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Assoc. Prof. Dr. Emre Alper Yildirim

Prof. Dr. Necati Aras

Date:



Dedicated to my parents

iii



ABSTRACT

One aspect of better managing the port terminals is to efficiently allocate the

vessels to the berth locations which is referred to as Berth Allocation Problem (BAP).

In BAPs, one of the basic criteria is to decide what sequence of arriving vessels

minimizes the time spent in the terminal.

This study focuses on the berth allocation problem in dry bulk terminal, and

proposes a mixed integer linear programming model focusing on the partitioned BAP,

i.e. the total length of the quay is partitioned into several sections and to each section

only one vessel can be allocated at a specific time. We consider the allocation of

vessels to a location on a berth as well as the sequence, in which the vessels should be

handled in order to minimize the sum of arriving vessels’ completion times. In addition,

the effects of the tidal condition that happens periodically in the time horizon are

considered. At low tide, available depth of water is not adequate for the movement

of vessels. The vessel assigned to the berth location is therefore able to depart the

terminal only in the high tide periods. We also introduce three additional sets of

constraints and add them to the model to make it computationally more tractable.

Moreover, we develop two simple heuristic algorithms that enable us to obtain near

optimal solutions to the problem within a short computational time.

To better understand the performance of the proposed model and the heuristic

algorithms, we test them on instances generated based on the real data of a dry bulk

terminal. The computational results show that adding the additional constraints to the

model improves its performance both in terms of the running time and the optimality

gap. The results also show that our second heuristic algorithm outperforms the first

one in terms of the quality of final solutions. Furthermore, we compare the solutions

obtained by the proposed model with the solutions obtained by a continuous model
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proposed in the literature. According to the results, we conclude that both models are

strong and effective, and their applicability depends on the decision plans of the port

management. To reflect the importance of some parameters in the proposed model

and the heuristic algorithms, we apply sensitivity analysis to determine how different

values of some parameters affect the performance of the proposed model as well as the

heuristic algorithms.



ÖZETÇE

Yük terminallerinin daha iyi yönetilmesini sağlamanın bir yolu gemileri rıhtımlara

verimli bir şekilde atamaktır ve bu problem rıhtım atama problemi (RAP) olarak

adlandırılır. RAP’ın temel prensiplerinden biri gemilerin limanda geçirdiği zamanı

enazlayacak şekilde rıhtıma yanaşma sırasını belirlemektir.

Bu çalışmada kuru yük dökme terminallerinde rıhtım atama problemini ele almak-

tayız ve bölümlere ayrılmış (partitioned) RAP’a; şöyle ki, rıhtımın toplam uzunluğu

birkaç kısma ayrılmıştır, odaklanan bir karma tam sayılı doğrusal programlama mod-

eli sunulmaktadır. Limana yanaşan gemilerin elleçleme sürelerini enazlamak üzere

gemilerin rıhtımlara atanma konumlarının yanı sıra gemilerin rıhtımlarda elleçlenme

sıralamasını da ele almaktayız. Her bir t anında bir kısma yalnızca bir gemi atan-

abilmektedir. Buna ek olarak, periyodik olarak gerçekleşen gel-git koşullarının atama

problemine etkisi de göz önünde bulundurulmuştur. Suların alçak olduğu periyotta,

gemilerin hareketi için yeterli su derinliği bulunmamaktadır. Buna bağlı olarak, rıhtıma

atanan gemiler ancak suların yükseldiği periyotlarda limandan ayrılabilirler. Ek olarak

üç kısıt seti sunduk ve bu kısıtları ekleyerek modelin izlenebilir bir sürede çözüme

ulaşmasını sağladık. Bunun yanı sıra, eniyi çözüme kısa bir süre içinde yakınsayan

sonuçlar elde eden iki basit sezgisel algoritma geliştirdik.

Performanslarını daha iyi ölçebilmek adına önerilen modelleri bir kuru dökme yük

terminalinden elde edilen veriler ile oluşturulan örneklerle test ettik. Sayısal sonuçların

ışığında ek kısıtların model performansını çözüm süresi ve çözüm kalitesi açısından

iyileştirdiği görülmüştür. Ayrıca sonuçlar ikinci sezgisel algoritmamızın birinciyi çözüm

kalitesi bakımından geçtiğini göstermektedir. Bunlara ek olarak, sunduğumuz model

çözümlerini literatürde var olan sürekli RAP modeli ile karşılaştırdık. Sonuçlara göre,

her iki modelin de güçlü ve etkili olduğunu, uygulanabilirliğinin liman yönetiminin
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kararlarına bağlı olduğunu söyleyebiliriz. Sunulan modeldeki ve sezgisel algoritmalar-

daki değişkenlerin önemini yansıtması açısından ve farklı değerler alan değişkenlerin

modelin ve sezgisel algoritmanın performansları üzerindeki etkisini gözlemlemek için

duyarlılık analizi gerçekleştirdik.
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at Koç University. She has not only provided me her professional expertise, valuable

guidance and the financial support I needed to complete my M.S. studies but also

been a real friend and a true mentor. I feel extremely fortunate to work with her. I

learned a lot from her, and I am very grateful to have her as my advisor.

I am also very grateful to Prof. Emre Alper Yildirim. He was always enthusiastic

to share our problems and to find a better attitude. I certainly believe that his ideas

upgraded my thesis. I am indebted to other members of my dissertation committee:

Prof. Necati Aras for willingly accepting to be a member of my committee and to read

and review this thesis.

I recognize that the whole research through my master studies would not have

been possible without the financial support of TÜBİTAK.
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Chapter 1

INTRODUCTION

The last decade of the 20th century witnessed significant growth in worldwide

maritime transportation. This steady increase in international maritime traffic has led

to changes in the business of ocean transports and terminal operators. International

shipping lines connect countries, markets, businesses and people by allowing them to

buy and sell goods in large scale. The maritime transportation industry has developed

in recent decades, and now is one of the efficient modes of transporting goods. Because

of that, carriers face with higher and higher shipping demands. In order to satisfy

high shipping demands, larger vessels have been built. A single large transport vessel

may carry a large number of goods. It may require hundreds of freight aircraft, miles

of rail cars, and fleets of trucks to carry the same amount of goods that can fit with

the capacity of one large vessel. So, it is one of the cheapest ways of transporting

large amounts of goods compared to other transportation methods. Thus, by utilizing

maritime transportation, consumer costs are kept down and industrial efficiency is

improved. However, beside costs, available services to traders and vessels as well

as service quality, concerning speed, reliability, safety and security are of increasing

significance in the context of globalized transportation processes.

In maritime transportation, ports are zones between two geographical interfaces

- the quayside and landside. The quayside is introduced as a place for loading and

unloading of vessels. The landside is related to the port’s region and locality. It is

available to support maritime access, e.g. the place where cargoes are accommodated.

The design and the facilities used in the quayside and the landside depending on the

type of port terminals are different from each other. The terminals can be classified
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into two groups: container terminals, in which all cargo is packed into containers, and

bulk port terminals, which contains bulk cargoes, mostly in loose forms.

The remainder of the chapter is organized as follows: Container terminal, dry bulk

terminal and their differences are discussed in Sections 1.1, 1.2 and 1.3, respectively.

In Section 1.4, berth allocation problems are discussed in detail. Finally, the outline

of the thesis is given in Section 1.5.

1.1 Container Terminal

A container terminal is the zone of the port where vessels dock on a berth and

containers are loaded, unloaded and stored in a buffer area called yard. The terminal

can be divided into three areas: the quayside, the yard and the gate. Figure 1.1,

taken from Buhrkal et al. [1], illustrates a container terminal, where we can identify

the quayside in the upper part of the picture, the yard in the middle part and the

gate in the bottom part. The quay is an interface of landing place into the water to

facilitate the loading and unloading of cargo. The locations where mooring can take

place are called berths. In the berth, there are cranes to pick up the containers carried

by vessels. In the land, there are some trucks and trains to move the container from

stock yards to quay part. In the container terminal, a yard connects the landside to

the quayside, and provides space for shipment and storage. Mainly, container terminal

operations can be grouped into four major classes that are associated with specific

processes and stages in the material flow:

• Berth Allocation Problems: The decisions on assigning vessels to the berth

locations are associated with the vessel arrival. When a vessel arrives in a

seaport, first, it has to be moored in the quayside for loading and unloading

over a time period. For this purpose, a number of berths are available at port

terminals. A berth is a quay location, equipped with one or more quay cranes.

It is usual to say that a berth may accommodate one vessel at a time.
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Figure 1.1: A typical container terminal layout (Buhrkal et al. [1])

The vessels arriving to the berth locations have different length and width, so

the number and the length of berths at a port terminal are the most important

strategic decisions that must be made at the strategic level. A schematic

representation of a vessel berthing is provided in Figure 1.2. Vessel is scheduled

over time (x-axis) according to its expected handling time and assigned to the

berthing position on a quay (y-axis) according to its length.

• Quay crane allocation and scheduling: These decisions are associated with

the loading and the unloading operations to and from the vessels. The objective

of the quay crane allocation problem is to assign quay cranes to the vessels that

must be operated over the time horizon efficiently.
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Figure 1.2: A schematic representation of the allocation of vessel in the berth-time
space

• Transfer operations: Decisions related to transfer operations are usually made

inside the container terminal. Transferring is carried out by internal trucks or

automated vehicles. Objective functions are to minimize the total distance

traveled to complete the tasks or to minimize the total operations delay.

• Yard operations decisions: These decisions are associated with the stock

and storage part. The management of yard operations involves several decision

problems. The yard allocation problem refers to the design of storage policies

according to the containers.

1.2 Dry Bulk Terminal

Dry Bulk Terminals (DBT) are used all around the world to handle large quantities of

bulk materials. Due to the high demand for energy and mineral resources, many DBTs
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are expanding and increasing their capacity. DBTs are used worldwide as a buffer

between either international or intercontinental transportation and inland or domestic

transportation or other ways. DBTs essentially operate with dry bulk materials that

are shipped in large and unpackaged amounts. This kind of materials are usually

classified into two categories; major bulks and minor bulks. Some examples of major

dry bulk materials include coal, ore and iron. Minor bulks include grain, steel, plastic

and cements.

There are two types of dry bulk terminals: export or import terminals. Unlike other

types of terminals (e.g. container terminals, general cargo terminals), for DBTs it is

important to distinguish if they are export or import terminals. In exporting terminal

the main decision is to load the incoming vessels, while in importing terminals, the

objective is to unload the loaded vessels. Because of the differences in objectives, the

design of an export bulk terminal is different from an import bulk terminal. Export

terminals are often located closer to the sources of bulk materials to make the shipment

of bulk material easier. Import terminals need to fit services in both the waterside

and landside. Unlike export terminals, import terminals usually handle multiple types

of bulk materials. So the complexity of waterside and landside services will be higher

in import terminals. Figure 1.3 schematically shows the layout of a typical dry bulk

terminal. This figure shows dry bulk materials that are being exported from the

terminal of the port. Vessels are loaded using either conveyor or pipelines. Silos or

stockpiles for the embedding of bulk cargo are situated alongside the quay.

The terminal should have a balanced system to allow continuous flow with some

spare capacity. Inflow and outflow rates define the need for storage. To construct

a balanced system for dry bulk terminals, it is of great significance to know their

characteristics. In the next section, we discuss the characteristics of dry bulk terminals

in more details.
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Figure 1.3: A typical configuration for a dry bulk terminal

1.2.1 Characteristics of Dry Bulk Terminals

The dry bulk terminals can be analyzed in three parts to define their characteristics:

seaside, stockyard and land side. The main focus of the dry bulk terminals is on the

decision problems that usually originate between the seaside and the landside.

• Seaside: In dry bulk terminals, seaside is referred to the location that connects

the sea part to the land part. Quay has a significant role in this connection. The

quayside is introduced as a place for loading and unloading of vessels. When

vessels arrive to the port, they enter in the harbor and wait for mooring at the

quay. The locations, where mooring can take place, are called berths. It is usual

to say that a berth may accommodate one vessel at a time. Since, vessels have

direct connection with berth locations, the vessels’ loader or unloader, pipelines
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and conveyors are located in berths. So, the main decisions at seaside focus on

the allocation of the vessels to the berth locations. Consequently, design of a

seaside in dry bulk terminal incorporates the quay length, the selection of the

number and capacity of vessels’ loading or unloading machines and connecting

quay conveyors. Figure 1.4 shows bulk vessels that are loaded in the berth

location.

Figure 1.4: Bulk vessels are loaded

Berthing of vessels with significant drafts can be limited by the water depth

alongside the quay. One specific characteristic of dry bulk terminals is the

existence of tides. Tide means the change of water levels in seaside. The tides

in the port area generally happen daily, that is the occurrence of one high and

one low water depth every day. The tidal effect, which is quite typical, causes

transportation companies to face with big challenges in berth planning. For

instance, in export terminals the decision of when the loaded vessels with heavy

weight depart the terminal, considering water depth has significant importance.

At low tide, available depth is not adequate for the movement of vessels. On

the other hand, in import terminals under tidal condition, even when a berth
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position is available, vessels may need to wait for mooring. Hence, the water

depth should be considered in the design of seaside as well.

• Stockyard: The dry bulk supply chains typically include a number of trans-

portation processes which are separated by buffer storage facilities located at dry

bulk terminals in ports. These buffers are essential for absorbing unavoidable

differences between incoming and outgoing flows of bulk materials (Lodewijks et

al. [2]). Due to the large volumes of coal, iron and ore and the possibility to store

these dry bulk materials in open air, stockyards are generally used. In other

words, bulk materials are stacked onto and reclaimed from piles at the stock-

yard. Piles are sprayed with mixtures of water and wax-containing substances

to accelerate crust formation on stockpile surfaces and to avoid wind erosion.

Common machines installed at stockyards are dual-purpose stacker-reclaimers

or single-purpose stackers and reclaimers. Stacker-reclaimers combine the two

functions of stacking and reclaiming into a single unit. Stockyard sizing is

crucial during the design of dry bulk terminals. An undersized stockyard results

in excessive vessel waiting times and forces terminal operators to pay penalty

costs. An oversized stockyard prevents the recovery of the huge investment costs.

Figure 1.5 shows an example of a stockyard where dry bulk materials are stored

in separated piles on several stockyard lanes.

