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Abstract

The random assignment problem is the task of assigning a number of objects to an equal number of
agents. A common solution to this is the Random Priority Rule which is strategy-proof, ex-post efficient
and treats equals equally. However, the Random Priority Rule is not guaranteed to be ordinally efficient
when there are more than three agents. I provide necessary and sufficient conditions for ordinal efficiency
for the Random Priority Rule by characterizing ordinal efficiency in random assignment problems with
few objects. The results are generalized by provided methods to obtain smaller problems from any
random assignment problem while preserving ordinal efficiency under the Random Priority Rule, and
where the methods do not yield small enough problems I provide an algorithm that characterizes ordinal
efficiency.
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Ozet

Rastgele tayin problemi belli bir sayida objenin esgit sayidaki ekonomik bireye verilmesini igler. Bu
problem icin yayginca kullamlan bir ¢éziim, Rastgele Oncelik Kurali, streteji-gecirmez, ex-post verimlidir
ve esite esit davramr. Ancak, Rastgele Oncelik Kurali {icten fazla birey oldugu durumlarda ordinal
verimliligi saglamay1 garanti edemez. Rastgele tayin problemlerinde ordinal verimliligi karakterize ederek,
az saylda obje bulundugu durumlar icin Rastgele Tayin Kurali'nin ordinal verimli olmasi igin gerekli
ve yeterli kogular1 6ne siiriiyorum. Sonrasinda bu elde ettigimiz sonucglar: genellemek icin methodlar
olugturuyorum ve genellemenin erigemedigi durumlar i¢in de ordinal verimliligi karakterize eden bir
algoritma one siiriiyorum.

Anahtar Kelimeler: Rastgele tayin problemi, Rastgele Oncelik Kurali, ordinal verimlilik
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1 Introduction

I consider the problem of assigning n objects to n agents where each agent may have differing preferences
over objects. This is called the random assignment problem or simply referred to hereafter as problem.
This problem is usually encountered in assignments where fairness is crucial and monetary transfers
are not allowed, such as assignments of dorms to college students or public housing to applicants. One
solution to this problem is the Random Priority Rule (Abdulkadiroglu and Sénmez (1998)). The rule is
applied by randomly selecting an ordering of agents and letting them take turns according to that order.
The agent in turn chooses their most preferred object among the remaining ones. The chosen object
is then assigned to the agent and removed from the pool of remaining objects. The process ends when
all agents have taken turns, or there are no objects remaining. This solution leads to exz-post efficient
outcomes, where any trade that makes an agent better off will make at least one agent worse off.

Another solution, the Probabilistic Serial Rule is favored in some situations as it satisfies ordinal
efficiency, which is a stronger than ez-post efficiency and ensures no trade can make an agent better
off while not making some agent worse off, even when agents are allowed to trade the probabilities of
obtaining objects. However this solution is not strategy-proof, so some agents might be in a position where
misreporting their preferences may lead to a better outcome for them. The lack of strategy-proofness has
an impact on fairness when the agents have varying levels of information (Abdulkadiroglu et al. (2006)).
Being strategy-proof is a desirable property where random assignments are being used to deliver equal
opportunities to agents coming from differing backgrounds.

The Random Priority (RP) Rule gives the agents a very strong incentive to report their preferences
truthfully by being strategy-proof. But in cases where efficiency is considered to be important, not
satisfying ordinal efficiency raises concerns. This can be mitigated by the fact that although the RP
Rule lacks ordinal efficiency when considering all problems, the RP Rule is ordinally efficient in some
domains of random allocation problems. One example of these domains is the domain with three objects
and three agents (Bogomolnaia and Moulin (2001)). By singling out the properties of such domains,
I derive more generalized requirements for ordinal efficiency, or lack thereof. This leads to the full
characterization of ordinal efficiency for problems involving two objects and any number of agents.

Following that, I further generalize our findings by devising methods to obtain problems with fewer
objects while not affecting the ordinal efficiency of the RP Rule. A domain of problems that lends itself
to this is where the preferences of the agents is tiered, ie there are groups of objects where all agents have
consistent preferences between the groups, but have differing preferences inside the groups. However this
does not cover all possible preferences, so there is the need of developing more general methods. Thus
I devise other methods for obtaining problems with fewer objects such as deconstruction and reduction
which can be applied to almost all preferences. I show that both methods preserve ordinal efficiency

and, thus, it is possible to characterize the notion for any problem at hand.



