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ABSTRACT OF THE DISSERTATION 

ERROR MONITORING IN MAGNITUDE REPRESENTATIONS 

by YALÇIN AKIN DUYAN 

Dissertation Director:  

Dr. Fuat Balcı 

 

This dissertation aims to investigate error monitoring abilities for metric representations of 

number and space. Error monitoring, which is the ability to judge the accuracy of one’s actions, 

have typically been categorical choice tasks. However, recent evidence in the timing domain 

suggests that error monitoring in humans also extends to continuous representations of 

magnitude, indicating that it has informationally richer foundations than previously thought. 

Considering the common psychometric properties of magnitude representations, I hypothesized 

that judgments of error direction and subjective confidence would reflect objective performance 

in other magnitude domains.  Over three studies, error monitoring abilities was observed in 1) 

sequentially presented numerosities, 2) numerosity of simultaneously presented arrays and 3) line 

lengths. These results indicate that the ability to keep track of the direction and the degree of 

errors in their magnitude representations is a ubiquitous human trait. 
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ÖZET 

Bu tez, insanların sayı ve uzam temsillerindeki hata izleme yetilerini araştırmayı amaçlamıştır. 

Hata izleme, yani bireylerin kendi davranışlarının doğruluğunu değerlendirebilme yetisi, 

genellikle kategorik karar verme görevleriyle incelenmiştir. Aralık zamanlama literatüründeki 

son bulgular, insanların hata izleme yetilerinin sürekli miktar temsilleri için de geçerli 

olabileceğini göstermiştir. Bu sonuçlar, insanlarda hata izleme becerilerinin bilgisel açıdan daha 

zengin temelleri olabileceğine işaret etmektedir. Miktar temsillerinin psikometrik özellikleri 

arasındaki benzerliklerden yola çıkılarak, insanların bu temsillerde yaptıkları hataların yönünü ve 

derecesine ilişkin değerlendirmelerin, nesnel performanslarını diğer alanlarda da yansıtabileceği 

öngörülmüştür. Yürütülen üç farklı çalışmada, insanların hata izleme yetilerinin 1) sıralı biçimde 

sunulan sayı tahminlerinde, 2) eşzamanlı olarak sunulan sayı tahminlerinde ve 3) uzamsal 

uzunluk tahminlerinde hata izleme yetilerine ilişkin kanıtlar sunulmuştur. Bu sonuçlar, insanların 

miktar temsillerindeki hatalarının yönünü ve derecesini değerlendirebilme yetilerinin genel-geçer 

bir insan özelliği olduğuna işaret etmektedir. 
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INTRODUCTION 

Every action is accompanied by a subjective degree of certainty about the veracity of that 

action. These actions can involve having to choose an appropriate option from a set of distinct 

alternatives, such as deciding what car to buy, or which road to take when commuting. On the 

other hand, some actions require a ballpark estimate of a certain magnitude like time, number, 

spatial length or distance, such as estimating whether a piece of furniture that you plan to buy is 

going to fit in your room. While it’s been long known that confidence ratings follow the accuracy 

of categorical decisions to some degree (Baranski & Petrusic, 1998; Dougherty, 2001; Garrett, 

1922; Johnson, 1939; Nelson & Narens, 1990; Vickers, 1979), error monitoring in magnitude 

representations is a relatively recent discovery. This dissertation investigates error monitoring 

abilities in the continuous domain, namely, representations of number and spatial length. Over a 

series of studies, it lays the behavioral groundwork for a potentially rich line of work that can 

provide a deeper understanding of the mechanisms that give rise to this metric error monitoring 

ability. 

Models of Error monitoring in categorical decisions 

Error monitoring abilities in humans have typically been studied using Two Alternative Forced 

Choice tasks (2AFC), where the observer is required to choose among two distinct options. 

There’s a variety of theoretical models that aim to predict the differential response probabilities 

in forced-choice tasks, along with the time taken that to make that decision. The most prominent 

of these are a family of drift-diffusion models that characterize decision making as a noisy 

evidence accumulation process, where a decision is made when the accumulated evidence for a 

given option reaches a subjective threshold (Brown & Heathcote, 2005, 2008; Ratcliff, 1978; 
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Smith & Ratcliff, 2004; Teodorescu & Usher, 2013; Usher & McClelland, 2001). While these 

models have had a great deal of success in accounting for the response and reaction time (RT) 

patterns in decision-making behavior, they cannot readily account for the subjective confidence 

that accompanies these decisions (Van Zandt, 2000; Van Zandt & Maldonado-Molina, 2004; 

Vickers, 1979). It follows from the core assumptions of these models that every decision is made 

with absolute certainty. Hence, they cannot account for the fact that subjective confidence ratings 

closely follow the overall accuracy of decisions. This well-established finding indicates that even 

categorical decisions are made along a continuum.  

Decision confidence has been suggested to emanate from the hierarchical processing of 

information from the lower motor and perceptual systems on a higher cognitive level. While it is 

expected to observe indicators of decision confidence in neural populations that allow for the first 

order perceptual decisions, it is possible that there is a higher-order processing mechanism that 

‘reads out’ and translates this information into confidence ratings. In fact, a dissociation between 

conscious and nonconscious processing of errors have been demonstrated. For instance, Logan et 

al. (2010) asked skilled typists to type target words on the computer. On some trials, even when 

the participants typed the word correctly, the program inserted typing errors on the screen. 

Conversely, on some trials, their errors were automatically corrected. The results showed that 

post-error slowing occurred only after genuine errors and not when pseudo-errors were inserted, 

indicating that error monitoring is at least partially a nonconscious process. 

Models of error monitoring have been mostly extensions of the aforementioned drift- 

diffusion models (Balakrishnan & Ratcliff, 1996; Moran, Teodorescu, & Usher, 2015; Pleskac & 

Busemeyer, 2011; Resulaj, Kiani, Wolpert, & Shadlen, 2009; Vickers, 1979; Vickers & Packer, 

1982).  These models also assume that decision making is the result of evidence accumulation 
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that is subject to internal and external noise. As mentioned above, the most crucial and curious 

aspect of decision confidence is its positive relation to decision accuracy. People tend to report 

higher confidence for the accurate decisions and lower confidence for the erroneous decisions 

termed the positive resolution of confidence (Baranski & Petrusic, 1998; Dougherty, 2001; 

Garrett, 1922; Johnson, 1939; Nelson & Narens, 1990; Vickers, 1979). The two most 

fundamental questions about decision confidence concern what information is utilized to form 

confidence and when this information is processed. Models of confidence can be distinguished 

based on the assumptions they make on these two questions. Single-stage models (Vickers, 

1978), assumes that confidence is based on the mechanistic properties of a decision itself. They 

may assume that confidence is calculated heuristically by taking into account the duration of the 

decision process, or some other calculation based on the same evidence as the initial evidence. In 

contrast, dual-stage models assume that evidence accumulation continues after a decision has 

been made, and confidence relies on this extra information. 

As mentioned above, some models assume that the decision and the confidence judgment 

are based on the information collected prior to the decision (Egan, Schulman & Greenberg, 1959; 

Kepecs, Uchida, Zariwala, & Mainen, 2008). These models assume that confidence is calculated 

by measuring the distance between the perceptual sample and the decision criterion. The Balance 

of Evidence (BOE; 1979) model posits that for any 2AFC decision, the evidence is accumulated 

separately for each alternative and a decision is made when one of them reaches a threshold. The 

difference (or distance) between the alternatives determine decision confidence.  

Single-stage models can be further categorized by the type of information they assume 

used to calculate confidence. BOE provides a computational account, which assumes confidence 

is a monotonic function of the difference between the total evidence accumulated by each 
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accumulator. On the other hand, some models provide a heuristic account (Ratcliff, 1978; 

Volkman, 1934; Zakay & Tuvia, 1998), suggesting that confidence is calculated directly from the 

time it took to make that decision (i.e., decision time).  

Dual-stage theories of confidence assume that evidence accumulation continues in the 

post-decisional stage (Pleskac & Busemeyer, 2011; Moran et al., 2014). This way, the inter-

judgment time (the interval between decision and confidence response) provides more 

information, and the confidence response is based on both the choice-stage and the inter-

judgment stage dynamics. In error trials, post-decision evidence will tend to contradict the initial 

decision. If the observer is sensitive the discrepancy between the pre- and post-decision evidence, 

a positive resolution will emerge. 

As mentioned above, error monitoring and metacognition have generally been studied 

using two-alternative forced choice tasks (Gehring et al., 1993 but see Miltner, Braun & Coles 

1997). However, perceptual decision-making domain is a world of absolute rights and wrongs 

that may not always map onto real life actions that require an approximate estimation of 

continuous magnitudes such as time, number and space. Utilization of these magnitude 

representations to study error monitoring posits a unique opportunity to discover the potentially 

rich informational basis of human metacognitive capacities, as these representations are relatively 

independent of the temporal dynamics that are involved in decision making.  

The nature of magnitude representations 

Magnitude estimations are an essential part of daily life, whether we want to estimate how much 

time we have spent on a certain task, or whether our car will fit an empty parking spot. The study 

of physical magnitudes and their corresponding mental representations is as old as the science of 
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psychology itself, and there are well-established characteristics of these representations that are 

observed across all types of magnitudes.  

 One such characteristic is that while humans are on average accurate estimators of 

magnitude, each estimation is subject to trial-to-trial variability. In other words, even when 

people are estimating (or reproducing) the same magnitude (e.g. a duration of 2 seconds, or a 

length of 11 centimeters) over and over, these estimates are rarely identical. This variability is 

well characterized by a response curve that is normally distributed around a mean which is equal 

to the target estimate, and a standard deviation that is determined by how precise an individual is 

in their representation of that specific magnitude. Hence, actions that are based on the estimation 

of a continuous magnitude can be conceptualized as actions that are made under uncertainty, with 

varying degrees of uncertainty across individuals. 

Problem of optimality 

Optimality, in a general sense, is about maximizing the return of action by incorporating the 

constraints, outcomes, and the uncertainties of the circumstances that is utilized to exert that 

action. Given that categorical decision and magnitude estimations are subject to internal sources 

of uncertainty, observing how close to optimality people act in these two contexts can give an 

idea of whether they can normatively incorporate their internal uncertainty into their actions (thus 

have a veridical representation of this knowledge). 

In decision making, the problem of optimality primarily concerns the time taken to reach 

a decision. For example, if a task is too easy and requires a minimal amount of processing, then 

the decision-maker should spend as little time as possible on that task. On the other hand, if the 

task is too difficult to ever tackle, the decision-maker should also spend as little time as possible, 
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or even ignore the task altogether. On tasks that are intermediately difficult, one should find the 

optimal balance between speed and accuracy that would maximize the rate of reward per unit 

time (Bogacz et al., 2006). Recent studies show that a substantial proportion of humans are 

optimal decision-makers (Bogacz, Hu, Holmes & Cohen, 2010) and they can learn to be optimal 

over time (Balcı et al., 2011a). 

For actions that require the estimation of a certain magnitude such as time, optimality 

concerns the incorporation of one’s subjective uncertainty by aiming for a magnitude that would 

maximize the average rate of reward. For example, let’s assume your commute to work takes an 

hour on average and the standard deviation of these commutes is 5 minutes. If you want to arrive 

at work as close as possible at the time where the workday starts and minimize the number of 

days that you arrive late, you should leave home about 70 minutes before clocking in to find the 

optimal balance between leaving home as late as possible and being late on a few days as 

possible. Using a similar task, a recent line of work (Balcı et al., 2011; Çavdaroğlu, Zeki & Balcı, 

2014; Çavdaroğlu & Balcı, 2016; Gür & Balcı, 2018; but see Berkay, Freestone & Balcı, 2016) 

showed that humans and rodents maximize the rate of reward in their actions that involve timing 

or counting. These results suggest that humans and animals can normatively incorporate their 

subjective level of uncertainty in their actions, suggesting a representation of uncertainty itself. 

This uncertainty representation might simply be an aggregate or a summary statistics 

representation emerging from an error monitoring mechanism in magnitude representations. 

Error monitoring in magnitude representations  

Recently, Akdoğan and Balcı (2017) showed that humans can monitor the magnitude and the 

direction of their timing errors. In a series of studies using the temporal reproduction task, they 
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asked participants to reproduce two different target durations as accurately as possible. After each 

response, they were prompted to provide confidence ratings about the accuracy of their estimates 

and whether this estimate was longer or shorter than the target interval. They found that the 

confidence ratings and the reported direction of errors closely matched the participants’ actual 

performance (see also Kononowicz & van Vassenhove, 2018; Doenyas, Mutluer, Genç & Balcı, 

2019). Similarly, using a task where the participants reproduced the orientation of a low contrast 

grating Samaha and Postle (2017) observed that the absolute errors of reproductions diminished 

with increased confidence. This suggests that even when people are estimating a certain 

magnitude to the best of their ability on a single trial, information on the magnitude and the 

direction becomes available at some point before the confidence judgment is made.  

While the positive relationship between confidence and accuracy is well-established, 

these results show that this metacognitive ability extends to the estimation of continuous 

magnitudes (i.e. interval timing). Importantly, however, whether this ability to monitor the 

magnitude and the direction of errors applies to other domains is unknown. Nevertheless, well-

established evidence for a common magnitude processing (e.g., Walsh, 2003) and recent 

evidence for a task-independent confidence processing makes a plausible case for this account. 

A common mechanism for magnitude processing 

Walsh (2003) proposed that there's a ubiquitous brain mechanism for magnitude processing. 

Indeed, there's substantial neural and behavioral evidence for this assumption (Bueti & Walsh, 

2009; Fabbri & Natale, 2009). There are specific mappings between time, space and number 

(Arzy, Adi-Japha, & Blanke, 2009; Arzy, Collette, Ionta, Fornari, & Blanke, 2009; Santiago, 

Lupiáñez, Perez, & Funes, 2007; Torralbo, Santiago, & Lupiáñez, 2006; Moyer & Landauer, 
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1967; Restle, 1970 (MTL); Dehaene, Bossini, & Giraux, 1993). In their seminal work (Dehaene, 

Bossini & Giraux, 1993) discovered that people respond to small numbers faster with a left key 

and respond to large numbers faster with a right key. Since then, similar mappings between space 

and time (Ishihara, Keller, Rossetti, & Prinz, 2008) and time and number (Kiesel & Vierck, 2009) 

have also been discovered.  Moreover, magnitude information from one domain seems to affect 

the magnitude estimations for other domains, depending on the reliability of the information from 

the interfering domain. Weber’s law is valid for a vast number of continuous dimensions. 

DeWind and Brannon (2012) found that the Weber fractions on a numerosity comparison task 

correlated with the Weber fractions on a line length comparison task. Moreover, work with rats 

and pigeons showed that these species of animals can readily apply previously learned temporal 

associations to a similar numerical task (Meck & Church, 1983). These results provide 

converging evidence for a common magnitude processing system. 

Error monitoring across different domains 

There is also some evidence of similar metacognitive performance across different tasks within 

and separate domains that suggest confidence might also be processed by a common mechanism 

(Bornstein and Zickafoose, 1999; Heereman, Walter and Heerkeren, 2015) in a task-independent 

fashion. Gardelle and Mamassian (2014) assessed whether there is a common currency for 

confidence across tasks using spatial discrimination and orientation discrimination tasks. 

Participants performed a pair of trials in succession, consisting of either two trials of the same 

task or one of each task. They then indicated on which trial they were more confident. The 

psychometric functions of confidence were identical for between- and within-task comparisons. 

Similar results were also obtained between vision and audition suggesting that this costless 

translation of confidence extends across modalities (Gardelle, Corre and Mamassian, 2016). 
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Moreover, the effects of stimulus variance on confidence were found to be similar on a numerical 

and a visual task, although the former task is cognitive while the latter is perceptual (Navajas et 

al., 2017). Finally, metacognitive accuracy and bias appear to be consistent within individuals 

across different tasks and domains and time (Ais, Zylberberg, Barttfeld & Sigman, 2016). 

