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ABSTRACT 

Accumulation-to-bound models provide a neurally plausible mechanistic framework 

for the decision process. Evidence accumulation rate in these models depends both on 

the stimulus properties and the agent’s abilities, but evades cognitive control. 

Dorsolateral prefrontal cortex (DLPFC) activity is one of the neural correlates of how 

well an agent integrates the available evidence. Supporting the correlational imaging 

studies, brain stimulation studies elicit reduced evidence accumulation rates by 

inhibiting this region via transcranial magnetic stimulation (TMS). This study aimed 

to (1) partially replicate these findings, (2) investigate whether this latent decision 

variable can also be improved via excitation of left DLPFC, and (3) explore potential 

effects of activity modulation in this region on any other decision parameters, 

particularly decision criteria. We did not replicate the drift-rate suppression effect due 

to inhibition, but did find a trend for the drift-rate enhancing effect of DLPFC 

excitation specifically when the signal to noise ratio of the sensory input was low. We 

also found that inhibition of the left DLPFC results in more cautious responding 

compared to when the same region was targeted with excitation. The novel findings of 

this study challenge the existing studies regarding the role of DLPFC in the decision 

process and adds a new perspective to the literature that investigates evidence 

accumulation and decision thresholds in isolation.  

 

Keywords: Perceptual Decision Making; Transcranial Magnetic Stimulation; 

Computational Modelling; Drift Diffusion Model; Dorsolateral Prefrontal Cortex 
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ÖZET 
 
Eşiğe doğru delil birikimi modelleri, karar verme süreçlerini anlamak için altta yatan 

sinirsel mekanizmalarla da uyumlu bir bakış açısı sunar. Bu süreçlerdeki delil toplama 

hızı hem uyaranın özelliklerine hem de karar vericinin becerilerine bağlıdır ve bilişsel 

olarak kontrolü mümkün değildir. Mevcut delilin etkili olarak bütünleştirilmesinin 

sinirsel eşleniklerinden biri dorsolateral prefrontal korteks (DLPFK) aktivitesi olarak 

görülmektedir. Bu yöndeki ilintisel görüntüleme çalışmalarını destekleyen beyin 

uyarım çalışmaları da bölgedeki aktivitenin azaltılması ile delil bütünleştirme hızının 

da düştüğünü göstermektedir. Bu çalışma (1) delil toplama hızını düşüren önceki beyin 

uyarım çalışmalarının kısmen tekrarlanmasını ve teyidini, (2) sol DLPFK aktivitesini 

artırarak ile delil toplamayı hızlandırmanın mümkün olup olmadığının araştırılmasını 

ve (3) bu bölgedeki aktivite değişimlerinin karar eşikleri gibi diğer karar 

parametrelerine etkisinin keşfini amaçlamaktadır. Çalışma sonucunda önceki 

çalışmalardaki sürüklenme hızı azaltma etkisi tekrarlanamamış, fakat sinyal seviyesi 

düşük (zor) kararlarda DLPFK aktivitesini artırıcı uyarım sürüklenme hızını artırmaya 

yönelik bir eğilim göstermiştir. Aynı zamanda DLPFK baskılanmasının, aynı 

bölgedeki aktivitenin artırıldığı duruma kıyasla daha temkinli karar stratejileri 

belirlenmesine sebep olduğu bulunmuştur. Bu çalışma mevcut araştırmalara karşıt 

bulguları ile DLPFK’nin karar verme süreçlerinin farklı aşamalarındaki rolünü 

tartışmakta ve bu aşamaları birbirinden ayrı değerlendiren alanyazına yeni bir 

perspektif sunmaktadır. 

 

Anahtar Kelimeler: Algısal Karar Verme; Transkraniyal Manyetik Uyarım; 

Computational Modelling; Drift Diffusion Model; Dorsolateral Prefrontal Cortex 
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1. INTRODUCTION 

1.1. Background 

Classifying noisy input from the environment is a task people undertake every day in 

different forms. Understanding what happens in the brain during these decisions is 

therefore useful for insight into a wide range of human behavior. Generative 

computational models of decision making provide valuable insight into mechanistic 

aspects of decisions that are traditionally investigated through descriptive outcomes, 

namely response time and accuracy. A widely used family of such models 

conceptualize decisions as noisy evidence accumulation up to a set boundary (for a 

review, see Ratcliff, Smith, Brown & McKoon, 2016). Neural correlates of the 

psychologically-meaningful parameters of this model is a rich research area, with 

imaging studies exploring potential regions of interest and brain stimulation studies 

modulating the activity in these regions to establish causal links. The rate of evidence 

accumulation in this process is an especially intriguing target, as it evades explicit 

cognitive control. There are imaging studies that show neural correlates of this 

parameter (Mulder, van Maanen & Forstman, 2014), as well as neuromodulation 

studies that cause a reduction in this parameter (Philiastides, Auksztulewicz,  

Heekeren, & Blankenburg, 2011, Georgiev, Rocchi, Tocco, Speekenbrink, Rothwell, 

& Jahanshahi, 2016), but none that boost it. In this study, we set out to replicate the 

previous brain stimulation findings, further investigate whether this latent decision 

variable can be boosted through excitation of the same area, and explore the effects of 

neuromodulation in this region to other model parameters, guided by a conflicting 

literature.  
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1.2 Drift Diffusion Model 

The Drift Diffusion Model (DDM) integrates the two primary and interdependent 

behavioral outcomes of two alternative forced choice (2AFC) tasks (response time and 

accuracy) in a generative framework that underlies the observed decision behaviors 

(Ratcliff, 1978; Ratcliff, 2016; Forstmann 2015). In this model, noisy information 

accumulates over time at a certain rate (i.e. drift rate) towards one of two decision 

boundaries until either threshold is reached, at which point the agent executes the 

corresponding decision. The drift rate parameter indicates the efficiency with which 

evidence can be perceived and integrated, and the separation of the two thresholds 

corresponds to the decision strategy (i.e. level of caution). Investigating 2AFC task 

performance in terms of these parameters instead of observed behavioral data (latency 

and accuracy of decisions) provides a way to integrate these two interdependent 

measures to allow for easier and more intuitive interpretation.  