Related Literature

Abdulkadiroglu and Sonmez (1998) define the Random Priority Rule and show that the rule is ex-post
efficient. Another solution to the random assignment problem, the Probabilistic Serial (PS) Rule is
proposed by Bogomolnaia and Moulin (2001). The new solution lacks strategy-proofness but satisfies
the stronger notion of ordinal efficiency. The Random Priority Rule is also shown to satisfy ordinal
efficiency when the number of objects and agents are fewer than four. The two rules have been shown
to be asymptotically equivalent when objects have multiple copies and the ratio of agents to types of
objects increases (Che and Kojima (2010)).

Ordinal efficiency in random assignments is studied in Abdulkadiroglu and Sénmez (2003) by using
the ex-post efficiency of lotteries. Restrictions on preference domains has been studied for inducing
strategy-proofness on the PS Rule (Liu (2017), Cho (2016)). Tiered preference structures have also been
studied regarding strategy-proofness in the PS Rule (Liu and Zeng (2017)).

2 The Model

Let O be a finite set of objects and I a finite set of agents with |O| = |I|. Fix the set of agents and
objects. For each agent i € I, let =; be a preference relation which is complete, antisymmetric and
transitive. Let == (>;);es be a preference profile. An agent i ranks an object a k’th, or r;(a) = k if
the number of objects o, such that o, =; a equals kK — 1. A random assignment problem (or simply
problem) is a triple (O, I, >).

An ex-post assignment, or assignment is an injective function p : I < O. A random con-
sumption is a probability distribution over objects. A random assignment is denoted by Q = {qm},
where ¢;, € [0, 1] is the probability of agent i receiving object a and the ’th row Q; is agent ’s random
consumption. A rule assigns a random assignment to each problem.

For a random assignment Q) = [qm} and a preference profile >, Define the following binary relation:
7(Q,>) ={(a,b) € O x O | Ji € I such that a =; b, q;, > 0} (1)

For a pair of objects a,b € O, 7(Q,>) contains an a — b cycle, or 7(Q >) is a — b cyclic if
(a,b), (b,a) € 7(Q, ). 7(Q,>) is a — b acyclic if it is not a — b cyclic. 7(Q,>) is a-cyclic if for some
b, 7(Q,>) is a — b cyclic and 7(Q, >) is cyclic if for some a, 7(Q, ) is a-cyclic. 7(Q, ) is acyclic if it
is not, cyclic.

A random assignment @ is ordinally efficient for a problem (O,I,>) if 7(Q,>) is acyclic. An
assignment is ex-post efficient for a problem (O, I,>) if 7(Q,>) is acyclic. A rule is ex-post efficient
if for each problem, the resulting assignment p is ex-post efficient and it is ordinally efficient if for each
problem, the resulting random assignment @ is ordinally efficient. A rule is strategy-proof if truth
telling is a dominant strategy for the agents.

A rule commonly applied to random assignment problems is the Random Priority (RP) Rule
(Abdulkadiroglu and Sénmez (1998)). This rule satisfies ez-post efficiency and strategy-proofness. 1

explain the rule in greater detail in the next section.



2.1 The Random Priority Rule

For a problem (O, I, ), the RP Rule leads to an assignment by the following steps:
1. Draw an ordering of the agents in O in a uniformly random way.
2. Give turns to agents sequentially by following the drawn ordering.
3. In the first turn, the first agent picks their first ranked object. The chosen object is removed.

4. In the following turns, the agent who has the turn picks the first ranked object among the remaining

ones.
5. The sequence ends when either objects or the order runs out.

In order to illustrate the rule, consider following example: Let there be four objects a,b,c,d and

agents 1,2, 3,4 with the following preference domain:

ar-1b=1c-1d
arobocod
(2)
b>3a>3d>3¢c
b=4a>=4d>=4c
For the algorithm, first we obtain an ordering of the agents. Let the ordering to be (2,3,1,4). Then

the rule resolves as follows:
e Agent 2’s turn: they pick their first ranked object a.
e Agent 3’s turn: they pick their first ranked object b as it is still available.

e Agent 1’s turn: Their first and second ranked objects a, b are removed but their third ranked object

c is available, thus they pick c.

e Agent 4’s turn: Their first and second ranked objects are removed, so they pick their third ranked

object d.