• Landside: In dry bulk terminals, landside is the place where bulk materials are

delivered or exported. Figure 1.6 shows a schematic representation of landside

connections. Based on the type of bulk port terminals - exporting or importing -

the connections are different. For example, for the transport of bulk materials

from mines to export terminals, there are a number of empty locomotives and

rail-cars, which are in line at rail yards in ports. Rail-cars pass and arrive at

specified mines, load the material, return to the port and unload at the export

terminal, where the material is stacked in stockpiles. The shipment can start

after all required materials are stacked. Whereas for
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Figure 1.5: A stockyard with lanes and separated piles

import terminals, orders are received from industrial clients to deliver material

at a predefined time to their facilities. In fact, the train’s journey time is defined

and determined in consultation with terminal operators on the time when rail-

cars must be loaded. Just before the loading time, the empty rail-cars are railed

from the yard to the terminal. After loading, the train is railed to the industrial

client, unloaded and returned to the yard.

Figure 1.6: Transport between the terminal’s landside, mines and industrial clients
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In general, The landside design is limited by the determination of the number and the

capacity of the loading and the unloading machines as well as their locations at the

terminal.

1.3 Dry Bulk Terminals vs Container Terminals

To compare the container and the dry bulk terminals briefly, packed cargoes along with

shipping containers are handled in container terminals and subsequently specialized

equipments, e.g. cranes and trucks, are used to load, to unload and to store cargoes

in the terminal. On the other hand, dry bulk terminals handle products like coal,

iron, ore, grain and cement in the unpacked and bulk form. Dry bulk terminals

have specialized equipments, e.g. stackers and reclaimers, for loading, unloading and

shipping of bulk materials. Most bulk terminals have a singular direction of the cargo

movement - they are either import or export. This is almost true for the “big four”

bulk cargoes - coal, iron, ore and grain. Besides, one of the common features of the

dry bulk terminals is the significance of tide in the seaside of the terminal that is

uncommon in container terminals and considerably changes the structures of terminals.

Despite the similarities between dry bulk terminal and container terminals, some

fundamental differences implicate them to be designed and considered separately. So,

it is rarely seen one terminal serving both types of cargo, for container terminal and

dry bulk terminal.

To meet the growing global demand for energy and steel, the seaborne trade flows

for coal, iron and ore will have to increase. Despite the expected increase of the

maritime transportation for bulk commodities, the main focus in the field of port

logistics is on container terminals and bulk port terminals receive less attention than

they deserve. In this research, we address an exporting bulk terminal, which is covered

by major dry bulk materials. As mentioned, to realize the realistic design of the dry

bulk terminals, specifically the seaside, assignment of vessels to the berth location is

of strategic importance. Therefore, in this study, we focus on the berth allocation

problem in dry bulk terminal which is one of the main decisions at the seaside of the



Chapter 1: Introduction 11

dry bulk terminals. In the next part, we explain berth allocation problem as well as

its characteristics.

1.4 Berth Allocation Problems

The scope of this study is restricted to the Berth Allocation Problem (BAP) at the dry

bulk terminals. The berth allocation problem is the problem of assigning vessels to

positions on the quayside in a terminal such that the performance of a port terminal

system is optimized. Managing the allocation of arriving vessels to the berth location

is important in terminals, since bad decisions related to allocating vessels to the berth

location can cause unnecessary waiting times in vessels’ processing. The berth is a

bottleneck resource for determining the overall capacity of the port terminal because

the cost of constructing a berth is very high compared to other terminal facilities.

As the operations of berth directly affect the overall operations of the terminal, the

operational level decision of allocating vessels to the berth space is critical. BAPs

are typically divided into three main versions: in continuous locations, in discrete

locations and in partitioned locations which are described in the following subsections.

1.4.1 Continuous BAPs

In continuous BAPs, the quay is considered as a continuous line and each vessel can

be moored at any place along the quay with respect to the non-overlapping constraint.

Non-overlapping constraint ensures that there is no intersection between the location

space of any two vessels allocated simultaneously.

Figure 1.7: A schematic representation of continuous BAP
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Figure 1.7 demonstrates a simple example of the continuous BAP where vessels are

allocated along the quay. In this case the only thing that may restrict the assignment

of vessels is the non-overlapping constraint.

1.4.2 Discrete BAPs

The berth allocation problem in discrete location considers the quay as a finite set of

berths. In discrete case, it is assumed that a quay, which is represented as a continuous

line, is discretized into several berths with same and fixed lengths, and only one

vessel can be allocated to a berth at a specific time. Figure 1.8 provides a simple

representation of the BAP with discrete structure. Vessels arrive to the terminal for

mooring. There are three discrete berths located at the terminal. Only one vessel can

be moored to each berth at a time even if the berth appears to have enough space

for more than one vessel. For example, even if there exist more than one vessels that

are short enough to moor simultaneously at berth, due to the discrete BAP structure,

they must be assigned to another berth location.

Figure 1.8: A schematic representation of discrete BAP

1.4.3 Partitioned BAPs

In partitioned BAP, the quay, which is represented as a continuous line, is partitioned

into several sections and at each section only one vessel can be allocated at a specific

time. Figure 1.9 provides a simple representation of the BAP with partitioned structure.

Vessels arrive to the terminal for mooring, simultaneously as usual. There are separated

sections such as Section 1, Section 2 and Section 3 located at the terminal as depicted

in Figure 1.9. Only one vessel can be moored at one section at any time.
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Figure 1.9: A schematic representation of partitioned BAP

One of the particular layout of partitioned BAP is called “hybrid” BAP. In hybrid

layout, the quay is partitioned into several sections like partitioned BAP, but a large

vessel can be moored in more than one section, and small vessels can share one

section at a time. It is also worth mentioning that discrete BAP is a special case

of partitioned BAP in which the quay is segmented into several unit-length sections.

Since the partitioned BAP discretizes the quay into several sections with different

lengths instead of several berths of unit length, it brings more flexibility to the model in

comparison with discrete BAP. In other words, the partitioned BAP is a generalization

of the discrete BAP and subsequently provides better quay utilization.

As mentioned above, in partitioned layout, there is a finite set of sections where

each section can accommodate only one vessel at a time. With these layouts, the

BAP is treated as a parallel machine scheduling problem, where a vessel is treated

as a job and a section as a machine. On the other hand, continuous BAP allows the

vessels to place anywhere along the quay. To compare these two layouts, continuous

BAP provides more freedom in the decision of assigning vessels to berthing positions.

However, solving continuous BAP is typically harder than partitioned one.

1.5 Outline of the Thesis

This study concentrates on the partitioned version of exporting BAPs in dry bulk

terminals. As mentioned before, in partitioned version, we separate the total length of

the quay into several sections and only one vessel can be allocated to each section at

a specific time. The manner that sections are defined along the quay is critical. So,
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the partitioning should be applied in a rational way. For example, the interval of the

lower bound and the upper bound of sections’ length should be respectively between

the smallest length of vessel and the largest one.

In this study, we also consider the tidal condition as commonly occur in dry

bulk terminals. Figure 1.10 represents a schematic example of partitioned BAP in

an exporting dry bulk terminal. Vessels are scheduled over time (horizontal axis)

according to their handling times and assigned to the sections (vertical axis) according

to their lengths. The blue vertical bars show high tide periods that happen periodically

in time horizon. Boxes represent the exact location as well as handling time of each

vessel in the allocation. The right hand side of boxes should place in high tide bars

which means that the vessels departure time coincide with the high tide periods.

Figure 1.10: Assignment of vessels in a partitioned berth location with tidal conditions

We model our berth allocation problem mathematically with respect to all assump-

tions made related to the practical berth allocation situations in dry bulk terminals.

The aim of our problem is to minimize the total completion time of vessels. A brief
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outline of this study is as follows:

• In Chapter 2, we present a survey of relevant literature that review various

BAPs. In this review, all previous studies are classified into four main sections:

1. Discrete BAP, 2. Continuous BAP, 3. Hybrid BAP, and 4. Integrated BAP.

• In Chapter 3, first we define the problem formally. Next, we model the berth

allocation problem mathematically under the partitioned berth structures. The

model consists of various constraints with respect to all assumptions made

related to the berth allocation situations in dry bulk terminals (i.e. existence

of tidal periods in dry bulk terminals). The objective is to minimize the total

completion time of vessels. Afterwards, we add three additional constraints

to the mathematical model to obtain tighter upper bounds. In the rest of the

chapter, two simple heuristic algorithms are used (greedy algorithm 1 and greedy

algorithm 2) to obtain a feasible solution as an upper bound for the problem.

• In Chapter 4, comprehensive computational results are presented to determine

the performance of the proposed models. The instances used in the computa-

tional experiments are generated based on the real data of a dry bulk terminal

in Newcastle, Australia. We present the computational results of proposed

model without and with additional constraints. Then, the comparison results of

proposed model with the continuous model are given. Two heuristic algorithms

are compared with each other, as well. Finally, the effects of some parameters

on the performance of proposed model and heuristic algorithm are investigated.

• In Chapter 5, a conclusion for the entire thesis is provided to present the

contributions, limitations and the future directions of this research.
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Chapter 2

LITERATURE REVIEW

In this chapter we review the literature on berth allocation problem (BAP). Several

berth allocation problems are proposed in the literature to cover different statements

appear in ports. Most of the papers about berth allocation problems focus on the

problem of allocating vessels to the quay location, where the objective is to obtain a

non-overlapping berth plan for the vessels arriving to berth location.

Despite significant contributions on container terminals, relatively little effort has

been devoted to dry bulk terminals. In spite of some similarities between dry bulk

terminals and container terminals, which may enable us to apply possible analogies to

dry bulk terminals by considering the container terminals, in general, there are some

fundamental differences, e.g. existence of tidal constraint in dry bulk terminals which

necessitate them to be considered separately.

To make a better comparison, we classify the related BAP studies according to the

berth layout and investigate them one by one. On this basis, berth allocation studies

can be classified as discrete BAP, continuous BAP, hybrid BAP and integrated BAP.

In discrete BAP, the quayside is divided into sections of equal size. Each section is

called a berth and at most one vessel can be assigned to a berth location at a time.

In continuous BAP, the quay itself is considered as a single berth and hence it is

possible to allocate more than one vessel simultaneously. In the hybrid case, the quay

is partitioned into several sections, but a large vessel can be moored in more than one

section at a time. The integrated problem consists of two tactical decision problems

of berth allocation and yard assignment which are strongly relevant to each other in

real world. The yard assignment problem refers to decisions that concern the storage

location of materials. The integration differs for various types of decisions related to
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yard design: BAP integrated with Quay Crane Scheduling Problem (QCSP) and BAP

integrated with yard assignment problem.

2.1 Discrete BAP

One of the early works that appeared in the literature is by Lai and Shih [3]. The

authors propose a heuristic algorithm considering first-come-first-served rule for berth

allocation problems. Their problem and algorithm are considered in discrete space.

They use simulation models to evaluate different berthing policies. Through a simula-

tion experiment three berth-allocation rules for container vessels are compared. The

numerical results indicate that different policies may be used for different vessel arrival

patterns.

Imai et al. [4] develop the discrete location version of the berth allocation problem

in container terminals. They conclude that in order to achieve high port productivity,

an optimal set of vessel assignments should be found without considering the first-

come-first-served rule. However, this may result in some vessels being dissatisfied

with the order of service. In order to deal with the two criteria to evaluate, i.e. berth

performance and dissatisfaction on order of service, they present an heuristic algorithm

to find a set of non-inferior solutions while maximizing the former and minimizing

the latter. The algorithm is demonstrated with some sample problems and the results

indicate the importance of the problem in efficient terminal utilization.

Imai et al. ( [5], [6]) extend the static version of the BAP to a dynamic version.

In their study dynamic treatment is similar to the static treatment, but with the

difference that some vessels arrive while work is in progress. They present a Mixed

Integer Programming (MIP) model for their problem. Due to the difficulty in finding

an exact solution, they also develop a heuristic by using a subgradient method with

Lagrangian relaxation. Their computational experiments indicate that the proposed

algorithm is applicable to the container terminals.

Imai et al. [7] extend the BAP of Imai et al. [5] to treat the vessels with different

handling time. They assume that a vessels’ handling time depends on its quay location,
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that means different locations have a specific speed rate for loading and unloading

of vessels. They modify the formulation with the objective of minimizing the total

handling time of vessels.

Monaco and Sammarra [8] give a more compact formulation in comparison with

Imai et al. [5]. They study the discrete dynamic berth allocation problem. In their

paper the term of dynamic means vessels can arrive to the berth location after

handling the assignment in planning time. They analyze the model described in Imai

et al. [5] to derive a new mathematical formulation which uses fewer variables as well

as constraints and is stronger than the previous one. They also present a heuristic

algorithm for solving the new model based on a Lagrangian relaxation. The results of

the computational experiments show the efficiency of their algorithm.

Hansen et al. [9] present a minimum cost berth allocation problem, which is an

extension of Imai et al.’s [7] model. Extensions are as follows: Instead of considering

just handling times, they consider for both each vessel and berth a handling time and

a handling cost, respectively. In addition to an arrival time or release time, a due time

or due date is specified for each vessel.

Cordeau et al. [10] present a tabu search algorithm for solving the berth allocation

problem. The study is based on data from a container terminal in Gioia Tauro. They

introduce a new model for the discrete version of the berth allocation problems. Their

tabu search algorithm is based on their proposed BAP model and can only solve small-

and medium-size instances, optimally. They extend the algorithm to the continuous

case to solve the large-size problems. It should be noted that, their mathematical

model is in discrete location; however, they develop tabu search heuristics for both

discrete and continuous cases.

One of the main assumptions made in the berth allocation problems relates to tidal

constraints. The tidal constraint as the restriction that certifies the water depth of the

berth must be deep enough to situate the vessel, is added to the model assumption.

Xu et al. [11] exploit the assignment of vessels to the berths limited by the physical

condition of water depth in discrete environment. They model their problem as
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a parallel-machine scheduling problem, where the time horizon is divided into two

periods: a low-water period and a high-water period. They consider both the static

and dynamic cases of the problem, and present different solution methods for them.

Lorenzoni et al. [12] discuss a problem of arriving vessel within agreed time limits

at a port under the condition of the first-come-first-served order. The authors include

the tidal conditions in the port, which can restrict the port entrance to vessels at

certain time intervals. They illustrate the implementation by computational tests with

data generated base on the characteristics of a real port environment.

More recently, Barros et al. [13] consider the berth allocation problem for the

positions of vessels in tidal bulk port terminals. In their study, available depth at

low tide is not adequate for the movement of vessels, so draft conditions depend

on high tide periods. They present an integer linear programming model based on

the transportation problem as well as Simulated Annealing-based algorithm (SA) to

represent the berth allocation problem in tidal bulk ports with stock level conditions.

Stock level constraints are important for some dry bulk materials such as minerals

because the stock level sometimes depends on a continuous process of consumption

or production of minerals. Hence, the decision to load or to unload the vessels must

consider the amount of the bulk cargo stored in the port yards. Therefore, a basic

criterion for decision making is to give priority to the vessels related to the most

critical mineral stock level. Problem instances are solved by a commercial solver and

by a simulated annealing-based algorithm. The SA becomes a valid alternative for

finding out good solutions for difficult instances.

