dt, was constant, whéres the
force applied to the sample. Consequently, the (ighéor the applied force to reach its holding
value Pmay has an inverse relation with the ratg & Pnay. During the holding segment ¢

t < tend), the force was constant.

In conical-pyramidal indenters such as the Berkouiclenter, the material’s displacememt (

under load®) is given as ([29])
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2y% P

2 = —
(O = ntany E*

Equation 1

whereE’ is the indentation modulug,is the indenter’s included half-angle (65.35 degifee
Berkovich tip),y is a constant relating contact depth to total degitt is taken as unity for

polymeric materials [19].

Since polychloroprene is viscoelasti¢ would be time-dependent and we can replace it with
a creep compliance integral. During indentatiorghefrce increment initiates creep as it is
applied. Ift is current time and is the time at which an increment of force was i@gplthe

amount of displacement creep that has occurredcddt jgoint in time can be formulated as

2
wtany

¢ dP(u)d 2
joj(t—u) du u_ntamp '

h*(t) = Equation 2

To solve the integrdl we model the creep compliance function with de2rent (i.e. 2-arm)

Kelvin-Voigt representation, which can be written a

-t

1 1 -t 1 -t
J(@) = B + B [1- 3(91)] + B [1- 3(92)] Equation 3

whereEj is the instantaneous indentation modulus Bha&nd6; represent the indentation
modulus and time constant of each element (arspecively. The creep compliance function,
J(t), is the sum of the instantaneous creep resporséharcreep responses of each arm (the
contribution of each arm is initially zero at t=Adaincreases td/E; as t-w). There is a
tradeoff in selecting the number of arms used énntlodel. With a higher number of arms, the
uniqueness of the material coefficients is questiber with fewer arms, the model may not be

able to fit the data adequately. We observed tiea2tarm model provides a good balance.

Now, by substituting(t) into |, we can evaluate the integral (at Hpas
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to to tO 81 Lo -t 92 b -t
=k (b2t ) k(o) (B = 1) B = (2] (e - 1) P |
£ B E £} £ Equation 4

Substituting this into the displacement equatioa fivd:

2k to to to 0, ;_0 “t(0,\[ L -t
o | = () (ef - 1) e — (2] (P2 — 1) e, |
ntany {<E8+E{‘ +E§ E; e e E; ez e’z Equation 5

This equation was used to fit the experimentaloda to estimaté; ando;. Although creep

h2(t) =

compliance and stiffness moduli do not have a garkrect reciprocal relationship, they do
so for the end points of the time domain [30]. Aistimating the instantaneous and steady-
state elastic indentation moduli from the experitabdata via curve-fitting, we can obtain the

instantaneousty,) and steady-staté'(,) elastic moduli using the following relations:

=—+4+ ) — and Equation 6

{Eo = (1- v)E;

E, = (1— v})E, Equation 7

wherev is the Poisson’ ratio and is takenvas 0.5.

2.1.2. Flat-punch

We performed nanoindentation creep experiments avithlindrical flat tip indenter having a
diameter of 4.75 pum on 10*10*3.175 mm Neoprene sesng hese samples were mounted
and secured onto a custom-built tilt stage usimgsylue. For this indentation experiment, we
used a UMIS (Ultra Micro-Indentation System)-2008naindenter (SCIRO, Lindfield,
Australia) with IBIS control software (Fischer-Cogy Australia). Force and displacement
detection was based on linear variable differenteisformers (LVDT), with resolutions of
0.2 uN and 1 nm, respectively. We controlled theirenment’s temperature and humidity
levels, stabilizing them between 25-28(and 46-48%, respectively. Thermal and electronic

drift were insignificant over the time scale of fite-punch indentation experiments.
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As previously discussed in the introduction, twaltdnges exist in using a flat-tip cylindrical
indenter. The first, stress concentration arourel ghrimeter of the tip, was overcome by
slightly rounding the edges during the manufactungmmocess of the indenter. The second
problem of proper surface alignment was resolvethdalding a tilt stage to accurately align
the sample and the indenter surfaces. We deterrtheddting angle by analyzing atomic force

microscopy (AFM) images of the indentation footgsin

We conducted 10 nanoindentation creep experimgnisadenting the material in 20 force
increments up to a maximum hold force of 0.2 mNe plocedure was similar to the Berkovich
indentation creep experiment. This loading procedaok approximately 5s, after which we

held the indenter at the maximum force for 130®teetinloading.