The primary incentive for the studies presented below is to determine whether this 

recently discovered parametric error monitoring ability in magnitude estimation extends to other 

domains as implicated by previous work from a wide range of areas. These studies provide the 

behavioral foundations for a potentially rich line of work, which can be extended to other 

domains in humans and animals and provide a more precise understanding of the neural 

mechanisms that gives rise to this error monitoring ability. The study of metric error monitoring 

would also provide us with more suitable empirical tools to better understand how error 

processing in the brain is parametrically related to corrective actions. 
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CHAPTER I 

Numerical Error Monitoring 
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Abstract 

Error monitoring has recently been discovered to have informationally rich foundations in the 

timing domain. Based on the common properties of magnitude-based representations, we 

hypothesized that judgments on the direction and the magnitude of errors would also reflect their 

objective counterparts in the numerosity domain. In two experiments, we presented fast 

sequences of “beeps” with random interstimulus intervals and asked participants to stop the 

sequence when they thought the target count (7, 11, or 19) had been reached. Participants then 

judged how close to the target they stopped the sequence, and whether their response undershot 

or overshot the target. Individual linear regression fits as well as the linear mixed model with a 

fixed effect of reproduced numerosity on confidence ratings, and participants as independent 

random effects on the intercept and the slope, revealed significant positive slopes for all the target 

numerosities. Our results suggest that humans can keep track of the direction and degree of errors 

in the estimation of discrete quantities, pointing at a numerical-error-monitoring ability. 

 

Keywords: Error monitoring, Number estimation, Metacognition, Magnitude estimation 
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Introduction 

 

Every decision is accompanied by a subjective degree of uncertainty regarding the decision’s 

accuracy. To address this, error monitoring (awareness of errors without feedback) and 

performance monitoring have been typically studied in the two-alternative forced-choice 

paradigm (2AFC), in which participants decide which of the two alternatives sensory evidence 

favors. Results of these studies showed that confidence ratings closely track the decision 

accuracy performance (e.g., Fleming, Dolan, & Frith, 2012).  

On the other hand, many of our daily actions rely largely on approximate quantity 

estimates such as time intervals, numerosities, distances, and making simple decisions based on 

these quantitative estimates. These can be exemplified by our routine judgments regarding the 

earliness and lateness in meeting schedules (e.g., duration of traffic signals), counts of 

occurrences (e.g., number of junctions crossed) or distance traveled (e.g., judging if you missed 

an exit at a known distance), and, for instance, deciding to take a given exit or not based on such 

estimates.  

An important feature of these scenarios is that each magnitude estimation is subject to 

internal sources of uncertainty leading to substantial trial-to-trial variability in behavior and 

characterizing every magnitude-based decision as decisions made under uncertainty. A recent 

line of research (e.g., Çavdaroğlu, Zeki, & Balcı, 2014; Çavdaroğlu & Balcı, 2016) has addressed 

the importance of the above mentioned subjective timing and counting uncertainty for decision 

making by formulating the dependence of reward-rate maximizing decisions on the level of 

uncertainty. The results of these studies showed that humans and rodents can nearly optimize 

their quantitative decisions by integrating the level of their subjective timing and numerical 
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uncertainty into these decisions (Çavdaroğlu & Balcı, 2016; Çavdaroğlu, Zeki, & Balcı, 2014). 

These observations suggest that internal uncertainty about magnitude estimates can be adaptively 

integrated into the decision process as a biasing signal.  

To address the uncharted possibility, Akdoğan and Balcı (2017) examined if humans 

could accurately guess the direction and magnitude of errors in their trial-to-trial estimates of 

time intervals. In a series of experiments, they asked participants to reproduce target durations as 

accurately as possible. Participants’ judgments provided after each trial regarding confidence 

about the accuracy of their estimates, and whether this estimate was longer or shorter than the 

target interval, closely matched the participants’ actual timing performance. This suggests that 

the information about the magnitude and the direction of the timing errors become available at 

some point before the confidence judgment is made. These results show that performance-

monitoring ability extends to the estimation of continuous magnitudes (i.e., durations).  

As for time intervals, it has also been suggested that nonsymbolic numerosities are 

represented in a continuous fashion by the approximate number system, which is subject to 

uncertainty (Dehaene, 2011; Gallistel & Gelman, 1992). In line with this view, the 

discriminability of two different numerical quantities have been shown to be determined by their 

ratio (i.e., Weber’s law; Cordes, Gallistel, Gelman, & Latham, 2007), even when participants 

nonverbally count rapid arrhythmic flashes (Allik & Tuulmets, 1993; Cordes, Gelman & 

Gallistel, 2001; Whalen, Gallistel, & Gelman, 1999).  

A number of previous findings also point at performance-monitoring abilities in the 

numerical domain. For instance, Gelman and Gallistel (1978) report that children often restart 

counting when they skip an object in the set or a number word. Another study shows that when 
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math problems are framed nonsymbolically using two magic cups that add different numbers of 

items to the original set, children can infer from which of the two cups the new items came from 

(i.e., an addend-unknown problem; Kibbe & Feigenson, 2015). In both of these situations, 

children demonstrated the basic ability to compare the expected outcome with the actual one and 

use that error information. Moreover, Vo, Li, Kornell, Pouget, and Cantlon (2014) demonstrated 

performance monitoring skills of children in numerical estimates; children made high-risk bets 

after correct decisions and on easier trials.  

Importantly, a large amount of empirical and theoretical work has also established 

behavioral and neural similarities between the processing of different quantitative domains (e.g., 

Walsh, 2003). Based on these convergent lines of evidence, we hypothesized that quantitative 

error monitoring ability would apply to numerosity estimates. To test this hypothesis, we used a 

numerical version of the task used in Akdoğan and Balcı (2017) with different targets over two 

experiments. We presented fast sequences of beeps with random interstimulus intervals and asked 

participants to stop the sequence when they judged the number of beeps had reached the target 

number. Subsequently, we collected confidence ratings on how close participants thought their 

estimate captured the target number and asked whether their response undershot or overshot the 

target.  

Experiment 1 

 

Method 

 

Participants 

Twenty-nine undergraduate students from Koç University participated in the experiment 

for course credit. All participants gave informed consent. The study was approved by the local 

ethics committee at Koç University. 
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Apparatus 

Participants were tested in a dimly lit room, seated approximately 50 cm from a 22-inch monitor. 

Experiments were controlled via MATLAB (MathWorks, Natick, MA) using the Psychophysics 

Toolbox (Brainard, 1997) on an iMac. The experimental program and raw data collected can be 

accessed at the Open Science Framework (osf.io/re48n).  

Procedure 

We presented the sequences of beep sounds (444 Hz, 60ms) with random interstimulus 

intervals varying between 300 and 600 ms (uniformly distributed). Participants were asked to 

stop the sequence by pressing the space key when they thought the beep count reached the target 

number (11 or 19). Participants were prompted to provide a confidence rating by pressing the Q 

(low),W(medium), or E (high) keys to indicate (100 ms after their initial response) how close 

they thought their estimate captured the target number in that trial. They were then immediately 

asked whether they undershot or overshot the target by pressing the A or D keys, respectively. 

The intertrial interval (ITI) varied between 1.5 and 2.5 s (uniformly distributed). Participants 

were tested over four 13-minute blocks.  

Approach to analysis 

For each participant, we recorded the number of beeps before stopping the stimulus sequence for 

each confidence-rating pair: Under(U)-Low(L), Under(U)-Medium(M), Under(U)- High(H), 

Over(O)-High(H), Over(O)-Medium(M), Over(O)- Low(L). Participants’ confidence judgments 

reflected the amount of deviation from the target, regardless of the direction of their errors. If 

there exists an error monitoring mechanism for numerosity judgments, trials with high confidence 

ratings should be closer to the actual target. Hence, the logical ordering of the confidence-rating 

pairs is from UL to OL; the mean reproduction should be the lowest for UL and the highest for 
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OL. For each participant and target numerosity, we regressed six response categories (UL to UH) 

that reflected confidence and directionality of error judgment pairs on the estimated numerosities. 

Consequently, slopes significantly higher than zero would indicate an ability to monitor the 

degree and the directionality of errors in the numerosity estimates. To analyze the overall effect, 

we also used a linear mixed model with a fixed effect of reproduced numerosity on confidence 

and included participants as independent random effects on the intercept and the slope. 

Our hypothesis was that judgments on the direction and the magnitude of errors would 

veridically reflect the nature of the actual estimation errors in the numerosity domain. Because 

we are primarily interested in the magnitude of errors and their relationship with subjective 

confidence judgments in estimates, on-target trials were excluded (26.9% and 14.73% of the 

trials for T11 and T19, respectively; see Supplement Chapter 1, Fig. S1). We excluded trials 

where the number of beeps were three mean absolute deviations (MAD) above or below each 

participant’s mean (3.8% of all trials) since they could bias the results in favor of our hypothesis. 

The main outcomes of interest were whether the participants’ signed confidence judgments were 

in line with their objective performance and the ratio of participants that individually exhibited 

significant quantitative error monitoring ability (positive slopes for reproduced numerosity as a 

function of signed confidence). Perfect error monitoring performance would provide a slope close 

to 1. 

Results  

Fits for the linear mixed-effects models were done separately for each target number with the 

fitlme function with default settings in MATLAB.  
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For both target numerosities, the main effect of reproduced numerosities on confidence 

was significant (β = .217, SE = .026, p < .001, R2 = .26 for T11; β = .109, SE = .01, p < .001, R2 = 

.189 for T19), indicating that confidence judgments in general followed objective performance 

(see Table 1.1). The mean standardized slopes that relate the signed numerical errors to the 

confidence ratings for each participant were .334 (CI [.248, .42]) for T11 and .264 (CI [.2, .332]) 

for T19 (see Fig. 1.1, top-panel for the depiction of relationship between these variables). These 

slopes were significantly higher than zero, t(28) = 8, p < .001, d = 1.484 for T11, and t(28) = 

7.915, p < .001, d = 1.467 for T19. As a result of linear regression analysis conducted for each 

participant, 82.76% and 62.1% of the participants had a significant positive slope for T11 and 

T19, respectively (see Supplement Chapter 1 Table S2). 

As another test of numerical error monitoring, we compared mean confidence ratings 

when participants’ responses were on target versus off target. For both target numerosities, 

confidence ratings were significantly higher for on-target than for off-target responses, t(27) = 

6.326, p < .001, CI [.183, .358] for T11 and t(27) = 3.114, p = .004, CI [.062, .302] for T19, 

respectively. One participant did not have any on-target responses for either target.  

As the beeps were presented sequentially, time and number were highly correlated. To 

elucidate whether participants relied on time rather than numerosity, we fitted hierarchical 

regression to each participant’s data by first entering the response times (RTs) and then the 

number of beeps and vice versa. Mean R2 change was significantly higher when reproduced 

numbers were entered into the model secondarily for T11 (M = .047, CI [.013, .082]) than when 

the RTs were entered into the model second (M = .005, CI [.002, .008]). t(28) = 2.49, p = .019, d 

= .462, CI [.008, .077]). However, R2 changes for the two different hierarchical models were 

comparable for target T19, t(28) = 1.041, p = .31, BF10 = 3.095. 
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When we regressed the confidence categories on the estimated numerosities and RTs 

separately, for T11, the mean standardized slopes for the estimated numerosities (M = .322, CI 

[.231, .412]) were significantly higher than the mean standardized slopes for RTs (M = .28, CI 

[.205, .355]), t(28) = 2.587, p = .015, CI [.009, .075], d = .481. However, the slopes obtained for 

RTs and numerosities were comparable for T19, t(28) = 1.072, p = .292, BF10 = 2.963.We also 

compared the slopes for numerosity estimates and RTs when both predictors were entered in the 

regression analysis. In T11, mean slope for numerosity estimates (M = .367, CI [.255 .458]) was 

significantly higher than mean slope for RTs (M = −.030, CI [-.126 .065]), t(28) = 4.494, p < 

.001, CI [.211, .563], d = .835. However, in T19, mean slopes were similar, t(29) = 1.264, p = 

.217, BF10 = 2.465. 

 Estimate Standard 

Error 

df t value p CI AIC Log 

Likelihood 

Experiment 1                 

T11 .217 .026 3452 8.443 < .001 .167-

.267 

11904 -5947 

T19 .109 .01 2915 11.157 < .001 .09-

.129 

10683 -5336.5 

Experiment 2                 

T7 .483 .08 1615 6.017 < .001 .326-

641 

5525.7 -2757.9 

T11 .323 .063 1809 5.131 < .001 .199-

.446 

6361.5 -3175.7 

Table 1.1 Summary results of the linear mixed-effects models. The full model table and 

diagnostic plots are provided in Supplement Chapter 1, Figures S3.1, S3.2, S3.3, S3.4 

Note that these analyses were done even though participants were instructed to rely on 

numerosity only. In fact, in timing tasks participants tend to rely on (prioritize) counts (e.g., 
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Fraisse, 1963) presumably because counting is a useful strategy for reducing variance in timed 

responses (Grondin, Meilleur-Wells, & Lachance, 1999). Thus, participants are typically 

instructed not to count in timing tasks (e.g., Akdoğan & Balcı, 2017), which has been shown to 

be an effective method in and of itself (Rattat & Droit-Volet, 2012).  

Cordes, Gelman, Gallistel, and Whalen (2001) reports that scalar variability is violated 

when participants count their key presses out loud in a number reproduction task, with coefficient 

of variation (CV) decreasing as the inverse square root of the target number. Consequently, we 

calculated the CV for each participant’s numerosity judgments and compared the resulting CVs 

between targets. The results showed that participants’ CVs for both targets were comparable, 

t(28) = .913, p = .367, CI [.012, .032], BF10 = 3.45. Finally, numerical CVs were lower than RT 

CVs for both targets, t(29) = 8.624, p < .001, CI [.009, .015], d = 1.601 for T11, and t(29) = 

5.672, p < .001, CI [.005, .010], d = 1.053 for T19, indicating that participants used numerical 

information rather than relying on time (see Supplement Chapter 1, Table S5.1). 

Experiment 2 

Method 

Participants 

Fifteen undergraduate students from Koç University participated in the experiment for course 

credit. All participants gave informed consent. The study was approved by the local ethics 

committee at Koç University.  

Procedure  
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All procedures in Experiment 2 were identical to those in Experiment 1, except that the numerical 

targets were 7 (T7) and 11 (T11).  

Results  

Data exclusion criteria were identical to those in Experiment 1. On-target responses were 

excluded (44.54% and 28.36% trials for T7 and T11, respectively). Trials where the reproduced 

number was three MADs above or below each participant’s mean were also excluded (4.87% of 

trials).  

To test the overall effect of numerical reproduction performance on confidence 

judgments, we used the same linear mixed-effect model with the reproduced number as the linear 

predictor and participant as a random effect on the slope and the intercept. For both targets, the 

main effect of the reproduced numerosities on confidence was significant (β = .483, SE = .08, p < 

.001, R2 = .262 for T7; β = .323, SE = .063, p < .001, R2 = .178 for T11; see Table 1.1).  

The mean standardized slopes were .412 (CI [.309, .516]) and .354 (CI [.253, .455]) for 

T7 and T11, respectively (see Fig. 1.1, bottom panel for the depiction of relationship between the 

variables). The comparisons of these slopes to zero revealed significant differences, t(12) = 

8.685, p < .001, d = 2.07 for T7; t(14) = 7.531, p < .001, d = 1.967 for T11. As a result of the 

linear regression analyses conducted separately for each participant, 86.67% and 80%of the 

participants had a significant positive slope for T7 and T11, respectively (see Supplement 

Chapter 1, Table S2). As another test of numerical error monitoring, we compared the confidence 

ratings when participants’ responses were on target versus off target. For both target 

numerosities, confidence ratings were significantly higher for on-target than off-target responses, 
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t(14) = 4.179, p < .001, CI [.164, .511], d = 1.134, and t(14) = 2.649, p = .02, CI [.032, .308], d = 

.51 for T7 and T11, respectively. 

