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Abstract

The random assignment problem is the task of assigning a number of objects to an equal number of

agents. A common solution to this is the Random Priority Rule which is strategy-proof, ex-post e�cient

and treats equals equally. However, the Random Priority Rule is not guaranteed to be ordinally e�cient

when there are more than three agents. I provide necessary and su�cient conditions for ordinal e�ciency

for the Random Priority Rule by characterizing ordinal e�ciency in random assignment problems with

few objects. The results are generalized by provided methods to obtain smaller problems from any

random assignment problem while preserving ordinal e�ciency under the Random Priority Rule, and

where the methods do not yield small enough problems I provide an algorithm that characterizes ordinal

e�ciency.

Keywords: The random assignment problem, the Random Priority rule, ordinal e�ciency



Özet

Rastgele tayin problemi belli bir say�da objenin e³it say�daki ekonomik bireye verilmesini i³ler. Bu

problem için yayg�nca kullan�lan bir çözüm, Rastgele Öncelik Kural�, streteji-geçirmez, ex-post verimlidir

ve e³ite e³it davran�r. Ancak, Rastgele Öncelik Kural� üçten fazla birey oldu§u durumlarda ordinal

verimlili§i sa§lamay� garanti edemez. Rastgele tayin problemlerinde ordinal verimlili§i karakterize ederek,

az say�da obje bulundu§u durumlar için Rastgele Tayin Kural�'n�n ordinal verimli olmas� için gerekli

ve yeterli ko³ular� öne sürüyorum. Sonras�nda bu elde etti§imiz sonuçlar� genellemek için methodlar

olu³turuyorum ve genellemenin eri³emedi§i durumlar için de ordinal verimlili§i karakterize eden bir

algoritma öne sürüyorum.

Anahtar Kelimeler: Rastgele tayin problemi, Rastgele Öncelik Kural�, ordinal verimlilik
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1 Introduction

I consider the problem of assigning n objects to n agents where each agent may have di�ering preferences

over objects. This is called the random assignment problem or simply referred to hereafter as problem.

This problem is usually encountered in assignments where fairness is crucial and monetary transfers

are not allowed, such as assignments of dorms to college students or public housing to applicants. One

solution to this problem is the Random Priority Rule (Abdulkadiro§lu and Sönmez (1998)). The rule is

applied by randomly selecting an ordering of agents and letting them take turns according to that order.

The agent in turn chooses their most preferred object among the remaining ones. The chosen object

is then assigned to the agent and removed from the pool of remaining objects. The process ends when

all agents have taken turns, or there are no objects remaining. This solution leads to ex-post e�cient

outcomes, where any trade that makes an agent better o� will make at least one agent worse o�.

Another solution, the Probabilistic Serial Rule is favored in some situations as it satis�es ordinal

e�ciency, which is a stronger than ex-post e�ciency and ensures no trade can make an agent better

o� while not making some agent worse o�, even when agents are allowed to trade the probabilities of

obtaining objects. However this solution is not strategy-proof, so some agents might be in a position where

misreporting their preferences may lead to a better outcome for them. The lack of strategy-proofness has

an impact on fairness when the agents have varying levels of information (Abdulkadiroglu et al. (2006)).

Being strategy-proof is a desirable property where random assignments are being used to deliver equal

opportunities to agents coming from di�ering backgrounds.

The Random Priority (RP) Rule gives the agents a very strong incentive to report their preferences

truthfully by being strategy-proof. But in cases where e�ciency is considered to be important, not

satisfying ordinal e�ciency raises concerns. This can be mitigated by the fact that although the RP

Rule lacks ordinal e�ciency when considering all problems, the RP Rule is ordinally e�cient in some

domains of random allocation problems. One example of these domains is the domain with three objects

and three agents (Bogomolnaia and Moulin (2001)). By singling out the properties of such domains,

I derive more generalized requirements for ordinal e�ciency, or lack thereof. This leads to the full

characterization of ordinal e�ciency for problems involving two objects and any number of agents.