For the flat tip cylindrical indenter, the relatibetween displacemerit)(and load ) is given

as [29]
h=—— Equation 8

whereR is the indenter radius. ReplacifiE with a viscoelastic integral operator for creep

gives the Boltzmann integral equation

1 dP(u)

t
h(t) = ﬁj;](t — u)Wdu. Equation 9

If we again use a 2-arm Kelvin-Voigt model for ttreep function, we obtain the following

equation:
k ([to to to 0, to =t
ht)=—=+=+=)-|=]lefr—1]e?
O =iz mrm)(7)(F 1)
t -t
_(% e —1)eB L,
E;

Equation 10
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As before, the indentation moduli and time constamére estimated via curve fitting this
model to the experimental creep data, after whielcan obtain the instantaneous and steady-

state elastic modulus values using Equation 6 anpfon 7.

2.2. Mesoscale Measurements

2.2.1. Shore hardness
We used a shore-A hardness durometer (Shore InstugnMfg. Co., Inc., New York, USA)

to measure the hardness of the rubber samplesarhples displayed an average of 53 shore-
A hardness. Shore-A hardness values can be coduertdastic modulus using the following

formula suggested by Kunz and Studer [25] for pasimelastomers

F= 1—v?% 0.549 + 0.07516S,

2.6 - 0.025 -
2R, 0025(100— S, 4) Equation 11

where& is the Shore-A hardness aRglis the tip radius of the durometer (0.395 mm).

2.2.2. Normal compression

We conducted compression experiments with rubb@ipkss at mesoscale by following the
experimental protocol given in ISO 7743:2008. Thypeziments were performed with a
rheometer (Antor Paar GmbH, MCR102) at a tempegaitiP£C (Figure 2). The rheometer’'s
force sensor in the normal direction has a resmtutf 1 mN. We cut 15 mm diameter
cylindrical samples from the 6.4 mm thick batch aathpressed them up to 15% normal strain.
In addition to the 1SO’s referenced strain loadiate of 0.16 mm% we also used 0.08 and
0.32 mmg to understand what effect, if any, this velociaslon the results. The samples were
pre-conditioned via cyclic loading to obtain coneing force-displacement data. We observed
that the loading-unloading force curves reach adstestate after 10 cycles, but cycles were
continued up to 17 to show convergence. The a¢pglarent) elastic modulus was calculated
after correcting for shape factor effects. The expent was repeated with two samples each

tested twice, and the mean values are reported here

10
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Figure 2 - Normal compression and relaxation exmental setup.

In our setup, sandpapers having a grain size ofdP8@ttached to the parallel plates of the
rheometer using a double-sided tape (3M-9473P@hsurre that no slippage occurs between
the plates and the sample during the compressiparements. This procedure prevents the
sample from dilating radially when normal strairmpplied. As a result, additional shear stress
forms in the center regions of the sample, addirige normal stress and force response (Figure
3). This extra stress causes the compression elastdulus to be overestimated from the

measurements, for which the 1ISO 7743:2011 starglagdests corrections.

Figure 3 — Computer analysis of the shape factor effect.

11
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The Young’s modulus of cylindrical rubber discs bacorrected for shape factor effects based

on the formula

p=J1=¢ Equation 12
- £(1+2KSZ) quation

whereE is the Young’s modulus ariis the correction factor. The normal stregsajnd strain
(¢) are obtained directly from the experimental measients. The shape fact®),(which

represents the ratio of the strained area to thestrained area, is defined as

S =— i
2d Equation 13

wherer andd are the radius and thickness of the cylindricalga, respectively. It is evident
that thinner and larger samples tend to have highape factors, which results in a higher
elastic modulus. Lindley [31] tabulated the con@ttfactor K) for typical natural rubber
vulcanizates, which we assume to be the same fonenprene samples [32]. Hence, we can

use Equation 12 to correct the measurements faestaator effects.

2.2.3. Normal relaxation

We also investigated the rubber’s dynamic matepedperties using force relaxation
experiments performed in the normal direction. Weducted the experiments in accordance
with 1ISO standard 3384-1 using the same rheometiiled in Section 2.2.2. We prepared
cylindrical samples of 13 mm diameter and 6.4 mickiiess. We set the loading velocity and
holding time to 0.013 mmsand 1800 seconds, respectively. This experimest repeated
with three samples, each tested once with normaihstof 5%, 10%, and 15% as suggested in
the ISO standard; the mean values are reportedhisnplaper. We applied shape factor

corrections to the relaxation data as in the casempression experiments (Section 2.2.2).