 

Another advantage of using the drift diffusion model to as the generative process 

behind perceptual decision-making is its compatibility with neural dynamics in 

evidence accumulation in both humans and non-human animals. For example, neural 

recordings in the lateral intraparietal area (LIP) and frontal eye field (FEF) of monkeys 

show the neural populations in these regions increasing their firing rate until they hit 

a plateau as they observe a stimulus before choosing between two alternative 

responses, in a way one would expect from a decision particle of the drift diffusion 

model (e.g. Kim & Shadlen, 1999; Gold & Shadlen, 2007, Ding & Gold, 2013). The 

neural correlates of the drift diffusion model are also being investigated in humans. 

Drift rate, related to both the signal-to-noise ratio of the stimulus (i.e. task difficulty) 

and the ability of the individual to integrate evidence, seems to correlate with blood-
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oxygen-level-dependent (BOLD) activity in various regions in the fronto-parietal 

network: BOLD activity in DLPFC is found to be positively correlated with the drift 

rate (Heekeren 2004, Rolls 2010, Philiastides 2007), whereas the right insular cortex, 

the frontal eye field (FEF) and intraparietal sulcus (IPS) are negatively correlated (Ho 

et al., 2009; Basten et al., 2010, Liu & Pleskac, 2011). Threshold setting, related to 

caution and therefore inhibition or disinhibition of responses under a response policy, 

is correlated with BOLD activity in regions of the frontostriatal network, particularly 

pre-supplementary motor area (pre-SMA), anterior cingulate cortex (ACC), striatum, 

and the sub-thalamic nucleus (STN) (Bogacz, 2010; Forstmann, 2008). Compatibility 

with neural dynamics makes DDM an especially useful explanatory tool for decision-

making and the generative processes behind it. 

 

1.3. Neuromodulation Studies 

While correlational functional magnetic resonance imaging (fMRI) studies are useful 

as a rough guide, they do not provide a causal link between the neural activity and the 

observed behaviour, and the discrepancy of the time scale between the task and the 

measurements is a fundamental shortcoming in understanding what exactly is going 

on in the brain during decision-making and how it leads to behavior. Studies looking 

to modulate the activity of brain regions associated with DDM parameters to observe 

any corresponding changes in the parameters therefore provide an invaluable causal 

link to these associations. Threshold setting, being associated with a relatively well-

studied network, has been the target of such studies within the drift diffusion model 

framework, albeit with inconsistent results. deHollander and colleagues have found no 

effect of inhibition of pre-SMA using transcranial direct current stimulation (tDCS) 

on decision thresholds, while Georgiev et al. (2016) have found that inhibition of pre-
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SMA with a continuous theta burst stimulation (cTBS) protocol lowered the threshold, 

going against what the literature would predict. Recently, two studies (Tosun, Berkay, 

Sack, Cakmak & Balci, 2017; Berkay, Eser, Sack, Cakmak & Balci, 2018) have found 

that inhibition of the preSMA increases the threshold and results in more cautious 

responding and that excitation of the same area leads to the opposite effect, a finding 

that is in line with what the imaging literature predicts.  

 

The relationship between the drift rate and the cognitive processes it relates to is still 

under investigation. The interdependence of task difficulty, motivation, and attention 

make it difficult to pinpoint the exact mapping between these cognitive processes, their 

neural correlates, and drift rate (Mulder et al., 2014). Despite these issues, drift rate is 

also emerging as a target parameter for neuromodulation. Philiastides et al. (2011) 

have demonstrated a causal effect of inhibiting the left DLPFC on reduction in drift 

rate in healthy individuals using a face-versus-car discrimination task. Georgiev et al. 

(2016) tested whether this was also possible by inhibition of the region on the right 

hemisphere and with a lower-level perceptual task, and found that inhibiting the right 

DLPFC with cTBS also resulted in a reduction in drift rate, although the effect was 

observed only in easy tasks (with high signal to noise ratio) and not harder ones (with 

low signal to noise ratio). These two studies, in combination, present a convincing, 

albeit unidirectional, case regarding the causal role of DLPFC in the rate of evidence 

accumulation in either hemisphere and across various visuo-perceptual tasks, at least 

at certain task difficulties. 

 

In a more comprehensive study investigating the hierarchical progression of various 

aspects of decisions in the cortex, Rahnev et al. (2016) disrupted activity in the frontal 
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eye field (FEF), DLPFC and anterior prefrontal cortex (aPFC) (all in the right 

hemisphere) using cTBS in separate sessions. They argue that their findings are 

consistent with activity changes in rDLPFC affecting decision criteria (i.e. threshold), 

whereas FEF was associated with changes in drift rate and aPFC with changes in 

metacognition (self-evaluation of responses). It is worth noting that the findings of this 

latter study are based on RT differences and are not directly modeled, and that the 

conclusions on model parameters stem from the researchers’ simulation of comparable 

data using a diffusion model with two accumulators (which introduces a metacognitive 

aspect). However, while recognizing that the model and the analysis may not be 

directly comparable to the previous studies and the one we have conducted, there are 

correlational studies that suggest that DLPFC plays a role in decision criterion setting 

that lend support to Rahnev et al.’s findings (e.g. Ivanoff et al., 2008; Van Veen et al., 

2008, Vallesi et al., 2012, Weigard et al., 2018). These studies provide a good reason 

to look out for and explore any effects of DLPFC stimulation and inhibition on 

threshold settings as well as drift rate. 

 

The neuromodulation studies targeting drift rate have so far aimed exclusively to 

disrupt activity in areas positively correlated with the parameter in order to dampen it. 

Considering that the cognitive processes thought to underlie drift rate are attention, 

motivation and perceptual evidence integration efficiency in general, an increase in 

drift rate could potentially entail a valuable form of cognitive enhancement. Cognitive 

enhancement using noninvasive stimulation techniques such as tDCS and TMS is an 

increasingly active research area with popular interest in the outcomes (Luber 2013, 

Demeter 2016). As an example to a study suggesting that a boost to a cognitive process 

like attention is possible, He et al. (2013) have induced an improvement in alerting 
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and executive attention in an Attention Network Test (ANT) by stimulating the right 

dorsolateral prefrontal cortex (rDLPFC) of healthy subjects using an iTBS protocol. 

Since this region is also implicated by drift rate, and the inhibition of which has 

resulted in a reduction of drift rate with a cTBS protocol (Georgiev et al., 2016), this 

study provides an additional indication that the DLPFC is a suitable target for studying 

drift rate enhancement with TMS. 