Following that, I further generalize our �ndings by devising methods to obtain problems with fewer

objects while not a�ecting the ordinal e�ciency of the RP Rule. A domain of problems that lends itself

to this is where the preferences of the agents is tiered, ie there are groups of objects where all agents have

consistent preferences between the groups, but have di�ering preferences inside the groups. However this

does not cover all possible preferences, so there is the need of developing more general methods. Thus

I devise other methods for obtaining problems with fewer objects such as deconstruction and reduction

which can be applied to almost all preferences. I show that both methods preserve ordinal e�ciency

and, thus, it is possible to characterize the notion for any problem at hand.
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Related Literature

Abdulkadiro§lu and Sönmez (1998) de�ne the Random Priority Rule and show that the rule is ex-post

e�cient. Another solution to the random assignment problem, the Probabilistic Serial (PS) Rule is

proposed by Bogomolnaia and Moulin (2001). The new solution lacks strategy-proofness but satis�es

the stronger notion of ordinal e�ciency. The Random Priority Rule is also shown to satisfy ordinal

e�ciency when the number of objects and agents are fewer than four. The two rules have been shown

to be asymptotically equivalent when objects have multiple copies and the ratio of agents to types of

objects increases (Che and Kojima (2010)).

Ordinal e�ciency in random assignments is studied in Abdulkadiro§lu and Sönmez (2003) by using

the ex-post e�ciency of lotteries. Restrictions on preference domains has been studied for inducing

strategy-proofness on the PS Rule (Liu (2017), Cho (2016)). Tiered preference structures have also been

studied regarding strategy-proofness in the PS Rule (Liu and Zeng (2017)).

2 The Model

Let O be a �nite set of objects and I a �nite set of agents with |O| = |I|. Fix the set of agents and

objects. For each agent i ∈ I, let �i be a preference relation which is complete, antisymmetric and

transitive. Let �= (�i)i∈I be a preference pro�le. An agent i ranks an object a k'th, or ri(a) = k if

the number of objects on such that on �i a equals k − 1. A random assignment problem (or simply

problem) is a triple (O, I,�).

An ex-post assignment, or assignment is an injective function µ : I ← O. A random con-

sumption is a probability distribution over objects. A random assignment is denoted by Q =
[
qia

]
,

where qia ∈ [0, 1] is the probability of agent i receiving object a and the i'th row Qi is agent i's random

consumption. A rule assigns a random assignment to each problem.

For a random assignment Q =
[
qia

]
and a preference pro�le �, De�ne the following binary relation:

τ(Q,�) = {(a, b) ∈ O ×O | ∃i ∈ I such that a �i b, qib > 0} (1)

For a pair of objects a, b ∈ O, τ(Q,�) contains an a − b cycle, or τ(Q �) is a − b cyclic if

(a, b), (b, a) ∈ τ(Q,�). τ(Q,�) is a − b acyclic if it is not a − b cyclic. τ(Q,�) is a-cyclic if for some

b, τ(Q,�) is a− b cyclic and τ(Q,�) is cyclic if for some a, τ(Q,�) is a-cyclic. τ(Q,�) is acyclic if it

is not cyclic.

A random assignment Q is ordinally e�cient for a problem (O, I,�) if τ(Q,�) is acyclic. An

assignment is ex-post e�cient for a problem (O, I,�) if τ(Q,�) is acyclic. A rule is ex-post e�cient

if for each problem, the resulting assignment µ is ex-post e�cient and it is ordinally e�cient if for each

problem, the resulting random assignment Q is ordinally e�cient. A rule is strategy-proof if truth

telling is a dominant strategy for the agents.