 

Fig. 1.1 Relationship between numerosity estimates and signed confidence ratings. Average 

signed confidence ratings (-3: UL, -2: UM, -1: UH, 1: OH, 2: OM, 3: OL) as a function of z-score 

transformed numerosity estimates (including on target responses) for Experiment 1 (top panel) 

and Experiment 2 (bottom panel). We calculated z-scores for all reproduced numbers separately 

for each participant. We then computed the mean confidence for each z-score transformed 

numerosity separately for each participant. Colored markers indicate a participant’s mean 

confidence for a given z-score. Different colors correspond to different participants. Fitted lines 

show the robust regression fits (with Huber weights) to the data for depiction purposes. The plots 

show the linear fits of mean confidence ratings on the z-transformed numerical reproductions 

from all participants   T7 = Target 7, T11 = Target 11, T19 = Target 19. Note that T11 was 

included both in Experiment 1 and Experiment 2. 
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For T7, R2 changes were significantly higher when the reproduced numerosity were 

entered secondarily into the model (M = .052, CI [.015, .081]) than when the RTs were entered 

second (M =.007, CI [.001, .011]), t(12) = 2.388, p = .034, CI [.004, .076], d = .662. For T11 too, 

R2 changes were significantly higher when we entered the reproduced numerosity second (M = 

.051, CI [.021, .082]) than when we entered the RTs second (M= .01, CI [.004, .016]), 

t(14)=3.004, CI [.011, .07], p = .01, d = .776). Moreover, when we regressed confidence 

categories separately on the reproduced numerosities and RTs the mean slopes for the reproduced 

numerosities (M = .412, CI [.309, .516]) were significantly higher than the mean slopes for the 

RTs (M = .364, CI [.283, .444]) in T7, t(12) = 2.329, p = .038, CI [.003, .094] d = 0.317. In T11, 

the mean slopes for the reproduced numerosities (M = .354, CI [.215, .391]) were also 

significantly higher than the RTs (M = .303, CI [.253, .455]), t(14) = 3.34, p = .005, CI [.018, 

.084], d = 0.863.When the RTs and the numerosity estimates were both entered in the regression 

analyses, mean slope for numerosity estimates was significantly higher than the mean slope for 

the RTs for both targets, t(12) = 2.737, p = .018, CI [.061, .535], d = .759 for T7, and t(14) = 

2.525, p = .024, CI [.055, .675], d = .652 for T11. 

The numerical CVs for the targets were similar t(14) = 1.056, p = .309, CI [−.019, 

.058], BF10 = 2.367 suggesting that participants did not verbally count the number of beeps. 

Finally, numerical CVs were lower than RT CVs for both targets, t(14) = 9.585, p < .001, CI 

[.019, .03], d = 2.475 for T7, and t(14) = 4.928, p < .001, d = 1.272 for T11, indicating that 

participants relied on numerosities rather than time (see Supplement Chapter 1, Table S5.2).  
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Discussion  

The results of the current study suggested that humans can monitor not only the magnitude but 

also the direction of errors in their numerosity estimations and extended the scope of previous 

findings regarding temporal error monitoring to the numerosity domain. Our results also showed 

the predictive power of numerosity for the error-monitoring performance above and beyond its 

RT correlate. Importantly, the study of error monitoring based on magnitude estimations provides 

the unique opportunity to characterize the quantitative capacity of error-monitoring ability with 

respect to objective quantitative errors. This cannot be achieved in the context of 2AFC behavior 

(with binary outputs). In fact, in 2AFC tasks participants have been reported to utilize parametric 

information (i.e., RTs) as a proxy for confidence judgments (Kiani, Corthell, & Shadlen, 2014). 

This result suggests that the quantitative capacity error-monitoring ability may constitute its 

default operational mode, which might be adapted to confidence judgments even in 2AFC 

behavior based on whatever parametric information is available. Consequently, our results show 

that error-monitoring is informationally richer than can be captured by earlier work in 2AFC 

behavior. 

A contemporary line of evidence shows that humans and animals can optimize their 

quantitative and perceptual decisions by taking near normative account of their level of 

endogenous timing and counting uncertainty (Balcı et al., 2011; Çavdaroğlu & Balcı, 2016). Our 

results, coupled with the earlier results on temporal error-monitoring, suggest that humans and 

animals might adapt their decision according to their estimate regarding the level of their 

uncertainty.  
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Although for majority of the participants we observed significantly positive slopes using 

the number of beeps in the analysis, it appears that the confidence ratings for the largest target 

(T19) might have been affected by the total time of stimulus presentation (a correlate of 

numerosity). One reason for this might be the underlying uniform distribution that we used to 

generate the interbeep intervals. That is, CV of the presentation durations to reach a given target 

number decreases as that target number increases, making time a relatively more reliable source 

of information for larger numerosities. Alternatively, when a portion of the consecutive beeps are 

too closely clustered in time, participants might lose track of the count and switch to a time-based 

strategy instead. Furthermore, perceived numerosity is known to decrease with spatial and 

temporal proximity, which applies to both static patterns and sequential presentations (Allik & 

Tuulmets, 1993). These would occur in higher frequency in longer sequences. However, as 

mentioned above, earlier studies showed that in timing tasks participants typically prioritize 

counting over timing (e.g., Fraisse, 1963; Rattat & Droit- Volet, 2012). Thus, in timing studies, 

participants are typically asked not to count, which has been shown to be sufficient to prevent 

counting (e.g., Akdoğan & Balcı, 2017; Rattat & Droit-Volet, 2012). To this end and as intended, 

the current study differs from Akdoğan and Balcı (2017) as it addresses nonverbal counting 

rather than interval timing (see Allik & Tuulmets, 1993, for evidence for counting in sequential 

presentations).  

An interesting question that arises from these findings is why a participant with 

knowledge of their numerical errors would not correct their estimates in the first place. The same 

question also applies to temporal error monitoring. Akdoğan and Balcı’s (2017) multiple 

integrator model showed that the source of the error-related information is the comparison of the 

integrator that drives the current estimate and secondary integrator(s), the state of which at the 
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time of estimate serves as a benchmark for error monitoring. In this view, error monitoring can be 

realized only retrospectively and thus cannot guide responding prospectively. Furthermore, the 

related literature already separates prospective and retrospective judgments of performance and 

attributes them to different information-processing dynamics and neural mechanisms (Fleming & 

Dolan, 2012).  

An important issue in error monitoring and metacognition literature is the relationship 

between first-order and second-order performance. In the decision-making domain, measures of 

metacognitive performance often depend on actual task performance and devising a method for 

obtaining a pure metacognitive score is crucial (Fleming & Lau, 2014; Maniscalco & Lau, 2012). 

Rounis, Maniscalco, Rothwell, Passingham, and Lau (2010) showed that application of TMS to 

the prefrontal cortex impairs metacognitive performance but leaves stimulus discrimination 

performance intact. On the other hand, Winman, Juslin, Lindskog, Nilsson, and Kerimi (2014) 

reported that participants with higher number sense acuity gave more realistic appraisals of their 

own performance relative to others in a probabilistic reasoning task. In our study, the 

standardized slopes from individual regression fits are solely determined by confidence 

judgments and therefore provide an independent measure of error monitoring performance. 

However, we did not observe a consistent statistically significant relationship between the CV 

and error monitoring ability or improvement of performance during the experiment (see 

Supplement Chapter 1, Fig. S4, Table S6). Future studies can address if there is a relationship 

between participants’ CVs and their judgements regarding their performance in relation to others.  

Finally, another important question that arises from these findings is if the directionality 

and magnitude of errors are processed by the same or different cognitive/neural mechanisms 

across quantitative and perceptual domains paving the path for a more complete understanding of 
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key components of human error-monitoring ability. Future work can investigate if one can 

disassociate these two components of error monitoring by using neuroimaging and 

neuromodulation methods.  

Conclusion  

The results of the current study suggest that humans can estimate the direction and degree of 

errors during nonverbal counting, providing evidence for the numerical error monitoring ability. 

Consequently, these results coupled with earlier work in interval timing (Akdoğan & Balcı, 2017) 

show that quantitative information in the domain of magnitude representations is accessible to the 

error monitoring mechanism. 
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CHAPTER II 

Metric Error Monitoring in the Numerical Estimates 
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Abstract 

Recent studies have shown that participants can keep track of the magnitude and direction of their 

errors while reproducing target intervals (Akdoğan & Balcı, 2017) and producing numerosities 

with sequentially presented auditory stimuli (Duyan & Balcı, 2018). Although the latter work 

demonstrated that error judgments were driven by the number rather than the total duration of 

sequential stimulus presentations, the number and duration of stimuli are inevitably correlated in 

sequential presentations. This correlation empirically limits the purity of the characterization of 

“numerical error monitoring”. The current work expanded the scope of numerical error 

monitoring as a form of “metric error monitoring” to numerical estimation based on 

simultaneously presented array of stimuli to control for temporal correlates. Our results show that 

numerical error monitoring ability applies to magnitude estimation in these more controlled 

experimental scenarios underlining its ubiquitous nature. 

 

Keywords: Numerical estimation, Metric error monitoring, Mathematical cognition, Magnitude 

representation 
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Introduction 

Error monitoring refers to the ability of humans to keep track of their errors in their decisions, 

choices, and judgments without guidance of objective feedback. Although this ability has been 

investigated primarily in behavioral paradigms that require binary choice based on some stimulus 

property (Fleming, Dolan, & Frith, 2012), at least three recent studies have shown that error 

monitoring relies on richer metric information that cannot be captured by two alternative forced 

choice behavior. Specifically, these studies revealed that humans can keep track of the direction 

and magnitude of errors in their reproduction of target time intervals (Akdoğan & Balcı, 2017 - 

see also Kononowicz, Roger, & van Wassenhove, 2017) and numerosity of sequentially 

presented stimuli with random ISIs (Duyan & Balcı, 2018). Although, based on a number of 

analyses Duyan and Balcı (2018) demonstrated that error judgments were driven by the number 

rather than the total duration of sequential stimulus presentations in their counting task, in 

sequential presentations the number and duration of stimuli are inevitably correlated empirically 

limiting the characterization of  “numerical error monitoring”. Critically for the study of 

numerical error monitoring, humans are also known to be able to estimate (on average) the 

numerosity of simultaneously presented array of items (Gebuis & Reynvoet, 2012). In order to 

reach at a more complete and cleaner (without the time correlate) characterization of “numerical 

error monitoring” ability, the current study investigated if metric error monitoring generalizes to 

the estimates of the numerosity of simultaneously presented array of items.  

Recently, a number of studies provided evidence for a metric error monitoring mechanism 

in magnitude representations (e.g. Akdoğan & Balcı, 2017; Kononowicz et al., 2017, Duyan & 

Balcı, 2018). In the timing domain, Akdoğan and Balcı (2017) showed that in a temporal 

reproduction task using durations ranging between 1.5 and 6 s, participant's confidence ratings 
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and error-directionality judgments reflected the amount and the direction (over- or under-

reproduction) of errors on a trial-to-trial basis. Moreover, for longer durations, people are also 

aware of their general biases in time perception (Brocas, Carrillo, & Tarraso, 2018). For number 

representations, a few studies hinted at a possible numerical error monitoring mechanism (e.g., 

Gelman & Gallistel, 1978; Kibbe & Feigenson, 2015). For instance, Vo, Li, Kornell, Pouget, and 

Cantlon (2014) found that children made more high-risk bets after correct decisions and on easier 

trials in a numerical discrimination task.  

The counting ability of humans has been widely investigated in the literature. One 

important conclusion that can be derived from these studies is that numerosity estimates based on 

sequentially presented signals and simultaneously presented array of items are subject to the 

similar cognitive procedures and/or constraints pointing at an overlap between the representations 

(namely Approximate Number System; Dehaene, 2011; Gallistel & Gelman, 1992, 2000) that 

result from these two different presentation formats characterizing an abstract number sense (e.g., 

Barth, Kanwisher, & Spelke, 2003; but see Tokita & Ishiguchi, 2012). This suggests that 

numerical error monitoring can be studied based on the numerosity estimates about simultaneous 

array of items without the temporal correlates (compared to sequential presentations).  

In support of a common abstract numerical representational system activated independent 

of sensory modalities and presentation format (simultaneous vs. sequential), Barth et al. (2003) 

showed that there was no performance cost for comparing numerosities between modalities and 

formats. This behavioral observation suggested that the quantitative comparisons were made 

based on a common and abstract mental metric activated by different experimental settings. 

Corroborating this conclusion, Arrighi, Togoli, and Burr (2014) showed that adaptation (i.e., the 

effect of viewed numerosity on the enumeration of the subsequently presented stimuli) 
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generalized not only between sensory modalities but also presentation formats. Importantly, the 

degree of this cross modality and presentation format adaptation was as strong as those observed 

in within modalities and formats.  

Support for a common numerical representational system on behavioral and 

psychophysical bases were coupled also with neural evidence. For instance, Nieder, Diester, and 

Tudusciuc (2006) showed that a group of neurons in the intraparietal sulcus of monkeys exhibited 

numerosity selectivity irrespective of sequential vs. simultaneous presentation of to-be-

enumerated items. The observations were corroborated by human neuroimaging work. For 

instance, Dormal, Andres, Dormal, and Pesenti (2010) tested humans with simultaneously vs. 

sequentially presented stimuli and their conjunction analysis showed that right intraparietal sulcus 

and precentral gyrus were commonly activated with a very similar activation pattern during 

numerical judgments made based on both presentation formats.  

These different lines of evidence that point at a common numerical representational 

system both necessitate the study of numerical error monitoring previously reported with 

sequential presentations also with simultaneous array of stimuli but also enables the 

characterization of this ability independent of the temporal correlate of numerosity faced during 

the sequential presentation format. To this end and different from our previous study, we used a 

numerical estimation task rather than a production task. Despite similar performance between 

different task structures, Crollen, Castronovo, and Seron (2011) showed that the perception, 

production and reproduction of numerosities can result in different patterns of performance. In 

general, participants over-estimate numerosities when asked to produce symbolically presented 

numbers (Castronovo and Seron, 2007; Cordes, Gelman, Gallistel, & Whalen, 2001; Whalen, 

Gallistel, & Gelman, 1999). However, they under-estimate the number of simultaneously 
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presented items on a display (e.g. an array of dots), especially for numerosities over 20 

(Castronovo & Seron, 2007). Consequently, the investigation of numerical error monitoring with 

the numerical estimation task will complement previous findings regarding the numerical-

representational-dependency rather than peculiar task-dependency of the metric error monitoring 

ability. 

Method  

Participants  

18 undergraduate students from Koç University participated in the experiment for course credit. 

All participants gave informed consent prior to testing. The study was approved by the local 

ethics committee at Koç University.  

Apparatus  

Participants were tested in a dimly lit room, seated approximately 50 cm from a 22-in. monitor. 

Experiments were controlled via Matlab (Mathworks, Natick, MA) using the Psychophysics 

toolbox (Brainard, 1997) on an iMac. Raw data and the analysis code can be accessed at the Open 

Science Framework (osf.io/xae6k).  

Stimuli  

The numerical stimuli were arrays of grey dots on a black background, generated using a 

modified version of the program described in Gebuis and Reynvoet (2011, 2012). Overall, the 

numbers ranged between 4 and 29. The target numbers (i.e., 4, 7, 11, 16, 22 and 29) were 

presented on half of the trials (40 each). The rest of the numbers were presented on the rest of the 

trials as filler numerosities (12 each). The program developed by Gebuis and Reynvoet (2011) 

manipulates three visual properties of the dot array: the convex hull, average diameter of the dots 
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and density. A total of 480 arrays were generated for the task. During the experiment, all 

participants were presented the same pre-generated stimuli set in a random order. 

Procedure 

A random dot array was presented for 500 ms randomly from the stimulus set. A question mark 

immediately appeared on the screen, and the participants typed in their numerosity estimate using 

the number pad on the keyboard. Participants were prompted to provide a confidence rating by 

pressing Q (low), W (medium) or E (high) keys to indicate (100-milliseconds after their initial 

response) how close they thought their estimate captured the actual number of dots in the array. 

They were then (after 100-milliseconds) asked whether they undershot or overshot the target by 

pressing A or D keys, respectively. The intertrial interval (ITI) varied between 1.5 and 2.5 s 

(uniformly-distributed) (see Fig. 2.1).  

 

 

Fig 2.1 An illustration of the experimental task (a) and sample arrays used in the experiment (b). 
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Data analysis  

In order to provide the experience of a wide range of numerosities to the participants, we 

included set sizes between 4 and 29 with the prior knowledge that they would have performed 

differently for set sizes that are small. In order to base our analysis on those set sizes that were 

processed similarly (e.g., not via subitizing), we made piecewise linear fits to the average 

proportion of on-target responses for different set sizes. The fit that maximized the difference 

between the slopes of two lines led to an inflection point at 10 (pre-inflection point slope=−0.125; 

post-inflection point slope=−0.011) suggesting that our participants likely adopted different 

enumeration strategies for set sizes below 10. Compared to other numerosities (target or filler), 

participants committed substantially lower frequency of errors in their numerosity estimates for 

counts lower than 10. This is likely due to subitizing and chunking (Gobet et al., 2001; Mandler 

& Shebo, 1982). These counts were however important during testing as they contributed to the 

wider range of numerosities faced by the participants to prevent them from honing into specific 

targets.  

For each participant, we excluded trials where a numerical estimate was 3 mean absolute 

deviations (MAD) for that participant's mean reproduction for a given target numerosity. 