 

1.4. Aims and Hypotheses 

In light of these previous findings, we designed this study to fill a missing link in the 

existing literature by modulating drift rate in healthy individuals by means of 

stimulating the left dorsolateral prefrontal cortex (DLPFC) with offline transcranial 

magnetic stimulation (TMS) before a perceptual decision task. The primary aim of the 

proposed study was to boost cognitive evidence accumulation efficiency for healthy 

individuals during a low-level perceptual task. A secondary aim was to replicate the 

previous findings demonstrating that drift rate can be reduced by inhibiting the 

DLPFC, thereby establishing a functional role of DLPFC in bidirectional modulation 

of drift rate in a single study. A third and final aim was to explore the effects of DLPFC 

activity on other DDM parameters, particularly decision threshold, as suggested by the 

literature. 

 

We hypothesized that, in line with previous findings, cTBS targeting DLPFC would 

result in a reduction of drift rate especially in the easy version of the perceptual task 

where signal-to-noise ratio was high, providing room for reduction. Similarly, we also 

hypothesized that the iTBS protocol on the same area would increase the drift rate 

especially in the hard version of the task with a low enough signal-to-noise ratio that 
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allows for a boost to make a difference. The changes to the threshold settings were 

exploratory, but with a cautionary note that the changes in the two parameters may 

affect the outcomes of each other that we predicted in isolation, we hypothesized that 

the inhibition of DLPFC would lead to a higher threshold, and the excitation of the 

area would decrease the decision threshold. We did not have a prediction for how the 

threshold settings would interact with difficulty levels. 

 

2. METHODS 

2.1. Participants 

The experiment was announced through a university-wide newsletter in Koc 

University and those who were interested were sent anonymous health forms. Health 

forms contained questions about the exclusion criteria; people with any personal and 

family history of neurological and psychiatric disorders, psychoactive drug use in the 

past month, or metal implants were excluded. We recruited only right-handed people 

between the ages of 18 and 30 in order to minimize potential variance in brain structure 

and function. 40 healthy adult volunteers took part in the study for at least one session, 

of which 35 completed two sessions (21 Females, aged 20.03  ± 1.24) and 25 

completed all four sessions (16 Females, aged 19.96 ± 1.40). All participants gave 

written consent for participation in the study and received 20 TL per stimulation 

session and 10 TL per baseline session without stimulation as compensation for their 

time. The participants were asked to attend all sessions well-rested and to avoid 

ingesting any stimulants such as caffeine or nicotine 4 hours prior to testing.  
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2.2. Design 

The study took place over four sessions on separate days. The first session only had 

behavioral testing (Dot Motion Discrimination Task, detailed below) with no 

stimulation, and the remaining three sessions consisted of a transcranial magnetic 

stimulation protocol, followed by behavioral testing. The randomization of the order 

of stimulation protocols (inhibition, excitation, and sham) for these three sessions was 

conducted in two steps: (1) the condition for the second session followed a pseudo-

random pattern, with each condition appearing once in every three-participant 

sequence, and (2) the third and fourth sessions alternated in an orderly fashion between 

the two remaining alternative stimulation conditions, if the participant decided to 

continue after the second session. 

 

The data from the first behavioral session was used in the single session group-

comparison analyses as a comparison point for the effects of stimulation in the 

following session. One participant was removed from this analysis due to having an 

extremely slow median response time in the baseline session across difficulty levels 

(3.67s, z = 7.6). The baseline session was not used for the within-subjects analyses, 

eliminating the initial learning phase as a confound for the analysis. The decision to 

plan and randomize for two separate analyses was in anticipation of a high drop-out 

rate after the second session due to either scheduling issues or potential intimidation 

by the stimulation procedure, and aimed to make use of the data from participants with 

only two sessions in a between-subjects analysis. We present both analyses as planned, 

but note that the single session analyses that use between-subjects comparisons are 

highly under-powered due to high inter-individual variability in baseline performance, 

learning and TMS responsivity.  
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The a priori power analysis were conducted based on the within-subject effects found 

in Georgiev et al. (2015), and indicated that twenty-four participants taking part in all 

four sessions would be sufficient for %80 power, assuming that stimulation order has 

no effect in our design. We note that our design and analyses differ from the study that 

constituted the basis of the expected effects in the power analysis, but also note that 

that same study used only fifteen participants and still found significant effects. 

 

Table 1. Number of participants in each stimulation order condition for both 

analyses. 

 Sham Inhibition Excitation Total 

Single Session 11 11 12 34 

Ses. 3 Cond. Inh. Exc. Shm. Exc. Shm. Inh.  

Three Sessions 4 3 5 5 4 4 25 

 

2.3. Task 

Dot motion discrimination task consisted of white dots (2 px) moving on a black 

background within a circular field with a diameter of 10 visual degrees. Most of the 

dots were displaced in random directions at each frame, while a certain portion of the 

dots moved coherently in one direction, either to the left or to the right. The task of the 

participant was to indicate the direction of the coherent dots as fast and as accurately 

as possible in a free-response paradigm. Correct answers were followed by an auditory 

positive feedback, whereas errors received no feedback. The response-to-stimulus 

intervals (RSI) were sampled from a uniform distribution with a range of 0.5-1.5s. The 

task was written and presented in MATLAB (2015b) using Psychtoolbox (v3.0.14, 
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Brainard, 1997) on an iMac computer (late 2012, 21.7 inch, OSX 10.9.5), and 

responses were collected via a mechanical keyboard (Zalman ZM-K500). The 

participants were seated approximately 85 cm away from the monitor and were 

instructed to use both hands when responding (any finger of the left hand on the A key 

to respond left, and any finger of the right hand on the L key to respond right). 

 

The percentage of coherent dots determines the objective difficulty of the task. We 

used three different coherence levels: high (35%), moderate (15%), and low (5%), 

where each block of 50 trials had a constant coherence level throughout. The 

coherence levels were chosen to test the interaction of DLPFC-related drift rate 

changes and difficulty previously found in the Georgiev et al. (2016) study, where 

inhibition caused a drop in drift rate in high (35% and 50%) but not in lower coherence 

levels. We presented the coherences in a block design (instead of in interleaved trials) 

in order to observe any potential changes in decision thresholds differentially for the 

coherence levels. The participants were not cued about the coherence levels at the 

beginning of each block, but were informed in the initial instructions that there were 

three difficulty levels that would come up in random order and remain constant within 

blocks. 