A rule commonly applied to random assignment problems is the Random Priority (RP) Rule

(Abdulkadiro§lu and Sönmez (1998)). This rule satis�es ex-post e�ciency and strategy-proofness. I

explain the rule in greater detail in the next section.
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2.1 The Random Priority Rule

For a problem (O, I,�), the RP Rule leads to an assignment by the following steps:

1. Draw an ordering of the agents in O in a uniformly random way.

2. Give turns to agents sequentially by following the drawn ordering.

3. In the �rst turn, the �rst agent picks their �rst ranked object. The chosen object is removed.

4. In the following turns, the agent who has the turn picks the �rst ranked object among the remaining

ones.

5. The sequence ends when either objects or the order runs out.

In order to illustrate the rule, consider following example: Let there be four objects a, b, c, d and

agents 1, 2, 3, 4 with the following preference domain:

a �1 b �1 c �1 d

a �2 b �2 c �2 d

b �3 a �3 d �3 c

b �4 a �4 d �4 c

(2)

For the algorithm, �rst we obtain an ordering of the agents. Let the ordering to be (2, 3, 1, 4). Then

the rule resolves as follows:

• Agent 2's turn: they pick their �rst ranked object a.

• Agent 3's turn: they pick their �rst ranked object b as it is still available.

• Agent 1's turn: Their �rst and second ranked objects a, b are removed but their third ranked object

c is available, thus they pick c.

• Agent 4's turn: Their �rst and second ranked objects are removed, so they pick their third ranked

object d.

The result is the following assignment : Agents 1, 2, 3, 4 obtain c, a, b, d respectively. Notice that

this assignment satis�es ex-post e�ciency. For the RP Rule, the random assignment is obtained by

exhausting the possible orderings that can be picked in the initial step and giving each ordering an equal

probability. For our example problem, the RP Rule gives the following random assignment Q:


5/12 1/12 5/12 1/12

5/12 1/12 5/12 1/12

1/12 5/12 1/12 5/12

1/12 5/12 1/12 5/12

 (3)

Agents 1 and 3 contribute (a, b) to τ(Q,�) and agents 2 and 4 contribute (b, a). See that the random

assignment is thus not ordinally e�cient. The RP Rule does not satisfy ordinal e�ciency in general,

but it assigns some problems to ordinally e�cient random assignments.

The RP Rule is also strategy-proof for each problem (Abdulkadiro§lu and Sönmez (1998)).

3



3 Characterizations of E�ciency

Our goal is to characterize the preference domain for which the RP Rule always gives an ordinally e�cient

random assignment. Let us �x a problem (O, I,�) and the random assignment Q given by the RP Rule

for (O, I,�). A preference domain is ordinally e�cient if for each preference pro�le in the preference

domain, Q is ordinally e�cient.

A trivial ordinally e�cient preference domain is such that for each i, j ∈ I, �i=�j . The preference

domain consists of a single preference pro�le up to all permutations of objects. The following result

provides a slight extension to this domain:

Proposition 1. Let a, b ∈ O and de�ne A = {i | a �i b}, B = {i | b �i a} = I − A. Then τ(Q,�) is

not a-b cyclic if |A| ≤ 1 or |B| ≤ 1.

Proof. Without loss of generality, assume |B| ≥ |A|. If |A| = 0, then for each i ∈ I, b �i a and τ(Q,�)

is trivially a− b acyclic.

Let |A| = 1 and i be the only agent with the preference a �i b. Thus, for j 6= i, b �j a. If i chooses

�rst or a is available when it is i's turn, they will never choose b instead of a. If a is chosen before the

turn gets to i, since b �j a for all agents j 6= i, b has to be chosen before i's turn. Thus, i cannot take b.

Since qib = 0, only (b, a) can be in τ(Q,�). Thus, τ(Q,�) cannot be a− b cyclic.

This proposition naturally extends to an alternative proof of the ordinal e�ciency of the RP Rule

when |I| ≤ 3. Since the condition in Proposition 1 is satis�ed in this case, the RP Rule is ordinally

e�cient.