2.2 Continuous BAP

Kim and Moon [14] develop an MIP model for the continuous BAP to determine the

berthing times and positions of containerships in container terminals. A simulated

annealing algorithm is also applied to the berth-scheduling problem to find near-

optimal solutions. Experimental results show that the simulated annealing algorithm

obtains solutions that are similar to the optimal solutions found by the MIP model.
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The static continuous BAP is considered by Li et al. [15]. This paper addresses the

problem of determining the berthing position and time of each vessel at a container

terminal. The objective of the problem is to minimize the sum of the handling time,

the waiting time and the delay time for every vessel. They introduce a formulation for

the berth allocation problem. Next, they combine genetic algorithm with a heuristic

to find an approximate solution to the problem. Computational experiments show

that the proposed approaches are applicable to solve the problem.

Guan and Cheung [16] consider continuous dynamic BAP with fixed handling times

to minimize the total weighted port service time of vessels. They differentiate the

vessels in the objective function based on their importance and subsequently proposed

two MILP models. One of the MILP models is similar to the model proposed by Kim

and Moon [14] and the other MILP is used to obtain a lower bound.

The continuous BAP with handling times depending on berthing positions is

studied by Imai et al. [17]. They present the continuous berth allocation problem to

minimize the total service time of vessels. They also present a heuristic for the berth

allocation problem which solves the problem in two stages, by improving the solution

for the discrete case. A wide variety of experiments are conducted and the results

show that the heuristic works well in practice.

Chang et al. [18] consider a BAP which requires the determination of exact berthing

times and positions of incoming vessels in a container port. The problem is solved by

optimizing the berth schedule to minimize concurrently three objectives of makespan,

waiting time, and degree of deviation from a predetermined priority schedule. They

propose a multi-objective evolutionary algorithm for solving the multi-objective BAP.

2.3 Hybrid BAP

Moorthy and Teo [19] investigate the hybrid berth allocation problem with fixed

handling time. In their study, a container terminal is divided into a number of

berthing space in a line, which are further subdivided into sections that vessels need

more than one section to be moored. The goal is to identify the impact of vessel delays.
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The processing of vessels are considered as activities and represented in a precedence

graph which is analyzed using the project evaluation review technique. The dynamic

hybrid BAP with position-dependent handling times is studied by Imai et al. [20]

for indented berths. They model their problem in hybrid location space with integer

linear programming formulation to minimize the delay in handling time of vessels.

Draft restrictions in dynamic hybrid BAP are considered by Nishimura et al. [21].

In their study, up to two vessels can be served at the same berth simultaneously if

their total length is less than the overall berth length. To obtain a good solution with

considerably small computational effort, they develop a heuristic procedure based on

the Lagrangian relaxation of the original problem. They conduct a large amount of

computational experiments which show that the proposed algorithm is adaptable to

real world applications.

Umang et al. [22] study the hybrid berth allocation problem in bulk ports with

the objective to minimize the total service times of the vessels. They discretize the

quay into a set of sections. In their berthing assignment, the vessel may occupy more

than one section, however a section cannot be occupied by more than one vessel

or part of a vessel at any time. They propose two exact methods based on mixed

integer programming and generalized set partitioning problem. Due to the difficulty

of the problem, they propose a heuristic method based on squeaky wheel optimization

for solving the BAP. The formulations are compared through extensive numerical

experiments based on instances inspired from real bulk port data. The results indicate

that the set partitioning method and the heuristic method can be used to obtain

near-optimal solutions for even large size instances.

2.4 Integrated BAP

Since BAP is closely related to other operational decisions in a terminal, some studies

in the literature attempted to integrate BAP with some of these decisions.

Kim and Park [23] introduce a nonlinear integer programming model for BAP that

considers quay crane assignments as well. The quay is represented as a continuous line
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and the objective function is to minimize the sum of penalty terms over all vessels.

Cordeau et al. [24] discuss the service allocation problem at a container transship-

ment terminal based on Gioia Tauro port. They solve the version of Quay Crane

Scheduling Problem (QCSP) that is defined by Kim and Park [23]. Cordeau et al. [24]

integrate the continuous berth allocation problem with QCSP. The objective is to

minimize the container handling time inside the yard. There are two mathematical

formulations in the paper.

Liang et al. ( [25], [26]) introduce a formulation for the simultaneous berth and

quay crane scheduling problem. The objective of the problem is minimizing the

sum of the handling time, waiting time and the delay time for every vessel. They

propose a genetic algorithm approach with a priority-based encoding method to find

an approximate solution to the problem. Computational experiments show that the

proposed approaches are applicable to solve the problem.

Meisel and Bierwirth [27] describe the integrated problem of BAP and QCSP in

detail against the background of different terminal properties and objectives. A quay

crane allocation problem formulation is derived from a new classification scheme for the

berth allocation problems. Particular focus is put on integrated solution approaches

which have importance for the terminal management.

Blazewicz et al. [28] study the problem of allocating berths to incoming vessels and

assigning the necessary quay cranes to the vessels at a container terminal port. They

formulate the problem as the moldable task scheduling problem by considering the

tasks as vessels and processors as quay cranes assigned to the vessels. This observation

is based on the number of quay cranes allocated to a vessel. In other words, the

duration of a vessel in the berth location depends on the number of quay cranes

allocated to the vessel. In the model, the processing speed of a vessel is considered

to be a non-linear function of the number of quay crane allocated to it. Blazewicz

et al. [28] present a suboptimal algorithm that obtains a feasible solution for the

discrete version of the problem and employ computational experiments to evaluate

the performance of the algorithm. The computational results show that the behavior



Chapter 2: Literature Review 23

of the algorithm is very good.

Robenek et al. [29] study the integrated problem of berth allocation and yard

assignment in the context of bulk ports. The authors assume that a cargo type (in

their case liquid and dry bulk) is stored at its specific location. In their research,

two crucial optimization problems are studied. They discuss how these problems

are interrelated and can be combined and solved as a single large scale optimization

problem. More importantly they underline the differences in operations between bulk

ports and container terminals which highlights the need to devise specific solutions

for bulk ports. The objective is to minimize the total service time of vessels berthing

at the port. They propose an exact solution algorithm based on a branch and price

framework to solve the integrated problem.
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Chapter 3

BERTH ALLOCATION PROBLEM

In this chapter, the general version of partitioned BAP in an exporting dry bulk

terminal is considered in which the tidal condition is also investigated. We present

a mixed integer linear programming model for the problem which is based on the

sequence-variables and the objective is to minimize the vessels’ completion time.

The organization of this chapter is as follows: In Section 3.1 we give a definition for

the BAP with respect to all assumptions made related to the problem. In Section 3.2,

we introduce our Mixed Integer Linear Programming (MILP) model and formulations.

In Section 3.3, we introduce three sets of additional constraints to the proposed model

to tighten the formulation. Finally, in Section 3.4, we develop two simple heuristic

algorithms to obtain a feasible solution, which can be used as an upper bound for the

mathematical formulation.

3.1 Problem Definition

In this section, we discuss BAP problem to consider the question of how to allocate

vessels to a location on a berth and the sequence in which the vessels should be

processed in order to minimize the total completion time of vessels. In this problem,

the partitioned layout in which the quay is discretized into a set of sections, and tidal

constraints which separate the time horizon into high and low tide periods, are highly

potent.

Similar to Umang et al. [22] and Robenek et al. [29], we also consider the partitioned

version of BAP in which the quay is discretized into a set of sections of variable lengths.

Umang et al. [22] consider the BAP with hybrid berth layout, which is a particular

layout of partitioned BAP. In their berthing assignment, a given vessel may occupy



Chapter 3: Berth Allocation problem 25

more than one section; however, a section cannot be occupied by more than one vessel

at any time. Robenek et al. [29] extend this berth allocation problem to integrate it

with the yard assignment problem, which is much more complex and extensive than

the berth allocation problem studied in Umang et al. [22]. On the other hand, in our

berthing assignment, the arrival time of vessels is static and at each section only one

vessel can be allocated at a specific time.

In this problem, we consider the berthing area into two dimensions: vertical and

horizontal axes. The vertical axis is devoted to the length of the quay, which is

separated into several sections and the horizontal axis is devoted to time periods.

The incoming vessels to the berth location are considered as rectangles, where the

vertical length defines the length of the vessel, and the horizontal length defines the

handling time of the vessel. The decisions on placing a rectangle to a berth location

are associated with the vessel length and the section length. The vertical length of

the rectangle should meet the length of the section. By definition of partitioned BAP,

only one rectangle can be allocated to each section at a time. On the other hand, the

decisions on assigning a rectangle to the time horizon depend on the vessel arrival

time and its handling time. The left-hand side of the rectangle should meet the arrival

time of vessel. Hence, the right-hand side of the rectangle, which is the left-hand side

plus handling time, indicates the completion time of the vessel.

Regarding the tidal constraint, although Xu et al. [11] consider the BAP problem

with tidal effects, there are some limitations in their consideration. They assume that

there is only one tidal period in time horizon. So, the schedule should be updated

periodically to apply the model. Unlike their assumption, Barros et al. [11] consider

the effect of the tidal condition periodically in time horizon. They define their berth

setting as a transportation problem in which vessels are seen as suppliers and Tidal

Time Windows (TTW) as consumers. Each vessel must be allocated to a subset of

TTW whose length corresponds to the handling time which is necessary for operation

completion. For this reason, the continuous time scale is changed into a discrete tidal

scale, in a way that it is easy to compute the number of TTWs for each allocated
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vessel. In this study, we also take the effect of the tidal condition periodically in time

horizon. In the time horizon there are several high tide and low tide periods that

happen alternatively. At low tide, available depth is not adequate for vessels to depart

the berth location. The assigned vessel to the berth location is just able to leave the

terminal in the high tide period of the time horizon. So, in this study, the high tide

which makes the departure time of moored vessel possible is of significant importance.

In an earlier study (Ernest et al. [30]) a continuous berth allocation problem under

tidal effects is studied. Since, it is one of the most difficult versions of BAP problems,

the computational time is the limiting issue for that study. In order to overcome

this limitation we consider a partitioned berth allocation problem. We assume that

the quay can be separated into several sections and each section can serve only one

vessel at any time. To compare two models, continuous one provides more freedom

for assigning vessels to the berth location, but solving the model is harder than the

partitioned one.

To define our problem mathematically, we make a number of assumptions, most of

which are valid for any berth allocation problem:

1. Once a vessel is moored, it will remain in its location until all the required

processing is done. It means the loading and unloading of each vessel occur

without interruption.

2. The total length of quay is divided into several sections and each section can

handle at most one vessel at a time. The partitioning should be applied in a

rational way. For example, the interval of the lower bound and the upper bound

of section’s length should be respectively between the smallest length of vessel

and the largest one. If arriving vessels have approximately the same length, the

quay part can be equally partitioned into sections as large as the common vessel

size and the problem will become a discrete BAP.

3. The departure time of a vessel from quay part must occur in a high tide period.

We examine the effects of tidal condition that happens periodically in the time
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horizon. At low tide, it is impossible for vessels to depart the berth location.

Since the loading and unloading time of each vessel (handling time) is continuous,

the decision to start allocating each vessel depends on its handling time whether

it will be finished before the end of high tide condition or not. So, the assigned

vessel to the berth location is just able to depart the berth location in the high

tide period of the time horizon.

In the continuous BAP version of this problem [30], the problem is similar to a

strip packing problem with fixed orientation, where the length of the quay is the width

of a strip and the time dimension is the length of the strip. However, considering

the tidal constraints prevents directly applying the mathematical models developed

for strip packing problems to the problem in [30]. In their model, they define two

sequence binary variables, one associated with the decision of sequencing the vessels

over the time horizon and the other one associated with the decision of sequencing

the vessels over the quay side. Furthermore, a continuous variable is defined which

defines the position of an assigned vessel along the quay. (the full description of the

model is in [30]). On the other hand, in the partitioned BAP, instead of quay side

sequence variables and position variables, a new binary variable, which verifies if a

certain vessel is allocated to a certain section, is defined. Besides, a section index is

added to the binary variables associated with the decision of sequencing the vessels

over the time horizon in each section. So, we define our decision variables based on

section, vessel and time.

3.2 Mathematical Model

We consider that the quay is divided into a number of sections and there is a set of

vessels that need to be moored at one of sections. The set of sections is denoted by

S where S = {1, 2, ...,M} and M is the number of sections, and V represents the

set of vessels where V = {1, 2, ..., J} and J is the number of vessels. For the set of

vessels with different lengths, we discretize the length of sections into Lm with uniform

distribution between the smallest length of vessel and the largest one. For the set of
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vessels with the same size, we discretize the length of sections into equal (unit) size

sections. Hence, the length of the quay can be represented by the summation of the

length of sections. We also discretize the time assuming a finite planning horizon,

i.e. one week or two weeks, into high tide and low tide periods. The set of high tide

periods is denoted by H where H = {1, 2, ..., I} and I is the number of high tide

periods.

We model the problem using mixed integer linear programming, which is referred

to as Partitioned Model (PM) throughout the rest of the study, as follows:

Indices:

m : sections,

j, k : vessels,

i : high tide periods,

Sets:

S : set of sections,

V : set of vessels,

H : set of high tide periods,

Parameters:

Lmax : the maximum length of quay location

Lm : length of section m, m ∈ S

aj : arrival time of vessel j, j ∈ V

vj : length of vessel j, j ∈ V

Pj : handling time of vessel j, j ∈ V

Bi : the start of high tide period i, i ∈ H

Ei : the end of high tide period i, i ∈ H

Three sets of binary variables are considered:

(i) Variables ymj are associated with the decision of vessels position based on sections,

m ∈ S, j ∈ V :
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ymj =

1 if vessel j is allocated in section m,

0 otherwise.

(ii) Variables xmjk are associated with the decision of sequencing the vessels over

the time horizon at the defined sections, m ∈ S, j, k ∈ V : j 6= k:

xmjk =

1 if vessel k is allocated after vessel j in section m,

0 otherwise.

(iii) Variables zji are associated with the decision of using the high tide period i,

j ∈ V, i ∈ H:

zji =

1 if the handling time of vessel j completes in high tide period i,

0 otherwise.

Moreover, two sets of continuous variables are considered:

(iv) Sj : when the handling time of vessel j begins, j ∈ V .

(v) Cj : when the handling time of vessel j is complete, j ∈ V .