 

In all sessions, the participants completed one practice block of each coherence level 

in fixed order (high-moderate-low). The data from practice blocks was not used for 

the analyses. In the baseline session, the practice part was immediately followed by 

the experimental part of twelve blocks with a pseudo-random order of coherences, 

where all three coherences appeared in random order in four groups of three blocks. 

In the other sessions, the practice part was followed by the stimulation procedure 
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(detailed below), after which the participant was asked to complete the twelve 

experimental blocks of the computerized task. In each session, participants completed 

a total of 750 trials, with 200 non-practice trials per difficulty level. 

 

2.4. Transcranial Magnetic Stimulation 

2.4.1. Equipment 

We used Magstim Super Rapid2 magnetic simulator with a 70-mm figure-of-eight coil 

for all TMS sessions. Region localization was made using the 10-20 system 

(g.GAMMAcap, G.Tec Medical Engineering GMBH, Austria). Despite being a region 

spanning a large area containing three Brodmann’s Areas (8, 9, 46), the dorsolateral 

prefrontal cortex (DLPFC), is often targeted using the F3 (left) and F4 (right) electrode 

sites in tDCS and TMS studies (e.g. Georgiev et al. 2016, also see Herwig, Satrapi & 

Schonfeldt-Lecuona, 2003), and we stimulated over F3 following this convention. 

 

2.4.2. Motor threshold  

In the second session (the first session with stimulation), we determined the active 

motor threshold of the participants using single pulse stimulation over the left motor 

cortex (C3), with the coil angled at 45 degrees to the midline and the coil handle 

pointing backwards. Initially, the region was stimulated several times at 65% of the 

maximum stimulator intensity with slight changes to the coil location and/or increased 

intensity (up to a maximum of 80%) until the motor hotspot was detected and a 

movement was observed on the right hand. This initial search was conducted at a 

higher-than-average intensity in order to ensure correct coil localization, and 

participants where no movement could be elicited at 80% intensity were excluded from 

the study. Once a movement was elicited on the right hand, the coil location was 
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stabilized, and stimulation intensity was dropped by fifteen percentage points to start 

the staircase protocol. C3 was then stimulated at each intensity, increasing by five 

percentage points until a movement was observed on the right hand for more than five 

out of ten pulses, and dropped by one percentage point until a movement was observed 

for five or fewer out of ten pulses. The final motor thresholds had a range of 44-74 and 

a mean of 60.82. In the third and fourth sessions, the motor cortex was stimulated at 

the motor threshold for ten pulses in order to reduce the perceived difference between 

sessions for the participants, but no changes were made to the motor threshold 

depending on the observed motor output in these sessions. 

 

2.4.3. Targets and Stimulation Protocol 

We chose theta burst stimulation protocols over varying frequencies of repetitive 

TMS, as TBS protocols allow applying many pulses within a much shorter time frame, 

with longer lasting effects (Huang et al. 2005). These advantages make TBS a safer, 

more practical, more effective and less variable option compared to rTMS. For the 

inhibition sessions, we applied continuous theta burst stimulation (cTBS) over the F3 

electrode site, with three 50Hz pulses repeated every 200 milliseconds continuously 

for 40 seconds (Huang et al., 2005). For the excitation sessions, we applied intermittent 

theta burst stimulation (iTBS) over the F3 electrode site, with 2-second trains of three 

50Hz pulses every 10 seconds for 190 seconds (Huang et al., 2005). For the sham 

sessions, we applied intermediate theta burst stimulation (imTBS) to the vertex (Cz), 

in order to avoid any task-relevant brain region while preserving most of the peripheral 

sensation of the stimulation on the scalp. The imTBS protocol is shown to not have 

any inhibitory or excitatory effects, and was chosen to both avoid the risk of 

modulating the activity of the nearby sensory and motor areas, as well as to provide a 
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different auditory output than the other two protocols and avoid creating misleading 

expectations.  

 

For all stimulation conditions, a total of 600 pulses were applied. All stimulations were 

done at 80% of the participant’s active motor threshold. For those with a stimulation 

intensity higher than 50%, the theta burst frequency was automatically readjusted from 

50 Hz (1 Hz drop every 2 percentage point increases in intensity, down to a minimum 

of 45 Hz in our sample) due to stimulator constraints. Before starting the full 

stimulation protocol, we applied the theta burst trains for less than a second over the 

stimulation area in order to acclimate the participants and to check for any discomfort. 

If any discomfort was reported, we changed the coil angle (from 45 degrees to the 

anterior posterior midline) until the participant reported no severe discomfort. The 

cTBS and iTBS protocols were expected to have effects lasting up to 60 and 20 

minutes respectively, and the experimental part of the behavioral task was designed to 

take an average 20 minutes immediately following stimulation in order to be 

completed before the neuromodulatory effects tapered off.  

 

2.5. Data Analysis 

2.5.1. Behavioral Outcomes 

We analyzed the two descriptive behavioral outcomes with linear mixed effects 

models, separately for the three difficulty levels. All models had trial-by-trial data as 

input and random intercepts for each participant. The main three-session analyses 

compared the response time (RT) and accuracy in the second, third and fourth sessions, 

in which the participants received the inhibition, excitation, and sham TMS protocols 

in counterbalanced order. The effect of interest was the effect of TMS protocol 
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separately in each difficulty level, but session order of each condition was also 

included in the models as a continuous and centered within-subject fixed variable to 

control for any learning over the sessions. The single-session analyses compared the 

RT and accuracy changes from the first (baseline) session to the second session for 

three groups of participants that received one of three different TMS protocols in the 

second session. The linear mixed effects models were conducted in jamovi (The 

jamovi project, 2019), using the gamlj plugin (Galluci, 2019). Holm-Bonferoni 

corrections were used for multiple comparisons where appropriate. 