Another result is obtained by applying the same steps in the previous allocation:

Proposition 2. Let a be an object and i be an agent. If qia is positive, then for each object b �i a, there

exists a unique agent jb with b �jb a.

Proof. Follows simply through the proof of Proposition 1.

To further examine ordinal e�ciency, construct a minimal preference domain which violates it: Let

a, b, c, d be objects with a 6= b, c 6= a, d 6= b (we allow c = b and d = a). Then the following preference

pro�le induces an a− b cyclic τ(Q,�):

a �1 b �1 . . .

b �2 a �2 . . .

a �3 c �3 . . .

b �4 d �4 . . .

(4)

τ(Q,�) has an a− b cycle if the following conditions are satis�ed:

1. Agents i1 and i2 disagree on their preferences over objects a and b, while there are no other objects

c that are preferred between those two (ie, a �i c �i b) for both of these agents.

2. For each object x ∈ {a, b}, there are two agents ranking object x �rst. Thus, each of these agents

is assigned to their second ranked object with positive probability.
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This can be stated as follows:

Remark 1. τ(Q,�) is a− b cyclic if both a and b are ranked �rst by at least two agents and for both a

and b, at least one of the agents who ranks one �rst ranks the other second.

This is a very speci�c preference domain that is not ordinally e�cient. But with further generalization

methods, we can apply this result to some pro�les where the structure is not immediately apparent. I

introduce such a method in the following section.

4 Tiered Preference Pro�les

To characterize larger domains, refer to the following de�nition.

De�nition 1. A preference pro�le � is tiered if there exists an ordered partition T = (T1, T2, ..., Tn) of

O such that for each agent i and object a ∈ Tm, b ∈ Tl, m < l implies a �i b. Each Ti ∈ T is a tier.

Note that every preference pro�le is tiered with a single tier trivially. When a preference pro�le has

n tiers, it is a member of a preference domain containing n! pro�les where each pro�le has the same

radom assignment under the RP Rule.

The aforementioned preference domain can be constructed starting from any tiered preference pro�le

it includes. To make it easier to deal with subsets of O, de�ne the following:

De�nition 2. Let ′O ⊆ O, I ′ ⊆ I, �(I ′, O′) be a preference pro�le such that for each a, b ∈ O′, a �i b

if and only if a�(I ′, O′)ib. Then �′ is a projection of � to the set O′.

Proposition 3. Let �,�′ be two tiered preference pro�les with tiers T and T ′. If T and T ′ are the

same partitions of O with a di�erent order and for each Tm ∈ T, T ′, �(Tm) = �′(Tm), then the random

assignments the RP Rule gives for the problems (O, I,�) and (O, I,�′) are equal.

Proof. This proof shows that there exists a bijection from the ex-post assignments of the problem (O, I,�)

to the assignments of the problem (O, I,�′).

In any ordering I# picked for the RP Rule in (O, I,�), the �rst |T1| picks will be from T1. Then the

next |T2| picks will be from T2 and so on due to the tiered pro�le.

Let cm = |Tm| and divide the ordering I# to n tiers:

from T1 from T2 . . . from Tn

p11, p
2
1, . . . , p

c1
1 , p12, p

2
2, . . . , p

c2
2 , . . . , p1n, p

2
n, . . . , p

cn
n

(5)

Here prm corresponds to the r'th pick from the m'th tier.

For I# see that the k'th pick pk corresponds to

pk = prm, where j = r +

m−1∑
j=1

cj (6)

This means for a set of tiers Tm with

Tm = {To | ∀i ∈ I, a ∈ To, b ∈ Tm =⇒ a �i b} (7)
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there exists the following relation:

pk = prm, where k = r +
∑

To∈Tm

|T | (8)

This fact leads to a natural mapping P ∗ : {1, ..., n} → {1, ..., n} from the picks of (O, I,�) to the

picks of (O, I,�′). For each pk ∈ I#, let

P ∗(pk) = prm, where k = r +
∑

To∈T ′
m

|T | (9)

given that

T ′m = {To | ∀i ∈ I, a ∈ To, b ∈ Tm =⇒ a �′i b} (10)

The ordering I ′# = {P ∗(pk)} results in the same assignment for the problem (O, I,�′) that I# results

in (O, I,�).