The mathematical formulation of the partitioned berth allocation (PM) can be written

as follows:

min
∑
j∈V

Cj (3.1)

subject to

∑
m∈S

ymj = 1 ∀j ∈ V (3.2)

vjymj ≤ Lm ∀m ∈ S, j ∈ V (3.3)

Sj ≥ aj ∀j ∈ V (3.4)

Cj = Sj + Pj ∀j ∈ V (3.5)

Sk ≥ Cj −M(1− xmjk) ∀m ∈ S, j, k ∈ V : j 6= k (3.6)
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xmjk ≤ ymj ∀m ∈ S, j, k ∈ V : j 6= k (3.7)

xmjk ≤ ymk ∀m ∈ S, j, k ∈ V : j 6= k (3.8)

xmjk + xmkj ≤ 1 ∀m ∈ S, j, k ∈ V : j 6= k (3.9)

xmjk + xmkj ≥ ymj + ymk − 1 ∀m ∈ S, j, k ∈ V : j 6= k (3.10)

Cj ≥
∑
i∈H

Bizji ∀j ∈ V (3.11)

Cj ≤
∑
i∈H

Eizji ∀j ∈ V (3.12)

∑
i∈H

zji = 1 ∀j ∈ V (3.13)

ymj ∈ {0, 1} ∀m ∈ S, j ∈ V (3.14)

xmjk ∈ {0, 1} ∀m ∈ S, j, k ∈ V (3.15)

zji ∈ {0, 1} ∀j ∈ V, i ∈ H (3.16)

Sj ≥ 0 ∀j ∈ V (3.17)

Cj ≥ 0 ∀j ∈ V (3.18)

The objective function (3.1) minimizes the sum of completion time for all vessels.

Constraint set (3.2) expresses that each vessel should be assigned to one section.

Constraint set (3.3) ensures that the length of vessel allocated in section m must be

less than the length of that section. Constraint set (3.4) requires that each vessel

starts its processing only after it has arrived at the terminal. Constraint set (3.5)

shows that the completion time of each vessel is equal with the handling time and the

start time of it. Constraint set (3.6) implies that if xmjk is equal to one, the start time

of vessel k cannot be earlier than Cj. In other words, if xmjk is equal to one (vessel

j is handled before vessel k), the start time of vessel k cannot be earlier than the

completion time of vessel j. Otherwise, where M is a large constant, the constraint

will be relaxed. Constraint sets (3.7) and (3.8) ensure that the amount of binary

variables xmjk and xmkj should be less than ymj and ymk, respectively. Constraint

sets (3.9) and (3.10) enforce that one of xmjk and xmkj equals 1 if vessels j and k are
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both assigned to section m and vessel j (k) is processed before vessel k (j). They also

ensure that xmjk = xmkj = 0, if one of vessels j and k is not assigned to section m.

Constraint set (3.11) indicates that for every vessel the departure time (completion

time) should be equal to or greater than one of the possible beginning of high tide

period. Constraint set (3.12) ensures that every vessel at the berth location should

start loading such that the completion time (start time of loading plus handling time)

of it will finish before the last possible high tide period. Note that the binary variable

zji defines whether the handling time of vessel j completes in high tide period i or

not. So constraint sets (3.11) and (3.12) construct a lower bound and an upper bound,

respectively, for the departure time of vessels. Note that both the lower bound and the

upper bound should be in the same high tide period (i.e. Bi ≤ Cj ≤ Ei). Constraint

set (3.13) shows that the departure time of each vessel from berth location should

happen just in one of the possible high tide periods.

This formulation is not very tight and does not perform well computationally, i.e.

for large-size problems it even takes more than one hour to solve the problem. In the

next section we discuss some ways to improve the formulation.

3.3 Valid Inequalities and Symmetry Elimination Constraints

In this study, we use PM model for the mathematical formulations in order to find

optimal solutions for the BAP problem. Analyzing the properties of optimal solutions

allows us to add additional constraints to the PM model. These constraints help us to

generate tighter upper bounds with less computational time. We develop three sets

of additional constraints, two of which are valid inequalities. The constraints are as

following:

1. The first set of constraints, which are valid inequalities, is called “tightening

constraint and variable” and introduce some cuts based on tidal conditions. Since

the assumptions about tidal conditions in this study are similar to that of [30], the

properties of the optimal solution related to binary variables zji are the same as well.

These cuts fix some zji variables to zero. For instance, for the vessel for which the
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arrival time plus handling time is greater than some Ei’s, the summation of zji should

be zero. So, we will have the following equation:

∑
i∈H:Ei<aj+Pj

zji = 0 ∀j ∈ V (3.19)

2. The second set of constraints is called “symmetry elimination”. There are a

lot of cases that swapping the precedence of two vessels does not affect the objective

function value in the optimal solution or feasibility of the solution. One such case is

that two vessels with identical handling time can be assigned to the same section. In

Ernest et al. [30], they show that in continuous version of BAP, in the case where

vessels have identical length and handling time, the symmetry can be simply eliminated.

In this study, the assumption that two vessels can be allocated to an identical section,

is equivalent to the assumption in continuous study that these vessels have the same

length. Therefore, their symmetry elimination constraint can be applied in this study

as well.

Consider two vessels j and k, that both can be allocated to section m. Besides,

the handling time of vessel j and k are equal. Without loss of generality, let aj ≤ ak,

we can consider the following cases:

Case 1: j can be assigned to section m as soon as it arrives. In this case, according

to objective function, j automatically precedes k.

Case 2: Neither j nor k can be assigned to section m upon their arrival. In this

case, objective function is indifferent to precedence order of j and k, i.e. there is a

symmetry in precedence order of j and k. Therefore, vessel j can be allocated before

vessel k without affecting the objective function.

Hence, in general case, we can write:

∑
m∈S:Vj≤Lm,Vk≤Lm

xmkj = 0 ∀j, k ∈ V : j 6= k, aj ≤ ak, Pj = Pk (3.20)

Note that in case 1, the symmetry elimination constraint will be redundant.
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3. The third set of constraints, which are valid inequalities, refers to the binary

variables ymj. In mathematical model, the binary variable ymj defines the position

of vessel j in section m with respect to the constraint (3.3). So, when the length of

an arbitrary vessel is greater than the length of an arbitrary section, according to

constraint (3.3), it is impossible to assign the vessel to the section. j ∈ V, k ∈ V and

m ∈ S, if Vk ≤ Lm, Vj > Lm, we have:

ymj = 0 ∀j ∈ V,m ∈ S : Vj > Lm (3.21)

and this cut dominates constraint (3.3). Consequently, the precedence variable

associated to m and j must be zero for each vessel k that can be allocated to section

m:

xmjk + xmkj = 0 ∀j, k ∈ V,m ∈ S : j 6= k, Vk ≤ Lm, Vj > Lm. (3.22)

3.4 Heuristic Algorithms

Since the computational time of the PM is prohibitive for large-size instances, we

developed two simple heuristic algorithms and present their details in this section.

3.4.1 Greedy Algorithm 1

We present a simple greedy heuristic algorithm that we call it “Greedy Algorithm

1”. The algorithm assigns vessels to the sections one by one. At first (Algorithm 1,

step 1), array of vessels, high tide periods, vessels waiting for empty section, vessels

waiting for departure and list of future events are created, then vessels are sorted in

a non-decreasing order of vessels’ arrival time. For each vessel, an arrival event is

created and is added to the list of future events. Finally, for each high tide period, two

events respectively associated to its start time and end time are created and added to

the list of future events. In step 2, as long as there exists any vessel in the system,

the event with least time is chosen according to the type of event, i.e. arrival, service
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start, service finish, tide begin and tide end, and routines 1, 2, 3, 5 and 6 are called,

respectively.

In routine 1, upon arrival of a new vessel, if the waiting list is empty, the list of

sections is scanned for a section that is large enough to accommodate the vessel. If

such section exists, the vessel is allocated to the section and a new service start event

is added to the list of future events. Otherwise, if the waiting list is not empty or the

length of chosen vessel is larger than the length of empty sections, the vessel enters

the waiting list.

In routine 2, handling time of vessel starts and the finish time is calculated according

to its handling time and a respective event is added to the list of future events.

In routine 3, high tide status is checked, since the departure time of vessel should

coincide with a high tide period. If the end of the handling of the vessel is within a

high tide period, then the vessel departs the section and subsequently the section is

set to empty state. Besides, if the waiting list is not empty, routine 4 is called. If

the end of the handling time of the vessel is not within a high tide period, the vessel

enters the list of waiting vessels for departure.

In routine 4, we enumerate all vessels in the waiting list, from first vessel through

the end. For each vessel, if there is an appropriate empty section, the vessel is

allocated to the section and a new service start event is added to the list of future

events. Otherwise, the algorithm terminates.

In routine 5, upon beginning of high tide period, for each vessel in the list of

vessels waiting for departure, the completion time of the vessel is set and the state of

associated section is set to empty.
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Input: Required parameters for solving the problem; // Parameters related

to section, vessel and time

Output: final solution for the BAP problem; // It obtains near optimal

solution for PM model

1 Step 1: Initialize;

2 Let V denote the array of vessels.

3 Let T denote the array of high-tide periods.

4 Let QS denote the array of vessels waiting for empty section.

5 Let QD denote the array of vessels waiting for departure.

6 Let FEL denote the list of future events.

7 Sort V in a non-decreasing order of arrival time.

8 for each vessel in V do

9 Add new arrival event to FEL.

10 end

11 for each t in T do

12 Add new high-tide begin event to FEL.

13 Add new high-tide end event to FEL.

14 end

15 Step 2: Check overlapping;

16 repeat

17 while there exists any vessel in system; do

18 Let e be the event with least time.;

19 if e is arrival then

20 Run the routine 1 for e.

21 end

22 if e is service start then

23 Run the routine 2 for e.

24 end

25 if e is service finish then

26 Run the routine 3 for e.

27 end

28 if e is high tide begin then

29 Run the routine 5 for e.

30 end

31 if e is high tide end then

32 High-tide:=false

33 end

34 Remove e from FEL.

35 end

36 until terminate;
Algorithm 1: Greedy Algorithm 1
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Input: event e; // event e is vessel arrival with least time

1 Routine 1: Arrival for event e;

2 Let v, t and m be the vessel, time and section of e, respectively.

3 if QS = 0 and an appropriate empty section exists then

4 Assign v to the section.

5 Add new service start event to FEL for v, t and m.

6 else

7 Add the vessel to the list of QS.

8 end
Algorithm 2: Routine 1

Input: event e;

1 Routine 2: Service start for event e;

2 Let v, t and m be the vessel, time and assigned section of e, respectively.

3 Let C := t+ P (P is the handling time of vessel v).

4 Add new service finish event to FEL for v, C and section.
Algorithm 3: Routine 2

Input: event e;

1 Routine 3: Service finish for event e;

2 Let v, t and m be the vessel, time and assigned section of e, respectively.

3 if high-tide period is true; then

4 Set service completion time of v := t.

5 Set section status to empty.

6 if length of QS > 0 then

7 Run routine 4.

8 end

9 else

10 Add the vessel to the list of QD.

11 end
Algorithm 4: Routine 3
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Input: event e;

1 Routine 4: Sending waiting vessels in QS to empty sections

2 Let t be the time of e, and let n := length of QS.

3 if n > 0 then

4 Let v denote the nth vessel in QS.

5 if there is no appropriate empty section for v then

6 Terminate.

7 end

8 Let m be the appropriate empty section for v.

9 Assign v to the section.

10 Add new service start event to FEL for v, t and m.

11 n:=n− 1.

12 Go to 3.

13 end
Algorithm 5: Routine 4

Input: event e;

1 Routine 5: High tide begin for event e

2 High-tide:=true.

3 if length of QD > 0 then

4 for each vessel in QD do

5 Send out the vessel.

6 Set the status of the associated section to empty.

7 end

8 end

9 Run routine 4.
Algorithm 6: Routine 5
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3.4.2 Greedy Algorithm 2

Now we present the second greedy algorithm which is called “ greedy algorithm 2”.

Basically, it is similar to greedy algorithm 1. In greedy algorithm 1, a vessel is allocated

sooner if and only if it arrive sooner. On the other hand, in greedy algorithm 2, based

on the fitness of the vessel, one may be allocated even if it arrives later. There are

two differences between greedy algorithms 1 and 2: First, upon arrival of a new vessel

(routine 6), the list of vessels waiting for empty section is not checked anymore and

the sections are directly scanned for an appropriate section, if no such section exist,

then the vessel enters the list of vessels waiting for empty section. Second, upon trying

to allocate the vessels in the list of vessels waiting for empty section (routine 8), as

long as any empty section exists, all of the vessels in the list are scanned for allocation.

In spite of routine 4 that stops scanning the list as soon as there is no appropriate

section for the first vessel in the list, in routine 8, other vessels are scanned as well.

So, the algorithms are as the following:
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Input: Required parameters for solving the problem; // Parameters related

to section, vessel and time

Output: final solution for the BAP problem; // It obtains near optimal

solution for PM model

1 Step 1: Same as step 1 in greedy algorithm 1

2 Step 2: Check overlapping;

3 repeat

4 while there exists any vessel in system; do

5 Let e be the event with least time.;

6 if e is arrival then

7 Run the routine 6 for e.

8 end

9 if e is service start then

10 Run the routine 2 for e.

11 end

12 if e is service finish then

13 Run the routine 7 for e.

14 end

15 if e is tide begin then

16 Run the routine 9 for e.

17 end

18 if e is tide end then

19 High-tide:=false

20 end

21 Remove e from FEL.

22 end

23 until terminate;
Algorithm 7: Greedy Algorithm 2
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Input: event e;

1 Routine 6: Arrival for event e

2 Let v, t and m be the vessel, time and section of e, respectively.

3 if an appropriate empty section exists then

4 Assign v to the section.

5 Add new service start event to FEL for v, t and m.

6 else

7 Add the vessel to the list of QS.

8 end
Algorithm 8: Routine 6

Input: event e;

1 Routine 7: Service finish for event e;

2 Let v, t and m be the vessel, time and assigned section of e, respectively.

3 if high-tide period is true; then

4 Set service completion time of v := t.

5 Set section status to empty.

6 if length of QS > 0 then

7 Run routine 8.

8 end

9 else

10 Add the vessel to the list of QD.

11 end
Algorithm 9: Routine 7
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Input: event e;

1 Routine 8: Sending waiting vessels in QS to empty sections

2 Let t be the time of e and let n:= length of QS.

3 if n > 0 then

4 Let v denote the nth vessel in QS.

5 if there is any appropriate empty section for v then

6 Let m be the appropriate empty section for v.

7 Assign v to the section.

8 Add new service start event to FEL for v, t and m.

9 end

10 n := n− 1.