The result is the following assignment: Agents 1,2,3,4 obtain c¢,a,b,d respectively. Notice that
this assignment satisfies ex-post efficiency. For the RP Rule, the random assignment is obtained by
exhausting the possible orderings that can be picked in the initial step and giving each ordering an equal

probability. For our example problem, the RP Rule gives the following random assignment Q:

5/12 1/12 5/12 1/12
5/12 1/12 5/12 1/12
1/12 5/12 1/12 5/12
1/12 5/12 1/12 5/12
Agents 1 and 3 contribute (a, b) to 7(Q, >) and agents 2 and 4 contribute (b, a). See that the random

3)

assignment is thus not ordinally efficient. The RP Rule does not satisfy ordinal efficiency in general,
but it assigns some problems to ordinally efficient random assignments.

The RP Rule is also strategy-proof for each problem (Abdulkadiroglu and Sénmez (1998)).



3 Characterizations of Efficiency

Our goal is to characterize the preference domain for which the RP Rule always gives an ordinally efficient
random assignment. Let us fix a problem (O, I,>) and the random assignment @ given by the RP Rule
for (O,1,%). A preference domain is ordinally efficient if for each preference profile in the preference
domain, @ is ordinally efficient.

A trivial ordinally efficient preference domain is such that for each 4,j € I, >=;=>;. The preference
domain consists of a single preference profile up to all permutations of objects. The following result

provides a slight extension to this domain:

Proposition 1. Let a,b € O and define A = {i|a>; b}, B={i|b>;a} =1—A. Then 7(Q,>) is
not a-b cyclic if |[A] <1 or |B| < 1.

Proof. Without loss of generality, assume |B| > |A|. If |A| = 0, then for each ¢ € I, b >; a and 7(Q, >)
is trivially a — b acyclic.

Let |A] = 1 and ¢ be the only agent with the preference a >; b. Thus, for j # 4, b =; a. If i chooses
first or a is available when it is 4’s turn, they will never choose b instead of a. If a is chosen before the
turn gets to 4, since b = a for all agents j # 4, b has to be chosen before ¢’s turn. Thus, ¢ cannot take b.

Since ¢;5 = 0, only (b,a) can be in 7(Q, >). Thus, 7(Q, >) cannot be a — b cyclic. O

This proposition naturally extends to an alternative proof of the ordinal efficiency of the RP Rule
when |I| < 3. Since the condition in Proposition 1 is satisfied in this case, the RP Rule is ordinally
efficient.

Another result is obtained by applying the same steps in the previous allocation:

Proposition 2. Let a be an object and i be an agent. If q;q is positive, then for each object b »; a, there

exists a unique agent j, with b -, a.
Proof. Follows simply through the proof of Proposition 1. O

To further examine ordinal efficiency, construct a minimal preference domain which violates it: Let
a,b,c,d be objects with a # b, ¢ # a,d # b (we allow ¢ = b and d = a). Then the following preference

profile induces an a — b cyclic 7(Q, >):

ar1b=1...
b=oa=o...
a>=3C>3...
b-gd>y...

7(Q, >) has an a — b cycle if the following conditions are satisfied:

1. Agents i; and iy disagree on their preferences over objects a and b, while there are no other objects

¢ that are preferred between those two (ie, a >; ¢ >; b) for both of these agents.

2. For each object x € {a,b}, there are two agents ranking object x first. Thus, each of these agents

is assigned to their second ranked object with positive probability.



This can be stated as follows:

Remark 1. 7(Q, >) is a — b cyclic if both a and b are ranked first by at least two agents and for both a

and b, at least one of the agents who ranks one first ranks the other second.

This is a very specific preference domain that is not ordinally efficient. But with further generalization
methods, we can apply this result to some profiles where the structure is not immediately apparent. I

introduce such a method in the following section.

4 Tiered Preference Profiles

To characterize larger domains, refer to the following definition.

Definition 1. A preference profile >~ is tiered if there exists an ordered partition T = (T1,T5,...,T,) of

O such that for each agent i and object a € T,,,, b € T;, m <l implies a =; b. Each T; € T is a tier.