12
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2.2.3.1.Relaxation Model
We modeled the relaxation response of the neopusimgy a generalized Maxwell model

(Figure 4), previously detailed by Sedef [33]. Thmedel is equivalent to the Kelvin-Voigt

model used for processing the nanoindentation clatn

O
) ) )
U ( {
E, & E, E;
.,
n, ] n, n.
) ) )
U ( {

v

Figure 4 — Generalized Maxwell Model.

In this model, each spring-dashpot arm respondf&in as

Eio;
Equation 14

Eié = 6; + .
wherey; is the damping coefficienyi(= Eizi, 7 is the time constant of each arm). We can take
our loading segment to be a constant ramp4iie constant) and solve the equation by adding

the response contributions from each arm. In th@daan domain, each contribution would

be(i=1,2.. n)
Eiés =G5+ — Equation 15

which rearranges to
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_ Eis _
o, = E. .
s+ 1 Equation 16
T
Since in the Laplacian domain, we also have
n
o= z 0,=¢€ Equation 17
0
whereé is the modulus in the Laplacian domain, we cad fiis modulus as
n
_ El'S
§=Ex+ Z 1 Equation 18
1 S + T_
l

If we assume a ramp-and-hold input, take the reveaplace transform of this formula and

input the initial conditions, we can obtain theasedtion elastic modulus for t g ds

n

EiTl' to -t
Erei(t) = Ee — Z " 1—e%|eTi. Equation 19

T 0

In this formula,z; = % andto is the loading time. We again found that for thicé relaxation

a minimum of 2 arms in the Generalized Maxwell mMdde. 5 parameters) provides a suitable

fit. We can use this model to obtain

Eitq Loy 2t E,T, Loy Zt
Erei(t) = Eeo — . (1 - €Tl> e’ — . (1 - eTZ) etz . Equation 20
0 0

By curve-fitting this formula to the relaxation datwe estimate the viscoelastic material
coefficients E andz). We also conducted a parametric study on ouxaglan model, the
details of which are articulated in Appendix A. Thenaterial coefficients found in the curve

fitting enable us to calculate the relaxation modudt the end points of the time domain as

Eitq Lo E,t, L
t>0:E(t)>Ey=E, — n (1—ef1>— (1—e‘fz)
0 ]
t— o:E(t) > E,

Equation 21
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2.2.4. Tensile Test
We also independently performed tensile tests emuthber specimens in a climate-controlled

environment using a custom-made setup adheringet¢SO-527 standard (Figure 5). In this
setup, “bone-shaped” neoprene samples are pulldd thiir force response is measured by a
load cell with a force resolution of 5 mN. The eowimental temperature during these
experiments is 21.0 +06. The bone-shaped samples are cut out of 6.4 nok Neoprene
sheets, with the middle testing section having dtlwof 9.96 mm and length of 50 mm. The
samples are pulled from 0 to 3.5 mm (0 to 18% noterssile strain) at four different strain
rates of 0.01, 0.03, 0.06, and 0.1 mimAs the material is viscoelastic, the strain wffects

the force response. For this reason, we first tatied the elastic modulus at each strain rate by
fitting a line to the stress-strain data in theéinregion. Afterwards, we fitted a second order
polynomial to the elastic modulus values at différstrain rates and estimated the elastic

modulus at zero strain rate from the curve-fit equmea

Clamping
system Stepper
motor

Displacement
Load cell control probe Reduction gear
(resolution 5 mN) (resolution 0.1 um) (10 step = 1um)

Figure 5 - Tensile elongation experimental setup.

Experimentally, Young’s modulusalues are determined from the ratio between the
incremental stress and the incremental strain applye classical Hooke’s law at a constant

strain rate,

15
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L
T As AAl

Equation 22

whereE is the Young’s modulus (P&)gis the incremental stress (P4, is the incremental

strain (dimensionlessk; is the tensile force (N)A is the surface area of the samplée)(on

which the force actdyp is the initial length of the sample (m), addis the deformation (m)

resulting from the application & within the region in which the sample under inigegion

shows an elastic behaviour.

Table 1 — Overview of all measurements

Measurement Length Measurement Loading rate/ Holding Holding Temperature  Humidity  Estimatec
type scale scope time forcg / time °C) (%) material
strain property
Berkovich Nano Surface 1-3-10s 0.2mN  10to 3000s 23.6 40 E'o, Ew
Nanoindentation
Flat punch Nano Surface 5s 0.2 mN 130 s 25 47 Eo, Ew
Nanoindentation
Normal Relaxation Meso Bulk 0.013 mms3 5%-10%- 1800 s 24 - Eo, Es
15%
Normal Compression  Meso Bulk 0.16 mmg 5%-10%- 12.4s (cycle) 24 - E
15%
Tensile test Meso Bulk 0.01to 0.1 - - 21 - E
mms?
Shore A hardness Meso Surface - - - 24 - E

16
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Chapter 3

EXPERIMENTAL RESULTS

3.1. Nanoindentation Creep

3.1.1. Berkovich Tip

As expected, the material did not reach an equilibrstate during the nanoindentation creep
experiments. The material continues to deform inlgmged tests, as demonstrated in
experiments run up to 3000 seconds (Figure 6). &léf(e®) (found using Equation 6) should

be considered an extrapolation of the fit rathanth determined value.