11 Go to 3.

12 end
Algorithm 10: Routine 8

Input: event e;

1 Routine 9: High tide begin for event e

2 High-tide:=true.

3 if length of QD > 0 then

4 for each vessel in QD do

5 Send out the vessel.

6 Set the status of the associated section to empty.

7 end

8 end

9 Run routine 8.
Algorithm 11: Routine 9
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Chapter 4

COMPUTATIONAL ANALYSIS

In this chapter, we perform computational experiments to analyze the performance

of the proposed mathematical model and the additional constraints as well as two

simple heuristic algorithms.

The organization of this chapter is as follows: In Section 4.1, we describe the

procedure of random data generation. In Section 4.2, we present the computational

results of PM model with and without additional constraints. In Section 4.3, first,

we compare the results of PM model with that of the continuous model, then, we

compare the results of two greedy algorithms with each other. Finally, in Section 4.4,

the effects of some parameters on the performance of PM model and greedy algorithm

2 are investigated.

4.1 Data Generation

In this section, test instances, which are randomly generated to evaluate the effec-

tiveness of the proposed models are explained. The instances are generated based on

the real data of a dry bulk terminal in Newcastle, Australia. The details of the data

generation methods are introduced as following.

1. The length of vessels is considered in three cases.

(a) In one set of the instances, each vessel has the same length of 1.

(b) In the second set of instances, we have a random value for the length of

the vessels that are generated from a uniform distribution of U(0, 2) (where

the uniform distribution is denoted by U).

(c) In the third set of instances, we have the following structure:
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i. 10% of the vessels will have a vj generated of U(0, 0.85),

ii. 30% of the vessels will have a vj generated of U(0.85, 1.36),

iii. 60% of the vessels will have a vj generated of U(1.36, 2).

2. The corresponding handling time (in hour) of vessels (Pj) are generated in three

different ways:

(a) For the first and second sets, handling time is generated from either of the

following uniform distribution:

i. U(16, 20)

ii. U(5, 20)

(b) For the third set, handling times are as follows:

i. Pj = 7 for the ‘case1. (c)i. above’,

ii. Pj = 12 for the ‘case1. (c)ii. above’,

iii. Pj = 15 for the ‘case1. (c)iii. above’.

3. We consider the arrival time (in hour) of vessels (aj) in two structures:

(a) Vessels arrive randomly according to a uniform distribution of U(0, 150).

(b) Vessels arrive at 12:00 noon every day.

4. We also consider three cases for the number of arriving vessels per weeks as

J=16, 18, and 20.

5. The tidal times (in hour), i.e. Bi and Ei, are obtained from the public website of

Newcastle port. A sample of such periods for one week can be seen in Table 4.1.

Table 4.1: A sample of high tide periods for one week

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bi 1 13 26 38 51 63 76 89 101 114 126 139 151 164
Ei 7 20 32 44 57 69 83 94 108 120 133 145 158 169
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6. The length of sections (Lm) are generated according to a uniform distribution

U(a, b), where a is less than the smallest length of vessels and b is greater than

the largest one. A pseudo-code of the generation scheme is provided in Algorithm

12.

Input: a as minimum length of sections, b as maximum length of sections, M as

number of sections, V L as set of vessel lengths, and Lmax as the total

length of quay side;

Output: Length of sections;

1 Let SL = Φ denote the set of section lengths.

2 for m from 1 to M − 1 do

3 Generate random number r from U(a, b).

4 Set Lm equal with r rounded to one decimal place.

5 Add Lm to SL.

6 end

7 Set LM = Lmax −
∑M−1

m=1 Lm.

8 if LM 6∈ [a, b] then

9 Go to 1.

10 end

11 Add LM to SL.

12 if Max(SL) < Max(V L) then

13 Go to 1.

14 end

15 Return SL as the set of length of sections.
Algorithm 12: The procedure of generating length of sections

To sum, the combination of the mentioned structure results in 30 different scenarios,

i.e. (3× 2× 2× 2 + 3× 2× 1× 1 = 30) and for each scenario we generate 10 random

instances. We use these scenarios in two different sets of instances (set 1 and set

2). In set 1, the maximum length of the quay is equal to 3 (Lmax = 3), the quay is

partitioned into 3 sections with different lengths and the set consists of 200 instances

in 20 scenarios. While in set 2, Lmax = 5, the total number of sections is M = 5, and
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it consists of 30 scenarios with 300 instances.

4.2 Computational Results

This section presents computational experiments to test the performance of the PM

model without and with additional constraints. Computational experiments are carried

out on a HP-Z800 Work Station that contains: Intel(R) Xeon(R) CPU, 2.4GHz (2

processors) and 12 GB of RAM. The mathematical models are solved by IBM ILOG

CPLEX 12.5.1, and an elapsed time limited to one hour is enforced.

To reflect the exact performance of each set of additional constraints, first we

add them to the PM model with different combinations, i.e. one by one or with

the combination of set 1 with set 2, set 1 with set 3 and set 2 with set 3. For each

combination, then we consider the running time and optimality gap of instances

separately. To evaluate the exact performance of each set of additional constraints, we

use the set of instances (set 1) in which, Lmax = 3, it is partitioned into 3 sections with

different lengths and it consists of 200 instances in 20 scenarios. Tables 4.2 and 4.3

indicate the running time and optimality gap (Gapopt) of instances, respectively. The

optimality gap is calculated based on the following formula:

Gapopt% = (
UB − LB

LB
)× 100,

where UB and LB are the Upper Bound (UB) and the Lower Bound (LB) obtained

from PM, respectively.

According to Table 4.2, the first column shows the scenarios that are used to

indicate the characteristics of each instance. Each scenario can be read as follows:

J T vj aj pj, for example scenario 16 1 Unit Uniform 16 indicates that, there exist

16 vessels with unit size that arrive to quay part with uniform distribution during one

week, and their handling time is generated from U(16, 20). The column “avg. time”

indicates the running time of instances obtained by solving the PM model without

and with different combinations of additional constraints, respectively. For example,
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the columns 2 to 9 in order indicate the running time of PM model, PM model with

the first set of constraints (PM+AC1), PM model with the second set of constraints

(PM+AC2), PM model with the third set of constraints (PM+AC3), PM model with

the first and the second sets of constraints (PM+AC1+AC2), PM model with the first

and the third sets of constraints (PM+AC1+AC3), PM model with the second and

the third sets of constraints (PM+AC2+AC3) and PM model with all three sets of

constraints (PM+AC). For each scenario, each entry of columns 2 to 9 is the average

value over 10 instances. To evaluate the effects of additional sets of constraints one

by one, after comparing the results of PM model with each set, i.e. columns 3 to

5, we realize that the second set of constraints called “symmetry elimination” has

the most contribution to PM. Besides, to find the best combination of additional

constraints, we add column 10 (min. time) to Table 4.2, which shows the minimum

running times for each scenario. By referring to the “min. time” column, we find out

that the combination of all three sets of additional constraints with the PM model

almost outperforms other combinations.

In Table 4.3, the results of instances in which optimality gap is non-zero for

different combinations of sets of additional constraints with PM model are shown.

The columns indicate the average optimality gap (avg. Gapopt) over 10 instances for

each scenario for PM model without and with different combinations of additional

constraints, respectively. We also add column “min. Gapopt” to Table 4.3, which

shows the minimum amount of optimality gaps for each scenario.

Results presented in Tables 4.2 and 4.3 support the claim that the combination of all

three sets of additional constraints with the PM model outperforms other combinations,

in both running time and optimality gap. Hence, for further computational experiments,

we incorporate all these three additional constraints with PM.

In Tables 4.4 and 4.5, we present the fundamental attributes of the PM related to

its performance in the columns: The “time” column indicates the running time and

the root time of the model in seconds, respectively, and the column “Gapopt” presents

the optimality gap in percentage between the upper bound and the lower bound found
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at termination. The column “Number” indicates the number of instances solved to

optimality, for each scenario.

In each table, the first column shows the scenarios we consider. For each scenario,

we present the result of the mathematical model based on the attributes explained.

As we explained before, for each scenario, we generated 10 random instances. So, each

entry for all attributes is the average values over 10 instances. The “Overall” indicates

the average of the total amount of each column, except the “Number” column, which

shows the total number of optimal instances.

In Tables 4.4 and 4.5, all parameters are the same except the total length of the

quay and the number of partitioned sections (M). Table 4.4 corresponds to set of

instances (set 1) in which, Lmax = 3, and it is partitioned into 3 sections with different

lengths, while Table 4.5 corresponds to set of instances (set 2) in which, Lmax = 5, and

the total number of sections is M = 5. Set 1 consists of 200 instances in 20 scenarios,

while set 2 consists of 30 scenarios with 300 instances. For all instances, PM is first

solved, and then, three additional constraints are added to the PM (PM+AC) to solve

the problem. To test the performance of the mathematical model, without and with

additional constraints in each table, we split the tables into two sections to illustrate

the effect of additional constraints on each scenario one by one.

Tables 4.4 and Table 4.5 demonstrate that both set of instances are solved in a

shorter time and with a smaller gap using PM+AC, compared to PM. So, we conclude

that the model with additional constraints always outperforms the PM model. Besides,

it is informative to mention that the effect of additional constraints in Table 4.4 is

more significant than Table 4.5. For instance in Table 4.4, the number of instances

with optimal solution without and with additional constraints are 188 and 193 out of

200 instances, respectively, while in Table 4.5, they are in order 298 and 299 out of

300 instances.



Chapter 4: Computational Analysis 48

4.3 Comparative Analysis

In this section, at first, we compare the results of PM model with the computational

results of continuous BAP proposed in Ernst et al. [30]. Then, we compare two heuristic

algorithms to show the superiority of greedy algorithm 2 over greedy algorithm 1. In

this section, the computational results are performed on the set of instances introduced

in Section 4.1 (set 1 and set 2).

4.3.1 Comparison of the Results of PM Model with the Continuous Model

In this part, we compare the results of partitioned model (PM) with the continuous

model proposed in Ernest et al. [30]. To compare these two models, the output of

PM model gives us an approximation of the optimal solution instead of the exact one

if the problem is considered with a continuous quay. To analyze and compare the

results, we define three different values, A, B and C, where:

• A denotes the number of instances in each scenario where the PM model obtains

optimal solution.

• B denotes the number of instances in each scenario where the continuous model

obtains optimal solution.

• C denotes the number of instances in each scenario where the objective function

values (either optimal values or upper bounds) are equal to each other in both

models.

To evaluate and compare the results of two models with each other, all parameters

used in the models should be same and fixed. Note that in PM model in addition to

Lmax, we have Lm (the length of section) and M (the number of section), whereas in

continuous model we only consider Lmax. In Table 4.6, all parameters of instances are

the same as the instances in Table 4.7, except the parameter Lmax and the number of

sections (in Table 4.6 Lmax = 3 and M = 3, in Table 4.7 Lmax = 5 and M = 5).
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Tables 4.6 And 4.7 compare the optimal solutions for both PM model and continuous

model in terms of running times (in second) and values A, B and C. We consider

each scenario which consists of 10 random instances for both models, separately. In

“Gap(PM,C)” column, we calculate the gap between the upper bounds obtained by two

different models:

Gap(PM,C)% = (
UBPM − UBC

UBC

)× 100,

where: UBPM is upper bound of PM model, and UBC is the upper bound of continuous

model.

As expected, the overall results indicate that the continuous BAP provides better

solutions in terms of objective function value. We remark that the objective function

for both models refers to a minimization problem, so with same parameters, the model

that obtains lower values for objective functions, gives better results. However, in

all instances and particularly in larger ones, PM model performs better, and gives

better result in terms of running time. Also note that, although PM model is an

approximation to the continuous model, the cases in which PM obtains objective

function values as good as the objective function values obtained by continuous model,

are very frequent, e.g. in Tables 4.6 and 4.7 in order 115 out of 200 and 233 out of 300

such instances are observed. Moreover, since the gap values are not so large, we can

conclude that both models have their strengths and can be used for different planning

horizon related to the priority in time or the value of objective function.

4.3.2 Comparison of Greedy Algorithm 2 with the Greedy Algorithm 1

To evaluate the performance of two heuristic algorithms, we compare the results of

them with each other. In the comparison procedure, all the instances used in the PM

model and two heuristic algorithms are same and fixed.

To analyze the results, for each instance, we calculate the gaps between the upper

bound of PM model and the solutions obtained from heuristic algorithms, greedy
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algorithm 1 and greedy algorithm 2, respectively:

Gap(GA1,PM)% = (
UBGA1 − UBPM

UBPM

)× 100,

where UBGA1 is the solution obtained from the greedy algorithm 1, and UBPM is the

upper bound of the PM model.

Gap(GA2,PM)% = (
UBGA2 − UBPM

UBPM

)× 100,

where UBGA2 is the solution obtained from the greedy algorithm 2, and UBPM is the

upper bound of the PM model.

To evaluate two algorithms, we compare the gap values for each scenario one by

one. Figures 4.1 and 4.2 illustrate the comparison between the gap values of two

greedy algorithms as calculated using above-mentioned formulas, for set 1 and set 2,

respectively. In Figure 4.1 we used 200 instances in 20 scenarios with Lmax = 3 and

the number of sections is M = 3. While in Figure 4.2, there are 30 scenarios with 300

instances with Lmax = 5 and the total number of sections is M = 5.

Figure 4.1: Comparison between the greedy algorithm 1 and the greedy algorithm 2
over instances in set 1
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Figure 4.2: Comparison between the greedy algorithm 1 and the greedy algorithm 2
over instances in set 2

In both figures (Figures 4.1 and 4.2), the gaps between the upper bound of the

PM model and the greedy algorithm 1 are always equal to or greater than the gaps

between the upper bound of the PM model and the greedy algorithm 2. As, the

smaller the gap, the better the result, it is concluded that the greedy algorithm 2

outperforms the greedy algorithm 1.

4.4 Effect of the Parameter Settings on the Performance of PM Model

and Greedy Algorithm 2

To reflect the importance of some parameters in PM model and heuristic algorithm,

we apply sensitivity analysis. As shown in Section 4.2, the greedy algorithm 2 always

outperforms the greedy algorithm 1. Therefore, in this section, we only perform

sensitivity analysis on greedy algorithm 2. In this study sensitivity analysis is a

technique used to determine how different values of some key parameters impact on

the performance of PM model as well as the greedy algorithm 2. The parameters

include: (1) the length of each section (Lm) with identical(Lmax), (2) the length of

each section (Lm) with different Lmax, and (3) the length of vessels (vj). Note that,

the sets of instances used in this section may differ with the sets of instances generated
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in Sections 4.1 (set 1 and set 2 in Sections 4.1).