Participants' and directionality judgments on their estimates yielded six confidence direction 

pairs: Under(U)-Low(L), Under(U)-Medium(M), Under(U)-High(H), Over(O)-High(H), 

Over(O)-Medium(M), Over(O)-Low (L). These response categories were numerically coded as 

−3, −2, −1, 1, 2 and 3, respectively. Confidence ratings reflected how close the participants 

thought their estimates were to the actual numerosity, regardless of whether they over- or 

underestimated the target. Moreover, the directionality judgments (i.e over/under) should reflect 

under- or overestimations in their responses. Hence, if humans can correctly judge the precision 
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of their numerical estimates, trials with low confidence ratings should on average be further away 

from the target, on an individual basis. In the ideal case, the mean estimate for a specific 

numerosity should be the lowest on trials with UL judgments and the highest on trials with OL 

judgments. Consequently, the regression of these confidence-direction pairs on the numerosity 

estimates should yield a positive slope. A higher slope will reflect a better error monitoring 

ability.  

Table 2.1 Mixed effects model results for target numerosities only. 

 Estimate SE tStat DF pValue Lower Upper 

Fixed Effects 

Intercept  -.197 .221 -.894 2788 .371 -.63 .235 

Response       .435 .057 7.687 2788 <.001 .324 .545 

Random Effects 

Group: Participant (18 Levels) 

  Std Lower upper         

Intercept .923 .66 1.292         

Response .182 .104 .321         

AIC: 11634   BIC: 11664 Log Likelihood: -5812.2 

 

To capture the whole data with a single model, we calculated the z-scores from each 

participant's responses for each target numerosity. Thus, the z-scores reflect the participant's 

amount of deviation from his/her mean estimate for a specific numerosity. This way, we could 

include all the target numerosities in a single model. To explore whether participants' signed 

confidence judgments followed their estimation performance, we regressed the confidence 

judgments on the z-scores from all trials by constructing a linear mixed effects model. Because 
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we expect the error monitoring performance to differ among individuals (hence, different slopes), 

we included the participants as a random factor on the slope and the intercept. Effect sizes (d) 

were calculated following Westfall, Kenny, and Judd (2014). 

Results  

In the first model, we included the responses for the target numerosities that were above the 

aforementioned inflection point (i.e. 11, 16, 22, 29). The linear mixed effects model revealed a 

statistically significant positive slope for the effect of subjective numerosity estimates on signed 

confidence ratings, β = 0.435, SE = 0.057, p < .001, R2 = 0.22, d = 0.204 pointing at an error 

monitoring ability for subjective numerical representations (Table 2.1).  

In the second model, in addition to the targets included in the previous model, we also 

included the responses for the filler numerosities. The model yielded similar results, revealing a 

significant positive slope for the z-transformed numerosity estimates, β = 0.447, SE = 0.057, p < 

.001, R2 = 0.23, d = 0.209 (see Table 2.2, Fig. 2.2).  

The same set of analyses were also conducted for targets that were higher than 7 (the first 

target after 4, which falls within the subitizing range). The same results held (see Supplement 

Chapter 2, Table S1 & S2).  

As mentioned above, the confidence-directionality pairs did not include zero, because the 

participants had no way of reporting that their response was exactly on target. While this manner 

of coding is intuitive given the rationale of our approach, we should note that it runs the risk of 

estimating a higher slope for the fixed effects factor when the less-more judgments are made 

accurately, compared to when they are coded from 1 to 6. Thus, we also fitted the same mixed 

effects models with the latter manner of coding these judgment pairs, and the results (despite a 

lower slope) did not change: β = 0.333, SE = 0.044, p < .001, R2 = 0.218, d = 0.2 for the first 
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model; β = 0.343, SE = 0.044, p < .001, R2 = 0.228, d = 0.203 for the second model (See 

Supplement Chapter 2, Table S3 & S4).  

 

Fig 2.2 Each dashed line represents the fits for individual participants gathered from the linear 

mixed effects analysis. The solid line shows the estimate for the average effect from the same 

model. Note that each slope for individual participants (except for one participant with a slope of 

-.034) has a positive slope. The individual lines differ in length, because they show the predicted 

values for each participant’s z-transformed response range. This figure presents the data gathered 

for all numerosities after the inflection point (10 - see Data Analysis for details). 
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Table 2.2 Mixed effects model results for targets and distractors. 

 Estimate SE tStat DF pValue Lower Upper 

Fixed Effects 

Intercept

  

-.207 .223 -.928 6135 .353 -.645 .23 

Response     

  

.447 .057 7.906 6135 <.001 .337 .558 

Random Effects 

Group: subject (18 Levels) 

  Std Lower upper         

Intercept .941 .676 .1.311         

Response .216 .144 .325         

AIC: 25543      BIC: 25576 Log Likelihood: -12766 

 

Finally, it is possible that participants tended to increase the variability in their numerical 

estimates in order to perform better in the second order judgments. To see whether estimation and 

error monitoring performances were related, we calculated the correlation between individual 

slopes obtained from the first mixed effects model and the CVs of the numerical estimates 

(calculated by normalizing each estimate by the corresponding target to obtain a single CV for 

each participant) for the target numerosities that were included in the model (i.e 11, 16, 22 and 

29). There was no correlation between these two variables, r = −0.246, n = 18, p = .325. 

Similarly, there was also no correlation between the individual slopes from the second mixed 

effects model and the CVs of estimates for the corresponding numerosities (10:29), r = −108, n 

= 18, p = .671.  
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Estimation performance  

Several studies have shown that participants underestimate numerosities that are presented 

simultaneously and non-symbolically (Castronovo & Seron, 2007). In order to see whether this 

was the case in our experiment, we fit a power function curve to each participant’s estimates on 

the target numerosities (See supplement Chapter 2, Fig S2). The mean exponent of the power 

function curves was significantly smaller than 1, (M = 0.725, SD = 0.101, t(17) = −11.565,  p 

< .001, CI = [0.675, 0.775], d = 2.723, showing that in line with previous work, participants 

generally underestimated the target numerosities as the magnitude of the numerosity increased.  

Discussion  

Recent work from our research group has shown that humans can keep track of errors in their 

temporal reproductions (Akdoğan & Balcı, 2017; see also Kononowicz et al., 2017) and 

numerical productions (Duyan & Balcı, 2018) pointing at the metric properties of error 

monitoring as it relates to quantitative representations. However, the characterization of 

numerical error monitoring has been made solely based on numerical production of target 

numerosities by terminating sequentially presented stimuli. These limited the study of metric 

error monitoring to (re)production tasks as well as making the results subject to temporal 

correlates of numerosities observed by the participants. The current work was designed to 

overcome these empirical limitations and extended the scope of study of metric error monitoring 

to estimation (as opposed to production) tasks by testing participants with simultaneously 

presented array of stimuli. Corroborating our previous results in Duyan and Balcı (2018), the 

findings of the current study clearly suggest that humans can closely keep track of the direction 

and magnitude of errors in their numerical estimates. These results combined with our earlier 
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work suggest that metric error monitoring might apply to many magnitude-based representations 

irrespective of the way through which they are accessed in the task.  

Our results overall set the foundations of a new branch of research what we refer to as 

“metric error monitoring” that encompasses time and numerosities that have been assumed to be 

underlain by similar representational systems (e.g., Martin, Wiener, & Van Wassenhove, 2017; 

Walsh, 2003). This very ability and its information content can have important implications 

regarding the nature of quantity representations. For instance, these findings are another clear 

indication for the preservation of metric information in quantity representations (Montemayor & 

Balci, 2007). Corroborating our conclusions in relation to error-monitoring for magnitude based 

representations on the neurophysiological grounds, the metric features of errors in the spatial 

domain was also reported in the error-related event related potential components (i.e., error 

related negativity [ERN] and error positivity [Pe] - Vocat, Pourtois, & Vuilleumier, 2011). The 

question of how these components relate to metric error-monitoring ability requires further 

investigation.  

Although our findings constitute very clear demonstration of numerical error monitoring, 

they do not speak specifically to the mechanisms through which this can be achieved. To this 

end, the model proposed by Akdoğan and Balcı (2017) to account for temporal error monitoring 

can be adopted to explain the numerical error monitoring performance as well. According to the 

generalized (to magnitude based representations) version of this modeling approach, the quantity 

estimates can rely on one of many simultaneously active generative processes of the same kind; 

although one of these processes underlies the quantity estimation or the action guided by the 

quantity estimation, the output of the remaining processes could be used for retrospective 

comparisons for judging the veridicality of the original estimate. Note that the same computation 
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can also be achieved by the comparison of the original estimate with a random sample drawn 

from the long-term memory of the same target (after repurposing the computational assumptions 

of the Scalar Timing Theory - Gibbon, Church, & Meck, 1984). Such memory-based error-

monitoring mechanism would however apply only to those cases where there is one target or 

targets are far enough from each other to activate only their own memory.  

An alternative explanation for numerical error monitoring ability in our task is that each 

item in the array might activate an “object index” and the total activation of these indices can 

underlie the numerosity estimate for the corresponding array. In this case, when error-related 

questioning takes place following the original numerical estimation, the current activation level 

of these indices can be used to judge the veridacility of the original estimate. Such computations 

might be possible through the comparison of the current activation of different neurons tuned for 

different numerosities (e.g., in intraparietal sulcus) for the presented array (Nieder, 2016).  

Although the set was presented as an array of items and thus there was no temporal 

correlate of the set size, it is still possible that participants used response time as a proxy for their 

confidence ratings. In fact, such a strategy appears to be in place for error monitoring in two 

alternative forced choice tasks (e.g., Ratcliff, Smith, Brown, & McKoon, 2016). Although such 

an auxiliary strategy could account for confidence level (i.e., slower RT lower confidence), it 

would fall short of providing information regarding the directionality of the errors, which we 

show can be predicted by participants.  

We find the extension of metric error-monitoring studies to estimation tasks crucial and 

complementary to our previous work. The fundamental difference between perception and 

production tasks is that in perception tasks participants are required to convert nonsymbolic 

values to symbolic numbers, whereas in production tasks they are required to provide a non-
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symbolic response for a target numerosity. This discrepancy between different modes of 

numerical perception has been theorized to depend on the logarithmic nature of the mental 

number line, with the assumption that different numerical representations (i.e. symbolic or non-

symbolic) are transcoded within the brain. It is further assumed that non-symbolic numerical 

representations are less precise than symbolic representations, as they are logarithmically 

compressed along the mental number line (e.g., Dehaene, Izard, Spelke, & Pica, 2008; Crollen et 

al., 2011; Crollen & Seron, 2012). Combined with our earlier findings, the results of this study 

show that metric error monitoring performance does not depend uniquely on the nature of 

transformations required by the task features.  

Given earlier studies that imply numerical error-monitoring in children, future studies can 

focus on the developmental trajectory of metric error monitoring based on the procedures used in 

the current study. Another related branch of further study regards the trainability of metric error 

monitoring. For instance, it remains to be unknown if expertise in counting and timing (e.g., via 

musical training) benefit the error monitoring performance in these quantitative domains.  

The autonomy of number processing can be a crucial component of numerical error 

monitoring. For instance, using a variant of the numerical Stroop task (pitting numerical vs. 

physical distances against each other) and based on behavioral and neuroimaging data Tang, 

Critchley, Glaser, Dolan, and Butterworth (2006) showed that the processing requirement of 

numerical information was higher compared to physical magnitudes, which importantly was not 

modulated by task relevance of the numerical information. Authors showed an enhanced 

activation in the parietal lobe while processing numerical distances (irrespective of the task 

relevance of the numerical information) suggesting that numerical and physical distances were 

processed differently in the brain (at least in the context of the numerical Stroop task). In the light 
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of these results providing strong support for the automaticity of numerical processing, the initial 

subjective estimate might be dependent on autonomous processing, and subjective confidence 

might rely on the controlled processing of this very same information. Indeed, in perceptual 

decision making tasks, metacognitive accuracy increases when participants are asked to prioritize 

speed (Baranski & Petrusic, 1994; Moran, Teodorescu & Usher, 2015; Pleskac & Busemeyer, 

2010), suggesting that accumulation of evidence continues even after a decision is made (e.g., 

Akdoğan & Balcı, 2017). While we cannot claim that decision making under pressure and 

autonomous processing of magnitudes are analogous, future studies can inspect how 

metacognitive accuracy (i.e. regression slope in this case) changes when magnitude estimations 

are made under speed pressure or when the target stimuli is presented for longer durations.  

Furthermore, Critchley, Tang, Glaser, Butterworth, and Dolan (2005) found enhanced 

activity in the dorsal and rostral anterior cingulate cortex during the numerical Stroop task. 

Coupling the analysis of pupillary response with the analysis of fMRI data, Critchley et al. 

suggested that ACC could serve integrate error processing and autonomic arousal signals. This 

later study is indicative of possible autonomic arousal-related and neural signaling correlates of 

numerical error monitoring. The elucidation of this important integrative functional network 

possibly underlying numerical error monitoring would benefit from further integrated 

pupillometry and ERP studies (during numerical estimation) focusing on error-related signals 

(e.g., Gehring, Goss, Coles, Meyer, & Donchin, 1993) that are source localized to ACC. 

Conclusions  

The results of the current study show that human participants can keep track of the direction and 

magnitude of metric errors in their estimates of numerosities based on simultaneously presented 

array of items in which numerosities are not coupled with temporal correlates. These findings 
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along with the results of other recent work (Akdoğan & Balcı, 2017; Duyan & Balcı, 2018; 

Kononowicz et al., 2017) form a strong empirical basis for the metric error-monitoring ability. 

The neurocognitive mechanisms that underlie metric error monitoring and their relationship with 

those underlie error-monitoring in the two-alternative forced choice behavior remain to be 

elucidated. 
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CHAPTER III 

Monitoring Line Length Reproduction Errors 

  



46 
 

Abstract 

Previous work revealed that humans can keep track of the direction and degree of errors in their 

temporal and numerical reproductions/estimations. Given the behavioral and psychophysical 

commonalities to various magnitudes and the implication of an overlapping neuroanatomical 

locus for their representation, we hypothesized that participants would capture the direction of 

errors and confidence ratings would track the magnitude of errors in line-length reproductions. In 

two experiments, participants reproduced various target lengths as accurately as possible, and 

reported the direction of their errors and provided confidence ratings for their reproductions. The 

isolated analysis of these two second-order judgments showed that participants can correctly 

report the direction of errors in their line-length reproductions and subjective confidence 

decreases as the magnitude of errors increases. These results show that humans can robustly keep 

track of the direction of errors in their line-length reproductions and their subjective confidence 

corroborates the magnitude of these errors.  

 

Keywords  Error monitoring, Line reproduction, Magnitude representations, Confidence 

judgments 
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Introduction  

Error monitoring is the ability to assess one’s own accuracy on a given task in the absence of 

feedback regarding objective performance. This ability has been typically studied using tasks that 

require categorical judgments like the two-alternative forced choice task (2AFC) in perceptual 

decision making and recognition memory domains. These studies showed that error monitoring 

judgments closely follow the objective performance in humans (Fleming Stephen, Dolan 

Raymond, & Frith, 2012) however the tasks utilized also imposed paradigmatic constraints on 

which aspects of error monitoring can be addressed and cannot encompass error monitoring 

regarding metric estimates about quantities.  

Humans and other animals can estimate magnitudes such as time, number and spatial 

distances accurately on average (e.g., Gallistel, 1990). However, magnitude representations 

inherently contain uncertainty, which results in trial-to-trial variability in the corresponding 

quantity estimates. Recent work showed that confidence ratings also reflect the amount of 

deviation from the target in the estimation of continuous magnitudes such time (Akdoğan & 

Balcı, 2017), numerical estimates (Duyan & Balcı, 2018, 2019), and grating orientation (Samaha 

& Postle, 2017). Given the plethora of findings that point to a common system for the 

representation of magnitudes (Martin, Wiener, & van Wassenhove, 2017; Walsh, 2003), with 

evidence from studies on cross-modal transfer (e.g., (Balci & Gallistel, 2006)), cross-dimension 

interference (Henik & Tzelgov, 1982), and neurophysiological findings that relate a common 

locus (i.e., intraparietal sulcus, e.g., (Bueti & Walsh, 2009)) to various magnitude-based 

judgments, we hypothesized that confidence ratings and error directionality judgments would 

also reflect objective performance in the estimation of spatial attributes such as distance. In order 
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to test this hypothesis, we measured the error directionality judgement and confidence rating of 

participants in a length reproduction task.  