We first curve-fitted the 5-parameter (2-arm) KalVloigt model to the resulting creep curves
(Figure 6). Next, we estimated the average valdiesevindentation modulte* andE.* for
different hold times (Figure 7). The indentationdub were then converted & andE.. to
facilitate comparison with other measurements. uoelulus values showed no correlation

with loading time but correlated negatively withiding time.
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Figure 6 - Sample Berkovich indentation creep cuitvihos = 3000s).
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Figure 7 — The results of the creep experimentfopmed with the Berkovich indenter.
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The mean indentation moduli (averaged over the tiolds) were b = 22.6 + 17.4 MPa and
E'» = 8.76 + 3.86 MPa. Using these values in Equaieand Equation 7, we estimated the
mean instantaneous and steady state elastic mexi&i= 17.0 £ 13.0 MPa and.E= 6.66 *
2.90 MPa, respectively.

3.1.2. Flat Punch Tip

We estimated the indentation moduli ds £17.95 + 3.52 MPa and £= 13.62 + 2.00 MPa.
The instantaneous and steady state elastic moeud estimated assE 13.46 + 2.639 MPa

and E = 10.22 + 1.50 MPa, respectively.

3.2. Mesoscale Measurements

3.2.1. Shore hardness

The polychloroprene rubber’s Shore hardness (5349 wonverted to elastic modulus using
Equation 11. We estimated the elastic modulus @& GPa.

3.2.2. Normal compression

The resulting stress-strain curves show some hg@teduring compression (Figure 8), which
is expected from a viscoelastic material. The pnddening phase of the experiment shows a
difference between the first and tenth loading-ading cycles. However, after cycle 10 the
cycles overlapped. The material is also evidenthy-hnear in compression. The material also
showed insignificant variation of modulus valuevietn different strain loading rates (Figure

9).

The ISO 7743:2008 standard suggests reporting i modulus in the compression
segment of the final cycle at 10% normal strainiclwiwas calculated as 0.648 MPa (for the
strain loading rate of 0.16 mrhsFor comparison, the elastic moduli at 5% straid 45%

strain were also calculated from the stress-strame as 0.271 and 0.935 MPa, respectively.
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Figure 8 — Stress-strain curves for cycle 1 (dadimez) and cycles 10 - 17 (solid lines) of the
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Figure 9 - Elastic modulus versus strain for loaglirates of 0.08 mrigdashed line), 0.16 mms

(solid line), and 0.32 mriigdash-dotted line).
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3.2.3. Normal relaxation

We curve-fitted different model sizes to the expemtal results, finding the 2-arm (5-
parameter) Maxwell model to be the most suitablguife 10). The 1-arm (i.e. 1-element)
model did not provide a sufficiently accurate fitdathe 3-arm model had non-singular

coefficient results.

We estimated the relaxation modulus for 5%, 109, H5P%6 normal strain by curve-fitting a
5-parameter Maxwell model to the relaxation curfiéigure 11). The instantaneous elastic
modulus,Eo, varied between 0.5 to 1.43 MPa and the steady stastic modulug.., varied

between 0.36 to 0.98 MPa for the normal strain mgrjrom 5%-15%.

1.18 % ' ' '

o % datafore=15%
R*(N=2) =0.99754 2 - element model
e |- glement model

1.14F || R*(N=1)=0.96315 ]

1.16

1

E(t) [MPa]

1.02 1

0.98

0 500 1000 1500 2000
Time [s]

Figure 10- Comparison of different Maxwell modeksi in fitting relaxation data. Regression values
are written above curves.
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1.3
¥  £=35% (data)
Lirg i & = 5% (model)
11} E(0) =1.4294; E(c0) =0.97543 | X &= 10% (data)
' &= 10% (model)

O &=15% (data)
€ = 15% (model)

=
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E(t) [MPa]

07l E(0) =1.0873; E(e0) =0.77088
0.6}
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0 500 1000 1500 2000

Time [s]

Figure 11 — The change in relaxation modulus asretion of time for normal strains of 5% (green),
10% (red), and 15% (blue).