The �nal thing to do is to show P ∗ is a bijection. Because P ∗ maps a �nite domain to itself, being

an injection implies being a bijection. Let α, β be permutations over tier numbers (1 . . .m) and assume

that P ∗(α) = P ∗(β). By the de�nition of P ∗, α = β. Both the changes in orders within a tier and in

orders between tiers changes the resulting order.

Thus, P ∗ is injective and therefore bijective. Since each ordering in (O, I,�) is mapped to one

ordering in (O, I,�′), their random assignments are equal to one another.

By this proof, each tier is shown to be independent from each other under the RP Rule. This leads

to the following result.

Corollary 1. Let � be a tiered preference pro�le with tiers T = {T1, T2, ..., Tn} and Qm =
[
qmia

]
be the

random assignment given by the RP Rule for the problem (Tm, I,�(Tm)). Then,

Q =

n∑
m=1

Qm =
[∑n

m=1 q
m
ia

]
(11)

As ordinal e�ciency of a preference pro�le only depends on the random assignment, the equivalence

of the random assignments imply the equivalence of ordinal e�ciency. Thus, problems can be divided to

decrease the number of objects in our problem thanks to the tier structure:

Corollary 2. Let � be a tiered preference pro�le with tiers T = {T1, T2, ..., Tn}. Q is ordinally e�cient

if and only if each random assignment Qm given by the RP Rule for (Tm, I,�(Tm)) is ordinally e�cient.

Using tier structure, Remark 1 can be generalized to a larger preference domain:

Proposition 4. Let � be a tiered preference pro�le with tiers T = {T1, ..., Tn}. Q is not ordinally

e�cient if for any Tm ∈ T , the requirements of Remark 1 is satis�ed.

Proof. Follows directly from Corollary 2 and Remark 1.

This condition is clearly su�cient for ordinal ine�ciency, and it is also necessary for problems with

few objects:
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Proposition 5. Let � be tiered and Tm be a tier with |Tm| ≤ 2.

Then the random assignment Qm given by the RP Rule for (Tm, I,�(Tm)) is ordinally e�cient if

�(Tm) doesn't satisfy the conditions in Remark 1.

Proof. Let A = {i | a �i b}, B = {i | b �i a} = I−A and assume |B| ≤ |A| without loss of generalization.

If the tier has two objects and does not satisfy Remark 1's conditions, then there we will have |A| ≤ 1.

This is shown to be e�cient in Proposition 1.

5 Reduction Operation on Preference Pro�les

By Proposition 3, we have obtained a way to decrease the number of objects in some preference pro�les.

This is important because we can fully determine ordinal e�ciency by decreasing the number of objects

to two. Separating to tiers is useful, but it requires a special preference domain structure. Here we

introduce a method to decrease the number of objects in almost any preference domain.

Consider the following slight variation to the RP Rule: Instead of determining an ordering of the

agents �rst, we randomly select an agent at the start of each turn. This variation still produces the same

assignments with the same probabilities, thus it is equivalent to the RP Rule.

Using this variation, after the �rst turn we'll again be left with a problem that lacks one agent and

their �rst ranked object by the recursive nature of this rule. this will again be a problem. To establish

the new problem's relation with the initial problem, we de�ne it as an immediate subproblem:

De�nition 3. If ri(a) = 1, the following problem is an immediate subproblem of (O, I,�):

Dia(O, I,�) = (O − {a} , I − {i} ,�(O − {a} , I − {i})) (12)

For a problem; the immediate subproblems, the immediate subproblems of its immediate subprob-

lems and so on are the problem's subproblems.