 

2.5.2. Model Parameter Estimation 

For DDM parameter estimation and comparison, we used hierarchical drift diffusion 

model (HDDM), a tool that conducts a hierarchical Bayesian estimation of the 

parameters with Markov Chain Monte Carlo (MCMC) sampling to approximate the 

posterior distributions of the parameters (Wiecki, Sofer & Frank, 2013). We chose 

HDDM over other DDM parameter estimation tools as it increases power (Wiecki et 

al., 2013, Ratcliff & Childers, 2015), uses priors informed by published decision 

making studies in the literature compiled by Matzke & Wagenmakers (2009), and 

provides the whole (approximated) posterior distribution of the parameters instead of 

a single estimate. Models that included different combinations of the drift rate (v), 

threshold (a), non-decision time (t) and inter-trial drift-rate variability (sv) (Table 2) 

varying with the stimulation condition (sham/inhibition/excitation), as well as a null 

model, were fit separately to data from three difficulty levels. The best model was 

chosen using deviance information criterion (DIC) scores of the models for each 

difficulty, with a reduction of 10 indicating a justified increase in model complexity. 

Once the best model was chosen, posterior distributions of the parameters were 
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compared to determine whether inhibition and excitation had an effect on the drift rate 

or threshold compared to the sham and no-stimulation (baseline) conditions at each 

coherence level. Similarly to the behavioral analyses, two separate analyses were 

conducted, one to see the effect of a single TMS protocol over the baseline session as 

a between-subjects comparison, and another to see the effects of three different TMS 

protocols over three sessions as a within-subjects comparison.  

Table 2. Parameters and DIC scores of compared models. 

Model 

Name 

Included 

Parameters 

Dependent 

Parameters 

DIC 

(Easy) 

DIC 

(Moderate) 

DIC 

(Hard) 

M0 a, v, t - -14502 -2717 21015 

M1 a, v, t v -14527 -2731 21012 

M2 a, v, t v, a -14525 -2735 20994 

M3 a, v, t, sv v, a -14946 -3357 20132 

M4 a, v, t, sv v, a, t -14961 -3355 20130 

 

For all HDDM fits, trials with RTs faster than 100 ms were excluded as these responses 

were too fast to have come from an actual decision process and thus were not 

informative for the parameter estimation. We also excluded the first five trials of each 

block, as the participants were not informed about the difficulty level of the upcoming 

block and thus would have needed a few trials to gauge the coherence level adjust their 

decision strategies accordingly. The MCMC sampling for all models used 5000 

samples and discarded the first 20 as burn-in. Parameter convergence was evaluated 

using the sampling traces, autocorrelations and distributions of the MCMC chains. The 

posterior distributions of the parameters were compared on a sample-by-sample basis, 

with the end result of each comparison indicating the percentage of the samples where 

the relevant hypothesis held true (denoted with a capital P). We used a significance 



 

 16 

cutoff of 0.95 by convention, but it is important to note that these values denote a 

fundamentally different and intuitive probability value than the frequentist p value and 

the cutoffs should be interpreted as such. 

3. RESULTS 

3.1. Behavioral Outcomes 

3.1.1. Three-Sessions, Within-Subjects 

3.1.1.1. Accuracy 

For the three-session linear mixed model analyses of accuracy, there was no significant 

interaction between stimulation condition and session progress at any of the three 

difficulty levels. For the moderate and hard levels, but not for the easy level, there was 

a positive main effect of session progress on accuracy (mod: bses=0.0124, SE=0.0031, 

p<0.001; hard: bses=0.0121, SE=0.0047, p<0.05) pointing to perceptual learning, with 

a 1.2 percentage point increase in accuracy in consecutive sessions regardless of 

stimulation condition. The main effect of stimulation condition on accuracy was not 

significant at any difficulty level. 

 

3.1.1.2. Response Time 

The interaction of session progress and stimulation condition on response times was 

also non-significant for moderate and hard levels but was significant for the easy level 

(Figure 1). We observed a negative main effect of session progress on response time 

for all three difficulty levels (easy: bses=-0.0248 SE=0.0029, p<0.001; mod: bses=-

0.051, SE=0.0039, p<0.001; hard: bses=-0.119, SE=0.0074, p<0.001), pointing to 

increasing response speed in consecutive sessions due to perceptual learning. We also 

observed a significant main effect of stimulation condition on RTs in all three 
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difficulty levels. Given the non-interaction of the learning effect with that of 

stimulation condition in moderate and hard levels, we conducted post-hoc z-tests for 

the condition effect in these levels. In the moderate level, regardless of session 

progress, the response time estimate after both inhibition and excitation sessions were 

faster than that after sham stimulation (Exc-Shm: b=-0.0318, SE=0.0077, pHolm<0.001; 

Inh-Shm: b=-0.0435, SE=0.0077, pHolm<0.001), but inhibition and excitation RT 

estimates were not significantly different than each other (Exc-Inh: b=-0.0117, 

SE=0.0077, pHolm=0.129). In the hard condition, controlling for perceptual learning 

over sessions, the RT estimate after excitation was significantly faster than that after 

sham (b=-0.0409, SE=0.0148, pHolm=0.018) and inhibition (b=-0.037, SE=0.0149, 

pHolm=0.026), while the difference between inhibition and sham sessions was not 

significant (b=0.0038, SE=0.0149, pHolm=0.798).  

 

In the easy task, where we did observe an interaction between session progress and 

stimulation condition, we investigated the simple effect of TMS condition at each 

session. In the first stimulation session, RTs after both excitation and inhibition were 

faster than those after sham (Exc-Shm: b=-0.0714, SE=0.0122, p<0.001; Inh-Shm: b=-

0.0509, SE=0.0116, p<0.001), but the 95% confidence intervals (CI) of the excitation 

and inhibition effects (Exc: [-0.0954 -0.0475], Inh: [-0.0736 -0.0283]) did not exclude 

the estimates of each other, indicating no differential effect of the two stimulation 

conditions. In the second stimulation session, both excitation and inhibition resulted 

in faster RTs compared to the sham condition (Exc-Shm: b=-0.0370, SE=0.0059, 

p<0.001; Inh-Shm: b=-0.0238, SE=0.0059, p<0.001), and the 95% CI of the two 

effects (Exc: [-0.0486 -0.0255], Inh: [-0.0254 -0.0122]) excluded the estimates of each 
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other, pointing to faster RTs after excitation compared to inhibition. The third 

stimulation session showed no effect of stimulation condition. Note that while both 

variables of this interaction were within-subject, this simple effect ends up being a 

between-subjects comparison, as each participant received only one of the stimulation 

conditions at a given session. 