22



Chapter 3: Experimental Results

3.2.4. Tensile Test
The effect of loading rate on Young’s modulus iswh in Figure 12. Standard deviations were

calculated based on an overall uncertainty accuionlaof 7.3%. Using a second order
polynomial curve fitting, the Young’'s modulus capending to zero strain rate was estimated

as 1.24 + 0.1 MPa.

1.5
y =-14.02¥ + 2.6101x + 1.2382

145 R2=0.9884

1.4 1

1.35

E [MPa]
[EY
w
\
\
k¢
\

1.25 -

1.2 -

1.15

1.1 T T T T
0 0.02 0.04 0.06 0.08 0.1 0.12

Strain Rate [mm¥

Figure 12 — Results of the tensile test.
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Chapter 4

DISCUSSION

The goal of our research was to compare the mhpedperties of neoprene rubber estimated
by an array of characterization performed at nambraeso scales. To facilitate this goal, we
conducted nanoindentation and conventional comimresand tension experiments and
selected material parameters that can be readipaced in a common framework (Table 1,
Figure 13). We first discuss our results and themmare them with those of other earlier

studies.

4.1. Discussion of current results

The tensile test provided us with a widely-acceptesdisure of tensile Young’s modulus. The
tensile test also showed that neoprene exhibiesdependent viscoelastic behavior, even at
low loading velocities of 0.1 mrls The Young modulus obtained by the tensile tes4(1
MPa) was comparable to those obtained by the casijome experiments, but much lower than

those obtained by the nanoindentation experiments.

However, deformations of an incompressible hypstalanaterial during indentation mimic

those of a normal compression test better thanaimeformations in a tensile test. In more
technical terms, deformation states of surfacentat®n measurements lie closer to those of
uniaxial compression than to those of uniaxial itmmsneasurements in the invariant planes
(for more details, see [34] and [35]). Hence, whebe that the results of nanoindentation
experiments are more credibly compared with nore@hpression experiments at the

mesoscale. The steady state elastic modulus estimay the quasi-static compression

experiments was significantly lower than thosenefnanoindentation experiments.E0.648
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MPa via normal compression versus 6.57 MPa via®eck tip and 10.22 MPa via flat-punch
tip indenters). The relaxation experiments perfatnre the normal direction also returned
lower instantaneous and steady state moduli thasetbf the creep experiments performed at

the nanoscale (Figure 13).

There could be several reasons for this discrepdiatween the results of experiments
performed at nano and meso scales. Firstly, iteaan artifact of the experimental scale; the
smaller scale may cause different stiffness meshasito react to the experimental input.
Secondly, the surface material properties of thegiene rubber could be simply higher than
its bulk properties. During the manufacturing a timbber sheets, rolling and surface finishing
processes are applied which may lead to a stiffigase. In fact, the modulus value estimated
by our Shore-A hardness measurements, which issmsnale measurement of the surface
response, was indeed higher than those of theoteasid compression experiments (5.64 MPa

versus 1.24 and 0.648 MPa, respectively; Figure 13)

Previously, Champhekar [11] conducted quasistatimmdentation with a blunt tip and found
a negative correlation between the indentationtdepd the measured modulus values for
various viscoelastic materials. He attributes thtiservation to instrumental and analytical
errors and higher material stiffness on the surtaua lower stiffness in the bulk. Lim and
Chaudhri [12] also performed nanoindentation onegrof polymers using a Vickers tip and
observed similar trends. They suggested frictieffakts for the observed discrepancies, which

were later confirmed by finite element analysiskaynran and Larsson [36].

Alternatively, modeling assumptions proven corrgcttthe mesoscale may no longer be
applicable in smaller scales (more details in [&hH [14]). For example, in flat-punch
indentation nonlinearities may cause an overestimatf the modulus value. Larsson and

Carlsson [37] suggest that linearity is only vdbd ratios of indentation depth to contact area
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radius (h/R) lower than 0.05. This ratio for ouatfpunch reached 0.54, which resulted in
modulus values in the order of 10 MPa. Additionadlyess concentrations caused by the sharp

tip of the Berkovich indenter may also artificialhcrease estimated modulus values.

Flat Punch Creep Nanoindentatigm=sssssss=ssssssssssssssy
Berkovich Creep Nanoindentatiofs -

Relaxation (15%) ==,
Relaxation (10%) E2,
=

Relaxation (5%)

Normal Compression

Tension

Shore A Hardness
0 5 10 15 20
E (MPa) EE(w) (MPa) BE(0) (MPa)

Figure 13 — Summary of results of all experimeetdqgumed at nano and meso scales.