Note that every preference profile is tiered with a single tier trivially. When a preference profile has
n tiers, it is a member of a preference domain containing n! profiles where each profile has the same
radom assignment under the RP Rule.

The aforementioned preference domain can be constructed starting from any tiered preference profile

it includes. To make it easier to deal with subsets of O, define the following:

Definition 2. Let 'O C O, I' C I, =(I',0’) be a preference profile such that for each a,b € O', a »; b
if and only if a=(I',0");b. Then =’ is a projection of = to the set O'.

Proposition 3. Let >, =" be two tiered preference profiles with tiers T and T'. If T and T’ are the
same partitions of O with a different order and for each T,,, € T,T', =(T) = >'(Tm), then the random
assignments the RP Rule gives for the problems (O,I,>) and (O,I,>') are equal.

Proof. This proof shows that there exists a bijection from the ez-post assignments of the problem (O, I, >)
to the assignments of the problem (O,I,>").

In any ordering I picked for the RP Rule in (O, I, >), the first |71| picks will be from T37. Then the
next |T| picks will be from 75 and so on due to the tiered profile.

Let ¢, = |T),| and divide the ordering Ix to n tiers:

from T} from Ty e from T,
p%’p%7"'7pi1’ p%7p§7"'7p§27 M) p}L’ng?"'?prn
Here p;, corresponds to the r’th pick from the m’th tier.

For I4 see that the k’th pick p, corresponds to

m—1
Pr = Dy, Where j =71+ Z cj (6)
j=1
This means for a set of tiers T, with
T ={T, |Vi€eTl,ace T, beT, = a=;b} (7)



there exists the following relation:
pr = pr,, where k =1+ Z |T| (8)
To€Tm

This fact leads to a natural mapping P* : {1,...,n} — {1,...,n} from the picks of (O, I,>) to the
picks of (O, I,>’). For each pj € I, let

P*(px) = p,,, where k =r + Z [T (9)
T,eT),
given that
T'm =T, |ViclacTybe T, = ax}b} (10)

The ordering I’y = {P*(py)} results in the same assignment for the problem (O, I, ') that I results
in (O,1,>).

The final thing to do is to show P* is a bijection. Because P* maps a finite domain to itself, being
an injection implies being a bijection. Let «, 8 be permutations over tier numbers (1...m) and assume
that P*(a) = P*(8). By the definition of P*, « = . Both the changes in orders within a tier and in
orders between tiers changes the resulting order.

Thus, P* is injective and therefore bijective. Since each ordering in (O, I,>) is mapped to one

ordering in (O, I, "), their random assignments are equal to one another. O

By this proof, each tier is shown to be independent from each other under the RP Rule. This leads

to the following result.

Corollary 1. Let = be a tiered preference profile with tiers T = {11, T, ...,T,,} and Q™ = [q:ﬂ be the
random assignment given by the RP Rule for the problem (T,,,1,~(T,,)). Then,

Q= Z_ Q" =[Sy az] (11)

As ordinal efficiency of a preference profile only depends on the random assignment, the equivalence
of the random assignments imply the equivalence of ordinal efficiency. Thus, problems can be divided to

decrease the number of objects in our problem thanks to the tier structure:

Corollary 2. Let > be a tiered preference profile with tiers T = {11, T5, ..., Ty, }. @Q is ordinally efficient
if and only if each random assignment Q™ given by the RP Rule for (T,,, I, >(T},)) is ordinally efficient.

Using tier structure, Remark 1 can be generalized to a larger preference domain:

Proposition 4. Let > be a tiered preference profile with tiers T = {T1,...,T,,}. @ is not ordinally
efficient if for any T,, € T, the requirements of Remark 1 is satisfied.

Proof. Follows directly from Corollary 2 and Remark 1. O

This condition is clearly sufficient for ordinal inefficiency, and it is also necessary for problems with

few objects:



Proposition 5. Let > be tiered and T, be a tier with |T,,| < 2.
Then the random assignment Q™ given by the RP Rule for (T, I,=(Ty,)) is ordinally efficient if

—(T,) doesn’t satisfy the conditions in Remark 1.