4.4.1 Sensitivity Analysis of Parameter Lm with Identical Lmax

To interpret the importance of the length of partitioned sections, we use two sets

of test instances (with 300 instances and 30 scenarios for each set) with identical

Lmax and number of sections (M), but with different partition lengths. In both sets

parameters Lmax and M are set to 7 and 5, respectively. Partitions’ lengths in the

first set (set 1) are generated from a uniform distribution of U(0.5, 2) as explained in

12 and the values of second set (set 2) are generated after considering the distribution

of length of vessels. The value of length of sections for set 1 and set 2 are in order, (2,

1, 1.2, 0.8, 2) and (1.9, 1.9, 1.9, 0.9, 0.4).

According to Table 4.8, the PM model can solve to optimality over all instance

in both sets. Therefore, to analyze the results, we consider the running time of PM

model for both sets. To compare the results, in the first sight, it seems that there are

no perceptible changes in the running time. To generalize our claim, we construct a

statistical hypothesis for running time like:

H0 : µD = 0

where H0 is null hypothesis and µD is the average of difference of running times of

two sets. We use t-test to decide whether two sets have the same running times or

not. In this case, we should use dependent two-sample t-test with equal sample sizes.

In general, the formula for dependent two-sample t-test, is like below:

t =
X̄D

SD√
n

,

where t is the static test, X̄D is the sample average of difference of running times of

two sets, SD is the statistic variance of difference of running times of two sets, and n

is the number of instances for both sets 1 and 2. For t-test, we used α = 0.05 as the

significance level, which is the most common value used in the literature. According
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to calculation results presented in Table 4.9, the null hypothesis is accepted.

Having the optimal solutions, to analyze the sensitivity of greedy algorithm 2 to

the parameter Lm, we calculate the gap between the final solution obtained from PM

model and the solution obtained from greedy algorithm 2 for each instance, in each

set:

Gap(GA2,PM)% = (
UBGA2 −OPTPM

OPTPM
)× 100,

where UBGA2 is the solution obtained from greedy algorithm 2, and OPTPM is the

optimal value of PM model.

Table 4.10 indicates the results of two sets, which are different in terms of parameter

Lm. To evaluate the effect of parameter Lm on the solutions, we compare the gap

values for each instance in two different sets one by one. The computational results

show that set 2 corresponds to smaller average gap. In order to generalize our claim,

we construct a statistical hypothesis like:

H0 : µD ≥ 0

where H0 is null hypothesis, µD is the average of gap of set 1 minus gap of set 2. We

use t-test to decide whether set 1 has larger gap values compare to set 2 or not. In

this case, we also use dependent two-sample t-test with equal sample sizes (n, here n

is 30) with the formula that mentioned above. For t-test, we again used α = 0.05 as

the significance level.

According to calculation results presented in Table 4.11, the null hypothesis is

accepted. Hence, set 2 indeed corresponds to smaller gap values. Figure 4.3 also

illustrates the effect of parameter Lm on the solutions by displaying the gaps between

the optimal value obtained from PM model and the solution obtained from the greedy

algorithm 2 for two sets with different Lm and identical Lmax. The horizontal and

vertical axes indicate the scenarios and the gap values (average over 10 instances for

each scenario), respectively. The entries of column “avg” in Table 4.10 are the input

data as the gap values for Figure 4.3.
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Figure 4.3: The gap between the upper bounds of PM and the solution of greedy
algorithm 2 for two sets with different Lm and identical Lmax

4.4.2 Sensitivity Analysis of Parameter Lm with Different Lmax

To evaluate the influence of the parameter settings on the PM model, two sets of test

instances (with 200 instances and 20 scenarios for each set) are used in this section.

All parameters used in the instances are set similarly unless mentioned otherwise.

Both of these sets are based on the set of instances introduced in the first part of this

chapter (Section 4.1). The number of sections are identical for both sets and equal to

3. While the value of quay lengths and length of sections are different, i.e. for the first

set (set 1), Lmax = 3, and for the second set (set 2), Lmax = 6. Furthermore, in set

1, as mentioned in the Section 4.1, we discretize the length of sections into Lm with

uniform distribution between the smallest length of vessels and the largest one. While

in set 2, we discretize the length of sections based on the largest length of vessel, so

all vessels are able to be allocated in all sections.

Table 4.12 is split into two parts called “set 1” and “set 2”, which correspond to

running times and optimality gaps of set 1 and set 2, respectively. To compare the

results of these two sets, we consider the running times and the optimality gaps:

Gapopt% = (
UB − LB

LB
)× 100,

where UB and LB denote the upper bound and the lower bound obtained from PM
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model, respectively.

According to Table 4.12, for the instances solved to optimality, the running time

of instances in set 1 is better than set 2. Moreover, the number of instances with

the optimal solution in set 1 is more than set 2. For the remaining instances, where

optimality is not met, and are terminated due to time limit, when we compare the

results of two sets, the overall results indicate that the optimality gap in set 1 is smaller

than set 2. Generally, the most important reason behind the increase in running time

and optimality gap is the increase of number of nonzero decision variables (ymj and

xmjk). In fact in this case (when the value of Lmax increases and the number of sections

is fixed), the number of vessels and sections meeting constraint 3.3 increases (in our case

when Lmax=6 and the number of section is M = 3, constraint 3.3 will be redundant),

so the number of options for solving the problem will increase. Therefore, the growth

in running time is reasonable. Thus, it is concluded that, with number of sections fixed

and length of sections identical, larger Lmax, hence larger Lm, corresponds to higher

computational complexity. Furthermore, larger Lmax, hence larger Lm, corresponds to

higher number of instances with nonzero optimality gap. For instance in Table 4.12,

the number of instances with optimal solution are 193 and 181 out of 200 instances,

when Lmax = 3 and Lmax = 6, respectively.

4.4.3 Sensitivity Analysis of Parameter vj

To analyze the importance of the length of vessels, the procedure is almost similar to

the previous analysis (analysis of parameter Lm). We use two sets of test instances

(with 20 scenarios for each set) in which all parameters except the length of vessels

are same and fixed for both sets. The values of length of vessels in the first set (set

1) are generated randomly from a uniform distribution of U(0, 2) and the values of

second set (set 2) are generated randomly from a uniform distribution of U(0, 1.5).

Figure 4.4 and Figure 4.5 show in order the average and the standard deviation of

vessel length for each set and each scenario.
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Figure 4.4: The average of vessel length for each set

Figure 4.5: The standard deviation of vessel length for each set

According to Table 4.13, we consider the running time of PM model for both sets.

To compare the results, in the first sight, it seems that there are no perceptible changes

in the running time. To generalize our claim, we construct a statistical hypothesis for

running time like:

H0 : µD = 0

where H0 is null hypothesis, µD is the average of difference of running times of two

sets. We use t-test to decide whether two sets have different running times or not.
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In this case, we should use dependent two-sample t-test with equal sample sizes. In

general, the formula for dependent two-sample t-test, is like below:

t =
X̄D

SD√
n

,

where t is the static test, X̄D is the sample average of difference of running times of

two sets, SD is the statistic variance of difference of running times of two sets, and n

is the number of instances for both sets 1 and 2. For t-test, we used α = 0.05 as the

significance level, which is the most common value used in the literature. According

to calculation results presented in Table 4.14, the null hypothesis is accepted.

Having the optimal solutions, to analyze the sensitivity of greedy algorithm 2 to

the parameter vj, we calculate the gap between the final solution obtained from PM

model and the solution obtained from greedy algorithm 2 for each instance, in each

set:

Gap(GA2,PM)% = (
UBGA2 −OPTPM

OPTPM
)× 100,

where UBGA2 is the solution obtained from heuristic algorithm, and OPTPM is the

optimal value of PM model. Table 4.15 indicates the results of gap values for two

sets, which are different in parameter vj. Each entry is the average value over 10

instances for each scenario. To evaluate the effect of parameter vj on the solutions,

we compare the gap values with each instance in two different sets one by one. The

compared results suggest that the length of vessels, generated by uniform distributions

with smaller ranges, results in smaller gaps. To generalize our claim, we construct the

below statistical hypothesis:

H0 : µD ≥ 0

where H0 is null hypothesis, µD is the average of gap of set 1 minus gap of set 2. We

use t-test to decide whether set 1 has larger gap values compare to set 2 or not. In

this case, we also use dependent two-sample t-test with equal sample sizes (n, here

n is 20) with the formula that mentioned above. For t-test, we again used α = 0.05
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as the significance level. The calculation results (Table 4.16) interpret that the null

hypothesis is correct. Hence, set 2 indeed corresponds to smaller gap values. It means

vessels with large length, are more critical in allocation, because the number of sections

that are able to place them is limited. Figure 4.6 illustrates the comparison between

the gap values of two sets. The entries of column “avg” in Table 4.15 are the input

data as the gap value for Figure 4.6. The horizontal and vertical axes in Figure 4.6

indicate the scenarios and the gap values (average over 10 instances for each scenario),

respectively.

Figure 4.6: The gap between the upper bounds of PM and the solution of greedy
algorithm 2 for two sets with different vj
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Table 4.2: CPU time comparison for different combinations of sets of additional
constraints over instances in set 1

avg. time (sec)

Scenario PM
PM+
AC1

PM+
AC2

PM+
AC3

PM+
AC1+AC2

PM+
AC1+AC3

PM+
AC2+AC3

PM+
AC

min.
time

16 1 2c Noon 3c 2.85 1.89 2.91 2.38 2.89 1.76 2.63 3.28 1.76
16 1 2c Uniform 3c 15.17 12.14 11.35 14.76 12.50 11.93 11.24 10.55 10.55
16 1 Uniform Noon 16 85.03 71.22 66.23 90.23 69.60 70.00 67.64 67.16 66.23
16 1 Uniform Noon 5 2.26 2.12 1.90 2.01 1.83 2.12 1.99 1.95 1.83
16 1 Uniform Uniform 16 37.55 26.37 15.17 35.09 14.77 25.00 15.93 13.03 13.03
16 1 Uniform Uniform 5 1.07 1.01 0.99 1.12 0.91 1.07 0.99 0.95 0.91
16 1 Unit Noon 16 14.41 13.07 5.04 12.03 5.36 11.68 5.01 4.60 4.60
16 1 Unit Noon 5 2.80 3.08 1.45 2.03 1.70 2.08 1.45 1.59 1.45
16 1 Unit Uniform 16 4.59 4.07 2.38 4.78 2.40 3.91 2.19 2.10 2.10
16 1 Unit Uniform 5 0.85 0.61 0.44 0.91 0.95 0.76 0.56 0.75 0.44
18 1 2c Noon 3c 35.88 30.38 27.68 31.46 28.85 30.79 26.98 26.91 26.91
18 1 2c Uniform 3c 1159.00 1068.12 1015.68 1100.27 1014.79 1072.21 1012.72 1008.58 1008.58
18 1 Uniform Noon 16 1299.87 1201.68 999.00 1301.67 989.20 1195.73 991.00 963.58 963.58
18 1 Uniform Noon 5 83.56 85.15 65.99 79.92 66.06 83.48 65.84 66.11 65.84
18 1 Uniform Uniform 16 793.13 767.32 772.15 789.23 771.53 762.98 778.42 761.89 761.89
18 1 Uniform Uniform 5 115.67 107.45 78.32 113.61 75.88 101.00 75.12 73.70 73.70
18 1 Unit Noon 16 2018.45 1827.21 803.43 2004.22 794.90 1830.76 799.23 778.54 778.54
18 1 Unit Noon 5 77.21 24.08 11.90 60.47 14.90 23.80 12.95 13.52 11.90
18 1 Unit Uniform 16 748.42 727.11 732.18 740.21 726.05 731.08 728.77 725.15 725.15
18 1 Unit Uniform 5 1.61 1.57 1.20 1.72 1.41 1.83 1.59 1.32 1.20
Overall 324.97 298.78 230.72 319.41 229.92 298.20 230.11 226.26 226.26

Table 4.3: Comparison of optimality gap for different combinations of sets of additional
constraints over instances in set 1

avg. Gapopt

Scenario PM
PM+
AC1

PM+
AC2

PM+
AC3

PM+
AC1+AC2

PM+
AC1+AC3

PM+
AC2+AC3

PM+
AC

min.
Gapopt

18 1 2c Uniform 3c 2.07% 1.83% 1.19% 2.04% 0.71% 1.33% 1.04% 0.64% 0.64%
18 1 Uniform Noon 16 0.97% 0.96% 0.95% 0.97% 0.95% 0.96% 0.95% 0.95% 0.95%
18 1 Uniform Uniform 16 1.95% 1.81% 1.59% 1.90% 1.46% 1.76% 1.54% 1.34% 1.34%
18 1 Unit Noon 16 0.16% 0.08% 0.07% 0.13% 0.02% 0.06% 0.03% 0.00% 0.00%
18 1 Unit Uniform 16 0.80% 0.78% 0.69% 0.76% 0.63% 0.71% 0.66% 0.60% 0.60%
Overall 1.19% 1.09% 0.90% 1.16% 0.75% 0.96% 0.84% 0.71% 0.71%
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Table 4.4: Summary of computational results of PM without and with additional
constraints over instances in set 1

PM PM+ AC
time (sec) Gapopt number time (sec) Gapopt number

Scenario avg.
avg.
root

avg.
opt.

instances
avg

avg.
root

avg.
opt.

instances
16 1 2c Noon 3c 2.85 0.44 0.00% 10 3.28 0.46 0.00% 10
16 1 2c Uniform 3c 15.17 0.45 0.00% 10 10.55 0.44 0.00% 10
16 1 Uniform Noon 16 85.03 0.54 0.00% 10 67.16 0.51 0.00% 10
16 1 Uniform Noon 5 2.26 0.53 0.00% 10 1.95 0.51 0.00% 10
16 1 Uniform Uniform 16 37.55 0.57 0.00% 10 13.03 0.54 0.00% 10
16 1 Uniform Uniform 5 1.07 0.44 0.00% 10 0.95 0.50 0.00% 10
16 1 Unit Noon 16 14.41 0.46 0.00% 10 4.60 0.38 0.00% 10
16 1 Unit Noon 5 2.80 0.42 0.00% 10 1.59 0.39 0.00% 10
16 1 Unit Uniform 16 4.59 0.47 0.00% 10 2.10 0.37 0.00% 10
16 1 Unit Uniform 5 0.85 0.38 0.00% 10 0.75 0.30 0.00% 10
18 1 2c Noon 3c 35.88 0.67 0.00% 10 26.91 0.46 0.00% 10
18 1 2c Uniform 3c 1159.00 0.52 2.07% 8 1008.58 0.51 0.64% 8
18 1 Uniform Noon 16 1299.87 0.61 0.97% 8 963.58 0.55 0.95% 9
18 1 Uniform Noon 5 83.56 0.58 0.00% 10 66.11 0.51 0.00% 10
18 1 Uniform Uniform 16 793.13 0.57 1.95% 8 761.89 0.50 1.34% 8
18 1 Uniform Uniform 5 115.67 0.59 0.00% 10 73.70 0.52 0.00% 10
18 1 Unit Noon 16 2018.45 0.90 0.16% 6 778.54 0.70 0.00% 10
18 1 Unit Noon 5 77.21 0.87 0.00% 10 13.52 0.50 0.00% 10
18 1 Unit Uniform 16 748.42 0.93 0.80% 8 725.15 0.53 0.60% 8
18 1 Unit Uniform 5 1.61 0.75 0.00% 10 1.32 0.49 0.00% 10
Overall 324.97 0.58 0.30% 188 226.26 0.48 0.18% 193
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Table 4.5: Summary of computational results of PM without and with additional
constraints over instances in set 2