 

3.1.2. Single-Session – Between-Subjects 

3.1.2.1. Accuracy  

In the single-session linear mixed effects model analyses (Figure 2, right panel), the 

interaction of session and stimulation group effects on accuracy was significant for the 

moderate (F(2,12206)=5.485 p=0.004) and hard (F(2,12196)=6.24, p=0.002) 

conditions, but not for the easy condition (F(2,12206)=2.112, p=0.121). In the easy 

level, there was a significant positive main effect of session on accuracy (b=0.0087 

SE=0.0039, p=0.025), pointing to perceptual learning regardless of the stimulation 

condition. For the moderate and hard levels, where we observed an interaction between 

the two variables, we investigated the simple effect of session (between baseline and 

stimulation sessions) for each stimulation group. In the moderate level, while neither 

the inhibition (Post-Pre: b=0.0157, SE=0.0095, p=0.101) nor the excitation group 

(Post-Pre: b=0.0157, SE=0.0091, p=0.085) had a significant change in accuracy in the 

stimulation session over the baseline, the sham group showed a significant reduction 

in accuracy (Post-Pre: b=-0.0227 SE=0.0095, p=0.017). In the hard level, while both 

the inhibition (Post-Pre: b=0.0747, SE=0.0148, p<0.001) and the excitation (Post-Pre: 

b=0.0793, SE=0.0142, p<0.001) group showed a similar significant improvement in 

accuracy in the stimulation session, the sham group did not show a significant change 
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(Post-Pre: b=0.0135, SE=0.0148, p=0.362). The change in inhibition and excitation 

groups were not significantly different from each other. 

 

3.1.2.2. Response Time 

The linear mixed effects models on response time (Figure 2, left panel) show a 

significant interaction of session and stimulation group in all three difficulty conditions 

(easy: F(2,12206)=36.906 p<0.001; mod: F(2,12206)=3.2 p<0.041; hard: 

F(2,12296)=40.585 p<0.001). The simple effects investigating this interaction in the 

easy level indicate that both the inhibition (Post-Pre: b=-0.0736, SE=0.0109, p<0.001) 

and the excitation group (Post-Pre: b=-0.0981, SE=0.0104, p<0.001) responded faster 

in the stimulation session compared to their baseline performance, while the sham 

group performed significantly slower in the stimulation session (Post-Pre: b=0.0252, 

SE=0.0109, p=0.02). The improvement in RT for the excitation group (95%CI: [-

0.1184 -0.0776]) was significantly higher than that for the inhibition group (95%CI: 

[-0.0949 -0.0523]). In the moderate difficulty level, all stimulation groups responded 

significantly faster in the stimulation session compared to the baseline (Post-Pre, Inh: 

b=-0.244, SE=0.02, p<0.001; Exc: b=-0.191, SE=0.019, p<0.001; Shm: b=-0.176, 

SE=0.02, p<0.001), but the inhibition group showed significantly higher speeding than 

the other two groups (95%CI: [-0.282 -0.205]). In the hard level, all three stimulation 

groups had significantly faster RTs in the stimulation session compared to the baseline 

(Post-Pre, Inh: b=-0.62, SE=0.032, p<0.001; Exc: b=-0.446, SE=0.030, p<0.001; 

Shm: b=-0.218, SE=0.032, p<0.001), with the inhibition group having the most 

improvement (95%CI: [-0.682 -0.558]) and the sham group having the least (95%CI: 

[-0.280 -0.156]). 
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3.2. DDM parameters 

All parameters in the models showed acceptable convergence. The best model, used 

for all difficulty levels, had drift rate (v), threshold (a), and non-decision time (t) 

varying with stimulation condition and included a drift rate variability (s) parameter 

fitted as a constant for all conditions and participants (see Table 2 for model 

comparisons).  

 

3.2.1. Three-Sessions – Within-Subjects 

Please consult Figure 3 for the posterior distributions that are reported in this section. 

The actual values of the parameters for the Sham condition (the intercept for the 

model) are presented in Table 3. 

 

Table 3. Means of posterior distributions for parameters at the intercept (Sham). 

 a v t sv 

Easy 1.675 3.308 0.261 0.867 

Moderate 1.756 2.443 0.261 0.997 

Hard 1.920 1.015 0.242 1.505 

 

3.2.1.1. Drift rate 

For participants who completed all three stimulation sessions, the drift rate in both 

inhibition and excitation sessions was equally higher than that in sham sessions in easy 

(Inh>Shm: P=0.995; Exc>Shm: P=0.989; Exc>Inh: P=0.374) and moderate 

(Inh>Shm: P=0.995; Exc>Shm: P=0.953; Exc>Inh: P=0.186) levels. In the hard level, 

the drift rate in the excitation session showed a trend to be higher than the drift rate in 
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both the sham and inhibition sessions (Exc>Shm: P=0.937; Exc>Inh: P=0.928; 

Inh>Shm: P=0.441). 

 

3.2.1.2. Threshold 

In all three difficulty levels, the threshold in the inhibition sessions was higher 

compared to the excitation sessions (Inh>Exc, easy: P>0.999; mod: P=0.996; hard: 

P>0.999). In the easy and hard levels, the threshold in inhibition sessions was higher 

than that in sham sessions (Inh>Shm, easy: P>0.999; hard: P>0.999), and in the 

moderate level, the excitation resulted in a lower threshold compared to the sham 

sessions (Exc<Shm, mod: 0.996). 

 

3.2.1.3. Non-Decision Time 

In all three difficulty levels, the non-decision times after inhibition and excitation 

sessions tended to be lower than those in the sham sessions. The inhibition session 

resulted in notably lower (faster) non-decision times compared to sham and excitation 

sessions in the easy and hard levels (Inh<Shm, easy: P>0.999; hard: P=0.995; 

Inh<Exc, easy: P=0.999 ; hard: P=0.953). The magnitude of differences in non-

decision times between sessions were negligible (the highest mean difference, between 

inhibition and sham in the easy level, was 10.1 ms), when taken in context with the 

average frame duration of the monitor (60 Hz refresh rate, 16.67ms frame duration). 