Proof. Let A= {i|a>; b}, B={i|b>; a} = I—Aand assume |B| < |A| without loss of generalization.
If the tier has two objects and does not satisfy Remark 1’s conditions, then there we will have |A| < 1.

This is shown to be efficient in Proposition 1. O

5 Reduction Operation on Preference Profiles

By Proposition 3, we have obtained a way to decrease the number of objects in some preference profiles.
This is important because we can fully determine ordinal efficiency by decreasing the number of objects
to two. Separating to tiers is useful, but it requires a special preference domain structure. Here we
introduce a method to decrease the number of objects in almost any preference domain.

Consider the following slight variation to the RP Rule: Instead of determining an ordering of the
agents first, we randomly select an agent at the start of each turn. This variation still produces the same
assignments with the same probabilities, thus it is equivalent to the RP Rule.

Using this variation, after the first turn we’ll again be left with a problem that lacks one agent and
their first ranked object by the recursive nature of this rule. this will again be a problem. To establish

the new problem’s relation with the initial problem, we define it as an immediate subproblem:

Definition 3. If r;(a) = 1, the following problem is an immediate subproblem of (O, I,>):
Dio(0,1,=) = (0 —{a},I - {i},=(0 —{a}, I —{i})) (12)

For a problem; the immediate subproblems, the immediate subproblems of its immediate subprob-
lems and so on are the problem’s subproblems.

The set of all immediate subproblems of a problem (O, I, ) is a decomposition
D(O,I,>-)={Di,|i€l,ac0,ria) =1}

Thus, there are |I| immediate subproblems of a problem with each immediate subproblem having |I|—1
agents and |O| — 1 objects.

With the RP Rule, every agent has an equal chance of acting first and taking their first ranked object.
Using this fact, we write the random assignment of a problem as a sum of the random assignments of

its immediate subproblems.

Remark 2. Let D be the decomposition of (O, 1,>), Q;, the random assignment given by the RP Rule
for each D;o(O,1,>) € D and Q5 be a matriz with qlfa =111 if r;(a) = 1 and 0 otherwise. Then,
1
Q=Qr+ > Qia (13)
i
Being able to remove any object from the problem is useful due to Proposition 5, but with each

decomposition the number of subproblems increases combinatorially.



We can mitigate this by assigning objects to agents simultaneously. For an object a, if we have two
agents ¢ and j who rank a first, the decomposition includes both D;,(O, I, =) and D;,(O,I,>). This
means that both ¢ and j can be assigned an object that is not a. By merging such similar subproblems,
we can avoid the combinatorial increase in numbers.

We propose reduction as a method of merging such subproblems. Unlike decomposition, we will need
to keep track of the objects we’ve removed and the agents who ranked the object first, because we want
to be able to obtain the subproblems by solely using the reduced form of the problem.

Before we define it, as an example consider the following preference profile »>:

ar-1b=1c-1d
a9 b=ocod
b>3a>=3d>3¢c
bsa>4d=4c
If a is assigned first, then only agents 1 or 2 may have taken it. This corresponds to the immediate

subproblems obtained by applying Dy, or D5, with the following preference profiles:

b>9crod b=1¢c+=1d
b>-3d>-30 b>-3d>-3c (15)
b=4d=4c b=4d=4c

Instead of dealing with these separately, we can merge them to a single preference profile. To keep

track of which subproblems we’ve merged, we use a merge set:

Definition 4. For a € O, the merge set of a collection of immediate subproblems which lack the same
object a, ie {D;(0,1,>) | ri(a) = 1} is a set containing a tuple of the object a and the set of agents who
rank a first, ie {(a,{i| r;(a) = 1})}.

With a merge set {(a,{1,2})}, the merged profile becomes:

b=1c+1d
b=ocrod
b=3d=3c

b=4d>4c

This gives the preference profile of the reduction of (O, I,>) with the object a.

Definition 5. Let I, be the set of agents with r;(a) = 1, |I4] > 2 and {(a,I,)} the merge set of
{D;a(O,I,>)|i € I,}. Then the reduced problem obtained by removing the object a from (O,I,>) is a
quadruple (O — {a},I,=(0 —{a}),{(a,1.)}), also denoted by R,(O,1,>).