4.1.1. Departure from continuum mechanics

In this research, we assumed the material follawvgicuum laws in deformation, both in the
mesoscale and the nanoscale. Continuum mechanicegthe structure of a material on the
molecular scale, taking that the volume is contusly distributed and can be divided
indefinitely. In view of this assumption, an infiesimal particle can be defined, inside of which
strain tensors form in response to stress tensaused by force loading. When an elastic

material is deformed by a unidirectional forcestharticle obtains the energy potential [38]

1
W = Elgil’&‘]’j + MEji€ij) Equation 23

whereZ and are Lame’s constants;; is the infinitesimal strain tensor, and W is tbéat

deformation energy density. However, as detailedNikolov et al. [38], there may be
additional energy potentials in the material thiatreot accounted for in a continuum mechanics

analysis. These contributions follow from the metbs of the material’s molecular structure.
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If these contributions are significant, Nikolov s¥sthat the deformation energy density would

instead follow

~

1 K S S 1
W = S Aeug; + e gn + = Xijxi Equation 24

where the final term accounts for Frank elastieitgrgy, expressed through the effective Frank
constant{(Newtons) and the symmetric curvature tengpr This additional term is found by

assuming additional rotational gradients due toemdhr dynamics effects in the material,
which includes energy potentials added through oubée chain interactions. These
contributions are considered to be negligible intcmum mechanics but may be significant

here due to the smaller length scale in the naroitadion experiments.

Following the couple stress theory approach dewsldpy Yang et al. [39], a characteristic
length | is introduced to describe the extent of local @He This length scale has been
previously found to be ~0.25 nm for most metals82(m for gallium arsenide, and ~3.3 nm
for graphite. Using the Frank energy constant farmethain polymers, Nikolov et al. found
the length scale for main-chain polymers to be +4n6 This implies that in the case of rubber
polymers, size effects due to significant straedignt contributions happen in the size domain
of a few nanometers. This hypothesis is later s&tiby Han [40] using data from common
main-chain polymers (e.g. UHMWPE, PTFE/Teflon), @hshow no size effects in the length
scales measurable with nano- and microindentatidewise, our material polycholoroprene
(Neoprene) consists of chloroprene molecules kgiether in chains, so it is expected that such
size effects will be similarly absent. Thus, a dapa from continuum mechanics and a
requirement to consider molecular mechanics imtheerial response is not needed when our
measurement length scales are far from 4.6 nanosnéteview of this conclusion, we believe
that the continuum mechanics assumption holds Yatidur nanoindentation experiments in

addition to the mesoscale measurements.
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We must note however that size effects due to Fesgkgy potential were previously found
to partially explain size effects in the nanoin@gioin of polydimethylsiloxane (PDMS) [14].
Wrucke et al. [14] had conducted quasistatic nademtation experiments on PDMS with a
Berkovich tip at test depths from 200 nm to 100 [Timey observed that the hardness value,
which is assumed to be linearly proportional to material’s elastic modulus, increased by
several orders of magnitude with decreasing indemtaepth. They attributed this observation
to molecular interactions based on Frank Energyadsma possibly harder material surface.
4.1.2. Data scatter in nanoindentation

There appears to be a higher scatter of datéh{gker standard deviation) for nanoindentation
results. Further investigation of the samples usicanning electron and optical microscopy
(Figure 14) revealed material inhomogeneity (whicty be attributed to the rubber’s filler
content) and cracks on the surface. The cracksethimgwidth from a few nanometers up to 1
um. These two phenomena may be the cause of the tasults deviations that we have
observed in the nanoscale measurements. The inidentzontact areas were in the few
micrometers (4.75 um for flat-punch, and up to 82far the Berkovich tip), similar in size to
some observed inhomogeneities. Champhekar [11]alsa observed this in his Neoprene
samples. There was also higher standard deviatbhewer hold times in the Berkovich
indentation. This is expected, as with lower hatdets the material has less time to creep and
becomes more sensitive to local surface and loaginditions. Also, as the indenter controller
began force loading, certain variations aggravégdhe softness of the Neoprene sample
caused the loading to deviate from ideal constat®-conditions. Measurements at lower hold
times are more affected by these deviations. Iitiadd a lower hold time provides less data

for curve fitting, making the fit more variable.
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Figure 14 — Optical microscope (left, 5x) and sdagrelectron microscope (right, 5000x) images of
one polychloroprene (Neoprene) sample.