 

3.2.2. Single-Session – Between-Subjects 

For participants that completed the first two sessions, the comparisons between the 

two sessions and different stimulation groups did not reveal any differences for easy 

and moderate levels (Figure 4). In the hard level, there was a significant increase in 
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drift rate and a reduction in threshold setting from the baseline to the stimulation 

sessions for the inhibition and excitation groups (Drift: Post>Pre, Inh: P=0.98; Exc: 

P=0.955; Threshold: Post<Pre, Inh: P=0.986; Exc: P=0.939), but not for the sham 

group (Drift, Post>Pre: P=0.75; Threshold: Post<Pre: P=0.739). However, the 

difference between the sessions were not different between the groups (Drift: 

Excdiff>Shmdiff: P=0.815, Inhdiff>Shmdiff: P=0.781; Threshold: Excdiff>Shmdiff: 

P=0.732, Inhdiff>Shmdiff: P=0.877). 

4. DISCUSSION 

This study demonstrated effects of excitatory and inhibitory TMS protocols in both 

behavioral and model outcomes of a perceptual decision-making task. While brain 

stimulation did not result in systematic differential changes in accuracy, we observed 

diverging response times under different stimulation conditions, particularly when the 

signal-to-noise ratio was low. The inhibition protocol resulted in the most speeding 

over the baseline after a single stimulation session, while the excitation protocol 

resulted in the fastest responses when only the stimulation sessions were compared, 

controlling for any learning-related improvement over the sessions. The drift diffusion 

modelling of the data establishes differential effects of TMS on particularly drift rate 

and threshold parameters at different difficulty levels. While we observe improved 

evidence integration after both excitation and inhibition compared to the sham 

condition in easy and moderate levels, the hard task seems to differentiate between 

excitation and inhibition, with a trend for the drift rate after excitation to be higher 

than both inhibition and sham conditions. We also show the threshold parameter to be 

higher after inhibition compared to excitation in all difficulty levels, and higher than 

the sham condition in easy and hard levels. Overall, the changes to decision strategies 

in response to inhibition and excitation of the left DLPFC seem to be the most 
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consistent across difficulty levels, but this study cannot dissociate this effect from 

changes to evidence accumulation rate due to the same stimulation. 

 

The results of this study present some discrepancies with the previous literature. One 

of the key differences is the lack of a reduction of drift rate due to inhibition of DLPFC, 

which was a finding presented in two independent studies (Philiastides et al., 2011, 

Georgiev et al., 2016). On the contrary, we have observed a significant increase in 

drift rate after inhibition, even in the easiest condition in which we initially expected 

a ceiling effect that might prevent any enhancing effects of excitation, due to the task 

being too easy to leave any room for improvement. We did, however, find evidence 

for the novel hypothesis that stemmed from those non-replicated findings, namely that 

excitation of the same region would lead to an enhancement of the evidence 

accumulation rate in a task where the signal to noise ratio was low. This study did not 

aim to be an exact replication of any previous study (it used a different task than 

Philiastides et al. (2011) and stimulated the opposite hemisphere of Georgiev et al. 

(2016)), but the complete contradiction of the previously demonstrated effect of 

DLPFC inhibition was striking. We do not consider differences in task and hemisphere 

choice to be the cause of this discrepancy, as the previous literature points to the 

association between drift rate and left DLPFC to be generalizable across tasks 

(Heekeren, Marrett, Ruff, Bandettini & Ungerleider, 2006), and particularly to the task 

that we have used. One main reason for this discrepancy may be the approach to 

modeling – neither of the previous neuromodulation studies tested models where 

decision threshold also depended on stimulation condition alongside drift rate. While 

the literature shows a clear connection of DLPFC activity and drift rate, some studies 

also point to the possibility of an association of this region with top-down control of 
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the entire decision process, and thus threshold setting. We do see consistent changes 

to decision thresholds as a result of stimulation in our, and the omission of this 

parameter would compromise the validity of the other parameter estimates. If DLPFC 

plays a role in both integrating evidence and setting decision boundaries, their 

combined effect may well be expected to differ from their isolated effects. 

 

The most consistent result we have observed was increased cautious responding after 

inhibition of the left DLPFC, compared to the decision strategies after excitation, 

regardless of task difficulty. While there were studies that hinted at a connection 

between DLPFC activity and decision strategy setting, previous brain modulation 

studies either targeted a different brain region (Tosun et al., 2017, Berkay et al., 2018), 

a different parameter (Philiastides et al., 2011, Georgiev et al., 2016), or different 

outcome measures (Rahnev et al., 2016). Studies by Berkay et al. (2018) and Tosun et 

al. (2017) clearly show that preSMA inhibition and excitation respectively increase 

and decrease decision thresholds, similar to the patterns we observe with DLPFC 

stimulation. These two regions have previously been suggested as the source of 

cortical signals in two alternative theories of speed-accuracy trade-off (SAT) 

modulation. PreSMA is the cortical center that provides input to the striatum which in 

turn modulates the level of control on actions by the basal ganglia in the striatal theory. 

DLPFC is considered to be the main source of input to cortical integrator neuron 

populations in the cortical theory, where decision strategies are controlled by 

modulating the baseline activity of integrator neurons and thus the distance to 

threshold (for a review of SAT modulation theories, see Bogacz, Wagenmakers, 

Forstmann, 2010). These two theories make similar predictions with regards to 

decision outputs in response to modulation of the relevant targets, therefore seeing 
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congruent results with preSMA modulation studies is not surprising. As an alternative 

to considering two alternative theories, a recent study by Weigard et al. (2018) pointed 

to a directional connection between preSMA and DLPFC, suggesting that DLPFC has 

top-down control over preSMA which in turn acts as a hub for threshold setting. This 

is also in line with the posterior-to-anterior hierarchical structure suggested by Rahnev 

(2017), building on the findings of Rahnev et al. (2016) that pins down DLPFC as a 

region responsible for criterion setting and having top-down control over more 

posterior regions. These recent findings may link and unify the SAT modulation 

theories (also see Standage, Blohm, Dorris, 2014), and our study informs these by 

providing a causal link to the relationship between threshold setting and DLPFC 

activity. However, it is important to note that this study does not dissociate the effects 

of DLPFC modulation on evidence accumulation rate and decision criteria, and 

therefore cannot suggest that this region is solely responsible for one or the other 

aspect of the decision process.  

 

The effect of DLPFC activity modulation on both drift rate and threshold parameters 

is a novel finding, however there are both behavioral (Rae, Heathcote, Donkin, Averall 

& Brown, 2014) and neuromodulatory (Tosun et al., 2017, Berkay et al., 2018) studies 

pointing to verbal task instruction (e.g. accuracy emphasis) and brain stimulation (e.g. 

preSMA inhibition) that lead to higher thresholds also result in an increase in drift rate. 