The set of all immediate subproblems of a problem (O, I,�) is a decomposition

D(O, I,�) = {Dia | i ∈ I, a ∈ O, ri(a) = 1}

Thus, there are |I| immediate subproblems of a problem with each immediate subproblem having |I|−1

agents and |O| − 1 objects.

With the RP Rule, every agent has an equal chance of acting �rst and taking their �rst ranked object.

Using this fact, we write the random assignment of a problem as a sum of the random assignments of

its immediate subproblems.

Remark 2. Let D be the decomposition of (O, I,�), Qia the random assignment given by the RP Rule

for each Dia(O, I,�) ∈ D and Qf be a matrix with qfia = 1/|I| if ri(a) = 1 and 0 otherwise. Then,

Q = Qf +
1

|I|
∑
i∈I

Qia (13)

Being able to remove any object from the problem is useful due to Proposition 5, but with each

decomposition the number of subproblems increases combinatorially.
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We can mitigate this by assigning objects to agents simultaneously. For an object a, if we have two

agents i and j who rank a �rst, the decomposition includes both Dia(O, I,�) and Dja(O, I,�). This

means that both i and j can be assigned an object that is not a. By merging such similar subproblems,

we can avoid the combinatorial increase in numbers.

We propose reduction as a method of merging such subproblems. Unlike decomposition, we will need

to keep track of the objects we've removed and the agents who ranked the object �rst, because we want

to be able to obtain the subproblems by solely using the reduced form of the problem.

Before we de�ne it, as an example consider the following preference pro�le �:

a �1 b �1 c �1 d

a �2 b �2 c �2 d

b �3 a �3 d �3 c

b �4 a �4 d �4 c

(14)

If a is assigned �rst, then only agents 1 or 2 may have taken it. This corresponds to the immediate

subproblems obtained by applying D1a or D2a with the following preference pro�les:

b �2 c �2 d

b �3 d �3 c

b �4 d �4 c

b �1 c �1 d

b �3 d �3 c

b �4 d �4 c

(15)

Instead of dealing with these separately, we can merge them to a single preference pro�le. To keep

track of which subproblems we've merged, we use a merge set :

De�nition 4. For a ∈ O, the merge set of a collection of immediate subproblems which lack the same

object a, ie {Dia(O, I,�) | ri(a) = 1} is a set containing a tuple of the object a and the set of agents who

rank a �rst, ie {(a, {i | ri(a) = 1})}.

With a merge set {(a, {1, 2})}, the merged pro�le becomes:

b �1 c �1 d

b �2 c �2 d

b �3 d �3 c

b �4 d �4 c

(16)

This gives the preference pro�le of the reduction of (O, I,�) with the object a.

De�nition 5. Let Ia be the set of agents with ri(a) = 1, |Ia| > 2 and {(a, Ia)} the merge set of

{Dia(O, I,�) | i ∈ Ia}. Then the reduced problem obtained by removing the object a from (O, I,�) is a

quadruple (O − {a} , I,�(O − {a}), {(a, Ia)}), also denoted by Ra(O, I,�).

The merge set intuitively de�nes how to obtain the merged subproblems and subsequently which

ex-post assignments are possible. We say that the reduced problem induces those subproblems.

De�nition 6. Let (O′, I,�(O′), I∗) be a reduced problem, a ∈ O′ and Ia = {i | ri(a) = 1}. (O′, I,�(O′), I∗)

is reducible by an object a if for each i ∈ I, Ra(O
′, I,�(O′), I∗) induces a problem (O′−{a} , I ′,�(O′−

{a} , I ′)) with I ′ ⊆ I and i ∈ I ′.
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Reduction also be applied to reduced problems. To reduce a reduced problem which induces subproblems

Dia(O, I,�), we consider the decomposition of each Dia(O, I,�) and pick the subproblems that lack b.