4.2. Comparison of nanoindentation results with those oéarlier indentation studies

The results of our nanoindentation experiments sa@eood agreement with those of earlier

studies. Champhekar [11] performed quasi-statientations on Neoprene rubber using a
blunt conico-spherical indenter having a tip disgnetf 5 um and an included angle of 60

The experiments were conducted in the depth ra@eldb 2.5 pum, such that only the spherical
tip was in contact with the material. They obserttest modulus values are depth-dependent,
with higher moduli at lower depths (varied betw&nand 9 MPa, Figure 15). On the basis
that a similar trend was also observed for thraerotiscoelastic materials, they concluded that
this increase was a modeling artifact. Their magkdumed contact area is the same as in
conico-pyramidal indentation, whereas it differemLand Chaudhri [26] also estimated the
elastic modulus values of Neoprene rubber via matesitation. They initially used a tungsten
carbide ball of 4 mm in diameter to perform qudatis indentation experiments and estimated
the elastic modulus as 8.15 MPa (depth of indesmatias ~180 pum). Their second experiment
performed with a Vickers indenter tip returned mloduvalues of 21 and 9 MPa for the
indentation depths of 9 and 100 um, respectivedy. [Similar to Champhekar’s [11] results,
their modulus values also decreased logarithmicalyhe indentation depth was increased

(Figure 15). Among their explanations, Kamran aagskon [36] later confirmed through finite
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element analysis that frictional effects on thekéis indenter’s ridges are responsible for their

observed discrepancies.

We must note that most previous research on payoptene considered only the elastic
response and ignored the viscous component. Howasepparent in our results, the viscous
component contributes greatly to the overall memamnesponse. Champhekar [11] conducted
nanoDMA measurements on neoprene rubber, butfleguency domain response cannot be
aptly compared with our time domain results. Thevmus measurements also used different
indenter tips and measurement protocols. In additimaterial chemical composition may be

another source of discrepancy. Hence, our comperiseith earlier measurements are

tentative.
60
¢ Champhekar
x  Chaudhri 2004
50 | ¢ Chaudhri 2006
. A Berkovich (Efo))
©
% 40 ® Flat punch (Ef))
7 — e+ —Shore A hardness
§ 30 Log. (Champhekar)
§ - = =Log. (Chaudhri 2006
20 *. -
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................ A i
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100 1000 10000 100000 1000000
Depth [nm]

Figure 15 — Comparison of modulus values reportgd\feoprene rubber in our nanoindentation
experiments with those of earlier studies.
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Chapter 5

CONCLUSIONS

We conducted a research study to evaluate the ialafmoperties of polychloroprene
(Neoprene) rubber with an array of characterizaggperiments performed at the nano and
meso scales. These experiments were performeditffedent research groups independently
on the same rubber samples. We first comparedesuits between the groups and afterwards
with those of other earlier studies. Since the erpents were performed by different devices
under different experimental conditions and prolecwe selected the most fundamental
material property, elastic modulus, as the medi@icomparison. We also utilized equivalent
viscoelastic models for compatibility (i.e. 2-armeri@ralized Maxwell and Kelvin-Voigt
models for relaxation and creep responses of theriaB. The model parameters were
estimated by curve-fitting the experimental datiae Tesults of our experiments showed that
nanoindentation experiments returned higher modudlises and scatter in the experimental
data than those obtained by the mesoscale expasnteaddition, our nanoindentation results

show good agreement with previous indentation expits on Neoprene rubber.
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APPENDIX A

Parametric Study of Relaxation Model

We conducted a parametric study on the GeneraNeedvell model, which was used to fit
the relaxation data. Our aim was to understand &aeih parameter in the normal relaxation
curve-fitting formula influences the fit. As preusly mentioned in Section 2.2.3, the curve-

fitting formula is

EiT Loy Zt E,T Loy —t
Erei(t) = Ee — ; : (1 - €T1> et — ; 2 (1 - €T2> etz Equation A-1
0 0

whereE is the relaxation modulus as a function of timd@IE. is the steady state response
of the material (MPa)1 andE; are the spring constants of the two Maxwell armMBd), and

71 andrz are the time constants of the two Maxwell armsdsds). These model constants, in
addition withto, the loading time (seconds), antime (seconds), define the material response.
The loading time is constant for each experimert Ba is a function oft, so the varying

coefficients left for curve-fitting args, Eo, Ex, 71, andz..