PM PM+ AC
time (sec) Gapopt number time (sec) Gapopt number

Scenario avg.
avg.
root

avg.
opt.

instances
avg

avg.
root

avg.
opt.

instances
16 1 2c Noon 3c 1.05 0.42 0.00% 10 0.90 0.40 0.00% 10
16 1 2c Uniform 3c 0.86 0.39 0.00% 10 0.81 0.39 0.00% 10
16 1 Uniform Noon 16 0.50 0.38 0.00% 10 0.70 0.19 0.00% 10
16 1 Uniform Noon 5 0.55 0.18 0.00% 10 0.73 0.39 0.00% 10
16 1 Uniform Uniform 16 0.62 0.40 0.00% 10 0.41 0.19 0.00% 10
16 1 Uniform Uniform 5 0.49 0.34 0.00% 10 0.30 0.13 0.00% 10
16 1 Unit Noon 16 0.26 0.22 0.00% 10 0.10 0.07 0.00% 10
16 1 Unit Noon 5 0.22 0.16 0.00% 10 0.20 0.12 0.00% 10
16 1 Unit Uniform 16 0.48 0.23 0.00% 10 0.45 0.28 0.00% 10
16 1 Unit Uniform 5 0.15 0.11 0.00% 10 0.19 0.14 0.00% 10
18 1 2c Noon 3c 1.50 0.43 0.00% 10 1.34 0.37 0.00% 10
18 1 2c Uniform 3c 8.60 0.46 0.00% 10 2.20 0.42 0.00% 10
18 1 Uniform Noon 16 0.29 0.15 0.00% 10 0.53 0.37 0.00% 10
18 1 Uniform Noon 5 0.54 0.40 0.00% 10 0.19 0.16 0.00% 10
18 1 Uniform Uniform 16 0.78 0.46 0.00% 10 0.64 0.31 0.00% 10
18 1 Uniform Uniform 5 0.46 0.31 0.00% 10 0.30 0.16 0.00% 10
18 1 Unit Noon 16 0.16 0.12 0.00% 10 0.20 0.14 0.00% 10
18 1 Unit Noon 5 0.15 0.11 0.00% 10 0.13 0.11 0.00% 10
18 1 Unit Uniform 16 0.26 0.21 0.00% 10 0.17 0.11 0.00% 10
18 1 Unit Uniform 5 0.22 0.18 0.00% 10 0.18 0.12 0.00% 10
20 1 2c Noon 3c 365.04 0.87 3.02% 9 327.54 0.49 2.95% 9
20 1 2c Uniform 3c 381.65 0.73 0.43% 9 92.23 1.94 0.00% 10
20 1 Uniform Noon 16 2.58 2.00 0.00% 10 1.03 0.42 0.00% 10
20 1 Uniform Noon 5 1.97 1.77 0.00% 10 0.51 0.35 0.00% 10
20 1 Uniform Uniform 16 2.16 1.85 0.00% 10 0.76 0.40 0.00% 10
20 1 Uniform Uniform 5 1.68 1.47 0.00% 10 0.36 0.25 0.00% 10
20 1 Unit Noon 16 0.77 0.43 0.00% 10 0.34 0.27 0.00% 10
20 1 Unit Noon 5 1.51 0.80 0.00% 10 0.81 0.37 0.00% 10
20 1 Unit Uniform 16 0.38 0.35 0.00% 10 0.16 0.15 0.00% 10
20 1 Unit Uniform 5 0.26 0.24 0.00% 10 0.19 0.16 0.00% 10
overall 25.87 0.54 0.11% 298 14.49 0.31 0.10% 299
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Table 4.6: Performance of PM model and continuous models over instances in set 1

Scenario (A) (B) (C) Gap(PM,C)
PM

time(sec)
Continuous
time(sec)

16 1 2c Noon 3c 10 10 8 0.15% 3.28 9.079
16 1 2c Uniform 3c 10 10 7 0.27% 10.55 18.299
16 1 Uniform Noon 16 10 10 3 3.40% 67.16 79.68
16 1 Uniform Noon 5 10 10 0 2.81% 1.95 3.590
16 1 Uniform Uniform 16 10 10 1 4.46% 13.03 23.011
16 1 Uniform Uniform 5 10 10 2 2.34% 0.95 1.685
16 1 Unit Noon 16 10 10 10 0.00% 4.60 5.258
16 1 Unit Noon 5 10 10 10 0.00% 1.59 2.636
16 1 Unit Uniform 16 10 10 10 0.00% 2.10 4.920
16 1 Unit Uniform 5 10 10 10 0.00% 0.75 1.419
18 1 2c Noon 3c 10 10 5 0.38% 26.91 50.670
18 1 2c Uniform 3c 8 9 7 0.13% 1008.58 1127.940
18 1 Uniform Noon 16 9 10 0 5.43% 963.58 1090.270
18 1 Uniform Noon 5 10 10 5 1.32% 66.11 113.340
18 1 Uniform Uniform 16 8 10 0 3.42% 761.89 816.290
18 1 Uniform Uniform 5 10 10 1 1.83% 73.70 167.340
18 1 Unit Noon 16 10 4 7 0.00% 778.54 2765
18 1 Unit Noon 5 10 10 10 0.00% 13.52 18.544
18 1 Unit Uniform 16 8 9 9 0.00% 725.15 931.740
18 1 Unit Uniform 5 10 10 10 0.00% 1.32 1.978
Overall 193 192 115 1.30% 226.26 361.63
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Table 4.7: Performance of PM model and continuous models over instances in set 2

Scenario (A) (B) (C) Gap(PM,C)
PM

time(sec)
Continuous
time(sec)

16 1 2c Noon 3c 10 10 3 0.66% 0.90 1.45
16 1 2c Uniform 3c 10 10 5 0.30% 0.81 4.36
16 1 Uniform Noon 16 10 10 7 0.32% 0.70 1.29
16 1 Uniform Noon 5 10 10 9 0.15% 0.73 3.04
16 1 Uniform Uniform 16 10 10 8 0.14% 0.41 1.29
16 1 Uniform Uniform 5 10 10 9 0.03% 0.30 4.78
16 1 Unit Noon 16 10 10 10 0.00% 0.10 6.16
16 1 Unit Noon 5 10 10 10 0.00% 0.20 9.84
16 1 Unit Uniform 16 10 10 10 0.00% 0.45 3.84
16 1 Unit Uniform 5 10 10 10 0.00% 0.19 7.44
18 1 2c Noon 3c 10 10 4 1.05% 1.34 6.62
18 1 2c Uniform 3c 10 10 1 0.37% 2.20 70.33
18 1 Uniform Noon 16 10 10 9 0.08% 0.53 1.48
18 1 Uniform Noon 5 10 10 8 0.11% 0.19 9.48
18 1 Uniform Uniform 16 10 10 5 0.44% 0.64 1.23
18 1 Uniform Uniform 5 10 10 9 0.08% 0.30 12.39
18 1 Unit Noon 16 10 10 10 0.00% 0.20 1.25
18 1 Unit Noon 5 10 10 10 0.00% 0.13 12.20
18 1 Unit Uniform 16 10 10 10 0.00% 0.17 9.25
18 1 Unit Uniform 5 10 10 10 0.00% 0.18 5.23
20 1 2c Noon 3c 9 9 1 1.36% 327.54 570.84
20 1 2c Uniform 3c 10 10 3 0.84% 92.23 186.66
20 1 Uniform Noon 16 10 10 7 0.37% 1.03 3.54
20 1 Uniform Noon 5 10 10 8 0.09% 0.51 1.14
20 1 Uniform Uniform 16 10 10 7 0.32% 0.76 9.55
20 1 Uniform Uniform 5 10 10 10 0.00% 0.36 7.89
20 1 Unit Noon 16 10 10 10 0.00% 0.34 29.01
20 1 Unit Noon 5 10 10 10 0.00% 0.81 3.57
20 1 Unit Uniform 16 10 10 10 0.00% 0.16 9.17
20 1 Unit Uniform 5 10 10 10 0.00% 0.19 1.14
Overall 299 299 233 0.22% 14.49 33.18
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Table 4.8: Time comparison for two sets which are different in parameter Lm with
identical Lmax

time(sec) time(sec)
Scenario set 1 set 2 Scenario set 1 set 2
16 1 2c Noon 3c 0.9048 1.0451 18 1 Uniform Uniform 5 0.518 0.1559
16 1 2c Uniform 3c 0.744 0.8597 18 1 Unit Noon 16 0.5053 0.1653
16 1 Uniform Noon 16 0.7254 0.499 18 1 Unit Noon 5 0.3683 0.1685
16 1 Uniform Noon 5 0.7129 0.5507 18 1 Unit Uniform 16 0.847 1.9516
16 1 Uniform Uniform 16 0.6568 0.407 18 1 Unit Uniform 5 0.7098 0.138
16 1 Uniform Uniform 5 2.8441 0.2965 20 1 2c Noon 3c 0.6692 2.1059
16 1 Unit Noon 16 0.3604 0.0969 20 1 2c Uniform 3c 0.6676 1.7908
16 1 Unit Noon 5 0.518 0.2011 20 1 Uniform Noon 16 0.7301 1.0295
16 1 Unit Uniform 16 0.4383 0.4836 20 1 Uniform Noon 5 0.7754 0.691
16 1 Unit Uniform 5 0.4399 0.145 20 1 Uniform Uniform 16 0.8658 0.7159
18 1 2c Noon 3c 1.8391 1.4992 20 1 Uniform Uniform 5 0.9048 0.7159
18 1 2c Uniform 3c 0.1824 0.5955 20 1 Unit Noon 16 0.7316 0.4929
18 1 Uniform Noon 16 0.4044 0.2946 20 1 Unit Noon 5 0.6036 0.5256
18 1 Uniform Noon 5 0.6068 0.1934 20 1 Unit Uniform 16 0.6083 0.5802
18 1 Uniform Uniform 16 0.2528 0.1561 20 1 Unit Uniform 5 0.6489 0.5834
set 1: M = 5, Lm = (2, 1, 1.2, 0.8, 2) set 2: M = 5, Lm(1.9, 1.9, 1.9, 0.9, 0.4)

Table 4.9: Summary results of t-test for the difference of running times of two sets,
which are different in parameter Lm with identical Lmax

Item Value
H0 µD = 0
α 0.05
n 30
t 0.67
A [−tα/2,n−1, tα/2,n−1]

[−t0.025,29, t0.025,29] [−2.045, 2.045]
acceptance
region

t ∈ A

rejection
region

t 6∈ A
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Table 4.10: Results of gap value for two sets, which are different in parameter Lm
with identical Lmax

set 1
(M = 5, Lm =
(2,1,1.2,0.8,2) )

set 2
(M = 5, Lm =

(1.9,1.9,1.9,0.9,0.4))
Gap(GA2,PM) Gap(GA2,PM)

Scenario avg min max avg min max
16 1 2c Noon 3c 0.45% 0.00% 1.53% 0.32% 0.00% 0.93%
16 1 2c Uniform 3c 1.77% 0.00% 9.06% 1.53% 0.00% 8.86%
16 1 Uniform Noon 16 0.74% 0.00% 3.99% 0.46% 0.00% 1.62%
16 1 Uniform Noon 5 0.87% 0.00% 1.53% 0.81% 0.00% 2.19%
16 1 Uniform Uniform 16 0.82% 0.00% 2.70% 0.91% 0.00% 5.59%
16 1 Uniform Uniform 5 0.79% 0.00% 2.54% 0.70% 0.00% 2.85%
16 1 Unit Noon 16 0.04% 0.00% 0.40% 0.04% 0.00% 0.40%
16 1 Unit Noon 5 0.59% 0.00% 1.70% 0.59% 0.00% 1.70%
16 1 Unit Uniform 16 0.60% 0.35% 1.04% 0.60% 0.35% 1.04%
16 1 Unit Uniform 5 0.43% 0.00% 1.40% 0.43% 0.00% 1.40%
18 1 2c Noon 3c 0.96% 0.34% 2.59% 0.59% 0.00% 1.30%
18 1 2c Uniform 3c 1.03% 0.00% 3.06% 0.40% 0.00% 0.92%
18 1 Uniform Noon 16 0.72% 0.00% 3.01% 0.25% 0.00% 0.76%
18 1 Uniform Noon 5 0.39% 0.00% 1.45% 0.45% 0.00% 2.58%
18 1 Uniform Uniform 16 0.94% 0.31% 1.70% 0.75% 0.06% 1.37%
18 1 Uniform Uniform 5 0.92% 0.00% 2.68% 0.87% 0.06% 2.52%
18 1 Unit Noon 16 0.17% 0.00% 0.90% 0.17% 0.00% 0.90%
18 1 Unit Noon 5 1.46% 0.00% 4.82% 1.46% 0.00% 4.82%
18 1 Unit Uniform 16 1.09% 0.34% 2.44% 1.09% 0.34% 2.44%
18 1 Unit Uniform 5 0.69% 0.00% 1.55% 0.69% 0.00% 1.55%
20 1 2c Noon 3c 4.78% 0.00% 37.91% 4.74% 0.00% 44.84%
20 1 2c Uniform 3c 1.72% 0.00% 5.73% 0.85% 0.00% 2.78%
20 1 Uniform Noon 16 0.59% 0.00% 1.69% 0.51% 0.00% 1.95%
20 1 Uniform Noon 5 0.43% 0.00% 1.42% 0.50% 0.00% 1.77%
20 1 Uniform Uniform 16 1.06% 0.00% 4.64% 0.82% 0.00% 2.88%
20 1 Uniform Uniform 5 1.85% 0.00% 13.52% 1.83% 0.00% 13.52%
20 1 Unit Noon 16 1.29% 0.00% 3.75% 1.29% 0.00% 3.75%
20 1 Unit Noon 5 1.24% 0.39% 2.99% 1.24% 0.39% 2.99%
20 1 Unit Uniform 16 0.84% 0.00% 2.58% 0.84% 0.00% 2.58%
20 1 Unit Uniform 5 0.58% 0.00% 1.19% 0.58% 0.00% 1.19%
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Table 4.11: Summary results of t-test for the difference of gap values of two sets, which
are different in parameter Lm with identical Lmax