Estimates of spatial distances are crucial in both the planning of simple motor actions, 

such as deciding how much the related muscles should be contracted when jumping over a 

hurdle, and the planning of more complex action sequences, such as estimating the time it would 

take to get to a destination, whether your car will fit an empty spot for parking or whether a new 

piece of furniture you’re planning to buy at the store would fit a vacant space in your apartment. 

Errors in the estimation of distances might have trivial or dire consequences depending on the 

context. For instance, overestimating the empty space in your apartment when buying furniture 

will require an extra trip to the store; underestimating a distance and braking late may result in a 

car accident. Practically, being aware of general biases (i.e., thinking that you over/underestimate 

distances), or the magnitude of deviation from the target in a specific estimate would be useful in 

situations alike (e.g., parking slowly when not certain about the space available; delaying a 

purchase). Theoretically, the ability to monitor the direction and the degree of errors in trial-to-

trial estimates of magnitudes would indicate that humans’ error-monitoring system has a 

resolution that goes above and beyond the categorical judgments regarding the veridicality of the 

first order binary decisions.  

Previous work has shown that humans can estimate lengths accurately (Stevens & 

Galanter, 1957; Verillo, 1983) with psychophysical patterns similar to other magnitude 

estimations such as time and numerosity (Petzschner, Glasauer, & Stephan, 2015). Moreover, 

confidence judgments closely follow the objective performance in sensory discrimination tasks 

involving judgments of spatial distances (Baranski & Petrusic, 1994, 1999). Recently, Akdoğan 

and Balcı (2017) reported more direct evidence for metric performance monitoring ability in 
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interval timing (see also (Kononowicz, Roger, & van Wassenhove, 2018)). Using a temporal 

reproduction task, they asked the participants to reproduce a target duration as accurately as 

possible. On each trial, they also obtained confidence ratings and directionality judgments on the 

accuracy of the reproduced duration. Over four experiments with different durations and different 

block designs, they found that these confidence ratings and error-directionality judgments (as a 

composite measure) closely followed the participants’ objective timing performance (i.e., 

parametric and directional errors). Using a numerical analogue of this task, Duyan & Balcı (2018, 

2019) showed that such quantitative error-monitoring ability also extends to the numerical 

estimates based on counts of sequential events as well as based on counts of a simultaneously 

presented array of circles. Moreover, Samaha and Postle (2017) asked participants to reproduce 

the orientation of a briefly presented low contrast grating and obtained error monitoring ratings 

on each trial. Similarly, they observed an inverse relationship between confidence ratings and 

absolute errors, such that the confidence ratings increased with decreasing mean absolute error 

(i.e. closer to the actual orientation). These results point to a general ability for the monitoring of 

errors in tasks that require metric estimations.  

In the current study, over two experiments, we examined whether error directionality 

judgments reflect the direction and confidence judgments reflect the magnitude of the deviations 

from mean reproductions in the line reproduction task. We presented the participants with three 

different target lengths for a brief period and on each trial asked them to reproduce the target 

length as accurately as possible. We subsequently prompted them to provide confidence ratings 

on and the directionality of error judgments (e.g., shorter or longer than target) in their first-order 

task performance. 
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Experiment 1  

Method 

 Participants  

Twenty undergraduate students from Koc University participated in Experiment 1. Power 

analyses were done using the SimR package (Green & MacLeod, 2016; Green, MacLeod, & 

Alday, 2016). The SimR package estimates statistical power for linear mixed models by 

randomly sampling a portion of the dataset along with a grouping variable (here, the number of 

participants). It then fits the same model from the sample data and outputs the proportion of fits 

that returned a significant effect. Using the data from our study on numerical error monitoring 

(Duyan & Balcı, 2019), the simulations showed that for the composite analyses, a sample of five 

participants was sufficient to achieve a power of 0.8. For the isolated linear mixed effects that 

only include confidence ratings, the simulations showed that 15 participants were sufficient, 

however, for comparability purposes, we kept the sample size more similar to our previous 

studies. All participants provided signed informed consent prior to the experiment and received 

course credit or monetary incentive in return. The study was approved by the local ethics 

committee at Koç University.  

Procedure  

Participants were tested in a dimly lit room, seated approximately 50 cm from a 22 in. iMac 

screen with a 60 Hz. refresh rate. Stimulus presentation and data recording were controlled via 

Matlab (Mathworks, Natick, MA) using the Psychophysics toolbox (Brainard, 1997) on an iMac. 

Participants gave their responses by pressing buttons on a mechanical keyboard (Zalman ZM-

K500).  
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Task  

There were three target lengths (4.5, 7.5, and 11.5 cm), which were randomly ordered across 

trials. Each trial began with the presentation of a target line at a random location confined within 

80% of the sides of the screen for 100 ms. The entire screen was immediately masked with white 

noise for 150 ms. Then, the reproduction line, which was initially 0.25 cm, was presented at the 

center of the screen. The participants had to adjust the length of the reproduced line via left and 

right arrow keys on the keyboard to shorten or elongate it, respectively. Each key press changed 

the length of the line in 0.40 cm increments or decrements. Thus, the experimental program did 

not allow the participants to be exactly on target in any of the trials. The participants then had to 

press the space key to confirm their response when they thought the reproduced line was as close 

as possible to the target in that trial. Participants could also skip the trial by pressing ‘P’ if they 

had not seen the target, which then would be presented again after a random number of trials. 

After they confirmed their response, participants were prompted to provide a confidence rating 

on a 1–3 scale (1 for low, 2 for medium and 3 for high confidence) to indicate how close they 

thought the reproduced line was to the actual target length. Participants were instructed to try to 

use the full confidence rating scale. They were then asked if they thought they under-reproduced 

or over-reproduced the target length in that trial (see Fig. 1). Participants completed a total of 240 

trials, where each target was presented in 80 trials (randomly ordered).  

Data analysis  

We analyzed the data in two different ways. As part of the first approach, we conducted an 

isolated analysis of the error directionality judgments and confidence ratings. We fit separate 

linear mixed effects models predicting directionality and confidence judgments from the 
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Fig 3.1 An illustration of the experimental task 

participants’ reproduction performance across different targets. As part of the second approach, 

we combined these two orthogonal judgments to generate a composite measure to represent the 

error directionality judgments along with confidence ratings. Note that although in this composite 

measure confidence ratings are treated as proxies for the error magnitude judgments (an 

assumption tested by the approach outlined above), in reality, participants were asked to rate their 

confidence.  

We excluded those trials where the participants pressed the space button to confirm their 

response without adjusting the reproduction line (1.1% of the trials), as the participants would 

likely have reported low confidence ratings on these trials, biasing the data in favor of our 

hypothesis. With the same logic, we also excluded the trials where a participant’s reproduction 

response was three mean absolute deviations (MAD) above or below the participant’s mean 

reproduction for a given target (3% of the trials).  
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For all linear mixed effect analyses, we fitted four different models: first, as the null 

model (Model 1), we only included an intercept as a fixed effect and also included the 

participants as a random factor on the intercept. For the second model, we included z-transformed 

reproductions (absolute z-scores in models where we predict confidence ratings, as it would show 

the deviance from a participant’s mean reproduction) as a fixed effect and included the 

participants as uncorrelated random effects on the intercept and the slope of these reproductions 

(Model 2). For the third model, we added the target category as a factor to the previous model, 

without an interaction term (Model 3). Finally, for the last model, we also included an interaction 

term between the target category and the corresponding z-scores. In the paper, we report the 

results gathered from the model that best explains the data based on the BIC scores. Model 

comparison tables are included in Supplement Chapter 3, Table 3.1 and 3.2. All models were 

computed using GAMLj module (retrieved from https://www.jamovi.org) in jamovi (The jamovi 

project, 2019). All Bayesian analyses were done using JASP software (JASP Team, 2018), which 

uses the Cauchy distribution as priors.  

Results  

Isolated analysis of confidence ratings and error directionality Judgments  

Overall, the mean reproduced lengths were 4.816 cm (SE = 0.194) for the short target, 6.635 (SE 

= 0.187) cm for the medium target and 9.906 (SE = 0.222) cm for the long target. The 

participants tended to over-reproduce the short target and under-reproduce the long target, in 

accordance with the Vierordt's law, which is a common effect observed in temporal reproduction 

tasks (Lejeune & Wearden, 2009; see Hollingworth, 1910 for size judgments). A one-way 

repeated measures analysis of variance (ANOVA) revealed that mean confidence (rated 1–3) 

significantly varied across different lengths, F(1.5,  28.49) = 7.284, p = .005, η2 = 0.277; [M 
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(short) = 2.211, M(medium) = 2.012, M(long) = 2]). Similarly, a one-way repeated measures 

Bayesian analysis of variance (BANOVA) showed strong evidence for the main effect of length 

on confidence (BF10  = 17.324). Post-hoc tests showed that this effect was due to mean 

confidence for the short target being higher than the medium (MD = 0.2, SE = 0.05, p = .002, 

BF10 = 45.475) and the long targets (MD = 0.212, SE = 0.078, p = .041, BF10 = 3.955).  

In order to assess the overall accuracy of error directionality judgments, we first 

transformed each subject’s length reproductions for a given target into z-scores. Consequently, 

we fit a linear mixed effect model predicting error directionality judgments from z-transformed 

responses across different targets as well as their interactions. We also included participants as 

uncorrelated effects on the intercept and the z-score slope. Among the four alternative models, 

Model 4 (which contained the interaction term between z-scores and target length) was the best 

fit model (i.e., Model 4 vs. Model 3 as the second best model, ΔBIC = 5.4, f 2 fixed = 0.129). Hence 

the formula for our best-fit model was: Error Directionality Judgment ~ 1 + Target Category * z-

Scorereproduction +  (1 | Participant) + (z-Scorereproduction | Participant). The model resulted in a 

significant effect of z-score, β = 0.059, SE = 0.013, p < .001, showing that error directionality 

judgments tracked the direction of errors in length reproductions. The model also yielded an 

effect of target category on the directionality judgments (F(2,4558) = 73.20,  p < .001), showing 

that the participants’ probability of reporting that they overshot the target increased with longer 

lengths (βlong-medium = 0.129, SE = 0.017,  pbonferroni < 0.001; βmedium-short = 0.069, SE = 0.017, 

pbonferroni < 0.001; βlong-short  =  0.198,  SE  =  0.017, pbonferroni < 0.001). There was also a significant 

interaction between target category and reproduction, meaning that the effect of reproduction on 

error directionality judgments was different across targets (F(2,4558.4) = 6.12,  p < .01). 

Specifically, simple effects analyses showed that error directionality judgments followed 
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reproduction performance in the medium (β = 0.08, SE = 0.16, p < .001) and long targets (β = 

0.072, SE = 0.16, p <.001) but not in the short target (β = 0.026, SE = 0.16, p = .095).  

Second, in order to assess how closely the confidence judgments tracked the participants’ 

deviation from their own mean reproductions, we compared the four alternative models. The 

model that best fit the data was Model 3 without the interaction term (vs. Model 4 as the second 

best fit model, ΔBIC = 12.9, f 2 fixed = 0.16). Consequently, we fitted linear mixed models 

predicting confidence from absolute values of z-transformed reproductions as a fixed effect on 

confidence across different targets and included the participants as a random effect on the slope 

and intercept. The formula for the best fit model was Confidence ~ 1 + Target Category + 

Absolute z-Scorereproduction + (1 | Participant) + (Absolute z-Scorereproduction | Participant). The 

model yielded a significant effect of absolute errors on confidence, (F(1,20.9) = 6.37, β = 

−0.047, SE = 0.019, p = .02). The model also showed a significant effect of target on overall 

confidence (F(2,4578) = 49.03,  p < .001). Post-hoc comparisons showed that the overall 

confidence significantly lower for the medium and long targets than for the shortest target (βlong-

short = −0.214, SE = 0.024, pbonferroni < 0.001; βmedium-short = −0.202, SE = 0.024, pbonferroni < 

0.001).  

Composite measure analysis  

For each participant, we first categorized confidence ratings and directionality judgments in each 

trial under six groups: under-low (UL), under-medium (UM), under-high (UH), over-high (OH), 

over-medium (OM), over-low (OL). These confidence-directionality judgment pairs were 

numerically coded as −3, −2, −1, 1, 2 and 3, respectively (Note that these were treated as an 

ordinal variable in the analysis). In this measure, confidence ratings were treated as a proxy for 

participants’ judgment on how closely they reproduced the target length, an assumption that was 
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confirmed by our analysis of the relationship between confidence ratings and absolute magnitude 

of error (see above). The composite measure combined this variable with the directionality 

judgments (i.e. over/ under judgment) on whether they overshot or undershot the target. In order 

to assess “spatial error-monitoring” performance based on the composite measure, we fit mixed 

linear models to predict the six confidence-directionality judgment pairs (as an ordinal variable) 

from the participants’ reproduction performance across different target lengths. Consequently, 

significantly positive slopes would indicate an ability to monitor the degree (again using 

confidence ratings as a proxy) and the directionality of errors in reproduced lengths. Again, we 

also included participant’s as uncorrelated random effects on the intercept and the slope. Model 

comparison statistics showed that Model 4 was the best-fit model (compared Model 3 as the 

second best fit model, ΔBIC = 3.4, f 2 fixed = 0.01). The formula for the best fitting model was 

Confidence-Directionality Judgment ~ 1 + Target Category * z-Scorereproduction + (1 | Participant) 

+ (z-Scorereproduction | Participant). In line with our hypothesis, the model showed a significant 

effect of reproduction performance on confidence-directionality judgments (F(1,19.9) = 24.9, β = 

0.245, SE = 0.028, p < .001). The model also revealed significant interactions between target 

categories and z-transformed reproductions (F(2,4554.5) = 10.2, p < .001; β(long-short) * z-score = 

0.276, SE = 0.07; p < .001; β(medium-short) * z-score = 0.27, SE = 0.07; p < .001). Simple effects 

analyses showed that these confidence-directionality judgments followed the magnitude and the 

direction of errors in the medium (β = 0.339, SE = 0.49, pbonferroni < 0.001) and long targets (β = 

0.333, SE = 0.49, pbonferroni < 0.001), but not in the short target (β = 0.063, SE = 0.49, pbonferroni = 

0.204). There was also a main effect of target category on the composite score, F(2,4554) = 58.9, 

p < .001; βmedium-long = −0.49, SE = 0.07, pbonferroni < 0.001;  βshort-medium = −0.25, SE = 0.07, 

pbonferroni = 0.001; βshort-long = −0.74, SE = 0.07, pbonferroni < 0.001) (for a summary of the results, 



57 
 

see Table 3.1 and Fig. 3.2). The details of model outputs for Experiment 1 are presented in the 

Supplemental Online Material S1.  

 

 
βz-score 

  

Standard 

Error 

df t value p CI (%95) 

Lower Upper 

Experiment 1             

Model             

Direction 

judgment 

.059 .012 20 4.89 < .001 .036; .102 

Confidence 

rating* 

-.047 .018 20.9 -2.52 =.020 -.083; -.011   

Composite 

score 

.245 .05 19.9 3.859 < .001 .149; .341 

Experiment 2             

Model             

Direction 

judgment 

.07 .012 21 5.87 <.001 .047; .093 

Confidence 

rating* 

-.065 .021 21.5 -3.17 =.005 -.106; -.025 

Composite 

score 

 .283 .052 20 5.44 <.001 .181-.384 
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Table 3.1 Main results of the mixed effect models in both experiments. *Note that for the 

confidence model, we used absolute z-scores to predict confidence ratings as they would reflect 

the amount of deviation from the target, irrespective of the direction of errors. Hence, a negative 

slope indicates that confidence ratings decreased with higher deviations from the target.

 

Fig 3.2 Results of the mixed effects model fits. We fit linear mixed effects models to see the effect 

of z-transformed estimates (across different target lengths) on directionality judgments, confidence 

ratings and their composite scores, respectively. We included individual participants as 

uncorrelated random effects on the slope and the intercept. The regression lines from the models 

are depicted with a bold line. Colored-dashed lines show the group-level (i.e., participants) 

estimates across all target lengths.  