The merge set intuitively defines how to obtain the merged subproblems and subsequently which

ez-post assignments are possible. We say that the reduced problem induces those subproblems.
Definition 6. Let (O, I,>(0’),Z.) be a reduced problem, a € O" and I, = {i | ri(a) = 1}. (O, 1,=(0"), L)

is reducible by an object a if for eachi € I, R,(0’,I,~(0"),Z,) induces a problem (O’ —{a},I’, (0" —
{a},I")) withI' CI andic I'.



Reduction also be applied to reduced problems. To reduce a reduced problem which induces subproblems
D;,(0O,1,>), we consider the decomposition of each D;,(O,1,>) and pick the subproblems that lack b.
This gives us the collection {D;pD;q(O,I,>)} and subsequently the merge set {(a,I,), (b, I;)} where
I, ={i|ri(a) =1} and I, = {i | r;(b) = 1 with respect to >=(0’)}.

Reducing a reduced problem simply involves removing the related object from the reduced problem
and obtaining the related merge set.

In our example, the only object that can be assigned in the next turn is b, as all agents rank b first.
We add them to the merge set, which becomes {(a,{1,2}),(b,{1,2,3,4})}. The preference profile is

reduced to:
c1d

c>od (17)
d>3c
d»4c
This profile only contains two objects and thus can be characterized as ordinally efficient or not by
Proposition 5. This twice reduced problem corresponds to six subproblems of (O, I,>) and the ratio of
subproblems to reduced problems will increase with each reduction.
Note that in the merge set, for each agent 7 there should exist an ex-post assignment where agent 4
is not assigned any object, so that the agent i is included in the induced subproblem. Thus not every
reduced problem is further reducible:

To avoid inspecting a large number of subproblems, we use the following equivalent condition on

reducibility:

Definition 7. Let (O',1,-(0"),Z,) be a reduced problem obtained by repeatedly reducing a problem
when it was possible, O, the set of reduced objects, a € O', and I, the set of agents who rank a first.
Then, (O',I,=(0"),Z,) is reducible by a if a is multi first ranked and for each agent i, the resulting

reduced problem induces a subproblem that includes i.

If we apply reduction to a reduced problem with multi first ranked objects but all of its induced
subproblems lack some agent ¢, that agent will not be able to obtain the objects that are not possibly

assigned to them in the merge set, or not ranked first. This gives way to the following result:

Proposition 6. For a problem (O,I,>) with i € I and a € O, giq > 0 if and only if there exists a
reduced problem (O', I, =(0"),Z,) with r;(a) = 1.

Proof. Let ¢q;, > 0. Then there exists an ezx-post assignment where i obtains a. Let the ordering of the
agents leading to this result be (j1, ..., jn, i, ...) with ji obtaining bg. If ;(a) = 1, then we’re done. Else,
i ranks one of by first. It is also clear that each ji rank one of by first. Since there are n of by and n+ 1
agents who rank one of by first, at least one of by should be multi first ranked. Thus, we can reduce the
problem and eliminate one of by.

For the subsequent reductions, assume that the reduced problem is not reducible. So there exists a
collection of objects Oy that less than |O,| + 1 agents can only obtain objects from O, (withholding

further reductions). Even without those agents, the number of the remaining agents is still more than



the number of remaining objects. Thus, the reduced problem must be further reducible when there is by
with 7;(bg) = 1. By repeatedly reducing, we find a reduced problem with r;(a) = 1.

Assume there exists a reduced problem with r;(a) = 1. Following the reduction sequence by, ...b,,
create an ordering (j1, ..., jn,?,...) with j; € Ip,. Applying the RP Rule with this ordering results in an

ex-post assignment where ¢ obtains a. Thus, ¢;, > 0. O

With this result, we can construct 7(Q,>) of a problem (O,I,>) using reduction without exact

knowledge of @ as 7(Q, =) only depends on whether each ¢;, > 0 or not.
Definition 8. We apply the Reduction Algorithm as follows:
1. Start with a problem (O,1,>) and QT = 0.
2. If the problem is not reducible, set q;z =1 for all i,a with r;(a) = 1 and end the algorithm.

3. Obtain reduced problems by applying reduction for each multiple first ranked object. Set q;; =1
if i € I, when applying R,.

4. For each reduced problem, iterate the algorithm from step 2.

Due Proposition 6, this algorithm fully identifies 7(Q, >-) and ordinal efficiency.
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