However, the changes reported in previous studies are not entirely consistent with our 

data. While we do partially see such coordinated effects in easy and moderate levels 

in our data (increased drift rate and threshold after inhibition of DLPFC), the hard level 

(with 5% coherence, closest to the 8% used in Tosun et al., 2017 and Berkay et al. 

2018) has the two parameters and stimulation conditions dissociated: the excitation of 
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DLPFC leads to an increase in drift rate but no change in threshold setting, and 

inhibition leads to an increase in threshold but no change in drift rate. Our original 

predictions for the DLPFC effect on drift rate, guided by previous studies and partially 

supported only in the low signal-to-noise ratio scenarios, were also in the opposite 

direction to the preSMA modulation and behavioral findings (which would predict a 

reduction in drift rate following DLPFC excitation that also lowered decision 

thresholds). This dissociation warrants further study and potentially points to 

differential roles of DLPFC and preSMA in the decision process rather than a direct 

top-down connection. 

 

This study has several limitations that warrant caution when interpreting its results. 

One key issue is that the counterbalancing scheme did not result in an equal weight in 

all stimulation order conditions due to unbalanced drop-outs. This was likely not a 

result of the nature of the stimulations, as the participants mostly reported dropping 

out due to scheduling issues on their part and not a problem that they had with the 

particular stimulation protocol they were exposed to. The uneven distribution of 

participants to order conditions presents an issue particularly when combined with the 

presence of a learning effect over sessions, since more subjects that were exposed to a 

condition in the first as opposed to the last session could skew the outcomes of that 

condition towards slower response times and lower accuracies. The results of these 

analyses will be more robust once the order conditions are balanced out, assuming that 

the stimulation conditions do not interfere with the learning process differentially.  

 

Another limitation of the study is the craniometric localization of the target region, as 

opposed to MRI-, or better yet, fMRI-guided stimulation. Using the 10-20 system for 
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localization is a cheap and practical option but results in a trade-off with precision 

compared to methods that take into account the structural and functional idiosyncrasies 

of the participants’ brains. However, the DLPFC is one of the most often targeted 

regions in brain stimulation studies, and localization studies indicate that the F3 

electrode site is a decent approximation (Herwig et al. 2003) for the part of the DLPFC 

that is of most interest to us (i.e. Broadmann Areas 8 and 9) based on fMRI studies 

(Heekeren et al., 2008). A related limitation, shared by the previous studies as well, is 

the inter-individual variance in responses to TMS stimulation – while cTBS and iTBS 

are shown to inhibit and excite the areas that they target in general (Huang et al., 2005), 

some individuals simply do not respond or even respond in the opposite direction to 

these protocols (Hamada, Murase, Hasan, Balaratnam & Rothwell, 2013). This study 

does not measure the changes to neural activity after the stimulations and simply 

assumes that the intended modulation does take place, and therefore can only 

realistically claim to show a relationship between model parameters and stimulation 

type, not directly neural activity.     

5. CONCLUSION 

The current study links several aspects of the current computational modeling and 

neuromodulation literature together and challenges some of the previous findings. We 

show that, contrary to what previous studies found, inhibition of the left DLPFC does 

not lead to a decrease but an increase in drift rate in easy and moderate difficulty tasks 

compared to sham stimulation. Excitation of the area behaves identically to inhibition 

with regards to increasing evidence integration efficiency in low and medium signal-

to-noise ratio scenarios, but also shows a trend for leading to higher drift rates 

compared to both sham and the inhibition conditions specifically in the hard task, 

providing evidence towards our main hypothesis. We also show a bi-directional effect 
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of DLPFC stimulation on decision thresholds: inhibiting the DLPFC leads to more 

cautious decision-making compared to the excitation condition in all difficulty levels, 

mimicking the effects of preSMA stimulation on decision strategies. These results 

provide partial evidence for the proposed roles of DLPFC in both evidence integration 

and top-down control over the decisions and hopes to guide further studies in 

dissociating these roles and better elucidating the neural correlates of decision-making.  
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Figure 1.  Response time (s) estimates from the linear mixed effects models of the 

three-session analyses. (A) is the session*stimulation interaction in the easy level, 

where the lightest gray is the first stimulation session and the darkest gray is the final 

session. (B) is the main effect of stimulation condition in the moderate level, and (C) 

is the main effect of stimulation condition in the hard level. Bars stand for 95% 

confidence intervals of the estimated marginal means (not the effects), thin lines 

stand for random effects (participants). 

C 

B 
 

A 



 

 35 

 

 
Figure 2. Response time (s) (left panel) and accuracy (right panel) estimates from 

linear mixed effects models of the single-session analyses. Top row (A and B) are for 

the easy level (note that the group*session interaction was not significant for this 

level, but the interaction plot is presented for consistency with the other levels). 

Middle row (C and D) are for the moderate level, and bottom row (E and F) are for 

the hard level. Light gray lines are for Sham group estimates, moderate gray lines are 

for Excitation group estimates and dark gray lines are for Inhibition group estimates. 

Bars stand for 95% confidence intervals of the estimated marginal means (not the 

effects), thin lines depict random effects (participants).  
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Figure 3. Posterior distributions of drift rate, threshold and non-decision times after inhibition and excitation, compared to the sham 

session. Three-session comparisons for participants who completed all four sessions. In the grid, rows are for difficulty levels, and 

columns are for model parameters. The dashed lines at zero stand for the sham session references (intercepts). The pink (light gray) 

distributions are the difference of the inhibition session from the sham session, gray (dark gray) distributions are the difference of 

excitation sessions from sham. 
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Figure 4. Posterior distributions of drift rate, threshold and non-decision times after in baseline and first stimulation sessions, for 

inhibition, excitation, and sham groups. Single-session comparisons for all participants who completed the first two sessions. In the 

grid, rows are for difficulty levels, and columns are for model parameters. Solid lines are for the baseline sessions and dotted lines are 

for the stimulation sessions. Green (dark gray) distributions are for the excitation group, blue (mod. gray) distributions are for the 

sham group, and pink (light gray) distributions are for the inhibition group. The posteriors represent the actual parameter estimation 

values and not difference scores (no intercepts were used). 