 

Finally, a potential risk underlying these results is that the participants could increase the 

variability in their responses to increase their performance in the second order judgments. To see 

if there was a relationship between estimation and error monitoring performance, we calculated 

the correlations between the coefficients of variation (CVs) of the length estimates and the 

individual slopes obtained from the mixed effects model. An individual’s CV is calculated by 
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dividing the standard deviation of their response distribution by its mean. In this sense, CV is a 

measure of the overall precision of one’s subjective estimates where a lower CV indicates better 

overall performance (i.e., higher precision). The individual slopes obtained from the mixed 

effects model that predicts confidence from absolute deviations is indicative of how close a 

participants’ confidence ratings track their deviation from their own means, as it shows how 

much confidence judgments account for the variability in an individual’s responses. Hence, a 

significant negative correlation between individual CVs and slopes would raise the possibility 

that the participants increased the variability of their line reproductions by intentionally over- or 

undershooting the target to perform better in their error monitoring judgments. In order to test 

this possibility, we calculated a pooled CV for each participant’s reproduction scores for all 

targets and investigated its relationship with individual slopes. Refuting this possibility, we found 

that there was no significant correlation between these measures r = 0.338, p = .145, BF10 = 0.748 

(see Supplement Chapter 3, S4 for the results of the analogous analysis for confidence ratings).  

Given the lack of metric error-monitoring ability for the shortest length (for both error-

directionality judgments and composite measures) in the first experiment, we found it necessary 

to test if this observation was specific to the shortest anchor of the test set or to the absolute test 

line length itself. Thus, we tested another group of participants with a test set, the shortest value 

of which was equal to the middle value of the test set in Experiment 1. The second reason behind 

running the second experiment was to replicate the first study but by giving participants the 

opportunity to be exactly on target. In Experiment 1, the incrementations were set such that 

participants could never be exactly accurate. 
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Experiment 2  

Method  

Participants  

Twenty-one undergraduate students from Koç University participated in the experiment. 

Procedure  

The procedure and the task were very similar to Experiment 1. The target lengths were 7.5, 11.5 

and 16.5 cm and each adjustment elongated the reproduction line by 0.25 cm increments; which 

allowed participants to reproduce the target line to its exact length. Trials where the participants 

did not adjust the target line (1.3% of all trials) and where the reproduced line was 3 MADs 

above or below a participant’s mean reproduction for that target (3.1% of all trials) were 

excluded from all analyses.  

Results 

Isolated analysis of confidence ratings and error directionality judgments  

The mean reproduced lengths were 7.013 (SE = 0.201) cm, 9.797 (SE = 0.307), and 12.855 (SE = 

0.387) for the short, medium and long targets, respectively. Similar to Experiment 1, a repeated 

measures ANOVA showed there was an effect of target length on overall confidence, F(1.196, 

23.925) = 4.548, p = .017, η2 = 0.185. Also, one-way repeated measures BANOVA found 

moderate evidence (BF10 = 3.03) for such an effect. Post hoc tests revealed that mean confidence 

for the short target was higher than the medium target (MD = 0.132, SE = 0.046, p = .027, BF10 = 

5.556).  

Different from Experiment 1, the model that best fit the data was Model 3 (vs. Model 4 as 

the second best fit model, ΔBIC = 16, f 2fixed = 0.103). The best fitting model was Error 

Directionality Judgment ~ 1 + Target Category + z-Scorereproduction + (1 | Participant) + (z-
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Scorereproduction | Participant). The model yielded significant effect of z-transformed reproductions 

(F(1,21) = 34.5, β = 0.07, SE = 0.012, p < .001). The model also showed that participants’ 

probability of reporting that they overshot the target increased with longer targets (F(2,4758.1) = 

89.6, p < .001; βlong-medium = 0.102, SE = 0.016, p < .001; βmedium-short = 0.116, SE = 0.016, p < 

.001; βlong-short = 0.218, SE = 0.34, p < .001). As for confidence ratings, the best-fit model was 

again Model 3 (vs. Model 4 as the second best fit model, ΔBIC=15.3, f 2fixed = 0.618). 

Consequently, we included the absolute values of z-transformed reproductions and target 

category as fixed effects on confidence, and including participants as uncorrelated random effects 

on the slope and the intercept. The formula for the best fit model was: Confidence ~ 1 + Target 

Category + Absolute z-Scorereproduction + (1 | Participant) + (Absolute z-Scorereproduction | 

Participant). The results showed that subjective confidence overall followed the degree of 

absolute errors (F(1, 21.5) = 10; β = 0.065, SE = 0.002, p = .005), and overall confidence level 

varied across targets (F (2,4757.1) = 28.2,  p < .001; βshort-medium = 0.136, SE = 0.02, p < .001; 

βshort-long = 0.123, SE=0.02, p < .001). Overall confidence was higher for shortest target length 

compared to the other target lengths.  

Composite measure analysis  

In order to assess spatial error monitoring performance based on the composite measure (using 

confidence ratings as a proxy for error magnitude judgements as confirmed by the analysis 

above), we fitted the same linear mixed model (Model 3 as the best fit model compared to Model 

4 as the second best fit model, ΔBIC = 16, f 2fixed = 0.149) that predicts signed error monitoring 

from z-transformed length reproductions, including participants as independent random effect 

terms on the intercept and the slope. Similarly, the model showed a statistically significant 

positive slopes for reproduced lengths (F(1,20) = 29.6, β = 0.283, SE = 0.052, p < .001). There 
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was a significant effect of target category on the composite score (F(2,4756.1) = 74, p < .001; 

βShort-Long = -0.788, SE = 0.065, p < .001; βMedium-Long  = −0.39, SE = 0.065, p < .001; βShort-Medium = 

−0.4, SE=0.065, p < .001) (for a summary of the results, see Table 1 and Fig. 2). The details of 

model outputs for Experiment 2 are presented in the Supplemental Online Material S2. Finally, 

there was no significant correlation between individual slopes and pooled CVs, r = 0.08, p =.737, 

BF10=0.292 (see Supplement Chapter 3, S4 for the results of the analogous analysis for 

confidence ratings).  

Discussion  

In the current study, we have asked participants to reproduce the length of briefly presented lines 

and obtained confidence ratings and error-directionality judgments on their trial-to-trial line 

length reproduction performance. Our findings showed that in the absence of explicit feedback, 

humans can monitor the direction of errors in their reproductions of lengths (for nearly all targets) 

and their confidence ratings can track the magnitude of their errors for all target lengths. Together 

with our previous findings which indicate that humans can better than chance guess the direction 

and match their confidence to the degree of errors (based on composite measure) in their 

temporal (Akdoğan & Balcı, 2017; see also Doenyas, Mutluer, Genc, & Balcı, 2019; 

Kononowicz et al., 2018) and numerical (Duyan & Balcı, 2018) reproductions and numerical 

estimations (Duyan & Balcı, 2019), the results of Samaha and Postle (2017) that point toward a 

similar ability in relation to orientation judgment errors, and given converging evidence for a 

general magnitude representation system in the brain (Bueti & Walsh, 2009; Walsh, 2003), we 

surmise that this error monitoring ability would most likely extend to other metric domains.  

This new line of studies conducted in the domains of time, numerosity, and spatial 

distances suggest that error monitoring regarding the direction of metric errors and confidence 
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matching to the magnitude of errors are likely shared metacognitive features of magnitude 

representations. One of the questions that arise from these findings relates to the information 

processing basis of this generalized metric error monitoring ability. To this end, one possibility is 

that the generative process that underlies magnitude estimations might contain more information 

value than what is manifested in the form of reproduction or estimate. To this end, Akdoğan and 

Balcı (2017) proposed that multiple generative processes are realized during the task however 

and partially depending on the task representation (i.e., requirement to provide point estimates), 

only one of these generative processes is manifested in the form of the behavioral output. In such 

an in-parallel information processing scheme, participants can compare their estimate to the other 

estimate(s) that would have been made if they had relied on another process/other processes in a 

retrospective fashion and this comparison can inform the agent regarding the direction and 

magnitude of their errors.  

Duyan and Balcı (2018) proposed another comparison strategy in which participants 

would compare their current estimate of magnitude with a random sample from their long-term 

memory representation for that target. In fact, such a comparison strategy forms the basis of the 

decision stage of the Scalar Timing Theory to guide the first order timing performance (Gibbon, 

Church, & Meck, 1984). But note that this comparison strategy would work with single target 

tasks and for tasks that contain multiple targets it would require participants to know the 

corresponding memory representation for the currently targeted quantity for which the estimate 

has been made. This can be done based on the likelihood comparisons of the current reading 

under different memory representations that correspond to different previously experienced 

targets. Similar theoretical approaches can be applied to the line length reproduction/spatial 

metric error monitoring task used in the current study. In any case, future studies are needed to 
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fully test for a generalized metric error monitoring system based on the formal analysis of 

patterns across error monitoring performances in different magnitude domains.  

Earlier studies show that scalar variability (as the manifestation of representational 

uncertainty) is observed in the processing of different magnitudes such as time, number, and 

length (e.g., Droit-Volet, Clement & Fayol, 2007). In light of this information, one of the 

potential reasons behind the lack of the metric error monitoring ability for the shortest length in 

Experiment 1 could be the stronger manifestation of non-scalar/and thus presumably non-

representational variability in the reproductions for the shortest target length (akin to generalized 

Weber’s Law; Treisman, 1964). In order to address this possibility, we tested if CVs for different 

target lengths differed within each experiment. We did not find a significant difference in 

Experiment 2 (F(2,40) = 2.602, p = .09) but there was a statistically significant overall difference 

between the CVs of different line lengths in Experiment 1 (F(2,38) = 4.806, p =.014, η2 = 0.202, 

BF10 = 3.703). Post-hoc analysis among the CV’s for the three target lengths (after Bonferroni 

correction) showed that the CV for the shortest line length was higher than the CV for the longest 

target length (p < .05). Thus, in line with our speculation, the effect of non-scalar (non-

representational) sources of variability appears to have stronger manifestation than the scalar 

sources of representational uncertainty for the shortest target length of Experiment 1. If metric 

error monitoring (including confidence ratings as a proxy for error magnitude rating) relies 

primarily on representational scalar uncertainty, the stronger manifestation of non-scalar sources 

of variability could indeed limit the metric error monitoring performance (for a similar argument 

in animal decision-making see (Berkay, Freestone, & Balcı, 2016)). Future studies are needed to 

fully address this possibility. Despite the higher CVs for short target lengths, we also observed 

that overall confidence was higher for the short target compared to medium and long targets in 
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Experiment 1, indicating that the participants made more 'high confidence' judgments for this 

target (possibly due to the dependence of subjective confidence level on the absolute variability). 

As a result, because high confidence judgments are coded as either −1 or 1, this would constrict 

the range of predicted values around zero, such that the reproduced values could not account for 

the lower variability in error monitoring judgments (e.g., based on composite measure). This 

could be another reason for not observing metric error monitoring ability for the shortest target 

length in Experiment 1 (however note that confidence was higher also for the shortest target 

length of Experiment 2 for which we observed metric error monitoring).  

As outlined above, partially different findings gathered from two experiments could be 

due to the fact that the absolute error was higher for the longer target lengths in the second 

experiment simply due to the scalar property. Furthermore, given the intermixing of different 

target lengths during testing, it is possible that participants adopted a single criterion as an 

aggregate representation (Balcı et al., 2011; Gorea & Sagi, 2000; Gorea, Caetta, & Sagi, 2005; 

Rahnev & Denison, 2018). These two facts would result in lower subjective error estimates for 

the aggregate representation of the target lengths in Experiment 1 compared to the aggregate 

representation of the target lengths in Experiment 2. This resultant divergence between the two 

experiments in terms of the levels of subjective uncertainty could have resulted in the relatively 

and partially weaker association between the participants’ error judgments and the objective 

errors in Experiment 1.  

We analyzed the set of second order judgments collected in this study based on two 

different approaches. In the first approach, we first assessed if participants could report whether 

their reproductions were shorter or longer than the target (error directionality judgments) and then 

we characterized the relationship between the confidence ratings and absolute magnitude of 
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metric errors. Both the error directionality judgements and confidence ratings nicely matched the 

actual direction (except for the shortest target length of Experiment 1) and the magnitude of 

errors, respectively. Particularly, the second finding suggested that confidence ratings could be 

utilized as a proxy for the error magnitude judgments (although participants were asked to 

provide confidence ratings). Thus, in the second approach, we combined error directionality 

judgments and confidence ratings to calculate a composite variable (akin to our earlier work on 

metric error monitoring in timing and counting). The results of our analysis of the composite 

variable supported the existence of metric error monitoring ability. That being said, assessing the 

direction and magnitude of errors by asking participants to guess where their reproduction fell in 

relation to the target (e.g., on a continuum) would constitute a more direct way of investigating 

metric error monitoring and thus should be used in future work. Given the lack of a relationship 

between error directionality judgments and objective performance in the shortest target in 

Experiment 1, we can infer that error directionality judgments and confidence ratings might rely 

on different processes and that the composite error-directionality ratings may in part be inherited 

from the error directionality judgments.  

In the current study, participants reproduced the targeted lengths with multiple keypresses 

that were self-paced and they could shorten the reproduced length in addition to lengthening it in 

an individual trial. Given these potentially informative features of behavioral testing, we also 

studied the pattern of key pressing that led to the ultimate line reproduction in order to investigate 

if the observed patterns could be informative regarding the underlying error-related information 

processing. To this end, we looked at the time it took participants to confirm their line 

reproduction response (i.e., the delay between the last line reproduction-related keypress and the 

keypress to finalize/confirm the reproduction), as well as the frequency of the switches between 
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the key presses used to lengthen and shorten the reproduced line length. We did not observe any 

meaningful patterns in either of these measures suggesting that the error judgment was indeed 

made in a retrospective fashion at least in the current task representation. Thus, this very 

observation suggests that the metric error information relied on during interrogation for 

performance monitoring was likely not used to adaptively guide the line reproduction earlier in 

the same trial.  

Although it is difficult to attribute our findings to a meta-cognitive ability per se, we 

believe that our results would have important implications for theories of metacognition and 

theories on the magnitude representation system and would constitute a fruitful empirical ground 

for their theoretical integration in future research. Future studies can also focus on neuroscientific 

approaches in order to reach an overarching understanding of error-monitoring and confidence 

ratings in different tasks; to this end event-related potentials (ERP) such as error-related 

negativity (ERN) and error-positivity (Pe) are logical targets (e.g., see Di Gregorio et al., 2018; 

Falkenstein, Hoormann, Christ, & Hohnsbein, 2000; Taylor, Stern, & Gehring, 2007). Although 

these ERP components are traditionally looked at to investigate all-or-none effects as in the case 

of two-alternative forced-choice scenarios, our findings suggest that they can be modulated in a 

graded fashion as a function of the magnitude of errors. This prediction is also supported by a 

number of studies in which participants could observe the degree of their errors in sensorimotor 

tasks.  

For instance, a recent EEG study investigating the ERP components of participants 

observing their avatar’s behavior through virtual reality showed that ERN but not Pe was 

modulated in a graded fashion (as opposed to exhibiting an all-or-none character) as a function of 

the magnitude of the observed errors in the avatar’s action in relation to a target (Spinelli, Tieri, 
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Pavone, & Aglioti, 2018). In an earlier study, Vocat, Pourtois, and Vuilleumier (2011) tested 

participants in a ballistic pointing to a target task with optical prisms to induce gross motor errors 

that participants can adapt to over time as well as without optical prisms. They observed that both 

ERN and Pe amplitude were parametrically modulated with the magnitude of deviations of the 

pointing endpoints from the visual target (see also Luft, Takase, & Bhattacharya, 2014; 

Torrecillos, Albouy, Brochier, & Malfait, 2014 regarding the graded modulation of relevant ERP 

signals). These electrophysiological findings point at the possibility that errors in magnitude 

estimations can also be encoded via the same cognitive architecture that underlies binary error-

related ERP components. The extension of electrophysiological investigations to metric error 

monitoring (in the absence of feedback) would contribute to our understanding of the neural 

information-processing correlates of this ability. A recent study by Kononowicz et al. (2018) 

have taken an empirical step in this direction and showed that temporal error monitoring 

performance was predicted by the brain oscillatory signals that emerge early during the timing of 

the event to be judged. It remains to be answered if similar dynamics would also emerge in the 

case of numerical and spatial error monitoring despite differences in the way they are 

experienced. 
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GENERAL DISCUSSION 

Error monitoring refers to the ability to judge one’s own objective performance in the absence of 

explicit feedback. Human error monitoring abilities have been shown in various domains such as 

memory and perceptual decision making. However, until recently, this ability was studied almost 

exclusively with categorical choice tasks. Recent evidence (Akdoğan & Balcı, 2017) from 

interval timing domain suggests that  humans can also accurately judge their objective 

performance in their timing estimates. This finding suggests that human error monitoring abilities 

extend beyond categorical decisions and that humans also have metacognitive access to their 

errors in magnitude representations. Given this finding, we investigated humans’ error 

monitoring abilities in magnitude representations. Overall, our results point at a ubiquitous error 

monitoring ability in humans that span across multiple domains, in line with the theoretical 

accounts that suggest a common representational system for magnitudes (Walsh, 2003). 