This gives us the collection {DjbDia(O, I,�)} and subsequently the merge set {(a, Ia), (b, Ib)} where

Ia = {i | ri(a) = 1} and Ib = {i | ri(b) = 1 with respect to �(O′)}.

Reducing a reduced problem simply involves removing the related object from the reduced problem

and obtaining the related merge set.

In our example, the only object that can be assigned in the next turn is b, as all agents rank b �rst.

We add them to the merge set, which becomes {(a, {1, 2}), (b, {1, 2, 3, 4})}. The preference pro�le is

reduced to:
c �1 d

c �2 d

d �3 c

d �4 c

(17)

This pro�le only contains two objects and thus can be characterized as ordinally e�cient or not by

Proposition 5. This twice reduced problem corresponds to six subproblems of (O, I,�) and the ratio of

subproblems to reduced problems will increase with each reduction.

Note that in the merge set, for each agent i there should exist an ex-post assignment where agent i

is not assigned any object, so that the agent i is included in the induced subproblem. Thus not every

reduced problem is further reducible:

To avoid inspecting a large number of subproblems, we use the following equivalent condition on

reducibility :

De�nition 7. Let (O′, I,�(O′), I∗) be a reduced problem obtained by repeatedly reducing a problem

when it was possible, Or the set of reduced objects, a ∈ O′, and Ia the set of agents who rank a �rst.

Then, (O′, I,�(O′), I∗) is reducible by a if a is multi �rst ranked and for each agent i, the resulting

reduced problem induces a subproblem that includes i.

If we apply reduction to a reduced problem with multi �rst ranked objects but all of its induced

subproblems lack some agent i, that agent will not be able to obtain the objects that are not possibly

assigned to them in the merge set, or not ranked �rst. This gives way to the following result:

Proposition 6. For a problem (O, I,�) with i ∈ I and a ∈ O, qia > 0 if and only if there exists a

reduced problem (O′, I,�(O′), I∗) with ri(a) = 1.

Proof. Let qia > 0. Then there exists an ex-post assignment where i obtains a. Let the ordering of the

agents leading to this result be (j1, ..., jn, i, ...) with jk obtaining bk. If ri(a) = 1, then we're done. Else,

i ranks one of bk �rst. It is also clear that each jk rank one of bk �rst. Since there are n of bk and n+ 1

agents who rank one of bk �rst, at least one of bk should be multi �rst ranked. Thus, we can reduce the

problem and eliminate one of bk.

For the subsequent reductions, assume that the reduced problem is not reducible. So there exists a

collection of objects Ob that less than |Ob| + 1 agents can only obtain objects from Ob (withholding

further reductions). Even without those agents, the number of the remaining agents is still more than
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the number of remaining objects. Thus, the reduced problem must be further reducible when there is bk

with ri(bk) = 1. By repeatedly reducing, we �nd a reduced problem with ri(a) = 1.

Assume there exists a reduced problem with ri(a) = 1. Following the reduction sequence b1, ...bn,

create an ordering (j1, ..., jn, i, ...) with j1 ∈ Ib1 . Applying the RP Rule with this ordering results in an

ex-post assignment where i obtains a. Thus, qia > 0.

With this result, we can construct τ(Q,�) of a problem (O, I,�) using reduction without exact

knowledge of Q as τ(Q,�) only depends on whether each qia > 0 or not.

De�nition 8. We apply the Reduction Algorithm as follows:

1. Start with a problem (O, I,�) and Q+ = 0.

2. If the problem is not reducible, set q+ia = 1 for all i, a with ri(a) = 1 and end the algorithm.

3. Obtain reduced problems by applying reduction for each multiple �rst ranked object. Set q+ia = 1

if i ∈ Ia when applying Ra.

4. For each reduced problem, iterate the algorithm from step 2.

Due Proposition 6, this algorithm fully identi�es τ(Q,�) and ordinal e�ciency.
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