Item Value
H0 µD ≥ 0
α 0.05
n 30
t 0.30
A [−tα,n−1,+∞)

[−t0.05,29,+∞) [−1.699,+∞)
acceptance
region

t ∈ A

rejection
region

t 6∈ A

Table 4.12: Summary of computational results of PM for two sets, which are different
in parameter Lm with differentLmax

set 1
(M = 3, Lmax = 3)

set 2
(M = 3, Lmax = 6)

Scenario time (sec) Gapopt time(sec) Gapopt
16 1 2c Noon 3c 3.28 0.00% 5.07 0.00%
16 1 2c Uniform 3c 10.55 0.00% 2.92 0.00%
16 1 Uniform Noon 16 67.16 0.00% 1138.80 0.40%
16 1 Uniform Noon 5 1.95 0.00% 19.10 0.00%
16 1 Uniform Uniform 16 13.03 0.00% 451.79 0.24%
16 1 Uniform Uniform 5 0.95 0.00% 6.60 0.00%
16 1 Unit Noon 16 4.60 0.00% 16.64 0.00%
16 1 Unit Noon 5 1.59 0.00% 3.08 0.00%
16 1 Unit Uniform 16 2.10 0.00% 4.06 0.00%
16 1 Unit Uniform 5 0.75 0.00% 1.07 0.00%
18 1 2c Noon 3c 26.91 0.00% 586.54 0.38%
18 1 2c Uniform 3c 1008.58 0.64% 739.29 0.45%
18 1 Uniform Noon 16 963.58 0.95% 2315.74 3.72%
18 1 Uniform Noon 5 66.11 0.00% 98.98 0.00%
18 1 Uniform Uniform 16 761.89 1.34% 1935.04 3.50%
18 1 Uniform Uniform 5 73.70 0.00% 510.03 0.53%
18 1 Unit Noon 16 778.54 0.00% 796.87 0.00%
18 1 Unit Noon 5 13.52 0.00% 17.42 0.00%
18 1 Unit Uniform 16 725.15 0.60% 730.38 0.60%
18 1 Unit Uniform 5 1.32 0.00% 1.34 0.00%
Overall 226.26 0.18% 469.04 0.49%
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Table 4.13: CPU time comparison for two sets which are different in parameter vj

time(sec) time(sec)
Scenario set 1 set 2 Scenario set 1 set 2
16 1 2c Noon 3c 0.7971 0.808 18 1 2c Noon 3c 0.3746 0.1559
16 1 2c Uniform 3c 0.7627 0.808 18 1 2c Uniform 3c 0.3808 0.1559
16 1 Uniform Noon 16 0.7222 0.8064 18 1 Uniform Noon 16 0.4198 0.1575
16 1 Uniform Noon 5 0.6677 0.8064 18 1 Uniform Noon 5 0.4884 0.1575
16 1 Uniform Uniform 16 0.6599 0.8048 18 1 Uniform Uniform 16 0.4915 0.1575
16 1 Uniform Uniform 5 0.7176 0.8063 18 1 Uniform Uniform 5 0.4307 0.1576
16 1 Unit Noon 16 0.5928 0.4631 18 1 Unit Noon 16 0.4339 0.2575
16 1 Unit Noon 5 0.5351 0.4632 18 1 Unit Noon 5 0.4698 0.2574
16 1 Unit Uniform 16 0.4806 0.1543 18 1 Unit Uniform 16 0.465 0.2574
16 1 Unit Uniform 5 0.4151 0.1543 18 1 Unit Uniform 5 0.5304 0.2574
set 1: M = 5, vj ∼ U(0, 2) set 2: M = 5, vj ∼ U(0, 1.5)

Table 4.14: Summary results of t-test for the difference of running times of two sets,
which are different in parameter vj

Item Value
H0 µD = 0
α 0.05
n 20
t 2.08
A [−tα/2,n−1, tα/2,n−1]

[−t0.025,19, t0.025,19] [−2.093, 2.093]
acceptance
region

t ∈ A

rejection
region

t 6∈ A
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Table 4.15: Results of gap value for two sets, which are different in parameter vj

set 1
(M = 5, vj ∼ U(0, 2) )

set 2
(M = 5, vj ∼ U(0, 1.5))

Gap(GA2,PM) Gap(GA2,PM)

Scenario avg min max avg min max
16 1 2c Noon 3c 3.58% 1.53% 8.48% 1.17% 0.00% 2.68%
16 1 2c Uniform 3c 6.22% 0.00% 14.28% 2.50% 0.00% 10.32%
16 1 Uniform Noon 16 6.77% 2.62% 13.00% 5.66% 0.00% 20.74%
16 1 Uniform Noon 5 6.62% 2.31% 15.27% 1.71% 0.00% 4.37%
16 1 Uniform Uniform 16 9.44% 3.22% 16.01% 3.68% 0.00% 8.21%
16 1 Uniform Uniform 5 3.56% 0.15% 11.34% 0.54% 0.00% 1.62%
16 1 Unit Noon 16 0.63% 0.00% 1.56% 0.63% 0.00% 1.56%
16 1 Unit Noon 5 1.61% 0.84% 2.93% 1.61% 0.84% 2.93%
16 1 Unit Uniform 16 1.32% 0.00% 2.07% 1.32% 0.00% 2.07%
16 1 Unit Uniform 5 0.55% 0.00% 2.26% 0.55% 0.00% 2.26%
18 1 2c Noon 3c 4.51% 0.65% 9.41% 1.81% 0.00% 4.58%
18 1 2c Uniform 3c 4.47% 0.00% 18.05% 1.73% 0.00% 3.35%
18 1 Uniform Noon 16 8.22% 2.16% 13.35% 3.29% 0.00% 10.10%
18 1 Uniform Noon 5 4.74% 1.63% 9.08% 2.49% 0.49% 5.76%
18 1 Uniform Uniform 16 9.71% 1.48% 20.04% 4.64% 1.89% 9.85%
18 1 Uniform Uniform 5 6.42% 1.91% 10.79% 4.52% 1.07% 10.51%
18 1 Unit Noon 16 1.50% 0.33% 2.90% 1.50% 0.33% 2.90%
18 1 Unit Noon 5 2.56% 0.18% 5.33% 2.56% 0.18% 5.33%
18 1 Unit Uniform 16 1.79% 0.04% 4.24% 1.79% 0.04% 4.24%
18 1 Unit Uniform 5 1.36% 0.00% 3.22% 1.36% 0.00% 3.22%

Table 4.16: Summary results of t-test for the difference of gap values of two sets, which
are different in parameter vj

Item Value
H0 µD ≥ 0
α 0.05
n 20
t 2.19
A [−tα,n−1,+∞)

[−t0.05,19,+∞) [−1.729,+∞)
acceptance
region

t ∈ A

rejection
region

t 6∈ A
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Chapter 5

SUMMARY AND FUTURE RESEARCH

5.1 Summary

This research provided a comprehensive analysis of berth planning problems in dry

bulk terminals. This study focuses on the partitioned version of Berth Allocation

Problem (BAP). We present a mixed integer linear programming model to minimize

the sum of arriving vessels’ completion times. The model, which is based on sequence-

variables, reflects allocating vessels to berth positions subject to tidal constraints. We

have also developed three additional constraints and add them the model to make it

computationally more tractable.

To better understand the performance of models, we test the model on instances

generated based on the real data of a dry bulk terminal. The mathematical models

are solved by IBM ILOG CPLEX 12.5.1. Furthermore, we develop two heuristic

algorithms that enable us to obtain near optimal solutions to the problem within a

short computational time for large-size instances.

To reflect the importance of some parameters in the proposed model, we applied

sensitivity analysis. We also compared the solutions obtained from the partitioned

model with the solutions obtained from the continuous model proposed in [30]. All

parameters used in the models are the same and fixed. According to the results of

this comparison, we concluded that both models are strong, effective and applicable

depending on the planning horizon.
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5.2 Future Research

Despite the accomplishments, this study is subject to limitations like any other research.

Some suggestions for future work include the following:

In this research it is assumed that the lengths of partitioned sections are static

and fixed at the beginning of the time period. However, they can be dynamic with

respect to the length of vessels assigned to them. Thus, future research may consider

this factor and build a more practical model for berth operations.

Berth allocation problems are dynamic in real world. Many unpredictable causes

may lead to changes in operating conditions. For example, a vessel may arrive earlier

or later than its expected arrival time due to an unexpected change in its departure

time from the previous port. Changes may also occur during the service time of vessels.

Hence, designing a dynamic algorithm for solving the BAP is necessary. This research

considers a static BAP in which all input data are generated as constant parameters.

For future research, operational information, such as vessels’ arrival times or vessels’

handling times may not be known ahead of time and hence may change dynamically

over time. The model can also be extended to multi-objective cases.

In this study we design two simple heuristic algorithms. They are shown to be

efficient and helpful to get near optimal solutions as the upper bound values for the

proposed model. For the future study, more effective heuristics can be developed to

produce a solution in a reasonable time frame for solving the problem. In particular,

adopting some meta-heuristics (e.g., genetic algorithm) for the problem can be also of

interest, especially for solving large-size instances.
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minimum cost berth allocation,” European Journal of Operational Research 191,

636–649 (2008).

[10] J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia, “Models and tabu search

heuristics for the berth-allocation problem,” Transportation science 39, 526–538

(2005).

[11] D. Xu, C.-L. Li, and J. Y.-T. Leung, “Berth allocation with time-dependent

physical limitations on vessels,” European Journal of Operational Research 216,

47–56 (2012).

[12] L. L. Lorenzoni, H. Ahonen, and A. G. de Alvarenga, “A multi-mode resource-

constrained scheduling problem in the context of port operations,” Computers &

Industrial Engineering 50, 55–65 (2006).

[13] V. H. Barros, T. S. Costa, A. C. Oliveira, and L. A. Lorena, “Model and heuristic

for berth allocation in tidal bulk ports with stock level constraints,” Computers &

Industrial Engineering 60, 606–613 (2011).

[14] K. H. Kim and K. C. Moon, “Berth scheduling by simulated annealing,” Trans-

portation Research Part B: Methodological 37, 541–560 (2003).

[15] C.-l. Li, X. Cai, and C.-y. Lee, “Scheduling with multiple-job-on-one-processor

pattern,” IIE transactions 30, 433–445 (1998).

[16] Y. Guan and R. K. Cheung, “The berth allocation problem: models and solution

methods,” Or Spectrum 26, 75–92 (2004).

[17] A. Imai, X. Sun, E. Nishimura, and S. Papadimitriou, “Berth allocation in

a container port: using a continuous location space approach,” Transportation

Research Part B: Methodological 39, 199–221 (2005).



Bibliography 73

[18] C. Cheong, K. Tan, D. Liu, and C. Lin, “Multi-objective and prioritized berth

allocation in container ports,” Annals of Operations Research 180, 63–103 (2010).

[19] R. Moorthy and C.-P. Teo, “Berth management in container terminal: the

template design problem,” OR spectrum 28, 495–518 (2006).

[20] A. Imai, J.-T. Zhang, E. Nishimura, and S. Papadimitriou, “The berth allocation

problem with service time and delay time objectives,” Maritime Economics &

Logistics 9, 269–290 (2007).

[21] A. Imai, E. Nishimura, M. Hattori, and S. Papadimitriou, “Berth allocation

at indented berths for mega-containerships,” European Journal of Operational

Research 179, 579–593 (2007).

[22] N. Umang, M. Bierlaire, and I. Vacca, “Exact and heuristic methods to solve the

berth allocation problem in bulk ports,” Transportation Research Part E: Logistics

and Transportation Review 54, 14–31 (2013).

[23] Y.-M. Park and K. H. Kim, “A scheduling method for berth and quay cranes,” in

“Container Terminals and Automated Transport Systems,” (OR Spectrum, 2003),

pp. 1–23.

[24] J.-F. Cordeau, M. Gaudioso, G. Laporte, and L. Moccia, “The service allocation

problem at the gioia tauro maritime terminal,” European Journal of Operational

Research 176, 1167–1184 (2007).

[25] C. Liang, Y. Huang, and Y. Yang, “A quay crane dynamic scheduling problem

by hybrid evolutionary algorithm for berth allocation planning,” Computers &

Industrial Engineering 56, 1021–1028 (2009).

[26] C. Liang, L. Lin, and J. Jo, “Multiobjective hybrid genetic algorithm for quay

crane scheduling in berth allocation planning,” International Journal of Manufac-

turing Technology and Management 16, 127–146 (2009).



Bibliography 74

[27] F. Meisel and C. Bierwirth, “Heuristics for the integration of crane productivity

in the berth allocation problem,” Transportation Research Part E: Logistics and

Transportation Review 45, 196–209 (2009).

[28] J. Blazewicz, T. E. Cheng, M. Machowiak, and C. Oguz, “Berth and quay crane

allocation: a moldable task scheduling model,” Journal of the Operational Research

Society 62, 1189–1197 (2011).

[29] T. Robenek, N. Umang, M. Bierlaire, and S. Ropke, “A branch-and-price algorithm

to solve the integrated berth allocation and yard assignment problem in bulk ports,”

European Journal of Operational Research 235, 399–411 (2014).

[30] A. T. Ernst, C. Oguz, G. Singh, and G. Taherkhani, “Mathematical models for

the berth allocation problem in dry bulk terminal,” under review for Journal of

Scheduling (2015).


	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Container Terminal
	Dry Bulk Terminal
	Characteristics of Dry Bulk Terminals

	Dry Bulk Terminals vs Container Terminals
	Berth Allocation Problems
	Continuous BAPs
	Discrete BAPs
	Partitioned BAPs

	Outline of the Thesis

	Literature Review
	Discrete BAP
	Continuous BAP
	Hybrid BAP
	Integrated BAP 

	Berth Allocation problem
	Problem Definition
	Mathematical Model
	Valid Inequalities and Symmetry Elimination Constraints
	Heuristic Algorithms
	Greedy Algorithm 1
	Greedy Algorithm 2


	Computational Analysis
	Data Generation 
	Computational Results
	Comparative Analysis
	Comparison of the Results of PM Model with the Continuous Model
	Comparison of Greedy Algorithm 2 with the Greedy Algorithm 1

	Effect of the Parameter Settings on the Performance of PM Model and Greedy Algorithm 2
	Sensitivity Analysis of Parameter Lm with Identical Lmax
	Sensitivity Analysis of Parameter Lm with Different Lmax
	Sensitivity Analysis of Parameter vj


	Summary and future research
	Summary
	Future Research

	Bibliography