Moreover, it also suggests that metacognitive skills in humans have a richer informational basis 

than models of error monitoring suggest. 

In the first study, we tested error monitoring in number reproductions with a sequential 

non-verbal counting task.  Our results showed that humans can monitor the direction and the 

degree of errors in their numerosity estimations, over and beyond its RT correlates. On the other 

hand, we observed no relationship between the precision of numerosity reproductions and error 

monitoring performance. These results pointed toward a general error monitoring mechanism in 

magnitude representations that is independent of first order performance. 

In the second study, we employed a numerosity estimation based on a simultaneously 

presented array of dots. This way, we eliminated the potential effects of time in counting, and 

tested the participants on a wider range of target numerosities. The results provided further 
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evidence that humans can track the direction and the degree of their errors in numerical estimates. 

Importantly, these studies on numerical error monitoring constitute two different modes of 

numerical processing involving the symbolic and non-symbolic representations, namely, 

reproduction and estimation. In the reproduction task (Chapter 1), participants are required to 

provide a non-symbolic response for a symbolic target, whereas in the estimation task (Chapter 2) 

they are required to provide a symbolic estimate for a non-symbolic numerosity. While these two 

modes of representation are differ in terms of their precision, our results suggests that numerical 

error monitoring is independent of the direction of this conversion. 

 In the third study, we found that metric error monitoring ability also extends to the 

reproductions of spatial length. In addition, we analyzed the relationship between the second 

order judgments and line reproduction performance based on two different approaches. In the 

first approach, the results showed that the error-directionality judgments closely matched the 

actual direction of errors, except for the shortest target in Experiment 1. The second approach 

revealed that subjective confidence increased as the absolute magnitude of errors decreased. 

These results suggest that error monitoring abilities are robust to different types of judgments of 

performance.  

Future directions 

The most studied biomarker of errors in the human brain is the error related negativity (ERN), an 

event-related potential that is marked by a negative deflection that is observed 80-150 ms 

following errors (Gehring et al., 1993). The ERN emerges from the anterior cingulate cortex 

(ACC) and occurs immediately after an erroneous motor action and before external feedback 

(Gehring et al. 1993). Although ERN has been predominantly studied with all-or-none responses, 
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recent findings suggest that it can be modulated in a graded fashion (Spinelli et al., 2018; Vocat 

et al. 2011). Future studies can investigate the ERP components of error monitoring to observe 

whether errors of magnitude estimations elicit a graded ERN response (although for negative 

results see Kononowicz & van Wassenhove, 2019). 

Lastly, while it is evident that humans can represent and use uncertainty estimates in 

memory, learning and cognition, the neural principles that give rise to these computations are 

unclear. However, there's apparently a neurological dissociation between domains, specifically 

between memory and perception (Fleming et al., 2014; Baird et al., 2013; McCurdy et al., 2013). 

For instance, lesions to the anterior prefrontal cortex selectively disrupt metacognitive accuracy 

in perceptual decisions, while leaving metacognitive skills in memory intact (Fleming et al., 

2014). Gray matter volume in the anterior prefrontal cortex (aPFC) for the individual differences 

in metacognitive performance in visual discrimination, whereas the grey matter volume in medial 

parietal cortex accounts for the individual differences in the accuracy of confidence judgments in 

a recognition memory task (Fleming et al., 2014). Considering this evidence, it has been 

proposed that different subregions of the aPFC might be involved in the online monitoring of 

perceptual processes and the information stored in memory. In support of this claim, Baird et al. 

(2013) found that greater connectivity between various subcortical areas and lateral aPFC and 

medial aPFC differentially predicted metacognitive accuracy for perceptual decisions and 

memory retrieval, respectively. Error monitoring in sequentially and momentarily presented 

numerosities might allow for a dissociation between these distinct circuitries within the same 

domain, as they tap into different modes of memory. Simultaneously presented arrays require the 

retrieval of numerousity representation from sensory (iconic) memory (Sperling, 1983), while 

sequentially presented requires a continuous update of the same representation in working 
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memory (Baddeley, 1983). Hence, metacognitive circutries underlying perceptual and mnemonic 

processing in lateral aPFC and medial aPFC can be differentiated within the same domain. 

In conclusion, the presented line of work offers a novel approach to observe the 

behavioral correlates of error monitoring and potentially discover its underlying neural basis by 

utilizing the continuous and variable nature of magnitude representations. This approach is novel 

in a similar sense to the transition from accounting for the speed and accuracy of a binary 

decision to accounting for the confidence in that decision. Only now, we are setting out to 

account for confidence and error judgments in magnitude representations, where there are 

varying degrees of accuracy instead of correct or incorrect decisions. This way, behavioral and 

neural correlates of error monitoring can be determined in a more parametric fashion. The 

proposed line of work lays the groundwork for a new approach understanding of neural error 

monitoring (and signaling) that are observed ubiquitously across a wide range of functions from 

low-level motor learning to the more cognitively taxing multisensory decision making. 
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1. Distribution of Confidence-Directionality (Signed Confidence) Ratings 

 

Figure S1.1.1 Distribution of Confidence-Directionality ratings for all trials and for trials where 

the participants’ responses were on target and off target in both experiments. 
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2. Model Summaries for Individual Fits 

 T11 T19 

 Beta 

(Standardized) 

R2 

(Adjusted) 

p value Beta 

(Standardized) 

R2 

(Adjusted) 

p value 

ID       

1 0.625 0.382 <.001 0.591 0.339 <.001 

2 0.293 0.07 0.024 0.22 0.037 0.043 

3 0.406 0.156 <.001 0.211 0.035 0.036 

4 0.406 0.159 <.001 0.423 0.172 <.001 

5 0 0.045 0.756 0.122 0.004 0.246 

6 0.356 0.119 <.001 0.225 0.041 0.023 

7 0.634 0.397 <.001 0.619 0.38 <.001 

8 0.59 0.343 <.001 0.618 0.376 <.001 

9 0.305 0.087 <.001 0.075 -0.004 0.456 

10 0.456 0.201 <.001 0.11 0.001 0.289 

11 -0.096 0.002 0.269 0.164 0.018 0.09 

12 0.49 0.234 <.001 0.4 0.151 <.001 

13 0.327 0.097 0.001 0.188 0.026 0.053 

14 0.314 0.093 <.001 0.258 0.058 0.007 

15 0.192 0.029 0.029 0.259 0.057 0.011 

16 0.482 0.217 <.001 0.146 0.007 0.225 

17 0.306 0.087 <.001 0.326 0.098 0.001 

18 0.264 0.062 0.003 0.262 0.059 0.008 

19 0.176 0.025 0.029 0.099 -0.002 0.354 

20 0.26 0.062 <.001 0.231 0.046 0.007 

21 0.265 0.063 0.003 0.075 -0.007 0.498 

22 0 0.006 <.001 0.25 0.054 0.009 

23 0.727 0.524 <.001 0.556 0.302 <.001 

24 -0.083 -0.002 0.385 -0.092 -0.004 0.413 

25 0.248 0.054 0.006 0.388 0.142 <.001 

26 0.433 0.181 <.001 0.294 0.078 0.002 

27 -0.039 -0.007 0.666 0.033 -0.006 0.701 

28 0.135 0.01 0.142 0.425 0.171 <.001 

29 0.862 0.735 <.001 0.173 0.015 0.156 

Table S1.2.1 Standardized coefficients, R2 and p values for individual regression fits of signed 

confidence ratings on reproduced numerosities in Experiment 1. 
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 T7   T11   

 Beta 

(Standardized) 

R2 

(Adjusted) 

p value Beta 

(Standardized) 

R2 

(Adjusted) 

p value 

ID       

1 0.481 0.225 <.001 0.156 0.403 <.001 

2 0.535 0.276 <.001 0.458 0.682 <.001 

3 0.605 0.361 <.001 0.185 0.437 <.001 

4 0.398 0.153 <.001 0.121 0.358 <.001 

5 0.426 0.176 <.001 -0.004 0.054 0.524 

6 n.a. n.a. n.a. 0.42 0.655 <.001 

7 0.197 0.032 0.015 0.009 0.127 0.122 

8 0.23 0.047 0.005 0.095 0.321 0.001 

9 0.262 0.058 0.012 0.137 0.379 <.001 

10 0.658 0.428 <.001 0.147 0.399 0.001 

11 0.175 0.025 0.026 0.107 0.337 <.001 

12 0.609 0.363 <.001 0.161 0.41 <.001 

13 n.a. n.a. n.a. 0.002 0.113 0.27 

14 0.258 0.058 0.008 0.021 0.164 0.04 

15 0.526 0.269 <.001 0.217 0.472 <.001 

 

Table S1.2.2 Standardized coefficients, R2 and p values for individual regression fits of signed 

confidence ratings on reproduced numerosities, in Experiment 2. In T7, the regression slopes 

could not be computed for participants 6 and 13, because their reproductions were on target for a 

significant portion of their trials.  
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3. Summary tables and diagnostic plots for the mixed-effect models 

 

Fixed effects coefficients (95% CIs):           

Name Coefficient SE tStat DF p Lower Upper 

(Intercept) .994 .252 3.935 3452 < .001 .499 1.489 

nrBeeps .217 .026 8.443 3452 <.001 .167 .267 

Random effects covariance parameters (95% CIs): 

Group: subject (29 Levels) 

Name 1 Name 2 std Lower Upper     

Intercept Intercept 1.121 .718 1.749     

nrBeeps nrBeeps 0.123 0.083 0.182     

 AIC: 11904  BIC: 11935 Log Likelihood: -5947 Deviance: 11894   

Table S1.3.1 Summary table for the mixed effects model for T11 in Experiment 1 
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Figure S1.3.1 Diagnostic plots for the mixed-effect model for T11 in Experiment 1  
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Fixed effects coefficients (95% CIs):           

Name Coefficient SE tStat DF p Lowe

r 

Uppe

r 

(Intercept) 1.292 .18 7.205 2915 < 

.001 

.941 1.645 

nrBeeps .109 .01 11.157 2915 <.001 .09 .129 

Random effects covariance parameters (95% CIs): 

Group: subject (29 Levels)  

Name 1 Name 2 std Lower Uppe

r 

    

Intercept Intercept .52 .29 .935     

nrBeeps nrBeeps .035 0.023 0.054     

 AIC: 10683  BIC: 10713  Log Likelihood: -5336.5 Deviance: 10673   

Table S1.3.2 Summary table for the mixed effects model for T19in Experiment 1. 
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Figure S1.3.2 Diagnostic plots for the mixed-effect model for T19 in Experiment 1.  



89 
 

Fixed effects coefficients (95% CIs):           

Name Coefficient SE tStat DF p Lower Upper 

(Intercept) .396 .54 .732 1615 .464 -.664 1.455 

nrBeeps .483 .08 6.017 1615 <.001 .326 .641 

Random effects covariance parameters (95% CIs): 

Group: subject (29 Levels) 

 

Name 1 Name 2 std Lower Upper     

Intercept Intercept 1.852 1.204 2.848     

nrBeeps nrBeeps .283 .186 .432     

 AIC: 5525.7  BIC: 5552.7 Log Likelihood: -2757.9 Deviance: 5515.7   

Table 1.3.3 Summary table for the mixed effects model for T7 in Experiment 2. 
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Figure S1.3.3. Diagnostic plots for the mixed-effect model for T7 in Experiment 2.  
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Fixed effects coefficients (95% CIs):           

Name Coefficient SE tStat DF p Lower Upper 

(Intercept) .293 .66 .444 1809 .657 -1 1.588 

nrBeeps .323 .063 5.131 1809 <.001 .199 .446 

Random effects covariance parameters (95% CIs): 

Group: subject (29 Levels)  

Name 1 Name 2 std Lower Upper     

Intercept Intercept 2.403 1.521 3.8     

nrBeeps nrBeeps .23 .146 .361     

 AIC: 6361.5  BIC: 6389 Log Likelihood: -3175.7 Deviance: 6351.5   

Table S1.3.4. Summary table for the mixed effects model for T11 in Experiment 2. 
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Figure S1.3.4. Diagnostic plots for the mixed-effect model for T11 in Experiment 2. 
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4. Estimation performance across trials 

 

 

 

Figure S1.4.1 Change in numerical estimation performance across blocks of 10 trials. Each line 

shows a participant’s mean absolute error across blocks. To explore whether the participants’ 

performance improved across trials, we regressed mean distances for each block on block 

numbers. We then compared the resulting slopes to zero. There were no significant negative 

slopes, indicating that the participants’ overall performance did not increase across blocks. Note 

that the last bin might contain more than 10 trials depending on the total number of trials of a 

participant. 
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5. Beta coefficients, Numerical CVs and CVs of RTs 

 T11 T19 

ID Beta 

NrBeep 

CV(number) CV(time) Beta 

NrBeep 

CV(number) CV(time) 

1 0.625 0.085 0.104 0.591 0.085 0.099 

2 0.293 0.077 0.108 0.220 0.093 0.102 

3 0.406 0.156 0.169 0.211 0.180 0.174 

4 0.406 0.218 0.231 0.423 0.210 0.214 

5 0.000 0.080 0.090 0.122 0.114 0.116 

6 0.356 0.125 0.139 0.225 0.162 0.167 

7 0.634 0.173 0.181 0.619 0.412 0.436 

8 0.590 0.305 0.321 0.618 0.303 0.310 

9 0.305 0.208 0.220 0.075 0.209 0.219 

10 0.456 0.252 0.254 0.110 0.168 0.177 

11 -0.096 0.229 0.241 0.164 0.218 0.224 

12 0.490 0.278 0.294 0.400 0.199 0.202 

13 0.327 0.102 0.112 0.188 0.113 0.126 

14 0.314 0.172 0.177 0.258 0.177 0.174 

15 0.192 0.168 0.175 0.259 0.180 0.187 

16 0.482 0.045 0.079 0.146 0.048 0.072 

17 0.306 0.145 0.158 0.326 0.157 0.160 

18 0.264 0.232 0.245 0.262 0.208 0.210 

19 0.176 0.201 0.204 0.099 0.164 0.169 

20 0.260 0.240 0.257 0.231 0.257 0.266 

21 0.265 0.145 0.148 0.075 0.157 0.158 

22 0.000 0.143 0.153 0.250 0.163 0.157 

23 0.727 0.112 0.122 0.556 0.136 0.150 

24 -0.083 0.340 0.354 -0.092 0.483 0.494 

25 0.248 0.162 0.172 0.388 0.157 0.164 

26 0.433 0.122 0.126 0.294 0.109 0.116 

27 -0.039 0.115 0.122 0.033 0.130 0.140 

28 0.135 0.154 0.160 0.425 0.112 0.121 

29 0.862 0.046 0.073 0.173 0.069 0.087 

Table S1.5.1 Numerical and temporal CVs and standardized coefficients for reproduced 

numerosities in Experiment 1.  
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 T7 T11 

ID Beta 

NrBeep 

CV(number) CV(time) Beta 

NrBeep 

CV(number) CV(time) 

1 0.481 0.129 0.150 0.403 0.128 0.141 

2 0.535 0.079 0.109 0.682 0.092 0.096 

3 0.605 0.112 0.141 0.437 0.116 0.136 

4 0.398 0.245 0.265 0.358 0.192 0.198 

5 0.426 0.133 0.155 0.054 0.152 0.170 

6 n.a 0.059 0.081 0.655 0.053 0.083 

7 0.197 0.226 0.253 0.127 0.242 0.255 

8 0.230 0.148 0.161 0.321 0.151 0.154 

9 0.262 0.125 0.145 0.379 0.149 0.162 

10 0.658 0.119 0.132 0.399 0.080 0.101 

11 0.175 0.277 0.296 0.337 0.243 0.255 

12 0.609 0.108 0.127 0.410 0.109 0.127 

13 n.a. 0.042 0.084 0.113 0.113 0.127 

14 0.258 0.367 0.416 0.164 0.579 0.643 

15 0.526 0.111 0.135 0.472 0.180 0.207 

Table S1.5.2 Numerical and temporal CVs and standardized coefficients for reproduced 

numerosities in Experiment 2.  