The relaxation modulus function is a summation bfékwell arms and a steady-state response
constant; we can understand the parameter effgcém@lyzing one isolated arm’s response

and considering how a summation of 2 such armsawhstant would fit the data. Each arm’s

relaxation response function is

ET/ Lo =t
Ererarm(t) = . (e T — 1) et Equation A-2
0

whereE andr are the arm’s parameters (spring modulus and ¢ionstant, respectively). By

varying these two constants over time, we find leawh parameter affects the model response.
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Figure 16- Modulus versus time for one Maxwell ammaer ramp-and-hold loading. Varying E shows
a scaling of the curve (left), while increasingushes the curve rightward (right).

It is deducible that increasing each parametectffine output curve differently (Figure 16).
By increasingr the plot shifts rightward, i.e. the material takassger to relax. Increasing
increases the drop in relaxation modulus over timethe material has a higher instantaneous

response. It also evident that the relaxation cottput has a linear relationship wih

By combining two arms and the steady-state constantan understand how each parameter
affects the fit. Each arm is distinguished basedt®time constant (i.ei # 7). In our study,

we chose; indices with a highgrto represent larger time constants & z2). If after curve-
fitting, two arms are found to have the same timestant § = ;) they must be considered as
the same arm with an arm spring constant equdle@sammation of the two armik(= E;i +

Ej). Hence, during curve-fitting, if two or more edjime constants are found for differing

arms, the model size is downscaled to accommodtaeual-time-constant arms into one arm.

Figure 17, Figure 18, and Figure 19 show how eactienparameter affects the fitted curve.
The model parameters are varied in percentilehaf bptimal fit value. Varying the time

constants; i1 and 12, causes the curve to shift upward and rightwarte €ffect is more
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pronounced in the lower time domain for the smdllae constantzf) and more pronounced
in the higher time domain for the larger time canstf,). This is expected, as tle&d term,
which explains each arm’s dependence on time, skdepwsndency on Changing each arm’s
spring coefficientE;, scales the response of the data upwards in e domain where the
arm has a more pronounced effect. In our casdirgi@rm affects mostly the beginning of the
response, and likewise changiig only alters the initial portion of the relaxatioesponse
curve. However, as the second arm has a higherdimstant which causes it to affect larger
time domains in the curvg; alters a larger segment of the curve. Regardiaditial variable,

the steady-state respon&g ), the change linearly translates the curve upwards

We can see that each variable affects the cureedifferent degree. Between the two arms,
changing the coefficients of the arm with the higie constant has a more prominent effect
on the final fit. The steady state resportsg,appears to have the biggest effect, as it siiéts

entire response in the vertical direction. The aith the smaller time constant seems to have

the smallest effect, changing the fit only in thgial portions of the relaxation response.
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Figure 17 - Modulus versus time for model fit amglgmeter variations on first Maxwell arm (smaller

7).
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Figure 18 - Modulus versus time for model fit amdgmeter variations on second Maxwell arm

(larger 7).
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Figure 19 - Modulus versus time for model fit aadgmeter variations on steady-state response
coefficient.

To quantitatively analyze the validity of these detibns, we drew a plot of R-squarecfR
values versus percentage deviations of the difterenstantsE.., Ei, 71, E», 72) compared to
their fitted value (Figure 20). In this plot?Ralues are calculated as the regression-squared
value between the fitted model and the experimeafallts. The Rvalue versus deviation of

each parameter gives an approximation of how oredficent affects the fit while other
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coefficients are frozen. We can readily see Baashows the strongest change ifiihen it
deviates from its fitted value, as expected frorguFe 19. Also as expecte#; and 1

marginally change Rwhereas changes 2 andz, prominently affect R

R-squared

0.92r- 12 |
El
091~ E2 |
Ewo
0.9 1 1 1 1 1 |
-20 -15 -10 -5 0 5 10 15 20

Deviation from fit (%)

Figure 20 - R value versus deviation for each model coefficfesith other coefficients held
constant). The deviation percentage shows variatinreach coefficient.

In conclusion, in our relaxation response moded, alm with the higher time constant has a
larger effect on the measurement. This conclusambe extended to Generalized Maxwell
models with more than two arms. The effect of tira with the lower time constant is more
prominent in the lower part of the time domain. @djag the elastic spring coefficient of each
arm, E, scales the relaxation response of that arm invérdcal direction (i.e. relaxation
modulus axis). However, changing the time constartffects both the absolute value of the
relaxation response and also how it dissipatestawer(i.e. the curve is scaled in both vertical

and horizontal directions). The steady-state resp@pring constanE.., shifts the model’s
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plot in the vertical direction. Ranalysis shows thd. has the strongest influence on the

model’s fit, followed by the arms with the higheané constants in succession of time constant.
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