 

6. Correlations between CVs and Slopes 

 

 Experiment 1 Experiment 2 

 T11 T19 T7 T11 

r -.233 .037 -.663 -.469 

p value .224 .848 0.014 .07 

Table S1.6.1 Coefficients and corresponding p values for the correlations between individual 

regression slopes for and numerical CVs. 
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Supplementary Materials – Chapter II 
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Table S2.1. Table for mixed effects for targets only (for target numerosities > 7) 

  Estimate SE tStat DF pValue Lower Upper 

Fixed Effects 

Intercept

  

-.232 .205 -1.133 3455 .257 -.633 .169 

Response       

  

.411 .051 8.045 3455 <.001 .311 .511 

Random Effects 

Group: subject (18 Levels) 

  Std Lower upper         

Intercept .858 .614 1.199         

Response .168 .098 .291         

AIC: 13959   BIC: 13989 Log Likelihood: -6974.4    
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Table S2.2. Table for mixed effects for targets and distractors (for numerosities >7) 

  Estimate SE tStat DF pValue Lower Upper 

Fixed Effects 

Intercept

  

-.229 .212 -1.08 7211 .28 -.645 .187 

Response     

  

.419 .052 8.094 7211 <.001 .317 .52 

Random Effects 

Group: subject (18 Levels) 

  Std Lower upper         

Intercept .9 .644 1.246        

Response .197 .131 .296         

AIC: 29343     BIC: 29377 Log Likelihood: -14666 
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Table S2.3. Table for mixed effects for targets only (for target numerosities >7), when 

confidence-directionality judgment pairs are coded 1-6. 

  Estimate SE tStat DF pValue Lower Upper 

Fixed Effects 

Intercept

  

3.361 .173 19.407 2788 <.001 3.021 3.7 

Response       

  

.333 .044 7.595 2788 <.001 .247 .42 

Random Effects 

Group: subject (18 Levels) 

  Std Lower upper         

Intercept .725 .518 1.014         

Response .14 .079 .255         

AIC: 10289   BIC: 10319 Log Likelihood: -5139    
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Table S2.4. Table for mixed effects for targets and distractors (for target numerosities >7), when 

confidence-directionality judgment pairs are coded 1-6. 

  Estimate SE tStat DF pValue Lower Upper 

Fixed Effects 

Intercept

  

3.351 .176 19.094 6135 <.001 3.007 3.695 

Response     

  

.343 .0447 7.742 6135 <.001 .256 .429 

Random Effects 

Group: subject (18 Levels) 

  Std Lower upper         

Intercept .74 .532 1.03        

Response .168 .111 .253         

AIC: 22564     BIC: 22597  Log Likelihood: -11277 
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Fig S2.1.  Distribution of Confidence-Directionality ratings for the target numerosities used in the 

experiment. Note the change in the pattern of ratings (from unimodal to bimodal) after Target 

numerosity 7. 
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Fig S2.2. Power function fits to the numerosity estimations for each participant. 

  



103 
 

 

Supplementary Materials – Chapter III 
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S3. Experiment 1: Model Tables 

Model Info 

    

Info   

Estimate  Linear mixed model fit by ML  

Call  
direction ~ 1 + targetCategory + zScore + zScore:targetCategory+( 

1|id )+(0+ zScore|id ) 
 

AIC  6024.1690  

BIC  6082.0694  

LogLikel.  -3003.0845  

R-squared 

Marginal 
 0.0432  

R-squared 

Conditional 
 0.1524  

Table S3.1.1 

Fixed Effect Omnibus tests 

          

  F 
Num 

df 

Den 

df 
p 

targetCategory  
73.2

0 
 2  

4558

.0 
 

< .00

1 
 

zScore  
23.9

0 
 1  20.0  

< .00

1 
 

targetCategory ✻ 

zScore 
 6.12  2  

4558

.4 
 

0.00

2 
 

Table S3.1.2 
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 Fixed Effects Parameter Estimates 

 

95% 

Confidence 

Interval 

 

Names Effect 
Estima

te 
SE Lower Upper df t p 

(Intercept)  
(Intercept

) 
 1.4875  

0.036

2 
 

1.416

4 
 

1.558

5 
 20.0  

41.0

5 
 

< .00

1 
 

Short  2 - 1  0.0693  
0.016

6 
 

0.036

7 
 

0.101

9 
 

4558.

0 
 4.17  

< .00

1 
 

targetCategory2  3 - 1  0.1983  
0.016

6 
 

0.165

7 
 

0.230

9 
 

4558.

0 
 

11.9

2 
 

< .00

1 
 

zScore  zScore  0.0594  
0.012

2 
 

0.035

6 
 

0.083

3 
 20.0  4.89  

< .00

1 
 

targetCategory1 

✻ zScore 
 

2 - 1 ✻ 

zScore 
 0.0540  

0.016

7 
 

0.021

2 
 

0.086

8 
 

4558.

5 
 3.23  

0.00

1 
 

targetCategory2 

✻ zScore 
 

3 - 1 ✻ 

zScore 
 0.0466  

0.016

7 
 

0.013

7 
 

0.079

4 
 

4558.

4 
 2.78  

0.00

5 
 

Table s3.1.3  
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Model Info 

Info   

Estimate  Linear mixed model fit by ML  

Call  confidence ~ 1 + targetCategory + absZ+( 1|id )+(0+ absZ|id )  

AIC  9487.8130  

BIC  9532.8467  

LogLikel.  -4736.9065  

R-squared 

Marginal 
 0.0194  

R-squared 

Conditional 
 0.1552  

Table S3.1.4 

 Fixed Effect Omnibus tests 

          

  F 
Num 

df 

Den 

df 
p 

targetCateg

ory 
 

49.1

0 
 2  

4560

.0 
 

< .00

1 
 

absZ  6.37  1  20.9  
0.02

0 
 

Note. Satterthwaite method for degrees of 

freedom 

Table S3.1.5 
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  Fixed Effects Parameter Estimates 

 
95% Confidence 

Interval 
 

Names Effect 
Estima

te 
SE Lower Upper df t p 

(Intercept)  
(Interce

pt) 
 2.1117  

0.062

0 
 1.9902  2.2333  21.6  

34.0

6 
 

< .00

1 
 

targetCategor

y1 
 2 - 1  

-

0.2023 
 

0.024

3 
 -0.2499  -0.1547  

4560.

6 
 

-

8.33 
 

< .00

1 
 

targetCategor

y2 
 3 - 1  

-

0.2138 
 

0.024

3 
 -0.2614  -0.1662  

4559.

3 
 

-

8.80 
 

< .00

1 
 

absZ  absZ  
-

0.0468 
 

0.018

6 
 -0.0832  -0.0105  20.9  

-

2.52 
 

0.02

0 
 

 Table S3.1.6 
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Model Info 

Info   

Estimate  Linear mixed model fit by ML  

Call  
signedConfidence ~ 1 + targetCategory + zScore + 

targetCategory:zScore+( 1|id )+(0+ zScore|id ) 
 

AIC  19180.0119  

BIC  19237.9122  

LogLikel.  -9581.0059  

R-squared 

Marginal 
 0.0402  

R-squared 

Conditional 
 0.1265  

Table S3.1.7  

Fixed Effect Omnibus tests 

          

  F 
Num 

df 

Den 

df 
p 

targetCategory  
59.

0 
 2  

4558

.0 
 

< .00

1 
 

zScore  
24.

9 
 1  19.9  

< .00

1 
 

targetCategory ✻ 

zScore 
 

10.

2 
 2  

4558

.4 
 

< .00

1 
 

Note. Satterthwaite method for degrees of freedom 

Table S3.1.8  
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Fixed Effects Parameter Estimates 

 

95% 

Confidence 

Interval 

 

Names Effect 
Estima

te 
SE Lower 

Uppe

r 
df t p 

(Intercept)  
(Interce

pt) 
 -0.056  0.132  

-

0.316 
 0.203  20.0  -0.42  

0.67

5 
 

targetCategory1  2 - 1  0.2492  0.069  0.113  0.386  4558  3.58  
< .0

01 
 

targetCategory2  3 - 1  0.7427  0.069  0.606  0.879  4558  10.67  
< .0

01 
 

zScore  zScore  0.2449  0.049  0.149  0.341  19.9  4.99  
< .0

01 
 

targetCategory1 

✻ zScore 
 

2 - 1 ✻ 

zScore 
 0.2762  0.070  0.139  0.414  4558  3.95  

< .0

01 
 

targetCategory2 

✻ zScore 
 

3 - 1 ✻ 

zScore 
 0.2703  0.070  0.133  0.408  4558  3.86  

< .0

01 
 

Table S3.1.9 
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S2. Experiment 2: Model Tables 

 Model Info 

    

Info   

Estimate  Linear mixed model fit by ML  

Call  direction ~ 1 + targetCategory + zScore+( 1|id )+(0+ zScore|id )  

AIC  6279.3024  

BIC  6324.6370  

LogLikel.  -3132.6512  

R-squared 

Marginal 
 0.0517  

R-squared 

Conditional 
 0.1400  

Table S3.2.1  

Fixed Effect Omnibus tests 

          

  F 
Num 

df 

Den 

df 
p 

targetCateg

ory 
 

89.

6 
 2  

4758

.1 
 

< .0

01 
 

zScore  
34.

5 
 1  21.0  

< .0

01 
 

Note. Satterthwaite method for degrees of 

freedom 

Table S3.2.2 
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 Fixed Effects Parameter Estimates 

 
95% Confidence 

Interval 
 

Names Effect 
Estima

te 
SE Lower Upper df t p 

(Intercept)  
(Interce

pt) 
 1.3306  

0.032

8 
 1.2664  1.3948  24.9  

40.6

2 
 

< .00

1 
 

targetCategor

y1 
 2 - 1  0.1157  

0.016

3 
 0.0838  0.1476  

4758.

1 
 7.11  

< .00

1 
 

targetCategor

y2 
 3 - 1  0.2178  

0.016

3 
 0.1859  0.2498  

4758.

1 
 

13.3

7 
 

< .00

1 
 

zScore  zScore  0.0699  
0.011

9 
 0.0466  0.0933  21.0  5.87  

< .00

1 
 

 Table S3.2.3 

 

Model Info 

Info   

Estimate  Linear mixed model fit by ML  

Call  confidence ~ 1 + absZ + targetCategory+( 1 | id )+( 0+absZ | id )  

AIC  8267.3245  

BIC  8312.6591  

LogLikel.  -4126.6622  

R-squared 

Marginal 
 0.0100  

R-squared 

Conditional 
 0.3881  

Table S3.2.4 



112 
 

 Fixed Effect Omnibus tests 

          

  F 
Num 

df 

Den 

df 
p 

targetCategory  
28.

2 
 2  

4757

.1 
 

< .00

1 
 

absZ  
10.

0 
 1  21.5  

0.00

5 
 

Note. Satterthwaite method for degrees of freedom 

Table S3.2.5  

Fixed Effects Parameter Estimates 

 
95% Confidence 

Interval 
 

Names Effect 
Estima

te 
SE Lower Upper df t p 

(Intercept)  
(Interce

pt) 
 2.1537  0.0993  1.959  2.3483  20.1  

21.6

9 
 

< .00

1 
 

targetCategory1  2 - 1  
-

0.1358 
 0.0200  -0.175  -0.0966  4757.6  

-

6.80 
 

< .00

1 
 

targetCategory2  3 - 1  
-

0.1230 
 0.0200  -0.162  -0.0838  4756.5  

-

6.16 
 

< .00

1 
 

absZ  absZ  
-

0.0652 
 0.0206  -0.106  -0.0248  21.5  

-

3.17 
 

0.00

5 
 

Table S3.2.6  
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Model Info 

    

Info   

Estimate  Linear mixed model fit by ML  

Call  
signedConfidence ~ 1 + targetCategory + zScore+( 1 | id )+( 

0+zScore | id ) 
 

AIC  19537.3830  

BIC  19582.7176  

LogLikel.  -9761.6915  

R-squared 

Marginal 
 0.0452  

R-squared 

Conditional 
 0.1690  

Table S3.2.7 

 Fixed Effect Omnibus tests 

          

  F 
Num 

df 

Den 

df 
p 

zScore  
29.

6 
 1  20.0  

< .00

1 
 

targetCategory  
74.

0 
 2  

4756

.1 
 

< .00

1 
 

Note. Satterthwaite method for degrees of freedom 

 Table S3.2.8 
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 Fixed Effects Parameter Estimates 

 
95% Confidence 

Interval 
 

Names Effect 
Estima

te 
SE Lower Upper df t p 

(Intercept)  
(Interce

pt) 
 -0.274  

0.154

1 
 -0.575  0.0284  20.0  

-

1.78 
 

0.09

1 
 

zScore  zScore  0.283  
0.052

0 
 0.181  0.3847  20.0  5.44  

< .00

1 
 

targetCategor

y1 
 2 - 1  0.402  

0.064

7 
 0.275  0.5283  

4756.

1 
 6.21  

< .00

1 
 

targetCategor

y2 
 3 - 1  0.788  

0.064

7 
 0.661  0.9144  

4756.

1 
 

12.1

6 
 

< .00

1 
 

 Table S3.2.9 
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S3. Model Comparison Outputs 

Model BIC ΔBIC R2 

 

Direction Judgment 

direction ~ 1 + (1 | id)  6277.514  0.101 

direction ~ 1 + zScore + (1 + zScore | id) + (1 | id) 6204.3135 -73.20 0.1228 

direction ~ 1 + zScore + targetCategory + (1 + zScore | id) + (1 | id) 6087.4298 -116.8 0.1502 

direction ~ 1 + zScore*targetCategory + (1 + zScore | id) + (1 | id) 6082.0694 -5.36 0.1524 

 

Confidence Rating 

confidence ~ 1 + (1 | id)  9603.766  0.134 

confidence ~ 1 + absolute z-score + (1 + absZ | id) + (1 | id) 9613.1321

5 

9.37 0.1369 

confidence ~ 1 + targetCategory + absZ + (1 + absZ | id) + (1 | id) 9532.8467 -80.29 0.1552 

 

confidence ~ 1 + targetCategory*absZ + (1 + absZ | id) + (1 | id) 9545.7819 12.94 0.0201 

 

Composite Score 

signedConfidence ~ 1 + (1 | id) + (1 + zScore | id) 19409.125

7 

 0.0788 

signedConfidence ~ 1 + zScore + (1 + zScore | id) + (1 | id) 19340.4 -68.73 0.1 

signedConfidence ~ 1 + zScore + targetCategory + (1 + zScore | id) 

+ (1 |id) 

19241.308

6 

-99.09 0.1226 

signedConfidence ~ 1 + zScore*targetCategory + (1 + zScore | id) + 

(1 | id) 

19237.912

2 

-3.40 0.1265 

Table S3.3.1. Model comparisons for Experiment 1 
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Model BIC ΔBIC R2 

 

Direction Judgment 

direction ~ 1 + (1 | id)  6589.384  0.0799 

direction ~ 1 + zScore + (1 + zScore | id) + (1 | id) 6483.5109 -

105.8 

0.1076 

direction ~ 1 + zScore + targetCategory + (1 + zScore | id) + (1 | id) 6324.637 -

158.8 

0.14 

direction ~ 1 + zScore*targetCategory + (1 + zScore | id) + (1 | id) 6340.6696 16.03 0.1402 

 

Confidence Rating 

confidence ~ 1 + (1 | id)  8364.852  0.353 

confidence ~ 1 + absZ + (1 + absZ | id) + (1 | id) 8351.7831

9 

-

13.07 

0.37967 

confidence ~ 1 + targetCategory + absZ + (1 + absZ | id) + (1 | id) 8312.6591 -

39.12 

0.3881 

confidence ~ 1 + targetCategory*absZ + (1 + absZ | id) + (1 | id) 8327.9571 15.30 0.3889 

 

Composite Score 

signedConfidence ~ 1 + (1 | id) + (1 + zScore | id) 19828.297  0.114 

signedConfidence ~ 1 + zScore + (1 + zScore | id) + (1 | id) 19711.534

4 

-

116.7 

0.1432 

signedConfidence ~ 1 + zScore + targetCategory + (1 + zScore | id) + 

(1 | id) 

19582.717

6 

-

128.8 

0.169 

signedConfidence ~ 1 + zScore*targetCategory + (1 + zScore | id) + 

(1 | id) 

19599.025

1 

16.31 0.1691 

Table S3.3.2. Model comparisons for Experiment 2 
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S4. Correlations Between Individual Slopes and Coefficients of Variation (CV) 

There was no significant correlation between individual slopes from the confidence model and 

CVs pooled in either experiment, r = .338, p = .14, BF10 = .748 in Experiment 1, and r = .08, p = 

.737, BF10 =  .292  in Experiment 2. 

 

 

 

 

 

 


